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ABSTRACT

TRAFFIC SPEED PREDICTION WITH NEURAL NETWORKS

UMUT CAN ÇAKMAK

M.Sc. Thesis, July 2017

Thesis Supervisor: Prof. Dr. Bülent Çatay

Keywords: Neural networks, forecasting, time series analysis, exponential smoothing,
moving average

With the increasing interest in creating Smart Cities, traffic speed and flow prediction
have attracted more attention in contemporary transportation research. Neural networks
have been utilized in many recent studies to tackle this problem; yet, these methods have
focused on the short-term traffic prediction while longer forecast horizons are needed for
more reliable mobility and route planning. This work aims at filling this gap by trying
to address the mid-term forecasting as well as the short-term. The study employs feed-
forward neural networks that combine different time series forecasting techniques such
as naı̈ve, moving average and exponential smoothing where the predicted speed values
are fed into the network as inputs. We train our neural networks and select the hyper-
parameters of the network structures to minimize the error; thus, yielding the best pos-
sible setup for further forecast input. In our experimental study, we analyzed two nearly
20-km multi-segment routes from the city of Istanbul in Turkey. The speed data on these
routes are collected by GPS for every minute for a 5-month horizon. Our computational
tests showed that forecasts are more successful when performed on a route with shorter
segments as well as a combination of conventional predictive methods are input to a neu-
ral network. We also discovered that depending on the characteristic of the analyzed road,
it is possible to utilize the information from neighboring segments.



ÖZET

YAPAY SİNİR AĞLARI İLE KARAYOLU HIZ TAHMİNİ

UMUT CAN ÇAKMAK

Yüksek Lisans Tezi, Temmuz 2017

Tez Danışmanı: Prof. Dr. Bülent Çatay

Anahtar Kelimeler: Yapay sinir ağları, öngörüleme, zaman dizisi analizi, üstel
düzleştirme, hareketli ortalama,

Akıllı Şehirler olarak adlandırılan şehircilik anlayışına yönelimin artmasıyla bir-
likte, trafik hız ve yoğunluk tahmini araştırma konuları da daha çok ilgi çekmeye
başlamıştır. Bu konularda yapılan yakın tarihteki çalışmaların birçoğunda yapay sinir
ağlarının kullanıldığı görülmektedir; fakat, bu çalışmalar genelde yakın gelecek tah-
minleri üzerine odaklanmıştır. Ancak yakın gelecek tahminleri günümüzdeki ihtiyaçları
karşılamamaktadır ve daha güvenilir güzergâh planlaması için orta ve uzak dönem hız
tahminleri yapan çalışmalara ihtiyaç duyulmaktadır. Bu çalışma da literatürdeki bu
yetersizliği doldurmaya ve yakın dönem tahmin gibi orta dönem tahmin üzerinde de
çalışmaktadır. Kullanılan ileri beslemeli yapay sinir ağı farklı zaman serisi öngörüleme
yöntemlerini birleştirerek tahminler üretmektedir. Sinir ağımızın eğitimi esnasında
hata değerlerini en küçükleyecek parametreler kullanılmıştır. Çalışmamızda İstanbul
şehrinden yaklaşık 20 kilometre uzunluğunda iki adet çok ayrıtlı güzergâh incelenmiştir
ve bu güzergâhlar üzerindeki hız verileri Küresel Konumlama Sistemi (KKS) ile 5
aylık bir süre boyunca her dakika için toplanmıştır. Deneysel çalışmalarımız sonucunda
daha kısa ayrıtlara bölünmüş bir güzergâhta ortalama mutlak sapma açısından daha iyi
öngörüleme sonuçları alındığını gözlemledik. Aynı şekilde, belirli zaman serisi tahmin
yöntemlerinin birleştiği yapay sinir ağlarının da bu tahmin yöntemlerinin kendilerinden
daha iyi sonuç verdiğini gördük. Bunun dışında, incelenen yolun özelliklerine bağlı
olarak, komşu ayrıt bilgilerinin de tahminlemede yararlı olduğunu gözlemledik.
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Chapter 1

Introduction

Traffic congestion has negative economic, environmental, and health-related effects on
our world and our lives. According to Cookson and Pishue (2017), the traffic congestion
costs £6.2 billion annually in the city of London alone with a total annual cost of £30.8
billion countrywide. Research like that of Guerreiro et al. (2016) also suggests that it
has adverse effects on our health, being the second-largest source of particulate matter
emission and a source of CO2 emission that is 40% above EU regulations. Additionally,
according to a 2016 report titled A European Strategy for Low-Emission Mobility, since
more than 70% of the greenhouse gas emissions stem from the road transport, the extra
time spent in traffic leads to a high emission of greenhouse gases (European Commis-
sion, 2016). To overcome these problems, the European Comission Directorate-General
for Mobility and Transport (2011) is aiming for the widespread and effective use of the
Smart Transportation Systems. Similarly, the authorities at Republic of Turkey Ministry
of Transport, Maritime Affairs and Communications (2014) stated the need to direct our
attention to the advancement of the information technologies that would solve such prob-
lems.

In this light, the congestion has substantial adverse consequences. A key part of reduc-
ing the congestion would be the accurate prediction of real-time traffic speed and optimize
the route planning for individual people and companies alike.

A crucial element of the Smart Transportation Systems are smartphones and naviga-
tion systems. Ericsson AB (2015) states that there were 2.6 billion smartphone subscribers
in 2014 and 3.2 billion in 2015, and expects the number will reach 6.3 billion in 2021.
Similarly, Mobile Fact Sheet of Pew Research Center (2017) indicates there is a positive
trend in both cell phone usage and smartphone usage with a greater trend in smartphone
usage (up to 77% percent of U.S. adults from 35% in only 5.5 years.) Aside from the
smartphones, the traditional navigation and Global Positioning Systems equipment are
also somewhat favored among drivers. Jenness et al. (2008) states that the majority of
the drivers (88% of the surveyed) are content with their built-in navigation systems and
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would repurchase said systems.
The worldwide rise of the use of smartphones is clear, and while traditional naviga-

tion systems are starting to lose their users, they are simultaneously being replaced by
smartphone navigation applications. uShip.com (2012) states that among the surveyed
U.S. truckers, 75% of them use smartphones, 52% of them use their smartphone’s GPS
navigation capabilities, compared to 22% in 2010 and 24% in 2011. Meanwhile, U.S.
Navigation Usage and Satisfaction Study of J.D. Power (2013) finds that while only 37%
of vehicle owners downloaded a smartphone application for navigation in 2011, 47% re-
sponders say the same only a year later. Smith et al. (2015) underline that 67% of adult
smartphone owners use their turn-by-turn navigation systems at least occasionally while
31% use them frequently.

Furthermore, there exist some research on whether the navigation systems are bene-
ficial for areas of road traffic other than the shortened journey times. Vonk et al. (2007)
report that drivers feel and act safer when guided by a navigation system.

In Turkey, according to Poushter (2016), adult smartphone owners made up 59% of the
population in 2015, ranked 12th in the world. It amounts to a 42-point increase in only
2 years, from 17% ownership ratio. Meanwhile, 72% of the adult population uses the
internet at least occasionally, ranked 11th in the world along with Palestinian territories,
Italy, and Russia. It amounts to a 31-point increase in only 2 years, from 41%. While
there is no country-specific forecast on the smartphone ownership numbers in the coming
years, Turkey is clearly at the forefront when it comes to adapting to smartphones.

Given its negative effects, it would be highly beneficial to improve our predictions,
which is facilitated by this rapid growth of smartphone technology. In this work, it is ex-
pected to provide a close prediction of real-life speeds over a forecasting horizon instead
of a fixed point in the future. We also expect our predictions to have a real-life effect on
the end user. The remainder of this thesis is organized as follows: Chapter 2 is a review of
the related literature. Chapter 3 is a thorough presentation of the methodology including
the data collection and correction processes, the introduction to the prediction methods
and the machine learning concepts. Chapter 4 presents the experimental setup. Chapter 5
reports and discusses the results. Finally, Chapter 6 concludes the thesis with suggestions
for future research.
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Chapter 2

Literature Review

There are certain methods frequented by other researchers on data collection and speed
prediction. The survey of Vlahogianni et al. (2014) shows that early studies mainly col-
lected their data from the highway sensors, and GPS data collection was not commonplace
until after 2011. This is probably because GPS data only recently started to become abun-
dant; however, the highway sensors were already present because the public institutions
opted to use such equipment on traffic monitoring. The difference in methods is not only
present in data collection but also on the essence of the data. Vlahogianni et al. (2014)
again show that the data collected is mainly one of the following three types: speed data,
journey time, and volume.

The speed prediction methods, on the other hand, are much more diverse than the data
collection methods. The research mainly groups into two: discrete or continuous analyses.
Discrete analyses can be summed up to binary or multiclass classification methods while
continuous analyses employ function approximation, time series analysis and the like.

In Wang et al. (2015), GPS data was used to assess the predictability of the transitions
between six different congestion states separated by certain speed limits. The authors
report around 75% predictability for speeds less than 50 km/h and 80%-90% predictability
for speed larger than 50 km/h over three different ring roads. The authors also comment
that as the number of the segments on a route is increased, better results are likely to be
acquired. Similarly, in Khan et al. (2012), the researchers assumed multiple congestion
levels based on the level of occupancy of a road. Due to lack of accessible data, the authors
analyzed on a simulated model with space-time autoregressive integrated moving average
(STARIMA). The main source of their data was motorway sensors and their results turned
out quite impressive (around 90% accuracy) for short-term predictions up to 5 minutes on
the highway; however, in the urban setting, they report poor results. Additionally, they
also emphasize their simulation models’ inadequacy to reflect the seasonal characteristics
of rush hours and the weekends. Hu et al. (2014) employ binary classification to determine
if an intersection is congested and needs to be avoided or not. Based on their limit speed
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of congestion, a correct congestion prediction of up to 89% was achieved. However, it is
reasonable to assume that, in a larger road network, independently assigning a congestion
threshold to every area and possibly every time of a day will not be feasible. It should
also be noted that not all of these works inspect the effects of the neighboring segments
or the past speed data.

Lippi et al. (2010) are among the first of the (binary) classification works that state the
spatial and temporal neighboring data is important in performing more accurate predic-
tions. In their study, they use road sensors to gather data and they occasionally outperform
support vector regression (SVR). Similarly, Li et al. (2016) also employ binary classifi-
cation to their GPS data and obtain 2.5% to 4% root mean squared error depending on
the departure time identifying congestions. Additionally, Yang (2013) emphasizes the
consideration of spatial and temporal relations in prediction results in a very large prob-
lem. That is why the author tries to rank the features and perform analyses only with the
most relevant ones among them on a binary classification problem. Though the results are
around 50-60% for mean prediction precision, this work is highly important and perhaps
can be improved via GPS data collection as opposed to Yang’s data collection choice of
road sensors. Georgescu et al. (2012) apply regression to working days speed data. Since
their dataset is limited and repetitive, their relative mean error values are starting from 5.8
for 1-step ahead prediction. Dauwels et al. (2014), stating the importance of neighboring
data, also outperform SVR in long-term prediction. Xie et al. (2010) use road sensors
to read the volume of the road and predict the volume of a road for multiple horizons
into the future. The work focuses on Gaussian processes and outperforms autoregres-
sive integrated moving average (ARIMA) and compete with v-Support Vector Machines
(v-SVM).

Although some of the research has mainly focused on route planning and conges-
tion avoidance, their insights are invaluable to the speed prediction literature. Liang and
Wakahara (2014) suggest that information coming from the neighboring segments will
help improve the forecasts. The use of the machine learning methods in traffic speed pre-
diction, lately, has been on the rise with the rapidly improving technology and computing
power capacity. Ma et al. (2015) employ recurrent neural networks (RNN) and similar
deep learning methods to predict the propagation of a congestion in a network on long-
term prediction. Their results indicate that a larger data, naturally, will take more time to
analyze and will yield worse results. That is why they have better results when data ag-
gregation is over 60 minutes (88.2%) compared to 5 minutes (68.9%). In Ye et al. (2012),
the authors work on irregularly observed data and state that incorporating the informa-
tion from both the past speed data and the data of the neighboring segments improved
their algorithm’s performance significantly. They achieve an average mean absolute devi-
ation (MAD) value of 6.60 km/h for 1-second ahead and 12.47 km/h for 5-second ahead
prediction over 20 segments.
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This work will employ a feedforward neural network (FFNN) to perform a contin-
uous prediction. The idea to use a neural network is mainly inspired by the works and
largely acceptable solutions of Ye et al. (2012) employing an FFNN, the success of Park
et al. (2011) also employing an FFNN on short-term congestion forecast as a binary clas-
sification problem, and the combination of the rain data with the number of vehicles
information also with an FFNN by Dunne and Ghosh (2013).

The survey of Djahel et al. (2015) suggests that ARIMA, neural networks, statistical
models, and GPS data based techniques are not adequate to make accurate predictions
by themselves. This work is aimed to cover the positive aspects of the most promising
literature and combine them in an improved manner.

Routing problems have always been problems of the sort that needs to be solved
quickly for the sake of the urban population. However, as per the stochastic nature of
the traffic, these predictions will always have higher error margins as the prediction hori-
zon gets larger. That is why predictions must be made quite frequently and continuously.
In this work, discrete methods are not preferred because it would be unrealistic to clas-
sify every road segment with its unique and seasonally changing congestion threshold
speed. Similarly, since it is not reasonable to equip every road segment in an urban area
with highway sensors, data collected by GPS is preferred to perform broader analyses.
Additionally, the data and the predictions will be the speed data type because a conges-
tion classification analysis will be difficult as each road and each segment would have
different congestion properties. Similarly, volume data would force the analysis to make
separate distinctions for different segments and journey time data would direct the analy-
sis to perform from a point to another point. And unlike Ye et al. (2012), these data will
not be collected at irregular intervals; thus, making the predictions more accurate for the
long-term forecasting.
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Chapter 3

Methodology

3.1 Data Collection and Cleaning

The historical speed data is obtained from Başarsoft Information Technologies Inc. It in-
cludes floating car speeds collected on Turkey road network with 1-minute time intervals
over a 5-month horizon from October 2016 to February 2017. The locations, lengths, and
other features of the segments of the road network were predetermined by Başarsoft.

After extracting the segment data from the original country data, first, the missing
data were linearly interpolated. Moreover, the maximum speed is determined to be 120
km/h since it is the legal speed limit. Any speed data exceeding this limit was fixed to
120 km/h.

However, there emerged a need to clean the data of unrealistic observations. For
example, a segment could experience a jump of 80 km/h in speed from one minute to the
following which seems highly unlikely in a normal traffic flow. The most likely cause of
these irregularities seems to be the source of data. Since the raw data can be collected
from numerous different types of vehicles and without a lane restriction, it is possible that
a segment’s average speed can be affected greatly by a high-speed vehicle traveling on
a hard shoulder like an ambulance for one minute then come back down to the regular
speed value the next.

The custom method of data cleaning process is as follows: First, we calculated the
minute-by-minute speed differences. Then, the minute-to-minute speed difference limit
was set to be 5 km/h. If there existed a difference greater than this limit, speed differences
falling outside 3 standard deviations of the data were replaced with linear interpolations
in the speed data. After these replacements, if there still existed a difference greater
than 5 km/h in consecutive time intervals in a given segment, the maximum standard
deviation was reduced by 85% (3 × 0.85 = 2.55). So, the points falling outside 2.55
standard deviations of the data were replaced with the same steps. This process continued
until there was no speed difference greater than 5 km/h. The process is also outlined in
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Figure 3.1: Close-up Version of Custom Data Cleaning vs Median Filtering

Algorithm 1 below. The resulting dataset is named Cleaned data in the computational
experiments.

Algorithm 1: Data cleaning process (Applied separately for each segment)
1 Calculate minute-by-minute speed difference data with respect to speed data
2 Calculate standard deviation of speed changes in a given segment
3 Speed difference limit := 5 km/h
4 Max standard deviation K := 3
5 while there exists speed difference > Speed difference limit do
6 Find speed difference data points falling outside K standard deviations
7 Remove and linearly interpolate the corresponding data point from speed data
8 if no point left outside K standard deviations then
9 K ← K × 0.85

10 end
11 end

One of the many data smoothing or data cleaning techniques is median filtering. It
is mainly used for image and signal noise reduction. Median filtering performs a sliding
window analysis on the series on hand. Median of the sorted contents of the window re-
places the value at the center of the window. This way, if there is an erratic value, it would
be removed and the overall data will be much smoother (Delmas, 2010). We employed it
on this dataset to see the differences with our custom method. The differences between
the two methods over an hour for segment #9 of Route 2 can be seen in Figure 3.1.

Clearly, our cleaning method results in a more reasonable plot. Median filtered and
twice median filtered (Filtered and Twice Filtered in the plot, respectively) are also re-
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moving the spikes in the data; however, as it can be seen from the zoomed plot, filtered
speeds still make irrational minute-to-minute jumps.

Some observations can be made from these findings and the general characteristics
of the routes and the dataset. First, clearly, these two routes are of significantly different
types. While the first route contains a lot of traffic lights, the second route is a highway
route that has a bottleneck that is among the most effective ones in the city. The average
segment length is more than five times larger for the second route compared to the first
route while the number of segments is more than five times larger in the first route when
compared to the second route. The first route had 35.7% of its original data replaced with
an average of 18.77 km/h decrease and an average of 5.94 km/h increase. The second
route had 60.6% of its original data replaced with an average of 10.74 km/h decrease
and an average of 8.33 km/h increase. It is, then, also possible to say that the data read
originally from the second route seems more smooth as the average change in speed after
cleaning is much less than the first one. This is expected and the reason for this might be
that the first route had frequent intersections with traffic lights and different lanes are used
by vehicles of varying speeds simultaneously while the second route is a highway which
has similar cruising speeds throughout. It is also clear that average speed observed on a
longer segment would be better at balancing out the adverse effects of outliers.

3.2 Prediction Methods

In the following methods, st represents the observation at time t while ft+k represents the
prediction of the speed at time t+k.

3.2.1 Naı̈ve Method Prediction

Naı̈ve method prediction used in this study is the simplest prediction method where the
forecast is equal to the data last observed. So, a lagged trace of the observed data is what
is forecasted (Stevenson, 2012). This method may perform well for short-term predictions
because 1-step/1-minute ahead prediction alone can deviate at most 5 km/h from the actual
value as per the limit set in data cleaning process. A part of the naı̈ve prediction on the
data can be seen in Figure 3.2 and the forecast equation is below.

ft+1 = st (3.1)

3.2.2 (Weighted) Moving Average Method Prediction

In regular moving average method prediction, the forecast is the average of the observed
data over a period (see (3.2)). The moving average method basically smooths the observed
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Figure 3.2: Naı̈ve Method Prediction vs the Observed Speeds

data (Stevenson, 2012).

ft+k =
st + st−1 + st−2 + · · ·+ st−(n−1)

n
(3.2)

It is better to keep the parameter n smaller as a larger n would result in the forecast to
be too smooth (Stevenson, 2012). In weighted moving average method prediction, on the
other hand, a weighted average of the last n observations is taken as the forecast as can be
seen in (3.3).

ft+k = wtst + wt−1st−1 + · · ·+ wt−(n−1)st−(n−1) (3.3)

where wi is the weight associated with the observation at time i with
∑t

i=t−(n−1)wi =

1 and 0 ≤ wi ≤ 1, ∀i. The benefit of weighted moving average is that it can be tuned
to give the most proper past data more importance (Stevenson, 2012). For example, in a
speed prediction model, the latest data is likely the most reflective of the current situation.
A part of the weighted moving average prediction on the data can be seen in Figure 3.3.

3.2.3 Simple Exponential Smoothing Method Prediction

This method is similar to the weighted moving average where a weight is given to the last
observation and another weight is given to the last forecast. This recursive relationship
makes the forecast take into account the whole past observations. While a larger alpha
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Figure 3.3: Weighted Moving Average Method Prediction vs the Observed Speeds

value increases the responsiveness of the forecast, a smaller one can make the forecasts
smoother (Stevenson, 2012).

ft+k = αst + (1− α)ft, 0 ≤ α ≤ 1 (3.4)

where α is the smoothing constant used to smooth the data (Croarkin et al., 2006). A part
of the simple exponential smoothing prediction on the data can be seen in Figure 3.4.

3.2.4 Double Exponential Smoothing (Holt’s) Method Prediction

This method is used when there is a trend in the data. While a regular linear fit would not
adapt to the changes in the trend through the observations, this method changes its slope
with the changing trend (Stevenson, 2012). This method is also tested on this dataset
because there are clear positive and negative microtrends over the transitions from rush
hours to remaining parts of a day.

Lt = αst + (1− α)(Lt−1 + Tt−1), 0 ≤ α ≤ 1 (3.5)

Tt = β(Lt − Lt−1) + (1− β)Tt−1, 0 ≤ β ≤ 1 (3.6)

ft+k = Lt + kTt (3.7)

where Li is known as Level or Smoothed Observation at time i and α is the smoothing
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Figure 3.4: Simple Exponential Smoothing Method Prediction vs the Observed Speeds

constant to find it. Similarly, Ti is known as Trend or Trend Factor at time i and β is
the trend smoothing constant which helps to smooth the trend in the data (Croarkin et al.,
2006). A part of the double exponential smoothing prediction on the data can be seen in
Figure 3.5.

3.2.5 Triple Exponential Smoothing (Winters) Method Prediction

This method is developed to handle trend and seasonality simultaneously. Thus, it is
employed when even the double exponential smoothing method cannot be used (Croarkin
et al., 2006). It is decided to be used on this dataset because there are microscopic seasons
over the course of this five months such as the rush hours of weekdays in addition to the
trends mentioned above.

Lt = α
st

St−M
+ (1− α)(Lt−1 + Tt−1), 0 ≤ α ≤ 1 (3.8)

Tt = β(Lt − Lt−1) + (1− β)Tt−1, 0 ≤ β ≤ 1 (3.9)

St = γ
st
Lt

+ (1− γ)St−M , 0 ≤ γ ≤ 1 (3.10)

ft+k = (Lt + kTt)St+k−M (3.11)

Similarly, for Winters, L is the Smoothed Observation and α is the smoothing constant. T
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Figure 3.5: Holt’s Method Prediction vs the Observed Speeds

is the Trend Factor and β is the trend smoothing constant. Here, Si is called the Seasonal

Index at time i and γ is the seasonality smoothing constant (Croarkin et al., 2006). And
finally, M is the number of seasons. In our case, the seasons consist of 1-minute time
intervals and we have 1440 seasons in a day throughout the entire horizon. A part of the
triple exponential smoothing prediction on the data can be seen in Figure 3.6.

3.3 Machine Learning

For this problem, artificial neural networks are employed. While a concept of the 1950s
(McCarthy et al., 2006), artificial intelligence improved significantly in the recent years
with advancement in computing power.

3.3.1 Feedforward Neural Networks (FFNN) / Multilayer
Perceptrons (MLP)

Feedforward neural networks or perceptrons are created to mimic the workings of the
human brain. A simple perceptron model has an output unit yi and input units xi along
with an extra bias unit, a set of weights that connect the inputs and the bias unit to the
output (Alpaydın, 2014).
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Figure 3.6: Winters Method Prediction vs the Observed Speeds

y = w0x0 +
d∑
j=1

wjxj (3.12)

where d is the number of input neurons excluding the bias unit. A bias unit is an input
unit of x0 = 1. It acts, as can be seen from (3.12), as the constant in a linear equation.

y = wTx,where w = [w0, w1, . . . , wd]
T and x = [1, x1, . . . , xd]

T (3.13)

A multilayer perceptron is capable of more, compared to a single layer perceptron.
It has the advantage of handling nonlinear functions (Alpaydın, 2014). The multilayer
perceptrons have at least one hidden layer in addition to input and output layers.

To train these models, a dataset with input and target data is required. In this work, the
input data is the forecasts acquired by the forecasting methods mentioned in Section 3.2.
The training starts with an initial set of weights and progresses forward over the system to
yield an output value. This forward propagation uses (3.13). Every layer has an activation
function, and the input from the previous layer is multiplied by the connection weights to
be fed into the next layer nodes as a forward input. This input then is fed to the activation
function yielding the output of the node. This process continues from the input layer to
the output layer similarly for all neurons in all layers. The output layer then, again through
an activation function, yields an output value. This output value is then compared to the
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target value provided.
To minimize the resulting error, the system then does a backward propagation, updat-

ing the weights. The backpropagation process can be seen as a forward propagation from
the output layer to the input layer with the gradients of the activation functions. The gra-
dient of the error function is fed into the output layer where it is multiplied with forward

input of the neuron passed through the gradient of the activation function. The result-
ing value is error signal. Similarly, for the hidden layers, the error signals of a later layer
multiplied by connection weights are called backward input. This backward input is again
multiplied with forward input passed through the gradient of the activation function and
the resulting error signal is used for other layers. After obtaining error signals, gradients
of the weights are calculated as the multiplication of error signal and forward output of
a neuron. Finally, the weights are updated with a predetermined learning rate multiplied
by the gradient of the weights. This procedure continues until the error is minimized.
Interested readers are encouraged to read in more detail in Goodfellow et al. (2016).

Once the algorithm stops and obtains the minimum error value, another dataset is
tested or validated on the set of tuned weights to measure the network’s performance, as
well.

3.3.2 Training Algorithms

3.3.2.1 Stochastic / Minibatch Gradient Descent

Stochastic gradient descent is among the most preferred training algorithms in machine
learning. The method works on single points of the data, updating the weights at each
epoch. And the update is done according to (3.14).

wτ+1 = wτ − η∇En(wτ ) (3.14)

Since the data point for which the weights will be updated is randomly selected,
stochastic gradient descent is more likely to escape the local solutions compared to the
methods with full gradient calculations (Bishop, 2006).

However, the minibatch update handles multiple data points and thus more efficient
compared to stochastic gradient descent in the same amount of time.

Algorithm 2: Gradient Descent
1 Sample a minibatch of m examples from the training set x with corresponding

targets y
2 Compute gradient estimate ∇Ewτ

m
over these m samples

3 Apply weight update: w ← w − η∇Ewτ

m

Algorithm 2 from Goodfellow et al. (2016) is a more general representation of the
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stochastic and minibatch gradient descent methods. If m = 1, then this update is known
as stochastic gradient descent; if 1 < m < d, then the update is known as the minibatch

gradient descent; and if m = d, the update is known as the batch gradient descent.

3.3.2.2 Adaptive Moment Estimation

Adam is the algorithm used in this work. Over the years, a lot of extensions were added
to the stochastic gradient descent and Adam is one of them. It only uses the first order
gradient and some constants (Ruder, 2016; Kingma and Ba, 2014). The steps are outlined
in Algorithm 3.

Algorithm 3: Adaptive Moment Estimation
1 while not converged do
2 mt = β1mt−1 + (1− β1)gt
3 vt = β2vt−1 + (1− β2)g2t
4 wt+1 ← wt − η

ε+
√

vt
1−βt2

∗ mt
1−βt1

5 t← t+ 1

6 end

Adam’s one advantage is that it makes use of the momentum. Momentum helps in
cases where other methods might make large oscillations and miss the optimum due
to poor learning rate selections. Momentum takes the average of the updates over the
iterations thus creating a corrective update direction that would not miss the optimum
(Goodfellow et al., 2016). The downside is the extra memory requirement from storing
information on previous updates. Another advantage of Adam is that it “computes indi-
vidual adaptive learning rates for different parameters from estimates of first and second
moments of the gradients.” (Kingma and Ba, 2014)
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Chapter 4

Experimental Setup

We propose four main approaches to the problem. To this end, four different MLPs were
constructed. Two of these perform 1-step ahead forecasts and the other two perform multi-
step ahead forecasts. Error function of all of these perceptrons is mean absolute deviation
and it can be formulated as shown in (4.1) for a given segment.

MAD =
1

n

n∑
i=1

|ei| (4.1)

where n is the number of forecasts and |ei| is the absolute error.

4.1 Route Selection

The analyses were performed on two nearly 22-km routes in the city of Istanbul. The
routes and their features can be seen in Figures 4.1 and 4.2.

The first route covers 324 segments over a distance of 21.4908 kilometers, with a mean
segment length of 0.0663 kilometers and a median segment length of 0.0455 kilometers.
It is an urban route with many intersections and that is why there are a lot of segments on
it.

The second route covers 63 segments over a distance of 22.7513 kilometers, with
a mean segment length of 0.3611 kilometers and a median segment length of 0.2482
kilometers. It is mostly a highway route with a Bosphorus bridge crossing acting as a
bottleneck.
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Figure 4.1: Map and Features of Route 1

Figure 4.2: Map and Features of Route 2
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Figure 4.3: Temporally and Spatially Connected Approach (1-step Ahead Forecast)
(TS–1 Network) (Representation of only a single (mth) method out of a total of M

methods)

4.2 Temporally and Spatially Connected Approach
(1-step Ahead Forecast) (TS–1 Network)

For a representation of the TS–1 network, see Figure 4.3. Like in Ye et al. (2012), in-
puts of this network include forecasts from the neighboring segments and forecasts from
1-step behind. For every prediction method, there are six input neurons and they forecast
the speeds at (t+ 1)st time. While two of them forecast the speeds for the segment in
question, another pair of neurons forecast the speeds for the neighboring upstream seg-
ment (U.S.), and the last pair performs forecasts for the neighboring downstream segment
(D.S.). One of each pair of input neurons perform the forecast based on the speed at tth

time, and the other does the same based on the speed at the (t− 1)st time. Also, there are
12 neurons in the hidden layer and a single output neuron in the output layer. In short,
this network has 12× ((6×M)+1)+ (12+1) = 72×M +25 weight parameters where
M is the number of predictive methods used.
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Figure 4.4: Single Segment Approach (1-step Ahead Forecast) (SS–1 Network)

4.3 Single Segment Approach (1-step Ahead Forecast)
(SS–1 Network)

For a representation of the SS–1 network, see Figure 4.4. This approach is similar to the
previous one; however, there is only a single input neuron for every prediction method this
time and that is the prediction of the speed value at (t+ 1)st time with respect to the speed
observation at tth time. This network also has 12 neurons in the only hidden layer and a
single output neuron in the output layer. Thus, this network has 12×(M+1)+(12+1) =

12×M + 25 weight parameters where M is the number of predictive methods used.

4.4 Single Segment Approach (Multi-step Ahead
Forecast) (SS–M Network)

For a representation of the SS–M network, see Figure 4.5. This method is similar to the
previous methods with one crucial difference: This network performs multi-step ahead
forecasts. For a forecast over the next N timesteps, every prediction method has N input
neurons. First input neuron contains the prediction for the speed at (t+ 1)st time, the
second neuron is for the prediction for the speed at (t+ 2)nd time, and so on. The hidden
layer in this network contains 50 neurons and it has N output neurons with each neuron
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Figure 4.5: Single Segment Approach (Multi-step Ahead Forecast) (SS–M Network)

outputting a prediction for its corresponding step-ahead time. The reason SS–M contains
50 hidden neurons while other networks have 12 hidden neurons is because the number
of input and output neurons is significantly higher compared to the others. This number,
of course, could have been determined with a more thorough analysis. This network has
50 × ((M × N) + 1) + (50 + 1) = 50 ×M × N + 101 weight parameters where M is
the number of predictive methods used and N is the forecasting horizon.

4.5 Recursive Single Segment Approach (Multi-step
Ahead Forecast) (RSS–M Network)

For a representation of the RSS–M network, see Figure 4.6. This method is an addition
to the second approach. The network has the same number of input, hidden, and output
neurons. However, in this network, every 1-step ahead forecast output is treated as the
actual observed value and a new 1-step ahead forecast is made with this input until the
Nth time in the future. Finally, this network has 12× (M +1)+ (12+ 1) = 12×M +25

weight parameters where M is the number of predictive methods used.
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Figure 4.6: Recursive Single Segment Approach (Multi-step Ahead Forecast) (RSS–M
Network)
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Chapter 5

Computational Results

The computational experiments were carried on a workstation with a 64-bit Windows 7
Professional operating system, a memory of 128 GB, and two 10-core Intel Xeon CPU
E5-2640 v4 @ 2.40 GHz processors. We have implemented the FFNN using Keras library
built on Theano with Python 2.7 on Jupyter Notebook via Continuum Anaconda. For
data analysis and computations, openpyxl, matplotlib, pandas, NumPy, SciPy, scikit-learn
libraries are used.

In the following analyses, 90% (4.5 months) of the dataset was used for training and
the remaining 10% (15 days) was used for test. Activation functions for both input–
hidden layer transition and hidden–output layer transition were purely linear functions.
Furthermore, as noted before, the networks tried to minimize the mean absolute deviation.
Also, unless otherwise stated, the parameters of the predictive methods are as follows:
Weighted moving average method uses a 3-minute horizon with 0.25, 0.50, and 0.25 as
corresponding weights in the analyses. Simple exponential smoothing method takes 0.50
as alpha; Holt’s method takes 0.20 and 0.30 as its alpha and beta values, respectively; and
finally, Winters method takes 0.45, 0.30, and 0.20 as its alpha, beta and gamma values,
respectively. When we tried to optimize the parameters, we obtained exceptionally low
and high values. Since too high smoothing constants would yield a too smooth and too
low smoothing constants would yield a too erratic prediction (Croarkin et al., 2006), we
decided to decrease the values empirically.
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5.1 1-step Ahead Predictions

Route 1 Route 2
Segment Length (km) Length (km)

5 0.2170 0.4219
15 0.0441 0.4419
18 0.0507 0.4443
50 0.0454 0.0072

Average 0.0893 0.3288

Table 5.1: Lengths of the Analyzed Segments for 1-step Ahead Prediction

Methods Setups
Route 1 Route 2

MAD (km/h) MAD (km/h)

Train Test Train Test

N 0.0232 1.5643
M 0.0448 2.3202
S 0.0438 2.0416
H 0.0513 3.2077
W 0.0483 1.9861
NMS TS–1 0.0725 0.0725 1.1317 1.9133
NMS SS–1 0.0500 0.0583 1.1708 1.2742
NMW TS–1 0.0775 0.0800 1.1800 1.3350
NMW SS–1 0.0550 0.0575 1.1675 1.2100
NMSHW TS–1 0.0700 0.0858 1.2082 1.5618
NMSHW SS–1 0.0567 0.0650 1.1975 1.4308

Table 5.2: 1-step Ahead Prediction Average of MAD (km/h) values of Different Setups
and Methods for Both Routes over 500 epochs and with a minibatch size of 1000

Both routes are tested with two different 1-step ahead setups introduced in Chapter 4 over
the same four segments (#5, #15, #18, #50) and with a batch size of 1000 for 100, 300, and
500 epochs. The lengths of the segments analyzed with 1-step ahead forecast can be found
in Table 5.1. We also employed regularization and trained them with Adam training al-
gorithm (as it is an improvement to SGD (Kingma and Ba, 2014)). Both routes employed
the NMS, NMW, and NMSHW predictive method combinations for 1-step analyses.

While the average results can be found in Table 5.2 and the detailed results are ex-
plained below, related tables of 1-step ahead forecast methods can be found in Tables A.1
to A.8 in Appendix A.

For both routes and for all methods, SS–1 is superior to TS–1 on average (see Ta-
ble 5.2). This suggests that taking neighboring segments and previous time steps into
consideration, unlike the findings of Ye et al. (2012), turns out to be redundant. How-
ever, it is important to note that their findings were based on data recorded at irregular
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intervals while we have a complete data. It is also important to note that the scope of our
custom data cleaning method covered only the temporal irregularities while including a
spatial cleaning as well could have helped TS–1 perform better. Furthermore, all methods
perform better on the shorter segments for both routes, which supports the findings of
Wang et al. (2015). Apparently, a shorter segment’s readings would not fluctuate much
in just 1-step later, while the same cannot be said for a longer segment; hence, the differ-
ences between error values. The results are also benchmarked with individual predictive
methods. We observe that the Naı̈ve method is a powerful predictive method by itself.
Especially for Route 1, no other option comes close to its error values. For Route 2, even
though it is not the best predictive method, it falls short by only a MAD difference of
0.3543 km/h. Considering the individual predictive methods take much less time then
constructing and training a neural network, it might be more reasonable to perform the
1-step ahead predictions with the Naı̈ve method.

5.2 Multi-step Ahead Predictions

Route 1 Route 2
Segment Length (km) Segment Length (km)

18 0.0507 1 0.5538
19 0.0461 2 0.3711
20 0.0466 3 0.2252
46 0.0822 6 0.3849
47 0.0813 7 0.3174
48 0.1019 8 0.3567
94 0.2084 17 0.4784
95 0.1617 18 0.4443
96 0.1069 19 0.5675

121 0.0738 26 0.7029
122 0.0887 27 0.9742
123 0.0682 28 1.1210

Average 0.093 0.5415

Table 5.3: Lengths of the Analyzed Segments for Multi-step Ahead Prediction
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Setup Method Route 1 Route 2

W 0.409 7.403
S 0.403 7.436
M 0.404 7.555
N 0.394 7.533

RSS–M NMS 1.651 13.554
RSS–M NMW 1.402 12.985
RSS–M NMSW 1.437 13.027
SS–M NMS 0.299 6.175
SS–M NMW 0.299 6.165
SS–M NMSW 0.304 6.155

Table 5.4: Multi-step Ahead Prediction Average of MAD (km/h) values of Different
Setups and Methods for Both Routes over 30 epochs and with a minibatch size of 1000

Both routes are also tested with two different multi-step (30 minutes) ahead setups in-
troduced in Chapter 4 over twelve segments each. This time, different set of segments
were selected to see the performance of the multi-step ahead setups in varying conditions.
The lengths of the analyzed segments can be seen in Table 5.3. We employed NMS,
NMW, and NMSW predictive methods. Multi-step ahead predictions work on methods
not employing Holt’s method because RSS–M setup cause the predictions with a trend
component to explode. Additionally, that is why the Winters method components con-
sider the data without a trend component. Since the RSS–M setup is not compatible with
the method, to have a fair comparison between the multi-step ahead prediction methods,
Holt’s method (or, trend in general) was not included in the combinations. These tests
were exclusively performed with the Adam optimizer. Also, number of epochs and num-
ber of batch size values are fixed to 30 and 1000, respectively. We benchmarked our
results with the multi-step ahead forecasts of Naı̈ve, Weighted Moving Average, Simple
Exponential Smoothing, and Winters predictive methods separately.

While the average results can be found in Table 5.4 and the detailed results are ex-
plained below, tables of the detailed results of multi-step ahead forecast methods can be
found in Tables B.1 to B.24 in Appendix B.

Results of multi-step ahead forecasts show that RSS–M is not successful. In all seg-
ments, it performs worse than individual predictive methods. This is to show that treating
a 1-step ahead prediction as the new observation would actually amplify the deviation as
time progresses. On the other hand, SS–M, almost always, outperforms the individual
methods. However, for Route 1, even the individual methods return error values that are
less than 0.5 km/h. For Route 2, SS–M, usually, improves the predictions by 1–2 km/h,
which is quite helpful.

It is also important to note the difference of the error values between Route 1 and
Route 2. In all cases, Route 2 underperformed. A plausible reason for these poor error
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(a) Average MAD (km/h) values over 24 hours (b) Average MAPE values over 24 hours

Figure 5.1: NMS Method on SS–M over one day

(a) Average MAD (km/h) values over 24 hours (b) Average MAPE values over 24 hours

Figure 5.2: NMW Method on SS–M over one day

values seems to be the large length of the segments. While the high frequency of traffic
lights on Route 1 might cause a more stable (and slow) cruising speed on every lane,
a highway would have more variance in terms of speeds from one minute to the next
gathering data from different lanes with different average speed values.

To further investigate the performance of multi-step ahead predictions, Figures 5.1,
5.2 and 5.3 are provided. In these figures, segment #18 of Route 2 is analyzed in more
detail with respect to the observed speeds of February 27, 2017, Monday. This segment is
located on the Asian side exit of the FSM bridge. The three methods have close error val-
ues throughout the day and on average. The rush hour predictions have the highest mean
absolute deviation from the actual observations which is expected given the highly unpre-
dictable characteristic of rush hour traffic. When mean absolute percent error (MAPE)
values, as given in (5.1), are compared with MAD values, we can see the poor results of
morning and afternoon rush hours stressed even further.
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(a) Average MAD (km/h) values over 24 hours (b) Average MAPE values over 24 hours

Figure 5.3: NMSW Method on SS–M over one day

MAPE =
1

n

n∑
i=1

|ei|
si

(5.1)

where n is the number of forecasts, |ei| is the absolute error, and si is the observation.
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Chapter 6

Concluding Remarks and Future Research

In this work, we tackled the problems of short and medium-term speed prediction on two
different routes in Istanbul. We proposed four neural network setups that take forecasts
from individual predictive methods to perform predictions on a segment. Two of these
setups perform 1-minute ahead predictions while the remaining two predict the next 30
minutes. These neural networks were trained with Adam optimizer and employed mean
absolute deviation error as their loss functions. To observe the performances of the in-
troduced networks, we benchmarked our results with individual predictive methods. Our
findings indicate that machine learning methods are useful for this task. Our 1-step ahead
analyses returned mean absolute deviation values of less than 0.55 km/h for Route 1 and
less than 1.75 for Route 2 with the appropriate parameter combinations, considerable im-
provements over the results of Ye et al. (2012). Our findings also show that the Naı̈ve
method is a powerful individual predictive method when employed on 1-step ahead pre-
diction. However, our single segment multi-step ahead forecasts are quite successful when
compared to the conventional predictive methods. The difference in error values for two
separate routes show that a route with shorter segments would return lower error values.
The results show that neural networks are capable of providing accurate predictions with
appropriate parameter selection.

To improve the performance of our approach, several extensions can be considered.
First, the parameters of individual prediction methods can be fine tuned independently.
In this work, these parameters were fixed at empirically chosen values. Secondly, it is
also possible to change the definition of season to capture the seasonal characteristics
of sections of a day instead of using minutely seasons which may be very precise but
inefficient. Thirdly, increasing the number of epochs from 30 would return better results
in multi-step ahead forecasts as in 1-step ahead prediction. It is also important to note that
the custom data cleaning process contains empirically chosen parameters. The 5 km/h
speed difference limit, 3 standard deviations and the decision to decrease the maximum
standard deviation limit by 0.85 at every iteration were all determined to have a balanced
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smoothing process. A data collection source like occupied taxis of Ye et al. (2012) would
be much more accurate to the actual traffic flow. On the other hand, it might not be
possible to cover all of the streets every minute on the road network. Finally, as mentioned
in Chapter 5, performing a spatial cleaning in addition to a temporal one might return
improved results.

There are several possible future directions this research can take. First, recurrent
neural networks (RNN) can be implemented. Recurrent neural networks are currently
being used on text generation problems, and it is likely that they are suitable for time
series sequence generation. A problem-specific advantage of RNNs is that they would
not need the predictive methods and significantly decrease the problem size. Among
RNNs, Long short-term memory (LSTM) networks and gated recurrent units (GRU) can
be employed. Secondly, employing Winters prediction over a horizon longer than 30
minutes might reflect seasonal characteristics better and provide improvements. Thirdly,
random forest regression is also a simple method we can use to combine the individual
prediction methods. Finally, training and testing on respective days instead of full data
might yield better results as well as trying to accurately predict the speed on a network of
segments instead of a single one.
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Appendix A

1-Step Ahead Results
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MAD (km/h)
Setup Seg. Method Epochs Batch Train Test Train Time (s)

TS–1 5 NMS 500 1000 0.08 0.09 1296.08
SS–1 5 NMW 500 1000 0.08 0.09 1443.72
SS–1 5 NMSHW 500 1000 0.07 0.11 273.10
SS–1 5 NMSHW 300 1000 0.07 0.11 156.32
SS–1 5 NMS 500 1000 0.10 0.11 1103.15
TS–1 5 NMS 100 1000 0.11 0.12 323.50
SS–1 5 NMS 300 1000 0.11 0.12 910.93
SS–1 5 NMS 100 1000 0.12 0.12 412.52
TS–1 5 NMSHW 300 1000 0.09 0.13 457.37
TS–1 5 NMW 500 1000 0.12 0.13 480.42
TS–1 5 NMSHW 500 1000 0.11 0.15 2078.76
SS–1 5 NMSHW 100 1000 0.14 0.15 90.34
TS–1 5 NMSHW 100 1000 0.12 0.15 307.43
TS–1 5 NMS 300 1000 0.15 0.15 663.22

Table A.1: 1-step Ahead Prediction for Segment #5 of Route 1 (0.2170 km in length)

MAD (km/h)
Setup Seg. Method Epochs Batch Train Test Train Time (s)

SS–1 15 NMS 100 1000 0.01 0.01 552.40
SS–1 15 NMSHW 300 1000 0.02 0.02 266.43
SS–1 15 NMSHW 100 1000 0.02 0.02 54.32
SS–1 15 NMS 300 1000 0.02 0.02 842.82
SS–1 15 NMSHW 500 1000 0.03 0.03 508.15
TS–1 15 NMS 500 1000 0.03 0.03 1152.13
SS–1 15 NMW 500 1000 0.03 0.03 1925.36
TS–1 15 NMS 300 1000 0.04 0.04 687.38
TS–1 15 NMS 100 1000 0.04 0.04 183.01
TS–1 15 NMSHW 100 1000 0.04 0.04 665.44
TS–1 15 NMW 500 1000 0.05 0.05 385.54
TS–1 15 NMSHW 300 1000 0.05 0.05 2286.84
TS–1 15 NMSHW 500 1000 0.06 0.06 1416.96
SS–1 15 NMS 500 1000 0.06 0.06 789.38

Table A.2: 1-step Ahead Prediction for Segment #15 of Route 1 (0.0441 km in length)
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MAD (km/h)
Setup Seg. Method Epochs Batch Train Test Train Time (s)

SS–1 18 NMS 300 1000 0.07 0.08 154.07
SS–1 18 NMSHW 500 1000 0.07 0.08 477.62
SS–1 18 NMS 100 1000 0.08 0.08 527.67
SS–1 18 NMW 500 1000 0.08 0.08 2037.79
SS–1 18 NMS 500 1000 0.09 0.09 1345.93
SS–1 18 NMSHW 300 1000 0.06 0.09 228.50
TS–1 18 NMS 100 1000 0.10 0.10 258.11
TS–1 18 NMSHW 500 1000 0.09 0.10 2831.35
TS–1 18 NMSHW 300 1000 0.09 0.11 629.86
TS–1 18 NMW 500 1000 0.11 0.11 632.78
TS–1 18 NMS 300 1000 0.11 0.11 686.15
SS–1 18 NMSHW 100 1000 0.08 0.11 109.91
TS–1 18 NMS 500 1000 0.12 0.12 735.50
TS–1 18 NMSHW 100 1000 0.08 0.13 279.33

Table A.3: 1-step Ahead Prediction for Segment #18 of Route 1 (0.0507 km in length)

MAD (km/h)
Setup Seg. Method Epochs Batch Train Test Train Time (s)

SS–1 50 NMS 500 1000 0.01 0.01 702.37
SS–1 50 NMS 100 1000 0.01 0.01 200.69
TS–1 50 NMS 300 1000 0.02 0.01 517.67
SS–1 50 NMS 300 1000 0.01 0.01 596.49
SS–1 50 NMW 500 1000 0.01 0.01 1698.55
SS–1 50 NMSHW 300 1000 0.01 0.02 439.94
SS–1 50 NMSHW 500 1000 0.02 0.02 953.06
TS–1 50 NMS 100 1000 0.02 0.02 332.07
SS–1 50 NMSHW 100 1000 0.02 0.02 133.06
TS–1 50 NMW 500 1000 0.03 0.03 358.52
TS–1 50 NMSHW 300 1000 0.03 0.03 1519.08
TS–1 50 NMSHW 500 1000 0.03 0.03 1024.43
TS–1 50 NMS 500 1000 0.05 0.04 924.16
TS–1 50 NMSHW 100 1000 0.05 0.05 173.71

Table A.4: 1-step Ahead Prediction for Segment #50 of Route 1 (0.0454 km in length)
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MAD (km/h)
Setup Seg. Method Epochs Batch Train Test Train Time (s)

TS–1 5 NMW 500 1000 1.71 1.71 520.28
TS–1 5 NMS 500 1000 1.71 1.71 893.60
TS–1 5 NMS 100 1000 1.75 1.75 176.72
TS–1 5 NMS 300 1000 1.77 1.76 639.02
SS–1 5 NMS 500 1000 1.82 1.82 863.10
SS–1 5 NMS 300 1000 1.83 1.82 349.76
SS–1 5 NMS 100 1000 1.85 1.85 637.24
SS–1 5 NMW 500 1000 1.85 1.86 2080.85
SS–1 5 NMSHW 500 1000 1.82 1.87 1036.11
TS–1 5 NMSHW 100 1000 1.77 2.02 380.00
TS–1 5 NMSHW 500 1000 1.81 2.30 2112.99
SS–1 5 NMSHW 300 1000 1.86 2.40 481.34
SS–1 5 NMSHW 100 1000 1.91 2.66 224.57
TS–1 5 NMSHW 300 1000 1.83 2.81 1592.85

Table A.5: 1-step Ahead Prediction for Segment #5 of Route 2 (0.4219 km in length)

MAD (km/h)
Setup Seg. Method Epochs Batch Train Test Train Time (s)

TS–1 15 NMW 500 1000 1.12 1.17 333.19
TS–1 15 NMS 100 1000 1.15 1.19 82.71
SS–1 15 NMS 300 1000 1.21 1.27 332.15
SS–1 15 NMS 100 1000 1.21 1.27 283.84
TS–1 15 NMS 300 1000 1.23 1.28 690.91
SS–1 15 NMS 500 1000 1.24 1.29 881.18
SS–1 15 NMW 500 1000 1.23 1.28 2042.19
SS–1 15 NMSHW 500 1000 1.22 1.29 231.92
SS–1 15 NMSHW 300 1000 1.25 1.47 491.54
TS–1 15 NMS 500 1000 1.71 1.77 823.03
TS–1 15 NMSHW 100 1000 1.35 1.92 225.59
TS–1 15 NMSHW 300 1000 1.54 2.64 1140.84
SS–1 15 NMSHW 100 1000 1.46 2.77 786.40
TS–1 15 NMSHW 500 1000 1.48 3.27 6298.04

Table A.6: 1-step Ahead Prediction for Segment #15 of Route 2 (0.4419 km in length)
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MAD (km/h)
Setup Seg. Method Epochs Batch Train Test Train Time (s)

TS–1 18 NMW 500 1000 1.38 1.43 570.49
TS–1 18 NMS 500 1000 1.40 1.45 807.46
TS–1 18 NMS 100 1000 1.42 1.46 171.69
TS–1 18 NMS 300 1000 1.42 1.47 283.80
SS–1 18 NMS 500 1000 1.48 1.53 155.12
SS–1 18 NMW 500 1000 1.49 1.55 1529.77
SS–1 18 NMS 100 1000 1.50 1.56 66.88
SS–1 18 NMSHW 500 1000 1.48 1.56 890.16
SS–1 18 NMS 300 1000 1.51 1.56 119.07
SS–1 18 NMSHW 300 1000 1.53 1.66 377.42
SS–1 18 NMSHW 100 1000 1.57 1.94 129.43
TS–1 18 NMSHW 500 1000 1.59 4.47 764.18
TS–1 18 NMSHW 300 1000 1.39 6.64 2220.88

Table A.7: 1-step Ahead Prediction for Segment #18 of Route 2 (0.4443 km in length)

MAD (km/h)
Setup Seg. Method Epochs Batch Train Test Train Time (s)

SS–1 50 NMS 500 1000 0.09 0.10 254.19
SS–1 50 NMW 500 1000 0.12 0.13 1944.16
SS–1 50 NMS 300 1000 0.12 0.13 2236.66
SS–1 50 NMS 100 1000 0.14 0.14 32.70
TS–1 50 NMSHW 500 1000 0.09 0.14 768.18
TS–1 50 NMW 500 1000 0.15 0.15 486.78
SS–1 50 NMSHW 500 1000 0.08 0.16 734.96
SS–1 50 NMSHW 300 1000 0.10 0.18 349.85
SS–1 50 NMSHW 100 1000 0.12 0.18 171.43
TS–1 50 NMS 300 1000 0.18 0.19 434.04
TS–1 50 NMS 100 1000 0.18 0.19 165.22
TS–1 50 NMS 500 1000 0.19 0.19 3233.63
TS–1 50 NMSHW 300 1000 0.13 0.19 540.73
TS–1 50 NMSHW 100 1000 0.14 0.21 1103.66

Table A.8: 1-step Ahead Prediction for Segment #50 of Route 2 (0.0072 km in length)
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Appendix B

Multi-Step Ahead Results
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MAD (km/h)
Setup Method Train Test Time (s)

W 0.095
S 0.091
M 0.091
N 0.089

RSS–M NMS 0.031 0.390 24
RSS–M NMW 0.059 0.542 22
RSS–M NMSW 0.081 0.830 25
SS–M NMS 0.146 0.074 1799
SS–M NMW 0.141 0.068 1480
SS–M NMSW 0.133 0.061 1821

Table B.1: Multi-step Ahead Prediction Results for Segment #18 of Route 1 (0.0507 km
in length)

MAD (km/h)
Setup Method Train Test Time (s)

W 0.679
S 0.671
M 0.672
N 0.658

RSS–M NMS 0.384 3.761 19
RSS–M NMW 0.402 3.815 21
RSS–M NMSW 0.197 1.929 21
SS–M NMS 0.578 0.595 1826
SS–M NMW 0.487 0.507 1551
SS–M NMSW 0.542 0.559 1501

Table B.2: Multi-step Ahead Prediction Results for Segment #19 of Route 1 (0.0461 km
in length)

MAD (km/h)
Setup Method Train Test Time (s)

W 0.072
S 0.069
M 0.069
N 0.068

RSS–M NMS 0.066 0.747 24
RSS–M NMW 0.084 0.851 28
RSS–M NMSW 0.027 0.283 23
SS–M NMS 0.111 0.051 2154
SS–M NMW 0.120 0.060 1737
SS–M NMSW 0.124 0.063 1885

Table B.3: Multi-step Ahead Prediction Results for Segment #20 of Route 1 (0.0466 km
in length)
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MAD (km/h)
Setup Method Train Test Time (s)

W 0.840
S 0.831
M 0.832
N 0.812

RSS–M NMS 0.209 2.219 17
RSS–M NMW 0.355 2.962 15
RSS–M NMSW 0.434 4.407 16
SS–M NMS 0.552 0.593 40
SS–M NMW 0.579 0.621 1485
SS–M NMSW 0.538 0.579 34

Table B.4: Multi-step Ahead Prediction Results for Segment #46 of Route 1 (0.0822 km
in length)

MAD (km/h)
Setup Method Train Test Time (s)

W 0.935
S 0.925
M 0.927
N 0.905

RSS–M NMS 0.409 4.168 25
RSS–M NMW 0.378 4.012 20
RSS–M NMSW 0.244 2.483 21
SS–M NMS 0.662 0.697 64
SS–M NMW 0.613 0.649 1750
SS–M NMSW 0.689 0.724 52

Table B.5: Multi-step Ahead Prediction Results for Segment #47 of Route 1 (0.0813 km
in length)

MAD (km/h)
Setup Method Train Test Time (s)

W 0.106
S 0.102
M 0.102
N 0.100

RSS–M NMS 0.148 1.219 12
RSS–M NMW 0.152 1.287 9
RSS–M NMSW 0.143 1.161 14
SS–M NMS 0.143 0.110 85
SS–M NMW 0.183 0.15 1747
SS–M NMSW 0.230 0.197 73

Table B.6: Multi-step Ahead Prediction Results for Segment #48 of Route 1 (0.1019 km
in length)
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MAD (km/h)
Setup Method Train Test Time (s)

W 0.085
S 0.082
M 0.082
N 0.080

RSS–M NMS 0.101 0.924 11
RSS–M NMW 0.087 0.900 13
RSS–M NMSW 0.033 0.208 12
SS–M NMS 0.127 0.068 136
SS–M NMW 0.131 0.073 1735
SS–M NMSW 0.131 0.073 95

Table B.7: Multi-step Ahead Prediction Results for Segment #94 of Route 1 (0.2084 km
in length)

MAD (km/h)
Setup Method Train Test Time (s)

W 0.106
S 0.104
M 0.104
N 0.101

RSS–M NMS 0.060 0.669 10
RSS–M NMW 0.061 0.662 12
RSS–M NMSW 0.061 0.653 12
SS–M NMS 0.146 0.085 173
SS–M NMW 0.142 0.082 1672
SS–M NMSW 0.141 0.081 148

Table B.8: Multi-step Ahead Prediction Results for Segment #95 of Route 1 (0.1617 km
in length)

MAD (km/h)
Setup Method Train Test Time (s)

W 0.225
S 0.220
M 0.221
N 0.215

RSS–M NMS 0.054 0.492 13
RSS–M NMW 0.071 0.806 15
RSS–M NMSW 0.094 0.901 13
SS–M NMS 0.230 0.174 163
SS–M NMW 0.242 0.184 1857
SS–M NMSW 0.244 0.184 172

Table B.9: Multi-step Ahead Prediction Results for Segment #96 of Route 1 (0.1069 km
in length)
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MAD (km/h)
Setup Method Train Test Time (s)

W 0.415
S 0.408
M 0.408
N 0.399

RSS–M NMS 0.165 1.588 13
RSS–M NMW 0.167 1.599 10
RSS–M NMSW 0.164 1.563 12
SS–M NMS 0.388 0.337 197
SS–M NMW 0.400 0.346 1825
SS–M NMSW 0.357 0.303 182

Table B.10: Multi-step Ahead Prediction Results for Segment #121 of Route 1 (0.0738
km in length)

MAD (km/h)
Setup Method Train Test Time (s)

W 1.228
S 1.221
M 1.221
N 1.187

RSS–M NMS 0.162 2.698 12
RSS–M NMW 0.124 2.415 14
RSS–M NMSW 0.095 2.234 12
SS–M NMS 0.358 0.712 217
SS–M NMW 0.373 0.726 1867
SS–M NMSW 0.379 0.734 213

Table B.11: Multi-step Ahead Prediction Results for Segment #122 of Route 1 (0.0887
km in length)

MAD (km/h)
Setup Method Train Test Time (s)

W 0.120
S 0.116
M 0.116
N 0.113

RSS–M NMS 0.090 0.938 12
RSS–M NMW 0.096 1.021 11
RSS–M NMSW 0.063 0.588 12
SS–M NMS 0.186 0.089 253
SS–M NMW 0.214 0.118 1774
SS–M NMSW 0.190 0.093 232

Table B.12: Multi-step Ahead Prediction Results for Segment #123 of Route 1 (0.0682
km in length)
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MAD (km/h)
Setup Method Train Test Time (s)

W 7.028
S 7.057
M 7.171
N 7.149

RSS–M NMS 2.179 13.964 24
RSS–M NMW 2.183 14.454 25
RSS–M NMSW 2.258 16.223 25
SS–M NMS 5.741 5.808 54
SS–M NMW 5.770 5.834 1398
SS–M NMSW 5.751 5.817 41

Table B.13: Multi-step Ahead Prediction Results for Segment #1 of Route 2 (0.5538 km
in length)

MAD (km/h)
Setup Method Train Test Time (s)

W 7.251
S 7.285
M 7.405
N 7.381

RSS–M NMS 2.288 17.257 20
RSS–M NMW 2.216 13.058 18
RSS–M NMSW 2.169 12.593 14
SS–M NMS 5.915 5.964 76
SS–M NMW 5.905 5.948 1530
SS–M NMSW 5.900 5.943 64

Table B.14: Multi-step Ahead Prediction Results for Segment #2 of Route 2 (0.3711 km
in length)

MAD (km/h)
Setup Method Train Test Time (s)

W 6.978
S 7.007
M 7.132
N 7.125

RSS–M NMS 2.128 10.078 15
RSS–M NMW 2.254 14.957 16
RSS–M NMSW 2.317 16.568 22
SS–M NMS 5.745 5.874 97
SS–M NMW 5.736 5.858 1570
SS–M NMSW 5.711 5.838 88

Table B.15: Multi-step Ahead Prediction Results for Segment #3 of Route 2 (0.2252 km
in length)
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MAD (km/h)
Setup Method Train Test Time (s)

W 8.203
S 8.233
M 8.382
N 8.384

RSS–M NMS 2.600 14.753 17
RSS–M NMW 2.590 14.027 12
RSS–M NMSW 2.590 13.883 14
SS–M NMS 6.985 6.834 227
SS–M NMW 7.004 6.850 1530
SS–M NMSW 6.951 6.798 207

Table B.16: Multi-step Ahead Prediction Results for Segment #6 of Route 2 (0.3849 km
in length)

MAD (km/h)
Setup Method Train Test Time (s)

W 7.539
S 7.582
M 7.710
N 7.697

RSS–M NMS 2.425 16.689 22
RSS–M NMW 2.296 14.985 20
RSS–M NMSW 2.358 14.466 21
SS–M NMS 6.770 6.281 268
SS–M NMW 6.728 6.226 1732
SS–M NMSW 6.703 6.200 252

Table B.17: Multi-step Ahead Prediction Results for Segment #7 of Route 2 (0.3174 km
in length)

MAD (km/h)
Setup Method Train Test Time (s)

W 6.916
S 6.961
M 7.089
N 7.090

RSS–M NMS 2.329 11.862 12
RSS–M NMW 2.319 11.953 15
RSS–M NMSW 2.325 11.331 26
SS–M NMS 6.645 5.862 299
SS–M NMW 6.636 5.848 1600
SS–M NMSW 6.617 5.825 243

Table B.18: Multi-step Ahead Prediction Results for Segment #8 of Route 2 (0.3567 km
in length)
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MAD (km/h)
Setup Method Train Test Time (s)

W 6.978
S 7.012
M 7.120
N 7.094

RSS–M NMS 2.190 14.974 13
RSS–M NMW 2.512 15.057 9
RSS–M NMSW 2.043 8.783 11
SS–M NMS 6.117 5.841 561
SS–M NMW 6.111 5.831 1633
SS–M NMSW 6.082 5.800 531

Table B.19: Multi-step Ahead Prediction Results for Segment #17 of Route 2 (0.4784
km in length)

MAD (km/h)
Setup Method Train Test Time (s)

W 7.112
S 7.145
M 7.251
N 7.218

RSS–M NMS 2.046 9.835 13
RSS–M NMW 2.208 13.201 14
RSS–M NMSW 2.160 12.585 12
SS–M NMS 6.066 5.927 663
SS–M NMW 6.058 5.918 1593
SS–M NMSW 6.041 5.903 598

Table B.20: Multi-step Ahead Prediction Results for Segment #18 of Route 2 (0.4443
km in length)

MAD (km/h)
Setup Method Train Test Time (s)

W 8.230
S 8.272
M 8.399
N 8.367

RSS–M NMS 2.400 15.541 12
RSS–M NMW 2.402 15.467 9
RSS–M NMSW 2.318 12.147 11
SS–M NMS 6.882 6.772 705
SS–M NMW 6.890 6.776 1691
SS–M NMSW 6.850 6.733 666

Table B.21: Multi-step Ahead Prediction Results for Segment #19 of Route 2 (0.5675
km in length)
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MAD (km/h)
Setup Method Train Test Time (s)

W 8.504
S 8.525
M 8.632
N 8.561

RSS–M NMS 1.959 11.921 13
RSS–M NMW 1.920 12.183 15
RSS–M NMSW 1.996 12.915 12
SS–M NMS 7.546 7.097 827
SS–M NMW 7.529 7.027 1727
SS–M NMSW 7.527 7.065 752

Table B.22: Multi-step Ahead Prediction Results for Segment #26 of Route 2 (0.7029
km in length)

MAD (km/h)
Setup Method Train Test Time (s)

W 6.777
S 6.804
M 6.913
N 6.890

RSS–M NMS 2.043 10.517 12
RSS–M NMW 2.108 12.029 11
RSS–M NMSW 2.121 12.777 13
SS–M NMS 6.236 5.689 918
SS–M NMW 6.261 5.724 1841
SS–M NMSW 6.298 5.766 845

Table B.23: Multi-step Ahead Prediction Results for Segment #27 of Route 2 (0.9742
km in length)

MAD (km/h)
Setup Method Train Test Time (s)

W 7.317
S 7.343
M 7.461
N 7.436

RSS–M NMS 2.278 15.260 11
RSS–M NMW 2.250 13.782 13
RSS–M NMSW 2.187 12.054 10
SS–M NMS 6.674 6.152 997
SS–M NMW 6.659 6.137 1691
SS–M NMSW 6.677 6.168 977

Table B.24: Multi-step Ahead Prediction Results for Segment #28 of Route 2 (1.121 km
in length)
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