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ABSTRACT 

 

CHANGES IN ROOT MORPHOLOGY AND NUTRIENT UPTAKE IN WHEAT 

PLANTS WITH VARIED POTASSIUM AND MAGNESIUM SUPPLY 

 

CEVZA ESİN TUNÇ 

 

Molecular Biology, Genetics and Bioengineering, MSc Thesis, August 2017 

Supervised by: Assoc. Prof. Dr. Levent Öztürk 

Keywords: potassium, magnesium, root morphology, nutrient use efficiency, wheat 

 

Mineral nutrient deficiencies on agricultural soils is a widespread problem affecting 

crop productivity worldwide. This study was conducted to investigate the effects of 

potassium (K) and magnesium (Mg) supply on biomass production, root morphology 

and uptake of other mineral nutrients in wheat (Triticum aestivum cv. Ceyhan-99). 

Changes in root morphology as well as nutrient uptake by roots were monitored under 

various K and Mg treatments. Results showed that K and Mg deficiency significantly 

reduced shoot and root growth and induced changes in nutrient uptake by roots. K 

deficiency reduced nitrate (NO3
-) and phosphorus (P), but increased Mg uptake by roots. 

In general, all root morphological attributes analyzed were significantly affected by low 

K and Mg supply. However, root length, root area, root volume and number of tips were 

the most affected attributes which lead to severe reductions in nutrient acquisition and 

use efficiency. Moreover, K deficiency resulted in impaired use of absorbed nitrogen 

(N) in protein biosynthesis. Total free amino acid concentration increased sharply in 

response to K starvation and resulted in severe inhibition of N uptake by roots due to 

the negative feedback effect. It is concluded that ensuring adequate K and Mg nutrition 

is required to maximize agricultural production and to improve use efficiency of 

nutrients applied to agricultural lands.  
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ÖZET 

 

FARKLI POTASYUM VE MAGNEZYUM KONSANTRASYONLARINDA 

YETİŞTİRİLEN BUĞDAY BİTKİLERİNİN KÖK MORFOLOJİSİ VE BESİN 

ABSORPSİYONUNDA MEYDANA GELEN DEĞİŞİKLİKLER 

 

CEVZA ESİN TUNÇ 

 

Moleküler Biyoloji, Genetik ve Biyomühendislik, Yüksek Lisans Tezi, Ağustos 2017 

Tez Danışmanı: Doç. Dr. Levent Öztürk 

Anahtar kelimeler: potasyum, magnezyum, kök morfolojisi, besin kullanım verimliliği 

 

Tarım topraklarında besin elementi eksikliği, verimi olumsuz yönde etkileyen yaygın bir 

problem haline gelmiştir. Bu çalışma, potasyum (K) ve magnezyum (Mg) eksikliğinin 

buğday (Triticum aestivum cv. Ceyhan-99) bitkilerinin biyokütle, kök morfolojisi ve 

diğer besin elementlerinin absorpsiyonu üzerindeki etkilerini araştırmak amacıyla 

yürütülmüştür. Sonuçlar, K ve Mg eksikliğinin yeşil aksam ve kök büyümesini önemli 

derecede azalttığını ve besin elementlerinin absorpsiyonlarında değişikliklere yol açtığını 

göstermektedir. Potasyum eksikliği, kök nitrat (NO3) ve fosfor (P) alımını azaltırken, Mg 

alımını artırmıştır. İncelenen tüm kök parametreleri K ve Mg eksikliğinden ciddi 

derecede etkilenmiştir. Ancak, kök uzunluğu, kök alanı, kök hacmi ve kök ucu sayısı en 

çok etkilenen parametreler arasındadır ve besin elementlerinin absorpsiyonu ve kullanım 

verimliliğini önemli derecede azaltmıştır. Ayrıca, K eksikliğinde yetiştirilen bitkiler, 

kökten alınan azotu (N) protein biyosentezinde başarılı bir şekilde kullanamamıştır. Bu 

bitkilerde serbest amino asit konsantrasyonu artmıştır ve bu, negatif geri bildirim etkisiyle 

köklerden N alımını ciddi derecede azaltmıştır. Sonuçlar, yeterli K ve Mg beslenmesinin 

hem tarımsal verimi hem de besin elementlerinin bitkiler tarafından kullanılabilirliliğini 

artırmak için gerekli olduğunu göstermektedir.  
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(A) INTRODUCTION 

 

A.1. General Introduction 

 

A great concern of today is the rapidly expanding world population. It is 

projected that the world population will exceed nine billion by the year 2050. It 

is therefore of vital importance to provide enough food for the expanding human 

population. In order to meet the increasing food demand, a massive increase in 

agricultural crop production is necessary. However, many factors constrain the 

agricultural productivity in terms of quality and quantity. Mineral element 

deficiencies in agricultural soils is one of these major limiting factors and this 

MSc thesis will mainly focus on the physiological consequences of potassium 

(K) and magnesium (Mg) deficiency in wheat as a model crop. 

Both K and Mg are of great significance due to their key roles in 

physiological and biochemical processes that affect plant growth and 

development. The depletion of these nutrients is a growing concern. A 

considerable area of agricultural land has been reported to be K-deficient and 

soil K balance declines dramatically with time (Dobermann et al., 1999; Hoa et 

al., 2006; Andrist-Rangel et al., 2007; Krauss, 2003). The major sources of K 

and Mg depletion are removal by crop plants, leaching losses and soil erosion 

(Fageria, 2009). Unfavorable soil structure (sandy soil) with low cation 

exchange capacity (CEC) and depletion zones around the rhizosphere may 

induce K deficiency (Kayser and Isselstein, 2005; Moody and Bell, 2006; 

Andrist-Rangel et al., 2007). Mg deficiency is of great concern on soils fertilized 

only with nitrogen (N), phosphorus (P) and K, as well as on acidic soils due to 

its potential for leaching and interaction with Al3+ (Cakmak and Yazici, 2010). 

In addition, increased application or high levels of soil K or Ca can also lead to 

Mg deficiency (Fageria, 2009). 
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A.2. Potassium: Physiological Roles and Deficiency-Related Problems in 

Plants 

 

K is an essential macronutrient that is required for the plant metabolism, 

growth and development. K is a univalent cation and found most abundantly in 

the cytosol. Next to nitrogen (N), K is the element that is required in the largest 

amounts by plants: about 2%-5% of total plant dry matter (Marschner, 1995). K 

plays key roles in numerous physiological functions, including enzyme 

activation, photosynthesis, osmoregulation, protein synthesis, cation-anion 

balance, stress resistance and phloem transport. K deficiency results in reduced 

shoot and root growth and yield. 

K balances the charge of soluble and insoluble anions in the cytosol and 

chloroplasts, and thus maintains the pH in these compartments between 7 and 8 

(Marschner, 2012). This range is the optimum for most enzyme reactions. 

According to Suelter (1970), most of the enzymes are either activated or 

stimulated by K+. K+ induces conformational changes in proteins, thus activating 

them. These K+-induced changes increase the rate of catalytic reactions and also 

the substrate-affinity (Evans and Wildes, 1971). Under K deficiency, the enzyme 

activation may be inhibited and this phenomenon is attributed to the inability to 

maintain the optimum pH in the cytosol. Pyruvate kinase, phosphofructokinase, 

starch synthase, proton-pumping ATPases and vacuolar pyrophosphatase 

isoforms are enzymes that are sensitive to K deprivation (Laeuchli and Pflüger, 

1978; Nitsons and Evans, 1969; Gibrat et al., 1990; Darley et al., 1998). 

K-deficiency-induced changes in enzyme activities mostly lead to 

imbalances in the carbon and nitrogen metabolism. The concentration of soluble 

carbohydrates and soluble organic N compounds, especially N-rich amino acids, 

increase under K deprivation, whereas the concentrations of nitrate tend to 

increase in K-deficient plant tissues (Armengaud et al., 2009). These 

impairments are also related to the role of K in protein synthesis.  

Photosynthesis is also affected by K nutritional status. It is well 

documented that K plays a crucial role in the maintenance of turgor pressure and 

thus regulating the stomatal function. Apart from these, K is known to regulate 

ribulose bisphophate (RuBP) carboxylase activation (Peoples and Koch, 1979). 

K deficiency leads to significant reductions in photosynthesis rate, RuBP-
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carboxylase activity and photorespiration, whereas stomatal resistance and dark 

respiration rates increase under K deprivation. The reduction in photosynthesis 

is mostly attributed to stomatal limitations (Oosterhuis et al., 2013), however 

researchers have also reported the inhibition of photosynthesis may also ocur 

due to accumulation of photoassimilates and reduced translocation into sink 

organs (Pflüger and Cassier, 1977; Pier and Berkowitz, 1987; Kanai et al., 2007).  

Translocation of carbon and nitrogen compounds from source to sink 

organs are highly dependent on transpiration rates, which is also regulated by K 

nutritional status. Adequate K nutrition is essential for optimum translocation of 

photoassimilates, amino acids and nitrate. K is known to influence the rate of 

phloem loading and assimilate partitioning. K deprivation leads to reduced 

assimilate transport to roots and eventually root growth of K-deficient plants is 

inhibited (Cakmak, 1994; Cakmak et al., 1994b). 

K+ plays a crucial role in cation-anion balance in the cytoplasm, 

chloroplasts, vacuoles, xylem and also phloem. K+ serves as the dominant cation 

for counterbalancing immobile or mobile anions (Marschner, 2012). For 

example, K+ serves as the accompanying counterion for NO3
- in long-distance 

transport in the xylem.  

Apart from its physiological roles, K is also known to increase biotic 

(Prabhu et al., 2007) and abiotic stress tolerance in plants (Cakmak, 2005). K-

deficient plants are more susceptible to high-light intensity (Marschner and 

Cakmak, 1989), low temperature (Grewal and Singh, 1980), drought (Sen Gupta 

et al., 1989) and also pest invasion (Amtmann et al., 2008). Therefore, adequate 

K nutrition is essential to withstand such stress factors.  

 

 

A.3. Magnesium: Physiological Roles and Deficiency-Related Problems 

 

Mg is a macronutrient that is essential for normal plant growth and 

development and plays key roles in physiological and biochemical processes. 

Mg2+ is a divalent cation and has an undispensable role in enzyme activation, 

phosphorylation, protein and chlorophyll biosynhtesis, photosynthesis and 

carbohydrate partitioning (Marschner, 2012). Along with K, Mg is also involved 
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in cation-anion balance in cells as well as in maintaining cell turgor (Marschner, 

2012; Gerendas and Führs, 2013).  

The most obvious visible symptom of Mg deficiency is interveinal 

chlorosis of older leaves due to impairments in the chlorophyll biosynthesis.  Mg 

serves as the central atom in the chlorophyll and its biosynthesis requires the 

presence of Mg (Walker and Weinstein, 1991; Kobayashi et al., 2008). Protein 

biosynthesis is also terminated under Mg deficiency due to its key role in the 

aggregation of ribosome subunits (Cammarano et al., 1972). Likewise, nucleic 

acid biosynthesis and functions have been reported to be affected by Mg status 

of the plant (Galling, 1963; Sreedhara and Cowan, 2012). 

The activity of many enzymes such as glutathione synthase, 

phesphoenolpyruvate (PEP) carboxylase, RuBP carboxylase, glutamine 

synthase and fructose-1,6-bisphosphatase either require Mg or is enhanced by 

its presence (Marschner, 2012; Gerhardt et al., 1987; O’Neal and Joy, 1974; 

Pierce, 1986). The phosphorylation of adenosine-diphosphate (ADP) and the 

synthesis of adenosine triphosphate (ATP) are also absolutely Mg-dependent 

processes.  

The presence of Mg affects carbohydrate metabolism within the plant. 

Mg-deficient leaves typically accumulate carbohydrates as a result of inhibited 

phloem export and low rates of phloem export into sink organs lead to reduced 

root growth (Cakmak et al., 1994a). Impairments in phloem-loading from source 

to sink organs under Mg-deficiency are mostly attributed to the critical role of 

Mg2+ for the activity of proton-pumping ATPase (H+-ATPase) (Williams and 

Hall, 1987).  As a result of accumulation of photoassimilates in the source leaves, 

RuBP oxygenase activity, and thus the generation of reactive oxygen species are 

favoured (Cakmak and Kirkby, 2008). Increased activity of superoxide radical 

(O2
.-) and hydrogen peroxide (H2O2) scavenging enzymes (i.e., superoxide 

dismutase, ascorbate peroxidase and glutathione reductase) and increased 

concentrations of antioxidants have been reported in the Mg-deficient leaves 

(Cakmak and Marschner, 1992). Due to this oxidative stress, Mg-deficient 

leaves are more susceptible to high light and increasing light intensity 

contributes to the severity of chlorosis and/or necrosis.  

Both the dependency of photosynthethic enzymes on the presence of Mg 

and the accumulation sugars in the leaves lead to the inhibition of photosynthesis 
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under Mg deficiency (Laing et al., 2000; Hermans et al., 2004; Wingler and 

Roitsch, 2008). Peaslee and Moss (1966) reported that inhibition of chlorophyll 

biosynthesis under Mg deficiency may be another reason for the reduced 

photosynthesis rate. 

Along with the carbon metabolism, N metabolism is also affected by Mg 

status. Due to its role in protein synthesis, Mg deficiency leads to accumulation 

of non-protein N, mainly amino acids, and lower concentrations of protein N 

(Marschner, 2012). In addition, some enzymes of N metabolism (nitrogen 

reductase, glutamate synthase, glutamate dehydrogenase, urease) have been 

reported to be inhibited in spinach under Mg deficiency (Yin et al., 2009). 

Mg has also a crucial role in mitigating heavy metal toxicities. For 

example, Cu2+ phytotoxicity has been reported to be alleviated by high Mg2+ 

treatment in wheat (Luo et al., 2008), barley (Lock et al., 2007), cowpea 

(Kopittke et al., 2011) and grapevine (Chen et al., 2013). Likewise, adequate Mg 

nutrition was found to be able to mitigate Al3+ toxicity by a number of different 

pathways in soybean (Silva et al., 2001) and wheat plants (Kinraide et al., 2004).  

 

A.4. Nutrient Use Efficiency 

 

Food production increases annually due to expanding World population 

and demand. Increasing food production requires higher energy inputs. 

Fertilizers are one of the means of increasing grain yield of crop plants. 

However, both the production and the use of commercially available fertilizers 

are expensive due to high costs of energy and raw materials (White and Brown, 

2010).  

In many agricultural systems, a huge proportion of the applied fertilizer 

is lost from the soil due to various factors such as soil leaching, erosion, 

denitrification and volatilization (Xu et al., 2012) and consequently, cannot be 

used by crop plants. For example, only 40% of the applied N fertilizer is taken 

up and utilized by plants. In addition, the use of inorganic fertilizers also 

threatens the sustainability of the environment. Synthesis of N fertilizers has 
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been reported to contribute to the production of greenhouse gases (Galloway et 

al., 2008; Smith et al., 2008). It was also reported that the use of N and P 

fertilizers is one of the major contributors to eutrophication process in waters 

(Conley et al., 2009; White and Hammond, 2009). In order to reduce fertilizer 

costs and preserve the environment, the use efficiency of applied fertilizers has 

to be maximized due to above-mentioned commercial and environmental 

reasons. 

Nutrient use efficiency refers to the ability of a plant to acquire nutrients 

and successfully utilize them within itself (Blair, 1993). Studying and 

understanding nutrient use efficiency is of great importance since it can 

contribute to a sustanaible and productive agriculture (Masclaux-Daubresse, 

2010) by reducing fertilizer input costs, enhancing crop yields and decreasing 

the rate of nutrient losses (Baligar et al., 2001).  

Plant genetic, morphological and physiological traits and many external 

factors affect nutrient use efficiency in plants. Nutrient use efficiency may vary 

withing different species, cultivars and genotypes (Baligar and Duncan, 1990; 

Baligar et al., 2001; Clark, 1984; Gerloff and Gabelman, 1983) Physiological 

features such as shoot yield, harvest index and root architecture also control 

nutrient use efficiency. External factors include soil temperature, soil pH, soil 

moisture, climatic conditions, the source, rate and time of fertilizers (Baligar and 

Bennett, 1986a, 1986b; Baligar and Fageria, 1997; Duncan, 1994; Fageria, 

1992). 

There are numerous approaches to improve nutrient use efficiency of 

plants including breeding for root systems that are more efficient in nutrient 

acquisition (Coque et al., 2008), overexpression of transporters that facilitate the 

acquisiton and translocation of nutrients, enhancing cellular pH balance, 

manipulating key genes of nutrient metabolism by molecular breeding (Xu et al., 

2012). In addition to these approaches, a balanced mineral fertilization supplied 

at the right time and rate for the crop in practice. Mineral elements can affect 

root uptake of other nutrients and their utilization within the plant (Marschner, 

2012). The phenomena of antagonism and synergism have been reported 

between mineral nutrients. Some ions may compete for transport into root cells, 

whereas some may promote the uptake of another. 
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K may affect the uptake, assimilation and utilization of other nutrients. 

Antagonistic interactions of K+ with Mg2+ amd Ca2+ have been reported 

(Johnson et al., 1968; Dibb and Thompson, 1985). Excess applications of K often 

induces Mg or Ca deficiency by depressing their root uptake and accumulation 

in shoots. K+ is a monovalent cation and competes with other cations for their 

binding sites (Marschner, 2012). Resultingly, the uptake of other cations may be 

inhibited. 

Positive interaction of K with N and P has also been reported. Studies 

showed that efficient use of N and P fertilizers requires high soil K (Dibb and 

Thompson, 1985; Fageria et al., 1997a, 1997b). The form of N (ammonium: 

NH4+ or nitrate: NO3
-) determines its interaction with K. High concentrations of 

NH4+ inhibits the uptake of K+ (Marschner, 2012), but the rate of K applied does 

not affect NH4+-uptake (Mengel et al., 1976; Rufty et al, 1982a; Shaviv et al., 

1987). In case of NO3
-, N root uptake and shoot transport are enhanced by the 

presence of K+ (Minotti et al., 1968; Blevins et al., 1978; Ivashikina and Feyziev, 

1998) and studies have proved the existence of a close relationship between K+ 

and NO3
- uptake by roots (Rufty et al., 1981; Ashley and Goodson, 1972).  

 

The root uptake of K+ and NO3
- is facilitated by the synergism of these 

two counter-ions. K+ also plays a key role in the distribution of NO3
- between 

shoot and root (Ruiz and Romero, 2002) by serving as an accompanying cation 

in the xylem (Blevins et al., 1978a, 1978b; Dong et al., 2004). K+ is the most 

abundant cation in plant cells and contributes to anion-balance. Siebrecht and 

Tischner (1999) have shown that the withdrawal of K supply from the 

environment directly decreases the nitrate concentration in the xylem.  

Apart from its role in acquisition and translocation of N, K+ is also required for 

efficient N assimilation (Drosdoff et al., 1947; Wang et al., 2012). Armengaud 

et al. (2009) reported impairments in NO3
- assimilation and protein synthesis 

under K deprivation. Nitrate reductase (NR) catalyzes the reduction of nitrate to 

nitrite and this reaction is the rate-limiting step in the NO3
- assimilation pathway 

(Beevers and Hageman, 1969). The activity of NR (NRA) is enhanced with 

increasing K supply (Armengaud et al., 2004; Beevers and Hageman, 1969; 

Blevins et al., 1978; Li et al., 2011) and K starvation significantly reduces NRA. 

Proteins are principle products of NO3
- assimilation. K deficiency is correlated 
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with high protease and peptidase activity and protein degradation (Hu et al., 

2016) and as a result, a higher ratio of free amino acids to protein is observed. 

Amino acid export in phloem was also decreased under K starvation. 

Impairments in the protein metabolism directly affects the uptake and utilization 

of N. 

Due to its important role in acquisition, transport and assimilation of N, 

mineral fertilization with K can increase N use efficiency (NUE) of crop plants. 

Previous research has showed that increased K supply is required for a better 

response to increased N fertilization (Better Crops, 1998; Webb, 2009).  

Interactions of Mg with other nutrients have also been reported by 

researchers. As mentioned above, high concentrations of K+ inhibit Mg uptake 

from roots and its translocation to shoots (Ohno and Grunes, 1985; Huang et al., 

1990). For example, excess application of K resulted in decreased shoot Mg 

concentration in wheat (Ohno and Grunes, 1985), sorghum (Ologunde and 

Sorensen, 1982) and tall fescue (Hannaway et al., 1982). However, there is no 

effect of Mg supply on K+ uptake.  

 

Interactions of Mg2+ with Ca2+ were studied in tomato (Schwartz and 

Bar-Yosef, 1983), rice (Fageria et al., 1983), cassava, sunflower and maize 

(Spear et al., 1978) and in all of the studies it was concluded that Ca2+ suppresses 

Mg2+ uptake by decreasing Mg2+ transport capacity of roots or by competing for 

Mg2+-absorption sites. 

Positive interactions of N and P with Mg were reported (Wilkinson et al., 

2000). NO3
- fertilization promotes Mg uptake due to cation-anion balance. In 

addition, due to its role in RNA and protein synthesis (Marschner, 2012), NO3
- 

uptake may be down-regulated in the absence of Mg. Aluminium-tolerance is 

attributed to greater uptake of Mg in potato, corn and wheat (Foy, 1984; Ali, 

1973). Mg can either compete with Al3+ for absorption sites, thus reducing the 

Al3+-root contact, or decrease the Al3+-activity (Foy, 1984).  
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A.5. Morphology and Functions of Plant Roots as Affected by Potassium 

and Magnesium Deficiency 

 

Nutrients are taken up from the environment via roots and the ability of a plant 

to acquire nutrients is determined by root system achitecture. Therefore, roots 

have the most important role in resource capture (Fitter, 1988b; Lynch, 1995; 

Lynch and Brown, 2001). The acquisition of nutrients by plant roots plays the 

most crucial role in nutrient acquisition (Gutschick, 1993). 

Root size and morphology directly affects nutrient acquisition efficiency 

(Baligar and Duncan, 1990; Barber, 1995; Marschner, 1998). Root morphology 

parameters such as length, area, volume, diameter, density, number of roots are 

good indicators of nutrient uptake capactiy (Bechmann et al., 2014; Jia et al., 

2010) and can be affected by deficiencies or toxicities of mineral elements 

(Bennet, 1993; Hagemeyer and Breckle, 1996; Hodge et al., 1999a, 2000c; 

Marschner, 1995; Robinson et al., 1999).  

In order to adapt the environmental conditions, plants may alter their root 

architecture. The effect of N and P on root growth have been has been 

extensively studied, however, K has a different mechanism on root growth and 

requires more attention. It is well-known that K starvation inhibits root growth 

and development. Root elongation and lateral root formation and thus the 

capacity of nutrient use from soil are significantly reduced under K deficiency 

(Drew, 1975; Shin and Schachtmann, 2004; Armengaud et al., 2004; Zhi-Yong 

et al., 2008). Root morphogoly was found to be affected by different K levels in 

many species including pea, red clover, lucerne, rye, perennial ryegrass, barley, 

oilseed rape, cotton and Arabidopsis (Hogh-Jensen and Podersen, 2003; 

Sanchez-Calderon et al., 2005). Disruptions in root morphology and growth are 

mostly attributed to the impaired photosynthate supply into roots because 

photosynthetic rate as well as carbon-partitioning between shoots and roots 

highly depend on the presence of K (Cakmak et al., 1994; Bernarz et al., 1998; 

Pettigrew, 1999; Zhao et al., 2001). Therefore, the negative effects of K 

deficiency on root growth may highly restrict nutrient acquisition from the 

rhizosphere.  

Levels of Mg have also profound effects on the root growth of plants. 

Reduced root growth is defined as a good indicator of Mg deficiency and as in 



 10

the case of K, it is most likely to be the consequence of impaired carbohydrate 

transport from source leaves (Gransee and Führs, 2012). Additionally, a recent 

transcriptomic study showed that the highest number of regulated genes in 

response to Mg stavation was found in roots (Hermans et al., 2010b) suggesting 

that Mg could affect root development (Niu et al., 2014). However, there is very 

little research and published data on the effect of Mg deficiency on root 

morphological parameters. In a recent research, it was reported that Mg 

deficiency significantly decreased lateral root outgrowth and length in 

Arabidopsis thaliana (Xiao et al., 2015).  

 

A.6. Scope 

 

Mineral element deficiencies of essential nutrients are a widely occurring 

problem on world’s agricultural lands and associated with numerous reasons. 

Lack of an essential nutrient can significanlty limit plant growth and yield. In 

order to maximize crop production to meet the increasing demand, fertilizers are 

commonly used by farmers. Fertilizer use efficiency is directly related to nutrient 

use and utilization efficiency of crop plants. Major constraints of nutrient use 

efficiency include root architecture/plasticity and nutritional status of plants. The 

aim of this thesis is to reveal the effects of K and Mg deficiency on root 

morphology of wheat plants as well as the interactions of these nutrients with 

other elements in terms of uptake and utilization. 
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(B) MATERIALS AND METHODS 

 

B.1 Seed Material & Germination 

 

A standard spring-type bread wheat cultivar adapted to Mediterranean climate 

and widely grown in the Cukurova plain of Turkey (Triticum aestivum cv. 

Ceyhan-99) was used in all experiments conducted throughout this thesis. For 

germination, seeds were sown in perlite wetted with saturated CaSO4 solution 

and placed in a dark growth chamber for 2-3 days set to constant temperature of 

24oC. When seeds were germinated and the emerging coleoptiles were visible, 

the light/dark cycle in growth chamber was started for further plant development. 

Following six days after sowing, young wheat seedlings were transferred to 

nutrient solution culture.  

 

B.2 Experimental Design 

 

B.2.1 Potassium Nutrition and Root Morphology 

 

This experiment was conducted in a growth chamber with 16 / 8 h 

light/dark periods. The temperature was maintained at 24C and 18C during 

light/dark periods respectively. During the light period, the photosynthetic flux 

density was 400 mol m-2 s-1.  Relative humidity was kept at 60% during light 

and 70% during dark periods.  

This experiment was designed to monitor the effect of K nutrition on the 

root morphological parameters. Wheat seedlings were transferred to 3-L plastic 

pots and grown in nutrient solution culture with different K treatments. The 

nutrient solution was composed of 2 mM Ca(NO3)2.4H2O, 1 mM MgSO4.7H2O, 

0.03 mM Fe-EDTA, 1 M ZnSO4.7H2O, 1 M MnSO4.4H2O, 1M H3BO3, 0.2 
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M CuSO4.5H2O, 0.1 M (NH4)6Mo7O24.4H2O and 0.2 M NiCl2.6H2O. K was 

supplied at four different levels (i.e., very low, low, medium and adequate). 

Adequate K pots was supplied 0.2 mM KH2PO4, 0.85 mM K2SO4 and 0.1 mM 

KCl, whereas all of the deficiency pots received 0.05 mM CaCl2.2H2O and 0.85 

mM CaSO4.2H2O. K was supplied in the form of KH2PO4 and its concentration 

was 0.01, 0.03 and 0.05 mM in very low, low and medium-K pots respectively. 

Ca(H2PO4)2 was added to K-deficiency pots at a level of 0.1, 0.09 and 0.08 mM 

depending on the K-treatment (i.e., very low, low and medium-K, respectively). 

The nutrient solution was renewed every three days. 

The experiment had a completely randomized and full factorial design 

with three replicate pots for each treatment. 10 seedlings were transferred in each 

pot. Five days following the transfer to solution culture, seedlings were thinned 

to nine in each pot.  On the 8th day after transfer to solution culture, four plants 

from each pot were harvested. On the 10th and 12th day after transfer to solution 

culture, three and two plants were harvested, respectively. The same harvest 

procedure was followed in all of three harvests: Harvested plants were first 

separated into shoot and root fractions. Shoots were rinsed in distilled water and 

placed in 20 mL volume glass vials whereas roots were first analyzed for 

morphological features using an image analysis system as described in Section 

B.4. Following the image analysis, roots were incubated in 1 mM CaCl2 and then 

distilled water for 2 min each and placed in 20 mL volume glass vials. All vials 

with harvested shoot and root samples were placed in a forced oven set to 60oC 

to dry the samples until a constant weight.  

 

B.2.2 Magnesium Nutrition and Root Morphology 

 

This experiment was conducted in a growth chamber under controlled 

climatic conditions in order to study the effect of Mg nutrition on root growth 

and morphology. The growth chamber was set to 16 / 8 h light/dark period. The 

temperature was kept at 24/20C and the humidity at 60/70% during light/dark 

periods, respectively. The photosynthetic flux density was 400 mol m-2 s-1 in 

the growth chamber.  
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Young wheat seedling were transferred to 3-L solution culture pots. The 

nutrient solution was composed of 2 mM Ca(NO3)2.4H2O, 0.2 mM KH2PO4, 

0.85 mM K2SO4, 0.1 mM KCl, 0.03 mM Fe-EDTA, 1 M ZnSO4.7H2O, 1 M 

MnSO4.4H2O, 1 M H3BO3, 0.2 M CuSO4.5H2O, 0.1 M (NH4)6Mo7O24.4H2O 

and 0.2 M NiCl2.6H2O. Mg was supplied in the form of MgSO4.7H2O and at 4 

different rates (i.e., very-low, low, medium and adequate). Adequate Mg pots 

were supplied with 1 mM, very-low, low and medium Mg pots were supplied 

with 0.05, 0.01 and 0.025 mM Mg, respectively. All of the deficiency pots were 

additionally supplied with 1 mM CaSO4.2H2O. The nutrient solution was 

renewed every 3 days throughout the experiment. 

The experimental design was completely randomized full-factorial. 

There were four different Mg treatments with 3 pot replicates. At first, 10 plants 

were planted in each pot. Following 5 days after transfer, seedlings were thinned 

to nine in each pot. First 4, then 3 and lastly 2 plants were harvested on 8th, 10th 

and 12th day after transfer to solution culture, respectively. Using an image 

analysis software described in Section B.4, roots were analyzed on the same day 

of harvest. Shoots were washed in distilled water. Roots were first soaked in 1 

mM CaCl2 solution, then washed with distilled water. Washed shoots and roots 

were put into small glass tubes and oven-dried at 60C until a constant weight.  

 

B.2.3 Potassium Resupply to Deficient Plants 

 

An additional experiment was conducted to monitor the changes in the 

root morphology of K-deficient plants as affected by a short term K resupply. 

The experiment was carried out in a growth chamber with 16/8 h light/dark 

periods. The photon flux density in the growth chamber was 400 mol m-2 s-1 

and the temperature was set to 24/18C and relative humidity to 60/70 % during 

light/dark periods. The experiment had a completely randomized full factorial 

design with 4 replications. 

Wheat seedlings transferred to solution culture were supplied with 2 mM 

Ca(NO3)2.4H2O, 1 mM MgSO4.7H2O, 1 M ZnSO4.7H2O, 1 M MnSO4.4H2O, 

0.03 mM Fe-EDTA, 1 M H3BO3, 0.2 M CuSO4.5H2O, 0.1 M 

(NH4)6Mo7O24.4H2O and 0.2 M NiCl2.6H2O. There were different different K 
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application rates (i.e. low and adeqaute). Low K pots were supplied with 0.015 

KH2PO4, 0.09 mM Ca(H2PO4)2 and 0.85 mM CaSO4.2H2O, whereas adequate 

K pots received 0.2 mM KH2PO4, 0.85 mM K2SO4 and 0.1 mM KCl. Following 

12 days after sowing, half of the low-K pots were resupplied with the adequate-

K-nutrient solution. To monitor the changes during the resupply period, 4 pots 

from each treatment were harvested (i) at the time of resupply, (ii) 24 hours after 

resupply, (iii) 48 hours after resupply and (iv) 72 hours after resupply. Harvested 

roots were analyzed using an image analysis system as described in Section B.4. 

Roots were washed first with 1 mM CaCl2 solution and then with distilled water. 

Washed shoots and roots were put into paper bags and oven-dried at 60C for 3 

days.  

 

B.2.4 Effect of varied K Nutrition on Uptake of Other Mineral Nutrients 

 

This experiment was conducted in a computer-controlled greenhouse 

located in Sabanci University, Istanbul, Turkey (4053’25’’N, 2922’47’’E). 

The temperature was maintained at 22C (2) during the experiment. The design 

of the experiment was completely randomized with 7 replications for each 

treatment.  

Wheat seedlings were grown in 3-L solution culture pots. The nutrient 

solution culture composed of 2 mM Ca(NO3)2.4H2O, 1 mM MgSO4.7H2O, 1 M 

ZnSO4.7H2O, 0.03 mM Fe-EDTA, 1 M MnSO4.4H2O, 1 M H3BO3, 0.2 M 

CuSO4.5H2O, 0.1 M (NH4)6Mo7O24.4H2O and 0.2 M NiCl2.6H2O. K was 

supplied at three different concentrations (i.e., low, medium and adequate). 

Adequate K pots were supplied with 0.2 mM KH2PO4, 0.85 mM K2SO4 and 0.1 

mM KCl, whereas deficiency pots received 0.85 mM CaSO4.2H2O, 0.05 mM 

CaCl2.2H2O, 0.025 or 0.05 mM KH2PO4 and 0.09 or 0.08 mM Ca(H2PO4)2 as 

additional nutrients. The nutrient solutions were refreshed every 3 days. At 10 

days after transfer of plants (10 DAT) nutrient solution was renewed for a final 

time and then sampled at 0 h and 72 h (i.e. at 13 DAT) to calculate changes in 

uptake of nutrients as affected by different K application rates. At 13 DAT plants 

were harvested in the following fractions. Out of 25 plants in each pot, 15 plant 

shoots were harvested seperately for mineral element analysis, whereas roots of 
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all 25 plants were harvested together. Roots were washed first in 1 mM CaCl2 

solution, then with distilled water.  Shoots of the remaining 10 plants were 

divided into two fractions: the two oldest leaves and the remaining shoot parts. 

Harvested samples were put into paper bags and oven-dried at 60C until a 

constant weight.  

 

B.3. Digestion and Element Analysis 

 

B.3.1 Closed-vessel digestion 

 

Oven-dried shoot and root samples were ground into fine powder using 

an agate vibrating cup mill (Pulverisette 9; Fritsch GmbH; Germany). These 

powder samples were then weighed (ca. 0.2 g) and digested in a closed-vessel 

microwave system (MarsExpress, CEM Corp., Matthews, NC, USA) with 2 ml 

of 30 % H2O2 (w/v) and 5 ml of 65 % HNO3 (w/v). Following the digestion, the 

sample volume was brought up to 20 mL with ultra-pure water (18.2 MΩ). After 

filtration, mineral element concentrations were determined with an inductively 

coupled plasma optical emission spectrometer (ICP-OES) (Vista-Pro Axial, 

Varian Pty Ltd., Mulgrave, Australia).   

 

B.3.2 Open-vessel digestion 

 

Shoots and roots were harvested into 20 mL glass vials and oven-dried. 

The dry weight of the samples ranged between 50 and 370 mg. All vials were 

added 1.5 ml of 30% H2O2 (w/v) and then 3 ml of 65 % HNO3 (w/v) including 

blank samples. Samples were incubated overnight and then wet-digested on a 

hot plate set to 130C. Digestate was disolved in 20 ml of 5 % HNO3, filtred and 

analyzed for ICP-range mineral elements as described above. 
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B.4 Analysis of Plant Root Systems 

 

Whole roots of single plants were immersed in a transparent plastic tray 

filled with ultra-pure water and scanned with a calibrated scanner (Epson 

Perfection V700 Photo, Epson, Japan). Root length, root surface area, root 

volume, number of root tips and number of root forks were determined using the 

WinRHIZO image analysis software (Regent Instruments Inc., Quebec, 

Canada).  

 

B.5 Determination of Nitrate Concentration 

 

Nitrate concentration in leaves and nutrient solution was determined 

according to the colorimetric method described by Cataldo et al. (1975). 50 mg 

(1) of fine powder sample was weighed and extracted in 5 ml distilled water in 

a water bath set to 45C for one hour. Samples were then centrifuged and the 

supernatans were collected. To 100 µL of sample extract, 0.4 mL sulfuric acid 

containing 5% salicylic acid was added. After 20 minutes, 9.5 mL of 2 N NaOH 

solution was added. Samples were cooled down to room temperature and the 

intensity of the yellow color was read at 410 nm against nitrate standards.  

 

B.6 Determination of Total Free Amino Acids 

 

Total free amino acid concentration in leaves was determined according 

to the spectroscopic method described by Sadasivam and Manickam (1996). 50 

mg ( 1) of fine powdered leaf samples were extracted in 5 mL 80% Ethanol 

(v/v). Following the centrifugation, the supernatants were collected. To 100 l 

sample extract, 1 mL ninhydrin reagent was added and the total volume was 

brought up to 2 mL by adding distilled water. The mixture was incubated in a 

water bath set to 95C for 20 minutes. To that mixture, 5 mL of diluent solvent 

(1:1 n-propanol:distilled water) was added. After 15 minutes, the intensity of the 

purple color was read at 570 nm against leucine standards. 
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B.7 Determination of Water-soluble Carbohydrates 

 

The procedure described by Yemm and Willis (1954) was used to 

determine water-soluble carbohydrate concentrations in leaves and roots, but 

with slight modifications. Fine-powdered leaf and root samples (ca. 50 mg (1)) 

were extracted in 5 ml 80 % ethanol (v/v). The extracts were centrifuged at 5000 

g and the supernatants were collected. For the preparation of anthrone reagent, 

0.6 g anthrone was weighed in a glass beaker and 100 ml 20 % ethanol (v/v) was 

added. To this solution, 300 mL 98 % H2SO4 was added very slowly. The glass 

beaker was kept in a container full of ice and the anthrone solution was allowed 

to cool down to room temperature before using. To 250 l sample extract, 4 mL 

cold anthrone reagent was added. The mixture was incubated in a water bath set 

to 95C for 11 minutes. The samples were allowed to cool down to room 

temperature and the color intensity was read at 620 nm against D-glucose 

standards.  

 

B.8 Statistical Analysis 

 

All statistical analyses were carried out using JMP (13.0.0) (SAS 

Institute Inc., Cary, NC, USA) software. The data were subjected to analysis of 

variance (ANOVA) to evaluate the significance of treatment effects. Tukey’s 

honestly significant difference (HSD) test at the 5 % level (p < 0.05) was applied 

to determine the significant differences between treatment means.  
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(C) RESULTS 

 

 

C.1. Experiments on K and Mg Nutrition on Root Morphology 

 

C.1.1. Potassium Nutrition on Root Morphology 

 

 

K-deficient plants showed leaf tip burns and necrotic lesions in the older leaves, 

whereas these symptoms were not present in plants supplied with adequate K. K 

deficiency greatly restricted both root and shoot growth and resulted in stunted plants. 

Root growth was appeared to be more affected by K deficiency than the shoot growth 

(Figure 1.1.1). 

Shoot and root dry matter production and shoot-to-root ratios of 14-, 16- and 18-

day-old wheat plants grown under varied K nutrition are shown in Figure 1.1.2. K 

deficiency dramatically reduced shoot and root dry matter production in all of the 

deficiency treatments when compared to K-adequate plants. The difference between the 

shoot dry matter of K-deficient plants and K-adequate plants increased with time. 

Compared to control plants, lowest K (10 M) treatment reduced shoot biomass by 

42%, 56% and 65% in 14-, 16-, and 18-day-old wheat plants respectively. The 

reduction in root dry matter in the same treatment was higher (i.e. 52%, 63% and 68% 

in 14-, 16-, and 18-day-old wheat plants respectively), leading to a greater shoot-to-root 

ratio in K-deficient plants. Interaction of KxTime was found as significant (p<0.05) for 

all shoot, root and shoot:root ratio due to increasing effect of K-deficiency stress with 

duration of time (Figure 1.1.2.). 
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Figure 1.1.1: Shoot and root growth of 18-day-old wheat (Triticum aestivum cv. Ceyhan-

99) plants grown in nutrient solution with very low (10 µM), low (30 µM), medium (50 

µM) and adequate (2000 µM) K supply. 

 

Figure 1.1.3 shows scanned images of shoots and roots of the 14-, 16-, and 18-

day-old wheat plants grown hydroponically under various K treatments. K-deficient 

plants had long and slender leaves, whereas K-adequate plants had thicker leaves. Both 

time and increasing K supply enhanced shoot and root growth. The shoot and root 

growth rate of K-deficient plants were much slower than K-adequate plants. Root 

growth was even more affected than the shoot growth in all deficiency treatments. 

Lateral root and root hair formation were severely reduced as a result of K deficiency. 

Root density was increased by increasing K supply.  
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Shoot Biomass: HSD0.05 (K, Time, KxTime) = (9.15, 7.18, 20.72) 
Root Biomass: HSD0.05 (K, Time, KxTime) = (5.06, 3.97, 11.46) 
Shoot:Root Ratio: HSD0.05 (K, Time, KxTime) = (0.18, 0.14, 0.4) 

 

Figure 1.1.2: Shoot (A) and root (B) biomass production and shoot-to-root ratio (C) of 

14-, 16-, and 18-day-old wheat (Triticum aestivum cv. Ceyhan-99) plants grown in 

nutrient solution with very low (10 µM), low (30 µM), medium (50 µM) and adequate 

(2000 µM) K supply. 
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Figure 1.1.3: Shoot and root images of 14- (A), 16- (B) and 18-day-old (C) wheat 

(Triticum aestivum cv. Ceyhan-99) plants grown in nutrient solution with very low (10 

µM), low (30 µM), medium (50 µM) and adequate (2000 µM) K supply. 
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Root morphological parameters (i.e., root length, root area, root volume, number 

of root tips and root forks) were significantly affected by the absence of adeqaute K 

supply. Among the root parameters studied, the most sensitive parameter was found to 

be the number of root forks (Fig 1.1.4). Compared to adequate-K plants, lowest K 

treatment reduced number of root forks by 82% in 18-day-old wheat plants. This 

reduction was 63% and 40% in low-K and medium-K treatments, respectively. On 14 

days after germination, the overall reduction in root morphological parameters was over 

26%, 21% and 7% in very low, low and medium-K treatments. On 18 days after 

germination, the overall reduction was over 63%, 43% and 16%, respectively.  
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Root Length: HSD0.05 (K, Time, KxTime) = (67, 53, 149) 
Root Area: HSD0.05 (K, Time, KxTime) = (6.9, 5.5, 15.3) 
Root Volume: HSD0.05 (K, Time, KxTime) = (0.06, 0.04, 0.13) 
Root Tips: HSD0.05 (K, Time, KxTime) = (72, 57, 158) 
Root Forks: HSD0.05 (K, Time, KxTime) = (384, 304, 846) 
 

Figure 1.1.4: Root length (A), root area (B), root volume (C), number of root tips (D) 

and forks (E) of 14-, 16- and 18-day-old wheat (Triticum aestivum cv. Ceyhan-99) plants 

grown in nutrient solution with very low (10 µM), low (30 µM), medium (50 µM) and 

adequate (2000 µM) K supply. 
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As expected, both shoot and root K concentrations and contents (Table 1.1.1) of 

wheat plants increased with increasing K supply. Compared to adequate K treatment, 

lowest K treatment reduced the shoot and root K concentration of 18-day-old wheat plants 

by over 6- and 11-fold, respectively. Increasing K supply reduced this difference between 

deficient and adequate plants. Shoot K contents of 18-day-old wheat plants ranged from 

0.53 and 9.5 mg plant-1 and it decreased by 18-fold in very-low-K treatment in 

comparison to adequate-K treatment.  Similarly, root K content of adequate-K plants was 

over 36-, 20- and 10-fold higher than of very-low-, low- and medium-K plants, 

respectively.  

 

 

Table 1.1.1: Shoot and root K concentrations (A) and contents (B) of 14-, 16- and 18-

day-old wheat (Triticum aestivum cv. Ceyhan-99) plants grown in nutrient solution with 

very low (10 µM), low (30 µM), medium (50 µM) and adequate (2000 µM) K supply. 

 
Shoot K Concentration: HSD0.05 (K, Time, KxTime) = (0.11, 0.09, 0.26) 
Root K Concentration: HSD0.05 (K, Time, KxTime) = (0.1, 0.086, 0.24) 
Shoot K Content: HSD0.05 (K, Time, KxTime) = (0.2, 0.16, 0.45) 
Root K Content: HSD0.05 (K, Time, KxTime) = (0.01, 0.01, 0.03) 
 

In the absence of adequate K supply, shoot and root Mg concentrations of 14-, 16- 

and 18-day old wheat plants were found to be increased (Table 1.1.2). Following 18 days 

after sowing, shoot Mg concentration of adequate-K plants was only one third of very-

low-K plants. Low- and medium-K treatments also increased the shoot Mg concentration, 

but in lower rates. In comparison to adequate-K treatment, root Mg concentration in very-

low-, low- and medium was 5-, 5.6- and 6-fold higher, respectively. The similar trend 

was also observed in shoot and root Mg contents of 14-, 16- and 18-day-old wheat plants. 
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K-deficient plant shoots and roots were found to be richer in Mg content than adequate-

K plants.  

 

Table 1.1.2: Shoot and root Mg concentrations (A) and contents (B) of 14-, 16- and 18-

day-old wheat (Triticum aestivum cv. Ceyhan-99) plants grown in nutrient solution with 

very low (10 µM), low (30 µM), medium (50 µM) and adequate (2000 µM) K supply. 

 
Shoot Mg Concentration: HSD0.05 (K, Time, KxTime) = (434, 340, 982) 
Root Mg Concentration: HSD0.05 (K, Time, KxTime) = (399, 313, 903) 
Shoot Mg Content: HSD0.05 (K, Time, KxTime) = (45.5, 38, 103) 
Root Mg Content: HSD0.05 (K, Time, KxTime) = (47, 37, 107) 
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C.1.2 Magnesium Nutrition and Root Morphology 

 

Magnesium deficient plants showed typical interveinal chlorosis in the older 

leaves. Chlorotic symptoms were pronounced with decreasing Mg supply. Magnesium 

deficiency clearly reduced both shoot and root growth (Fig 1.2.1). Newly emerging leaves 

of deficient plants were very thin and not fully developed, whereas the young leaves of 

adequate-Mg plants grew very healthy. Increasing Mg supply enhanced shoot elongation. 

Very-low-Mg plants were about half the size of adequate-Mg-plants in terms of shoot 

elongation. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 Figure 1.2.1: Shoot and root growth of 18-day-old wheat (Triticum aestivum cv. Ceyhan-

99) plants grown in nutrient solution with very low (5 µM), low (10 µM), medium (25 

µM) and adequate (1000 µM) Mg supply. 
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In parallel with the visual observations, shoot and root dry matter production 

was significantly restricted in the absence of adequate Mg nutrition (Fig 1.2.2). Root 

dry mass production of 18-day-old wheat plants ranged from 34 to 102 mg plant-1 

under varied Mg nutrition. Very-low-, low- and medium-Mg treatments reduced root 

biomass by 3-, 2.6- and 1.7-fold, respectively. In comparison to roots, shoot dry matter 

production was less affected by Mg deficiency. Following 18 days after sowing, shoot 

biomass ranged from 86 to 180 mg plant-1 and in lowest-Mg treatment, shoot dry 

weight was reduced by 50% in comparison to adequate-Mg treatment. Root growth 

being much more affected resulted in higher shoot-to-root ratios under deficiency 

treatments.  

Shoot and root images of 14-, 16- and 18-day-old wheat plants grown 

hydroponically under various Mg supply are presented in Figure 1.2.3. All of the 

deficiency treatments resulted in limited shoot and root growth, whereas higher Mg 

supply enhanced shoot and root growth rate. Root architecture was disrupted in the 

absence of adequate Mg supply. Root hair formation was severly restricted or even 

completely inhibited under deficiency treatments. Increasing Mg supply resulted in 

denser root systems (i.e., increased root surface area, root volume).  
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Shoot Biomass: HSD0.05 (Mg, Time, MgxTime) = (9,17, 7.18, 20.04) 
Root Biomass: HSD0.05 (Mg, Time, MgxTime) = (5.52, 4.33, 12.5) 
Shoot:Root Ratio: HSD0.05 (Mg, Time, MgxTime) = (0.12, 0.09, 0.27) 

 

Figure 1.2.2: Shoot (A) and root biomass (B) production and shoot:root ratio (C) of 14-

, 16-, and 18-day-old wheat (Triticum aestivum cv. Ceyhan-99) plants grown in nutrient 

solution with very low (5 µM), low (10 µM), medium (25 µM) and adequate (1000 µM) 

Mg supply. 
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Figure 1.2.3: Shoot and root images of 14- (A), 16- (B) and 18-day-old (C) wheat 

(Triticum aestivum cv. Ceyhan-99) plants grown in nutrient solution with very low (5 

µM), low (10 µM), medium (25 µM) and adequate (1000 µM) Mg supply. 
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The effect of Mg nutrition on root morphological parameters are shown in 

Figure 1.2.4. As expected, both time and increasing Mg supply promoted root length, 

root area, root volume, number of root tips as well as number of root forks. All of these 

parameters were found to be very sensitive to Mg nutrition. Very-low-Mg treatment 

resulted in an overall reduction by over 65% in the studied parameters on the 18. day 

after sowing. This reduction was over 58% and 35% in low- and medium-Mg 

treatments, respectively. Among the parameters studied, the most sensitive root 

morphological parameter to Mg nutrition was found to be the number of root forks and 

root volume. Root volume was increased upto 70% under adequate Mg supply in 

comparison to deficiency treatments. Root forks were even more sensitive to Mg 

deficiency. Lowest-Mg treatment reduced the number of root forks by over 80% 

compared to adequate-Mg treatment. 
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Root Length: HSD0.05 (Mg, Time, MgxTime) = (92, 72, 205) 
Root Area: HSD0.05 (Mg, Time, MgxTime) = (10, 8, 22) 
Root Volume: HSD0.05 (Mg, Time, MgxTime) = (0.09, 0.07, 0.2) 
Root Tips: HSD0.05 (Mg, Time, MgxTime) = (113, 89, 252) 
Root Forks: HSD0.05 (Mg, Time, MgxTime) = (574, 452, 1279) 
 

Figure 1.2.4: Root length (A), root area (B), root volume (C), number of root tips (D) 

and forks (E) of 14-, 16- and 18-day-old wheat (Triticum aestivum cv. Ceyhan-99) 

plants grown in nutrient solution with very low (5 µM), low (10 µM), medium (25 µM) 

and adequate (1000 µM) Mg supply. 
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The impact of various Mg supply on shoot and root Mg concentration and content 

of experimental plants is given in Table 1.2.1. As expected, increasing Mg supply had a 

positive effect on both on shoot and root Mg concentrations and contents. In all 14-, 16- 

and 18-day-old wheat plants highest shoot and root Mg concentrations were observed at 

adequate Mg supply. Similarly, Mg content of shoots and roots increased significantly 

with increasing Mg treatments. Mg content in shoots varied between 28 and 405 g plant-

1 and shoot Mg content of adequate-Mg plants was over 14-fold higher than of very-low-

Mg plants. Similar results were obtained in root Mg contents as well.  

 

Table 1.2.1: Shoot and root Mg concentrations (A) and contents (B) of 14-, 16- and 18-

day-old wheat (Triticum aestivum cv. Ceyhan-99) plants grown in nutrient solution with 

very low (5 µM), low (10 µM), medium (25 µM) and adequate (1000 µM) Mg supply. 

 

Shoot Mg Concentration: HSD0.05 (Mg, Time, MgxTime) = (135, 106, 305) 
Root Mg Concentration: HSD0.05 (Mg, Time, MgxTime) = (145, 114, 328) 
Shoot Mg Content: HSD0.05 (Mg, Time, MgxTime) = (27, 21, 62) 
Root Mg Content: HSD0.05 (Mg, Time, MgxTime) = (14, 12, 32) 
 

Previous results showed that Mg concentration and content both in shoots and 

roots tend to be increased in the absence of adequate K supply (Table 1.1.2). However, 

there was no such remarkable changes in K concentration or content of Mg-deficient 

plants (Table 1.2.2). Mg deficiency only slightly increased the shoot and root K 

concentration and this effect was not significant. K content of shoots and roots increased 

both with time and increasing Mg supply, whereas low K supply significantly enhanced 

shoot and root Mg content (Table 1.1.2). 

 



 33

Table 1.2.2:. Shoot and root K concentrations (A) and contents (B) of 14-, 16- and 18-

day-old wheat (Triticum aestivum cv. Ceyhan-99) plants grown in nutrient solution with 

very low (5 µM), low (10 µM), medium (25 µM) and adequate (1000 µM) Mg supply. 

 
Shoot K Concentration: HSD0.05 (Mg, Time, MgxTime) = (0.305, 0.23, 0.64) 
Root K Concentration: HSD0.05 (Mg, Time, MgxTime) = (0.58, 0.45, 1.32) 
Shoot K Content: HSD0.05 (Mg, Time, MgxTime) = (2.02, 1.58, 4.56) 
Root K Content: HSD0.05 (Mg, Time, MgxTime) = (0.24, 0.19, 0.55) 
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C.1.3 Potassium Resupply to Deficient Plants 

 

Wheat plants grown under low K supply exhibited deficiency symptoms (Figure 

1.3.1). Older leaves of the deficient plants were dry on the leaf tip and had a yellowish-

brown color. In comparison to adequate-K plants, the leaves and stems of the low-K 

plants were thinner and tillering was reduced by K-deficiency.  

 

 

 

Figure 1.3.1: Shoot growth of 15-day-old wheat (Triticum aestivum cv. Ceyhan-99) 

plants grown in nutrient solution. K was supplied to plants at low (25 M) and adequate 

(2000 M) concentration or resupplied to 12-day-old wheat plants at adequate 

concentration for 72 hours.  

 

 

In paralell with the findings of previous experiment, root and shoot growth of 

wheat plants grown in the absence of adeqaute K nutrition were significantly reduced (Fig 

1.3.2). On 12 days after sowing, half of the low-K-treated plants were resupplied with K 

at adequate concentration for 72 hours. A short term K-resupply enhanced root and shoot 

growth. 

 

 

 

 

Low K Adequate K



 35

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 1.3.2: Effect of K resupply on shoot and root growth of 15-day-old wheat 

(Triticum aestivum cv. Ceyhan-99) plants grown in nutrient solution. K was supplied to 

plants at low (25 M) and adequate (2000 M) concentration or resupplied to 12-day-old 

wheat plants at adequate concentration for 72 hours.  

 

 

As expected, low K treatment significantly reduced shoot and root dry matter 

production (Table 1.3.1). The effect of K resupply on shoot biomass production was 

significant. 72 hours of K resupply increased shoot dry matter, however its effect on root 

biomass could not be observed. The effect of K deficiency and K resupply on shoot-to-

root ratio was not significant or not an effect at all.  
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Table 1.3.1: Effect of K resupply on shoot (A) and root (B) biomass production and 

shoot-to-root ratio (C) of 12-day-old wheat (Triticum aestivum cv. Ceyhan-99) plants. K 

was supplied to plants at low (25 M) and adequate (2000 M) concentration or 

resupplied to 12-day-old wheat plants at adequate concentration for 72 hours.  

Shoot Biomass: HSD0.05 (K, Time, KxTime) = (1.18, 1.5, 3.35) 
Root Biomass: HSD0.05 (K, Time, KxTime) = (1.16, 1.47, 3.31) 
Shoot:Root Ratio: HSD0.05 (K, Time, KxTime) = (0.08, 0.1, 0.22) 

 

K deficiency and a short term K resupply induced changes in shoot and root 

morphology of wheat plants (Figure 1.3.2). Stems and leaves of K-deficient plants were 

remarkably thinner. K resupply accelerated tillering and enhanced shoot growth. 

Although root dry matter production was not affected, resupplied K induced root hair 

formation and increased root density as compared to low-K plants. 
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Figure 1.3.3: Effect of K resupply on shoot and root morphology of 12-day-old wheat 

(Triticum aestivum cv. Ceyhan-99) plants grown in nutrient solution. K was supplied to 

plants at low (25 M) and adequate (2000 M) concentration or resupplied to 12-day-

old wheat plants at adequate concentration for 72 hours.  
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As expected, there were significant alterations in the root morpholgy under K 

depletion (Figure 1.3.3). Most sensitive parameter to K deficiency was found to be root 

length and number of root forks, whereas root volume was the least sensitive parameter. 

K resupply on deficient plants markedly increased number of root tips and forks, by 

83% and 65%, respectively, after 72 hours. Root length was another parameter that 

responded to K resupply. In comparison to deficient plants, root length was increased 

by 36% after 72 hours of K resupply. Such effects were not observed in root area and 

root volume.  
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Root Length: HSD0.05 (K, Time, KxTime) = (33, 42, 94) 
Root Area: HSD0.05 (K, Time, KxTime) = (2.5, 3.17, 7.05) 
Root Volume: HSD0.05 (K, Time, KxTime) = (0.01, 0.02, 0.05) 
Root Tips: HSD0.05 (K, Time, KxTime) = (68, 86, 191) 
Root Forks: HSD0.05 (K, Time, KxTime) = (108, 137, 304) 
 

Figure 1.3.3: Effect of K resupply on root length (A), root area (B), root volume (C), 

number of root tips (D) and forks (E) of 12-day-old wheat (Triticum aestivum cv. Ceyhan-

99) plants. K was supplied to plants at low (25 M) and adequate (2000 M) 

concentration or resupplied to 12-day-old wheat plants at adequate concentration for 72 

hours. 
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A short term resupply of K significantly increased shoot and root K concentrations 

of deficient plants (Table 1.3.2). Very soon after resupply treatment (i.e. 24 hours 

following K-resupply), the shoot K concentration increased by 2.6 fold in comparison to 

low-K plants and there was no significant difference in the shoot K concentration of K-

resupplied and K-adequate plants. Similarly, the root K concentration increased by 4.1 

fold. The positive effect of K-resupply was also observed in shoot and root K contents. 

In comparison to low-K treatment, 72 hours of K-resupply increased shoot and root K 

content by 4.7 and 6.2 fold, respectively.  

 

Table 1.3.2: Effect of K resupply on shoot and root K concentration (A) and contents (B) 

12-day-old wheat (Triticum aestivum cv. Ceyhan-99) plants grown in nutrient solution. 

K was supplied to plants at low (25 M) and adequate (2000 M) concentration or 

resupplied to 12-day-old wheat plants at adequate concentration for 72 hours.  

 
Shoot K Concentration: HSD0.05 (K, Time, KxTime) = (0.09, 0.12, 0.28) 
Root K Concentration: HSD0.05 (K, Time, KxTime) = (0.09, 0.125, 0.2804) 
Shoot K Content: HSD0.05 (K, Time, KxTime) = (60, 77, 172) 
Root K Content: HSD0.05 (K, Time, KxTime) = (59, 75, 169) 
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C.2. Effect of varied K Nutrition on Uptake of Other Mineral Nutrients 

 

K deficiency resulted in yellowish-brown leaves with necrotic lesions (Figure 

2.1). Leaves of K-deficient plants were also narrower and stems were thinner than of 

adequate-K plants. Adequate-K plants had larger leaf area as well. Along with the leaf 

symptoms, K-deficient plants also reduced shoot and root growth (Figure 2.2). Tillering 

was significantly restricted in K-deficient plants. Root growth was also severely affected 

by low and medium K treatments. The roots of these plants were thinner and shorter.  

 

 

Figure 2.1: Leaves of 18-day-old wheat wheat (Triticum aestivum cv. Ceyhan-99) plants 

grown hydroponically with low (25 M) or adequate (2000 M) K supply.  

 

 

In parallel with visual observations, shoot and root dry mass production were 

significantly reduced by low and medium K treatments (Table 2.1). Compared to 

adequate-K plants, shoot biomass was reduced by about 46% and 24% and root biomass 

was reduced by 44% and 20% under low and medium K supply, respectively. There 

was no significant difference in the shoot-to-root ratio between treatments. 
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Figure 2.2: Shoot and root growth of 18-day-old wheat wheat (Triticum aestivum cv. 

Ceyhan-99) plants grown hydroponically with low (25 M), medium (50 M) and 

adequate (2000 M) K supply.  

 

 

 

Table 2.1: Shoot and root biomass production and shoot-to-root ratio of 18-day-old wheat 

(Triticum aestivum cv. Ceyhan-99) plants grown hydroponically with low (25 M), 

medium (50 M) and adequate (2000 M) K supply.  

 

 

Low K Medium K Adequate K 

* Values with different letters within each column differ significantly at P = 0.05 probability level.       
Each data represents the mean of seven replications. 
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The uptake of nutrients was found to be altered by varied K supply (Table 2.2). 

As expected, there was a linear increase in the K uptake mol plant-1 with increasing K 

supply. Along with K, the uptake of P and NO3 per plant also enhanced significantly with 

increasing K supply. Low K supply reduced P uptake by 46% and NO3 uptake by 71%. 

Under medium K supply, the reduction in uptake was 30% and 42% for P and N uptake, 

respectively. On the other hand, Mg, S and Ca uptake per dry weight unit of root was 

increased significantly in the absence of adequate K supply. For example, Mg uptake 

under low K supply was increased by about 160% in comparison to adequate K supply. 

Similarly, Ca uptake was increased by 276% and 133% under low and medium K supply, 

respectively.  

 

 

 

Table 2.2: Cumulative K, P, S, Mg, Ca and NO3 uptake of 18-day-old wheat (Triticum 

aestivum cv. Ceyhan-99) plants grown hydroponically with low (25 M), medium (50 

M) and adequate (2000 M) K supply.  

 

 

 

 

 

 

* Values with different letters within each column differ significantly at P = 0.05 probability level. Each data 
represents the mean of seven replications. 
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Mineral element concentration and content in shoots and roots of 18-day-old 

wheat plants (Table 2.3) also reflect the effect of K nutrition on the uptake of nutrients. 

As per the uptake results, K concentration and content in shoots and roots increased with 

increasing K supply. Unlike the increasing trend in P uptake (Table 2.2), P was found to 

be more concentrated in K-deficient shoots. Both Mg concentration and content in shoots 

and roots were significantly affected by various K applications. In the absence of adequate 

K supply, Mg concentration peaked in shoots and roots, however adequate K supply 

significantly suppressed shoot and root Mg concentration. Similarly, Mg content of 

shoots and roots were enhanced particularly at the medium-K level.  

 

 

 

Table 2.3: K, Mg, P and S concentrations (A) and contents (B) in shoots and roots of 18-

day-old wheat (Triticum aestivum cv. Ceyhan-99) plants grown hydroponically with low 

(25 M), medium (50 M) and adequate (2000 M) K supply.  

 

 

* Values with different letters within each column differ significantly at P = 0.05 probability level. Each data 
represents the mean of seven replications. 
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There were significant alterations in shoot nitrate concentration between 

treatments (Table 2.4). In all treatments, shoot nitrate was found to be more concentrated 

in younger leaves than in older leaves. Medium K treatment reduced nitrate concentration 

in old and young leaves by 72% and 42.5%, respectively. In contrast to nitrate, free amino 

acid concentration in old leaves, young leaves and shoots was significantly increased 

under K deficiency (Table 2.5). The highest concentration of free amino acids was 

observed in the low-K treatment. 

 

 

 

Table 2.4: Shoot nitrate concentration of 18-day-old wheat (Triticum aestivum cv. 

Ceyhan-99) plants grown hydroponically with low (25 M), medium (50 M) and 

adequate (2000 M) K supply.  

 

 

 

 

 

 

 

 

 

Along with free amino acids, concentration of soluble carbohydrates was also 

affected by K rate (Table 2.6). Soluble carbohydrate concentration was significantly 

increased by K deficiency, especially in the old leaves. For example, soluble carbohydrate 

concentration in old leaves was 78% higher in medium-K treatment than in adequate-K. 

Similarly in the young leaves, it was increased by 46% in comparison to adequate-K 

plants. 

 

 

 

* Values with different letters within each column differ significantly at P = 0.05 probability 
level. Each data represents the mean of seven replications. 
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Table 2.5:. Total free amino acid concentration of 18-day-old wheat (Triticum aestivum 

cv. Ceyhan-99) plants grown hydroponically with low (25 M), medium (50 M) and 

adequate (2000 M) K supply.  

 

 

 

 

 

 

 

 

 

 

Table 2.6:. Water-soluble carbohydrate concentration of 18-day-old wheat (Triticum 

aestivum cv. Ceyhan-99) plants grown hydroponically with low (25 M), medium (50 

M) and adequate (2000 M) K supply.  

 

 

 

 

 

 

 

 

 

Total N concentration in old leaves, young leaves, shoot and roots is presented in 

Table 2.7 Total N concentration was found to be affected by K treatments. Total N (%) 

in young leaves, shoot and root showed a linear response to K fertilization and peaked at 

adequate K level.  

 

 

* Values with different letters within each column differ significantly at P = 0.05 probability 
level. Each data represents the mean of seven replications. 

* Values with different letters within each column differ significantly at P = 0.05 probability 
level. Each data represents the mean of seven replications. 
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Table 2.7: Total nitrogen concentration of 18-day-old wheat (Triticum aestivum cv. 

Ceyhan-99) plants grown hydroponically with low (25 M), medium (50 M) and 

adequate (2000 M) K supply.  

 

 

 

 

 

 
 

* Values with different letters within each column differ significantly at P = 0.05 probability level. Each data 
represents the mean of seven replications. 
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(D) DISCUSSION 

 

Development of interveinal chlorosis on older, fully-expanded leaves is typical 

symptom of Mg deficiency. Expression of leaf chlorosis is attributed to the role of Mg in 

chlorophyll biosynthesis, since it serves as the central molecule in the chlorophyll 

molecule (Gransee and Führs, 2012). In the present study, wheat plants supplied with low 

concentrations of Mg showed interveinal chlorosis on the older leaves (Figure 1.2.1) due 

to high phloem-mobility of Mg (Broadley et al., 2008). As expected, severity of these 

symptoms intensified with decreasing Mg availability in growth medium.  

Magnesium is one of the essential macronutrients that is required by plants for 

growth and development. As expected, Mg deficiency significantly decreased shoot and 

root dry matter production in wheat plants (Figure 1.2.2). Root growth was found to be 

more affected by Mg deficiency than shoot growth, leading to a greater shoot-to-root ratio 

in wheat plants. Similar results have also been reported in a number of plant species 

including wheat, bean, maize and citrus (Cakmak et al., 1994b; Mengutay et al., 2013; 

Yang et al., 2012). 

Root growth is a growth process that requires delivery photoassimilates from 

shots. Mg is known to be a key player in phloem loading and transport of sucrose 

(Cakmak and Kirkby, 2008).  Very recently, Farhat et al (2016) showed in 14C labeling 

experiments that the radioactivity  distribution  within plants was severely affected by the 

Mg nutritional status of the plants. In case of Mg deficiency, 14C transportation from 

leaves to shoots was completely  inhibited.  Cakmak et al. (1994b) reported that a short 

term resupply of Mg to Mg-deficient plants immediately regenerated sucrose export; 

suggesting that Mg is directly involved in sucrose-loading into phloem and transport from 

source organs (fully-expanded leaves) to sink organs such as roots. H+/sucrose co-

transport catalyzes the phloem-loading of sucrose and the proton gradient required for 

this process is generated by an H+/ATPase (Bouche-Pillon et al., 1994; Ward et al., 1997). 

Mg is required for the proper functioning of this enzyme (Bush, 1989; Getz and Klein, 

1995) and any alteration in its activity is highly correlated with decreased sucrose export 
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from source leaves to sink organs such as roots (Zhao et al., 2000). Mg-ATP is one of the 

important Mg compounds in plant cells and it is used by the H+/ATPase enzyme in 

phloem loading of sucrose (Bush, 1989). Probably, low amount of Mg-ATP in the phloem 

loading zones is a further reason for the impaired phloem transportation of sucrose in 

plants.  

Accumulation of sugars and starch in leaves is a well-documented phenomenon 

observed under Mg deficiency, suggesting impaired phloem transport of carbohydrates 

into roots or other sink organs such as seeds. Alterations in the photoassimilate allocation 

into sink organs is most likely the main cause of reduced root biomass production and 

increased shoot-to-root ratio (Cakmak and Kirkby, 2008; Gransee and Führs, 2012).  

Potassium is also a highly phloem-mobile element and readily translocated within 

the plant, thus symptoms of deficiency, typically brown scorching and cholorosis, appear 

firstly on mature old leaves (Hopkins and Huner, 2009). In agreement with the literature, 

K deficient plants in all experiments presented in this thesis showed yellowish-brown leaf 

tips with necrotic spots (Figure 1.1.1, 1.3.1, 2.1). 

As expected, K deficiency dramatically reduced shoot and root dry weights of 

wheat plants (Figure 1.1.2, Table 1.3.1, 2.1). Potassium has diverse of critical cellular 

functions in plants, as described by Marschner (2012), including protein biosynthesis, 

photosynthesis, transportation of photoassimilates, increasing disease tolerance   and 

mitigation of  abiotic stress factors such drought and  salinity. Its deficiency therefore 

results in significant depressions in growth and development of crop plants. After N, K is 

taken up by crop plants in the largest amount.  Severe reductions in shoot and root dry 

matter production under low supply of K have been reported in a variety of species 

including wheat (Hirata et al., 1982) and bean (Cakmak et al., 1994b).  

As indicated above, K also has a key role in partitioning of carbohydrates between 

shoot and root and its functions in this process are similar to those of Mg. K deficient 

plants also accumulate sucrose in source leaves a consequence of impaired phloem 

loading (Marschner et al., 1996). This shift in C partitioning restricts root growth and 

directly related to reduced root dry weight under K deficiency. In well-agreement with 

the existing literature, water-soluble carbohydrate concentration was increased under K 

deficiency in the present study (Table 2.6) and was found to be more concentrated in the 

older source leaves than in the younger sink leaves, indicating an inhibited carbohydrate-

export from source to sink. 



 50

The well-known enhancement in shoot-to-root ratio due to disrupted C allocation 

to roots has been observed only in the first experiment (Figure 1.1.2). In the third and 

fourth experiment, the effect of K-level on shoot-to-root ratio was statistically non-

significant (Table 1.3.1, 2.1). In these experiments, wheat plants were subjected to K-

deficiency stress for a shorter period of time and most probably suffered rather from a 

milder deficiency. The extent of K deficiency in these plants did not induce any 

significant changes (i.e. increase) in shoot-to-root ratio. 

The third experiment was conducted to monitor changes in growth of the K-

deficient wheat plants over a 72 h K re-supply to deficient plants. 72 hours of K-resupply 

significantly enhanced shoot dry matter production, however this effect could not be 

observed in roots, most probably due to selected experimental conditions and severity of 

the K deficiency stress. Upon K application to deficient plants, 4 different pots from each 

treatment were harvested every 24 hours. Inconsistent root dry weight data is most likely 

to be the result of the use of different pots for each harvest.  

Potassium is directly involved in photosynthesis due to its role in CO2 exchange 

rates and stomatal opening/closing (Huber, 1984) therefore, K deficiency dramatically 

decreases photosynthesis rate (Bednarz et al., 1998; Hermans et al., 2006). Rapid 

enhancement of shoot dry weight upon K-resupply is most probably due to high 

involvement of K in photosynthesis. Increased photosynthesis rates would allow plants 

to produce more photoassimilates, which eventually add up to shoot biomass.  

In order to evaluate the damage exerted on roots by K and Mg deficiency, root 

morphology parameters were studied under varied deficiency conditions of K and Mg. 

Previous evidence suggests that root morphology is altered by the absence of K and Mg 

(Niu et al., 2004; Zhang et al., 2008). Both K and Mg deficiency treatments in this study 

resulted in significant reductions in root length, area, volume, number of root tips and 

forks (Figure 1.1.4, 1.2.4, 1.3). As discussed above, K and Mg are two key elements that 

facilitate photosynthate transport between shoot and root. Many authors have pointed out 

the importance of the assimilate available for root growth (Pearsall, 1923; White, 1937), 

because maintenance of a high root growth rate depends transportation of carbohydrates 

from the shoots.  Growth process in root or shoots is an energy dependent process and 

under direct influence of mitochondrial respiration (Marschner, 2012). In relation to 

reduced root growth, the reductions in the root morphology parameters are a result of 

impaired C allocation from source leaves. 
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Number of root tips and forks are good indicators of root hairs and were reduced 

dramatically under K and Mg deficiency. Root tips of K-deficient plants increased 

significantly within 24 hours after K-resupply, indicating that root hair formation was 

very sensitive to K nutrition and promoted if a sufficient K supply is maintained in the 

growth medium. Root hairs are crucial in terms of nutrient acquisition efficiency, since 

they facilitate nutrient and water uptake by increasing the interface for absorption. The 

importance of root hairs on the exploitation of soil nutrients was underlined by previous 

studies (Claasen and Jungk, 1984). Inhibition of root hair formation, therefore would lead 

to decreased uptake of nutrients due to less explored soil volume and less access to 

resources (Cakmak and Kirkby, 2008). 

There was an increasing trend in root length, area and number of root forks upon 

K-resupply, but not in root volume. The reason of this unexpected effect could not be 

understood. It seems that the most sensitive parameter to K-resupply is the number of 

root tips and root length. This positive impact of K-resupply is presumably due to 

increased allocation of assimilates into roots and this suggestion is consistent with the 

findings reported by Muller et al. (1998), who have shown that carbohydrate availability 

controls root elongation. 

According to Jones et al. (1991), critical deficiency concentrations during early 

vegetative growth are around 4% for K and 0.1% for Mg. Shoot Mg concentrations were 

significantly decreased below the critical deficiency threshold by growing the plants 

under low Mg (Table 1.2.1). By contrast, plants with adequate Mg supply had sufficiently 

high Mg in shoots. Similarly, K concentrations of shoots and roots were fairly high at 

adequate K-level, and were below the critical deficiency threshold under K deficiency 

treatments (Table 1.1.1, 1.3.2, 2.3). Shoot and root K concentrations of deficient plants 

increased remarkably upon K-resupply. Only within 24 hours, shoot K concentration 

increased above critical deficiency threshold and reached sufficient levels. This increment 

was also observed in roots, but in slower rates. These findings indicate clearly that the 

plants under low K supply respond very rapidly to re-supply of K and show high root 

uptake and root-to-shoot transport of K. 

The antagonism between K+ and Mg2+ has been widely studied and reported 

previously (Johnson et al., 1968; Fageria, 1983). High concentrations of K+ in growth 

medium inhibit Mg2+ uptake from roots as well as its translocation from roots to shoots. 

In the present study, similar results were observed. Under K-deficiency, Mg uptake per 

dry weight unit of root was increased by almost 4-fold (Table 2.2) and this promoted root 
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uptake were reflected well in the shoot and root Mg concentrations (Table 1.1.2, 2.3). 

These results were consistent with previous studies in wheat (Ohno and Grunes, 1985), 

tomato (Schwartz and Bar-Yosef, 1983) and rice (Ding et al., 2006). Inhibition of Mg 

uptake is a consequence of the negative effect of K on (i) net Mg2+ translocation from 

roots to shoots (Huang et al.,1990) and (ii) Mg2+-transport capacity of root (Moore et al., 

1961). Probably, there are channel proteins and Mg transporter proteins on root cell 

membranes which mediate both K and Mg uptake and transport, and in case of high K 

concentrations in growth medium a competitive inhibition take places  in Mg uptake  

through high  K treatments (Guo et al., 2010; Senbayram et al., 2015).  

On the contrary, the effect of Mg on K uptake was found to be less effective (Table 

1.2.2), although there was an inverse relationship between tissue K concentration and Mg 

supply.  Similar results have been reported by Ologunde and Sorensen (1982) and Ding 

et al. (2006) in wheat and rice, respectively. These findings support the evidence that the 

antagonistic effect of K on Mg was more significant than that of Mg on K. 

A varied K nutrition had also effects on root uptake and tissue concentrations of 

other nutrients. The effect of K on Ca uptake was similar to that on Mg. Highest Ca uptake 

was observed under severe K starvation and increasing K supply dramatically suppressed 

Ca uptake by roots (Table 2.2). These results were also consistent with shoot and root Ca 

concentrations (data not shown). The decrease in Ca uptake by roots is closely associated 

with the increase in K uptake, indicating that there is a competitive interaction between 

K and Ca, most likely due to well-known antagonism between the cationic ions during 

root uptake (Marschner, 2012). Similar results have been also reported in literature 

(Johnson et al., 1968; Fageria, 1983).  By contrast, it was shown that there is a positive 

interaction of K and P (Dibb and Thompson, 1985). In the present study, increasing K 

supply promoted P uptake from nutrient solution. Lastly, NO3
- uptake was also affected 

by K status. Previous evidence suggests that K affects NO3
- uptake and translocation 

directly or indirectly (Blevins et al., 1978; Marschner, 2012). K deficiency significantly 

reduced NO3
- uptake in the present study. These results are in well-agreement with the 

findings of Minotti et al. (1969) who have reported impairments in uptake and 

translocation of NO3
- in the absence K.  

Decreased NO3
- uptake under K deficiency is also supported by the nitrate 

contents of young wheat plants (Table 2.4). K deficiency significantly reduced NO3
- 

content both in old and young leaves. The decrease in NO3
- content is due to inhibition 

of NO3
- uptake and transport (Armengaud et al.,2009; Gajdanowicz et al., 2011). In 
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addition, NO3
- accumulated mainly in young leaves than in old leaves, indicating that N 

(as amino acids) is phloem-mobile and readily translocated to growing parts from mature 

source leaves.  

Inhibition of NO3
- uptake under K deprivation is mainly caused by several reasons 

and these include (i) reduced root growth and size, (ii) synergistic effect of K+ on uptake 

and translocation and (iii) changes in concentrations of N-containing compounds. As 

mentioned above, nutrient acquisition capacity of roots greatly depends on root size, since 

larger root surface area corresponds to greater interface for nutrient uptake in the 

rhizosphere, therefore, larger roots are capable of absorb more nutrients from the 

environment. In relation to this, smaller roots grown under K deficiency can take up less 

NO3
- than of those grown under adequate K supply.  

K+ and NO3
- are two counter-ions, and the root uptake and shoot translocation of 

these elements greatly depends on their simultaneous presence in growth medium. The 

synergism of these two ions is also related to their opposite charges which facilitates root 

uptake. Moreover, root- NO3
- is translocated to shoot via the xylem, accompanied with 

K+ as counter-ion (Coskun et al., 2016). Some studies have shown that K deficiency may 

result in an increase in the degree of NO3
- reduction in roots relative to shoots, most 

probably because NO3
- cannot be transported in the xylem in the absence of the 

accompanying cation (Rufty et al., 1981; Förster and Jeschke, 1993; Hu et al., 2016b). 

Another aspect that may lead to inhibition of NO3
- uptake is changes in 

concentrations of the nitrogenous (N)- compounds in K deficient plants. Accumulation 

of free amino acids in K deficient leaves has been shown in tobacco (Koch and Mengel, 

1974), barley (Helal and Mengel, 1979), maize (Hsiao et al., 1970) and cotton (Hu et al., 

2016b). Increase in free amino acid content can be a result of (i) K deficiency-related high 

peptidase and protease activity, indicating protein degradation, (ii) inhibited protein 

biosynthesis and ( ii) low amino acid export in phloem. It is known that K deficiency 

severely reduces protein synthesis leading to accumulation of amino acids because of less 

usage of amino acids in protein synthesis.  This suggestion can also be supported with 

higher free amino acid-to-soluble protein ratio observed in cotton under K deficiency 

(Hut et al., 2017). In accordance with previous studies, K deficient plants accumulated 

more amino acid in shoots (Table 2.5) and total N content found to be decreased in low 

K plants (Table 2.7). These findings indicate that K plays a key role in the distribution of 

N-compounds and between amino acid and protein. Such changes in amino acid and 
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protein concentrations may affect regulation of N metabolism and thus depress N 

assimilation (Wang et al., 2012).   
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(E) CONCLUSION 

 

Potassium and Mg deficiencies occur commonly in crop plants with severe 

impacts on growth and yield capacity, especially under environmental stress conditions. 

Due to their diverse physiological and biochemical functions at cellular level, occurrence 

of K and Mg deficiencies on agricultural soils affects seriously productivity and also 

nutrient use efficiency. In this present study, it has been shown that one of the 

fundamental problems caused by Mg and K deficiencies is the substantial alteration in 

root morphological parameters. Potassium and Mg deficient plants have failed to develop 

an efficient root system.  Root length, root surface area and number of root tips are most 

critical root parameters affecting nutrient uptake by roots. These parameters were 

significantly affected in plants under low supply of K and Mg. Therefore, a reduced 

nutrient acquisition and nutrient use efficiency can be expected in plants with low K and 

Mg supply.  

It is known that maintenance of an adequate root N uptake depends on the 

utilization of the root-absorbed N in protein biosynthesis. Protein biosynthesis is very 

sensitive to low K supply.  If the use of absorbed N in protein synthesis is impaired (for 

example due to K deficiency), this will have a negative feed-back effect on root N uptake, 

with severe inhibition in N uptake by roots (Marschner, 2012). Therefore, it is of great 

importance to keep sufficient amounts of K and N-NO3 in growth medium in order to 

maintain synergistic uptake between N-NO3 and K. 

Hereby we conclude that ensuring a good K and Mg nutrition is of great 

importance in terms of both maximizing production as well as the use efficiency of 

mineral nutrients applied into soils. 
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