
Impact Assessment & Prediction of Tweets and Topics

by İnanç Arın

Submitted to the Graduate School of Engineering and

Natural Sciences

in partial fulfillment of the requirements for the degree of

Doctor of Philosophy

Sabancı University

August, 2017

c� İnanç Arın 2017

All Rights Reserved

To my beloved family...

Acknowledgments

This thesis would not have been possible without valuable support of many people.

Firstly, I wish to express my appreciation to my thesis supervisor, Prof. Dr. Yücel Saygın

for his endless assistance for years. He always has been quite helpful as an instructor and

as a valuable advisor with his patience and knowledge. I am also thankful to members

of my thesis defense committee: Prof. Dr. Berrin Yanıkoğlu, Assoc. Prof. Dr. Hüsnü Ye-

nigün, Prof. Dr. Şule Gündüz Öğütücü, and Asst. Prof. Dr. Ali İnan for their presence and

feedbacks. Additionally, I am highly indebted to all my other instructors who had contri-

buted to me during my education years. Besides, Prof. Dr. Nihat Kasap who is my second

advisor during my thesis stage and Selcen Öztürkcan made an important contribution on

the works that we built up together. Special thanks to Mert Kemal Erpam for his great

support on some of the parts in my thesis.

Last but not least, I want to express my special appreciation and thanks to my beloved

family as they have always supported and encouraged me. I am always proud of being a

part of this family.

iv

Impact Assessment & Prediction of Tweets and Topics

İnanç Arın

Computer Science and Engineering

Sabancı University

Ph.D. Thesis, 2017

Thesis Supervisor: Prof. Dr. Yücel Saygın

Thesis Co-supervisor: Prof. Dr. Nihat Kasap

Keywords: Impact Prediction, Hidden Retweets, Tweet Clustering, Lexical based

Clustering, Density Based Clustering, Generalized Suffix Tree, Locality Sensitive

Hashing

Abstract

People tend to spread information and share their ideas in Twitter, while researchers and

policy makers would like to understand public opinion and reactions of people in Twitter

towards various events. One way to do that is assessing and predicting the impact of

tweets. In this thesis, we tried to answer three questions: (1) “What does impact of a

tweet mean?”, (2) “How do we measure the impact of tweets or topics?”, and (3) “Can

we predict the impact of tweets or topics?”. In order to address these questions, we first

emphasize the role of retweets and their importance in impact assessment. We then show

that we can build a model through supervised learning to predict if a tweet will get a high

number of retweets. We extracted various features from tweets including content based

features through Convolutional Neural Networks (CNN).

In order to have a more accurate impact assessment, we introduced the concept of

hidden retweets. People tend to re-post tweets by adding some extra comments to the be-

ginning or to the end of original tweet. Also they intentionally or unintentionally post the

exact or near exact tweets with other people without explicitly retweeting them. Therefore

hidden retweets are quite important for measuring the real impact of tweets. However, it is

also computationally expensive to identify and count the number of hidden retweets. We

v

show that aggregating hidden retweets can be done efficiently through a lexical similarity

based clustering algorithm enhanced with a tree structured index and locality sensitive

hashing. We adopted a document clustering based approach for discovering the hidden

retweets. We developed and evaluated several clustering algorithms with lexical simila-

rity as the distance measure between tweets. Longest Common Subsequence (LCS) is a

widely accepted method to calculate the lexical similarity between short text documents

such as tweets, but it is also very expensive. Therefore, we utilized an advanced data st-

ructure which is Generalized Suffix Tree (GST) based on Longest Common Substring

which is an approximation of LCS. We, then developed a density based clustering app-

roach based for tweet clustering and improved its performance by integrating GST and

Locality Sensitive Hashing.

vi

Tweetlerin ve Konuların Etkisinin Değerlendirilmesi ve Önceden Tahmin

Edilmesi

Bilgisayar Bilimi ve Mühendisliği

Doktora Tezi, 2017

Tez Danışmanı: Prof.Dr. Yücel Saygın

Tez Eş Danışmanı: Prof. Dr. Nihat Kasap

Etki Tahmini, Gizli Retweetler, Tweet Kümeleme, Karakter Bazında Kümeleme,

Yoğunluk Bazında Kümeleme, Genelleştirilmiş Son Ek Ağacı, Lokal Duyarlılık

Adresleme

Özet

İnsanlar Twitter üzerinde bilgi ve fikir paylaşırlarken, araştırmacılar ve politika belirleyi-

ciler de çeşitli olaylara karşı toplumsal algıyı öğrenmek isterler. Bu amacı gerçekleştirmenin

bir yolu da tweetlerin etkisini ölçmektir. Bu tez içerisinde 3 tane araştırma konusunu

cevaplamaya çalıştık: (1) “Bir tweetin etkisi nasıl tanımlanır?”, (2) “Tweetlerin ve konu-

ların etkisini nasıl ölçeriz?”, (3) “Tweetlerin ve konuların etkisini önceden tahmin edebilir

miyiz?”. Bu sorulara cevap bulabilmek için öncelikle retweetlerin tweet etkisi üzerindeki

önemini vurguluyoruz. Sonrasında bir tweetin yüksek sayıda retweet alıp almayacağını

tahmin edebilmek için bir öğrenim modeli hazırladık. Bunun dışında kıvrımsal sinir

ağlarını kullanarak tweetlerden içerik bazında bazı özellikler de çıkardık. Tweetlerin

gerçek etkisini daha doğru bir şekilde ölçebilmek adına “gizli retweetler” kavramını tanımladık.

İnsanlar var olan tweetleri yeniden gönderirlerken tweetin başına ya da sonuna bazı yo-

rumlar ekleyebiliyorlar. Bunun dışında bilerek ya da bilmeyerek başka insanlarla tama-

men aynı ya da çok benzer tweetleri yazabiliyorlar. Bu yüzden gizli retweetlerin in-

celenmesi tweetlerin gerçek etkisini ölçmek için son derece önemlidir. Bununla be-

raber gizli retweetlerin bulunması ve sayılarının tam olarak belirlenmesi çok pahalı bir

işlemdir. Ağaç bazlı yapılarla ve lokal duyarlılık adresleme tekniğiyle geliştirdiğimiz

vii

karakter bazlı kümeleme yöntemlerinin bu pahalı işlemi çok etkili bir şekilde tamamlaya-

bildiğini gösterdik. Tweetlerin arasındaki uzaklığı karakter bazlı metriklerle ölçen çeşitli

kümeleme yöntemleri geliştirdik ve bunları deneysel olarak değerlendirdik. En uzun or-

tak altdizi yöntemi tweet gibi kısa metin dokümanları arasındaki benzerliği ölçmek için

çok kullanılan bir yöntemdir. Ancak bu yöntem bir o kadar da pahalıdır. Bu sebeple

en uzun altdizgi bazlı genelleştirilmiş son ek ağaçlarından faydalandık. Ayrıca yoğunluk

bazlı kümeleme algoritması geliştirdik; sonrasında bu algoritmayı genelleştirilmiş son ek

ağaçları ve lokal duyarlılık adresleme yöntemini kullanarak bu algoritmayı hızlandırdık.

viii

Contents

Acknowledgments . iv

Abstract . v

Özet . vii

1 Introduction 1

1.1 Why do people Retweet? . 3

1.1.1 Impact Prediction of Tweets . 6

1.2 Motivation for Hidden Retweets . 6

1.2.1 Methodology for Discovering Hidden Retweets 9

1.3 Outline . 11

2 Related Work 12

3 Preliminaries and Background 16

3.1 Infrastructure - ELK . 17

3.1.1 Elasticsearch . 17

3.1.2 Logstash . 17

3.1.3 Kibana . 18

3.2 Text Mining . 19

3.2.1 tf-idf . 19

3.3 Evaluation Methods for Classification 20

3.3.1 Cross-Validation . 20

3.4 Deep Learning Methods . 20

ix

3.4.1 Fully Connected Neural Network 21

3.4.2 Cross Entropy and Loss Function 22

3.4.3 Optimizing Loss Function . 23

3.4.4 L2 Regularization and Dropout 25

3.4.5 Word Embeddings . 25

3.4.6 Convolutional Neural Networks 26

3.4.7 Text Classification with CovNets 30

3.5 Lexical Similarty Measures . 33

3.5.1 Longest Common Subsequence 33

3.5.2 Longest Common Substring . 33

3.6 Clustering Methods . 34

3.6.1 K-Means Clustering . 34

3.6.2 DBSCAN . 34

3.7 Data Structures/Indexing Methods to Improve DBSCAN 35

3.7.1 Suffix Trie . 35

3.7.2 Suffix Tree . 38

3.7.3 Locality Sensitive Hashing . 41

4 Predicting Impact of Tweets and Topics 45

4.1 Data and Methodology . 48

4.2 Analysis and Results . 48

4.2.1 Reflection of Real Life Phenomenon in Tweets 48

4.2.2 Attracting New Users to Post . 51

4.2.3 Spread and Fade Out Characteristics 52

4.2.4 Conditions and Features Leading to High Retweet 56

4.2.5 Cluster Analysis . 60

4.2.6 Modifying low and high Labels 61

4.2.7 Identifying Class-Specific Terms 63

4.3 Impact Prediction with CovNets . 66

4.3.1 Overview of the Data . 67

x

4.3.2 CovNets Experiments . 69

4.3.3 Generalization of the Proposed Approach 71

5 Impact Assessment of Tweets 73

5.1 Methodology . 74

5.1.1 LCS-Lex: Longest Common Subsequence Based Lexical Clus-

tering of Tweets . 74

5.1.2 ST-TWEC: Suffix Tree Based Tweet Clustering Method 77

5.1.3 K-means Document Clustering Method 79

5.1.4 LCS-DBSCAN: Classic DBSCAN with LCS 79

5.1.5 ST-DBSCAN: DBSCAN Integrated with Suffix Tree 80

5.1.6 LSH-DBSCAN: DBSCAN Integrated with LSH 81

5.2 Experimental Evaluation . 82

5.2.1 Comparison of ST-TWEC, LCS-LEX, k-means 82

5.2.2 Comparison of LCS-DBSCAN, ST-DBSCAN, LSH-DBSCAN . . . 89

5.2.3 Comparison of LSH-DBSCAN, ST-DBSCAN, ST-TWEC 97

6 Conclusion and Future Work 100

Appendices 103

.1 Additional Figures . 104

xi

List of Figures

1.1 The Number of Monthly Active Users in Millions 2

1.2 Impression of a Tweet in Twitter Activity Page 3

1.3 The first tweet of CIA . 4

1.4 An example of funny tweets . 5

1.5 @omgAdamSaleh . 7

1.6 @HumanX86 . 7

1.7 Tweet sent by @girlpost . 8

1.8 Tweet sent by @glowpost . 8

1.9 Distribution of original and hidden RTs - 1 9

1.10 Distribution of original and hidden RTs - 2 10

1.11 Distribution of original and hidden RTs - 3 10

3.1 Elasticsearch with RESTful API. It is possible to query from the browser

with Chrome plugin Sense . 18

3.2 Visualizing the data in Elasticsearch . 19

3.3 History of Neural Networks . 21

3.4 Fully Connected Neural Network . 22

3.5 Gradient Descent . 24

3.6 Stochastic Gradient Descent . 24

3.7 Same Neural Network Model without and with Dropout 25

3.8 Input Image . 27

3.9 filter . 27

3.10 Convolution - Step 1 . 27

xii

3.11 Convolution - Step 2 . 27

3.12 A Deep Representation of Consequent Convolution Processes 28

3.13 Rectified Linear Unit . 29

3.14 Max Pool . 29

3.15 LENET-5 . 30

3.16 Model Architecture with Two Channels for an Example Sentence 31

3.17 Model Architecture by Zhang and Wallace [109] 32

3.18 DBSCAN . 36

3.19 An Example of Suffix Trie . 37

3.20 Worst Case Space Complexity of Suffix Trie 38

3.21 An Example of Suffix Tree . 39

3.22 Converting Edge Labels into (offset, length) 39

3.23 Storing Offsets in the Leaves . 40

3.24 Generalized Suffix Tree of X and Y . 41

3.25 Locality Sensitive Hashing . 42

3.26 Generating L Hash Tables for LSH . 43

4.1 Daily Number of Tweets (01 Feb 2015 – 27 Feb 2016) 49

4.2 Daily Number of Twitter Users (01 Feb 2015 – 27 Feb 2016) 51

4.3 Daily Cumulative Numbers of Twitter Users (01 Feb 2015 – 27 Feb 2016) 52

4.4 Spread and Fade out Patterns of Top 50 Retweeted Tweets 55

4.5 A Sample Spread and Fade out Patterns of Some Highly Retweeted Tweets 55

4.6 Distribution of Different RT Numbers 56

4.7 Distribution of the Observations wrt µ and � 58

4.8 Cosine of the angle between two vectors 61

4.9 Daily Number of Tweets (13 May 2014 – 23 March 2015) 67

4.10 Daily Number of Users (13 May 2014 – 23 March 2015) 68

4.11 Cumulative Number of Users (13 May 2014 – 23 March 2015) 68

4.12 Soma Spread and Fade out Patterns of Top Tweets 69

4.13 CovNet Model Architecture . 70

xiii

4.14 Accuracy of Training Data . 71

4.15 Accuracy of Test Data . 71

5.1 Worst Case Space Complexity of GST 79

5.2 Time performance of ST-TWEC for 60K tweets with different thresholds . 84

5.3 Time performance of LCS-Lex for 60K tweets with different thresholds . . 84

5.4 Time Performance of ST-TWEC with threshold 0.4 85

5.5 Number of clusters for 60K tweets with different thresholds 85

5.6 Number of unclustered tweets for 60K tweets with different thresholds . . 86

5.7 Average intra-cluster similarity for 60K tweets with different thresholds . 86

5.8 Weighted average intra-cluster similarity for 60K tweets with different

thresholds . 86

5.9 Purity for 60K tweets with different thresholds 86

5.10 Precision, Recall and F-Score results for “#charlie” cluster 88

5.11 Precision, Recall and F-Score results for “#christmas” cluster 88

5.12 Precision, Recall and F-Score results for “#nba” cluster 89

5.13 Precision, Recall and F-Score results for “#trump” cluster 89

5.14 Time performance of LCS-DBSCAN for 10K tweets with different thresh-

olds . 90

5.15 Time performance of other methods for 10K tweets with different thresholds 90

5.16 Zoom in version of Figure 5.15 . 92

5.17 Number of clusters for 10K tweets with different thresholds 92

5.18 Number of unclustered tweets for 10K tweets with different thresholds . . 92

5.19 Average intra-cluster similarity for 10K tweets with different thresholds . 92

5.20 Weighted average intra-cluster similarity for 10K tweets with different

thresholds . 93

5.21 Purity for 10K tweets with different thresholds 93

5.22 Precision, Recall and F-Score results for “#charlie” cluster 94

5.23 Precision, Recall and F-Score results for “#christmas” cluster 94

5.24 Precision, Recall and F-Score results for “#nba” cluster 94

xiv

5.25 Precision, Recall and F-Score results for “#trump” cluster 94

5.26 Time performance with different minPts values 95

5.27 Number of clusters with different minPts values 95

5.28 Number of unclustered tweets with different minPts values 96

5.29 Average intra-cluster similarity with different minPts values 96

5.30 Weighted average intra-cluster similarity with different minPts values . . 96

5.31 Purity with different minPts values . 96

5.32 Compare LSH-DBSCAN-K20-L1, ST-DBSCAN and ST-TWEC with 60K

dataset in terms of the time performance 98

5.33 Compare LSH-DBSCAN-K20-L1, ST-DBSCAN and ST-TWEC with dif-

ferent data sizes . 99

1 Label: we got kicked out of a airplane because i spoke arabic to my mom

on the . 104

2 Label: had a smoke off in the middle of a concert 105

3 Label: how i sleep at night knowing i m a disappointment to my 106

xv

List of Tables

4.1 Top 10 Highest Numbers of Tweet posting Days and Related Real Life

Events . 50

4.2 Details of Highly Retweeted Top 50 Tweets and Posting Accounts 55

4.3 Regular Attributes of the Learning Model 57

4.4 Confusion Matrix on Predicting low and high Labels for slope 59

4.5 Confusion Matrix on Predicting low and high Labels for numberOfTotalRTs 59

4.6 Confusion Matrix on Predicting low and high Labels for numberOfDaysFor-

Saturation . 60

4.7 Confusion matrix on predicting clusters 62

4.8 Confusion Matrix on Predicting low and high Labels with 2000 Tweets . . 62

4.9 Confusion Matrix on Predicting low and high Labels for More Polarized

Classes . 63

4.10 Confusion Matrix After Adding tf-idf Related Features 64

4.11 Confusion Matrix After Adding tf-idf Related Features with 3000 Tweets 65

5.1 Number of Buckets wrt. K value . 91

xvi

List of Algorithms

1 Generating Hash with Length K for Document d 44

2 LCS based tweet clustering algorithm . 75

3 regionQuery function in LCS-DBSCAN 80

4 regionQuery function in ST-DBSCAN . 81

5 regionQuery function in LSH-DBSCAN 82

xvii

Chapter 1

Introduction

Twitter was founded in 2006 and its creator Jack Dorsey sent the very first tweet which

says “just setting up my twttr” on March 21th 2006. After that day, Twitter continues to be

used in an incredibly increasing manner. After 3 years, the billionth tweet was sent [91];

and around 6000 tweets are sent every second, which means approximately 500 million

tweets in a single day as of 2015 [81, 72]. The number of active users in a month over

time is given in Figure 1.11.

As it is stated in [40], Twitter has features that are different than other social network

platforms such as Facebook. Account types on Twitter can be public or protected. A user

can follow any other user with a public account without any permission needed. This

allows users to follow and share all the tweets from these public accounts. If a user wants

to follow a protected account, it is only possible with the permission of that account’s

owner. However, only 11.84% of the Twitter accounts are protected [6] which means that

a large portion of the Twitter data is easily accessible and shareable.

Through all this information flow, people are constantly sharing their feelings, opin-

ions, reactions towards events and life in general. Since, Twitter is one of the most impor-

tant communication and information/opinion sharing tools of this decade, and it can be

considered as a reasonable reflection of the society [76]; investigating the impact of tweets
1The image was retrieved from https://www.statista.com/statistics/282087/

number-of-monthly-active-twitter-users/

1

https://www.statista.com/statistics/282087/number-of-monthly-active-twitter-users/
https://www.statista.com/statistics/282087/number-of-monthly-active-twitter-users/

Figure 1.1: The Number of Monthly Active Users in Millions

is an interesting research direction. More specifically, the research questions that we tried

to answer in this thesis are: (1) “What does impact of a tweet mean?”, (2) “How do we

measure the impact of tweets or topics?”, and (3) “Can we predict the impact of tweets

or topics?”. By definition, impact means effect and the force exerted by a new idea, con-

cept, technology, or ideology2. It is also a synonym for impression3 and influence4. The

nature of Twitter is that people post their tweets to share and spread their ideas, impress

and influence other people. Impression is considered as a crucial concept by Twitter and

impression of a tweet is defined in their formal Activity Dashboard [93] as the number of

times people saw this tweet. Any user in Twitter, can reach the impression value of their

own tweets by clicking the View Tweet activity button in the detail of any individual tweet

(see Figure 1.2). However, Twitter does not allow us to see the impressions of the tweets
2Retrieved from http://www.dictionary.com/browse/impact
3Retrieved from http://www.thesaurus.com/browse/impression?s=t
4Retrieved from http://www.thesaurus.com/browse/influence?s=t

2

http://www.dictionary.com/browse/impact
http://www.thesaurus.com/browse/impression?s=t
http://www.thesaurus.com/browse/influence?s=t

that were sent by other users. This restriction directed us to use retweet information to

measure the impact of any individual tweet. Below, we investigate two concepts which

are retweet and hidden retweets to express the impact of tweets.

Figure 1.2: Impression of a Tweet in Twitter Activity Page

1.1 Why do people Retweet?

Retweet simply means re-posting another tweet [92]. Twitter allows a user to retweet

any tweet sent by a public account, even if the user is not following that public account.

This allows for a tweet to be instantly shared with the followers of the original sender as

well as the followers of the retweeting accounts. In other words, as it is stated in [40],

retweet option enables users to transmit information far beyond the coverage map of the

followers of the original sender. Margarita Noriega who is the Director of Social Media

at Newsweek, commented that retweeting is more than a button, it actually is a means of

contributing to public knowledge within our social network [53]. She also mentions in

[53] about four different reasons why people retweet:

• Sharing people and specific accounts: Retweeting certain people or accounts, is

as important as the content of the tweet. It is a way of introducing new users or

accounts to the community.

3

Brian Ries, live news editor, Mashable (@moneyries): “I retweet the best tweets

sent by our reporters. I retweet the most notable tweets sent by politicians, celebri-

ties, or other brands . . . sometimes I’ll retweet notable users who are sharing our

stuff. All of this is meant to signal-boost” [53].

One other example, when CIA (Central Intelligence Agency) opened an account

on Twitter and sent their first tweet, it made one of the biggest impressions on

Twitter history with more than 320.000 retweets and 255.890 likes (Figure 1.3).

People have retweeted this tweet not only because it has an interesting and thought-

provoking content but also it was sent by CIA.

Figure 1.3: The first tweet of CIA

• Sharing information: As it was stated before, Twitter is one of the most impor-

tant communication and information/opinion sharing tools. The primary purpose

of Twitter is to provide information flow and retweeting is one of the best ways for

enabling users to quickly spread information over their social network.

Elana Zak, social media editor, the Wall Street Journal (@elanazak): “You’ll win

points with me if the tweets are well-written and make sense to a reader new to the

information. No typos or tons of text-speak. The tweet should either share a piece

4

of information or make me want to click on the link to read more. In terms of what

@WSJ retweets, it varies greatly depending on what’s happening, news-wise” [53].

• Sharing jokes and humorous contents: Although people tend to like it when they

see a tweet with a joke, they also show their reaction by retweeting them. An

example of these tweets, which got 1712 retweets, is given in Figure 1.4.

Figure 1.4: An example of funny tweets

• Building and engaging in an online community: One of the reasons of a retweet

is conveying the questions/responses to other user, so more people can engage in

this topic.

Samir Mezrahi, senior editor, BuzzFeed (@samir): “If someone replies to a ques-

tion I have for others to see their response/the answer to the question” [53].

Based on our observations, we can also add one more item for retweet reasons which

is to criticize, protest or insult an event/opinion. Especially, for political domain, people

tend to retweet some tweets from the opposite opinion and they intend to say “Look at

that idea, how ridiculous it is”. However, in this thesis, we assume that if some user

retweets a specific tweet, that means this user wants to accomplish one of the five items

above. Whatever the real reason is, according to our assumption this user tends to share

and propagate this tweet which is a strong motivation for understanding the impact of a

tweet by discovering the number of retweets.

5

1.1.1 Impact Prediction of Tweets

In the first part of this thesis, we show that we can predict whether a tweet will get

high number of retweets with supervised learning techniques. Content based features

like hashtags, links, special words, lowercase/uppercase letters; and user based features

like number of followers were utilized to create a learning model. Then, this learning

model was experimentally evaluated to make predictions on whether tweets will have

high impact or low impact in terms of the number of retweets. For this process, infras-

tructure of an advanced real-time Twitter monitoring tool had been customized and used.

Using this tool, we started to trace some popular and relevant keywords and hashtags from

Twitter’s Streaming API5. Since Syrian conflict has been one of the hot topics, we have

analyzed 450K tweets which had been collected between February 1st 2015 and February

27th 2016 with “Suriye” (Syria in Turkish) keyword. Following this, only text fields of the

tweet objects were used to create a learning model with Convolutional Neural Networks

(CNN). CNN approach was adopted to predict the impact of tweets on a dataset related

to the Soma mining disaster that had a huge impact on Twitter, especially among Turkish

users, which had been collected just after the incident between May 12th 2014 and March

23rd 2015 with “Soma” keyword.

1.2 Motivation for Hidden Retweets

In the second part of this work, we have focused on measuring the impact of tweets more

precisely for several reasons. Primarily, we observe that people tend to re-post tweets

by adding some extra comments to the beginning or to the end of those tweets. For

instance, Adam Saleh (@omgAdamSaleh) sends a tweet which protests Delta Airlines

(Figure 1.5), and then a user (@HumanX86) adds a reaction to this tweet and re-posts

it again (Figure 1.6). Note that the second tweet is not a retweet of the first tweet sent

by @omgAdamSaleh which means that it is not one of the 836235 retweets. This extra

comment can be supportive of or against the original tweet. The point is that we are not
5https://dev.twitter.com/streaming/overview

6

https://dev.twitter.com/streaming/overview

interested to know whether this user supports that tweet, instead we are interested in the

fact that the user tends to talk about that tweet/topic and increase awareness on that topic

in some way which could be positive or negative. In other words, our concept of impact

is independent from the sentiment. Once a user positively or negatively mentions another

user’s tweet, this user actually contributes to increasing the impact of the mentioned tweet.

Figure 1.5: @omgAdamSaleh Figure 1.6: @HumanX86

Some users prefer to copy and paste another tweet instead of retweeting it. Copied

tweet does not appear to be the retweet of the original, however it is apparent that the

copied tweet was inspired by or influenced from the original tweet. An example has been

given in Figure 1.7 and Figure 1.8. An account with name @girlpost sends a tweet at 2:25

AM 21 Dec 2016 and says ”I hate it when I drop my makeup accessories” with attaching

a video in the post. Then, another account with name @glowpost sends another tweet

at 4:08 AM on the same day with exactly same text and video. Although, @glowpost

did not formally retweet @girlpost’s tweet, the fact is that these two accounts are sharing

same contents to their social network. Thus, the impact of the original tweet is not 21289

nor 909 which are the number of retweets of these tweets respectively, but the real impact

7

is the sum of their values which is 22198. Another case is that two different people may

use almost or exactly the same sequence of characters while talking about the some topic

in their tweets without knowing or influencing each other. Even so, they still mention and

want to share the opinion about the same topic. We identify the tweets in the use cases

explained above as hidden retweets.

Figure 1.7: Tweet sent by @girlpost

Figure 1.8: Tweet sent by @glow-

post

Hidden retweets need to be discovered in order for an accurate impact assessment of

a tweet, but how significant are they? In other words, what is the ratio of the number

of hidden retweets to the number of retweets for a popular tweet? We observed that in

some cases people tend to use the retweet option, thus only a few modified versions of the

tweet are spread around. Figure 1.9 provides an example to show how people only retweet

and stick with the original tweet (see Figure 1 in Appendix for tweet contents). Hidden

retweets we were able to identify compose only 0.067% of all impact for this specific

tweet. On the other hand, in some cases people tend to retweet modified versions of the

original tweet or to retweet the same content from different sources as in Figure 1.10

8

0 2000 4000 6000 8000 10000 12000 14000 16000

#	of	RT

Figure 1.9: Distribution of original and hidden RTs - 1

.

and Figure 1.11 (see Figure 2 and Figure 3 respectively in Appendix for tweet contents).

If spreads of these tweets are carefully analyzed, we can see that hidden retweets have

significant impacts on the spread of these tweets where hidden retweets compose 73%

and 57% of the impacts respectively. These examples demonstrate that hidden retweets

may have a crucial role in measuring the real impact of tweets.

1.2.1 Methodology for Discovering Hidden Retweets

As it was mentioned, people tend to re-post tweets by adding some extra comments to

the beginning or to the end of the original tweet. Also they intentionally or unintention-

ally post the exact same or nearly the same tweets as the tweets sent by other people

without retweeting them. Therefore hidden retweets are quite important for measuring

the real impact of tweets, but it is computationally expensive to discover them from a

large collection of tweets. We claim that capturing hidden retweets can be done very

efficiently by a lexical similarity based clustering algorithm integrated with generalized

suffix tree or locality sensitive hashing method. The identification of hidden retweets is

defined as a document clustering problem in this thesis. The reason is that, we try to

group similar tweets whose similarity is above a predefined threshold. However, stan-

9

0 200 400 600 800 1000 1200 1400

#	of	RT

Figure 1.10: Distribution of original and hidden RTs - 2

.

0 200 400 600 800 1000 1200

#	of	RT

Figure 1.11: Distribution of original and hidden RTs - 3

.

10

dard document clustering algorithms cannot be directly applied to tweets, because tweets

have two distinct characteristics which differentiate them from standard documents such

as blogs, news etc. First, tweets are very short due to the nature of Twitter where there

is a character limit of 140. Therefore standard document clustering algorithms which use

word-based similarity metrics will not work well with tweets. Second, Twitter has no

writing format, people can use informal language, emoticons, abbreviations, and there

are lots of misspellings in their tweets. As a result, Twitter needs a specific clustering

methodology based on lexical clustering to identify similar tweets in terms of content.

In order to cluster similar tweets in an efficient way, we developed a lexical clustering

algorithm based on Longest Common Subsequence. Furthermore, we implemented dif-

ferent versions of this algorithm with advanced data structures based on Suffix Trees, and

Locality Sensitive Hashing. We also adopted a Density Based Clustering approach for

efficient order independent clustering of tweets. Proposed methods are evaluated in terms

of time and cluster quality performance to show their effectiveness compared to the state

of the art.

1.3 Outline

The rest of the thesis is organized as follows. We first discuss the related work in the

literature for retweet prediction and short text clustering in chapter 2. Background infor-

mation about the methodologies used in the thesis are provided in chapter 3. In chapter 4,

the “impact” is associated with the concept of “retweet” and we show that we can predict

whether a tweet will receive high number of retweets. chapter 5 extends the meaning of

“impact” with hidden retweets and presents different methods on how to discover hidden

retweets very efficiently.

11

Chapter 2

Related Work

Different methods for predicting retweet number of the tweets have been studied in recent

years. One of the well known works was presented by Zaman et al. [104]. Authors in

this work defined retweets as a practice to spread information on Twitter network. They

trained their data with probabilistic collaborative filtering models and their training data

contains some user based and item (tweet) based features. Our study differentiates from

this work by presenting a more extensive work (like analyzing accelerating velocity etc),

and by using different features to represent a tweet. Petrovic et al. [59] also studied on

predicting whether if a tweet will be retweeted and their method was based on Passive-

Aggressive algorithm developed by Crammer et al. [13]. They also used different features

than ours like number of times the user was listed, is the user verified, and is the user’s

language English etc. Yang and Counts [103] worked on a network analysis to understand

information diffusion in Twitter. They tend to investigate user interactions by finding

username mentions in a network. In the following chapters, we also use Convolutional

Neural Networks to get maximum information from the content of the tweet. Zhang et al.

[107] also used attention-based deep neural networks on tweets, however their purpose

was to predict users’ attention interests based on their historical tweets.

As we also focused on efficient tweet clustering methods for hidden retweet capture,

we also made a literature review on document clustering methods. There is exiting work

on clustering documents and analyzing the data collected from social networking plat-

12

forms. However, most of these works use vector space model to represent textual docu-

ments which are then used for similarity calculation. For example, Ma et al. [44] propose

a topic based document clustering with three phases where conventional techniques were

used in each phase which are LDA, k-means++, and k-means respectively. Jun et al. [34]

also proposed a model that converts the text data into vector space model. Their model

works on this sparse structured data, reducing the number of dimensions and then per-

forming the clustering task. The clustering method they use is k-means based on support

vector clustering and the Silhouette measure. Rangrej et al. [64] converted text docu-

ments into vector space format with tf-idf values and then used k-means clustering with

cosine and jaccard distances in order to group short text documents. Tu and Ding [88]

and Li et al. [43] represent tweets and event segments respectively with tf-idf weights and

then used cosine similarity metric to calculate distance between tweets. Tang et al. [84]

represent tweets as word vectors but they enrich these vectors with Wikipedia concepts.

They focused on tweet representation, which maps each tweet to a space of Wikipedia

concepts. Similar to tf-idf values, they count cf-itf (i.e. concept frequency and inverse

tweet frequency) to fill vector representations. Becker et al. [5] focused on online iden-

tification of real-world events from Twitter and used an incremental clustering algorithm

where the number of clusters is not pre-determined. They also represent tweets with tf-

idf vectors and use cosine similarity approach. In this work, our aim is to group tweets

which are very similar in content with small additions, deletions, and updates. Therefore,

we do not convert tweets into vector representations, instead we utilize longest common

subsequence and longest common substring methods to find similarities between tweets.

In the literature, there is some work which assigns documents (or tweets) into set

of pre-defined categories. For instance, Miller et al. [50] had two categories: spam and

not spam and assigned each tweet to one of these two categories. Nishida et al. [52]

propose a new method for classifying an unseen tweet as being related to an interesting

topic or not. Zubiaga et al. [110] categorized tweets into 4 different classes that are news,

ongoing events, memes, or commemoratives. Saraçoğlu et al. [70] developed a tool for

clustering documents; however, their task is to determine the documents which belong to

13

more than one class using fuzzy clustering. In our work, we do not have a predefined set

of categories.

It is worth mentioning related work on clustering long-text documents like news.

Among those, Song et al. [77] developed a hybrid evolutionary computation approach

to optimize text clustering. Their approach takes advantage of quantum-behaved parti-

cle swarm optimization (QPSO) and genetic algorithm (GA). Their experiments were on

4 subsets of standard Reuter-21578 and 20Newsgroup datasets which are quite different

than Twitter data. Zamora et al. [106] also proposed an efficient document clustering

method based on locality-sensitive hashing (LHS), but similarly their experiments were

only based on formal language, long texts like 20Newsgroup and DOE (Department of

Energy) datasets which contain abstracts about energy documents. The methodology used

in long-text clustering is different than tweet clustering which has informal language.

There are some studies on clustering in social media platforms. For instance, Dominguez

et al. [15] propose a method for clustering geolocated data from Instagram for outlier de-

tection. However, their focus is not textual data. Martinez-Romo and Araujo [47] worked

on Twitter text data to detect malicious tweets in trending topics. They split the data into

two groups (spam and not spam) as in text categorization, and then predict whether the

tweets are spam using statistical language analysis. Cheong and Lee [12] studied pat-

terns in Twitter, however their work is mainly based on clustering users who exhibit some

patterns and they only used data sets of size 13K tweets in their experiments.

We propose ST-TWEC for lexical clustering and the underlying data structure of this

method is suffix tree as it will be explained later in detail. In literature, there is existing

work which use suffix trees for document clustering. The most known suffix tree clus-

tering algorithm is Suffix Tree Clustering (STC) algorithm [105] which uses word-based

suffix tree for clustering. It is important to stress out differences between ST-TWEC and

STC as most state-of-the-art suffix tree clustering algorithms are based on STC. STC uses

a word-based suffix tree to create clusters and then merges clusters based on the over-

lap of their document sets. To achieve linearity, STC can only merge k clusters with

other clusters, hence it returns only top-k clusters. On the other hand, ST-TWEC uses a

14

character-based suffix tree and achieves linearity for datasets of fixed size documents such

as tweets. It is able to return all clusters and it is also able to capture character variations

when comparing two tweets.

In Twitter domain, currently there are three papers which use suffix trees for cluster-

ing. Thaiprayoon et al. [85] uses STC on Thai Tweets to create clusters and a two-label

clustering structure. Similarly, Poomagal et al. [61] uses STC along with semantic simi-

larity to cluster tweets and determine topics of interest. On the other hand, Fang et al. [19]

uses suffix tree to detect the common phrases between tweets and uses it as a feature to de-

tect popular events. Although these methods use suffix tree to employ different clustering

techniques, the main limitation of these methods is that they return top-k clusters/events,

discarding the rest. Atefeh and Khreich [3] compare event detection methods for Twitter.

Authors explain both event detection methods in Twitter and in traditional media. One

of the event detection methods explained in traditional media uses an n-gram approach

for event detection in news and uses suffix tree to speed up the retrieval of n-gram words,

however clustering was not considered.

15

Chapter 3

Preliminaries and Background

Making predictions on tweets and developing adaptive methods for tweet clustering pro-

cess requires usage of some advanced data structures and algorithms. In this chapter, we

will provide some background information regarding these concepts. We will start with

explaining our infrastructure for tweet collecting/storing in section 3.1. We believe that it

is worth to explain how we retrieve and store the data which will be used in our experi-

ments. Following this, in section 3.2, we will mention about tf-idf which is a numerical

statistic used in most of the Text Mining applications. Cross-Validation technique will be

explained in section 3.3 to show how supervised learning methods used in chapter 4 will

be evaluated. In chapter 4, we will be using Convolutional Neural Networks for a deep

content based analysis, thus we give some background information on Deep Learning

methods in section 3.4 to have a better understanding of these concepts. All the algo-

rithms we developed for tweet clustering in chapter 5 are based on lexical similarity, for

that reason Longest Common Subsequence and Longest Common Substring methods will

be introduced in section 3.5. While traditional clustering algorithms used in this thesis are

explained in section 3.6, some advanced data structures and indexing methods to improve

the performance of the clustering algorithms are provided in section 3.7.

16

3.1 Infrastructure - ELK

As the advanced infrastructure to collect/store tweets to be used in experiments, we pre-

ferred Elastic’s1 open source products: Elasticsearch, Logstash and Kibana (ELK). Ori-

gins of all these three tools come from same company and they can easily be integrated

to work together.

3.1.1 Elasticsearch

Elasticsearch is an open-source, largely scalable, distributed, lucene based full-text search

engine. It stores documents in JSON format with key-value pairs and it allows us to

index and maintain text documents in such a way that the text searching becomes really

fast. Relational databases are not suitable for full text searching; it takes more than 10

seconds for a particular query to get the result via SQL while it takes 10 milliseconds to

search with Elasticsearch on the same hardware [96]. It was designed for scaling up to

thousands of servers with petabytes of data. Elasticsearch works on standard RESTful

API (as shown in Figure 3.1); additionally, it provides some other APIs for different

programming languages like Java, Python, PHP, Perl, Ruby, C# [16].

3.1.2 Logstash

Logstash is an open-source data processing and transferring tool which transmits data

from one source to another. It provides large number of input2 and output3 plugins which

enables data transfering to/from Elasticsearch, RDMS, csv files, mongodb, solr, tcp, udp

events and so on. One of the input plugins is twitter plugin which enables reading events

from Twitter Streaming API. In order to execute Logstash Twitter Plugin, some param-

eters in the configuration file should be specified. For our case, these parameters are

credentials to be retrieved from Twitter (consumer key, consumer secret, oauth token,
1https://www.elastic.co/
2https://www.elastic.co/guide/en/logstash/current/input-plugins.html
3https://www.elastic.co/guide/en/logstash/current/output-plugins.html

17

https://www.elastic.co/
https://www.elastic.co/guide/en/logstash/current/input-plugins.html
https://www.elastic.co/guide/en/logstash/current/output-plugins.html

Figure 3.1: Elasticsearch with RESTful API. It is possible to query from the browser with

Chrome plugin Sense

.

oauth token secret), languages (the languages of the tweets to be collected), and key-

words (keywords to be tracked).

3.1.3 Kibana

Kibana is an open-source tool to monitor, visualize, analyze and discover the data in

Elasticsearch. It allows to plot some histograms, some type of charts and more by taking

advantage of aggregation capabilities of Elasticsearch (see Figure 3.24).

These 3 tools (Elasticsearch, Logstash and Kibana) have been used to set up the in-

frastructure mentioned above. We have prepared a video5 which is publicly available

in YouTube to demonstrate constructing a sample infrastructure to retrieve live streaming

tweets from Twitter, import them into Elasticsearch by using Logstash, and visualize them

in Kibana.
4The figure was retrieved from https://www.elastic.co/products/kibana
5https://www.youtube.com/watch?v=J5BX7ECIsjY

18

https://www.elastic.co/products/kibana
https://www.youtube.com/watch?v=J5BX7ECIsjY

Figure 3.2: Visualizing the data in Elasticsearch

.

3.2 Text Mining

3.2.1 tf-idf

tf–idf, abbreviation of term frequency–inverse document frequency, is a statistical method

that is intended to reflect how important a word is to a specific class. One particular word

becomes more important for a class as it occurs more frequently in this class and as it

occurs less frequently in other classes.

• tf: term frequency, measures how frequently a term (token) occurs in a specific

class (Equation 3.1).

tf(t) =
(Number of times term t appears in a class)

(Total number of terms in the class)
(3.1)

• idf: inverse document frequency, measures how important a term is by calculating

the number of other classes that contain this term (Equation 3.2). For instance, one

particular class c may have “is” so many times as term. However, since this term

also occurs in many other classes, this term is not that important for the class c.

19

idf(t) = log
(Total number of classes)

(Total number of classes with term t)
(3.2)

Lastly, tf-idf is defined as in Equation 3.3.

tf � idf(t) = tf(t) ⇤ idf(t) (3.3)

3.3 Evaluation Methods for Classification

3.3.1 Cross-Validation

Cross-Validation is a technique which is being used for estimating the accuracy of a clas-

sifier induced by supervised learning algorithms [99]. k-fold cross-validation randomly

splits data into k different parts; use k�1 of them as training data and 1 of them as testing

data. Then, it repeats this process k time by choosing another part as testing. At the end,

the average of the results gives the overall accuracy of the learning model.

3.4 Deep Learning Methods

Neural Networks is not a new concept, actually the history of neural networks comes from

1950s when Hebb [25] pointed the strength of neural pathways. It becomes more popu-

lar in 1990s after the invention of the back propagation algorithm [98]. However, it lost

its attraction in the beginning of the 2000s with the high usage of other techniques like

Support Vector Machines(SVM), Random Forests etc. In recent years, the popularity of

neural networks increased again (and still increasing exponentially - see Figure 3.3) due

to availability of huge amount of data and hardware designed for high computational pro-

cesses (i.e. GPUs). The reason that we say “deep” is the depth of the learning structures.

20

Figure 3.3: History of Neural Networks

3.4.1 Fully Connected Neural Network

A sample Fully Connected Neural Network is given in Figure 3.46. In this neural network,

there is an input layer, several hidden layers (they are called as hidden layers since the

information transmission between each of them is unknown) and an output layer.

Let’s assume that we want to train a logistic classifier (i.e. linear classifier) that is

denoted by Equation 3.4

WX + b = y (3.4)

In Equation 3.4, X refers to input (for example, pixels of an image), W refers to

weights, b refers to bias and y refers to a vector that contains scores (logits) for each

class. These scores in y are needed to be converted to the probabilities such that the prob-

ability of the correct class is close to 1 and the probability of the incorrect classes are
6The figure was retrieved from http://neuralnetworksanddeeplearning.com/chap6.

html

21

http://neuralnetworksanddeeplearning.com/chap6.html
http://neuralnetworksanddeeplearning.com/chap6.html

Figure 3.4: Fully Connected Neural Network

close to 0. Actually, this is the expected result, but it is not the case all the time. In order

to convert these scores into probabilities, we use “softmax” function which is denoted by

Equation 3.5.

S(y
i

) =
eyiP
j

eyj
(3.5)

For instance, let’s say y is [2.0, 1.0, 0.1] and we want to convert this vector into vector

of probabilities. And each probability will be calculated through softmax function as

below:

y =

2

6664

2.0

1.0

0.1

3

7775
) Softmax)

2

6664

p = 0.7

p = 0.2

p = 0.1

3

7775
= S(y)

3.4.2 Cross Entropy and Loss Function

The probability vector, S(y), that is created after softmax function will be compared

with the “one hot encoding” vector which is denoted by L. In L, the correct class gets the

value of 1.0 and all other classes get the value of 0.0. The function that calculates distance

between S(y) and L is called “Cross Entropy” and denoted by Equation 3.6.

22

D(S(y), L) = �
X

i

L
i

log(S
i

) (3.6)

We have lots of pieces until so far, let’s summarize them below:

x =

2

6664

..

..

..

3

7775
!

WX+b

y =

2

6664

2.0

1.0

0.1

3

7775
!
S(y)

2

6664

0.7

0.2

0.1

3

7775
!

D(S(y),L)

2

6664

1.0

0.0

0.0

3

7775
= L

At the end, we obtain the following distance function D(S(WX + b), L), where W

and b are needed to be found such that the distance function should be very low for correct

predictions and high for wrong predictions. For this purpose, we define a “Loss” function

(i.e average cross entropy) as in Equation 3.7 where N is the number of examples.

£ =
1

N

X

i

D(S(wx
i

+ b), L
i

) (3.7)

3.4.3 Optimizing Loss Function

As Vincent Vanhoucke, who is a Principal Scientist in Google Brain, points out in [97],

output of the loss function should be as small as possible. It is an optimization problem,

and one of the most widely known algorithms for this problem is “Gradient Descent”. For

the sake of simplicity, let’s assume that we have two weights as in Figure 3.57. In order to

get this loss function smaller in each step, we take the derivative of the loss function and

follow that derivative in the opposite direction.

Vanhoucke [97] also states that initialization of W and b is quite important, we need

to assign random values with zero mean and equal variance. The problem is that we may

have lots of parameters (weights) and the number of examples in Equation 3.7 can be

quite high. Additionally, we need to repeat this several time. In other words, although

gradient descent works great to minimize the loss function, its complexity is quite high.

Instead of considering all the examples in our training data, we just pick a random sample

and calculate the loss function and its derivative accordingly. Each time (actually many
7Figure 3.5 and Figure 3.6 were retrieved from [97]

23

Figure 3.5: Gradient Descent

times) we take a small step instead of a large step (and sometimes it may be in the wrong

direction); however, we reach to the intended position in the long term as it is shown

in Figure 3.6. This technique is called “Stochastic Gradient Descent” and it is much

cheaper. Another stochastic optimization technique that we used in our experiments is

called “Adam” (see [38] for details).

Figure 3.6: Stochastic Gradient Descent

24

3.4.4 L2 Regularization and Dropout

Overfitting is one of the biggest problems in Deep Neural Networks. There are several

methods that can be applied in order to prevent overfitting. One of them is “L2 Regular-

ization”. Actually, it adds another value to the loss function to decrease the effect of large

weights and generates a new loss function £0 as in Equation 3.8 where k w k22 is L2 norm

of weights and � is a small constant.

£0 = £+ �
1

2
k w k22 (3.8)

Another regularization type is “Dropout”. Srivastava et al. [79], who are the inventors

of the method, define dropout technique as dropping random units from neural network

in order to prevent co-adapting as shown in Figure 3.78. According to the experimental

results in [79], it greatly reduces the overfitting and it outperforms other regularization

techniques as well. Since units to be dropped are randomly chosen at each step, it basi-

cally enforces the neural network model to learn different models of the same data in the

long term.

Figure 3.7: Same Neural Network Model without and with Dropout

3.4.5 Word Embeddings

Mikolov et al. [49] represents words with vectors where these vectors contain some num-
8Figure 3.7 was retrieved from [79]

25

ber of weights. The idea behind the embeddings is that similar words occur in similar

context. In other words, the distance (i.e. cosine distance) between vectors of semanti-

cally similar words is very low. Embeddings also allow us to apply some mathematical

operations among words. Let’s represent vector of a specific word w with V(w).

V0 = V(“puppy”) - V(“dog”) + V(“cat”)

V0 is another vector that is very close to V(“kitten”) in embedding space (of course if

we have a good model). Therefore, words are represented as vectors and documents are

represented as sequence of vectors in deep learning models.

3.4.6 Convolutional Neural Networks

Vanhoucke [97] defines Convolutional Neural Networks (CovNets or CNNs) as the neu-

ral networks that share their parameter across space. For instance, let’s say we want to

determine whether an image contains a cat. It does not matter where the cat exists in the

image. The only important thing is its existence in anywhere. Similarly, assume a ”cat”

word inside of a sentence. The meaning of this word will not change depending on its

position in the sentence. CovNets are widely used both in image classification [39] and

text classification [37] processes. For the easy understanding of the concepts related to

CovNets, we will first define these concepts within an image classification problem and

then show how to use them in a text classification problem. CovNets are composed of 4

main phases:

1) Convolution: In this phase, the purpose is to get a deeper feature map that contains

semantic information. For this process, we use filters (or also called as patches). As-

sume that we have a 5x5 input image and 3x3 filter as in Figure 3.8 and Figure 3.9

respectively9.

In order to extract the feature map, we stride filter matrix on the input image step by

step as shown in Figure 3.10 and Figure 3.11.
9Figure 3.8, Figure 3.9, Figure 3.10, and Figure 3.11 were retrieved from https://ujjwalkarn.

me/2016/08/11/intuitive-explanation-convnets/

26

https://ujjwalkarn.me/2016/08/11/intuitive-explanation-convnets/
https://ujjwalkarn.me/2016/08/11/intuitive-explanation-convnets/

Figure 3.8: Input Image Figure 3.9: filter

Figure 3.10: Convolution - Step 1 Figure 3.11: Convolution - Step 2

27

Please note that every input image has a depth. For instance, the depth of an image

with RGB channels is 3, and this convolution process is applied on each depth. At

the end of the convolution phase, we have another image with different width, height

and depth. The height and width of the feature map depends on the size of the filter

and the stride length in each step. On the other hand, the depth of the feature size

depends on the number of filters. If we use more filter, then it will generate a deeper

feature map which has more semantic information. As it is stated before, the purpose

of convolution is to generate a deeper image as shown in Figure 3.1210.

Figure 3.12: A Deep Representation of Consequent Convolution Processes

2) ReLU: ReLU is abbreviation of Rectified Linear Unit and it replaces all the negative

pixels values with 0. Since convolution is a linear operation and most of the real-

world problems are non-linear problems, ReLU contributes by adding non-linearity to

the problem as shown in Figure 3.13.

There are some other non-linear functions like “tanh” or “sigmoid”, but ReLUs are the

most popular and generally more accurate than others.

3) Pooling (subsampling): Remember that we have a stride size parameter in convolu-
10Figure 3.12 was retrieved from [97]

28

Figure 3.13: Rectified Linear Unit

tion phase while we are extracting the feature map. If we choose stride length too big,

then we will lose a lot of information. Instead, it’s better to select smaller stride lengths

(like 1 or 2), then select the maximum value inside a pooling area as in Figure 3.1411.

Figure 3.14: Max Pool

This operation reduces the dimension size, so decreases the complexity; but it still

stores the most important information. There are other pooling techniques like “aver-

age pooling”, but max pooling generally performs better.

4) Fully Connected Layer: In the last phase, we have fully connected layer(s) which

executes the classification process which was explained in subsection 3.4.1.
11Figure 3.14 was retrieved from http://cs231n.github.io/convolutional-networks/

29

http://cs231n.github.io/convolutional-networks/

We have several steps until so far as below:

Image! Convolution!Max Pooling! Convolution!Max Pooling! Fully Con-

nected Layer! Fully Connected Layer! Output

LENET-5 (see Figure 3.15) was the first model that uses the architecture above, pre-

sented by Lecun et al. [41].

Figure 3.15: LENET-5

3.4.7 Text Classification with CovNets

As we mentioned in subsection 3.4.6, CovNets also works impressively good for text

categorization process. Text classification with CovNets is quite similar to image classi-

fication problem, the only thing we need to do is that finding an appropriate input format

for the convolutions phase. Now, the input features are sentences which are represented

with sequence of word embeddings (see subsection 3.4.5). Kim [37] presents an overall

architecture for text categorization with CovNets in Figure 3.16.

A sentence is composed of one or more words. Each row in the input matrix represents

a word, or it is more meaningful to say that each row represents a vector that corresponds

to the related word (i.e. word embedding). One other point is that each sentence in the

corpus should be represented with the same size. It is clear that number of columns in the

input matrix is the length of the embeddings which is the same constant for each word,

so this is not a problem. But, what about the number of rows? The number of rows

indicates the total number of words in the sentence that is different for each of them. For

that reason, we represent sentences with pad sequences. In order to do that we define a

30

Figure 3.16: Model Architecture with Two Channels for an Example Sentence

maximum length (let’s say it is 10 for simplicity) for a document (or tweet). We have 3

different cases for pad sequences:

• The number of words in the sentence is 10: There is not any problem, we use all

these 10 words.

• The number of words in the sentence is more than 10: We ignore all the words

starting from 11th position. Therefore, only the first 10 words will be used in the

input.

• The number of words in the sentence is less than 10: Let’s say we have 7 words in

the sentence. Now, we use all these 7 words and also 3 three more words which are

all the same ”<PAD>” word.

After the sequence preprocessing, we guarantee that all sentences are in the same input

size. Zhang and Wallace [109] presents a model (Figure 3.17) in their work that makes

everything clear about the text categorization.

The model in Figure 3.17 takes an input vector and applies convolution with 6 different

filters. They have 3 different region sizes and 2 filters for each region size. After the

convolution phase, they have 6 different feature maps retrieved from each filter, then they

use 1 max pooling operation on each map. Consequently, they get 6 different univariate

31

Figure 3.17: Model Architecture by Zhang and Wallace [109]

32

vectors to be concatenated before the fully connected layer. At the end, they have two

different classes which means it is a binary classification.

3.5 Lexical Similarty Measures

3.5.1 Longest Common Subsequence

The longest common subsequence (LCS) is a way to find the longest subsequence com-

mon to two sequences. Assume X and Y are two strings and X
i

= x1x2...xi

is the prefix

of X and Y
j

= y1y2...yj is the prefix of Y . Then the length of the LCS can be found as

follows:

LCS(X
i

, Y
j

) =

8
>>>>><

>>>>>:

0 if i = 0 or j = 0

LCS(X
i�1, Yj�1) + 1 if x

i

= y
j

max(LCS(X
i�1, Yj

), LCS(X
i

, Y
j�1)) if x

i

6= y
j

LCS problem can be solved with a dynamic programming approach in O(m ⇤n) time

and space where m and n are the length of two strings.

3.5.2 Longest Common Substring

The longest common substring is a way to find the longest substring occurs on two strings.

Note that substrings and subsequences are different concepts. Substrings are special cases

of subsequences where characters should be consecutive. For example, for the string abc,

the substrings are a, b, c, ab, bc, abc and empty substring. For the same string, the

subsequences are a, b, c, ab, ac, bc, abc and empty subsequence. We would like to stress

that ac is a subsequence but not a substring since a and c are not consecutive characters

in abc.

The longest common substring between two strings can be found in O(m⇤n) time and

space with dynamic programming approach again where m and n are the length of two

strings. However, it can be found in O(m + n) time and space with Generalized Suffix

Tree which will be discussed in the following subsections.

33

3.6 Clustering Methods

3.6.1 K-Means Clustering

K-means algorithm is a famous unsupervised learning technique that firstly used by Mac-

Queen et al. [45]. The idea is actually quite basic as follows:

1. We firstly define K cluster centroids which represent K different clusters

2. Assign each data point to the closest cluster depending on the distance between the

point and the centroids

3. Update centroid of the clusters

4. Repeat step 2 and step 3 until the centroids no longer move

3.6.2 DBSCAN

DBSCAN is a density based clustering algorithm designed by Ester et al. [18]. The basic

idea behind the algorithm is to group all data points that are densely close to each other

and assign data points as outliers that are placed in the low-density regions.

There are two parameters in DBSCAN, minPts and ". Several definitions stated in

[18] should be known for this algorithm:

• A point p is called as core point if there are at least minPts points (including itself)

within distance ".

• If p is a core point, then all points within distance " to p are called as directly density

reachable from point p wrt. ".

• If there is a chain of points like p1, p2, ..., pn where p1 is p, p
n

is q and p
i

is directly

density reachable from p
i+1; then p is density reachable from q.

• A point which is not directly density reachable from any other point called as out-

lier.

34

• Each cluster has at least one core point. In addition to this, non-core points can also

join to the cluster, and we call them as border points since they cannot expand the

cluster with more points.

The pseudocode of the algorithm is given in Figure 3.18. The complexity of the algo-

rithm is normally O(n2), however if nearest documents can be retrieved by an index based

structure (like R* tree in original paper [18]) in regionQuery function, then complexity

can become O(n log n).

3.7 Data Structures/Indexing Methods to Improve DB-

SCAN

We will be updating regionQuery function in Algorithm 4 and Algorithm 5; and utilizing

generalized suffix tree and locality sensitive hashing to efficiently retrieve nearest tweets

in a density based clustering algorithm.

3.7.1 Suffix Trie

Suffix trie is a trie that contains all the suffixes of a string. To construct a suffix trie of a

string T , we add a special terminal character (for example $) to the end of T. This terminal

character should not occur anywhere in T and should be alphabetically lower than any

other character in T . In trie, each edge represents a character from the alphabet and each

node has at most one outgoing edge. An example of suffix trie is given in Figure 3.1912

when T = “abaaba”.

If we want to check any string is a substring of T , we need to follow the path from the

root and check whether this path exists. For example, if we look for “aba” in T , there is a

path a-b-a from the root. So this is a substring. If we look for “abb”, there no such path,

so this is not a substring. Another feature is that when we find a substring in the trie, if
12Figure 3.19, Figure 3.21, Figure 3.22, Figure 3.23, Figure 3.24 were retrieved from https://www.

youtube.com/watch?v=hLsrPsFHPcQ

35

https://www.youtube.com/watch?v=hLsrPsFHPcQ
https://www.youtube.com/watch?v=hLsrPsFHPcQ

Figure 3.18: DBSCAN

36

Figure 3.19: An Example of Suffix Trie

the final node we arrive has an outgoing edge with $ sign, it means that this substring is a

suffix as well. When we follow “aba”, the node we end up has an outgoing edge with $,

so “aba” is a suffix of T . However, when we follow “ab”, the final node does not have an

edge with $, so this is a substring but not a suffix of T . This point is one important roles

of $ sign in the trie. We can also count the number of times a string occurs in T . Let’s

check it for “aba” again. When we reach the final node, we need to consider this node as

the root of the sub-tree and then we see that this sub-tree has 2 leaves with a DFS (Depth

First Search). Therefore “aba” occurs 2 times in T .

When we consider about the worst case space complexity scenario of suffix trie, T

becomes anbn as in Figure 3.2013. In this scenario, we will have n nodes for the sequence

of b on the right. n nodes for the sequence of a in the middle. Then n*n nodes for the

each b sequence coming after a. Additionally, there will be 2*n + 1 $ nodes as well. In
13Figure 3.20 was taken from https://www.cs.cmu.edu/˜ckingsf/class/02-714/

Lec10-suffixtrees.pdf

37

https://www.cs.cmu.edu/~ckingsf/class/02-714/Lec10-suffixtrees.pdf
https://www.cs.cmu.edu/~ckingsf/class/02-714/Lec10-suffixtrees.pdf

Figure 3.20: Worst Case Space Complexity of Suffix Trie

total we will have O(n2) nodes which is not that efficient.

3.7.2 Suffix Tree

As we mentioned, suffix trie is not efficient in terms of space requirements, therefore

we need to make it smaller. Suffix tree is actually a smaller version of suffix trie where

non-branching paths are merged as in Figure 3.21.

Let’s call the length of T as m. In suffix tree, there are m + 1 leaves (one for $ sign

alone), and every non-leaf node has at least two children. This property leads us suffix tree

will have at most m� 1 non-leaf nodes (i.e tree is a full binary tree). Therefore, we have

O(m) space complexity in terms of the node number for suffix tree which is quite good.

However the total size of the tree is not O(m) yet, since we still keep the edge labels as

strings which increases the amount of space. So, instead of keeping actual strings as edge

label, we will keep “(offset, length)” information as in Figure 3.22. Now, upper bound for

space requirements in suffix tree is O(m).

38

Figure 3.21: An Example of Suffix Tree

Figure 3.22: Converting Edge Labels into (offset, length)

39

One additional detail regarding suffix tree is to store a number which is the offset of

the suffix that leaf represents for time efficiency reasons. For example, consider the suffix

“abaaba$” in T which is actually the longest suffix of T . The leaf that represents this

suffix has value 0 (since the offset is 0) as shown in Figure 3.23.

Figure 3.23: Storing Offsets in the Leaves

Now we know that the number of nodes in the suffix tree is at most 2 ⇤m + 1. The

number of edges is always equals to numberOfNodes � 1 which is at most 2 ⇤ m. In

each edge, we store 2 integer values (offset and length), and we keep an additional integer

for each m+1 leaves. Therefore, the total amount of space is still O(m). We do not keep

node labels explicitly, however we can implicitly extract a node label by merging the edge

labels from the root to that node.

Gusfield [24] presents a naive algorithm to build such a suffix tree which has a O(m2)

time and O(m) space complexity. Efficiently constructing a suffix tree is completely

another research area, however linear space and time complexity achieved by Ukkonen

[94]. Therefore, we use Ukkonen’s algorithm; time and space complexity to construct a

suffix tree are both noted as O(m) in the rest of the thesis.

It is also possible to use many strings together to build one suffix tree. This kind

of suffix tree is called as “Generalized Suffix Tree” (GST). For instance, we have two

different strings X = xabxa and Y = babxba. We append these strings together with

40

different terminal characters # and $ respectively. Therefore appended string becomes

X#Y $ = xabxa#babxba$ which builds the suffix tree in Figure 3.24.

Figure 3.24: Generalized Suffix Tree of X and Y

First we know that if the offset is in [0,4] range then it refers to X , if the offset is in

[6,11] range then it refers to Y . If we want to find common substrings between X and Y ,

we need to look up for the nodes which has both X and Y representing leaves. In order

to find longest common substring between these strings, then we need to get deepest such

node which represents “abx” label in Figure 3.24. The good thing is that whole process

takes O(| X | + | Y |) space and time complexity.

3.7.3 Locality Sensitive Hashing

Locality Sensitive Hashing (LSH) is a well known technique that is used to retrieve nearest

neighbours efficiently [22]. In LHS, we generate K bits hash codes for each document

and we expect that similar documents will have same hash code as well.

For instance, we have 5 different documents in Figure 3.2514, and we will generate
14Figure 3.25 and Figure 3.26 were retrieved from https://www.youtube.com/watch?v=

dgH0NP8Qxa8

41

https://www.youtube.com/watch?v=dgH0NP8Qxa8
https://www.youtube.com/watch?v=dgH0NP8Qxa8

Figure 3.25: Locality Sensitive Hashing

hashes for each of them. As it will be noticed, d2 and d5 is placed in the same bucket

since they generated same hash code. If we are looking for similar documents to d2, all

the documents placed in the same bucket with d2 are the “candidates” for being similar

documents to d2. We say “candidates” since even very different documents can generate

the same hash code by chance and can be placed in the same bucket. For instance, if

we use K bits as hash length, then we can produce 2K hashes (buckets). Therefore, we

will have N/2K documents averagely in each bucket where N is the total number of

documents in the corpus. We need to check each of the candidates in a specific bucket

whether they are really similar to our document. In other words, false positives may occur

in the same bucket; however they do not cause any problem since we make pair check for

each candidate in the bucket.

On the other hand, the weakness of LHS is that although we guarantee exact same

documents generate same hash code and placed in the same bucket, very similar doc-

uments might end up with a different hash code. Therefore, there is always a chance

42

for missing similar documents in LSH. In order to decrease the probability of missing

a similar document, we repeat the same process with L different hash tables as in Fig-

ure 3.26. For example, although d2 and d5 are similar documents, they produced different

hash codes in H1 and H3; but the same hash code in H2. So that, when we have a data

point or a document (a tweet), it averagely needs L ⇤ N/2K comparisons to retrieve the

similar documents. It would take N comparisons if we used a naive approach to retrieve

them. Of course, even we repeat the same process L times, there is no guarantee to get

all of the similar documents. There is a trade off here, if we increase the value of L then

the probability of missing a similar document will decrease, but the time complexity will

increase.

Figure 3.26: Generating L Hash Tables for LSH

While generating hashes, the random sampling method is used with MinHash algo-

rithm [9]. To do this, we represent text documents with shingles. For example, if a

document d = “I support FB” and set shingleSize as 3 then this document is represented

with length(d)� shingleSize+ 1 shingles as follows:

shingles d = {“I s00, “ su00, “sup00, “upp00, “ppo00, “por00, “ort00, “rt 00, “t F 00, “ FB00}

When we want to generate a hash code with length K, we follow the pseudocode in

Algorithm 1.

For each one of the K information in the result, we generate different hashes using

FVN hash by Fowler et al. [20] for each shingle and then assign the minimum of them.

Surely, we generate K of them for a document in one hash table. For other hash tables,

we repeat this process L time with different initializedRandomSeeds.

43

Algorithm 1: Generating Hash with Length K for Document d
Parameters: Document d, List initializedRandomSeeds, Integer K

result new List[K];

for j 0 to K do
result[j] MAX V ALUE;

end

shingles d getShingles(d);

for shingle in shingles d do

for i 0 to K do
seed initializedRandomSeeds[i];

currentHashV alue FV N Hash(token, seed.left, seed.right);

if currentHashV alue < signatures[i] then
result[i] currentHashV alue;

end

end

end

return result;

44

Chapter 4

Predicting Impact of Tweets and Topics

Twitter, a micro-blogging social media, which was initially adopted for networking and

entertainment [29, 66], has also started to be used in cases of social and political move-

ments [62, 51, 57, 80, 82, 86, 87]. As a cyber-ekklēsı́a1 with effortless accessibility and

impetuous information sharing, its users continuously and contagiously declare their emo-

tions and ideas on topics of their choice [33, 58, 74, 83]. Twitter produces immense

amounts of data allowing to probe temporal behavioral patterns [31]. It records 500 mil-

lion tweets per day together with some basic information on its 313 million monthly

active Twitter users. As of year 2016 the volume of tweets is estimated to grow at around

30% per year2. It is estimated that there will be around 2.67 billion social network users

worldwide by 20183. Twitter data analysis uncovers meaningful findings on individual

and group tweeting characteristics, often revealing situational phenomena while predict-

ing future events [31, 71]. Among Twitter’s top markets of active users, Turkey ranks

8th with a share of 3.0 per cent of global users [65] and Twitter is the 7th most popular
1a political assembly of citizens of ancient Greek states; especially: the periodic meeting of the Athenian

citizens for conducting public business and for considering affairs proposed by the council (http://www.

merriam-webster.com/dictionary/ecclesia).
2The data retrieved from (http://www.internetlivestats.com/

twitter-statistics/).
3The data retrieved from (http://www.statista.com/statistics/278414/

number-of-worldwide-social-network-users/).

45

http://www.merriam-webster.com/dictionary/ecclesia
http://www.merriam-webster.com/dictionary/ecclesia
http://www.internetlivestats.com/twitter-statistics/
http://www.internetlivestats.com/twitter-statistics/
http://www.statista.com/statistics/278414/number-of-worldwide-social-network-users/
http://www.statista.com/statistics/278414/number-of-worldwide-social-network-users/

website in Turkey [1]. Twitter is a gigantic data source, which can allow us to capture and

analyze reflections of the society in general in Turkey.

Twitter analysis has been used on a wide array of research topics ranging from finan-

cial decision making to political science. For example, emotions can profoundly affect

individual behavior and decision-making and analyses of Twitter have been used in pre-

dicting the tweet moods effect on daily up and down changes in the stock market [8, 108].

On the other hand, election results have been predicted successfully by Twitter analysis

[90]. Use of Twitter analysis is not only limited to choice making, but also spread in con-

flict and emergency management as well. Twitter is known to exhibit cues that can enable

analyzers to detect real-time events specifically of emergency nature [67, 68].

A well-known regional conflict with recent worldwide effects is the Syrian conflict.

Turkey is the most affected country of the Syrian conflict in political, social and economic

terms and is living a dramatic demographic change as one of the main host country of

Syrian refugees. In Turkey, 80% of Syrian refugees are living in urban areas, while some

camps are built for them for accommodation [21]. Aras and Şahin Mencütek [2] showed

how variations in foreign policies immediately reflect on states’ responses. Turkey first

adopted an “open door” policy towards Syrian refugees welcoming all, however, upon

confrontation with massive flows of refugees needed to revise her foreign policy orien-

tations. Heisbourg [26] claims that one of the quickest and least difficult policy for EU

to implement is financial supports massively to the UN High Commissioner for Refugees

in the region to cope with refugee flows from Syria. He also claims that the negotiation

between EU and Turkey for funding to support refugee relief in Turkey is vital to elimi-

nate refugee flows since Turkey has become a major transit point for refugees and other

migrants trying to reach Europe [21]. One of the main issues regarding Syrian crisis is

education of refugee children who need to access to basic education at all levels. Bircan

and Sunata [7] mention that collaboration among public and private partners at the local,

national and international levels is crucial for the education program development mainly

due to lack of financial matters.

Dekker and Engbersen [14] argue that social media both provides new communication

46

channels in migration networks and facilitates migration. Social media helps people to

access a widespread informal information and thus expands the perspectives of candidate

migrants. Emerging field of research on uses of Social Media during social movements,

crises, and conflicts includes several finding with regards to digital activism [32, 42, 69,

89]. However, most of this research focuses on a narrow group of people since digital

activists are referred as individuals who engage online for social change. This study has

a wider perspective of the host population while researching Syrian conflict. Therefore,

one of the contributions of our study is to fill the gap in the literature by analyzing Twitter

reflections on Syria conflict with a wider perspective.

The Syrian conflict led to an out-sized impact on many aspects of life, from individual

to public, in many parts of the globe [30]. Reports indicate that the economic consequence

exceeds $35 billion with more than 4.6 million people relocated [48]. Among Syria’s

immediate neighboring countries, Turkey is known to host the largest population of Syrian

refugees [54]. Some reports on refugee studies indicate emerging tensions among host

communities, displaced Syrians and humanitarian policymakers and practitioners [10, 60]

while others underline the positive impact of Syrian businesses in Turkey [36]. In absolute

terms, it is obvious that the 2.7 million Syrian refugees [95] registered in Turkey which has

a population of 79.7 million [100] should have caused some changes. In this respect, our

work also aims to utilize Twitter analysis to explore the reflections present in the Turkish

social networks about Syria and the related sub-topics. Our findings are based on the

analysis of 450 thousand tweets that were streamed between February 1st and February

27th 2016 with content in Turkish language. Main research question in this chapter is “can

we predict whether a tweet will have high number of retweets”. Additionally, we focus

on the findings regarding following questions as well: (1) what are the widely discussed

topics on Twitter about Syria by the Turkish users, (2) were these topics attracting more

users to Twitter, or encouraging further engagement of the already existing users, (3) how

are the fading out characteristics of the most popular topics could be described?

47

4.1 Data and Methodology

A Twitter Stream API4, which allows for a random small sample of all related tweets is

employed to collect real time publicly available tweet contents and features that contain

the keyword of “Syria” (“Suriye” in Turkish) between February 1st 2015 and February

27th 2016. A total of 450000 tweets are collected, all in Turkish language. As a mi-

nor limitation, unfortunately our server received an attack and it lost its data connection

between 24th March 2015 and 8th May 2015.

Distribution of daily tweet numbers, distribution of daily user numbers and cumula-

tive user numbers are explored for comprehending the data characteristics in relation to

the research questions 1 and 2. Additionally, the most retweeted tweets that provided the

highest spread and their related dispersion are analyzed. The acceleration of spread that

the highly retweeted tweets amass until reaching a saturation point is investigated with re-

gards to the 3rd research question. Here, the saturation point is defined as the time or the

point, where a specific highly retweeted tweet loses its acceleration but starts receiving

lower numbers of retweets. For this purpose, we extracted the top highest retweeted 50

tweets in our data set and analyzed their spread and dispersion. Next, a deeper analysis

based on tweet’s content characteristics is conducted by increasing the number of tweets

included in the analysis step by step. Some content-based features are extracted to con-

struct a learning model by using data mining techniques. Lastly, prediction capability and

accuracy of retweet acceleration of our model is tested with 3000 tweets.

4.2 Analysis and Results

4.2.1 Reflection of Real Life Phenomenon in Tweets

Previous research indicates that Tweet volume is an indication of social trends taking place

in real life [51, 57, 86, 87]. Therefore, we analyzed our data to understand the distribution
4Twitter API Rate Limits from Twitter Developers: https://dev.twitter.com/rest/

public/rate-limiting Retrieved on May 12, 2016

48

https://dev.twitter.com/rest/public/rate-limiting
https://dev.twitter.com/rest/public/rate-limiting

of the total tweets per day. There were 10 days, which had more than 5000 tweets posted

(Table 4.1). We mapped events and news during the top 10 highest numbers of Tweets

posted daily to the Twitter volume time-series (Figure 4.1). The peak day in our data set is

on July 20th, 2015 with 11722 tweets posted. Common themes that lead to an increase in

the number of tweets posted are identified by chronologically associating real life events

and news. When we categorize events about the relevant news that occurred on specific

peak dates, we realize that a common theme is emerging around ‘armed conflicts’. This

is followed by ‘religious and political sensitivities’, and ‘in-group collectivistic cultural

traits’ among the Turkish public. Turkish culture is described as high on power distance

and in-group collectivism [23, 27], while carrying paternalistic values [4, 35, 101]. House

et al. [28] defined in-group collectivism as “the degree to which individuals express pride,

loyalty, and cohesiveness in their organizations or families”. The high volume of tweets

posted upon news about border issues (249 people were arrested at the border; ’wall’ to

protect the Syrian border; Cilvegozu border gate was closed), and beyond border action

(Humanitarian aid was delivered to the enclaves; land operations to Syria is necessary)

could be related with both in-group collectivism and paternalism of Turkish culture.

Figure 4.1: Daily Number of Tweets (01 Feb 2015 – 27 Feb 2016)

49

Date # of Tweets Real Life Occasion

1 20 July 2015 11722 Assad attacked the Turkmen village; Suruc attack; (19

July 2015: ISIS used chemical weapons in Syria and

Iraq)

2 12 Jan 2016 11146 Explosion occurred in Sultanahmet; Operation to ISIS

in 5 cities

3 28 Jun 2015 10163 Sound of cannons across the Kilis; 249 people were

arrested at the border;

4 27 Jun 2015 9805 ISIS attacked Al-Hasakah; The second largest mas-

sacre in Kobani; The ’wall’ protection to Syrian bor-

der; Kobani again in YPG’s hands

5 22 Feb 2015 6533 The place of Suleyman Shah Tomb has been changed;

Tomb was evacuated, conflicts were increased

6 23 Jul 2015 6248 Conflict in Kilis, 1 Turkish soldier was killed; Turkish

F-16 hit the ISIS targets; Early elections commentary

from the leader of the main opposition party

7 18 Feb 2016 6014 Humanitarian aid was delivered to the enclaves;

Prime minister unclosed the perpetrators

8 10 Sep 2015 5985 Cilvegozu border gate was closed; 5.5 tons of bomb

in trucks loaded with onions

9 15 Feb 2016 5467 Opened fire from YPG regionin Syria, howitzers be-

gan to respond; 50 kilograms of explosives were

seized in Şanlıurfa; YPG took control of 70% of Tel

Rifat

10 14 Feb 2016 5309 Minister Yilmaz said TSK is hitting YPG positions;

A concrete wall is put up at the Turkey-Syria border;

land operations to Syria is necessary

Table 4.1: Top 10 Highest Numbers of Tweet posting Days and Related Real Life Events

50

4.2.2 Attracting New Users to Post

There is a similar pattern between the daily number of tweets and daily number of distinct

users in the dataset (Figure 4.1, Figure 4.2). We conclude that users, who prefer to post

tweets about Syria, choose to post only 1-2 tweets per day. The high resemblance in the

patterns of daily distinct users and tweet numbers distributions indicates that a wide range

of individuals chose to reflect on the topic of Syria.

One other interesting feature of the dataset is cumulative number of users who are

talking about Syria during this period. We observed that cumulative number of users

is linearly increasing day by day, reaching more than 175000 users towards the end of

our dataset. The topic somehow managed to engage attention of different people as we

see that different people continuously joined and increased number of distinct people.

Therefore, we conclude that tweets containing Syria have not been only posted by a small

specific group of people, but indeed attracted new individuals to post (Figure 4.3).

Figure 4.2: Daily Number of Twitter Users (01 Feb 2015 – 27 Feb 2016)

51

Figure 4.3: Daily Cumulative Numbers of Twitter Users (01 Feb 2015 – 27 Feb 2016)

4.2.3 Spread and Fade Out Characteristics

The highly retweeted top 50 tweets are identified in Table 4.2 (Spread and fade out pat-

terns for these tweets are also given in Figure 4.4). Apart from that we also extracted

the propagation velocity of the tweets. In order to calculate it, we used Simple Linear

Regression method to discover relations in the data model. Simple Linear Regression

is kind of modeling the relation between two variables to represent the state of the data

[102]. Therefore, we fit our tweet distribution data for each tweet into a line by using

Simple Linear Regression; and then calculated the slope of the line that gives us the idea

about the acceleration of the tweet. Tweet1, which was posted by user0 on 20/07/2015

12:26:43, has received the highest number of retweets with a total of 9973. User0 had

1.873.272 followers when posting the Tweet1. The retweet line has exercised a slope of

305.64 before reaching a saturation point.

It is observed that some tweets experience a sharp decline in retweets once a satura-

tion point is reached. On the other hand, there are also tweets that enjoy a rather smooth

decline with a lower diminish of retweets. The sharpness of retweet decline, which is an

indicator of a tweets fade out characteristics, is examined for the top 50 retweeted tweets

(Table 4.2). Tweet6 exercised the sharpest slope (706.50) while amassing 1481 retweets.

52

On the other hand, Tweet3 reached some 3851 retweets but observed a smoother trend

with the most curved slope (109.41) with highest number of followers. Tweet38 observed

the smoothest slope with only 442 retweets (Figure 4.5).

Tweet ID User ID # of Followers Timestamp # of Retweet Slope

Tweet1 user0 1.873.272 Mon 20/07/15 12:26:43 9973 305.64

Tweet2 user1 1.277.607 Fri 26/06/15 23:56:12 4908 188.45

Tweet3 user2 6.614.251 Sat 27/06/15 21:52:22 3851 109.41

Tweet4 user1 2.610.948 Sun 14/02/16 22:52:37 1633 61.62

Tweet5 user3 37.275 Thu 12/02/15 20:25:58 1530 461.50

Tweet6 user4 16.810 Sun 22/02/15 12:02:36 1481 706.50

Tweet7 user5 73.650 Thu 25/02/16 11:51:55 1095 373.70

Tweet8 user6 640.376 Thu 13/08/ 15 15:20:54 1070 106.38

Tweet9 user7 10.995 Mon 23/02/15 21:42:16 1053 524.00

Tweet10 user8 1.520.728 Sun 03/01/16 13:14:29 1020 151.17

Tweet11 user8 1.521.315 Tue 12/01/16 11:39:20 988 111.61

Tweet12 user9 884.047 Mon 29/06/15 15:52:58 765 46.84

Tweet13 user10 33.886 Tue 12/01/16 14:04:41 730 110.57

Tweet14 user11 47.849 Thu 29/10/15 04:18:42 726 139.20

Tweet15 user12 381.451 Fri 25/09/15 08:25:12 724 91.57

Tweet16 user11 58.074 Sun 14/02/16 10:40:03 722 35.74

Tweet17 user13 634.235 Fri 24/07/15 07:52:51 712 133.63

Tweet18 user14 19.260 Thu 10/09/15 15:10:10 674 137.80

Tweet19 user15 676.881 Wed 22/07/15 18:14:58 670 96.04

Tweet20 user16 2.747 Sun 08/02/15 20:25:54 645 322.50

Tweet21 user17 50.234 Sun 28/06/15 12:30:48 644 201.60

Tweet22 user18 166.810 Sun 22/11/15 09:24:10 641 98.89

Tweet23 user19 316.294 Mon 20/07/15 11:41:33 609 186.20

53

Tweet24 user20 190.091 Mon 20/07/15 18:39:19 600 102.86

Tweet25 user21 23.553 Thu 23/07/15 14:43:11 590 125.30

Tweet26 user22 535.194 Sun 14/06/15 21:39:45 568 28.57

Tweet27 user23 446.603 Mon 29/06/15 18:22:27 559 73.14

Tweet28 user24 166.660 Sun 28/06/15 06:38:20 530 56.06

Tweet29 user25 111.404 Thu 09/06/15 21:35:27 529 86.09

Tweet30 user26 2.345 Wed 01/07/15 17:32:13 517 63.35

Tweet31 user27 85.476 Sun 22/02/15 14:51:54 515 36.59

Tweet32 user8 1.521.326 Tue 12/01/16 14:27:35 511 74.03

Tweet33 user28 2.520.567 Sun 22/02/15 05:48:26 503 35.91

Tweet34 user29 84.693 Wed 08/07/15 09:51:00 485 81.34

Tweet35 user11 50.877 Fri 13/11/15 22:33:04 474 26.69

Tweet36 user30 300.507 Sun 28/06/15 22:23:51 466 51.50

Tweet37 user31 1.556.018 Sun 22/02/15 10:28:58 445 90.50

Tweet38 user32 44.427 Thu 02/07/15 19:49:44 442 25.83

Tweet39 user33 264.823 Wed 17/02/16 23:55:25 439 218.00

Tweet40 user34 40.102 Sat 28/11/15 00:11:09 439 26.74

Tweet41 user35 57.454 Wed 24/02/16 19:01:11 432 108.90

Tweet42 user6 694.295 Mon 18/01/16 10:15:28 424 41.88

Tweet43 user36 62.246 Sun 22/02/15 10:26:10 418 209.00

Tweet44 user37 17.110 Thu 23/07/15 14:51:34 412 101.70

Tweet45 user38 4.220 Tue 12/01/16 11:51:05 412 125.00

Tweet46 user39 106.591 Thu 10/09/15 14:37:51 410 204.00

Tweet47 user40 302.911 Sun 15/02/15 16:14:51 407 62.94

Tweet48 user41 2.987.212 Fri 25/1215 23:55:36 404 31.72

Tweet49 user42 96.658 Wed 22/07/15 07:32:08 402 401.00

Tweet50 user41 2.686.033 Tue 30/06/15 01:07:47 400 58.74

54

Table 4.2: Details of Highly Retweeted Top 50 Tweets and Posting Accounts

Figure 4.4: Spread and Fade out Patterns of Top 50 Retweeted Tweets

Figure 4.5: A Sample Spread and Fade out Patterns of Some Highly Retweeted Tweets

55

Number of Tweets

T
im

e
 (

in
 s

e
c
s
)

ST-TWEC

1
20

4
16 31 46 61 76 91

10
6

12
1

13
6

15
1

16
8

18
4

22
1

24
8

27
9

31
4

35
7

42
4

56
8

98
8

1

10

100

1k

10k

Figure 4.6: Distribution of Different RT Numbers

The distribution of different retweet numbers is given in Figure 4.6. In the next sec-

tion, further analysis is conducted with a wider sample containing the top 1000 most

retweeted tweets.

4.2.4 Conditions and Features Leading to High Retweet

All the points we have observed until this section are based on statistical features of the

Syria tweet data in Turkish. These observations showed us the Syria keyword had con-

tagiously been mentioned by different people on Twitter. After this point, we decided to

make a deeper analysis on these tweets based on their content characteristics. We started

to extract some content-based features from these tweets to construct a learning model by

using some data mining techniques. The reason behind extracting content-based features

is to test whether we can make good predictions about the acceleration and total retweet

number of tweets by using these features. Therefore, we started with the content-features

given in Table 4.3 for the mostly retweeted 1000 tweets. All the features given in Table 4.3

56

are the features where they will be used as regular attributes of a learning model.

Attribute
Content-feature

containsHashtag It is a binomial attribute. It is true for the tweets that contain

a hashtag, false otherwise.

containsLink It is a binomial attribute. It is true for the tweets that contain

a link, false otherwise.

numberOfFollowers The follower number of the user at the time when the tweet

had been sent.

numberOfCapitalLetters The number of capital letters in the tweet text.

containsPoliticWords It is a binomial attribute. We have generated a list of politic

words, which consist of political party names, politician

names, some politic keywords etc. This attribute is true

if the tweet contains any of these politic words, it is false

otherwise.

Table 4.3: Regular Attributes of the Learning Model

We defined 3 special attributes (labels) to be predicted which are slope, numberOfTo-

talRTs, numberOfDaysForSaturation. numberOfDaysForSaturation indicates the number

of days spent until the related tweet starts not getting any retweets. As it can be noticed,

although we have 3 different labels, all labels are derived from the “number of retweets”

information.

And 5 regular attributes to be used as feature for learning

• containsHashtag

• containsLink

• numberOfFollowers

• numberOfCapitalLetters

57

• containsPoliticWords

1. slope: After we calculated slope of the each top 1000 retweeted tweets, then in

order to differentiate them into two classes (high slope, low slope) we applied The

68-95-99.7% Rule. As this rule implies in a normal distribution, approximately

68% of the observations fall within 1 standard deviation (�) of the mean (µ) (See

Figure 4.75) [55].

Figure 4.7: Distribution of the Observations wrt µ and �

Therefore, we treated the tweets whose slope is higher than � + µ as high class

(there were 91 of them), while the other ones are low class. Finally, we came up

with a data with 1000 samples, and this data has 5 regular attributes (as explained

in Table 4.3) and 1 class attribute (slope as high or low). According to 68-95-

99.7% Rule, we got 91 high, 909 low values among total of 1000 tweets. Thus we

selected all 91 high tweets and randomly selected 91 low tweets for balancing the

size of each class. Otherwise, there could be a bias on the label which has bigger

data size. By using the 5 regular attributes mentioned above, we operated cross

validation technique in RapidMiner6 with two different classifiers to see the results
5Figure 4.7 retrieved from http://www.oswego.edu/˜srp/stats/images/normal_34.

gif on May 15, 2016
6An open source data science software platform https://rapidminer.com/

58

http://www.oswego.edu/~srp/stats/images/normal_34.gif
http://www.oswego.edu/~srp/stats/images/normal_34.gif
https://rapidminer.com/

(Table 4.4).

Naive Bayes K-NN (k = 22)

True High True Low Class Precision True High True Low Class Precision

Predicted High 39 31 55.71% 61 31 66.30%

Predicted Low 52 60 53.57% 30 60 66.67%

Predicted Total 91 91 91 91

Class Recall 42.86% 65.93% 67.03% 65.93%

Accuracy 54.36 % +/- 8.97% (mikro: 54.40%) 66.52% +/- 8.53% (mikro: 66.48%)

Table 4.4: Confusion Matrix on Predicting low and high Labels for slope

Results indicate that K-NN performed better than Naive Bayes, with 66.52% accu-

racy.

2. numberOfTotalRTs: We managed to obtain 26 high and 26 low tweets as balanced

dataset after 68-95-99.7% Rule. Once again we used the same classifiers and the

results are given in Table 4.5:

Naive Bayes K-NN (k = 22)

True High True Low Class Precision True High True Low Class Precision

Predicted High 14 2 87.50% 12 0 100.00%

Predicted Low 12 24 66.67% 14 26 65.00%

Predicted Total 26 26 26 26

Class Recall 53.85% 92.31 % 46.15% 100.00%

Accuracy 72.00% +/- 18.33% (mikro: 73.08%) 72.00% +/- 16.00% (mikro: 73.08%)

Table 4.5: Confusion Matrix on Predicting low and high Labels for numberOfTotalRTs

They both produced same accuracy result that is 72% for numberOfTotalRTs.

3. numberOfDaysForSaturation: We managed to obtain 134 high and 134 low tweets

as balanced dataset after 68-95-99.7% Rule.

At this time, K-NN performs slightly better than Naive Bayes with almost 4% over-

all accuracy difference (Table 4.6). The k values for K-NN classifier had been

59

Naive Bayes K-NN (k = 50)

True High True Low Class Precision True High True Low Class Precision

Predicted High 25 11 69.44% 69 44 61.06%

Predicted Low 109 123 53.02% 65 90 58.06%

Predicted Total 134 134 134 134

Class Recall 18.66% 91.79% 51.49% 67.16%

Accuracy 55.24% +/- 5.07% (mikro: 73.08%) 59.27% +/- 5.54% (mikro: 59.33%)

Table 4.6: Confusion Matrix on Predicting low and high Labels for numberOfDaysFor-

Saturation

selected depending on some number of experiments such that it will produce the

best accuracy results.

4.2.5 Cluster Analysis

Different techniques can be used to specify the class labels (high and low) for special

attributes. For instance, we just analyzed distribution of the values in the special attribute.

Then, we applied 68-95-99.7% Rule after calculating the mean and the standard deviation

of the distribution to distinguish the tweets as low and high. Instead of doing this, a

clustering technique can be used to separate them into two different groups by calculating

some similarity measure between each of them.

Remember that we applied Linear Regression Method for each tweet to analyze the

dispersion of the tweet by fitting it into a linear line. These lines can be thought as vectors

that actually represent the tweets. As it is stated in [75], the angle between two vectors is

used as a measure to find similarity between the vectors, and cosine of the angle can be

used to calculate the numeric similarity where it becomes 1.0 for identical vectors and 0.0

for orthogonal vectors (Figure 4.8).

Agglomerative clustering is a type of hierarchical way that has a “bottom up ap-

proach”. In this technique, each data point composes one cluster at the beginning and then

pairs of clusters are merged as moving up hierarchy depending on their distance metrics

[46]. We set the mode of the distance measure as “Single Linkage” which means the

60

Figure 4.8: Cosine of the angle between two vectors

closest pair of elements that belong to different clusters is taken into consideration while

merging clusters. Moreover, “cosine similarity” was used as similarity metric. However,

after we had obtained the results, when we looked into two top clusters (as we want to

group them into two clusters), we realized that they had 4 and 996 observations respec-

tively, which is quite unbalanced.

For that reason, we switched to k-means (where k is 2) clustering to group them into

two different clusters. Again “cosine similarity” metric had been applied as distance

metrics among vectors. At that time, we manage to have more balanced clusters as the

first one (cluster 0) has 654 items and the other one (cluster 1) has 436 items. Now, we

have 5 regular attributes as explained below and 1 special attribute which is cluster 0 or

cluster 1. The overall accuracy of the cross validation with k-NN model (where k is 50)

is 61.9% (Table 4.7).

4.2.6 Modifying low and high Labels

Although we could not manage to distinguish each classes depending on their regular

attributes with good accuracies, maybe differentiating mostly retweeted tweets can be

questioned. They all already drew attention of people, had lots of retweets, thus there

might not be major characteristic differences between each of them, even if some of them

had been retweeted little bit more than the others. Additionally, since our main purpose

61

True Cluster 1 True Cluster 0 Class Precision

Predicted Cluster 1 160 105 60.38%

Predicted Cluster 0 276 459 62.45%

Predicted Total 436 564

Class Recall 36.70% 81.38%

Accuracy 61.90% +/- 3.96% (mikro: 61.90%)

Table 4.7: Confusion matrix on predicting clusters

is to understand the content-based characteristic differences of highly retweeted tweets, it

would be better to include the tweets with low retweet numbers to our learning model.

Consequently, we composed our training dataset in a way that it contains mostly

retweeted 1000 tweets where each of them has 60 retweets at least and 9973 retweets

at most. The dataset also contains additional 1000 random tweets where each of them has

5 retweets at most. In other words, we now have total of 2000 tweets and it has equal

size of bins for highly retweeted (> 60 RT, we set their label as high) and lowly retweeted

(5 RT, we set their label as low) tweets. Again, by using our 5 regular attributes we

composed our learning model by using k-NN (k is 20) and tested this model with cross

validation method as explained before. The overall accuracy of the model becomes 83.8%

with this dataset as shown in Table 4.8.

True High True Low Class Precision

Predicted High 863 187 82.19%

Predicted Low 137 813 85.58%

Predicted Total 1000 1000

Class Recall 86.30% 81.30%

Accuracy 83.80% +/- 2.14% (mikro: 83.80%)

Table 4.8: Confusion Matrix on Predicting low and high Labels with 2000 Tweets

It can be noticed that, not the only overall accuracy is quite good, but also precision

62

and recall values for each class are also satisfactory.

If we increase the RT difference between high and low classes in a way that we se-

lected the mostly retweeted 576 tweets as high (each of them has 105 retweets at least)

and lowly retweeted 548 tweet as low (each of them has 2 retweets at most), then we exe-

cuted k-NN (k is again 20) classifier on this data. The overall accuracy reached to 85.7%

as given in Table 4.9.

True High True Low Class Precision

Predicted High 495 79 86.24%

Predicted Low 81 469 85.27%

Predicted Total 576 548

Class Recall 85.94% 85.58%

Accuracy 85.76% +/- 3.95% (mikro: 85.77%)

Table 4.9: Confusion Matrix on Predicting low and high Labels for More Polarized

Classes

As a result, it is possible to say that as long as the retweet difference increases among

the tweets; they can be more accurately distinguished by looking 5 attributes we have

obtained (containsHashtag, containsLink, numberOfFollowers, numberOfCapitalLetters,

containsPoliticWords).

4.2.7 Identifying Class-Specific Terms

In information retrieval, if text data is being analyzed as we do here, some specific tokens

(terms) give more information regarding their class. As it is stated in [63], topics (classes)

are typically identified by finding the special words that characterize that class.

We thought that if we determine class-specific terms in our dataset and use them as

another feature; then it may give us some information to make our prediction results

better. In other words, we extracted important terms for high and low classes respectively

based on tf-idf scoring measure; then add two extra features to the tweets which are

63

• containsHighRelatedTerms: it is a boolean value true or false

• containsLowRelatedTerms: it is a boolean value true or false

After adding these two features to the training set that has 2000 samples (1000 low -

1000 high), we used same classifier k-NN (k is 20) again. We observed that our accuracy

almost did not change and stayed as 83.8% (as in Table 4.8). However, when we added

these two features to the other training set (548 low - 576 high), there was an increase in

the overall accuracy that climbs to 86% (Table 4.10) from 85.7% (Table 4.9).

True High True Low Class Precision

Predicted High 488 68 87.77%

Predicted Low 88 480 84.51%

Predicted Total 576 548

Class Recall 84.72% 87.59%

Accuracy 86.12% +/- 2.57% (mikro: 86.12%)

Table 4.10: Confusion Matrix After Adding tf-idf Related Features

In the previous experiment, we had tweets that have more than 60 retweets and less

than 5 retweets. However, there are other tweets that stays in the middle where their

retweet numbers between 5 and 60. We decided to add 1000 random tweets that have

retweet numbers between 5 and 60 to our training set. We also set their class label as

low (we treated them same as the lowly retweeted tweets). As a result, we had a training

set with size 3000 (2000 of them were low and 1000 of them were high). Actually, the

number of low retweeted tweets is much higher than high retweeted tweets in real life,

thus it became a more realistic training data. In other words, this is also reflective of the

real tweet ecosystem. The confusion matrix on this dataset with k-NN (k is 20) is given

in Table 4.11.

Overall accuracy of 75% on this dataset seems good, we are still able to predict

whether a tweet will get high number of retweets in good accuracy. One may say that

numberOfFollowers is the dominant regular attribute that is directly related to retweet

64

True High True Low Class Precision

Predicted High 612 359 63.03%

Predicted Low 388 1 641 80.88%

Predicted Total 1 000 2 000

Class Recall 61.20% 82.05%

Accuracy 75.10% +/- 2.38% (mikro: 75.10%)

Table 4.11: Confusion Matrix After Adding tf-idf Related Features with 3000 Tweets

number. Actually, 800 of 2000 low labeled tweets have the numberOfFollowers value as

greater than 10000 (but of course they did not get high number of retweets) and we were

still able to predict them in a correct way. In other words, our learning model does not say

that a tweet with high numberOfFollowers will directly have high number of retweets. In

fact, this is one important point which is quite good for the results.

We observed that some characteristics of tweets lead to extensive retweeting. Accord-

ingly, we can conclude that tweets containing political words are more likely to amass

highly retweeting when compared to tweets without political words. Our findings indi-

cate that 32% of the highly retweeted tweets contained political words, while only 27% of

the lesser retweeted tweets contained political words. Therefore, determining whether a

tweet contains political token (word) is identified as a distinctive feature in predicting the

likelihood for high retweeting. Note that we labeled 1000 tweets as high which had more

than 60 retweets (more specifically, number of retweets for each tweet we labeled high

ranged from 60 to 9,973). Additionally, tweets containing a hyperlink tend to be highly

retweeted by Turkish Twitter users. Moreover, containing class-specific terms (contain-

sHighRelatedTerms and containsLowRelatedTerms) are other features in predicting the

likelihood for highly retweeting.

This work presents an analysis of tweets in exploring the reflections on Syria conflict

among the Turkish public. Unlike most of the Twitter research focusing on digital activists

who are mostly a narrow group of people engaging online for social change, we contribute

to the literature by providing a wider perspective within public.

65

Our analysis reveals that armed fighting, religious and political sensitivities within the

Turkish public inflate the volume of posted Tweet during the Syrian conflict. In addition,

tweets containing Syria have not been only posted by a small specific group of people, but

indeed attracted new individuals to post. The topic of Syria is reflected upon by a wider

range of individuals.

A predictive model with 86.12% (Table 4.10) accuracy is built to classify high and low

tweets based on the number of retweets received via seven features, namely numberOf-

Followers, containsHighRelatedTerms, containsLowRelatedTerms, containsPoliticWords,

containsLink, numberOfCapitalLetters, and containsHashtag.

Our retrieved data by Twitter Stream API has some limitations. Twitter does not

permit to retrieve of all tweets, but instead allows streaming of only a small fraction of

the total volume of tweets at any given moment. Therefore, our findings are only based

on the tweets within this limitation. Another limitation that comes with tweet data is

related with the bot accounts on Twitter. A twitter bot is an account, which is organized

to post automatic tweets by using a software program, is not a real user. In our analysis,

we checked top 500 most retweeted tweets’ users and confirmed that real individuals,

celebrities, media organizations and/or state institutions posted them. Hence the general

limitation of bot accounts does not apply to our findings. At least, it does not apply to

tweets which were labeled as high in our experiments.

4.3 Impact Prediction with CovNets

In section 4.2, we converted our data into a structured form by extracting some number of

features. These features consist of tweet based features (containsLink, numberOfCapital-

Letters, containsHashtag, etc), also contains user based feature like numberOfFollowers.

We also wanted to analyze the same problem (predicting whether a tweet will have high

number of retweets in a specific domain) with a different approach. This approach is

text categorization with Convolutional Neural Networks which was explained in subsec-

tion 3.4.7. For these experiments, we collected another dataset about Soma mining dis-

66

aster, and details about the data and the methodology are given in the following sections.

We want to know whether we can correctly predict the labels by just using tweets’ text

fields with CovNets.

4.3.1 Overview of the Data

Soma mining disaster, which killed 301 workers, happened on 13th May 2014 [56]. We

started to collect publicly available tweets provided by Twitter Streaming API that contain

“soma” keyword from 13th May 2014 to 23rd March 2015. During this period of time,

we managed to retrieve 6.329.038 tweets in our database. According to our observations,

when we look at the daily number of tweets sent by the users in Figure 4.9, Soma disaster

did not have a continuous effect on Twitter.

Figure 4.9: Daily Number of Tweets (13 May 2014 – 23 March 2015)

A similar characteristic can also be observed for the daily number of distinct users

who sent tweets about Soma in Figure 4.10. It has almost the same characteristic with

daily number tweets with their peak times, decreasing/increasing trends, etc.

Investigating the cumulative number of unique users during the specified time range

in Figure 4.11 might also give some insights about the data. There is a dramatic increase

67

Figure 4.10: Daily Number of Users (13 May 2014 – 23 March 2015)

for cumulative user number in the first week and then this acceleration slows down as the

number for tweets sent in this time period decreases. In other words, we can say that all

these tweets especially in the first week were not sent by same group of people. Instead,

different people got involved in for the spreading the topic over Twitter, which means this

disaster had an important impact on huge number of people.

Figure 4.11: Cumulative Number of Users (13 May 2014 – 23 March 2015)

68

Lastly, pattern of tweet numbers also affected the spread of the most retweeted tweets.

Differently from Syrian data characteristics shown in Figure 4.4, the top tweets mostly

spread in the very beginning of the time range (Figure 4.12).

Figure 4.12: Soma Spread and Fade out Patterns of Top Tweets

4.3.2 CovNets Experiments

We have used 30K tweets which contains the tweets with the most number of retweets

and the tweet with the least number of retweets in our experiments. We labeled the data

as high and low in the same way we explained before. Then, we randomly split our data

as training and test data that their sizes are 25K and 5K respectively. The CovNet model

we created in TensorFlow7 is given in Figure 4.13.

To give the more detail about the schema in Figure 4.13, we first convert our tweets

into the sequence of word embeddings. We have specified the maximum sequence length

as 25. It means that each tweet document will contain 25 word embedding vectors. Then,

we apply 3 different convolution operations with different filter sizes. The filter sizes are

3, 4, and 5 respectively. As non-linear function, we preferred ReLUs and also applied L2
7An open source software library for Deep Neural Networks by Google https://www.

tensorflow.org/

69

https://www.tensorflow.org/
https://www.tensorflow.org/

Figure 4.13: CovNet Model Architecture

70

regularizer. Our choice is max pooling method for the pooling operation, and parameter

for the dropout operator was 0.5. That means, half of the units is dropped between each

layer. In the last part, we have a fully connected layer that uses “Adam” optimizer and

specifies 0.001 as learning rate. The batch size for optimizer is 32 which means that every

step of the calculation of the loss function uses randomly selected 32 examples. Surely,

we have two outputs high and low to be predicted, therefore our problem is a binary

classification.

Our results were demonstrated in TensorBoard8 which is a visualization tool that

makes it easier to interpret TensorFlow programs. In Figure 4.14, the accuracy of the

training data is presented. As it was expected, the learning model tends to learn the train-

ing data really well, with over 95% accuracy after some point. When we look at the

results of the test data, we see big oscillations at the beginning. But after 16Kth example,

the oscillations start getting smaller and the accuracy fits in range between 65% and 73%.

Figure 4.14: Accuracy of Training Data Figure 4.15: Accuracy of Test Data

4.3.3 Generalization of the Proposed Approach

In this work, we collected almost 450K tweets related to “Syria” topic and then conducted

some experiments on this data. As we pointed out, containsPoliticWords is a binomial at-

tribute that completely depends on whether a tweet contains any pre-determined political

words. Since “Syria” is a political topic, it is reasonable to use containsPoliticWords at-

tribute. However, if we work on sports domain, then this attribute will not have an good
8https://www.tensorflow.org/get_started/summaries_and_tensorboard

71

https://www.tensorflow.org/get_started/summaries_and_tensorboard

impact on the accuracy. Therefore, we may need to change this feature as containsDo-

mainRelatedWords such that “domain” may become politics, sports, entertainment, art,

etc.

One other important point is that to use time information. For instance, if we want to

make a prediction on a tweet related to OWS (Occupy Wall Street) movement, then the

tweets sent in September 2011 and the tweets sent today might not have the same output.

We collected the tweet related to “Syria” in the time range that was quite hot for Syria

topic. Thus, above-mentioned features and classifiers performs good for these tweets.

However, they might not have the similar effect on any tweet contains “Syria” keyword

which was sent before the Syrian conflict.

72

Chapter 5

Impact Assessment of Tweets

In chapter 1, we stated that identification of Hidden Retweets is quite important to have

a more accurate impact knowledge of tweets. We also defined this problem as document

clustering since we try to group similar tweets whose similarity score is above a threshold.

Note that, hidden retweets are not necessarily exact identical tweets as they might have

small modifications or extra comments. In order to group these similar tweets, we use

lexical clustering where textual data items are grouped together based on a lexical sim-

ilarity metric. By clustering tweets, it is possible to obtain a cleaner dataset containing

only singular tweets representing a large group of tweets with similar content; which also

reduces the time for more complex data processing algorithms. However, standard docu-

ment clustering algorithms cannot be directly applied to tweets, because tweets have two

distinct characteristics which differentiate them from standard documents such as blogs,

news etc. First, tweets are very short, therefore standard document clustering algorithms

which use word-based similarity metrics will not work well with tweets. Second, Twitter

has no writing format, people can use informal language, emoticons, abbreviations in their

tweets and there might be misspellings in the tweets as well. As a result, Twitter needs

a specific clustering methodology based on lexical clustering to identify similar tweets in

terms of content.

In this chapter, we first compare two lexical tweet clustering techniques. The first

clustering technique is lexical threshold based clustering using Longest Common Sub-

73

sequence (LCS) similarity metric, which we call LCS-Lex). We consider LCS-Lex as a

benchmark for constructing high quality clusters of tweets since we observe that LCS-

Lex clustering is quite effective in constructing high quality clusters. However the high

computational complexity of LCS-Lex makes it ineffective to deal with a large number

of tweets. The second technique we propose (ST-TWEC) is based on generalized suffix

trees. In order to show the benefits of suffix tree based clustering algorithm, we have

experimented with Twitter data collected on different topics. We compared these two

algorithms and results show that ST-TWEC performs well in terms of time complexity.

Additionally, we conducted further experiments with a state of the art k-means based

document clustering algorithm in terms of time performance and cluster qualities.

After showing ST-TWEC performs much better than LCS-LEX and traditional k-means

based document clustering algorithm in section 5.2, we also developed three different

versions of DBSCAN algorithm. First algorithm is classical DBSCAN version with the

distance measure as LCS. In the second algorithm we integrated suffix tree, and in the

third algorithm we integrated LSH; as suffix tree and LSH are efficient nearest neighbour

finding methods that dramatically affect time performance of DBSCAN.

5.1 Methodology

We propose several different methods for tweet clustering in this work. In both meth-

ods, our aim is to create a set of clusters C = {c1, c2, ..., cm} for given a set of tweets

T = {t1, t2, ..., tn} where m n. Proposed methods are explained in the following

subsections.

5.1.1 LCS-Lex: Longest Common Subsequence Based Lexical Clus-

tering of Tweets

LCS-Lex is based on Longest Common Subsequence (LCS), and we use the normalized

LCS score defined in Equation 5.1 for similarity calculation between two tweets.

74

NormalizedScore(t
i

, t
j

) =
2 ⇤ LCS(t

i

, t
j

)

Length(t
i

) + Length(t
j

)
(5.1)

Algorithm 2: LCS based tweet clustering algorithm

C = {};

for i 1 to n do

t
i

.isClustered false; . Initially, all tweets are marked as unclustered;

end

for i 1 to n do

if t
i

.isClustered = false then

c = {i};

for j (i+ 1) to n do
if t

j

.isClustered = false and NormalizedScore(t
i

, t
j

) � threshold

then
c c [{j}; . Find first unclustered similar tweet

end

end

if |c| � k then
. If cluster size is big enough

C C [c; . Add this cluster to set of clusters

foreach index 2 c do
t
index

.isClustered true; . Mark these tweets as clustered

end

end

end

end

A naive algorithm for LCS based tweet clustering process is given in Algorithm 2.

In this algorithm, for each unclustered tweet (referred as tweet i), we pass over all other

following unclustered tweets (referred as tweet j). If the normalized score that we defined

above, between tweet i and tweet j is higher than the threshold, then we include indexes

75

of these tweets (which are i and j) in the same cluster c. However, not all clusters are

included into the set of clusters C; instead only the clusters whose sizes are greater than

or equal to k are included into C where k is the minimum number of tweets a cluster must

have. In this case, the first tweet (t
i

) in c becomes the representative tweet of cluster c.

Once we include the cluster c into the set C, then we remove the tweets included in cluster

c from the dataset. This algorithm ensures that the cluster sizes are greater than or equal

to k.

For any c
m

2 C, let’s call the first index in c
m

as c
m0 . We guarantee that

8c
mi 2 c

m

, NormalizedScore(t
cm0

, t
cmi

) � threshold

This means that every tweet which belongs to a cluster is similar to the representa-

tive tweet of that cluster more than the threshold. We should also note that there is no

guarantee that the similarity between any two tweets in a cluster is above the threshold.

However, experiments show that tweets belonging to even very large clusters are similar

to each other in content as well as to the representative tweet.

There are two different parameters (threshold and k) in LCS-Lex to be defined by the

user. In this work, we assumed that at least 2 tweets are required to compose a cluster.

In other words, we define a cluster as group of tweets where the number of tweets in this

group is at least 2. For that reason, we selected k as 2 in our experiments in section 5.2.

For threshold parameter, we did not define any specific threshold, instead we tested per-

formance (both time and cluster quality) of LCS-Lex with different threshold values.

Although LCS based clustering algorithm (LCS-Lex) performs well in terms of cluster

qualities, the time performance is prohibitive for large number of tweets (even for tens of

thousands). The complexity of Algorithm 2 is O(N2 ⇤ L2) where N is the number of

tweets (|T |), and L is the maximum tweet length which is 140 due to the characteristics

of Twitter. Additionally, LCS-LEX is not a deterministic algorithm which means that the

formation of the clusters is the depend on the order of the tweets in the dataset. If we

shuffle the order of tweets, then the clusters can change.

76

5.1.2 ST-TWEC: Suffix Tree Based Tweet Clustering Method

ST-TWEC, which was firstly used in a thesis by Erpam [17], utilizes the generalized suffix

trees in order to compose clusters. Since generalized suffix tree (GST) is able to find

longest common substring between two strings very efficiently (in O(m+ n) time where

n and m length of the strings). Differently from normal GSTs, for each node we keep the

length of the total path from root to that node (say nodeLength). It is an important point

of the algorithm which will be explained later. Additionally, we keep the ids of the tweets

that contains the corresponding substring in the leaf nodes. We keep these information

only in the leaf nodes due to the memory issues. In order to retrieve the ids belongs to a

node which is a non-leaf node, we apply a bottom-up approach by merging ids. For this

reason, we add a reserve link from each child node to its parent node that makes us able

to reach any node from the bottom side. In other words, our GST becomes bidirectional.

Before constructing GST, we remove the punctuation marks, links, hashtags and user-

names. We also transform all letters into lowercase and eliminate the tweets shorter than

5 characters. Then, we construct our GST with Ukkonen’s algorithm in linear time. In

this GST, every node (implicitly or explicitly) contains ids of the tweets that contains the

related substring. We say implicitly or explicitly, since the leaf nodes explicitly contains

these ids while other nodes will implicitly have this information with bottom-up approach.

Note that same tweet id might occur in different leaf nodes in the tree. Every node v in

our GST represents a cluster c. We check every single tweet t that belongs to v and add t

into c if score value which is defined below is greater than the user based threshold.

score = nodeLength
v

/ | t |

By this way, we guarantee that every tweet in the same cluster shares a substring and

ratio of this substring to the length of each tweet is above the threshold. As we mentioned

before, we apply a bottom-up approach starting from the deepest level of the tree. At the

beginning, we keep ids in the leaf nodes; as we keep going to the upper levels, we merge

these ids in the new level and remove them from the previous (lower) level.

Since the same tweet id might exist in different leaf nodes, it can also join different

77

clusters at the same time. In this case, we prefer to keep this tweet in the cluster with the

largest size. In order to do that, we sort clusters according to their sizes in descendant

manner. Then starting from the largest cluster, we label each unlabelled tweet (all the

tweets are initially unlabelled). If we encounter a labeled tweet in any cluster, it means

that it also exists one of the larger clusters so we remove it from this cluster. Any cluster

remains with the size smaller than 2 is removed, since it is not a cluster anymore. Note

that we define a cluster as group which contains at least two tweets.

All these processes perform really fast with GST. All the preprocessing steps are linear

time works. Then, the construction of GST is accomplished with Ukkonen’s algorithm

again in linear time. Total number of characters cannot exceed 140 ⇤ N where N is the

total number of tweets, therefore the complexity of construction of GST is O(140N). In

the cluster creation process for a specific node n, we calculate the score value for each

tweet which takes O(| n |) time (| n | refers to number of ids in that node n). Identifying

ids for node n is also linear since this information is being merged from one lower level.

After we sort all the clusters by their size, we pass through all tweets which takes O(N)

time where N is the total number of tweets. Only non-linear operation in the algorithm is

sorting the clusters which takes O(| C | log(| C |)) time where | C | is the total number

of clusters. However, since | C |<< N (our experiments show that | C | log(| C |) ⇠= N)

so we can also say that sorting process also takes linear time.

For the space requirements, since the total number of characters is at most 140 ⇤ N ;

there are O(2 ⇤ 140 ⇤N) nodes. As we keep all ids in the leaf nodes at the beginning, and

one specific tweet can have 140 suffixes at most. In other words, id of a particular tweet

can exist in 140 leaves at most, therefore the space complexity for ids is O(140N). We

will also need some space for the clusters since they will be keeping ids of the tweets. In

the worst case, each node creates a cluster and all ids in that node join to the cluster. We

said that there can be 140 ⇤N ids at most in the leaf level, and we know that as we reach

to the top level in the tree which is root there will be exactly N ids. In the middle levels,

there will be merges; however in the worst case there will be no merge until the root as in

Figure 5.1. Note that the depth of the GST, say h, cannot be larger than the length of the

78

longest tweet which is 140. Therefore, the total space needed to keep ids in the cluster is

O((h � 1) ⇤ 140 ⇤ N + N) where h is 140 in the worst case; and it makes a linear time

complexity with a high coefficient, O(19461N).

Figure 5.1: Worst Case Space Complexity of GST

.

5.1.3 K-means Document Clustering Method

We implemented the very basic k-means document clustering method where we represent

documents with bag-of-words model and construct the feature vectors with tf-idf values.

Then, we applied k-means clustering algorithm to compose clusters. Cosine similarity

was used as distance function to calculate similarity between vectors.

5.1.4 LCS-DBSCAN: Classic DBSCAN with LCS

In this method, as we stated in subsection 3.6.2, we utilize classic DBSCAN algorithm

and modified regionQuery function that finds similar tweets to a specific tweet t. For a

given tweet t, we calculate the similarity between this tweet and all tweets; then retrieve

the ones whose similarity score with t is greater than the threshold (see Algorithm 3).

79

LCS-DBSCAN (and all other DBSCAN based algorithms) are deterministic for core and

outlier points. In other words, core points will be assigned to the same cluster regardless

of the order of the data points. Although, this is not the case for border points and border

points might be assigned to the different clusters depending on the order of the data;

fortunately this situation does not occur frequently.

Algorithm 3: regionQuery function in LCS-DBSCAN
Parameters: Tweet t,Double threshold

result = {};

for i 1 to N do

if NormalizedScore(t
i

, t) � threshold then
result result [t

i

;

end

end

return result;

5.1.5 ST-DBSCAN: DBSCAN Integrated with Suffix Tree

Again in this method, we modified regionQuery function and used GST to find similar

tweets above a threshold (see Algorithm 4). Remember that, we have used a bottom-up

approach in ST-TWEC and we keep ids of tweets only in the leaf nodes in the beginning.

Then, as we climb towards upper levels, we merged the ids from lower lever to upper

level and then removed them from lower level. This approach worked well in ST-TWEC

since this operation is done only once. However, in ST-DBCAN we will have lots of

queries to get the nearest neighbours (i.e to find similar tweets), we decided to keep ids of

tweets in each level to reach them very fast. Differently from subsection 5.1.4, we have

an additional suffix tree construction time which will be done only once (remember that

this takes linear time with Ukkonen’s algorithm), and then have a DBSCAN complexity

with modified regionQuery.

80

Algorithm 4: regionQuery function in ST-DBSCAN
Parameters: Tweet t,Double threshold

result = getSimilarTweetsFromGST (GST, t, threshold);

return result;

5.1.6 LSH-DBSCAN: DBSCAN Integrated with LSH

This method is quite similar to ST-DBSCAN method, but instead using GST in region-

Query function, we use Locality Sensitive Hashing to get similar documents. Remember

from subsection 3.7.3 that we expect similar documents to produce the same hash codes;

unfortunately this is not the case all the time. Although exact same documents always pro-

duce the same hash code, very similar (not exact same) documents may produce different

hash codes. For that reason, we repeat the same process with L different hash tables to

decrease the probability of missing a similar document. Surely, very different documents

can end up with the same hash code as well (i.e they can end up in the same bucket). So

that we need to compare tweet t with each tweet in the same bucket to check whether

they are really similar in terms of their LCS (Longest Common Subsequence) similarity

(see Algorithm 5). If we assume that the total number of buckets is bucketNumber, then

N/bucketNumber tweets in average occur in a bucket. In other words, we need to com-

pare tweet t with N/bucketNumber tweets in average. We need to repeat this operation

for L hash tables, then the total number of comparisons becomes L ⇤N/bucketNumber

in average (In LCS-DBSCAN we need N comparisons to find similar tweets). Note that,

bucketNumber changes depending on the length of the hash codes. If we use longer

hash codes, it will cause to have more buckets which means faster processing. However,

there is a trade off here. As we increase the number of buckets, we improve the time

performance; but we also increase the probability of missing a similar document.

81

Algorithm 5: regionQuery function in LSH-DBSCAN
Parameters: Tweet t,Double threshold

result = {};

for i 1 to L do

preResult = getSimilarTweetsFromMaps(HashTable
i

, t.hashCode);

for j 1 to length(preResult) do

if NormalizedScore(preResult
j

, t) � threshold then
result result [t

i

;

end

end

end

return result;

5.2 Experimental Evaluation

Experimental evaluation in this chapter consists of 3 main parts. In the first part (subsec-

tion 5.2.1), we compare ST-TWEC, LCS-LEX, and k-means document clustering methods

and show ST-TWEC outperforms the others. In the second part (subsection 5.2.2), we

compare density based approaches (LCS-DBSCAN, ST-DBSCAN, LSH-DBSCAN). One

of the reasons why we separated the second part from the first part is that LCS-DBSCAN

performs very poorly in terms of time (even worse than LCS-LEX), therefore we evalu-

ated them with a smaller dataset. Additionally, it is very hard to demonstrate the results of

so many methods in the figures. Finally, in the third part (subsection 5.2.3) we compare

LSH-DBSCAN, ST-DBSCAN and ST-TWEC in terms of time performance with the same

bigger dataset used in subsection 5.2.1.

5.2.1 Comparison of ST-TWEC, LCS-LEX, k-means

We evaluated both LCS-Lex and ST-TWEC using a combination of four datasets collected

from Twitter Streaming API using hashtags. Our dataset consists of tweets related to

Charlie Hebdo event (#jesuisCharlie), Christmas in 2016 (#christmas), NBA organisation

82

(#nba) and US President Trump (#trump). We limited the number of tweets of each

dataset to 15K. Thus we have a total of 60K tweets for 4 different domains and before

starting evaluations we applied some preprocessing on tweets like eliminating hashtags

and transforming letters into lowercase. We experimented with these 60K tweets in order

to compare the two tweet clustering algorithms (LCS-Lex, and ST-TWEC), however we

also performed scalability experiments for ST-TWEC with much higher number of tweets

which are reported in this section.

Given the dataset D = {t1, t2, ..., tn}, we create a set of clusters C = {c1, c2, ..., cm}

such that every cluster c
i

contains at least k tweets. In the experimental evaluation, we set

k to 2 and measure the intra-cluster similarity and cluster purity. Because we are focusing

on the textual representations of tweets, we define the intra-cluster similarity measure

based on LCS. Using Equation 5.1, we calculate intra-cluster similarity of a cluster by

calculating the pairwise similarity of each tweet inside the cluster as:

intraCSim(c) =
2

|c| ⇤ (|c|� 1)
⇤

|c|X

i=0

|c|X

j=i+1

NormalizedScore(t
i

, t
j

) (5.2)

Equation 5.2 allows us to find the intra-cluster similarity of a cluster. Using the Equa-

tion 5.2, we find the average intra-cluster similarity in Equation 5.3 and the weighted

average intra-cluster similarity of the cluster set in Equation 5.4. For the weighted aver-

age intra-cluster similarity measure, the weight of each cluster is proportional to the size

of the cluster:

avgISim(C) =
1

m
⇤

mX

i=0

intraCSim(c
i

) (5.3)

wAvgISim(C) =
1P

m

i=0 |ci|
⇤

mX

i=0

|c
i

| ⇤ intraCSim(c
i

) (5.4)

Since we have collected four different datasets using four hashtags, we assumed that

the tweets have four possible categories corresponding to each of the four hashtags.

Therefore we assigned a label to each tweet depending on its hashtag. In total, we have

83

four labels represented by hashtags: #christmas, #nba, #trump, and #jesuischarlie. We

use these labels as a gold standard to calculate the purity of clusters with Equation 5.5:

purity(C) =
1P

m

i=0 |ci|
⇤

mX

i=0

|max
label

in c
i

| (5.5)

Time performance results with different similarity thresholds in terms of time per-

formance, number of constructed clusters, number of unclustered tweets, average intra-

cluster similarity, weighted average intra-cluster similarity, and purity are shown in Fig-

ure 5.2, Figure 5.3, Figure 5.5, Figure 5.6, Figure 5.7, Figure 5.8, and Figure 5.9 respec-

tively.

LCS-LEX uses common subsequence and ST-TWEC uses common substring to de-

termine cluster membership. Because of that, these two algorithms cannot be compared

directly by using same thresholds. However, because a substring is a consecutive subse-

quence, ST-TWEC is expected to produce better clusters at lower thresholds compared to

LCS-LEX which we have also observed in our experiments. We have verified this observa-

tion by experimenting with different datasets (in different domains) with different thresh-

olds. For that reason, LCS-Lex had been experimented with the following thresholds: 0.5,

0.6, 0.7 and 0.8 and ST-TWEC had been experimented with the following thresholds: 0.3,

0.4, 0.5, 0.6 and 0.7.

Threshold

T
im

e
 (
in

 s
e
c
s
)

ST-TWEC

0.3 0.4 0.5 0.6 0.7 0.8
23.5

24

24.5

25

25.5

26

Figure 5.2: Time performance of ST-

TWEC for 60K tweets with different

thresholds

Threshold

T
im

e
 (
in

 s
e
c
s
)

LCS-Lex

0.3 0.4 0.5 0.6 0.7 0.8
0

10k

20k

30k

40k

50k

Figure 5.3: Time performance of LCS-

Lex for 60K tweets with different thresh-

olds

From the experiments we can easily observe that there is a dramatic time improvement

84

with ST-TWEC. The clustering time with ST-TWEC ranges from 23.8 to 25.5 seconds. On

the other hand, the process with LCS-Lex ranges form 6825 to 45472 seconds (all the ex-

periments were tested on a system with 32 processor, model name Intel(R) Xeon(R) CPU

E5-2690 0 @ 2.90GHz, and 128 GB RAM). These two time performance results shown in

Figure 5.2 and Figure 5.3 represent the time it takes for clustering processes with different

methods in separate charts. It is worth noting that ST-TWEC is able to cluster 1 million

tweets in about 1500 seconds. Figure 5.4 shows the time performance of ST-TWEC with

increasing dataset sizes with a threshold of 0.4. We need to look at average intra-cluster

similarity values to understand why we selected 0.4 as threshold in ST-TWEC. The aver-

age intra-cluster similarity values are 0.79, 0.84, 0.87, 0.89, 0.91 for thresholds 0.3, 0.4,

0.5, 0.6 and 0.7 respectively as it can be seen in Figure 5.7. Although greater threshold

value means greater the average intra-cluster similarity, changing threshold from 0.3 to

0.4 made the biggest improvement. Note that increasing threshold value also increases

number of unclustered tweets as it can be observed in Figure 5.6 and we want to keep this

number low as much as possible. For that reason, 0.4 is reasonable value for threshold in

our experiments.

Number of Tweets

T
im

e
 (

in
 s

e
c
s
)

ST-TWEC

10
0K

20
0K

30
0K

40
0K

50
0K

60
0K

70
0K

80
0K

90
0K

10
00

K

0

500

1000

1500

2000

Figure 5.4: Time Performance of ST-

TWEC with threshold 0.4

Threshold

N
u
m

b
e
r

o
f

C
lu

s
te

rs

LCS-Lex ST-TWEC

0.3 0.4 0.5 0.6 0.7 0.8
3k

4k

5k

6k

7k

Figure 5.5: Number of clusters for 60K

tweets with different thresholds

Other results given in Figure 5.5, Figure 5.6, Figure 5.7, Figure 5.8, Figure 5.9 vary

for different thresholds, however we can observe that the difference in terms of clustering

quality and the number of clusters produced is very low. In other words, similar num-

ber of clusters with roughly same intra-cluster similarities can be obtained by different

85

Threshold

N
u
m

b
e
r

o
f

U
n
c
lu

s
te

re
d

 T
w

e
e
ts

LCS-Lex ST-TWEC

0.3 0.4 0.5 0.6 0.7 0.8
0

5k

10k

15k

20k

25k

Figure 5.6: Number of unclustered

tweets for 60K tweets with different

thresholds

Threshold

A
v
e
ra

g
e
 I
n
tr

a
-
C

lu
s
te

r
S
im

il
a
ri

ty

LCS-Lex ST-TWEC

0.3 0.4 0.5 0.6 0.7 0.8
0.6

0.7

0.8

0.9

1

Figure 5.7: Average intra-cluster sim-

ilarity for 60K tweets with different

thresholds

Threshold

W
e
ig

h
te

d
 A

v
e
ra

g
e
 I
n

tr
a
-
C

lu
s
te

r
S
im

il
a
ri

ty

LCS-Lex ST-TWEC

0.3 0.4 0.5 0.6 0.7 0.8
0.5

0.6

0.7

0.8

0.9

1

Figure 5.8: Weighted average intra-

cluster similarity for 60K tweets with

different thresholds

Threshold

P
u
ri
ty

LCS-Lex ST-TWEC

0.3 0.4 0.5 0.6 0.7 0.8
0.8

0.85

0.9

0.95

1

1.05

Figure 5.9: Purity for 60K tweets with

different thresholds

86

thresholds of these two clustering methods. However, clustering time is the major factor

that distinguishes these methods which proves the effectiveness of ST-TWEC for large

datasets. Figure 5.6 shows that the number of unclustered tweets is between 10K and

20K which can be considered as a little bit high. However, we have used Twitter Stream

API while collecting tweets regarding specific hashtags. Twitter gives a random sample

of tweets, thus some of the tweets are not related to others (or have important difference)

although they contain the same hashtag. For that reason, it is normal that some tweets are

not grouped in any cluster. We have also inspected unclustered tweets and observed that

unclustered tweets are not related to the composed clusters.

We have also conducted experiments to compare ST-TWEC and LCS-LEX with k-

means document clustering in terms of performance and cluster qualities using Precision,

Recall and F-Score. In order to apply k-means algorithm, we represented all tweets in

vector space model with tf-idf values and used cosine similarity measure to find similarity

between vectors. Since our data was collected using 4 different hashtags, we specified

k value of k-means as 4. We have 60K tweets in our data set that resulted in a large

high dimensional vector space representation causing poor time performance for k-means.

Using k-means took 72013 seconds to complete clustering. Remember that LCS-Lex

spends 6825 to 45472 seconds for different thresholds and ST-TWEC spends 23.8-25.5

seconds for different thresholds to cluster same data. Time performance of k-means can

be improved by reducing vector dimensions, however this will affect the cluster qualities

in a negative way. As we mentioned before, we compare cluster qualities with Precision,

Recall and F-Score values as in Equation 5.6, Equation 5.7, and Equation 5.8 where tp

represents “true positive”, tn represents “true negative”, fp represents “false positive”, and

fn represents “false negative”.

Precision =
tp

tp + fp (5.6)

Recall =
tp

tp + fn (5.7)

87

F -Score =
2tp

2tp + fp + fn
(5.8)

While analyzing k-means results, we assume that the most frequent real class label

(hashtag) in any cluster is true positive for that cluster. Remember that we had many

(much more than 4) clusters from LCS-Lex and ST-TWEC as stated in Figure 5.5. In

order to make a good comparison with k-means, let’s assume that there are 4 big clusters

(referring to #jesuisCharlie, #christmas, #nba and #trump) as k-means has and each of

these clusters belongs to one of the 4 big clusters depending on the most frequent real

class label again. Comparisons of k-means, LCS-Lex (with different thresholds), and ST-

TWEC (with different thresholds again) for each big cluster are given in Figure 5.10,

Figure 5.11, Figure 5.12 and Figure 5.13 respectively. In these charts, for instance “LCS-

Lex (0.5)” means LCS-Lex has been applied with threshold 0.5.

V
a
lu

e

Precision Recall F-Score

k-
m

ea
ns

LC
S-

Le
x

(0
.5

)

LC
S-

Le
x

(0
.6

)

LC
S-

Le
x

(0
.7

)

ST
-T

W
EC

 (
0
.3

)

ST
-T

W
EC

 (
0
.4

)

ST
-T

W
EC

 (
0
.5

)

ST
-T

W
EC

 (
0
.6

)

ST
-T

W
EC

 (
0
.7

)
0

0.25

0.5

0.75

1

Figure 5.10: Precision, Recall and F-

Score results for “#charlie” cluster

V
a
lu

e

Precision Recall F-Score

k-
m

ea
ns

LC
S-

Le
x

(0
.5

)

LC
S-

Le
x

(0
.6

)

LC
S-

Le
x

(0
.7

)

ST
-T

W
EC

 (
0
.3

)

ST
-T

W
EC

 (
0
.4

)

ST
-T

W
EC

 (
0
.5

)

ST
-T

W
EC

 (
0
.6

)

ST
-T

W
EC

 (
0
.7

)
0

0.25

0.5

0.75

1

Figure 5.11: Precision, Recall and F-

Score results for “#christmas” cluster

As it can be seen from Figure 5.10, Figure 5.11, Figure 5.12 and Figure 5.13; LCS-

Lex and ST-TWEC mostly outperforms k-means document clustering algorithm in terms

of Precision, Recall and F-Score values (except from LCS-Lex (0.5)). It is also worth

to note that there are some unclustered tweets in LCS-Lex and ST-TWEC as shown in

Figure 5.6 before, however k-means clusters all tweets in one of the 4 groups.

Spina et al. [78] stated that links, hashtags and named entities carry semantic content;

and it might be a good idea to consider them as well for similarity analysis. Actually, it

makes sense for their approach. However, in our work, we use a lexical approach for tweet

88

V
a
lu

e

Precision Recall F-Score

k-
m

ea
ns

LC
S-

Le
x

(0
.5

)

LC
S-

Le
x

(0
.6

)

LC
S-

Le
x

(0
.7

)

ST
-T

W
EC

 (
0
.3

)

ST
-T

W
EC

 (
0
.4

)

ST
-T

W
EC

 (
0
.5

)

ST
-T

W
EC

 (
0
.6

)

ST
-T

W
EC

 (
0
.7

)
0

0.25

0.5

0.75

1

Figure 5.12: Precision, Recall and F-

Score results for “#nba” cluster

V
a
lu

e

Precision Recall F-Score

k-
m

ea
ns

LC
S-

Le
x

(0
.5

)

LC
S-

Le
x

(0
.6

)

LC
S-

Le
x

(0
.7

)

ST
-T

W
EC

 (
0
.3

)

ST
-T

W
EC

 (
0
.4

)

ST
-T

W
EC

 (
0
.5

)

ST
-T

W
EC

 (
0
.6

)

ST
-T

W
EC

 (
0
.7

)
0

0.25

0.5

0.75

1

Figure 5.13: Precision, Recall and F-

Score results for “#trump” cluster

clustering. In Twitter, links are shortened using t.co service and it creates lexically similar

links with different contents. Using links increase lexical similarity between tweets which

have different content and decreases the intra-cluster similarity overall. We agree that

named entities are significant, however in Twitter, hashtags and also usernames may also

be used out of context, especially in trend hashtags and popular usernames; therefore we

decided to focus on purely on content. We also use hashtags for evaluation and pruning

them removes any bias the selected hashtags may create in our work. We also examined

ST-TWEC for the same data without removing links, usernames and hashtags in terms

of Precision, Recall and F-Score; but results just slightly got better for lower thresholds

or didn’t change at all for higher thresholds. And the time performance went down to 42

seconds in average (remember that Figure 5.2 shows that when we prune links, usernames

and hashtags, it takes 24-25 seconds in average).

The biggest limitation for the ST-TWEC is the memory requirement of the constructed

suffix tree. As the tweet size grows up, the memory size consumed by suffix tree also

increases. Our suffix tree consumed 475 MB memory for 60K tweets and its size propor-

tionally changes with the total number of characters in the tweet data set.

5.2.2 Comparison of LCS-DBSCAN, ST-DBSCAN, LSH-DBSCAN

In this subsection of the experimental evaluation, we have used a smaller dataset as we

stated before. This dataset contains 10K tweets which are randomly selected from the

89

dataset used in chapter 4. Since LCS-DBSCAN performs very poorly in terms of time,

we preferred to use this smaller dataset for comparison. In this part, all the experiments

were tested on a system with 2.8 GHz Inter Core i7 processor and 8 GB 1600 MHz

DDR3 ram. Similar to the previous part, since LCS-DBSCAN and LSH-DBSCAN are

based on Longest Common Subsequence, they had been experimented with the following

thresholds: 0.5, 0.6, 0.7 and 0.8. On the other hand, ST-DBSCAN had been experimented

with the following thresholds: 0.4, 0.5, 0.6, 0.7 and 0.8. One important note is that

we have tested LSH-DBSCAN with different K and L values; and called all these with

different names. For example, LSH-DBSCAN-K4-L5 refers to “LSH-DBSCAN with K as

4 and L (number of hash tables) as 5”. Shingle size in LSH-DBSCAN is set to 3 in all

experiments (we have also tested all the experiments with shingle size as 2, but there was

no dramatic difference). Remember that in DBSCAN algorithm, there are 2 parameters

minPts and ". In all algorithms derived from DBSCAN, we set minPts to 10 (we will

explain why minPts is selected as 10 at the end of this subsection) and " value is equal

to the threshold value in the experiments.

Threshold

T
im

e
 (
in

 s
e
c
s
)

LCS-DBSCAN

0.4 0.5 0.6 0.7 0.8
4035

4040

4045

4050

4055

4060

Figure 5.14: Time performance of LCS-

DBSCAN for 10K tweets with different

thresholds

Threshold

T
im

e
 (
in

 s
e
c
s
)

ST-DBSCAN LSH-DBSCAN-K2-L5

LSH-DBSCAN-K20-L5 LSH-DBSCAN-K2-L1

LSH-DBSCAN-K20-L1 LSH-DBSCAN-K4-L5

LSH-DBSCAN-K4-L1

0.4 0.5 0.6 0.7 0.8
0

100

200

300

Figure 5.15: Time performance of other

methods for 10K tweets with different

thresholds

We demonstrated the time performance of LCS-DBSAN in Figure 5.14, others in Fig-

ure 5.15 since LCS-DBSAN performs poorly and increases the timing results such a way

that results cannot be interpreted from a single figure. We observe that as the K increases

the time performance of LSH-DBSAN increases as expected. If we increase K, there will

90

be more buckets (less collisions among tweets) so that the total number of comparisons

will be lower which increases the time performance. The number of buckets in a hash

table wrt K value in our experiments is shown in Table 5.1. Naturally, increasing L value

means repeating the same process more times, so time performance decreases as well.

Results in Figure 5.15 show that, ST-DBSCAN, LSH-DBSCAN-K20-L5, LSH-DBSCAN-

K20-L1, LSH-DBSCAN-K4-L1 perform good for each threshold. LSH-DBSCAN-K4-L5

starts to perform fairly good after the threshold becomes 0.6 and LSH-DBSCAN-K2-L1

starts to perform good after the threshold becomes 0.7.

K Number of Buckets

2 [2100, 4200]

4 [5000, 5600]

20 [6000, 6250]

Table 5.1: Number of Buckets wrt. K value

In Figure 5.16, we showed a zoom in version of Figure 5.15 by selecting a subset of

the methods. In Figure 5.17, the number of clusters wrt. different thresholds are shown.

In high thresholds, all methods create almost the same number of clusters, but results vary

with low thresholds. The reason behind results vary with lower thresholds is the effect of

K and L parameters. LCS-DBSCAN does not miss any similar document so the number

of unclustered tweets is lower and the number of clusters is higher. When K is 2, there

are more tweets in a buckets that allows us to get more similar tweets. That’s why when

K is 2, there are more clusters with low thresholds. If we compare the different L values

when K is constant (when K is 2 for example), higher L value causes more clusters as

expected.

We have quite expected results in Figure 5.18. We observe that LSH-DBSCAN tends to

cluster less number of tweets than ST-DBSCAN and LCS-DBSCAN. Especially, when K is

20 (LSH-DBSCAN-K20-L1 and LSH-DBSCAN-K20-L5), the total number of unclustered

tweets is quite high for each threshold. Actually, it makes sense since when K is 20, we

have more buckets and the candidates for the similar tweets are exact same or nearly the

91

Threshold

T
im

e
 (
in

 s
e
c
s
)

ST-DBSCAN LSH-DBSCAN-K2-L5

LSH-DBSCAN-K20-L5 LSH-DBSCAN-K2-L1

LSH-DBSCAN-K20-L1 LSH-DBSCAN-K4-L5

LSH-DBSCAN-K4-L1

0.4 0.5 0.6 0.7 0.8
0

5

10

15

20

Figure 5.16: Zoom in version of Fig-

ure 5.15

Threshold

N
u
m

b
e
r

o
f

C
lu

s
te

rs

ST-DBSCAN LSH-DBSCAN-K2-L5

LSH-DBSCAN-K20-L5 LSH-DBSCAN-K2-L1

LSH-DBSCAN-K20-L1 LSH-DBSCAN-K4-L5

LSH-DBSCAN-K4-L1 LCS-DBSCAN

0.4 0.5 0.6 0.7 0.8
0

200

400

600

Figure 5.17: Number of clusters for 10K

tweets with different thresholds

same tweets. That’s why these methods tend to cluster less number of tweets. It shows

that depending on our purpose, if we want to capture very similar (exact or nearly the

same) tweets, then it is better to choose LSH-DBSCAN-K20-L1 or LSH-DBSCAN-K20-

L5. We can also prefer to choose ST-DBSCAN with a high threshold for the same purpose

and their timing performances do not have big differences as shown in Figure 5.15 and

Figure 5.16.

Threshold

N
u
m

b
e
r

o
f

U
n
c
lu

s
te

re
d

T
w

e
e
ts

ST-DBSCAN LSH-DBSCAN-K2-L5

LSH-DBSCAN-K20-L5 LSH-DBSCAN-K2-L1

LSH-DBSCAN-K20-L1 LSH-DBSCAN-K4-L5

LSH-DBSCAN-K4-L1 LCS-DBSCAN

0.4 0.5 0.6 0.7 0.8
0

10k

2.5k

5k

7.5k

Figure 5.18: Number of unclustered

tweets for 10K tweets with different

thresholds

Threshold

A
v
e
ra

g
e
 I
n
tr

a
-
c
lu

s
te

r
S
im

il
a
ri

ty

ST-DBSCAN LSH-DBSCAN-K2-L5

LSH-DBSCAN-K20-L5 LSH-DBSCAN-K2-L1

LSH-DBSCAN-K20-L1 LSH-DBSCAN-K4-L5

LSH-DBSCAN-K4-L1 LCS-DBSCAN

0.4 0.5 0.6 0.7 0.8

0.6

0.8

1

0.4

1.2

Figure 5.19: Average intra-cluster sim-

ilarity for 10K tweets with different

thresholds

When we look at the average intra-cluster similarity results in Figure 5.19, again LSH-

DBSCAN-K20-L1 and LSH-DBSCAN-K20-L5 have the highest similarity values. How-

ever, ST-DBSCAN also shines here, because although it clusters more tweets than both

LSH-DBSCAN-K20-L1 and LSH-DBSCAN-K20-L5, the average intra-cluster similarity

92

for ST-DBSCAN is still quite high. The remaining methods showed almost the same pat-

tern for this metric.

Threshold

W
e
ig

h
te

d
 A

v
e
ra

g
e
 I
n
tr

a
-

c
lu

s
te

r
S
im

il
a
ri

ty

ST-DBSCAN LSH-DBSCAN-K2-L5

LSH-DBSCAN-K20-L5 LSH-DBSCAN-K2-L1

LSH-DBSCAN-K20-L1 LSH-DBSCAN-K4-L5

LSH-DBSCAN-K4-L1 LCS-DBSCAN

0.4 0.5 0.6 0.7 0.8
0.4

0.6

0.8

1

1.2

Figure 5.20: Weighted average intra-

cluster similarity for 10K tweets with

different thresholds

Threshold

P
u
ri
ty

ST-DBSCAN LSH-DBSCAN-K2-L5

LSH-DBSCAN-K20-L5 LSH-DBSCAN-K2-L1

LSH-DBSCAN-K20-L1 LSH-DBSCAN-K4-L5

LSH-DBSCAN-K4-L1 LCS-DBSCAN

0.4 0.5 0.6 0.7 0.8

0.8

0.9

1

0.7

1.1

Figure 5.21: Purity for 10K tweets with

different thresholds

We have an interesting result in Figure 5.20 which is for weighted average intra-cluster

similarity. ST-DBSCAN in the only method that shows a different pattern with its average

intra-cluster similarity in Figure 5.19. For smaller thresholds, weighted average intra-

cluster similarity is much lower than the average intra-cluster similarity for ST-DBSCAN.

It shows that bigger clusters in ST-DBSCAN have much lower intra-cluster similarities

than the smaller clusters have. Purity results in Figure 5.21 have almost same output with

average intra-cluster similarity results in Figure 5.19.

In Figure 5.22, Figure 5.23, Figure 5.24, Figure 5.25, we give precision, recall and

F-score results for LCS-DBSCAN, ST-DBSCAN and LSH-DBSCAN methods with differ-

ent thresholds. We selected LSH-DBSCAN-K20-L1 to represent LSH-DBSCAN due to its

good results in the previous examples. Again we assume that there are 4 big clusters (re-

ferring to #jesuisCharlie, #christmas, #nba and #trump) and each of the relatively smaller

clusters produced by these methods belongs to one of the 4 big clusters depending on the

most frequent real class label.

Results show that ST-DBSCAN with high thresholds and LSH-DBSCAN produce clus-

ters with the same or better quality than LCS-DBSCAN produce. However, their time

performances are quite different, and it proves that it is worth to choose LSH-DBSCAN or

93

V
a
lu

e

Precision Recall F-Score

LC
S-

D
BS

C
A
N
 (0

.5
)

LC
S-

D
BS

C
A
N
 (0

.6
)

LC
S-

D
BS

C
A
N
 (0

.7
)

LC
S-

D
BS

C
A
N
 (0

.8
)

ST
-D

BS
C
A
N
 (0

.4
)

ST
-D

BS
C
A
N
 (0

.5
)

ST
-D

BS
C
A
N
 (0

.6
)

ST
-D

BS
C
A
N
 (0

.7
)

ST
-D

BS
C
A
N
 (0

.8
)

LS
H
-D

BS
C
A
N
-K

20
-L

1
(0

.5
)

LS
H
-D

BS
C
A
N
-K

20
-L

1
(0

.6
)

LS
H
-D

BS
C
A
N
-K

20
-L

1
(0

.7
)

LS
H
-D

BS
C
A
N
-K

20
-L

1
(0

.8
)

0

0.25

0.5

0.75

1

Figure 5.22: Precision, Recall and F-

Score results for “#charlie” cluster
V

a
lu

e

Precision Recall F-Score

LC
S-

D
BS

C
A
N
 (0

.5
)

LC
S-

D
BS

C
A
N
 (0

.6
)

LC
S-

D
BS

C
A
N
 (0

.7
)

LC
S-

D
BS

C
A
N
 (0

.8
)

ST
-D

BS
C
A
N
 (0

.4
)

ST
-D

BS
C
A
N
 (0

.5
)

ST
-D

BS
C
A
N
 (0

.6
)

ST
-D

BS
C
A
N
 (0

.7
)

ST
-D

BS
C
A
N
 (0

.8
)

LS
H
-D

BS
C
A
N
-K

20
-L

1
(0

.5
)

LS
H
-D

BS
C
A
N
-K

20
-L

1
(0

.6
)

LS
H
-D

BS
C
A
N
-K

20
-L

1
(0

.7
)

LS
H
-D

BS
C
A
N
-K

20
-L

1
(0

.8
)

0

0.25

0.5

0.75

1

Figure 5.23: Precision, Recall and F-

Score results for “#christmas” cluster

V
a
lu

e

Precision Recall F-Score

LC
S-

D
BS

C
A
N
 (0

.5
)

LC
S-

D
BS

C
A
N
 (0

.6
)

LC
S-

D
BS

C
A
N
 (0

.7
)

LC
S-

D
BS

C
A
N
 (0

.8
)

ST
-D

BS
C
A
N
 (0

.4
)

ST
-D

BS
C
A
N
 (0

.5
)

ST
-D

BS
C
A
N
 (0

.6
)

ST
-D

BS
C
A
N
 (0

.7
)

ST
-D

BS
C
A
N
 (0

.8
)

LS
H
-D

BS
C
A
N
-K

20
-L

1
(0

.5
)

LS
H
-D

BS
C
A
N
-K

20
-L

1
(0

.6
)

LS
H
-D

BS
C
A
N
-K

20
-L

1
(0

.7
)

LS
H
-D

BS
C
A
N
-K

20
-L

1
(0

.8
)

0

0.25

0.5

0.75

1

Figure 5.24: Precision, Recall and F-

Score results for “#nba” cluster

V
a
lu

e

Precision Recall F-Score

LC
S-

D
BS

C
A
N
 (0

.5
)

LC
S-

D
BS

C
A
N
 (0

.6
)

LC
S-

D
BS

C
A
N
 (0

.7
)

LC
S-

D
BS

C
A
N
 (0

.8
)

ST
-D

BS
C
A
N
 (0

.4
)

ST
-D

BS
C
A
N
 (0

.5
)

ST
-D

BS
C
A
N
 (0

.6
)

ST
-D

BS
C
A
N
 (0

.7
)

ST
-D

BS
C
A
N
 (0

.8
)

LS
H
-D

BS
C
A
N
-K

20
-L

1
(0

.5
)

LS
H
-D

BS
C
A
N
-K

20
-L

1
(0

.6
)

LS
H
-D

BS
C
A
N
-K

20
-L

1
(0

.7
)

LS
H
-D

BS
C
A
N
-K

20
-L

1
(0

.8
)

0

0.25

0.5

0.75

1

Figure 5.25: Precision, Recall and F-

Score results for “#trump” cluster

94

ST-DBSCAN to make a lexical clustering on tweets.

Remember that we set minPts to 10 in this subsection and conducted all of the exper-

iments with different " (threshold) values for density based methods. We now conducted

some other experiments in order to see how the results change when minPts is 5, 10, 50

and 100. We selected LSH-DBSCAN-K20-L1 and ST-DBSCAN; and set their thresholds

to 0.5 and 0.4 respectively.

MinPts

T
im

e
 (
in

 s
e
c
s
)

ST-DBSCAN LSH-DBSCAN-K20-L1

5 10 50 100

4

6

8

10

2

Figure 5.26: Time performance with

different minPts values

MinPts

N
u
m

b
e
r

o
f

C
lu

s
te

rs

ST-DBSCAN LSH-DBSCAN-K20-L1

5 10 50 100
0

50

100

150

200

Figure 5.27: Number of clusters with

different minPts values

Figure 5.26 shows that the time performance increases only a little bit when minPts

increases for ST-DBSCAN; but it is almost constant for LSH-DBSCAN-K20-L1. However,

the number of clusters in Figure 5.27 decreases significantly as the minPts increases.

There are only 5 and 1 cluster(s) for ST-DBSCAN and LSH-DBSCAN-K20-L1 respectively

when minPts is 100. Actually it is a quite expected result, since it is harder to compose

a cluster in DBSCAN with higher minPts values.

When we look at Figure 5.28, we see that the number of unclustered tweets increases

for both methods as minPts increases. It is also expected with less clusters in higher

minPts values. However, LSH-DBSCAN-K20-L1 clusters less tweets than ST-DBSCAN

does, because LSH-DBSCAN-K20-L1 only retrieves exact the same or nearly the same

tweets as the nearest neighbours which was already mentioned before. This fact also

inclines the result in Figure 5.29 and Figure 5.30 where the average and weighted average

intra-cluster similarities are almost 1.0 for LSH-DBSCAN-K20-L1.

Consequently, we observed that the number of clusters is more reasonable when

95

MinPts

N
u
m

b
e
r

o
f

U
n
c
lu

s
te

re
d
 T

w
e
e
ts

ST-DBSCAN LSH-DBSCAN-K20-L1

5 10 50 100
2k

4k

6k

8k

10k

12k

Figure 5.28: Number of unclustered

tweets with different minPts values

MinPts

A
v
e
ra

g
e
 I
n
tr

a
-
C

lu
s
te

r
S
im

il
a
ri

ty

ST-DBSCAN LSH-DBSCAN-K20-L1

5 10 50 100
0.4

0.5

0.6

0.7

0.8

0.9

1

1.1

Figure 5.29: Average intra-cluster simi-

larity with different minPts values

MinPts

W
e
ig

h
te

d
 A

v
e
ra

g
e

In
tr

a
-
C

lu
s
te

r
S
im

il
a
ri

ty

ST-DBSCAN LSH-DBSCAN-K20-L1

5 10 50 100

0.4

0.6

0.8

1

0.2

1.2

Figure 5.30: Weighted average intra-

cluster similarity with different minPts

values

MinPts

P
u
ri
ty

ST-DBSCAN LSH-DBSCAN-K20-L1

5 10 50 100
0.4

0.5

0.6

0.7

0.8

0.9

1

1.1

Figure 5.31: Purity with different

minPts values

96

minPts is 5 and 10. The average intra-cluster similarity is quite good for these values

as well. As Schubert et al. [73] stated that it may improve the cluster results to increase

minPts for the datasets that are very large or have many duplicates. Therefore, we se-

lected minPts as 10 among the candidates 5 and 10.

5.2.3 Comparison of LSH-DBSCAN, ST-DBSCAN, ST-TWEC

In this part, we will compare LSH-DBSCAN, ST-DBSCAN and ST-TWEC methods in

terms of the time performance. We observe that these three methods performed quite

good in terms of the time performance and cluster qualities in the previous subsections.

Now, we will compare them with the bigger dataset used in subsection 5.2.1 in terms of

time performance. Again we selected LSH-DBSCAN-K20-L1 to represent LSH-DBSCAN

since its good timing results. We conducted our experiments with the same machine used

in subsection 5.2.1 (a system with 32 processor, model name Intel(R) Xeon(R) CPU E5-

2690 0 @ 2.90GHz, and 128 GB RAM). Results regarding these experiments are given in

Figure 5.32. Although LSH-DBSCAN-K20-L1 performed slightly better than ST-DBSCAN

with 10K dataset in terms of the time performance in subsection 5.2.2, as the data size

grows ST-DBSCAN starts to perform better. And we see that there is not a big difference

between ST-DBSCAN and ST-TWEC in Figure 5.32.

It is also worth to note memory consumption of each method. Remember that suffix

tree ST-TWEC consumed 475 MB in subsection 5.2.1. We noted in subsection 5.1.5 that

we will have lots of queries in ST-DBCAN to get nearest neighbours (i.e to find similar

tweets), we decided to keep ids of the tweets in each level to reach them very fast. So

that, suffix tree in ST-DBCAN consumes much more memory which is 6060 MB. On the

other hand, LSH-DBSCAN-K20-L1 consumes 290 MB for the hash table in the algorithm.

Note that there is only 1 hash table in LSH-DBSCAN-K20-L1. If we increase the value of

L, then the memory consumption will increase too.

Lastly, we want to state than these three methods are scalable. We have already

shown that how ST-TWEC performs with different datasets which contain from 100K

to 1M tweets. We also show and compare these methods in the same range as shown in

97

Threshold

T
im

e
 (
in

 s
e
c
s
)

ST-TWEC ST-DBSCAN

LSH-DBSCAN-K20-L1

0.3 0.4 0.5 0.6 0.7 0.8
0

50

100

150

200

Figure 5.32: Compare LSH-DBSCAN-K20-L1, ST-DBSCAN and ST-TWEC with 60K

dataset in terms of the time performance

Figure 5.33. In this experiment, the thresholds were selected as 0.4 for ST-TWEC and

ST-DBSCAn; and selected as 0.5 for LSH-DBSCAN-K20-L1.

98

Number of Tweets

T
im

e
 (

in
 s

e
c
s
)

ST-TWEC LSH-DBSCAN-K20-L1

ST-DBSCAN

10
0K

20
0K

30
0K

40
0K

50
0K

60
0K

70
0K

80
0K

90
0K

10
00

K

0

2k

4k

6k

8k

Figure 5.33: Compare LSH-DBSCAN-K20-L1, ST-DBSCAN and ST-TWEC with different

data sizes

99

Chapter 6

Conclusion and Future Work

Twitter is one of the most popular platforms where users share their opinions, reactions

and feelings towards the events and daily life. For that reason, it is very important to

measure the impact of the tweets and topics in Twitter for researchers and policy makers

to understand the trends and the reactions of the society in a better way. In this work, we

focused on the ways to measure the impact of tweets or topics. We firstly emphasized

the role of retweets to make the information transmitted in all over the Twitter. There-

fore, in the first part of the thesis, we focused on predicting whether a tweet will take

high number of retweets as it had been also studied by some other works in the litera-

ture. However, our work contains deeper analysis. We grouped tweets in different classes

depending on the number of retweets they received. We have end up with seven fea-

tures of tweets, namely numberOfFollowers, containsHighRelatedTerms, containsLowRe-

latedTerms, containsPoliticWords, containsLink, numberOfCapitalLetters, and contain-

sHashtag to create a good learning model and we obtained satisfying results in terms of

the accuracy. In the second part of the chapter 4, we more concentrated on extracting the

content based features of tweets by using Convolutional Neural Networks.

In the second part of the thesis, we introduced the concept of hidden retweets. We ob-

served that people tend to re-post tweets by adding some extra comments to the beginning

or to the end of these tweets or they also tend to re-post the same tweets without retweet-

ing them; and these are not part of the original retweets. It doesn’t matter whether these

100

tweets are supportive or against the original tweet. Our focus is that users talk about this

tweet/topic to increase the awareness in some way (positive or negative). So that hidden

retweets are quite important for measuring the real impact of the tweet.

In this work, capturing hidden retweets is defined as a document clustering problem,

since we try to group similar tweets whose similarity value is above a threshold in the

same cluster. Although there are lots of works on document clustering methods in the

literature, clustering tweets needs some kind of adaptive solutions due to Twitter’s char-

acteristic features. As it is mentioned in the thesis, tweets are short documents (at most

140 characters), users intentionally or unintentionally use the misspelled words or ab-

breviations; therefore standard text clustering methods do not work well for short and

informal textual data generated in Twitter. In the first part of the chapter 5, we presented

a suffix tree based tweet clustering algorithm, ST-TWEC, which is able to efficiently clus-

ter the tweets in large scales. In order to prove its quality, we compared ST-TWEC with

a benchmark algorithm (LCS-Lex) which is a lexical tweet clustering method based on

Longest Common Subsequence (LCS) similarity metric. In fact, LCS is a good similarity

metric for comparing tweets, however, it has a high time complexity. Our experiments

revealed that ST-TWEC is capable of constructing high quality clusters as LCS-Lex con-

structs in terms of avgISim, wAvgISim, Purity, Precision, Recall and F-Score evaluation

metrics. We also showed that while constructing same quality clusters, ST-TWEC dramat-

ically outperforms LCS-Lex in terms of the time performance. This outcome enables us to

cluster tweets in a more efficient way and to work in scales of million tweets which is the

case in real life. Apart from that, we also showed that ST-TWEC runs more efficiently than

traditional document clustering methods (k-means document clustering) in terms of the

time performance and cluster qualities. In the second part of the chapter 5, we were more

focused on density based clustering approaches. First, we have developed a naive imple-

mentation of DBSCAN (LCS-DBSCAN) which uses LCS to find similar tweets. Then, we

integrated DBSCAN with generalized suffix tree data structure (ST-DBSCAN) and local-

ity sensitive hashing method (LSH-DBSCAN) as the second and third method respectively

to improve the time performance of retrieving the nearest neighbour tweets. Especially,

101

LSH-DBSCAN has two different parameter which are the length of the hash code and

the number of the hash tables. We compared these methods with different parameters,

and showed how ST-DBSCAN and LSH-DBSCAN performs effectively to cluster similar

tweets. In the last part, since ST-TWEC, ST-DBSCAN and LSH-DBSCAN outperformed

the naive implementations of their competitors, we also made a comparison among them

with different data sizes.

As feature work, “Wide and Deep Neural Networks” [11] might be performed to pre-

dict whether a tweet will get high number of retweets. Note that the biggest limitation for

the suffix tree based methods is the memory requirement of the constructed generalized

suffix tree. As the tweet size grows up, the memory size consumed by the generalized

suffix tree also increases. In order to process a higher number of tweets, we plan to ex-

tend these methods with batch clustering and store a portion of the generated suffix tree

in the secondary storage as future work.

Last but not least, remember that we mentioned about five different reasons why peo-

ple retweet in chapter 1. We observe that these reasons are directly related to the number

of hidden retweets. For example, if users want to promote some specific people or an

account, they tend to retweet the original tweets of these people/accounts. Similarly, if

users want to increase the awareness on a specific event/tweet then they tend to retweet

the original tweet since the high number of retweets, that is explicitly seen by everyone,

might affect other people too. These two reasons are the factors that decrease the number

of hidden retweets. On the other hand, users also share jokes and humorous contents. In

this case, they might copy/paste and send this tweet as their own post to seem more funny

and increase their popularity in the social network. Or when they want to criticize, protest

or insult an event/opinion, they copy the original tweet and add extra comment that ex-

press their idea. These reason are the factors that increase number of hidden retweets. As

we said that, we believe the number of hidden retweets is directly related to these con-

cepts, however we did not make any experiment to prove this idea which might be done

as future work.

102

Appendices

103

.1 Additional Figures

Figure 1: Label: we got kicked out of a airplane because i spoke arabic to my mom on the

.

104

Figure 2: Label: had a smoke off in the middle of a concert

.

105

Figure 3: Label: how i sleep at night knowing i m a disappointment to my

.

106

Bibliography

[1] Alexa. Top sites in turkey. http://www.alexa.com/topsites/

countries/TR, 2016. Accessed 2016.08.02.

[2] N. Ela Gökalp Aras and Zeynep Şahin Mencütek. The international migration

and foreign policy nexus: the case of syrian refugee crisis and turkey. Migration

Letters, 12(3), 2015. ISSN 1741-8992. URL http://www.tplondon.com/

journal/index.php/ml/article/view/502.

[3] Farzindar Atefeh and Wael Khreich. A survey of techniques for event detection

in twitter. Comput. Intell., 31(1):132–164, February 2015. ISSN 0824-7935. doi:

10.1111/coin.12017. URL http://dx.doi.org/10.1111/coin.12017.

[4] Zeynep Aycan. Human resource management in Turkey - Current issues and

future challenges. International Journal of Manpower, 22(3):252–260, 2001.

doi: 10.1108/01437720110398347. URL https://doi.org/10.1108/

01437720110398347.

[5] H. Becker, M. Naaman, and L. Gravano. Beyond trending topics: Real-world event

identification on twitter. In Fifth International AAAI Conference on Weblogs and

Social Media, 2011.

[6] beevolve. An exhaustive study of twitter users across the world, 2012. URL http:

//www.beevolve.com/twitter-statistics/.

[7] Tuba Bircan and Ulaş Sunata. Educational assessment of syrian refugees in

107

http://www.alexa.com/topsites/countries/TR
http://www.alexa.com/topsites/countries/TR
http://www.tplondon.com/journal/index.php/ml/article/view/502
http://www.tplondon.com/journal/index.php/ml/article/view/502
http://dx.doi.org/10.1111/coin.12017
https://doi.org/10.1108/01437720110398347
https://doi.org/10.1108/01437720110398347
http://www.beevolve.com/twitter-statistics/
http://www.beevolve.com/twitter-statistics/

turkey. Migration Letters, 12(3), 2015. ISSN 1741-8992. URL http://www.

tplondon.com/journal/index.php/ml/article/view/509.

[8] Johan Bollen, Huina Mao, and Xiao-Jun Zeng. Twitter mood predicts the stock

market. CoRR, abs/1010.3003, 2010. URL http://arxiv.org/abs/1010.

3003.

[9] Andrei Z Broder. On the resemblance and containment of documents. In Compres-

sion and Complexity of Sequences 1997. Proceedings, pages 21–29. IEEE, 1997.

[10] Dawn Chatty. The syrian humanitarian disaster: Disparities in perceptions, aspi-

rations, and behaviour in jordan, lebanon and turkey. IDS Bulletin, 47(3), 2016.

ISSN 1759-5436. doi: 10.19088/1968-2016.142. URL http://bulletin.

ids.ac.uk/idsbo/article/view/2728.

[11] Heng-Tze Cheng, Levent Koc, Jeremiah Harmsen, Tal Shaked, Tushar Chandra,

Hrishi Aradhye, Glen Anderson, Greg Corrado, Wei Chai, Mustafa Ispir, Rohan

Anil, Zakaria Haque, Lichan Hong, Vihan Jain, Xiaobing Liu, and Hemal Shah.

Wide & deep learning for recommender systems. CoRR, abs/1606.07792, 2016.

URL http://arxiv.org/abs/1606.07792.

[12] M. Cheong and V. Lee. A study on detecting patterns in twitter intra-topic user and

message clustering. In 2010 20th International Conference on Pattern Recognition,

pages 3125–3128, Aug 2010. doi: 10.1109/ICPR.2010.765.

[13] Koby Crammer, Ofer Dekel, Joseph Keshet, Shai Shalev-Shwartz, and Yoram

Singer. Online passive-aggressive algorithms. Journal of Machine Learning Re-

search, 7(Mar):551–585, 2006.

[14] Rianne Dekker and Godfried Engbersen. How social media transform migrant net-

works and facilitate migration. Global Networks, 14(4):401–418, 2014. ISSN

1471-0374. doi: 10.1111/glob.12040. URL http://dx.doi.org/10.

1111/glob.12040.

108

http://www.tplondon.com/journal/index.php/ml/article/view/509
http://www.tplondon.com/journal/index.php/ml/article/view/509
http://arxiv.org/abs/1010.3003
http://arxiv.org/abs/1010.3003
http://bulletin.ids.ac.uk/idsbo/article/view/2728
http://bulletin.ids.ac.uk/idsbo/article/view/2728
http://arxiv.org/abs/1606.07792
http://dx.doi.org/10.1111/glob.12040
http://dx.doi.org/10.1111/glob.12040

[15] Daniel Rodriguez Dominguez, Rebeca P. Diaz Redondo, Ana Fernandez Vilas,

and Mohamed Ben Khalifa. Sensing the city with instagram: Clustering ge-

olocated data for outlier detection. Expert Systems with Applications, 78:319

– 333, 2017. ISSN 0957-4174. doi: http://dx.doi.org/10.1016/j.eswa.2017.

02.018. URL http://www.sciencedirect.com/science/article/

pii/S0957417417300994.

[16] Elastic. The heart of the elastic stack, 2016. URL https://www.elastic.

co/products/elasticsearch.

[17] M. K. Erpam. Tweets on a tree: Index-based clustering of tweets. Technical report,

Sabanci University, Istanbul, Turkey, April 2017. URL http://research.

sabanciuniv.edu/31274/.

[18] Martin Ester, Hans-Peter Kriegel, Jörg Sander, Xiaowei Xu, et al. A density-based

algorithm for discovering clusters in large spatial databases with noise. In Kdd,

volume 96, pages 226–231, 1996.

[19] Yixiang Fang, Haijun Zhang, Yunming Ye, and Xutao Li. Detecting hot topics

from twitter: A multiview approach. Journal of Information Science, 40(5):578–

593, 2014.

[20] G Fowler, P Vo, and LC Noll. Fvn hash, 1991.

[21] Nell Gabiam. Humanitarianism, development, and security in the 21st century:

Lessons from the syrian refugee crisis. International Journal of Middle East Stud-

ies, 48(2):382–386, 2016. doi: 10.1017/S0020743816000131.

[22] Aristides Gionis, Piotr Indyk, Rajeev Motwani, et al. Similarity search in high

dimensions via hashing. In VLDB, volume 99, pages 518–529, 1999.

[23] GLOBE. Global leadership & organizational behavior effectiveness. http:

//globe.bus.sfu.ca/results/countries/TUR?menu=list, 2016.

Accessed 2016.09.30.

109

http://www.sciencedirect.com/science/article/pii/S0957417417300994
http://www.sciencedirect.com/science/article/pii/S0957417417300994
https://www.elastic.co/products/elasticsearch
https://www.elastic.co/products/elasticsearch
http://research.sabanciuniv.edu/31274/
http://research.sabanciuniv.edu/31274/
http://globe.bus.sfu.ca/results/countries/TUR?menu=list
http://globe.bus.sfu.ca/results/countries/TUR?menu=list

[24] Dan Gusfield. Algorithms on Strings, Trees, and Sequences: Computer Science

and Computational Biology. Cambridge University Press, New York, NY, USA,

1997. ISBN 0-521-58519-8.

[25] Donald O. Hebb. The organization of behavior: A neuropsychological theory.

Wiley, New York, June 1949. ISBN 0-8058-4300-0.

[26] François Heisbourg. The Strategic Implications of the Syrian Refugee Crisis. Sur-

vival, 57(6):7–20, 2015. doi: 10.1080/00396338.2015.1116144. URL http:

//dx.doi.org/10.1080/00396338.2015.1116144.

[27] Geert H. Hofstede. Culture’s consequences: International differences in work-

related values. Sage Publications, Beverly Hills, CA, 1980.

[28] Robert J House, Global Leadership Program., and Organizational Behavior Effec-

tiveness Research. Culture, leadership, and organizations : the GLOBE study of

62 societies. Sage Publications, Thousand Oaks, Calif., 2004. ISBN 0761924019

9780761924012.

[29] Bill Howard. Analyzing online social networks. Commun. ACM, 51(11):14–16,

November 2008. ISSN 0001-0782. doi: 10.1145/1400214.1400220. URL http:

//doi.acm.org/10.1145/1400214.1400220.

[30] Philip Issa. Syrian civil war: Five ways the conflict has changed the world.

http://www.independent.co.uk/news/world/middle-east/

syrian-civil-war-isis-how-it-changed-the-world-refugee-crisis-a6928796.

html, 2016. Accessed 2016.09.30.

[31] Adam Jacobs. The pathologies of big data. Commun. ACM, 52(8):36–44, August

2009. ISSN 0001-0782. doi: 10.1145/1536616.1536632. URL http://doi.

acm.org/10.1145/1536616.1536632.

[32] Fieke Jansen. Digital activism in the Middle East: mapping issue networks in

Egypt, Iran, Syria and Tunisia. Knowledge Management for Development Journal,

110

http://dx.doi.org/10.1080/00396338.2015.1116144
http://dx.doi.org/10.1080/00396338.2015.1116144
http://doi.acm.org/10.1145/1400214.1400220
http://doi.acm.org/10.1145/1400214.1400220
http://www.independent.co.uk/news/world/middle-east/syrian-civil-war-isis-how-it-changed-the-world-refugee-crisis-a6928796.html
http://www.independent.co.uk/news/world/middle-east/syrian-civil-war-isis-how-it-changed-the-world-refugee-crisis-a6928796.html
http://www.independent.co.uk/news/world/middle-east/syrian-civil-war-isis-how-it-changed-the-world-refugee-crisis-a6928796.html
http://doi.acm.org/10.1145/1536616.1536632
http://doi.acm.org/10.1145/1536616.1536632

6(1):37–52, 2010. doi: 10.1080/19474199.2010.493854. URL http://dx.

doi.org/10.1080/19474199.2010.493854.

[33] Jonah Berger and Katherine L Milkman. What Makes Online Content Viral? Jour-

nal of Marketing Research, 49(2):192–205, 2012. doi: 10.1509/jmr.10.0353. URL

https://doi.org/10.1509/jmr.10.0353.

[34] Sunghae Jun, Sang-Sung Park, and Dong-Sik Jang. Document cluster-

ing method using dimension reduction and support vector clustering to over-

come sparseness. Expert Systems with Applications, 41(7):3204 – 3212,

2014. ISSN 0957-4174. doi: http://dx.doi.org/10.1016/j.eswa.2013.11.

018. URL http://www.sciencedirect.com/science/article/

pii/S0957417413009305.

[35] Hayat Kabasakal and Muzaffer Bodur. Leadership, values and institutions: The

case of turkey, 1998. Unpublished Manuscript. Istanbul, Turkey.

[36] Omer M. Karasapan. The impact of syrian businesses in turkey.

https://www.brookings.edu/blog/future-development/

2016/03/16/the-impact-of-syrian-businesses-in-turkey/,

2016. Accessed 2016.08.02.

[37] Yoon Kim. Convolutional neural networks for sentence classification. arXiv

preprint arXiv:1408.5882, 2014.

[38] Diederik Kingma and Jimmy Ba. Adam: A method for stochastic optimization.

arXiv preprint arXiv:1412.6980, 2014.

[39] Alex Krizhevsky, Ilya Sutskever, and Geoffrey E Hinton. Imagenet classification

with deep convolutional neural networks. In Advances in neural information pro-

cessing systems, pages 1097–1105, 2012.

[40] Haewoon Kwak, Changhyun Lee, Hosung Park, and Sue Moon. What is twitter,

a social network or a news media? In Proceedings of the 19th International Con-

111

http://dx.doi.org/10.1080/19474199.2010.493854
http://dx.doi.org/10.1080/19474199.2010.493854
https://doi.org/10.1509/jmr.10.0353
http://www.sciencedirect.com/science/article/pii/S0957417413009305
http://www.sciencedirect.com/science/article/pii/S0957417413009305
https://www.brookings.edu/blog/future-development/2016/03/16/the-impact-of-syrian-businesses-in-turkey/
https://www.brookings.edu/blog/future-development/2016/03/16/the-impact-of-syrian-businesses-in-turkey/

ference on World Wide Web, WWW ’10, pages 591–600, New York, NY, USA,

2010. ACM. ISBN 978-1-60558-799-8. doi: 10.1145/1772690.1772751. URL

http://doi.acm.org/10.1145/1772690.1772751.

[41] Y. Lecun, L. Bottou, Y. Bengio, and P. Haffner. Gradient-based learning applied

to document recognition. Proceedings of the IEEE, 86(11):2278–2324, Nov 1998.

ISSN 0018-9219. doi: 10.1109/5.726791.

[42] Sarah Van Leuven, Ansgard Heinrich, and Annelore Deprez. Foreign reporting

and sourcing practices in the network sphere: A quantitative content analysis of

the Arab Spring in Belgian news media. New Media & Society, 17(4):573–591,

2015. doi: 10.1177/1461444813506973. URL http://dx.doi.org/10.

1177/1461444813506973.

[43] Chenliang Li, Aixin Sun, and Anwitaman Datta. Twevent: Segment-based event

detection from tweets. In Proceedings of the 21st ACM International Conference

on Information and Knowledge Management, CIKM ’12, pages 155–164, New

York, NY, USA, 2012. ACM. ISBN 978-1-4503-1156-4. doi: 10.1145/2396761.

2396785. URL http://doi.acm.org/10.1145/2396761.2396785.

[44] Yinglong Ma, Yao Wang, and Beihong Jin. A three-phase approach to document

clustering based on topic significance degree. Expert Systems with Applications,

41(18):8203 – 8210, 2014. ISSN 0957-4174. doi: http://dx.doi.org/10.1016/j.

eswa.2014.07.014. URL http://www.sciencedirect.com/science/

article/pii/S0957417414004126.

[45] James MacQueen et al. Some methods for classification and analysis of multivari-

ate observations. In Proceedings of the fifth Berkeley symposium on mathematical

statistics and probability, volume 1, pages 281–297. Oakland, CA, USA., 1967.

[46] Oded Maimon and Lior Rokach. Data Mining and Knowledge Discovery Hand-

book. Springer-Verlag New York, Inc., Secaucus, NJ, USA, 2005. ISBN

0387244352, 9780387244358.

112

http://doi.acm.org/10.1145/1772690.1772751
http://dx.doi.org/10.1177/1461444813506973
http://dx.doi.org/10.1177/1461444813506973
http://doi.acm.org/10.1145/2396761.2396785
http://www.sciencedirect.com/science/article/pii/S0957417414004126
http://www.sciencedirect.com/science/article/pii/S0957417414004126

[47] Juan Martinez-Romo and Lourdes Araujo. Detecting malicious tweets in trend-

ing topics using a statistical analysis of language. Expert Systems with Applica-

tions, 40(8):2992 – 3000, 2013. ISSN 0957-4174. doi: http://dx.doi.org/10.1016/

j.eswa.2012.12.015. URL http://www.sciencedirect.com/science/

article/pii/S0957417412012560.

[48] MEE. Economic effect of syrian war at $35bn: World

bank. http://www.middleeasteye.net/news/

economic-effect-syrian-war-35bn-world-bank-1953497162,

2016. Accessed 2016.08.02.

[49] Tomas Mikolov, Kai Chen, Greg Corrado, and Jeffrey Dean. Efficient estimation

of word representations in vector space. CoRR, abs/1301.3781, 2013. URL http:

//arxiv.org/abs/1301.3781.

[50] Zachary Miller, Brian Dickinson, William Deitrick, Wei Hu, and Alex Hai Wang.

Twitter spammer detection using data stream clustering. Inf. Sci., 260:64–73,

March 2014. ISSN 0020-0255. doi: 10.1016/j.ins.2013.11.016. URL http:

//dx.doi.org/10.1016/j.ins.2013.11.016.

[51] Hamideh Molaei. Discursive opportunity structure and the contribution of social

media to the success of social movements in Indonesia. Information, Communica-

tion & Society, 18(1):94–108, 2015. doi: 10.1080/1369118X.2014.934388. URL

http://dx.doi.org/10.1080/1369118X.2014.934388.

[52] Kyosuke Nishida, Ryohei Banno, Ko Fujimura, and Takahide Hoshide. Tweet

classification by data compression. In Proceedings of the 2011 international

workshop on DETecting and Exploiting Cultural diversiTy on the social web,

DETECT ’11, pages 29–34, New York, NY, USA, 2011. ACM. ISBN 978-1-

4503-0962-2. doi: http://doi.acm.org/10.1145/2064448.2064473. URL http:

//doi.acm.org/10.1145/2064448.2064473.

113

http://www.sciencedirect.com/science/article/pii/S0957417412012560
http://www.sciencedirect.com/science/article/pii/S0957417412012560
http://www.middleeasteye.net/news/economic-effect-syrian-war-35bn-world-bank-1953497162
http://www.middleeasteye.net/news/economic-effect-syrian-war-35bn-world-bank-1953497162
http://arxiv.org/abs/1301.3781
http://arxiv.org/abs/1301.3781
http://dx.doi.org/10.1016/j.ins.2013.11.016
http://dx.doi.org/10.1016/j.ins.2013.11.016
http://dx.doi.org/10.1080/1369118X.2014.934388
http://doi.acm.org/10.1145/2064448.2064473
http://doi.acm.org/10.1145/2064448.2064473

[53] MARGARITA NORIEGA. Why we retweet, 2014. URL http://www.

dailydot.com/debug/why-we-retweet/.

[54] Oytun Orhan. Effects of the syrian refugees on turkey, 2015. TESEV.

[55] Oswego. The 68-95-99.7 rule for normal distributions. http://www.oswego.

edu/˜srp/stats/6895997.htm, 2016. Accessed 2016.05.15.

[56] Humeyra Pamuk. Turkish mine disaster town under lockdown as death

toll rises to 301, 2014. URL http://www.reuters.com/article/

us-turkey-mine-idUSBREA4C0KO20140518.

[57] Joel Penney and Caroline Dadas. (Re)Tweeting in the service of protest: Digital

composition and circulation in the Occupy Wall Street movement. New Media

& Society, 16(1):74–90, 2014. doi: 10.1177/1461444813479593. URL http:

//dx.doi.org/10.1177/1461444813479593.

[58] Kay Peters, Yubo Chen, Andreas M Kaplan, Björn Ognibeni, and Koen

Pauwels. Social Media Metrics — A Framework and Guidelines for Man-

aging Social Media. Journal of Interactive Marketing, 27(4):281–298,

2013. ISSN 1094-9968. doi: http://dx.doi.org/10.1016/j.intmar.2013.09.

007. URL http://www.sciencedirect.com/science/article/

pii/S109499681300042X.

[59] Sasa Petrovic, Miles Osborne, and Victor Lavrenko. Rt to win! predicting message

propagation in twitter. ICWSM, 11:586–589, 2011.

[60] C. Phillips. The impact of syrian refugees on turkey and jordan, 2012. The World

Today.

[61] Shanmugam Poomagal, Palanisamy Visalakshi, and Thiagarajan Hamsapriya. A

novel method for clustering tweets in twitter. International Journal of Web Based

Communities, 11(2):170–187, 2015.

114

http://www.dailydot.com/debug/why-we-retweet/
http://www.dailydot.com/debug/why-we-retweet/
http://www.oswego.edu/~srp/stats/6895997.htm
http://www.oswego.edu/~srp/stats/6895997.htm
http://www.reuters.com/article/us-turkey-mine-idUSBREA4C0KO20140518
http://www.reuters.com/article/us-turkey-mine-idUSBREA4C0KO20140518
http://dx.doi.org/10.1177/1461444813479593
http://dx.doi.org/10.1177/1461444813479593
http://www.sciencedirect.com/science/article/pii/S109499681300042X
http://www.sciencedirect.com/science/article/pii/S109499681300042X

[62] Donatella Della Porta. Comment on organizing in the crowd. Information, Commu-

nication & Society, 17(2):269–271, 2014. doi: 10.1080/1369118X.2013.868503.

URL http://dx.doi.org/10.1080/1369118X.2013.868503.

[63] Anand Rajaraman and Jeffrey David Ullman. Mining of Massive Datasets.

Cambridge University Press, New York, NY, USA, 2011. ISBN 1107015359,

9781107015357.

[64] Aniket Rangrej, Sayali Kulkarni, and Ashish V. Tendulkar. Comparative study

of clustering techniques for short text documents. In Proceedings of the

20th International Conference Companion on World Wide Web, WWW ’11,

pages 111–112, New York, NY, USA, 2011. ACM. ISBN 978-1-4503-0637-

9. doi: 10.1145/1963192.1963249. URL http://doi.acm.org/10.1145/

1963192.1963249.

[65] Felix Richter. Twitter’s top 5 markets account for 50% of ac-

tive users. https://www.statista.com/chart/1642/

regional-breakdown-of-twitter-users/, 2013. Accessed

2016.08.02.

[66] Huaxia Rui, Yizao Liu, and Andrew Whinston. Whose and what chatter matters?

the effect of tweets on movie sales. Decis. Support Syst., 55(4):863–870, November

2013. ISSN 0167-9236. doi: 10.1016/j.dss.2012.12.022. URL http://dx.

doi.org/10.1016/j.dss.2012.12.022.

[67] Takeshi Sakaki, Makoto Okazaki, and Yutaka Matsuo. Earthquake shakes twitter

users: Real-time event detection by social sensors. In Proceedings of the 19th

International Conference on World Wide Web, WWW ’10, pages 851–860, New

York, NY, USA, 2010. ACM. ISBN 978-1-60558-799-8. doi: 10.1145/1772690.

1772777. URL http://doi.acm.org/10.1145/1772690.1772777.

[68] Takeshi Sakaki, Makoto Okazaki, and Yutaka Matsuo. Tweet Analysis for Real-

Time Event Detection and Earthquake Reporting System Development. IEEE

115

http://dx.doi.org/10.1080/1369118X.2013.868503
http://doi.acm.org/10.1145/1963192.1963249
http://doi.acm.org/10.1145/1963192.1963249
https://www.statista.com/chart/1642/regional-breakdown-of-twitter-users/
https://www.statista.com/chart/1642/regional-breakdown-of-twitter-users/
http://dx.doi.org/10.1016/j.dss.2012.12.022
http://dx.doi.org/10.1016/j.dss.2012.12.022
http://doi.acm.org/10.1145/1772690.1772777

Transactions on Knowledge and Data Engineering, 25(4):919–931, apr 2013.

ISSN 1041-4347. doi: 10.1109/TKDE.2012.29. URL http://ieeexplore.

ieee.org/document/6152108/.

[69] Rodrigo Sandoval-Almazan and J Ramon Gil-Garcia. Towards cyberactivism 2.0?

Understanding the use of social media and other information technologies for po-

litical activism and social movements. Government Information Quarterly, 31

(3):365–378, 2014. ISSN 0740-624X. doi: http://dx.doi.org/10.1016/j.giq.2013.

10.016. URL http://www.sciencedirect.com/science/article/

pii/S0740624X14000902.

[70] Rıdvan Saraçoğlu, Kemal Tutuncu, and Novruz Allahverdi. A new ap-

proach on search for similar documents with multiple categories using

fuzzy clustering. Expert Systems with Applications, 34(4):2545 – 2554,

2008. ISSN 0957-4174. doi: http://dx.doi.org/10.1016/j.eswa.2007.04.

003. URL http://www.sciencedirect.com/science/article/

pii/S0957417407001467.

[71] Neil Savage. Twitter as medium and message. Commun. ACM, 54(3):18–20, March

2011. ISSN 0001-0782. doi: 10.1145/1897852.1897860. URL http://doi.

acm.org/10.1145/1897852.1897860.

[72] David Sayce. Number of tweets per day?, 2016. URL http://www.dsayce.

com/social-media/tweets-day/.

[73] Erich Schubert, Jörg Sander, Martin Ester, Hans Peter Kriegel, and Xiaowei Xu.

Dbscan revisited, revisited: Why and how you should (still) use dbscan. ACM

Trans. Database Syst., 42(3):19:1–19:21, July 2017. ISSN 0362-5915. doi: 10.

1145/3068335. URL http://doi.acm.org/10.1145/3068335.

[74] Zhan Shi, Huaxia Rui, and Andrew B. Whinston. Content sharing in a social

broadcasting environment: Evidence from twitter. MIS Q., 38(1):123–142, March

116

http://ieeexplore.ieee.org/document/6152108/
http://ieeexplore.ieee.org/document/6152108/
http://www.sciencedirect.com/science/article/pii/S0740624X14000902
http://www.sciencedirect.com/science/article/pii/S0740624X14000902
http://www.sciencedirect.com/science/article/pii/S0957417407001467
http://www.sciencedirect.com/science/article/pii/S0957417407001467
http://doi.acm.org/10.1145/1897852.1897860
http://doi.acm.org/10.1145/1897852.1897860
http://www.dsayce.com/social-media/tweets-day/
http://www.dsayce.com/social-media/tweets-day/
http://doi.acm.org/10.1145/3068335

2014. ISSN 0276-7783. URL http://dl.acm.org/citation.cfm?id=

2600518.2600525.

[75] Amit Singhal. Modern information retrieval: A brief overview. Bulletin of the

IEEE Computer Society Technical Committee on Data Engineering, 24(4)::35–43,

2001.

[76] Web Smith. Our truth is why twitter is strug-

gling, 2015. URL https://medium.com/@web/

our-truth-is-why-twitter-is-struggling-ffc6a4e02bcd#

.b2v4908pi.

[77] Wei Song, Yingying Qiao, Soon Cheol Park, and Xuezhong Qian. A hy-

brid evolutionary computation approach with its application for optimizing

text document clustering. Expert Systems with Applications, 42(5):2517 –

2524, 2015. ISSN 0957-4174. doi: http://dx.doi.org/10.1016/j.eswa.2014.

11.003. URL http://www.sciencedirect.com/science/article/

pii/S0957417414006861.

[78] Damiano Spina, Julio Gonzalo, and Enrique Amigó. Learning similarity func-

tions for topic detection in online reputation monitoring. In Proceedings of the

37th International ACM SIGIR Conference on Research & Development in

Information Retrieval, SIGIR ’14, pages 527–536, New York, NY, USA, 2014.

ACM. ISBN 978-1-4503-2257-7. doi: 10.1145/2600428.2609621. URL http:

//doi.acm.org/10.1145/2600428.2609621.

[79] Nitish Srivastava, Geoffrey Hinton, Alex Krizhevsky, Ilya Sutskever, and Ruslan

Salakhutdinov. Dropout: A simple way to prevent neural networks from overfitting.

Journal of Machine Learning Research, 15:1929–1958, 2014. URL http://

jmlr.org/papers/v15/srivastava14a.html.

[80] Kate Starbird and Leysia Palen. (how) will the revolution be retweeted?: In-

formation diffusion and the 2011 egyptian uprising. In Proceedings of the

117

http://dl.acm.org/citation.cfm?id=2600518.2600525
http://dl.acm.org/citation.cfm?id=2600518.2600525
https://medium.com/@web/our-truth-is-why-twitter-is-struggling-ffc6a4e02bcd#.b2v4908pi
https://medium.com/@web/our-truth-is-why-twitter-is-struggling-ffc6a4e02bcd#.b2v4908pi
https://medium.com/@web/our-truth-is-why-twitter-is-struggling-ffc6a4e02bcd#.b2v4908pi
http://www.sciencedirect.com/science/article/pii/S0957417414006861
http://www.sciencedirect.com/science/article/pii/S0957417414006861
http://doi.acm.org/10.1145/2600428.2609621
http://doi.acm.org/10.1145/2600428.2609621
http://jmlr.org/papers/v15/srivastava14a.html
http://jmlr.org/papers/v15/srivastava14a.html

ACM 2012 Conference on Computer Supported Cooperative Work, CSCW ’12,

pages 7–16, New York, NY, USA, 2012. ACM. ISBN 978-1-4503-1086-4.

doi: 10.1145/2145204.2145212. URL http://doi.acm.org/10.1145/

2145204.2145212.

[81] Internet Live Stats. Twitter usage statistics, 2016. URL http://www.

internetlivestats.com/twitter-statistics/.

[82] Stefan Stieglitz and Linh Dang-Xuan. Emotions and Information Diffusion in So-

cial Media—Sentiment of Microblogs and Sharing Behavior. Journal of Man-

agement Information Systems, 29(4):217–248, apr 2013. ISSN 0742-1222. doi:

10.2753/MIS0742-1222290408. URL http://www.tandfonline.com/

doi/full/10.2753/MIS0742-1222290408.

[83] Mani R. Subramani and Balaji Rajagopalan. Knowledge-sharing and influence

in online social networks via viral marketing. Commun. ACM, 46(12):300–307,

December 2003. ISSN 0001-0782. doi: 10.1145/953460.953514. URL http:

//doi.acm.org/10.1145/953460.953514.

[84] Guoyu Tang, Yunqing Xia, Weizhi Wang, Raymond Lau, and Fang Zheng. Clus-

tering tweets using wikipedia concepts. In Nicoletta Calzolari (Conference Chair),

Khalid Choukri, Thierry Declerck, Hrafn Loftsson, Bente Maegaard, Joseph Mar-

iani, Asuncion Moreno, Jan Odijk, and Stelios Piperidis, editors, Proceedings

of the Ninth International Conference on Language Resources and Evaluation

(LREC’14), Reykjavik, Iceland, may 2014. European Language Resources Asso-

ciation (ELRA). ISBN 978-2-9517408-8-4.

[85] Santipong Thaiprayoon, Alisa Kongthon, Pornpimon Palingoon, and Choochart

Haruechaiyasak. Search result clustering for thai twitter based on suffix tree

clustering. In Electrical Engineering/Electronics, Computer, Telecommunications

and Information Technology (ECTI-CON), 2012 9th International Conference on,

pages 1–4. IEEE, 2012.

118

http://doi.acm.org/10.1145/2145204.2145212
http://doi.acm.org/10.1145/2145204.2145212
http://www.internetlivestats.com/twitter-statistics/
http://www.internetlivestats.com/twitter-statistics/
http://www.tandfonline.com/doi/full/10.2753/MIS0742-1222290408
http://www.tandfonline.com/doi/full/10.2753/MIS0742-1222290408
http://doi.acm.org/10.1145/953460.953514
http://doi.acm.org/10.1145/953460.953514

[86] Yannis Theocharis, Will Lowe, Jan W van Deth, and Gema Garcı́a-Albacete. Us-

ing Twitter to mobilize protest action: online mobilization patterns and action

repertoires in the Occupy Wall Street, Indignados, and Aganaktismenoi move-

ments. Information, Communication & Society, 18(2):202–220, 2015. doi:

10.1080/1369118X.2014.948035. URL http://dx.doi.org/10.1080/

1369118X.2014.948035.

[87] Mark Tremayne. Anatomy of Protest in the Digital Era: A Network Analysis

of Twitter and Occupy Wall Street. Social Movement Studies, 13(1):110–126,

2014. doi: 10.1080/14742837.2013.830969. URL http://dx.doi.org/10.

1080/14742837.2013.830969.

[88] H. Tu and J. Ding. An efficient clustering algorithm for microblogging hot topic

detection. In 2012 International Conference on Computer Science and Service

System, pages 738–741, Aug 2012. doi: 10.1109/CSSS.2012.189.

[89] Zeynep Tufekci. “Not This One”. American Behavioral Scientist, 57(7):848–

870, 2013. doi: 10.1177/0002764213479369. URL http://dx.doi.org/

10.1177/0002764213479369.

[90] A. Tumasjan, T.O. Sprenger, P.G. Sandner, and I.M. Welpe. Predicting elections

with twitter: What 140 characters reveal about political sentiment. In Proceedings

of the Fourth International AAAI Conference on Weblogs and Social Media, pages

178–185, 2010. URL http://scholar.google.de/scholar.bib?q=

info:mc319eHjea8J:scholar.google.com/&output=citation&

hl=de&as_sdt=0&ct=citation&cd=28.

[91] Twitter. #numbers, 2011. URL https://blog.twitter.com/2011/

numbers.

[92] Twitter. Faqs about retweets, 2016. URL https://support.twitter.

com/articles/77606.

119

http://dx.doi.org/10.1080/1369118X.2014.948035
http://dx.doi.org/10.1080/1369118X.2014.948035
http://dx.doi.org/10.1080/14742837.2013.830969
http://dx.doi.org/10.1080/14742837.2013.830969
http://dx.doi.org/10.1177/0002764213479369
http://dx.doi.org/10.1177/0002764213479369
http://scholar.google.de/scholar.bib?q=info:mc319eHjea8J:scholar.google.com/&output=citation&hl=de&as_sdt=0&ct=citation&cd=28
http://scholar.google.de/scholar.bib?q=info:mc319eHjea8J:scholar.google.com/&output=citation&hl=de&as_sdt=0&ct=citation&cd=28
http://scholar.google.de/scholar.bib?q=info:mc319eHjea8J:scholar.google.com/&output=citation&hl=de&as_sdt=0&ct=citation&cd=28
https://blog.twitter.com/2011/numbers
https://blog.twitter.com/2011/numbers
https://support.twitter.com/articles/77606
https://support.twitter.com/articles/77606

[93] Twitter. Tweet activity dashboard, 2016. URL https://support.twitter.

com/articles/20171990.

[94] Esko Ukkonen. On-line construction of suffix trees. Algorithmica, 14(3):249–260,

1995.

[95] UNHCR. Syria regional refugee response. http://data.unhcr.org/

syrianrefugees/country.php?id=224, 2016. Accessed 2016.08.02.

[96] John Vanderzyden. What is elasticsearch, and how can i use it?, 2015. URL

https://qbox.io/blog/what-is-elasticsearch.

[97] Vincent Vanhoucke. Deep learning, 2017. URL https://classroom.

udacity.com/courses/ud730.

[98] Paul J Werbos. Backpropagation through time: what it does and how to do it.

Proceedings of the IEEE, 78(10):1550–1560, 1990.

[99] David H. Wolpert. Off-training set error and a priori distinctions between learning

algorithms. Technical report, The Santa Fe Institute, 1995.

[100] Worldometers. Syria regional refugee response. http://www.

worldometers.info/world-population/turkey-population/,

2016. Accessed 2016.08.02.

[101] R S Wyer, C Chiu, and Y Hong. Understanding Culture: Theory, Research, and

Application. Psychology Press, 2009. ISBN 9781848728080. URL https:

//books.google.com.tr/books?id=W5{_}ZAAAAMAAJ.

[102] Xin Yan and Xiao Gang Su. Linear Regression Analysis: Theory and Comput-

ing. World Scientific Publishing Co., Inc., River Edge, NJ, USA, 2009. ISBN

9789812834102, 9812834109.

[103] Jiang Yang and Scott Counts. Predicting the speed, scale, and range of information

diffusion in twitter. ICWSM, 10:355–358, 2010.

120

https://support.twitter.com/articles/20171990
https://support.twitter.com/articles/20171990
http://data.unhcr.org/syrianrefugees/country.php?id=224
http://data.unhcr.org/syrianrefugees/country.php?id=224
https://qbox.io/blog/what-is-elasticsearch
https://classroom.udacity.com/courses/ud730
https://classroom.udacity.com/courses/ud730
http://www.worldometers.info/world-population/turkey-population/
http://www.worldometers.info/world-population/turkey-population/

[104] Tauhid R Zaman, Ralf Herbrich, Jurgen Van Gael, and David Stern. Predicting

information spreading in twitter. In Workshop on computational social science and

the wisdom of crowds, nips, volume 104, pages 17599–601. Citeseer, 2010.

[105] Oren Eli Zamir and Oren Etzioni. Clustering web documents: a phrase-based

method for grouping search engine results. University of Washington, 1999.

[106] Juan Zamora, Marcelo Mendoza, and Héctor Allende. Hashing-based clus-

tering in high dimensional data. Expert Systems with Applications, 62:202

– 211, 2016. ISSN 0957-4174. doi: http://dx.doi.org/10.1016/j.eswa.2016.

06.008. URL http://www.sciencedirect.com/science/article/

pii/S0957417416302895.

[107] Qi Zhang, Yeyun Gong, Jindou Wu, Haoran Huang, and Xuanjing Huang. Retweet

prediction with attention-based deep neural network. In Proceedings of the 25th

ACM International on Conference on Information and Knowledge Management,

CIKM ’16, pages 75–84, New York, NY, USA, 2016. ACM. ISBN 978-1-4503-

4073-1. doi: 10.1145/2983323.2983809. URL http://doi.acm.org/10.

1145/2983323.2983809.

[108] Xue Zhang, Hauke Fuehres, and Peter A Gloor. Predicting Stock Market Indicators

Through Twitter “I hope it is not as bad as I fear”. Procedia - Social and Behav-

ioral Sciences, 26:55–62, 2011. ISSN 1877-0428. doi: http://dx.doi.org/10.1016/j.

sbspro.2011.10.562. URL http://www.sciencedirect.com/science/

article/pii/S1877042811023895.

[109] Ye Zhang and Byron Wallace. A sensitivity analysis of (and practitioners’ guide

to) convolutional neural networks for sentence classification. arXiv preprint

arXiv:1510.03820, 2015.

[110] Arkaitz Zubiaga, Damiano Spina, Raquel Martı́nez, and Vı́ctor Fresno. Real-time

classification of twitter trends. Journal of the Association for Information Science

121

http://www.sciencedirect.com/science/article/pii/S0957417416302895
http://www.sciencedirect.com/science/article/pii/S0957417416302895
http://doi.acm.org/10.1145/2983323.2983809
http://doi.acm.org/10.1145/2983323.2983809
http://www.sciencedirect.com/science/article/pii/S1877042811023895
http://www.sciencedirect.com/science/article/pii/S1877042811023895

and Technology, 66(3):462–473, 2015. ISSN 2330-1643. doi: 10.1002/asi.23186.

URL http://dx.doi.org/10.1002/asi.23186.

122

http://dx.doi.org/10.1002/asi.23186

	Acknowledgments
	Abstract
	Özet
	Introduction
	Why do people Retweet?
	Impact Prediction of Tweets

	Motivation for Hidden Retweets
	Methodology for Discovering Hidden Retweets

	Outline

	Related Work
	Preliminaries and Background
	Infrastructure - ELK
	Elasticsearch
	Logstash
	Kibana

	Text Mining
	tf-idf

	Evaluation Methods for Classification
	Cross-Validation

	Deep Learning Methods
	Fully Connected Neural Network
	Cross Entropy and Loss Function
	Optimizing Loss Function
	L2 Regularization and Dropout
	Word Embeddings
	Convolutional Neural Networks
	Text Classification with CovNets

	Lexical Similarty Measures
	Longest Common Subsequence
	Longest Common Substring

	Clustering Methods
	K-Means Clustering
	DBSCAN

	Data Structures/Indexing Methods to Improve DBSCAN
	Suffix Trie
	Suffix Tree
	Locality Sensitive Hashing

	Predicting Impact of Tweets and Topics
	Data and Methodology
	Analysis and Results
	Reflection of Real Life Phenomenon in Tweets
	Attracting New Users to Post
	Spread and Fade Out Characteristics
	Conditions and Features Leading to High Retweet
	Cluster Analysis
	Modifying low and high Labels
	Identifying Class-Specific Terms

	Impact Prediction with CovNets
	Overview of the Data
	CovNets Experiments
	Generalization of the Proposed Approach

	Impact Assessment of Tweets
	Methodology
	LCS-Lex: Longest Common Subsequence Based Lexical Clustering of Tweets
	ST-TWEC: Suffix Tree Based Tweet Clustering Method
	K-means Document Clustering Method
	LCS-DBSCAN: Classic DBSCAN with LCS
	ST-DBSCAN: DBSCAN Integrated with Suffix Tree
	LSH-DBSCAN: DBSCAN Integrated with LSH

	Experimental Evaluation
	Comparison of ST-TWEC, LCS-LEX, k-means
	Comparison of LCS-DBSCAN, ST-DBSCAN, LSH-DBSCAN
	Comparison of LSH-DBSCAN, ST-DBSCAN, ST-TWEC

	Conclusion and Future Work
	Appendices
	Additional Figures

