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ABSTRACT 

 

 

SYNTHESIS OF PLATINUM NANOPARTICLES ON GRAPHENE VIA 

ELECTROPHORETIC DEPOSITION AS CATALYST FOR PEMFC 

 

MUHAMMAD FAISAL JAMIL 

 

Materials Science and Engineering M.Sc. Thesis, July 2017 

 

 

Supervisor: Assoc. Prof. Dr. Selmiye Alkan Gürsel 

 

 

Keywords: Electrophoretic deposition, graphene, platinum, PEMFC, graphene oxide 

 

High Pt loadings have better tradeoff in PEMFC in terms of improved performance and 

operational longevity, but to employ low amounts of Pt electrocatalysts and augment its 

utilization is vital. This study presents the use of a novel technique, an anodic electrophoretic 

deposition (EPD) method, through which Pt/GO nanocomposites have been successfully 

fabricated onto oxygen plasma pretreated carbon paper in an organo-aqueous media. 

Characterization of the prepared Pt/GO samples is done via Raman spectroscopy, field 

emission scanning electron microscopy, x-ray photoelectron spectroscopy, inductively 

coupled plasma, focused ion beam, transmission electron microscopy, and cyclic 

voltammetry. Electrochemically active surface area results (optimal ECSA value, 27 m2/g of 

Pt) calculated from the prepared samples reveal high performance of Pt nanoparticles 
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dispersed well on GO at lower loadings (0.129 mg/cm2), displaying their synergistic 

performance making them potential catalyst candidate for PEMFC.  
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ÖZET 

 

 

PEMFC KATALİZÖRÜ OLARAK PLATİN NANOPARÇACIKLARININ GRAFEN 

ÜZERİNDE ELEKTROFORETİK KAPLAMA YÖNTEMI İLE SENTEZİ 

 

MUHAMMAD FAISAL JAMIL 

 

Malzeme Bilimi ve Mühendisliği Yüksek Lisans Tezi, Temmuz 2017 

 

 

Tez Danışmanı: Doç. Dr. Selmiye Alkan Gürsel 

 

 

Anahtar Kelimeler: Elektroforetik kaplama, grafen, platin, PEMFC, grafen oksit 

 

Yüksek Pt yüklemeleri PEMFC için performansının iyileştirilmesi ve uzun ömürlü olması 

açısından gereklidir. Ancak düşük Pt elektrokatalizör yüklemeleri ve etkin kullanımı 

gerekmektedir. Bu çalışmada özgün bir teknik olan anodik elektroforetik kaplama (EPD) 

metodu kullanılarak Pt/GO nanokompozitleri; önceden oksijen plazma uygulanmış karbon 

kağıt üzerine organik-sulu ortamda başarılı bir şekilde kaplanmıştır. Hazırlanan Pt/GO 

örnekleri fiziksel teknikler olan; Raman spektroskopi, taramalı elektron mikroskopisi, X-ışını 

fotoelektron spektroskopisi, endüktif eşleşmiş plazma, odaklanmış iyon demeti, geçirimli 

elektron mikroskopisi ve dönüşümlü voltametre ile karakterize edilmiştir. Hazırlanan 

örnekler için hesaplanan elektrokimyasal aktif yüzey alanı sonuçları (optimum ECSA değeri 

27 m2/g Pt), GO yüzeyinde dağılmış olan düşük miktarda yüklenmiş Pt nanoparçacıklarının 

(0.129 mg/cm2) yüksek performans gösterdiği ve burada sunulan sentez yöntemi ile üretilen 

örneklerin PEMFC için potansiyel katalizör olacağını ortaya çıkarmıştır.  
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1. Introduction  

Since the dawn of modern civilization, mankind’s energy needs have been catered by 

the consumption of fossil fuels, petroleum, and natural gas, causing these natural energy 

reservoirs to dwindle at an alarming rate. In addition, the aftermath of burning these fossils 

have resulted in an increased level of greenhouse gases and global warming. Globally, there 

is a dire need to generate an alternative renewable energy source which is environmentally 

friendly and has zero to low carbon footprint so that adverse effects on the health, climate, 

and economy can be avoided 1. 

1.1. Fuel Cells 

Keeping in view the aforementioned requirements for an alternative energy source, 

fuel cells have been exploited extensively because of their capability to produce power in a 

clean manner with no emissions of greenhouse gases or consumption of fossils 1, 2, and 

generating only electricity with water, heat 1, and negligible amounts of CO2 
3 as by-products. 

Historically, Sir Humphrey Davy in 1802 created a simple fuel cell, followed by the 

revolutionary work of the scientist Christian Friedrich Schönbein in 1838. In general, Sir 

William Grove is accredited for pioneering first fuel cell in 1839 which he called the “gas 

battery”. With the passage of time, this technology progressed but it wasn’t on a par with the 

internal combustion engines which dominated the industrial era. In 1889, the terminology 

“fuel cell” was first used by Charles Langer and Ludwig Mond whose research was based on 

using coal gas as a fuel 4, 5. The fuel cell industry is still evolving, despite years of research 

and development 6. 

A fuel cell is an electrochemical device that operates at various temperature ranges 

and continuously converts chemical energy into an electrical energy 1. Basic mechanism in a 

fuel cell involves electrolysis reaction. H2 is injected into the “fuel electrode” and O2 is 

injected into the “air electrode”. H2 is oxidized to protons (H+), while O2 is reduced to 

hydroxyl ions (OH-). Both chemical species react with each in the electrolyte to form water. 

The electrons generated from the oxidation of H2 gas at the anode are taken to the external 

circuit before returning to the cathode for further generation of OH- (Figure 1) 4. 
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Figure 1. Representation of a basic fuel cell 4. 

Fuel cells are classified mainly by the type of electrolyte they utilize 7. These power 

generation devices have found uses in stationary applications, as portable power sources 8, 9, 

in electric vehicles, and portable electronic devices 10. Different kinds of fuel cells are: direct 

methanol fuel cells (DMFC), proton exchange membrane fuel cells (PEMFC), alkaline fuel 

cells (AFC), phosphoric acid fuel cells (PAFC), molten carbonate fuel cells (MCFC), solid 

oxide fuel cells (SOFC), and reversible fuel cells (RFC) 7 (Figure 2) 11. 

 

Figure 2. Different kinds of fuel cells have unique fuel intakes and electrochemical 

reactions 11. 
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1.2. PEMFC 

The concept of fuel cell was not completely developed till the 1950s when a “high 

energy/density” system was required for the space programme 12. In 1960s, General Electric 

(U. S. A.) first developed the PEMFC, also called as solid polymer fuel cell (SPFC) 13 and 

polymer electrolyte fuel cell (PEFC) 10, 14, 15, for NASA’s first manned space vehicles 13. 

Based on the fuel, PEMFC can be categorized into two types: one that runs on H2; and the 

other runs on CH3OH, called as DMFC 1. Both these types of fuel cells have similar MEA, 

but demonstrate a diverse degree of performance 12. An MEA is the heart of PEMFC, it 

consists of an electrolyte membrane and two catalyst layers 14. The chemical reactions that 

take place on the catalyst layer in a PEMFC are as follows 12 and are diagrammatically 

represented in (Figure 3) 7, equations (i, ii, iii): 

At anode:  2H2 → 4H+ + 4e-   (E0
a = 0.00 V)   (i) 

At cathode:  O2 + 4H+ + 4e- → 2H2O  (E0
c = 1.230 V)  (ii) 

Overall:  2H2 + O2 → 2H2O   (E0
cell = 1.230 V)  (iii) 

 

Figure 3. Diagrammatical representation of PEMFC reactions 7. 

PEMFC are quite promising as they offer several advantages: low noise 3; high energy 

conversion efficiency 3, 14; high power density 14, 16-18; low operating temperature 10, 11, 13, 16-

20; low weight, compactness, and long stack life 17; quick start-ups 13, 19 and aptness for 
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intermittent operation 17. Further advantages of PEMFC include no corrosive fluid hazards 

and working in any orientation 13. This makes PEMFC extremely suitable for use in vehicles 

11, 13, 21, transportation 3, portable power generation 3, 13, and backup power units 1. 

Commercialization of PEMFC as opposed to conventional energy sources is still a challenge. 

Thanks to the research in past few years, PEMFC have transitioned from prototype to 

commercial products, but still cost reduction and technological challenges persist 17, 22. This 

impediment to the commercialization is mainly due to inclusive fuel cell stack cost 16 which 

is attributed to high cost of noble metal catalyst, usually Pt 3, 8, 14, 16, 17, 23-27 and Pt-group 

metals (PGM) 23, low Pt utilization in the catalyst layer 23, 28, and long term fuel cell stability 

3 and durability 8. 

1.3. Catalyst Support 

The aim of employing carbon-based nanomaterials as catalyst support in PEMFC is 

to reduce the amount of noble metal usage and to enhance its utilization 29 and 

electrochemical activity 3. In addition, catalyst supports assist in effective collection and 

transfer of electrons 3, 29-31 to the collecting electrode surface 17, 31. To attain high dispersion 

and maximum utilization of Pt-electrocatalysts for PEMFC, an appropriate catalyst support 

is needed 32. In general, there are four requirements for such a suitable catalyst support, 

namely, high surface area, suitable porosity, high stability, and high electrical conductivity 

32. 

1.4. Graphene 

From the pool of catalyst supports, carbon-based materials have been potential 

catalyst support candidates for PEMFC. And among different carbon-based catalyst support 

materials, graphene is an excellent choice material. It has recently attracted the attention in 

scientific community due to its fascinating properties 31-36 which justifies its nickname of 

“miracle material” 37. IUPAC commission recommended the name “graphene” for single 

carbon layer structure. Previously used terminology “graphite layers” was discontinued as 

they stood for three-dimensional stacking structure known as “graphite” 8. Graphene, known 

as graphene oxide (GO) 38, is a two-dimensional nanomaterial 27, 32, 33, 35, 39-47 comprised of 

monolayer 48 of covalently bonded 41, 48 carbon atoms 32, 35, sp2 hybridized 27, 31, 39, 40, 44 and 

packed in a hexagonal lattice 33, 35, 39, 40, 43, 47. GO has several oxygen containing functional 
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groups, for instance, hydroxy and epoxy groups positioned on its basal plane, along with 

carboxyl, phenol and ketone groups located at the edges 40, 49-52 (Figure 4) 40. 

 

Figure 4. Chemical structure of a monolayer GO 40. 

Graphene fulfills the four general requirements necessary for a catalyst support in a 

PEMFC. It has high planar surface area (calculated values, 2600 - 2630 m2/g) 27, 40, 46, 48, 53, 54, 

superior mechanical strength (Young’s Modulus, E = 1.0 - 1.02 TPa) 40, 41, 48, high carrier 

mobility (10000 cm2/Vs 40 to 15000 cm2/Vs 48), high thermal conductivity (5000 W/mK) 40, 

48, unique graphitized basal plane structure 46, 55, excellent chemical stability 34, 44, 48, 55, 56, and 

outstanding electrical conductivity (64 mS/cm) 27. Due to the aforementioned robust 

mechanical and physical properties of graphene, noble metal nanoparticles, especially Pt had 

been deposited on graphene and employed as an electrode material in fuel cells 32. The 

rationale for the incorporation of graphene as a support material for Pt nanoparticles is 

justified as following: graphene strongly interacts with Pt on nanometer scale leading to the 

decrement in platinum’s size and increases platinum’s catalytic activity 37; to employ 

graphene’s high electronic mobility and in anchoring Pt nanoparticles for enhanced 

electrochemical reactions in a synergistical manner 6, 31, 32; and graphene when used as a 

conductive support, increases Pt catalyst’s utilization coefficient by improving the interfacial 

properties between the electrolyte and the catalyst 32, 46. 

1.5. Platinum as Electrocatalyst 

Most frequently used catalysts for PEMFC are Pt and Pt-alloy nanoparticles supported 

on activated carbon with high specific surface 3, 19, 57. Because of low availability 17, 26 and 

high cost of Pt metal as catalyst in PEMFC, as mentioned earlier, it is imperative to reduce 

Pt loading 17. In the initial days of PEMFC development, Pt loading was 28 mg/cm2 13. The 

target set by the U.S. Department of Energy for the year 2017 for Pt loading as fuel cell 

catalyst is ≤ 0.125 mg/cm2 of electrode area 58. Pt’s catalytic activity depends on few factors, 
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namely, its particle size, supporting materials, and preparation method 57. Theoretically, to 

improve Pt utilization, reduction in its size is necessary which in the literature has been 

reported between 2 and 6 nm 3. The electrochemical reactions occurring in the PEMFC can 

only take place at the spatially limited sites where catalyst, electrolyte, and fuel gas contact 

each other. These specific sites are known as “triple-phase boundaries” (TPB) 13, 14, 59 (Figure 

5) 14. 

 

Figure 5. Graphic illustration of a triple-phase boundary 14. 

Further reduction in Pt catalyst nanoparticle size i.e. smaller than 2 nm, is not feasible 

because the nanoparticles would merge into the micro pores of the supporting material and 

eventually leading to inaccessibility of the reactants to the Pt 28 due to lack of TPB 3. In a 

PEMFC, Pt is used as a catalyst for anode and cathode 13. At the anode, it works as a catalyst 

for hydrogen oxidation reaction (HOR), and at the cathode it works as a catalyst for oxidation 

reduction reaction (ORR) 22, 60. During the anode processes, the incoming H2 gas is adsorbed 

onto the surface of Pt which results in cleavage of H-H bond producing adsorbed hydrogen 

19, equation (iv): 

½ H2 + * → H*         (iv) 

(where * denotes surface site) 

Due to this oxidation step, each adsorbed hydrogen loses an electron resulting in 

hydrogen leaving the surface as protons (H+) 19 , equation (v): 

H* → H+ + * + e-         (v) 

The reaction kinetics of HOR are very fast even at low Pt loadings as compared to 

that of ORR, which are quite slow and require higher Pt loadings 9. The ORR occurring at 

the cathode is responsible for more than half of PEMFC’s voltage loss and is a major 
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challenge because the catalyst is susceptible to extremely harsh chemical environment in the 

fuel cell 9 and yet should be chemically active to activate O2. The ORR can occur via two 

mechanisms in PEMFC’s acidic media, namely, dissociative and associative pathways, 

respectively. They are explained as follows 19: 

I. In a dissociative pathway, the incoming oxygen from the cathode is adsorbed onto the 

Pt surface which results in cleavage of O-O bond leading to the formation of adsorbed 

oxygen atoms, equation (vi): 

 

½ O2 + * → O*        (vi) 

 

These adsorbed oxygen atoms are then protonated by the inbound H+ from the HOR, 

and are reduced by the incoming flow of electrons to form surface bound hydroxy 

groups (OH*), equation (vii): 

 

O* + H+ + e- → OH*        (vii) 

 

This surface bound hydroxy group is further reduced and protonated, resulting in the 

generation of water which leaves the Pt surface (see Figure 3), equation (viii): 

 

OH* + H+ + e- → H2O + *       (viii) 

 

II. In an associative mechanism, oxygen molecule double bonds do not cleave, instead 

O2 is adsorbed onto the Pt surface, equations (ix, x): 

 

O2 + * → O2*         (ix) 

 

O2* + H+ + e- → HO2*       (x) 

 

The reaction proceeds further via “two electrons” route forming hydrogen peroxide 

as follows, equation (xi): 
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HO2* + H+ + e- → H2O2*       (xi) 

 

The surface bound H2O2 additionally might react or desorb, equation (xii): 

 

H2O2* → H2O2 + *        (xii) 

 

The formation of H2O2 in a PEMFC is quite unfavorable as it permeates the proton 

exchange membrane and causes “radical oxidative” degradation of the membrane 19. 

On the contrary, Pt electrocatalysts are also vulnerable to poisoning in the PEMFC, 

especially due to sulfur species and CO. Among the Pt-group metals (PGM), Pt is one of the 

best noble metal capable of being stable and poisoning resistant in PEMFC’s harsh chemical 

environment 3, 19 and capable of being selective in following the dissociative pathway for 

ORR at the cathode 19. 

1.6. Electrophoretic Deposition 

In the literature, different approaches have been employed for the preparation of 

graphene-nanoparticle composites. These include reduction method 61, hydrothermal method 

62, ex-situ method 63, and electrochemical method 64. Electrochemical method has several 

advantages over other methods. To name a few, low cost 40, 65, highly reproducible, simple, 

fast 49, green technique 40, 49, and ease-of-operation 65. One of the most efficient 

electrochemical deposition method for the preparation of graphene and graphene based films 

and electrodes is electrophoretic deposition (EPD) 43, 52, 56, 66-68. In addition, this technique 

has also been extensively used for the electrodeposition of Pt nanoparticles as well 69. 

Historically, the first known EPD process was discovered in 1808 by a scientist, Ruess, who 

observed that the clay particles in aqueous media moved when an electric field was applied. 

But the first real application of an EPD technique was seen in 1933 when a patent for the 

“deposition of thoria particles on a Pt cathode as an emitter for electron tube application” was 

filed in the U.S. 70.  

EPD is a solution based technique that is based on electrophoresis of charged particles 

under the influence of an electric field 35, 42. EPD has two-step mechanism processes which 
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involves the movement of charged particles towards the oppositely charged electrodes per 

potential gradient generated in the solution by using two electrodes, followed by assemblage 

of the particles at the electrode surface and forming a deposit 10, 14, 45, 52, 71. EPD can be 

categorized in two kinds, namely, anodic and cathodic EPD. When negatively charged 

colloidal particles in the solution deposit on the anode, it is termed as an anodic EPD. On the 

other hand, in cathodic EPD, positively charged colloidal particles in the solution are 

deposited on the cathode 42, 52 (Figure 6) 70. 

 

Figure 6. Graphic representation of (a) cathodic EPD and (b) anodic EPD 70. 

An appropriate medium is required for the steady dispersion of particles in an EPD 

bath. Either organic solvents, for instance, ketones, alcohols, and amides are utilized or an 

aqueous media is employed. Both these mediums can be used based on preferences and 

limitations. For example, organic solvents are preferred because of their high density, better 

chemical stability and low conductivity 43, 52, but their use is often times limited due to cost, 

toxicity, and flammability 43. Conversely, aqueous suspensions in EPD are employed because 

they are environment friendly and very economical 43, 52. Nevertheless, at higher voltage 

ranges the aqueous media is prone to electrolysis and evolution of gases at the electrodes 

occurs, thereby damaging the deposits 35. The benefits of EPD are uniform deposition of 

charged particles 14, 34, 35, 43, 55, 68, 72, control of film morphology 52, 72, good thickness 

controllability 14, 34, 35, 43, 52, 55, 66, 68, 71, size scalability 35, 52, high dense packing of deposit 35, 

52, 55, deposition at room temperature 35, 52, and simplicity and cost-effectiveness 35, 42, 43, 52, 55, 

71. The ability of EPD to control morphology and nucleation density demonstrates its superior 
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capability for the preparation of nano-sized electrocatalysts with even distribution 73 on the 

support material necessary for efficient and long-lasting performance of PEMFC. 

The EPD of graphene predates the isolation of mono layers of graphene in 2004 by 

Novoselov et al. 74. In 2001, the first know synthesis of single graphene sheets via EPD was 

reported by Affoune et al. 75. Their process involved electrophoretic deposition of diamond 

nanoparticles, suspended in an isopropyl alcohol media with additives, on highly oriented 

pyrolytic graphite (HOPG) followed by annealing at 1600°C in an Ar environment for 30 

minutes. Because of this EPD method, “nano-sized” graphene with an inter-layer distance of 

0.35 - 0.37 nm were formed. 

Ishikawa et al. 76 described the electrophoretic deposition of highly stacked graphene 

films onto an insulating glass substrate. They demonstrated successful deposition of GO 

flakes at 10 V/5 minutes onto an oxygen plasma pretreated insulating glass substrate (working 

electrode, whose surface was attached to a Cu-tape) placed 5 mm apart from the Pt plate 

(counter electrode). Without further post treatment reduction process and complicated 

transfer processes, they claimed that GO was in-situ reduced during EPD, which is ideal for 

usage in graphene based transparent conductive films. 

Hasan et al. 77 reported an EPD scheme using an aqueous media to synthesize large-

area films of GO. Fine tuning of the EPD parameters resulted in the formation of different 

morphological GO structures. For instance, it was observed that at higher voltage range and 

low pH, cathodic deposition was more dominant which was also observed by Ordikhani et 

al. 78. The cathodic EPD of GO had “brick” like microstructure, while anodically deposited 

GO had “rug” morphology. The use of sacrificial layer procedure for the formation of “free-

standing” GO films was advantageous as the obtained GO films could be deposited on various 

substrates. 

Choi et al. 79 reported a fabrication process that involved EPD of graphene on 

fluorine-doped tin oxide glass using an aqueous media. It was found that film thickness was 

a direct function of deposition time. The fabricated graphene based electrodes tested in dye-

sensitized solar cells (DSSCs) showed optical transmittance values of up to 80% with an 

energy conversion of 2.3%. It was found out that at higher deposition time, more graphene 
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layers were deposited resulting in sharp decrease in transmittance values. Hence, tunability 

is the key to produce optimized electrodes. 

The work of Liu et al. 49 is quite interesting because of its relevance to fuel cell 

catalysts. They reported a simple two step cathodic EPD process for the deposition of GO 

onto indium tin oxide (ITO) glass electrodes in which GO was reduced, followed by a second 

step involving EPD of Pt nanoparticles onto the reduced GO (rGO) films. Electrochemical 

testing revealed that Pt/rGO films outperformed Pt/GO in terms of electrocatalytic activity 

and stability for CH3OH oxidation. This increase in performance is due to rGO’s large surface 

area and better electrical conductivity alongside Pt nanoparticles’ exceptional catalytic 

activity. 

Another example involving the development of PEMFC catalyst is by Seger et al. 31. 

They electrophoretically deposited partially reduced GO-Pt films onto glassy carbon and 

carbon Toray paper. The deposited films were subjected to chemical reduction (using 

hydrazine) and then annealed at 300°C/8 hours to eliminate hydrazine. As a result, reduced 

GO-Pt nanocomposites were formed. These developed films showed an astounding 77% 

increment in ECSA values. Nevertheless, evaluation of the films when employed in a fuel 

cell showed massive declination in power output. This poor performance is possibly ascribed 

to the loss of H+ conductivity property of Nafion ionomers. 

Fabrication and end use of nanocomposites dictate which type of EPD is pertinent. 

For instance, Liu et al. 54 used an anodic EPD technique to deposit GO from an aqueous 

suspension onto ITO glass sheets followed by a supplementary step i.e. in-situ reduction of 

deposited GO sheets via constant potential reduction method. Characterization results 

revealed that this additional in-situ reduction process did not distort the morphology of rGO. 

Furthermore, the obtained films exhibited excellent performance (calculated specific 

capacitance was 156 F/g at 150 mA/g) and stability making them viable candidates for 

supercapacitors. 

Xia et al. 80 deposited graphene electrophoretically onto porous 3D NiO for the 

fabrication of supercapacitors, and found an increased capacity retention (up to 94%) and 

improved specific capacitance. The addition of magnesium nitrate hexahydrate in the stable 

GO solution shifted suspension charge neutrality to positive followed by instant deposition 
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of GO onto the Ni-foam substrate. The EPD GO/NiO films showed exceptional 

pseudocapacitance values of 400 and 324 F/g at 2 and 40 A/g, respectively, and kept 94% of 

capacitance retention over 2000 cycles. 

In another work on fabrication of supercapacitors, Wu et al. 56 employed single step 

EPD in which GO nanosheets were dispersed in IPA with the addition of Ni(NO3)2 and were 

deposited on stainless steel substrate and subsequently annealed at 300°C/1 hour. EPD 

resulted in an in-situ reduction of Ni ions and the subsequent heat treatment oxidized these 

Ni ions to nickel oxide. The incorporation of NiO on GO resulted in higher specific 

capacitance of up to 569 F/g, which is 40 times higher than that of the bare GO electrode (13 

F/g) at a discharge current density of 5 A/g. 

Saminathan et al. 16 have reported an EPD process in which Pt nanoparticles were 

deposited over multi walled carbon nano tubes which were in-situ grown via chemical vapor 

deposition (CVD). The EPD setup consisted of Pt mesh as counter electrode and an SCE as 

reference electrode. Uniform deposition and optimized Pt loading of 0.13 mg/cm2 was 

achieved at -0.6 V vs. SCE. Fuel cell test results revealed a peak power density of 640 

mW/cm2 at 80°C and 101 kPa. Thus, achieving high power density at lower Pt loading makes 

these electrodes suitable candidates for PEMFC. 
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1.7. Objectives of Present Work 

Over the past decades, research has been intensely focused on cutting down PEMFC 

manufacturing costs which involved numerous factors, such as decreasing Pt loading, 

improving Pt catalyst utilization, developing stable proton exchange membranes, and 

employing chemically stable catalyst supports, etc. Several methods have been proposed for 

the manufacturing of Pt and Pt-co particulate as catalysts on carbon based support for use in 

PEMFC, and have demonstrated better performance as well. But the complexities involved 

in the manufacturing process, loss in power output and degradation in longer run have raised 

red flags. More knowledge is crucial to understand the basics of ongoing changes within the 

matrix of developed protocols. No doubt traditionally available carbon based materials have 

been widely employed in PEMFC, especially carbon black, making it commercially viable, 

but the search for better substitute materials demanded a breakthrough. Until the discovery 

of graphene back in 2004 by Novoselov et al. 74, the introduction of 2D materials opened a 

whole new chapter with endless application possibilities. Graphene because of its high planar 

surface area, superior mechanical strength, high carrier mobility, excellent chemical stability, 

and electrical conductivity make it an ideal candidate as catalyst support for fuel cells. In the 

literature, different synthesis methods exist, to name a few, chemical reduction, CVD, 

hydrothermal, ex-situ methods, etc. These methods have been employed to develop 

nanocomposites, but they too have demerits, for instance, complex procedures involved, 

toxicity of the chemicals used, and are responsible for environmental hazards, etc. Thus, it is 

imperative to come up with an alternative and green solution. Hence, EPD method, which 

have been employed as a plating technique in the industry, can be tested as potential synthesis 

tool. The rationale for choosing this method lies in its ease of operation, simplicity, controlled 

film morphology, and cost effectiveness. Just like other deposition or synthesis processes, the 

optimization of parameters is necessary to achieve desired nanocomposites. The ability of 

EPD to control morphology and nucleation density demonstrates its superior capability for 

the preparation of nano-sized electrocatalysts with even distribution 73 on the support material 

necessary for efficient and long-lasting performance of PEMFC. 
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Initially, in this work several optimization steps were involved: 

I. Cathodic EPD of Pt (chloroplatinic acid hexahydrate) on AvCarb® MGL190 carbon 

paper in N,N-Dimethylformamide and tetrabutylammonium tetrafluoroborate media. 

II. Switching to anodic EPD, and depositing Pt nanocomposites on AvCarb® MGL190 

carbon paper over whole voltage range i.e. 1 to 32 V/5 minutes in above mentioned 

organic media. 

III. Optimizing the deposition voltages based of cyclic voltammograms. 

IV. Anodic EPD of Pt on indium tin oxide in the organic media at various voltages i.e. 2, 

3, 4, and 5 V/10 minutes, respectively, followed by CV. 

V. Anodic EPD of Pt (chloroplatinic acid hexahydrate and tetrabutylammonium 

tetrafluoroborate) on oxygen plasma pre-treated AvCarb® MGL190 carbon paper at 

different voltages i.e. 3 to 8 V/10 minutes. 

VI. Anodic EPD of GO (concentration, 0.6 mg/mL of organo-aqueous solvent of 1:1 w/w 

ethanol:water) on ITO at 4 to 10 V/10 minutes. 

VII. Anodic EPD of GO (concentration, 1.5 mg/mL of organo-aqueous solvent of 1:1 w/w 

ethanol:water) and Pt (from chloroplatinic acid hexahydrate) on ITO at 10 V/40 

minutes. 

VIII. Anodic EPD of GO/Pt (GO concentration, 0.6 and 1.5 mg/mL) on oxygen plasma pre-

treated AvCarb® MGL190 carbon paper at 10 V/40 minutes. 

IX. Finally, anodic EPD of GO/Pt (GO concentration, 1.5 mg/mL) on oxygen plasma pre-

treated AvCarb® MGL190 carbon paper at 10 V/80, 120, 240, and 300 minutes 

(details are available in the experimental part). 

In this work, we report the fabrication of a catalyst layer based on Pt-GO 

nanocomposites on carbon paper (Pt/GO/CP). These nanocomposites were prepared using 

one-step anodic EPD technique, involving simultaneous deposition of Pt nanoparticles and 

GO onto oxygen plasma pre-treated carbon paper in an organo-aqueous media at various 

deposition time. A graphic representation of the EPD process is presented in Figure 7. The 

prepared Pt/GO/CP were characterized using Raman spectroscopy, field emission scanning 

electron microscopy (FE-SEM), energy dispersive spectroscopy (EDS), x-ray photoelectron 

spectroscopy (XPS), inductively coupled plasma (ICP), and transmission electron 
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microscopy (TEM). Cyclic voltammetry (CV) was employed to evaluate the catalytic 

properties of EPD Pt/GO/CP in half cell reactions. 

 

Figure 7. Schematic representation of the EPD process followed by characterization. 
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2. Experimental  

2.1. Reagents and Chemicals 

Following chemicals were used in this study: chloroplatinic acid hexahydrate 

(H2PtCl6 . 6H2O) or hexachloroplatinic acid (Sigma-Aldrich®), graphene oxide (GRAnPH 

Nanotech), AvCarb® MGL190 carbon paper (Fuel Cell Store), H2SO4 (Sigma-Aldrich®, 

99.99%), ethanol (Sigma-Aldrich®, 99.8%), and deionized water. 

2.2. Synthesis of Pt/GO Nanocomposites via EPD 

The preparation of EPD colloidal solution involved following steps. The as obtained 

GO was probe sonicated (Q700 Sonicator, QSONICA, U.S.A.) in an ice bath for 20 minutes 

(GO concentration, 1.5 mg/mL of organo-aqueous solvent of 1:1 w/w ethanol:water). In the 

meantime, 0.05 M hexachloroplatinic acid (HCPA) in organo-aqueous solvent was 

magnetically stirred (MSH-20D Stirrer, Germany) for 20 minutes. The stirred HCPA solution 

was then poured into the GO solution and probe sonication was continued for another 20 

minutes. The working electrode, AvCarb® MGL190 carbon paper, were cut into 2.5” x 2.5” 

dimensions and subjected to O2 plasma pre-treatment (Torr Plasma Asher, U.S.A.) at 100 

W/2 minutes. The EPD process was carried in a homemade glass electrochemical cell at room 

temperature (Figure 8). 

 

Figure 8. Homemade electrochemical cell. 

The EPD was performed using two electrodes i.e. a working electrode (WE) 

connected to the anode source, and a counter electrode (CE) connected to the cathode source. 
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The WE were the O2 plasma pre-treated carbon paper, while the CE was a Pt wire auxiliary 

electrode (MW-1032, BASi®, U.S.A.). The probe sonicated Pt/GO solution was used as an 

EPD electrolyte. The distance between the WE and CE was 1 cm. The electrodes were 

connected to a power supply (HMP2020, Rohde & Schwarz, U.S.A.). After optimizing EPD 

parameters, Pt nanoparticles and GO were deposited electrophoretically on carbon paper at 

10 V for 80, 120, 240, and 300 minutes, respectively. After the EPD was completed, freshly 

prepared samples were dried out in an oven at 70°C/30 minutes. 

2.3. Physical Characterization 

Raman spectroscopy (Renishaw inVia™ Reflex Raman Microscope and 

Spectrometer; laser excitation at 532 nm) was used to study the electrophoretically deposited 

GO. FE-SEM (Supra Gemini 35 VP, Leo, ZEISS, Germany), focused ion beam (FIB), and 

TEM (Hitachi HT7700, Japan) were used to ascertain the size and morphology of Pt 

nanoparticles and GO on the catalyst layer. XPS (SPECS™ XP FlexMod, Germany) was 

used to study different oxidation states of Pt. ICP (Perkin Elmer ELAN DRC-e, U.S.A.) was 

employed to find out the mass of the deposited Pt nanoparticles. Elemental analysis of the 

samples was done via EDS. 

2.4. Electrochemical Characterization 

The obtained samples were electrochemically characterized by cyclic voltammetry 

(CV) (Gamry Reference 3000 Potentiostat/Galvanostat/ZRA, U.S.A.) using a 3-electrode 

setup which consisted of EPD Pt/GO/CP as working electrodes (WE), Ag/AgCl (MF-2052 

RE-5B, BASi®, U.S.A.) as a reference electrode (RE), and Pt wire (MW-1032, BASi®, 

U.S.A.) as a counter electrode (CE). Prior to the beginning of electrochemical experiments, 

the electrolyte (20 mL 0.5 M H2SO4) in the electrode cell was de-aerated with N2 for 30 

minutes. CV was performed at a scan rate of 50 mV/s within the potential window of -0.2 to 

1.0 V vs. Ag/AgCl at ambient conditions. The cyclic voltammograms were obtained after 20 

cycle scans to attain stable current-potential behavior. The electrochemically active surface 

area (ECSA) was calculated by integrating the CV by taking the average between desorption 

and adsorption charges 18, 60. 
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3. Results and Discussion  

The EPD of Pt nanoparticles from HCPA can be explained by the following equations 

(xiii, xiv, xv) 16: 

Pt4Cl6
2- + 2e- → Pt2Cl4

2- + 2Cl-       (xiii) 

Pt2Cl4
2- + 2e- → Pt + 4Cl-        (xiv) 

Pt4Cl6
2- + 4e- → Pt + 6Cl-        (xv) 

EPD of Pt nanoparticles can follow two paths. Either Pt nanoparticles are EPD via 

two steps (equations xiii and xiv) by gaining 2 electrons in each step or by a single step 

(equation xv) by gaining 4 electrons with the evolution of chlorine gas in each case. 

3.1. Morphology 

Figures 9 - 12 show the SEM micrographs of the obtained Pt/GO nanocomposites 

electrophoretically deposited onto carbon paper at 10 V for 80, 120, 240, and 300 minutes, 

respectively. Through SEM, it was observed that the deposition of exfoliated GO was a direct 

function of higher EPD time. As the EPD time increased from 80 to 300 minutes, more 

overlapped GO flakes with wrinkled morphology were deposited onto the carbon paper. In 

figures 10 - 12, conglomerated small sized GO flakes (appearing as white deposits) are seen 

to be spread throughout the entire matrix of carbon paper fibers which is probably due to 

more exfoliation time of GO during probe sonication. 
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Figure 9. SEM micrograph of Pt/GO/CP electrophoretically deposited at 10 V/80 minutes. 

 

 

Figure 10. SEM micrograph of Pt/GO/CP electrophoretically deposited at 10 V/120 

minutes. 
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Figure 11. SEM micrograph of Pt/GO/CP electrophoretically deposited at 10 V/240 

minutes. 

 

 

Figure 12. SEM micrograph of Pt/GO/CP electrophoretically deposited at 10 V/300 

minutes. 
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3.2. Elemental Analysis 

Pt/GO/CP electrophoretically deposited at 10 V for 80, 120, 240, and 300 minutes, 

were analyzed via backscattered electron imaging and EDS. The EDS spectra shows peaks 

related to C and Pt elements, corroborating the deposition of Pt nanoparticles on GO and 

carbon substrate. Furthermore, by employing EDS elemental mapping, it was observed that 

the atomic percentage of the deposited Pt on all the samples was almost the same i.e. 0.2 ~ 

0.3% (Figure 13). 

 

Figure 13. EDS spectra of Pt/GO/CP electrophoretically deposited at 10 V/240 minutes. 

 

3.3. Morphology (TEM) 

The TEM specimens were prepared using FIB. TEM images were obtained at 120 

kV. Figures 14 and 15 represent TEM images of Pt nanoparticles followed by their 

corresponding particle size distribution histograms. It can be seen in the images that Pt 

nanoparticles are uniformly deposited and are attached onto the surface and interspaces of 

single and multilayers of GO. The average Pt particle size is determined to be about 5.8 ~ 6.0 

nm. These nanoparticles augmented the electrochemical activity which was observed during 

the ECSA. Furthermore, with the help of XPS analysis it was observed that not all the 

deposited Pt is in its metallic state, rather Pt has been found to be oxidized as PtO and PtO2 

which is plausible due to Pt interaction with the functional groups present on GO surface 81. 
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Figure 14. TEM image of Pt nanoparticles EPD on GO sheets at 10 V/120 minutes. 

 

 

 

50 nm 

a 
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Figure 15. TEM image of Pt nanoparticles EPD on GO sheets at 10 V/240 minutes. 
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b 
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3.4. Electrochemical Characterization (CV and ECSA) 

Different methods can be used to determine active catalytic surface sites 82. Among 

these methods, CV, for decades has been employed to evaluate the catalyst utilization and 

ECSA of fuel cell electrocatalysts. Catalyst utilization and ECSA are benchmarks for 

developers to assess the performance of catalysts and MEA 59. During CV, the WE is cycled 

through a potential voltage window to achieve H+ adsorption and desorption data necessary 

for calculating ECSA 59, 82. The ECSA of an electrocatalyst gives information pertaining to 

the number of electrochemically active sites per gram of catalyst 31, 46, 72, 82. It is calculated 

by integrating hydrogen adsorption and desorption peaks after subtracting the double layer 

region 72. In this research, for ECSA, we took the average between anodic desorption and 

cathodic adsorption charges as it has been previously employed in the literature 18, 60. The 

hydrogen desorption/adsorption reactions are as follows 59: 

Pt – Hads → Pt + H+ + e-  (Anodic/forward scan) 

Pt + H+ + e- → Pt – Hads  (Cathodic/reverse scan) 

The above reactions are based on two assumptions. First, each H+ can occupy one site on the 

available Pt surface. Second, all the active and accessible sites will be filled by hydrogen 

atom during the transition from H+ adsorption to H2 evolution and vice versa. Therefore, the 

total number of moles of charge passed during H+ adsorption/desorption is assumed to be 

equal to the number of moles of active sites 82. Figure 16 presents the cyclic voltammograms 

of EPD Pt/GO/CP in N2-saturated 0.5 M H2SO4 electrolyte at a scan rate of 50 mV/s. 
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Figure 16. Cyclic voltammograms of EPD Pt/GO/CP in N2-saturated 0.5 M H2SO4 

electrolyte at a scan rate of 50 mV/s. 

The ECSA of the Pt catalyst was calculated using the following expression 31, 72: 

ECSA [cm2  Pt g⁄ of Pt] =  
charge [QH, μC cm2]⁄

210 [μC cm2] × electrode loading [g of Pt cm2]⁄⁄
 

In the given expression, QH is the charge density which is calculated by integrating the cyclic 

voltammograms; 210 µC/cm2 is charge needed to reduce a monolayer of H+ on 

polycrystalline Pt 18, 59, 60, 73; and electrode loading is the mass of Pt electrophoretically 

deposited on the WE 73, which was determined by using ICP. The ECSA for the Pt/GO/CP 

were computed using above-mentioned equation and results are shown in Table 1. 
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Table 1. ECSA for electrophoretically deposited Pt/GO nanocomposites 

EPD Pt/GO/CP QH (mC/cm2) 
Pt loading 

(µg/cm2) 
ECSA (m2/g) 

10 V/80 minutes 1.15 68 8 

10 V/120 minutes 3.00 161 9 

10 V/240 minutes 7.43 129 27 

10 V/300 minutes 10.26 312 16 

From Table 1, it can be noticed that with an increment in EPD time, there is an 

increase in Pt loading, and hence an increase in ECSA values is observed (deposition at 80 

and 120 minutes). But at higher deposition time i.e. 240 and 300 minutes, the results deviated. 

At 300 minutes deposition, Pt loading is higher than rest of the samples, contrarily the ECSA 

value is lesser than 240 minutes’ deposited Pt/GO nanocomposites’ ECSA value. This trend 

has been observed by Taylor et al. 22 who reported that the plausible cause for this decrement 

in ECSA value is linked to Pt particle agglomeration at higher Pt loadings, which eventually 

weakens the overall activity of Pt surface area 18, 22. The highest ECSA value of 27.41 m2/g 

was achieved at an optimized Pt loading of 0.129 mg/cm2 which is close to the 2017 target 

value set by the U.S. Department of Energy (≤ 0.125 mg/cm2) 58. These results can be ascribed 

to the dispersion of Pt nanoparticles on GO nano sheets displaying synergetic performance 

as catalyst necessary for PEMFC. 

Figure 16 displays four cyclic voltammograms of Pt/GO/CP electrophoretically 

deposited at 10 V for 80, 120, 240, and 300 minutes, respectively. Following are the general 

features that are common to all the curves: 

I. In the cathodic scan, hydrogen adsorption/evolution occurred from ~0.05 to –0.2 V 

vs. Ag/AgCl RE. During this negative scan, hydrogen adsorption onto the Pt surface 

augmented as the EPD time was increased. And it is evident from the CV curves that 

higher Pt loadings lead to better hydrogen adsorption followed by hydrogen 

evolution. 
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II. In the anodic scan, hydrogen desorption/oxidation occurred at around the same 

voltage range as hydrogen adsorption/evolution. During this scan, owing to the 

increased EPD time which lead to higher Pt deposition, hydrogen desorption peaks 

were amplified. The process is fast and electrochemically reversible and thus it is 

possible that some of the hydrogen evolved during the reverse scan might reoxidize 

82. 

3.5. XPS characterization 

Figure 17 presents Pt 4f XPS spectra for Pt/GO/CP (chosen sample EPD at 10 V/240 

minutes). Pt 4f of the selected sample displayed the “expected doublets” and the signal is 

deconvoluted into two components, Pt 4f7/2 and Pt 4f5/2, with Pt of 0, +II, and +IV oxidation 

states 26. Due to the baseline correction, there is a slight shift in the deconvoluted peaks of 

the respective Pt 4f7/2 and Pt 4f5/2. The peaks corresponding to the Pt 4f7/2 located at 71.4, 

72.0, and 73.0 eV are assigned to metallic Pt0, Pt+II, and Pt+IV, respectively. Contrarily, the 

peaks corresponding to the Pt 4f5/2 located at 74.7, 75.4, and 78.0 eV are assigned to metallic 

Pt0, Pt+II, and Pt+IV, respectively. The presence of Pt+II or Pt+IV could be linked to partial or 

complete oxidation of Pt0 on the GO surface 81. 

 

Figure 17. XPS spectra of Pt 4f for Pt/GO/CP. 
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3.6. Structure (Raman Spectroscopy) 

Raman spectroscopy is a well-established noninvasive tool used to study allotrope, 

crystalline, nanocrystalline, and amorphous carbon 51, 83. In the literature, Raman 

spectroscopy has been employed in studying the crystal structure, defects, and disorders in 

graphene and graphene related materials 47, 50, 84. In this spectroscopy, a monochromatic laser 

(wavelength of 532 nm) interacts with the vibrational modes and phonons in the specimen, 

causing to shift the “Stokes and anti-Stokes” via inelastic scattering 47, 83. In graphene Raman 

spectrum, there are four common types of defect peaks: D (1350 cm-1), G (1580 cm-1), D’ 

(1620 cm-1), and 2D (2690 cm-1) 47, 51. D and 2D peaks are laser excitation dependent peaks, 

also known as second order overtone of different in-plane vibrations. On the other hand, G 

peaks are the primary in-plane vibrational modes. The D peak does not occur in pristine 

graphene 83 because of crystal symmetries. But as the disorders in graphene increase, Raman 

intensity increases for the three distinct disorder peaks i.e. D, D’, and D+G (2940 cm-1), 

respectively 47. The level of disorder in graphene can be studied from the ratio of the D and 

G peaks (ID/IG) 47, 51, 84. 

Figure 18 represents the Raman spectrum of EPD Pt/GO nanocomposites over a fixed 

voltage (10 V) at different deposition time i.e. 80, 120, 240, and 300 minutes. The two 

prominent peaks were D and G, occurring at ∼1351 cm-1 and ∼1582 cm-1, respectively. With 

an increase in deposition time, the intensity of D peaks for all the samples increased, while 

the intensity of G peaks remained marginally steady. The D peaks have breathing mode A1g 

symmetry 83 and are induced because of in-plane edges and grain boundaries of graphene 

crystals. The hexagonal crystal lattice of graphene has two types of crystal edges, namely, 

armchair and zigzag. It is because of these armchair edges that the charge carriers are 

inelastically scattered by the phonons and excited, followed by an elastic scattering near the 

K zone boundary leading to the prominence of D peaks in graphene 47, 83. On the contrary, 

the G peaks have an E2g symmetry and arise from an “in-plane bond-stretching motion of 

carbon sp2 atoms”. Also, these peaks are independent of sixfold rings, and therefore occur at 

all sp2 sites 83. Hence, these peaks show the presence of crystalline graphene layers 55. The 

intensity ratio of the D and G peaks for the EPD Pt/GO nanocomposites at 80, 120, 240, and 

300 minutes were found to be 0.25, 0.54, 0.88, and 0.79, respectively (Table 2). The 

decrement in the ID/IG value at 80 minutes electrodeposition is an indication of better defect 
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repairs 85. In other words, increase in defect density indicates the presence of more sp2
 

amorphous carbon structure 47, 51. The increment in the ID/IG values at higher 

electrodeposition time i.e. 120, 240, and 300 minutes, is justified by the fact that at low defect 

density more elastic scattering occurs which indicates the presence of “nanocrystalline 

graphene phase” 47. 

Table 2. Raman shift positions and ID/IG values for EPD Pt/GO nanocomposites 

EPD Pt/GO/CP D peak (cm-1) G peak (cm-1) ID/IG 

10 V/80 minutes 1347 1580 0.25 

10 V/120 minutes 1354 1580 0.54 

10 V/240 minutes 1352 1583 0.88 

10 V/300 minutes 1349 1583 0.79 

 

Figure 18. Raman spectrum of EPD Pt/GO nanocomposites obtained at different deposition 

time. 

  



30 

4. Conclusions 

EPD, an eco-friendly, simple and fast method has been adopted for the synthesis of 

Pt/GO nanocomposites as catalyst for PEMFC. During this work, it was found that using a 

mixture of organic and aqueous solvent was ideal for better dispersion and stability of GO 

and Pt in the EPD solution. After optimizing the parameters, best results were obtained at 

deposition of 10 V/80, 120, 240, and 300 minutes, respectively. The incorporation of GO’s 

2D structure ranging from mono to few layers in the catalyst matrix helped in better anchoring 

of Pt onto the carbon paper surface and GO surface. ECSA value decreased at higher Pt 

loading (10 V/300 minutes) which is possible due to the clustering of Pt nanoparticles. 

Further work requires an in-situ evaluation of the developed Pt/GO/CP in a single fuel cell 

necessary to determine their ORR activity and power output. 
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