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Abstract

An incompressible smoothed particle hydrodynamics method for modeling immiscible
and isothermal flow of two- and three-phase Newtonian fluids and solid particles subject
to an external electric field has been developed. Continuum surface force method is used
to calculate the surface tension forces on fluid-fluid interfaces. The materials are assumed
to be either perfect or leaky dielectrics. Solid particles are modeled using viscous penalty
method coupled with rigidity constraints. The equations are discretized using corrected
derivatives and artificial particle displacement is used to ensure homogeneous particle
distribution. The projection method is used to advance the governing equations of the
flow and electric field in time.

The components of the scheme are tested in three stages of two- and three-phase hy-
drodynamics, multiphase electrohydrodynamics and fluid-structure/solid interaction. The
results of each stage is compared to experimental and numerical data available in litera-
ture and their validity is established. The combination of the individual elements of the
numerical method is used to simulate the motion of rigid particles submerged in Newto-
nian fluids subject to an external electric field. The behavior of the particles are found to be
in agreement with experimental and numerical observations found in the literature. This
shows the applicability of the proposed incompressible smoothed particle hydrodynamics
scheme in simulating such complex and relatively unexplored phenomena.

Keywords: Incompressible Smoothed Particle Hydrodynamics, Multiphase Flows, Elec-
trohydrodynamics, Fluid-Structure/Solid Interaction.
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Özet

Elektrik alan etkisinde olan izotermal ve birbirleri ile karışmayan iki ve üç fazlı New-
tonsal akışkan ve katı parçacık akışlarının modellenmesine uygun bir sıkıştırılamaz düz-
leştirilmiş parçacık hidrodinamiği yöntemi geliştirilmiştir. Akışkanlar arası yüzey gerili-
minin modellenmesinde süreklilik yüzey kuvveti yöntemi kullanılmiştir. Akışkan ve katı
ortamları sızdıran ve tam dielektrik malzeme olarak modellenmiştir. Katı parçacıkları
viskoz engel ve rijit cisim hareket koşullarının birarada kullanılması ile modellenmistir.
Denklemler düzeltilmiş türevler ile ayrıklaştırılmış ve yapay parçacık ötelemesi yöntemi
kullanılarak homojen parçacık dağılımı sağlanmıştır. Akım ve elektrik alanının zaman
içinde ilerletilebilmesi için projeksiyon yöntemi kullanılmıştır.

Geliştirilen yöntemde kullanılan modellerin performansı ayrı ayrı olarak denenmiş ve
doğrulanmıştır. Bu amaçla iki ve üç fazlı hidrodinamik, çok fazlı elektrohidrodinamik
ve sıvı-katı etkileşimi konu başlıkları altında farklı simülasyonlar yapılmıştır. Sonuçlar
literatürde bulunan deneysel ve sayısal sonuçlar ile karşılaştırılarak doğrulanmıştır. Adı
geçen modellerin birleşiminden oluşan sayısal yöntem, Newtonsal akışkanda elektrik alan
etkisi altında hareket eden rijit parçacıklarının modellenmesinde kullanılmıştır. Parçacık-
ların davranışı deneysel ve sayısal yöntemlerle yapılan çalışmalardaki gözlemlerle uyumlu
bulunmuştur. Bu sonuçlar geliştirilmiş olan sıkıştırılamaz düzleştirilmiş parçacık hidro-
dinamiği yönteminin karmaşık ve görece daha az araştırılmış olan bu tarz problemler için
uygun bir sayısal yöntem olduğunu göstermektedir.

Anahtar Kelimeler: Sıkıştırılamaz Düzleştirilmiş Parçacık Hidrodinamiği, Çok Fazlı Ak-
ım, Elektrohidrodinamik, Sıvı-Katı Etkileşimi.
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Chapter 1

Introduction

1.1 Computational fluid dynamics
There are three approaches to studying fluid flows: analytical, experimental and numer-
ical. Analytical solutions are limited to particular geometrical configurations and have
been a major research topic for centuries. In regards to more complex phenomena, exper-
imental methods have been the single source of information until the advent of computers
which made numerical methods viable. The numerical method of investigating fluid flow,
commonly known as Computational Fluid Dynamics (CFD), is the process of predicting
fluid flow, heat transfer, mass transfer, chemical reactions, electrical and magnetic influ-
ence and related phenomena by solving the mathematical equations which govern these
processes using a numerical method.

Experiments provide quantitative description of flow using measurements for one vari-
able at a time, at a limited number of points and time instants. The results are limited to
laboratory-scale models for a limited range of problems and operating conditions subject to
measurement errors and unintended perturbations. While numerical simulations alleviate
some of the shortcomings of the experiments, CFD is very much limited by the mathemat-
ical models, discretization methods and implementation of the computational code. For
complex problems with refined solutions the computational costs, in terms of time and
energy, may very well surpass that of an equivalent experiment. In other cases, such as
very small or very large scale phenomena, experimental procedures may be difficult, ex-
pensive or impossible. As a result, experiments, numerical methods and to a lesser extent
analytical solutions go hand in hand to help understand a variety of flow configurations.

1.2 Fluid-fluid and fluid-solid interfaces
Fluid flows encountered daily include, but are not limited to, meteorological and environ-
mental phenomena such as rain, wind and particulate transport in atmosphere, heating,
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cooling and ventilation of buildings and electronic devices and interaction of various solid
bodies with the surrounding medium. All of the aforementioned flows involve interfacial
interactions, be it between multiple fluid layers or between a fluid and a solid surface (mov-
ing or stationary). As a result there is a large amount of research dedicated to the study
of the interfacial phenomena. A variety of numerical methods are formulated to simulate
the dynamics of the interfaces. While the boundaries between the basic elements of the
numerical methods dealing with interfaces may not be as clear in every implementation,
it is possible to put the essential steps into three categories. Assuming rigid behavior for
solid components of a simple system, the three elements are fluid solver, interface handler
and coupling scheme.

Continuum level (macro-scale) fluid solvers may be categorized into Eulerian, La-
grangian and Eulerian-Lagrangian. In Eulerian fluid solvers, the coordinate system is sta-
tionary in reference frame while fluid parcels travel through the computational domain. In
Lagrangian point of view, the coordinate system follows fluid parcels and is mobile with
respect to the reference frame. Eulerian-Lagrangian methods, as the name implies, are a
mix of the two approaches where some elements are calculated in Eulerian fashion while
other features are followed in a Lagrangian manner. The evolution of the interface may
be handled via two different approaches: interface-tracking and interface-capturing. The
former uses an explicit (or implicit) representation of the interface in a Lagrangian fashion
and tracks its evolution across the fluid background. The latter follows the interface in an
implicit fashion via evolving a representative function or variable and reconstructing the
interface to apply its effects on the flow field. Interface-capturing methods are generally
coupled to an Eulerian representation of the flow field while interface-tracking methods
may use either Eulerian or Lagrangian representation. In the simplest form of coupling,
either fluid solver or interface handling procedure may take precedence, that is either the
fluid affects the interface position or interface position affects the fluid flow and the recip-
rocated effects are resolved in the next time instance. In fully coupled model the interface
and fluid flow are evolved simultaneously which generally involves higher computational
cost.

Among Eulerian approaches coupled with interface-capturing methods, Volume of
Fluid (VOF) and Level Set (LS) are the more widespread variants. VOF method was
proposed by Hirt and Nichols [1] and uses a function with a sharp jump to distinguish
the interface which is advected by the fluid velocity. The method generally involves a
reconstruction of the interface after every advection step to compute the curvature, sur-
face tension, viscous forces and any additional interface related variables. Advecting a
step function and reconstruction step require sophisticated methods that have resulted in
several variants [2–14]. Despite the difficulties, the method is able to handle large topo-
logical changes and preserves mass naturally. In LS, pioneered by the work by Osher and
Sethian [15], the interface is defined as the zero-level of a smooth function. This provides a
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straightforward method of calculating the interface normal, curvature and other interface-
related properties. The smoothness of the function facilitates its convection and it may be
reinitialized to maintain its smoothness. However, the smoothness of the function means
that interface location may be inaccurate and the information is diffused across the inter-
face, causing worse mass conservation in comparison with VOF. Some examples of LS
method may be found in [15–33] . Spatial discretization in Eulerian interface-capturing
methods are usually carried out using Finite Difference Method (FDM) and Finite Volume
Method (FVM) and occasionally Finite Element Methods (FEM).

As an alternative to interface-capturing, interface-tracking method is also coupled with
Eulerian representation of the fluid to solve interfacial problems. In a variation introduced
by Glimm and co-workers [34] and aptly named Front Tracking (FT), additional com-
putational elements are introduced explicitly to keep track of the front. The underlying
fluid mesh may be adapted to the interface [35, 36] or remain intact [37–39]. The main
advantage of the method lies in its ability to avoid numerical diffusion and maintain a
sharp interface, resulting in several publications [40–46]. On the other hand this raises the
complexity of the method and handling of large topological changes becomes difficult.
Additionally, the interface elements may accumulate in one segment of the interface while
leaving other parts less resolved which requires further manipulation of the distribution of
interface elements. Spatial discretization in the aforementioned methods are usually car-
ried out using FDM and FVM and occasionally FEM. A different implementation of the
interface-capturing scheme, which is mostly associated with FEM, uses a fluid solver that
resides between Eulerian and Lagrangian representation. Pioneered by Hirt et al. [47, 48],
Arbitrary Lagrangian-Eulerian (ALE) method uses a fluid mesh that moves according to
a set law. In its extremes the mesh is either stationary (Eulerian) or moves with the fluid
(Lagrangian). Being similar to FT in its interface representation, ALE suffers the same
problem of limited topological changes while the necessity of the occasional remeshing
of the fluid domain adds to the complexity of the algorithm. However, the flexibility of
the ALE in small interface deformations resulted in its widespread adoption [49–55]

Since including solid bodies, Fluid-Structure/Solid Interaction (FSI) problems have
some inherent Lagrangian nature to them. In this case, the interface tracking may be either
implicit or explicit. A family of FSI methods, collectively known as Fictitious Domain
(FD) approaches [56–59], use an implicit representation of the moving boundaries. These
methods apply a specific constraint to the rigid area and the solid body is represented
by a smooth or sharp function on the flow field. In this sense the methods bear some
resemblance to LS methods. On the other hand Immersed Boundary Method (IB) [60, 61]
is closely related to FT in the way the solid body is followed explicitly. On the other hand,
the effects of the presence of the solid body are distributed on the fluid in a manner which
may be classified closer to LS methods. ALE method is directly applicable to interfaces
with moving boundaries with minimal modification compared to its fluid-fluid counterpart.
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FDM, FVM and FEM are equally used in FSI problems.
Lagrangian interface-tracking, as a natural representation of the moving interface, may

be coupled with a Lagrangian representation of the fluid flow to alleviate the shortcom-
ings mentioned above. To this end, several methods have been developed which allow
for material interface to be specifically defined and followed. Boundary conditions on the
interface are easy to enforce while complicated treatments for non-linear convective terms
are circumvented. These advantages come at the cost of higher computational overhead,
additional procedures to maintain a homogeneous discretization and a general lack of con-
trol over local resolution. One such Lagrangian method rooted in FEM is called Particle
Finite Element Method (PFEM) [62, 63] which treats mesh nodes as free particles that
move with the fluid. The domain is continuously remeshed according to the positioning
of the nodes and governing equations are solved using the FEM. PFEM has been used for
several problems [64–71].

The above mentioned Lagrangian method is still dependent on a form of mesh gen-
eration which adds to its computational overhead. Mesh-free Lagrangian methods alle-
viate this problem by using flexible connectivity and relying on kernel approximation of
variables. Two such methods are Moving Particle Semi-implicit (MPS) method [72] and
Smoothed Particle Hydrodynamics (SPH) method [73, 74]. In the context of fluid dynam-
ics, SPH was initially applied to free surface flow employing an explicit approach using a
pseudo compressible state equation [75]. Later on, MPS method [72] was proposed em-
ploying a projection scheme [76] followed by a similar approach for SPH [77, 78]. The two
variants of the SPH were distinguished later as Weakly Compressible SPH (WCSPH) for
the pseudo-compressible variant and Incompressible SPH (ISPH) for the projection-based
SPH. MPS and ISPH have been developed independently and applied to many problems
[79–81]. Recently it has been shown that the difference between the two methods lies in
the specific kernel used and an equivalence between MPS weighting function and ISPH
kernel is established [79, 82]. A MPS weighting function translates into two ISPH kernel
functions, one for gradient and one for Laplacian. Similarly, an ISPH kernel translates
into two distinct MPS weighting functions. MPS has been used to simulate free surface
flows [83–86], droplet dynamics [81, 87, 88] and FSI [72].

Having been developed earlier, use of SPH (both variants) is much more prevalent than
MPS. Some of the applications of SPH include multi-phase flows [89–93], free-surface
flows such as wave impact, dam break and sloshing [75, 90, 94–97] as well as river dynam-
ics, flow in fractures and porous media and soil mechanics [98–100] and fluid-structure
interaction such as impact, particle dynamics and elastic bodies [101–106].
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1.3 Electrohydrodynamics: Electrostatics and
hydrodynamics

Electrohydrodynamics (EHD) refers to the hydrodynamics coupled with electrostatics.
Electrical forces are generated at the interface between materials of different electrical
properties when an external electrical field is applied to the system. These forces may
have significant effects on the behavior of the interface and could serve as a control mech-
anism by affecting its stability, motion and evolution. The earliest record of an electro-
hydrodynamic experiment dates back to seventeenth century describing the formation of
conical shapes upon bringing a charged rod above sessile drops [107, 108]. Some appli-
cations of the electrical field in manipulation of fluid-fluid interfaces include mixing of
fluids [109–111], coalescence and breakup of bubbles [112–114], generating droplets and
bubbles [115–117] and controlling their sizes [118–120]. As for fluid-solid interfaces and
mainly considering solid bodies suspended in a background fluid, assembly of colloidal
particles is one example [121, 122]. Two dimensional crystals [123–125] and functional
microwires have been fabricated using this method [126]. Electrorheological fluids where
viscosity is controlled via electrical field intensity is another example [127–129]. Some
biological applications include cell manipulation [130, 131], DNA stretching [132, 133],
patterning biomolecules and biopolymers [134, 135] and tissue engineering and biosens-
ing [136, 137].

Early models describing the behavior of interfaces subject to an external electric field
focused on perfect conductors or perfect dielectrics. These models were not adequate in
explaining instabilities observed in poorly conducting liquids. To alleviate the shortcom-
ings, the leaky dielectric model was proposed [138, 139]. The model assumes infinitesi-
mal amount of free charge confined to a thin interface while the bulk of the fluid is free of
charge. Electric forces are perpendicular to the interface in perfect conductors and perfect
dielectrics and balance with the changes in the interface profile and surface tension. The
free charge accumulated on the interface of leaky dielectric materials modifies the electric
field resulting in tangential force which in turn is balanced by viscous stresses due to flow
field. such that viscous flow develops in response to tangential forces created on the in-
terface. In reality free charges will diffuse away from the interface, resulting in a layer of
counterions of finite thickness called electric double layer [140]. Nevertheless, the leaky
dielectric model is found to be adequate when electric double layer is thin compared to the
particle size, avoiding additional complexity of modeling the diffuse layer [108, 121].

As for numerical modeling, the approaches are similar to that of a regular fluid-fluid or
fluid-solid interface with governing equations of electric field solved in conjunction with
the flow field. The solution of electric and flow fields may be partially or fully coupled.
The flow field is directly affected by the electric field through electric forces while the flow
field affects the electric field through displacement of the interface in an indirect fashion.
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1.4 Aims and scope
Smoothed particle hydrodynamics is one of the more prevalent Lagrangian mesh-less
methods which relies on moving particles as spatial discretization points. The particles
are mostly advected by the flow while minor modifications are introduced to ensure proper
resolution in the computational domain. This gives the method a natural tendency to adapt
to the interfaces and as such, it is widely used in flows involving free surfaces such as wave
generation, dam break, sloshing motion, and impact. However, the use of SPH is less fre-
quent in subjects such as three-phase flows where more than two phases are in contact
simultaneously, electrostatic manipulation of interfaces or passive movement of fully sub-
merged solid bodies. This study aims to explore these very subjects with the aim to spread
the use of SPH beyond its classical fluid mechanics territory.

The structure of the rest of this writing is as follows:

• The governing equations for a multiphase incompressible, immiscible, isothermal
system is described in chapter 2. Handling surface tension for two- and three-phase
flows using continuum surface force model is described in detail. The final piece
of the mathematical model, i.e. electrostatics, is explained as well and two different
approaches are described.

• The details of the numerical implementation are presented in chapter 3. Basic ele-
ments and operations such as convolution filtering, neighbor finding and implement-
ing boundary conditions are described in detail. SPH spatial derivatives and time
marching scheme are provided for electrostatic fluid-structure/solid interaction, the
most complex case studied here.

• Chapter 4 explores the accuracy of the two- and three-phase implementation via
several test cases and validations with literature data. Liquid lens, droplet levitation
and droplet spreading are chosen due to their well known behavior.

• In chapter 5, the electrohydrodynamic component of the ISPH scheme is used to
investigate the effects of the electric field for the simplest model configuration com-
bining surface tension, viscous, gravitational and electrical forces, Rayleigh-Taylor
instability.

• Chapter 6 validates the fluid-structure/solid interaction scheme implemented. To
this end, the linear motion of a single circular disc and a pair of discs sedimenting
in quiescent fluid is investigated. Then the rotational motion of a circular disc in
simple shear is validated against literature data. The combined linear and rotational
motion is tested by simulating the migration of circular disc in simple shear as well
as the sedimentation of an elliptic disc in quiescent fluid.
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• All the previous elements tested in chapters 4 to 6 are combined in chapter 7 to sim-
ulate the electrostatic fluid-structure/solid interaction. Three cases are considered
and the effects of the electric field on the behavior of the solid particles is compared
with the non-electrified counterparts. The first case is the migration of a circular disc
in simple shear subject to an external electric field. The interactions of a pair of cir-
cular discs suspended in quiescent fluid is investigated as the second case. The third
case covers the effects of boundary configurations on the sedimentation trajectory
of an elliptical particle.

• Finally, the concluding remarks are drawn in chapter 8.
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Chapter 2

Mathematical formulation

2.1 Governing equations of the flow
In all studies conducted here, the fluids are assumed to be incompressible, immiscible
and isothermal, flowing in a two-dimensional domain possibly influenced by an external
electric field.

The equations describing the evolution of the flow field may be written as [141, 142]

𝛁 ⋅ 𝐮 = 0, (2.1)

𝜌D𝐮
D𝑡 = 𝛁 ⋅ 𝕋(ℎ) + 𝐟(𝑏) + 𝐟(𝑠) + 𝐟(𝑒), (2.2)

where 𝐮 is the velocity vector, 𝑡 is time, 𝜌 is density and

D
D𝑡 = 𝜕

𝜕𝑡 + 𝐮 ⋅ 𝛁, (2.3)

represents the material time derivative. For a Newtonian fluid the stress tensor 𝕋(ℎ) may
be written as

𝕋(ℎ) = −𝑝𝐼 + 𝝉. (2.4)

Here 𝑝 denotes pressure and 𝝉 is the viscous stress tensor defined as

𝝉 = 𝜇 [𝛁𝐮 + (𝛁𝐮)†] , (2.5)

where 𝜇 is fluid viscosity and superscript �† denotes the transpose operation. Modifying
equation (2.2) for an incompressible Newtonian fluid results in the following relation

𝜌D𝐮
D𝑡 = −𝛁𝑝 + 𝛁 ⋅ 𝜏 + 𝐟(𝑏) + 𝐟(𝑠) + 𝐟(𝑒), (2.6)

where 𝐟(𝑏), 𝐟(𝑠) and 𝐟(𝑒) are gravity, surface tension and electrical forces. Being a body
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force, gravity is treated directly as
𝐟(𝑏) = 𝜌𝐠, (2.7)

where 𝐠 is the gravitational acceleration vector. Further details about 𝐟(𝑠) and 𝐟(𝑒) will be
given in the following sections.

2.2 Surface tension
Surface tension is the tendency of the liquids to obtain the least surface area possible.
It occurs due to abrupt changes in molecular forces when fluid properties change in a
discontinuous fashion. It is an inherent phenomena to the flow of multiphase immiscible
fluids.

Within this study, a VOF like color function is used to distinguish the individual phases
of the flow. This function, also referred to as “color function”, is defined as

̂𝑐(𝛼) (𝐱) =
⎧{
⎨{⎩

1, if phase 𝛼 is present at 𝐱,
0, otherwise,

(2.8)

for each phase 𝛼 of the flow for the whole domain. As an example a three-phase flow will
have three color functions of ̂𝑐(1), ̂𝑐(3) and ̂𝑐(3) such that ∑3

𝛼=1 ̂𝑐(𝛼)(𝐱) = 1.
There are two common methods to account for surface tension force in literature: Con-

tinuum Surface Force (CSF) and Continuum Surface Stress (CSS). In CSF, the surface ten-
sion force is transformed into a volumetric local force. In CSS, the surface tension force
is specified via divergence of a stress tensor to recover a volumetric representation of the
surface tension. The main difference between the two methods is in explicit calculation
of surface curvature in CSF while this step is implicit in CSS. Both methods suffer from
parasitic currents in under-resolved regions due to imbalance between surface tension and
pressure.

2.2.1 Two-phase flows
Assuming an infinitesimally thin surface element of area d𝐴 at an arbitrary position on the
interface between two immiscible fluids, it is possible to define the boundary conditions
at the interface as

∥𝕋𝑖𝑗
(ℎ)∥ 𝑛𝑗 = 𝑓 𝑖

(𝑠𝑎) (2.9)

where ∥�∥ = �(1) − �(2) represents the discontinuity at the interface of phases 1 and 2
while 𝑛𝑖 is surface normal. The 𝐟(𝑠𝑎) defined above is the surface tension force per unit
interfacial area,

𝐟(𝑠𝑎) = 𝛾𝜅𝑛𝑖 − 𝛾,𝑖, (2.10)
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where 𝛾 is surface tension coefficient and 𝜅 is surface curvature. For constant surface
tension coefficient, 𝐟(𝑠𝑎) reduces to

𝐟(𝑠𝑎) = 𝛾𝜅𝑛𝑖, (2.11)

which is always normal to the interface.
To arrive at the formulation used in CSF proposed by Brackbill et al. [143], Consider

a volume force 𝐟(𝑠) that gives the correct surface tension force per unit interfacial area 𝐟(𝑠𝑎)
as interface thickness 𝐻 approaches the limit of infinitesimally thin interface,

lim
𝐻→0

∫
∆𝑉

𝐟(𝑠)d3𝑥 = ∫
∆𝐴

𝐟(𝑠𝑎)d𝐴. (2.12)

Here Δ𝑉 is a volume encompassing the area Δ𝐴 of the interface and thickness 𝐻 perpen-
dicular to the interface. 𝐟(𝑠𝑎) is defined on the interface and 𝐟(𝑠) is zero out of Δ𝑉 . Using a
one-dimensional Dirac delta 𝛿 = 𝛿 [𝐧 (𝐱𝑠) ⋅ (𝐱 − 𝐱𝑠)] as a function of distance from point
𝐱𝑠 on the interface, the right hand side of equation (2.12) may be rewritten as

∫
∆𝐴

𝐟(𝑠𝑎)d𝐴 = ∫
∆𝑉

𝐟(𝑠)d3𝑥

= ∫
∆𝑉

𝛾𝜅𝐧𝛿d3𝑥, (2.13)

which upon comparing with equation (2.12) results in the following relation for volumetric
representation of the surface tension force

𝐟(𝑠) = 𝛾𝜅𝐧𝛿. (2.14)

To relate 𝐟(𝑠) in equation (2.14) to the color function, 𝜅, 𝐧 and 𝛿 must be represented
in terms of ̂𝑐. Since the color function contains a sharp change of value at the interface,
it must be smoothed out before it can be used. This is possible by convolving ̂𝑐 with
an interpolation kernel. It is natural for this interpolation kernel to be the SPH kernel
function 𝑤 which will be discussed in the following section. The SPH interpolation kernel
has a compact support of ℎ and integrates to unity within its support domain. As such a
smoothed color function may be defined as

𝑐 (𝐱) = ∫
𝑉

̂𝑐 (𝐱′) 𝑤 (𝐱′ − 𝐱; ℎ) d3𝑥′. (2.15)

The smoothed color function will approach the color function at the limit of infinitesimal
interface thickness. It is also shown that the gradient of the smoothed color function ap-
proaches the behavior of a Dirac delta at the limit of infinitesimal interface thickness [143],
i.e.

lim
𝐻→0

𝛁𝑐 = 𝐧𝛿 = 𝛁 ̂𝑐. (2.16)
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This leads to the following formulation for the Dirac delta function

𝛿 = |𝛁𝑐| . (2.17)

Similarly, surface normal and surface curvature may also be defined using the smoothed
color function as

𝐧 = 𝛁𝑐
|𝛁𝑐| , (2.18)

𝜅 = −𝛁 ⋅ 𝐧 = −𝛁 ⋅ ( 𝛁𝑐
|𝛁𝑐|) , (2.19)

respectively, leading to
𝐟(𝑠) = 𝛾𝛁 ⋅ ( 𝛁𝑐

|𝛁𝑐|) ∇𝑐 (2.20)

for volumetric representation of the surface tension force.
The CSS method proposed by Lafaurie et al. [144] is based on defining a capillary

pressure tensor as
𝕋𝑖𝑗

(𝑐) = −𝛾 (𝛿𝑖𝑗 − 𝑛𝑖𝑛𝑗) 𝛿 (2.21)

with 𝛿𝑖𝑗 denoting Kronecker delta. It is shown that

𝐟(𝑠) = 𝛾𝜅𝐧𝛿 = −𝛁 ⋅ 𝕋(𝑐), (2.22)

which relates CSF and CSS method. As a result, the main difference between the two meth-
ods lies in the numerical implementation rather than mathematical representation [145].

In all cases studied here, CSF method is used to calculate the surface tension forces.

2.2.2 Three-phase flows
Surface tension force given in equation (2.20) is valid for an interface between two flu-
ids. Modifications have to be made to resolve a three-phase flow and especially a situation
where all of the three phases meet at a single point, also known as a triple-junction. Assum-
ing a finite interface thickness, as it is the case for CSF method, a triple junction will pose
a problem when a point in space is influenced by interface between two sets of different
fluids, their respective curvature and binary surface tension coefficients. In order to cir-
cumvent this difficulty, Smith et al. [146] have proposed decomposing the surface tension
coefficient into phase specific surface tension coefficients such that 𝛾(𝛼𝛽) = 𝛾(𝛼) + 𝛾(𝛽).
Here, 𝛾(𝛼𝛽) is the binary surface tension coefficient between phases 𝛼 and 𝛽 while 𝛾(𝛼)
and 𝛾(𝛽) are phase-specific surface tension coefficients for phases 𝛼 and 𝛽, respectively.
Considering a three phase flow, the aforementioned decomposition will lead to following
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relations for phase specific surface tension coefficients,

⎧{{{{
⎨{{{{⎩

𝛾(1) = 1
2 (+𝛾(12) + 𝛾(13) − 𝛾(23)) ,

𝛾(2) = 1
2 (+𝛾(12) − 𝛾(13) + 𝛾(23)) ,

𝛾(3) = 1
2 (−𝛾(12) + 𝛾(13) + 𝛾(23)) .

(2.23)

In the same spirit, each surface is assigned a phase-specific normal, curvature and Dirac
delta function, 𝐧(𝛼) = 𝛁𝑐(𝛼)/ ∣𝛁𝑐(𝛼)∣, 𝜅(𝛼) = −𝛁 ⋅ 𝐧(𝛼) and 𝛿(𝛼) = ∣𝛁𝑐(𝛼)∣, respectively.
Combining phase specific surface tension coefficients, curvature, normal and Dirac delta
function with (2.14), the resultant volumetric surface tension force may be rewritten as a
sum of three force components as

𝐟(𝑠) =
3

∑
𝛼=1

(𝛾𝜅𝐧𝛿)(𝛼). (2.24)

In terms of the smoothed color function equation 2.20 may be reinterpreted as

𝐟(𝑠) =
3

∑
𝛼=1

(𝛾𝛁 ⋅ ( 𝛁𝑐
|𝛁𝑐|) ∇𝑐)

(𝛼)
. (2.25)

The model provided in equations (2.23) and (2.25) is able to capture both two-phase
and three-phase behavior. For example, assuming a two-phase flow with fluids 1 and 2
with a binary surface tension coefficient of 𝛾, one may revert to a standard two-phase
CSF model by either setting 𝛾(12) = 𝛾(13) = 𝛾 and 𝛾(23) = 0 or simply 𝛾(12) = 𝛾 and
𝛾(13) = 𝛾(23) = 0 since phase 3 does not exist.

As pointed out in [147], a constraint has to be enforced to keep the erroneous normals
that may occur at the outer edges of interface from contaminating the computed surface
tension force. In this study, only gradient values exceeding a certain threshold, |𝛁𝑐| > 𝜖/ℎ,
are used in surface tension force calculations. An 𝜖 value of 0.08 has been found to provide
accurate results without removing too much detail [148].

2.2.3 Interpolation of material properties
Since calculation of derivatives across a sharp jump in material properties is not possi-
ble, a similar smoothing procedure to that of the color function is employed to generate a
transition region across the interface. Among different interpolation methods, Weighted
Arithmetic Mean (WAM) and Weighted Harmonic Mean (WHM) are chosen for this study.
The intermediate value of any property ̂𝑓(𝛼) with a discontinuity across the interface may
be written as
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𝑓 =
𝑛

∑
𝛼=1

𝑐(𝛼) ̂𝑓(𝛼), 𝑛 = 2 or 3 (2.26)

1
𝑓 =

𝑛
∑
𝛼=1

𝑐(𝛼)
̂𝑓(𝛼)

, 𝑛 = 2 or 3 (2.27)

for WAM and WHM, respectively.

2.3 Electric field

2.3.1 Maxwell stress tensor and electric forces
Under static conditions, electric and magnetic phenomena are independent since their
fields are uncoupled. If characteristic time scale of the electrostatic process is larger than
that of the magnetic phenomena, the electrostatic equations provide a good approximation
[108]. When considering electrohydrodynamics, dynamic currents are small and mag-
netic induction effects may be neglected. As such, the coupling between hydrodynamics
described by equations (2.1) and (2.6) and electrostatics is through Maxwell stress tensor
[108, 149, 150],

𝕋(𝑒) = 𝜀∗𝜀0𝐄𝐄 − 1
2𝜀∗𝜀0𝐄 ⋅ 𝐄, (2.28)

which excludes magnetic phenomena. Here 𝐄 denotes the electric field vector, 𝜀0 is the
electric permittivity of the vacuum and 𝜀𝑟 is the relative permittivity of the fluid. Absolute
permittivity, 𝜀 = 𝜀∗𝜀0, will be referred to as permittivity for simplicity.

The electric force 𝐟(𝑒) of equation (2.6) is calculated by taking the divergence of the
Maxwell stress tensor. This results in

𝐟(𝑒) = 𝛁 ⋅ 𝕋(𝑒) = −1
2𝐄 ⋅ 𝐄𝛁𝜀 + 𝑞𝑣𝐄 + 𝛁 (1

2𝐄 ⋅ 𝐄 𝜕𝜀
𝜕𝜌𝜌) . (2.29)

Here 𝑞𝑣 is the volume charge density near the interface.
The first term on the right hand side of equation (2.29), called the polarization force

(dielectric force),
𝐟(𝑒𝑝) = −1

2𝐄 ⋅ 𝐄𝛁𝜀, (2.30)

will always act in a direction normal to the interface, pointing from higher permittivity
medium to the lower permittivity medium, due to negative permittivity gradient while its
magnitude is mostly dependent on field intensity. The second term, called Coulomb force,

𝐟(𝑒𝑞) = 𝑞𝑣𝐄, (2.31)

is a result of interactions between electric field and electric charges and will be oriented
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in the direction of the electric field. The third term, called electrorestriction, represents
the effects of changes in permittivity due to variations in fluid density. This term has no
contribution in an incompressible and isothermal fluid. The resultant electric force has a
complex behavior which will be discussed further in upcoming sections.

2.3.2 Governing equations
In order to calculate the electric force of equation (2.29), the electric field vector and vol-
umetric charge have to be known. As mentioned before, magnetic effects are negligible in
electrohydrodynamics and this results in an irrotational electric field [108]

𝛁 × 𝐄 = 0, (2.32)

which in turn allows for defining the electric field as the gradient of an electric potential
as

𝐄 = −𝛁𝜙. (2.33)

Volumetric charge may be defined according to Gauss’s law as the divergence of elec-
tric displacement, 𝜀𝐸, in differential form

𝑞𝑣 = 𝛁 ⋅ (𝜀𝐄) . (2.34)

The volumetric charge behaves according to a diffusion-advection equation of the form

D𝑞𝑣

D𝑡 = 𝛁 ⋅ (𝜎𝐄) , (2.35)

where 𝜎 is electric conductivity. Combining equations (2.34) and (2.35), it is possible to
obtain the following relation

𝑞𝑣 = 𝑞𝑣
0𝑒− 𝜎𝜀 𝑡, (2.36)

for charge relaxation in a homogeneous incompressible fluid [111]. This gives an electrical
timescale of 𝜏𝑒 = 𝜀/𝜎 for the relaxation of an initial charge of 𝑞𝑣

0. Comparing 𝜏𝑒 with
viscous timescale of the flow given by 𝜏ℎ = 𝜌𝑙2/𝜇 where 𝑙 is an appropriate length scale,
it is possible to define two distinctive regimes for slightly conducting fluids. To narrow
down the scope of discussion, it is assumed that no free charges present in the system.
If 𝜏𝑒 ≫ 𝜏ℎ the fluid will behave like a perfect dielectric as charge accumulation takes
much longer than the flow process, effectively acting like no free charge is present on the
interface. On the other hand, if 𝜏𝑒 ≪ 𝜏ℎ, the charge relaxation is instantaneous when
compared to flow phenomena, meaning that charge accumulation process at the interface
is unaffected by the flow. The former situation is the basis of perfect dielectric model while
the latter leads to leaky dielectric model.
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Perfect dielectric model

As mentioned before, when 𝜏𝑒 ≫ 𝜏ℎ the fluids may be considered as perfect dielectric
material. In this situation, the external electric field polarizes the molecules of the mate-
rial and subsequently these newly formed molecular dipoles affect the electric field. The
ensuing electric field may be calculated directly by solving for the electric potential using
equation (2.34). As no free charge is present in the medium, the governing equation for
the electric potential may be written as

𝛁 ⋅ (𝜀𝛁𝜙) = 0. (2.37)

Subsequently, the electric field is determined using equation (2.33) and substituted in equa-
tion (2.29) where 𝑞𝑣 is zero to calculate 𝐟(𝑒).

As there is no free charge at the interface between the two fluids of different permit-
tivities, continuity of the normal component of electric displacement and continuity of the
electric potential

∥𝜙∥ = 0, (2.38)

∥𝜀𝛁𝜙∥ ⋅ 𝐧 = 0, (2.39)

are applicable. In a similar approach to that of the CSF method, the above boundary
conditions are implicitly incorporated in equation (2.37) when permittivity is smoothed
across the interface using either of the equations (2.26) or (2.27).

Equations (2.29), (2.33) and (2.37) provide the complete description of the perfect
dielectric model and its coupling to the momentum equation (2.6). It is worth noting that
electric conductivity has no role in perfect dielectric model.

Leaky dielectric model

When 𝜏𝑒 ≪ 𝜏ℎ, the charge density at the interface of the multi-phase medium reaches a
steady state much faster than the timescale of the flow. Equation (2.35) may be cast into
dimensionless form

𝜏ℎ
𝜏𝑒

(D𝑞∗

D𝑡∗ ) = 𝛁∗ ⋅ (𝜎∗𝐄∗) , (2.40)

where asterisks denote dimensionless variables. At the limit of leaky dielectric fluids
the left hand side of the equation (2.40) vanishes leading to static charge conservation
expressed by the divergence of the current density, 𝜎𝐄, due to the electrical conduction.
This gives the following relation

𝛁 ⋅ (𝜎𝛁𝜙) = 0, (2.41)

for the electric potential of a leaky dielectric material.
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At the interface between two leaky dielectric materials, electric potential and electric
current remain continuous. This results in the following boundary conditions

∥𝜙∥ = 0, (2.42)

∥𝜎𝛁𝜙∥ ⋅ 𝐧 = 0. (2.43)

As discussed before in perfect dielectric model, the above boundary conditions are implic-
itly incorporated in equation (2.37) when conductivity is smoothed across the interface
using either of the equations (2.26) or (2.27).

Equations (2.29), (2.33) and (2.41) provide the complete description of the leaky di-
electric model and its coupling to the momentum equation (2.6). It is worth noting that
electric conductivity’s only role is in determination of electric field and it has no direct role
in calculation of 𝐟(𝑒). As long as the condition 𝜏𝑒 ≪ 𝜏ℎ is satisfied, only the conductivity
ratio of the two materials affects the electric field.

2.3.3 General boundary conditions for an interface
The form of 𝐟(𝑒) derived in equation (2.29) is analogous to the CSS treatment of the surface
tension forces. An alternative form of equation (2.29) resembling the CSF method may be
derived by modifying the boundary conditions at the interface.

Continuity of a material interface dictates that

⎧{
⎨{⎩

∥𝑢𝑖𝑛𝑖∥ = 0,
∥𝑢𝑖𝑠𝑖∥ = 0.

(2.44)

The stress tensor, including electrical and viscous components, may be written as [151]

𝕋𝑖𝑗 = − {𝑝 + 𝐸2

2 [𝜀 − 𝜌 ( 𝜕𝜀
𝜕𝜌)]} 𝛿𝑖𝑗 + 𝐸𝑖𝐷𝑗 + 𝜇 (𝑢𝑖,𝑗 + 𝑢𝑗,𝑖) , (2.45)

where 𝐃 = 𝜀𝐄 is electric displacement vector. As such, the stress balance across the
interface is [143]

∥𝕋𝑖𝑗∥ 𝑛𝑗 = 𝛾𝜅𝑛𝑖 − 𝛾,𝑖, (2.46)

which is essentially a combination of equations (2.9) and (2.10) with the electrical effects
included.

The above stress tensor of equation (2.45) may be multiplied with surface normal to
find the in-plane stress or traction vector,

𝕋𝑖𝑗𝑛𝑗 = − {𝑝 + 𝐸2

2 [𝜀 − 𝜌 ( 𝜕𝜀
𝜕𝜌)]} 𝑛𝑖 + 𝐸𝑖𝐷𝑗𝑛𝑗 + 𝜇 (𝑢𝑖,𝑗 + 𝑢𝑗,𝑖) 𝑛𝑗. (2.47)
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Further multiplication with interface normal vector 𝑛𝑖 gives normal stresses as

𝕋𝑖𝑗𝑛𝑗𝑛𝑖 = − {𝑝 + 𝐸2

2 [𝜀 − 𝜌 ( 𝜕𝜀
𝜕𝜌)]} 𝛿𝑖𝑖 + 𝐸𝑖𝐷𝑗𝑛𝑗𝑛𝑖 + 𝜇 (𝑢𝑖,𝑗 + 𝑢𝑗,𝑖) 𝑛𝑗𝑛𝑖

= −𝑝 − 𝐸2

2 [𝜀 − 𝜌 ( 𝜕𝜀
𝜕𝜌)

𝑇
] + 𝐸(𝑛)𝐷(𝑛) + 𝜇 (𝑛𝑖 𝜕𝑢𝑖

𝜕𝑛 + 𝑛𝑗 𝜕𝑢𝑗

𝜕𝑛 )

= −𝑝 − 𝜀
2 (𝐸2

(𝑛) + 𝐸2
(𝑠)) + 𝜌𝐸2

2 ( 𝜕𝜀
𝜕𝜌) + 𝜀𝐸(𝑛)𝐸(𝑛) + 𝜇 (𝑛𝑖 𝜕𝑢𝑖

𝜕𝑛 + 𝑛𝑗 𝜕𝑢𝑗

𝜕𝑛 )

= −𝑝 − 𝜀
2 (𝐸2

(𝑛) − 𝐸2
(𝑠)) + 𝜌𝐸2

2 ( 𝜕𝜀
𝜕𝜌) + 2𝜇𝑛𝑖 𝜕𝑢𝑖

𝜕𝑛 , (2.48)

where�(𝑛) and�(𝑠) denoted normal and tangential components. Multiplication of traction
with interface tangent vector 𝑠𝑖 results in the tangential component of the stress as

𝕋𝑖𝑗𝑛𝑗𝑠𝑖 = − {𝑝 + 𝐸2

2 [𝜀 − 𝜌 ( 𝜕𝜀
𝜕𝜌)]} 𝑛𝑖𝑠𝑖 + 𝐸𝑖𝐷𝑗𝑛𝑗𝑠𝑖 + 𝜇 (𝑢𝑖,𝑗 + 𝑢𝑗,𝑖) 𝑛𝑗𝑠𝑖

= 𝐸(𝑠)𝐷(𝑛) + 𝜇 (𝑠𝑖 𝜕𝑢𝑖

𝜕𝑛 + 𝑛𝑗 𝜕𝑢𝑗

𝜕𝑠 )

= 𝜀𝐸(𝑠)𝐸(𝑛) + 𝜇 (𝑠𝑖 𝜕𝑢𝑖

𝜕𝑛 + 𝑛𝑖 𝜕𝑢𝑖

𝜕𝑠 ) . (2.49)

Replacing equations (2.48) and (2.49) in equation (2.46) and assuming 𝜕𝜀/𝜕𝜌 = 0,
the stress balance across the interface may be written as

⎧{{{
⎨{{{⎩

∥−𝑝 − 𝜀
2 (𝐸2

(𝑛) − 𝐸2
(𝑠)) + 𝜌𝐸2

2 ( 𝜕𝜀
𝜕𝜌)

𝑇
+ 2𝜇𝑛𝑖 𝜕𝑢𝑖

𝜕𝑛 ∥ = 𝛾𝜅,

∥𝜀𝐸(𝑠)𝐸(𝑛) + 𝜇 (𝑠𝑖 𝜕𝑢𝑖

𝜕𝑛 + 𝑛𝑖 𝜕𝑢𝑖

𝜕𝑠 )∥ = −𝜕𝛾
𝜕𝑠 ,

(2.50)

where �(𝛼𝑛) and �(𝛼𝑠) denote normal and tangent in fluid 𝛼. Rearranging with respect
to pressure for normal direction and surface gradient of surface tension coefficient in the
tangential direction, one may write

⎧{{{{{{{
⎨{{{{{{{⎩

∥𝑝∥ = {𝜀(1)
2 (𝐸2

(1𝑛) − 𝐸2
(1𝑠)) − 𝜀(2)

2 (𝐸2
(2𝑛) − 𝐸2

(2𝑠))}

+
⎧{
⎨{⎩
2𝜇(1)𝑛𝑖 (𝜕𝑢𝑖

𝜕𝑛 )
(1)

− 2𝜇(2)𝑛𝑖 (𝜕𝑢𝑖

𝜕𝑛 )
(2)

⎫}
⎬}⎭

+ 𝛾𝜅,

−𝜕𝛾
𝜕𝑠 = {𝐸(1𝑠)𝐷(1𝑛) − 𝐸(2𝑠)𝐷(2𝑛)}

+
⎧{
⎨{⎩
𝜇(1) (𝑠𝑖 𝜕𝑢𝑖

𝜕𝑛 + 𝑛𝑖 𝜕𝑢𝑖

𝜕𝑠 )
(1)

− 𝜇(2) (𝑠𝑖 𝜕𝑢𝑖

𝜕𝑛 + 𝑛𝑖 𝜕𝑢𝑖

𝜕𝑠 )
(2)

⎫}
⎬}⎭

.

(2.51)

One may identify force components analogous to CSF representation, including the sur-
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face tension itself, as

⎧{{{{{{{{{{
⎨{{{{{{{{{{⎩

𝑓(𝑠𝑛) = 𝛾𝜅,

𝑓(𝑣𝑛) = 2𝜇(1)𝑛𝑖 (𝜕𝑢𝑖

𝜕𝑛 )
(1)

− 2𝜇(2)𝑛𝑖 (𝜕𝑢𝑖

𝜕𝑛 )
(2)

,

𝑓(𝑒𝑛) = 𝜀(1)
2 (𝐸2

(1𝑛) − 𝐸2
(1𝑠)) − 𝜀(2)

2 (𝐸2
(2𝑛) − 𝐸2

(2𝑠)) ,

𝑓(𝑠𝑠) = −𝜕𝛾
𝜕𝑠 ,

𝑓(𝑣𝑠) = 𝜇(1) (𝑠𝑖 𝜕𝑢𝑖

𝜕𝑛 + 𝑛𝑖 𝜕𝑢𝑖

𝜕𝑠 )
(1)

− 𝜇(2) (𝑠𝑖 𝜕𝑢𝑖

𝜕𝑛 + 𝑛𝑖 𝜕𝑢𝑖

𝜕𝑠 )
(2)

,

𝑓(𝑒𝑠) = 𝐸(1𝑠)𝐷(1𝑛) − 𝐸(2𝑠)𝐷(2𝑛).

(2.52)

Perfect dielectric model

The electrical components of the forces give in equation (2.52) may be further simplified
depending on the chosen electrical model. For a perfect dielectric model, the continuity of
tangential field and electrical displacement, 𝐃 = 𝜀𝐄, across the interface may be expressed
as

⎧{
⎨{⎩

∥𝜖𝑖𝑗𝑘𝑛𝑗𝐸𝑘∥ = 0,
∥𝐷𝑖𝑛𝑖∥ = 0,

(2.53)

where 𝜖𝑖𝑗𝑘 is the Levi-Civita symbol.
There are two approaches to simplifying (2.52) using the boundary conditions given

in equation (2.53). The normal component of the first approach relies only on the electric
field and may be derived as

𝑓(𝑒𝑛) = 𝜀(1)
2 (𝐸2

(1𝑛) − 𝐸2
(1𝑠)) − 𝜀(2)

2 (𝐸2
(2𝑛) − 𝐸2

(2𝑠))

= 𝜀(1)
2

⎡⎢
⎣
(𝜀(2)𝐸(2𝑛)

𝜀(1)
)

2
− 𝐸2

(2𝑠)
⎤⎥
⎦

− 𝜀(2)
2 (𝐸2

(2𝑛) − 𝐸2
(2𝑠))

= 𝐸2
(2𝑠) (𝜀(2)

2 − 𝜀(1)
2 ) + 𝐸2

(2𝑛) ( 𝜀2
(2)

2𝜀(1)
− 𝜀(2)

2 )

= 𝜀(2) − 𝜀(1)
2 (𝜀(2)

𝜀(1)
𝐸2

(2𝑛) + 𝐸2
(2𝑠)) . (2.54)

The above result is similar to the one presented in [151] and gives the final result in terms of
tangential and normal field intensities. The normal component using the second approach
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may be written as

𝑓(𝑒𝑛) = 𝜀(1)
2 (𝐸2

(1𝑛) − 𝐸2
(1𝑠)) − 𝜀(2)

2 (𝐸2
(2𝑛) − 𝐸2

(2𝑠))

= 𝐸2
(2𝑠) (𝜀(2)

2 − 𝜀(1)
2 ) + 𝐸2

(2𝑛) ( 𝜀2
(2)

2𝜀(1)
− 𝜀(2)

2 )

= 𝐷2
(2𝑛) ( 1

2𝜀(1)
− 1

2𝜀(2)
) + 𝐸2

(2𝑠) (𝜀(2)
2 − 𝜀(1)

2 )

= 𝐷2
(𝑛)
2 ( 1

𝜀(1)
− 1

𝜀(2)
) + 𝐸2

(𝑠)
2 (𝜀(2) − 𝜀(1)) , (2.55)

which represents the results in terms of tangential electric field and normal electrical dis-
placement. This form is identical to the one obtained in [149]. Regardless of the approach
taken, the tangential components cancel out across the interface,

𝑓(𝑒𝑠) = 𝐸(1𝑠)𝐷(1𝑛) − 𝐸(2𝑠)𝐷(2𝑛) = 0, (2.56)

which is in agreement with the observation made for the polarization component of the
electrical forces.

Using the second approach, the stress balance across the interface for perfect dielectric
fluids may be written as

⎧{{{{{{
⎨{{{{{{⎩

∥𝑝∥ = {𝐷2
(𝑛)
2 ( 1

𝜀(1)
− 1

𝜀(2)
) + 𝐸2

(𝑠)
2 (𝜀(2) − 𝜀(1))}

+
⎧{
⎨{⎩
2𝜇(1)𝑛𝑖 (𝜕𝑢𝑖

𝜕𝑛 )
(1)

− 2𝜇(2)𝑛𝑖 (𝜕𝑢𝑖

𝜕𝑛 )
(2)

⎫}
⎬}⎭

+ 𝛾𝜅,

−𝜕𝛾
𝜕𝑠 =

⎧{
⎨{⎩
𝜇(1) (𝑠𝑖 𝜕𝑢𝑖

𝜕𝑛 + 𝑛𝑖 𝜕𝑢𝑖

𝜕𝑠 )
(1)

− 𝜇(2) (𝑠𝑖 𝜕𝑢𝑖

𝜕𝑛 + 𝑛𝑖 𝜕𝑢𝑖

𝜕𝑠 )
(2)

⎫}
⎬}⎭

,

(2.57)

Leaky dielectric model

The simplifications applied to equation (2.52) for a leaky dielectric model relies on conti-
nuity of tangential electric field and normal current, 𝐉 = 𝜎𝐄, given by

⎧{
⎨{⎩

∥𝜖𝑖𝑗𝑘𝑛𝑗𝐸𝑘∥ = 0,
∥𝐽 𝑖𝑛𝑖∥ = 0.

(2.58)

The normal electric force may be written in terms of electrical properties of both fluids
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and electric field intensity in one fluids, e.g. fluid two, as

𝑓(𝑒𝑛) = 𝜀(1)
2 (𝐸2

(1𝑛) − 𝐸2
(1𝑠)) − 𝜀(2)

2 (𝐸2
(2𝑛) − 𝐸2

(2𝑠))

= 𝜀(1)
2

⎡⎢
⎣
(𝜎(2)𝐸(2𝑛)

𝜎(1)
)

2
− 𝐸2

(2𝑠)
⎤⎥
⎦

− 𝜀(2)
2 (𝐸2

(2𝑛) − 𝐸2
(2𝑠))

= 𝐸2
(2𝑛)
2

⎡⎢
⎣
(𝜎(2)

𝜎(1)
)

2
𝜀(1) − 𝜀(2)

⎤⎥
⎦

+ 𝐸2
(2𝑠)
2 (𝜀(2) − 𝜀(1)) , (2.59)

which is similar to the formulation provided in [151].
A more compact form may be obtained by writing in terms of tangential electric field

and normal current. The normal component of the electric force in this approach may be
written as

𝑓(𝑒𝑛) = 𝜀(1)
2 (𝐸2

(1𝑛) − 𝐸2
(1𝑠)) − 𝜀(2)

2 (𝐸2
(2𝑛) − 𝐸2

(2𝑠))

= 𝐸2
(2𝑛)

⎡⎢
⎣
(𝜎(2)

𝜎(1)
)

2 𝜀(1)
2 − 𝜀(2)

2
⎤⎥
⎦

+ 𝐸2
(2𝑠) (𝜀(2)

2 − 𝜀(1)
2 )

= 𝐽2
(2𝑛) [ 𝜀(1)

2𝜎2
(1)

− 𝜀(2)
2𝜎2

(2)
] + 𝐸2

(2𝑠) (𝜀(2)
2 − 𝜀(1)

2 )

= 𝐽2
(𝑛)
2 [ 𝜀(1)

𝜎2
(1)

− 𝜀(2)
𝜎2

(2)
] + 𝐸2

(𝑠)
2 (𝜀(2) − 𝜀(1)) , (2.60)

while the tangential component is

𝑓(𝑒𝑠) = 𝐸(1𝑠)𝐷(1𝑛) − 𝐸(2𝑠)𝐷(2𝑛)

= 𝜀(1)𝐸(1𝑠)𝐸(1𝑛) − 𝜀(2)𝐸(2𝑠)𝐸(2𝑛)

= 𝜀(1)
𝜎(1)

𝐸(1𝑠)𝐽(1𝑛) − 𝜀(2)
𝜎(2)

𝐸(2𝑠)𝐽(2𝑛)

= 𝐸(𝑠)𝐽(𝑛) ( 𝜀(1)
𝜎(1)

− 𝜀(2)
𝜎(2)

) . (2.61)

The above formulation is identical to the one derived by Tomar et al. [149] who modified
equation (2.29) directly to obtain equations (2.60) and (2.61). Similar to the difference
between CSF and CSS for calculating surface tension forces, the difference between (2.29)
and (2.60-2.61) lies mostly in the numerical implementation. The representation given in
(2.60) and (2.61) satisfies the conditions put forward by Brackbill et al. [143], provided
that the boundary conditions given in equation (2.58) are satisfied. On the other hand,
equation (2.29) contains divergence of electric field in 𝑞𝑣 which does not approach a 𝛿
function as interface width becomes infinitesimally small, thus violating the conditions
set forth in [143]. However, in a numerical implementation of (2.60-2.61), the boundary
conditions given in (2.58) are not completely satisfied and this negates advantage of this
method over (2.29).
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Using both 𝐸(𝑠) and 𝐽(𝑛), the stress balance across the interface may be rewritten as

⎧{{{{{{{{
⎨{{{{{{{{⎩

∥𝑝∥ = {𝐽2
(𝑛)
2 ( 𝜀(1)

𝜎2
(1)

− 𝜀(2)
𝜎2

(2)
) + 𝐸2

(𝑠)
2 (𝜀(2) − 𝜀(1))}

+
⎧{
⎨{⎩
2𝜇(1)𝑛𝑖 (𝜕𝑢𝑖

𝜕𝑛 )
(1)

− 2𝜇(2)𝑛𝑖 (𝜕𝑢𝑖

𝜕𝑛 )
(2)

⎫}
⎬}⎭

+ 𝛾𝜅,

−𝜕𝛾
𝜕𝑠 = {𝐸(𝑠)𝐽(𝑛) ( 𝜀(1)

𝜎(1)
− 𝜀(2)

𝜎(2)
)}

+
⎧{
⎨{⎩
𝜇(1) (𝑠𝑖 𝜕𝑢𝑖

𝜕𝑛 + 𝑛𝑖 𝜕𝑢𝑖

𝜕𝑠 )
(1)

− 𝜇(2) (𝑠𝑖 𝜕𝑢𝑖

𝜕𝑛 + 𝑛𝑖 𝜕𝑢𝑖

𝜕𝑠 )
(2)

⎫}
⎬}⎭

.

(2.62)

2.4 Fluid-structure/solid interaction
In its classic form, the two-dimensional equations governing the motion of a rigid body
may be written as

𝑑𝐱𝑆
𝑑𝑡 = 𝐮𝑡

𝑠, (2.63)

𝑑𝜃𝑆
𝑑𝑡 = 𝑢𝑟

𝑠, (2.64)

𝑀𝑠
𝑑𝐮𝑡

𝑠
𝑑𝑡 = 𝐟(ℎ) + 𝐟(𝑏) + 𝐟(𝑒), (2.65)

𝐼𝑠
𝑑𝑢𝑟

𝑠
𝑑𝑡 = 𝑇(ℎ) + 𝑇(𝑒), (2.66)

where 𝐱𝑠 and 𝐮𝑡
𝑠 are the linear position and velocity, 𝜃𝑠 and 𝑢𝑟

𝑠 are the angle and angu-
lar velocity, 𝑇 is the torque exerted on the body and 𝑀𝑠 and 𝐼𝑠 denote mass and inertia,
respectively. Except for

𝐟(𝑏) = 𝑀𝑠𝐠, (2.67)

the method of coupling equations (2.65) and (2.66) to the fluid, i.e. calculating forces and
torques, is dependent on the FSI scheme.

In methods with explicit boundaries and conforming meshes, such as ALE and SPH,
it is possible to express the forces and torques through the stress applied at the interface as

𝐟(�) = ∫
𝜕𝐵

𝐧 ⋅ 𝕋(�)d𝑙, (2.68)

𝑇(�) = ∫
𝜕𝐵

𝐫𝑠 × 𝐧 ⋅ 𝕋(�)d𝑙, (2.69)

where � stands for either of hydrodynamic or Maxwell stress tensor and 𝐫𝑠 is the vector
connecting the body’s center of mass to the point where 𝕋(�) is applied. In this case the
fluid has to match a boundary velocity of

𝐮 = 𝐮𝑡
𝑠 + 𝑢𝑟

𝑠 × 𝐫𝑠, (2.70)
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to impose the no-slip boundary condition
In an approach such as IB method, the coupling is achieved via a body force rather than

stress transfer at the interface. In IB, the mesh is fixed and the interface travels over the
fluid mesh. As the rigid body moves due to gravity and electrical forces, the hydrodynamic
body force, calculated at the interface, is applied to the fluid to ensure the no-slip condi-
tion. It adjusts the velocity difference between the rigid body and fluid by accelerating or
decelerating the fluid [61, 152].

On the other hand FD methods assume both fluid and solid to behave as fluids of
different characteristics. Distributed Lagrange Multiplier (DLM) method uses Lagrange
multipliers to impose rigid body-like stress distribution within the fluid region representing
the solid body [57]. Viscous Penalty (VP) method achieves the same goal by increasing
the viscosity of the fluid region representing the solid body [59, 153]. An explicit interface
propagation is used in DLM while a color function is used in VP.

A similar approach to that of the VP method is taken in this study. An increased viscos-
ity is used to mimic a solid body while the boundaries are moved in a Lagrangian fashion
[59, 153]. Additionally, rigidity constraints for linear and angular motion are applied to the
bodies [72, 154]. Assuming a rigid body discretized by 𝐽𝑠 particles, the rigidity constraints
may be interpreted as

𝐮𝑡
𝑠 = 1

𝑀𝑠

𝐽𝑠

∑
j=1

𝐮j, (2.71)

𝑢𝑟
𝑠 = 1

𝐼𝑠

𝐽𝑠

∑
j=1

𝐮j × 𝐫j𝑠. (2.72)

Further details about the method will be provided in subsequent sections.

2.5 Dimensionless form of equations
A general form of the dimensionless equations may be obtained by using characteristic
scales. Since each case has its own characteristic values, the relevant dimensionless num-
bers will be provided in that case’s respective section. Characteristic scales used are de-
fined as

𝐱∗ = 𝐱
𝑙𝑐

, 𝐮∗ = 𝐮
𝑢𝑐

, 𝑝∗ = 𝑝
𝑝𝑐

, 𝐄∗ = 𝐄
𝐸𝑐

, 𝑡∗ = 𝑡 (𝑢𝑐
𝑙𝑐

) ,

𝜌∗ = 𝜌
𝜌𝑐

, 𝜇∗ = 𝜇
𝜇𝑐

, 𝛾∗ = 𝛾
𝛾𝑐

, 𝑔∗ = 𝑔
𝑔𝑐

, 𝜀∗ = 𝜀
𝜀𝑐

, (2.73)

leading to the following dimensionless form

𝜌∗ D∗𝐮∗

D∗𝑡∗ = −Eu𝛁∗𝑝∗ + 1
Re𝛁∗ ⋅ 𝜏∗ + 1

Fr 𝐟∗
(𝑏) + 1

We𝐟∗
(𝑠) + 1

Ei𝐟
∗
(𝑒), (2.74)
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where

Eu = 𝑝𝑐
𝜌𝑐𝑢2𝑐

, (2.75)

Re = 𝜌𝑐𝑢𝑐𝑙𝑐
𝜇𝑐

, (2.76)

Fr = 𝑢2
𝑐

𝑔𝑐𝑙𝑐
, (2.77)

We = 𝜌𝑐𝑙𝑐𝑢2
𝑐

𝛾𝑐
, (2.78)

Ei = 𝜌𝑐𝑢2
𝑐

𝜀𝑐𝐸2𝑐
, (2.79)

are Euler, Reynolds, Froude, Weber and Electroinertial numbers. Equations (2.1), (2.37)
and (2.41) remain unchanged in their dimensionless forms.

Due to different nature of the cases studied here, the relevant scales and dimensionless
values will be provided in respective sections.
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Chapter 3

Smoothed particle hydrodynamics and
its numerical implementation

3.1 Integral representation
An exact representation of any function of the form 𝑓 (𝐫) at point 𝐫i in volume 𝑉 , encom-
passing the whole computational domain, may be obtained by its convolution with Dirac
delta function as

𝑓 (𝐫i) = ∫
𝑉

𝑓 (𝐫′) 𝛿 (∣𝐫i − 𝐫′∣) d𝑟′, (3.1)

where Dirac delta function is

𝛿 (∣𝐫i − 𝐫∣) =
⎧{
⎨{⎩

∞, 𝐫 = 𝐫i,
0, otherwise.

(3.2)

While ∫𝑉 𝛿d𝑟 = 1 is bounded, 𝛿 is not suitable for numerical applications due to its infinite
peak since every variable has a finite representation in computational hardware. To provide
a practical integral representation of the function at a specific point in continuum space, 𝛿
is replaced by a weighting function, hereby referred to as the kernel function, resulting in
the following relation

⟨𝑓 (𝐫i)⟩ = ∫
Ω

𝑓 (𝐫′) 𝑤 (∣𝐫i − 𝐫′∣ ; ℎ) d𝑟′. (3.3)

Here, angled brackets represent a kernel approximation operation for the original function.
The kernel has the same normalization property as 𝛿,

∫
Ω

𝑤 (∣𝐫i − 𝐫∣ ; ℎ) d𝑟 = 1, (3.4)

within its bounded domain of Ω, also known as compact support, such that 𝑤 = 0 if 𝐫 ∉ Ω.
For a kernel function with a cylindrical (or spherical in three dimensions) support domain
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this reduces to
𝑤 (∣𝐫i − 𝐫∣ ; ℎ) = 0 if ∣𝐫i − 𝐫∣ > 𝑛ℎ, (3.5)

where ℎ is called the smoothing length and 𝑛 is usually a constant depending on the kernel
type. For infinitesimally small ℎ, 𝑤 must converge to 𝛿 to recover equation (3.2). A Taylor
series expansion of equation (3.3) shows the approximation is second order accurate as
long as 𝑤 is an even function [155].

In a similar fashion, the divergence operation may be formulated as

⟨𝛁 ⋅ 𝐟 (𝐫i)⟩ = − ∫
Ω

𝐟 (𝐫′) ⋅ 𝛁𝑤 (∣𝐫i − 𝐫′∣ ; ℎ) d𝑟′. (3.6)

This shows an important property of the SPH where derivative of a variable manifested
itself as a kernel derivative. This shows the importance of the kernel function in SPH
approximations, especially in discrete space.

Besides the above mentioned conditions, kernels have to satisfy several other criteria to
ensure stability, accuracy and consistency of the integral representation [155, 156]. Some
of the kernels used are Gaussian [74], Wendall [157], quadratic [158], quartic [73], cubic
[159] and quintic [160]. In this work two dimensional forms of both cubic spline kernel,

𝑤 (∣𝐫i − 𝐫∣ ; ℎ) = 15
7𝜋ℎ2

⎧{{{
⎨{{{⎩

2
3 − 𝑞2 + 1

2𝑞3, 0 ≤ 𝑞 < 1,
1
6 (2 − 𝑞)3 , 1 ≤ 𝑞 < 2,

0, 2 ≤ 𝑞,

(3.7)

and quintic spline kernel,

𝑤 (∣𝐫i − 𝐫∣ ; ℎ) = 7
478𝜋ℎ2

⎧{{{{
⎨{{{{⎩

(3 − 𝑞)5 − 6 (2 − 𝑞)5 + 15 (1 − 𝑞)5 , 0 ≤ 𝑞 < 1,
(3 − 𝑞)5 − 6 (2 − 𝑞)5 , 1 ≤ 𝑞 < 2,
(3 − 𝑞)5 , 2 ≤ 𝑞 < 3,
0, 3 ≤ 𝑞,

(3.8)

are used where 𝑞 = ∣𝐫i − 𝐫∣ /ℎ. It is notable that kernels have a dimension of inverse of
length squared which helps define an area in two dimensions.

As mentioned in section 2.2, the kernel functions are used to smooth the color func-
tion before calculating the surface tension and interpolating material properties. For the
same smoothing length, cubic spline has a smaller support domain and higher peak when
compared to quintic spline. For this reason, cubic spline kernel is used to calculate the
smoothed color function resulting in a thinner interface. On the other hand, quintic spline
kernel is used to calculate the derivatives which increases the stability and accuracy of the
method [148].
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3.2 Particle representation
In SPH, the computation domain is discretized using a finite number of particles. Integral
representations given in section 3.1 are converted to summations over all neighboring par-
ticles j within the compact support of the particle of interest at 𝐫i. Equation (3.3) may be
approximated further as

⟨𝐟 (𝐫i)⟩ =
𝐽𝑛

∑
j=1

1
𝜓j

𝐟 (𝐫j) 𝑤 (𝑟ij; ℎ) , (3.9)

where 𝐽𝑛 is the number of neighboring particles, 𝐫ij = 𝐫i − 𝐫j, 𝑟ij = ∣𝐫ij∣ and 𝜓i is the
number density defined as

𝜓i =
𝐽𝑛

∑
j=1

𝑤 (𝑟ij; ℎ) , (3.10)

which represents the inverse of particle volume. From this point forward 𝑤 (𝑟ij; ℎ) will be
referred to as 𝑤ij and the angled brackets will be dropped for brevity.

3.2.1 Derivatives of variables
There are two approximations in the particle representation given in equation (3.9). The
first one is the due to the difference between the kernel and delta functions. The second
one is due to the fact that a discrete representation of the kernel does not have the normal-
ization property. In the simple case of interpolation at a certain point in space, 𝜓 acts as
a renormalization coefficient. It represents the discrete volume of the particle rather than
its intended continuum value, thus resolving the normalization problem. However, the
situation is more complicated for derivatives of the function. There are two approaches
to remedy the errors due to discrete kernel representation. The first one is to correct the
kernel to mimic the properties of the continuous counterpart while another approach is to
correct the derivative itself.

The first approach falls under the Reproducing Kernel Particle Method (RKPM) where
a correction function is multiplied with the kernel function producing the corrected kernel.
The correction function is calculated by setting the higher moments of the corrected kernel
to zero [161]. For an 𝑛th order accurate reconstruction, all higher moments up to 𝑛th mo-
ment should be set to zero. The method has been used by many authors [162–170]. Linear
reproduction condition for the kernel is equivalent to constant reproduction condition for
the gradient of the kernel. One such correction function in two dimensions given in [171]
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is

𝐂i =
⎡⎢⎢⎢⎢
⎣

∑𝐽𝑛
j=1

1𝜓j 𝑥
(1)
ji

𝜕𝑤ij
𝜕𝑥(1)

ij
∑𝐽𝑛

j=1
1𝜓j 𝑥

(1)
ji

𝜕𝑤ij
𝜕𝑥(2)

ij

∑𝐽𝑛
j=1

1𝜓j 𝑥
(2)
ji

𝜕𝑤ij
𝜕𝑥(1)

ij
∑𝐽𝑛

j=1
1𝜓j 𝑥

(2)
ji

𝜕𝑤ij
𝜕𝑥(2)

ij

⎤⎥⎥⎥⎥
⎦

−1

, (3.11)

which modifies the kernel gradient as 𝐂i𝛁𝑤ij and corrects the first derivative. Here a
numeric superscript in parentheses is used to show the components of a vector.

The correction method used here is based on the second approach where the derivative
of the variable is corrected directly [148]. The procedure of deriving the first derivative and
Laplacian operator for a vector in Cartesian coordinates is given in the following sections.

First derivative

The approximation for the gradient starts with Taylor series expansion of 𝑓 𝑝 (𝐫j), i.e. 𝑝th
component of function 𝑓 at point 𝐫j where particle j resides. The expansion up to second
derivative with respect to particle i may be written as

𝑓 𝑝 (𝐫j) = 𝑓 𝑝 (𝐫i) + 𝑟𝑙
ji

𝜕𝑓 𝑝 (𝐫i)
𝜕𝑥𝑙

i
∣
𝐫j=𝐫i

+ 1
2𝑟𝑙

ji𝑟𝑘
ji

𝜕2𝑓 𝑝 (𝐫i)
𝑥𝑙

i𝑥𝑘
i

∣
𝐫j=𝐫i

+ 𝒪 (𝐫3) (3.12)

Upon multiplying equation (3.12) by 𝜕𝑤ij/𝜕𝑥𝑠
j and integrating over the compact support

one may write

∫
Ω

(𝑓 𝑝 (𝐫j) − 𝑓 𝑝 (𝐫i))
𝜕𝑤ij
𝜕𝑥𝑠

j
d2𝐫j = 𝜕𝑓 𝑝 (𝐫i)

𝜕𝑥𝑙
i

∫
Ω

𝑟𝑙
ji

𝜕𝑤ij
𝜕𝑥𝑠

j
d2𝐫j⏟⏟⏟⏟⏟⏟⏟

𝐼𝑙𝑠

+ 1
2

𝜕2𝑓 𝑝 (𝐫i)
𝑥𝑙

i𝑥𝑘
i

∫
Ω

𝑟𝑙
ji𝑟𝑘

ji
𝜕𝑤ij
𝜕𝑥𝑠

j
d2𝐫j⏟⏟⏟⏟⏟⏟⏟

𝐼𝑙𝑘𝑠

(3.13)

The first and second integrals on the right hand side of equation (3.13) are tensors
of rank two and three, respectively. Considering that the kernel has symmetric compact
support, integrating the third-rank tensor by parts and employing Green-Gauss theorem
results in

𝐼 𝑙𝑘𝑠 = − ∫
Ω

𝑤ij
𝜕𝑟𝑙

ji𝑟𝑘
ji

𝜕𝑟𝑠
j

d2𝐫j = − ∫
Ω

𝑤ij (𝑟𝑙
ji𝛿𝑠𝑘 + 𝑟𝑘

ji𝛿𝑙𝑠) d2𝐫j. (3.14)

Further simplifying the above integral by bringing the Kronecker deltas out of the inte-
grand one may show that

𝐼 𝑙𝑘𝑠 = −𝛿𝑠𝑘 ∫
Ω

𝑟𝑙
ij𝑤ijd2𝐫j − 𝛿𝑙𝑠 ∫

Ω
𝑟𝑘

ji𝑤ij = 0d2𝐫j, (3.15)

since kernel is a symmetric even function and multiplication of an even function by an odd
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function produces an odd function. Similarly, the second rank tensor may be simplified as

𝐼 𝑙𝑠 = −𝛿𝑙𝑠 ∫
Ω

𝑤ijd2𝐫j = −𝛿𝑙𝑠, (3.16)

provided that the normalization condition holds. Substituting equations (3.15) and (3.16)
in equation (3.13) and considering that 𝜕𝑤ij/𝑥𝑠

j = −𝜕𝑤ij/𝑥𝑠
i , one may write the integral

representation of the first derivative as

𝜕𝑓 𝑝 (𝐫i)
𝜕𝑥𝑠

i
= ∫

Ω
(𝑓 𝑝 (𝐫j) − 𝑓 𝑝 (𝐫i))

𝜕𝑤ij
𝜕𝑥𝑠

i
d2𝐫j. (3.17)

When transforming equation (3.17) into particle representation, 𝐼 𝑙𝑠 is no longer equal
to Kronecker delta and its contribution has to be accounted for. As a result equation (3.17)
is modified to

∫
Ω

(𝑓 𝑝 (𝐫j) − 𝑓 𝑝 (𝐫i))
𝜕𝑤ij
𝜕𝑥𝑠

j
d2𝐫j = 𝜕𝑓 𝑝 (𝐫i)

𝜕𝑥𝑙
i

∫
Ω

𝑟𝑙
ji

𝜕𝑤ij
𝜕𝑥𝑠

j
d2𝐫j. (3.18)

Replacing the integration operation with summation on the neighbors of particle i, equa-
tion (3.18) may be rewritten in particle representation as

𝐽𝑛

∑
j=1

1
𝜓j

(𝑓 𝑝 (𝐫j) − 𝑓 𝑝 (𝐫i))
𝜕𝑤ij
𝜕𝑥𝑠

i
=

𝜕𝑓 𝑝 (𝐫j)
𝜕𝑥𝑙

i
𝑎𝑙𝑠

i , (3.19)

where

𝑎𝑙𝑠
i =

𝐽𝑛

∑
j=1

𝑟𝑙
ji

𝜓j

𝜕𝑤ij
𝜕𝑥𝑠

i
. (3.20)

Equation (3.19) may also be written in matrix form as

⎡⎢⎢⎢
⎣

∑𝐽𝑛
j=1 𝑓 (1)

ji 𝑎(1)
ij

∑𝐽𝑛
j=1 𝑓 (1)

ji 𝑎(2)
ij

⎤⎥⎥⎥
⎦

=
⎡⎢⎢⎢
⎣

∑𝐽𝑛
j=1 𝑟(1)

ji 𝑎(1)
ij ∑𝐽𝑛

j=1 𝑟(2)
ji 𝑎(1)

ij

∑𝐽𝑛
j=1 𝑟(1)

ji 𝑎(2)
ij ∑𝐽𝑛

j=1 𝑟(2)
ji 𝑎(2)

ij

⎤⎥⎥⎥
⎦

⎡⎢⎢⎢⎢
⎣

𝜕𝑓 (1)
i

𝜕𝑥(1)
i

𝜕𝑓 (1)
i

𝜕𝑥(2)
i

⎤⎥⎥⎥⎥
⎦

, (3.21)

where
𝑎𝑠

ij = 1
𝜓j

𝜕𝑤ij
𝜕𝑥𝑠

i
. (3.22)

The correction function given in equation (3.11) was tested and the results were on par
with those of equation (3.19) used throughout this study.
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Laplacian operator

The two-dimensional relation for the second derivative in integral form may be given as
[172]

2 ∫
Ω

(𝑓 𝑝 (𝐫i) − 𝑓 𝑝 (𝐫j))
𝑟𝑠

ij
𝑟2

ij

𝜕𝑤ij
𝜕𝑥𝑚

i
d2𝐫j = 1

2
𝜕2𝑓 𝑝 (𝐫i)
𝜕𝑥𝑠

i 𝜕𝑥𝑚
i

+ 1
4

𝜕2𝑓 𝑝 (𝐫i)
𝜕𝑥𝑘

i 𝜕𝑥𝑘
i

𝛿𝑠𝑚. (3.23)

Equation (3.23) may be modified for a divergence free field such as velocity, by con-
tracting 𝑝 and 𝑠 indices as

2 ∫
Ω

(𝑓 𝑝 (𝐫i) − 𝑓 𝑝 (𝐫j))
𝑟𝑝

ij
𝑟2

𝐢𝐣

𝜕𝑤ij
𝜕𝑥𝑚

i
d2𝐫j = 1

4
𝜕2𝑓 𝑝 (𝐫i)
𝜕𝑥𝑘

i 𝜕𝑥𝑘
i

𝛿𝑝𝑚. (3.24)

Similar to the treatment given to equation (3.18), equation (3.24) may be rewritten as

8 ∫
Ω

(𝑓 𝑝 (𝐫i) − 𝑓 𝑝 (𝐫j))
𝑟𝑝

ij
𝑟2

ij

𝜕𝑤ij
𝜕𝑥𝑚

i
d2𝐫j = 𝜕2𝑓 𝑝 (𝐫i)

𝜕𝑥𝑘
i 𝜕𝑥𝑘

i
∫

Ω
𝑟𝑝

ij
𝜕𝑤ij
𝜕𝑥𝑚

i
d2𝐫j, (3.25)

to enable its transformation into particle representation. It can be written in matrix form
as

8
𝐽𝑛

∑
j=1

(𝑓 (1)
ji 𝑟(1)

ji + 𝑓 (2)
ji 𝑟(2)

ji )
⎡⎢⎢⎢
⎣

𝑎(1)
ij

𝑎(2)
ij

⎤⎥⎥⎥
⎦

=
⎡⎢⎢⎢
⎣

∑𝐽𝑛
j=1 𝑟(1)

ji 𝑎(1)
ij ∑𝐽𝑛

j=1 𝑟(2)
ji 𝑎(1)

ij

∑𝐽𝑛
j=1 𝑟(1)

ji 𝑎(2)
ij ∑𝐽𝑛

j=1 𝑟(2)
ji 𝑎(2)

ij

⎤⎥⎥⎥
⎦

⎡⎢⎢⎢
⎣

𝜕2𝑓 (1)
i

𝜕𝑥𝑘
i 𝜕𝑥𝑘

i

𝜕2𝑓 (2)
i

𝜕𝑥𝑘
i 𝜕𝑥𝑘

i

⎤⎥⎥⎥
⎦

, (3.26)

or in index form as

8
𝐽𝑛

∑
j=1

1
𝜓j

(𝑓 𝑝 (𝐫i) − 𝑓 𝑝 (𝐫j))
𝑟𝑝

ij
𝑟2

ij

𝜕𝑤ij
𝜕𝑥𝑚

i
= 𝜕2𝑓 𝑝 (𝐫i)

𝜕𝑥𝑘
i 𝜕𝑥𝑘

i
𝑎𝑝𝑚

i . (3.27)

Upon contracting indices 𝑠 and 𝑚 in equation (3.23), an alternative form of Laplacian
for a vector field may be obtained as

8 ∫
Ω

(𝑓 𝑝 (𝐫i) − 𝑓 𝑝 (𝐫j))
𝑟𝑠

ij
𝑟2

ij

𝜕𝑤ij
𝜕𝑥𝑠

i
d2𝐫j = (2 + 𝛿𝑚𝑚) 𝜕2𝑓 𝑝 (𝐫i)

𝜕𝑥𝑘
i 𝜕𝑥𝑘

i
, (3.28)

which is also suitable for scalar variables such as pressure and electric potential. Casting
into particle representation and considering the discrete form of 𝛿𝑚𝑚, equation (3.28) may
be written as

8
𝐽𝑛

∑
j=1

1
𝜓j

(𝑓 𝑝 (𝐫i) − 𝑓 𝑝 (𝐫j))
𝑟𝑠

ij
𝑟2

ij

𝜕𝑤ij
𝜕𝑥𝑠

i
= (2 + 𝑎𝑚𝑚

i ) 𝜕2𝑓 𝑝 (𝐫i)
𝜕𝑥𝑘

i 𝜕𝑥𝑘
i

. (3.29)
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3.2.2 Homogenization of particle distribution
Adapting the derivative formula for a discretized environment is the first step in maintain-
ing the accuracy of the particle representation. However, ensuring the homogeneity of the
discretized environment, i.e. particle distribution, is another step in helping the accuracy
of a particle method. Two examples are the method called XSPH [164, 173] and Artificial
Particle Displacement (APD) [174, 175]. These methods modify the trajectory of the par-
ticles to avoid local increase or decrease in their numbers, regarding them as computational
nodes rather than fluid parcels.

In XSPH, particle velocity is relaxed over their neighbors, giving them a more consis-
tent motion and subsequently avoiding excessive change in particle distribution. To put it
into mathematical terms

d𝐱i
d𝑡 = 𝐮i − 𝜉

𝐽𝑛

∑
j=1

1
𝜓j

𝐮ij𝑤ij, (3.30)

where the second term on the right hand side is the XSPH velocity while 𝜉 is a relax-
ation factor between zero and one. A higher relaxation factor gives more uniform motion
but detracts from the accuracy of the solution while a low relaxation factor may not be
effective.

In APD, the particle positions are slightly modified based on directional emptiness,
i.e. particles are shifted to fill the empty spaces within the computational domain. This is
achieved by adding a slight perturbation to particle position via

𝜹𝐫i = 𝜁
𝐽𝑛

∑
j=1

𝐫ij
𝑟3

ij
𝑟2

avg,i𝑢apd,iΔ𝑡, (3.31)

where 𝑟avg,i = ∑𝐽𝑛
j=1 𝑟ij/𝐽𝑛 is the average particle spacing, Δ𝑡 is the computational time

step length, 𝑢apd,i is a representative velocity and 𝜁 is the APD coefficient. Since equation
(3.31) is an odd function, 𝜹𝐫i will be close to zero for near homogeneous distributions.
When there is significant particle accumulation in a region, the perturbation vector will
point away from the clustered region and toward the less populated parts of the particle
neighborhood.

The value of the APD coefficient depends on the choice of the 𝑢apd,i. A common
choice in previous studies of the group for 𝑢apd,i has been the maximum velocity within
the computational domain [148, 176]. In this case an APD coefficient of 𝜁 = 0.06 is found
to provide satisfactory balance between accuracy and homogeneous particle distribution.
Another choice for the 𝑢apd,i is the local maximum within the neighborhood of particle i.
A similar value of 𝜁 = 0.06 is acceptable for this case as well. Inspired by XSPH, one
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may use an average local velocity difference of the form

𝑢apd,i =
𝐽𝑛

∑
j=1

1
𝜓j

∣𝐮ij∣ 𝑤ij. (3.32)

In this case, particles away from the main features of the flow are not affected and an APD
coefficient of unity has been found to provide acceptable results.

3.3 Neighbor finding
All discrete operations carried out for the particle of interest i require the information on
neighboring particles j within the compact support of the kernel function. The neighbor
information has to be updated each time the particles move and this step takes up consid-
erable computational resources.

The most straightforward method of finding the neighbors is direct-search algorithm
where the distance between particle i and all other particles within the computational do-
main is calculated and those satisfying the condition 𝑟ij ≤ 𝑛ℎ are considered as neighbors
of particle i. The number of operations required for this method is of order 𝒪 (𝐽2

𝑑), where
𝐽𝑑 is the total number of particles within the computational domain. An improvement of
the method stores the neighborhood relationship recursively, i.e. if particle j is a neigh-
bor of particle i, both particles will store the relationship. This reduces the number of
operations to 𝒪 (𝐽2

𝑑 /2).
An improved version of the direct-search algorithm is the linked-list algorithm which

is suitable for simulations with constant smoothing length, as is the case in this study. In
this method, an overlaying mesh is used to classify the particles into neighboring regions.
The number of the overlaying mesh cells is chosen such that all rectangles are uniform and
side length is never smaller than 𝑛ℎ. After associating each particle with its corresponding
cell, a direct-search is performed within that cell and its neighboring eight cells. This
reduces the number of operations required to 𝒪 (𝐽𝑑) [155]. Similar to the improvement
made in direct-search algorithm, it is possible to consider only half of the neighboring
cells while searching for particle neighbors. This reduces the number of cells traversed
while searching for neighbors to five per particle.

Figure 3.1 shows a schematic of the neighboring cells used in this study. Here, parti-
cles used for imposing boundary conditions are included in neighbor searching procedure
and may become a neighbor of a particle within the computational domain. These parti-
cles reside outside of the computational domain and are assigned to their respective cells
marked with dashed lines in figure 3.1. In the particular implementation used here, the
neighbor finding procedure starts from the lower-left boundary of the computational do-
main and sweeps toward the upper-right boundary. As shown in figure 3.1-d, five cells
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Figure 3.1: Neighboring cells (dark gray) for the cells containing particle of interest i at
the bottom-left corner (a), bottom wall (b), left (c) and inside the computational domain
and away from the boundaries(d). A dashed cell contains ghost particles.

are searched for each particle of interest i. If the cell containing particle i is adjacent to a
boundary, all neighboring ghost cells are also included in the search.

3.4 Boundary conditions
Like other spatial discretization methods such as FDM and FVM, a common method of
imposing boundary conditions in SPH is by placing auxiliary computational elements out-
side of the computational domain. Another function of such elements or particles in SPH
is to fill the compact support of the kernel function and avoid misguiding particles when
APD is used. These particles may be allocated statically or dynamically. The former
will be referred to as dummy particle method while the latter will be called ghost particle
method.

In dummy particle method shown in figure 3.2-a and b, auxiliary particles are arranged
in layers outside of the boundary in a uniform fashion with the same separation distance as
the main particles. The number of layers is chosen to cover the full compact support of the
particles inside the computational domain. Dummy particles remain stationary during the
simulation while their properties are interpolated from the values inside the computational
domain. The interpolation sites, shown in green filling for respective dummy particles, are
the mirror of the dummy particle with respect to the boundary for non-periodic (figure 3.2-
a). The interpolation sites for periodic boundaries are found by shifting the position of the
respective dummy particles inside of the computational domain (figure 3.2-b). Two issues
with this simplistic method is that the interpolation point is not necessarily occupied by a
main particle and a particle on the boundary does not see a symmetric distribution.

Ghost particle method used in this study alleviates the problems of dummy particle
method by actively allocating auxiliary particles based on the location of the main par-
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Figure 3.2: Arrangement of auxiliary particles in dummy particle method (a,b) and ghost
particle method (c,d). Related particles have similar borders. Interpolation sites of dummy
particle method are shown with green filling. Neumann and Dirichlet boundaries are
shown in the left column while periodic boundary is shown to the right.

ticles. As shown in figure 3.2-c, a Ghost particle is positioned to mirror the associated
main particle with respect to the boundary for non-periodic boundary conditions. For a
periodic boundary condition, the ghost positions are found by shifting the position of the
particles adjacent to the opposite boundary (figure 3.2-d). This provides a clear source
for the properties of the ghost particle (phase, viscosity, density, electric permittivity and
electric conductivity) and results in a symmetric distribution with respect to boundaries.
It is worth mentioning that in this study, no particles reside on the boundaries. This re-
duces the variety of the particles inside the domain, facilitating numerical solution and
matrix forming by reducing exceptions. It also helps in establishing boundary conditions,
especially the periodic boundary condition.

The aforementioned ghost particle method is only suitable for straight boundaries with
right corners. An adaptation of the ghost particle approach to arbitrary boundaries, dubbed
Multiple Boundary Tangent (MBT) method, is presented in [172]. The method presented
here is a subset of MBT and will be simply referred to as such.

The properties of the ghost particles in relation to their main particles depend on the
type of the boundary conditions. The common boundary conditions employed in this study
are constant zero (Dirichlet or first-type), zero gradient (Neumann or second-type) and pe-
riodic. Denoting velocity, pressure or electric potential by 𝑓 , ghost values for constant zero
boundary condition are set according to 𝑓g = −𝑓m while both zero gradient and periodic
ghost values are set according to 𝑓g = 𝑓m. An additional feature of the periodic condition is
that a main particle passing through boundary will be transferred to the computational cell
adjacent to the opposite boundary. A schematic of the ghost-main particle relationship is
provided in figure 3.2.

An additional form of boundary condition, dubbed shifting boundary, is used in this
study. It allows for infinite motion of a flow feature (descending rigid body or ascend-
ing bubble) in quiescent background fluid in a bounded computational domain. Use of
periodic boundary condition is not suitable in this case as such a treatment will cause the
feature to interact with its own wake. An inlet-outlet pair will be complicated to implement
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Figure 3.3: Shifting boundary condition: (a) original particle arrangement; (b) particle
arrangement after shifting. Red particles are discarded and green particles are added. The
area of interest is marked in light gray. Ghost particles are shown with gray fill and are
related to particles of similar border within the computational domain.

if the system is to be solved in a spatial representation. The shifting condition allows for
unlimited simulation of the evolution of the feature of interest in a bounded domain. It is
based on no-penetration and no-slip conditions for velocity and known electric potential.
Zero pressure gradient is also required due to the numerical method used. Figure 3.3 pro-
vides a schematic of the boundary condition. The feature of interest is placed at the center
of the computational domain (shown in light gray). As its center of mass changes position
up to one particle spacing in any direction (up or down), all particles are shifted so that
the feature is centered again (figure 3.3-b). Any particles transfered out of computational
domain are discarded (red particles) and the first level ghosts of the opposite boundary are
transformed into main particles (ghost particles). To avoid possible disturbances near the
boundaries, a hard damping function based on hyperbolic tangent profile is applied to the
velocities near the boundaries. If the computational domain is large enough, the feature
of interest will not sense the changes in position and simulations may continue without
adverse effects of the boundaries.

3.5 Initial particle arrangement
The constantly updated neighborhood information of SPH particles negates the need for
keep strict positioning and connectivity information during the simulation. However, de-
pending on the nature of the cases at hand, some consideration has to be given to the initial
positioning of the particles. The arrangement of the solid body particles should conform
to the boundaries of the object. The same is correct for flows where the final outcome is at
a stationary state such as hydrostatic equilibrium [177]. The initial position of the parti-
cles may be arranged through specialized methods such meshing [155] or particle packing
algorithms [177]. Another method is to run a modified simulation for obtaining an initial
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Figure 3.4: Particle positions before (a) and after (b) relaxation. Contour shows 𝛁 ⋅ 𝐮apd,i.

arrangement compatible with the code. The second method, while more time consuming
than the first, has the benefit of being fully compatible with code responsible for the sim-
ulation since positioning errors are already accounted for. It is also easier to implement
through minor modifications. Two cases were tested in this study using the second method.

The first case is to prepare an initial droplet arrangement for liquid lens simulation
which will be elaborated further in section 4.2. The initial particle arrangement had con-
siderable effect since the final result of this case was of a quiescent nature. The relaxation
procedure here was based on using a physical phenomena, i.e. the tendency of a suspended
droplet to become circular. A similar test was carried out for rising bubbles, but those
cases showed no major difference between relaxed and non-relaxed arrangements. This is
expected since the bubble does not come to rest during the simulation.

The second case where a conforming particle arrangement is tested was in descent of
a circular disk in quiescent medium in section 6.3.1. The results showed no considerable
difference when fluid particles were cut from an initially Cartesian arrangement compared
to when the particles were relaxed into a boundary conforming shape. The relaxation
process in this case was based on a modified form of APD whereby a small portion of
the gradient of 𝑟avg,i was used as 𝑢apd,i to modulate velocity in addition to position in the
fluid phase. The particle arrangement before and after applying the relaxation procedure
is shown in figure 3.4.

In this study, all particles are arranged in a uniform Cartesian arrangement, except for
rigid bodies, liquid lens and droplet levitation test cases. Further details are provided in
respective sections.

35



3.6 Imposing incompressibility
There are two common ways to impose incompressibility in SPH. The original SPH imple-
mentation proposed for hydrodynamic simulations of incompressible flows by Monaghan
[75] used a pseudo state equation. The state equation has taken many forms in literature,
however, its general form may be written as

𝑝 = 𝑓 (𝜌; 𝑢𝑠) , (3.33)

where 𝑓 is a function of density 𝜌 and a representative speed of sound 𝑢𝑠. This variant,
known as WCSPH, is fast and easy to implement, however, suffers from arbitrary pressure
oscillation and small time step. Many treatments and improvements are proposed to alle-
viate the initial shortcomings, however, the most important problem resides with the use
of the artificial equation of state itself.

Cummins and Rudmann [77] developed an alternative form of SPH to address the
shortcomings of WCSPH. The method, widely known as ISPH, is based on Chorin’s pro-
jection method [76] and relies on a predictor-corrector approach. While ISPH is computa-
tionally more expensive, the pressure field is smoother than that of WCSPH and it allows
for larger time steps. ISPH method is used in all simulations carried out in this study.

3.6.1 Projection method
The projection method relies on Helmholtz-Hodge decomposition of a vector field 𝐟 de-
fined on a simply connected domain. This means that the vector field may be written as
the summation of solenoidal 𝐟sol and irrotational 𝐟irr parts. The following relations apply
to such a field

𝛁 ⋅ 𝐟 = 𝛁2Φ, (3.34)

𝐟sol = 𝐟 − 𝛁Φ, (3.35)

where the irrotational part is shown as the gradient of the potential field Φ.
Applying this concept to equation (2.6), the projection method may be described as

follows. The procedure starts by calculating a prediction of the velocity, known as in-
termediate velocity, by excluding pressure gradient. The pressure is then calculated by
replacing 𝐟 with intermediate velocity and Φ with pressure in equation (3.34). The final
step is to correct the velocity by using the calculated pressure. This step is carried out
using equation (3.35) where 𝐟sol is the divergence free velocity.
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3.6.2 SPH implementation of projection method
Since ISPH is a Lagrangian method, an additional particle movement step has to be added
to the projection method described in section 3.6.1. Knowing position and velocity of the
particles at 𝑛th timestep and marking intermediate values with a plus, the original method
proposed in [77] for ISPH of simple flows may be summarized as

1. 𝐫+ = 𝐫(𝑛) + Δ𝑡𝐮(𝑛),

2. 𝐮+ = 𝐮(𝑛) + Δ𝑡𝛁 ⋅ (𝜇𝛁𝐮(𝑛)) /𝜌,

3. 𝛁 ⋅ (𝛁𝑝/𝜌) = 𝛁 ⋅ 𝐮+/Δ𝑡,

4. 𝐮(𝑛+1) = 𝐮+ − Δ𝑡 (𝛁𝑝/𝜌),

5. 𝐫(𝑛+1) = 𝐫(𝑛) + Δ𝑡 (𝐮(𝑛) + 𝐮(𝑛+1)) /2.

3.7 Electrostatic fluid-structure/solid interaction proce-
dure

In its most complex form, the study conducted here includes the effects of gravity, surface
tension, electric field and rigid bodies inside the fluid environment. The full description of
the numerical method, electrohydrodynamic fluid-structure/solid interaction, is provided
here. Any repeated equations are marked with a prime. All cases with lesser amount of
complexity follow the same solution, provided that only relevant stages are maintained.

The projection scheme is advanced in time using a first-order Euler approach. The
Courant-Friedrichs-Lewy (CFL) condition [178],

Δ𝑡 = 𝜂 min
1≤j≤𝐽𝑑

⎡⎢
⎣

ℎ
𝑢j

,
𝜌jℎ2

2𝜇j
, (

𝜌jℎ3

max(𝛼) 𝛾(𝛼)
)

1
2

, (
𝜌jℎ3

𝜀j𝐸2
j

)
1
2 ⎤⎥
⎦

, (3.36)

is used to determine the timestep of the simulation where 𝜂 is taken to be equal to 0.25
[148]. Initial number density and particle mass are computed via

𝜓i =
𝐽𝑛

∑
j=1

𝑤ij, (3.10’)

𝑚i = 𝜌i
𝜓i

. (3.37)

Prior to the movement of particles in the predictor step, APD vector is calculated
through

𝜹𝐫(𝑛)
i = 𝜁 ⎛⎜

⎝

𝐽𝑛

∑
j=1

𝐫ij
𝑟3

ij
𝑟2

avg,i𝑢apd,i
⎞⎟
⎠

(𝑛)

Δ𝑡, (3.31’)
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after which particles are displaced to their intermediate positions using

𝐫+
i = 𝐫(𝑛)

i + 𝐮(𝑛)
i Δ𝑡 + 𝛿𝐫(𝑛)

i . (3.38)

Since particles have moved, neighborhood relationships are reestablished. Particle
number densities and fluid density may be update now as

𝜓+
i =

𝐽𝑛

∑
j=1

𝑤+
ij, (3.10’)

𝜌+
i = 𝑚i𝜓+

i , (3.39)

or postponed after intermediate velocity is calculated in equations (3.42) and (3.39’). The
color function is smoothed through

𝑐(𝛼)i = 1
𝜓i

𝐽𝑛

∑
j=1

̂𝑐(𝛼)j𝑤ij, (3.40)

and all material properties are updated using either WAM or WHM methods via

𝑓i =
3

∑
𝛼=1

𝑐(𝛼)i ̂𝑓(𝛼), (2.26’)

1
𝑓i

=
3

∑
𝛼=1

𝑐(𝛼)i
̂𝑓(𝛼)

. (2.27’)

After updating color and material properties, surface tension and electrical forces are com-
puted at the intermediate particle positions. Surface tension is calculated in several stages.
First, color gradient is computed using the following discretized form

𝜕𝑓 𝑝
j

𝜕𝑥𝑙
i

= (𝑎𝑙𝑠
i )−1

𝐽𝑛

∑
j=1

𝑓 𝑝
ji

𝜓j

𝜕𝑤ij
𝜕𝑥𝑠

i
, (3.19’)

and delta function is found. Then surface normals are calculated through

𝐧(𝛼)i = ( 𝛁𝑐i
∣𝛁𝑐i∣

)
(𝛼)

. (2.18’)

Valid normals are then smoothed in a way similar to the color function and then used to
compute the curvature via

𝜅(𝛼)i = −𝛁 ⋅ 𝐧(𝛼)i, (2.19’)
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using equation (3.19’). Putting all components together, surface tension is calculated as

𝐟(𝑠)i =
3

∑
𝛼=1

(𝛾𝜅i𝐧i𝛿i)(𝛼). (2.24’)

In the next stage of the simulation, electrical potential of the system is found by solving

𝛁 ⋅ (𝜀i𝛁𝜙i) = 0, (2.37’)

𝛁 ⋅ (𝜎i𝛁𝜙i) = 0, (2.41’)

subject to relevant boundary conditions for perfect dielectric and leaky dielectric models,
respectively, using the following discretized form

𝜕
𝜕𝑥𝑘

i
(𝜑i

𝜕𝑓 𝑝
i

𝜕𝑥𝑘
i
) = 8

2 + 𝑎𝑚𝑚
i

𝐽𝑛

∑
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2𝜑i𝜑j
𝜑i + 𝜑j

𝑓 𝑝
ij

𝜓j

𝑟𝑠
ij

𝑟2
ij

𝜕𝑤ij
𝜕𝑥𝑠

i
. (3.29’)

Electric field is then computed from the electric potential by

𝐄i = −𝛁𝜙i, (2.33’)

discretized by equation (3.19’). Permittivity gradient is calculated in a similar fashion and
used along with electric field to calculate polarization force,

𝐟(𝑒𝑝)i = −1
2𝐄i ⋅ 𝐄i𝛁𝜀i. (2.30’)

Coulomb force is found through
𝐟(𝑒𝑞)i = 𝑞𝑣

i 𝐄i, (2.31’)

where electric potential is used to directly compute the volumetric charge,

𝑞𝑣
i = 𝛁 ⋅ (𝜀i𝛁𝜙i) , (2.34’)

using equation (3.29’). The electric force components are limited to regions with accept-
able permittivity and conductivity gradients, similar to the measures taken for acceptable
normals. Accepted components are added to form the resultant electric force,

𝐟(𝑒)i = 𝐟(𝑒𝑝)i + 𝐟(𝑒𝑞)i. (2.29’)

After all interfacial forces are accounted for, the intermediate velocity is computed
through

𝐮+
i = 𝐮(𝑛)

i + Δ𝑡
𝜌(𝑛) (𝛁 ⋅ 𝜏i + 𝐟(𝑏)i + 𝐟(𝑠)i + 𝐟(𝑒)i)

(𝑛) , (3.41)
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where viscous dissipation 𝛁 ⋅ 𝜏i is discretized using

𝜕
𝜕𝑥𝑘

i
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𝑟𝑝
ij

𝑟2
ij

𝜕𝑤ij
𝜕𝑥𝑚

i
. (3.27’)

If not updated after initial movement in equation (3.10’), the intermediate number density
is calculated employing the following relation

𝜓+
i = 𝜓(𝑛)

i − Δ𝑡𝜓(𝑛)
i (𝛁 ⋅ 𝐮+

i ) , (3.42)

subject to appropriate boundary conditions, which is then used to compute intermediate
density,

𝜌+
i = 𝑚i𝜓+

i . (3.39’)

To impose rigid motion, the current velocity of the solid particles is used to compute a
center-of-mass velocity and an angular velocity for the solid object through

𝐮𝑡+
𝑠 = 1

𝑀+𝑠

𝐽𝑠

∑
j=1

𝐮+
j

𝜓+
j

, (2.71’)

𝐮𝑟+
𝑠 = 1

𝐼+𝑠

𝐽𝑠

∑
j=1

𝐮+
j × 𝐫j𝑠
𝜓+

j
, (2.72’)

and then assign an individual velocity to each solid particle according to rigid body motion
as

𝐮+
i = 𝐮𝑡+

𝑠 + 𝐮𝑟+
𝑠 × 𝐫i𝑠. (2.70’)

As density remains constant for particles of the solid phase, 𝑀𝑠 and 𝐼𝑠 represent the rigid
body’s volume and moment of inertia about its center of mass as

𝑀+
𝑠 =

𝐽𝑠

∑
j=1

1
𝜓+

j
, 𝐼+

𝑠 =
𝐽𝑠

∑
j=1

𝐫+
j𝑠 ⋅ 𝐫+

j𝑠
𝜓+

j
. (3.43)

In the corrector step, pressure at the next timestep is found by solving Poisson equation
subject to relevant boundary conditions using intermediate values,

𝛁 ⋅ ( 1
𝜌+

i
𝛁𝑝(𝑛+1)

i ) = 𝛁 ⋅ 𝐮+
i

Δ𝑡 . (3.44)

The left hand side is discretized using equation (3.29’) while the right hand side is dis-
cretized following equation (3.19’). The calculated pressure is then employed to correct
the velocity of the particles, hence advancing them to next timestep using the following
relation,

𝐮(𝑛+1)
i = 𝐮+

i − 1
𝜌+

i
𝛁𝑝(𝑛+1)

i Δ𝑡. (3.45)
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In order to handle larger density ratios between different phases of the flow, ∇𝑝/𝜌 is re-
placed with its equivalent form, ∇(𝑝/𝜌) − 𝑝∇(1/𝜌), which is discretized as

1
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𝜕𝑝i
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i
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i =
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1
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𝜕𝑤ij
𝜕𝑥𝑙

i
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1
𝜌j𝜓j

(𝑝j − 𝑝i)
𝜕𝑤ij
𝜕𝑥𝑙

i
. (3.46)

This form, also referred to as non-conservative form, ensures zero pressure gradient when
particle of interest and its neighbors are of identical pressure At this point, rigidity con-
straints of equations (2.71’-2.70’) are imposed on the velocity vector values at the next
time step. Finally, particles are moved to their corrected positions using the following
relation

𝐫(𝑛+1)
i = 𝐫(𝑛)

i + 1
2 (𝐮(𝑛)

i + 𝐮(𝑛+1)
i ) Δ𝑡 + 𝜹𝐫(𝑛)

i . (3.47)

The final step involves reestablishment of neighborhood information. If number density
was calculated using equation (3.42), the number density and particle mass are restored
to their original values. If equation (3.10’) and (3.39) were used, number density and
particle masses will be recalculated via the same equations based on the new neighborhood
information.
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Chapter 4

Three-phase flows∗

4.1 Introduction
Multiphase flows where two or more fluids have interfacial contact surfaces are one of
the most common features observed in many engineering and natural processes and have
been a subject of interest for modeling in many studies. It is a challenging problem as the
evolution of the interface is a crucial step in modeling of multiphase flows which needs to
be handled delicately to result in reliable simulations.

In their simplest form, multiphase flows are composed of two immiscible fluid streams.
Many studies have been performed on two-phase flows using mesh dependent, meshless
and hybrid approaches. Mesh dependent methods include VOF [1, 179, 180], LS methods
[15, 28, 181] and Phase Field (PF) methods [182, 183] which are purely Eulerian where in-
terface is captured implicitly through use of a scalar function. Hybrid Eulerian-Lagrangian
approaches, such as Front Tracking method [39, 184], provide a sharper interface represen-
tation by employing markers to track the interface explicitly which adds to their accuracy
at the cost of extra complexity and computational expense. In this regard, the Lagrangian
nature of meshless methods is an inherent advantage of this kind of approach as it fa-
cilitates the tracking of interfaces with large deformations. Among all different variants
of meshless methods, SPH has received a great deal of attention in modeling multiphase
flows [75, 89–92, 94–96].

Despite the large pool of research available in two-phase flows, there have been rel-
atively fewer studies carried out on flows containing three different fluids, partly due to
complexities inherent in phase interactions and possible triple-junctions present in these
flows. A few examples include level set studies of triple junctions [146, 185] and droplet
spreading [186], droplet impact simulation using front tracking [187], phase field simula-
tions of several three-phase flows [188, 189] and weakly compressible smoothed particle
hydrodynamics simulations of two and three-phase flows [93].

∗Appears in: N. Tofighi and M. Yildiz, Numerical simulation of single droplet dynamics in three-phase
flows using ISPH, Comput. Math. Appl. (2013). doi:10.1016/j.camwa.2013.05.012
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Table 4.1: Simulation parameters and results for liquid lens elongation test case
𝛾(13)/𝛾(12) 𝑑𝑎 𝑑𝑜/𝑑𝑎

𝑑𝑓 /𝑑𝑎
(𝛾(13) = 𝛾(23)) 𝑅1 𝑅2 𝑅3 𝑅1 𝑅2 𝑅3

𝑉1 0.8 0.4771 0.4830 0.4601 0.6527 0.9687 0.9827 0.9939
𝑉2 0.9 0.4501 0.4556 0.4340 0.6919 0.9702 0.9827 0.9881
𝑉3 1.0 0.4313 0.4366 0.4159 0.7220 0.9684 0.9785 0.9856
𝑉4 1.1 0.4173 0.4224 0.4024 0.7463 0.9647 0.9783 0.9819
𝑉5 1.2 0.4064 0.4114 0.3919 0.7663 0.9602 0.9786 0.9865

A number of test cases have been simulated to test the capabilities of the proposed
three-phase ISPH scheme. First, elongation of a circular droplet encompassed between
two immiscible fluid layers have been studied and compared to analytic values in sec-
tion 4.2.1. Extending this test case towards a more dynamic one, levitation of a circular
droplet initially at rest between two layers of immiscible fluids have been simulated in
section 4.2.2. Finally to demonstrate flexibility of the method in handling moving contact
lines involving density and viscosity differences, simulations of droplet spreading on a
solid surface are conveyed and compared against analytical results available in literature
in section 4.2.3.

4.2 Results

4.2.1 Liquid lens
In this section, simulation results for liquid lens test case are presented and compared
against analytical equilibrium lens diameter. Having an analytical solution, this test case
is very well suited for testing the accuracy of proposed scheme for modeling three-phase
flows. Computational domain for every simulation is taken to be a square with a side length
of 𝑙. Three different particle resolutions of 𝑅1, 𝑅2 and 𝑅3 have been used in simulations
which have 50 × 50, 100 × 100 and 200 × 200 particles, respectively. The initial particle
arrangement scheme along with its relation to 𝑙 will be elaborated further in the following
paragraphs. All fluid properties are set to unity for every phase involved in simulations
while binary surface tension coefficients assume different values depending on the test
cases considered. Table 4.1 summarizes the important simulation parameters and results
obtained for surface tension coefficient ratios of 𝑉1 through 𝑉5 at each of the resolutions
𝑅1, 𝑅2 and 𝑅3. Different phases are ordered as shown in figures 4.1-b and 4.1-d. No slip
and zero pressure gradient boundary conditions are applied to all boundaries.

Effect of initial particle arrangement

It is observed that initial particle arrangement has profound effect on results obtained from
SPH simulations [177]. Two different approaches were used to arrange initial particle po-
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sitions in following simulations. The first approach, being the most straightforward one,
consists of arranging the particles on an equally spaced formation in both dimensions. Par-
ticles within an “intended” radius of 0.5𝑑′

𝑜 from the center of computational domain are
marked as phase 3 and considered to be belonging to the droplet of interest, while remain-
ing particles are divided into top and bottom portions, phase 1 and phase 2 respectively
(figure 4.1-a). This method results in a rough surface pattern with an approximate initial
“acquired” diameter of 𝑑𝑜 for the encompassed droplet.

The second method involves allowing a diamond (45∘ tilted square) droplet of known
area to deform into a circular droplet of an intended diameter of 𝑑′

𝑜 under the effect of
surface tension forces in a two-phase system, hence two-phase diamond droplet relaxation
shown in figure 4.2. To achieve this end within the scope of proposed three-phase model, a
particle arrangement with uniform spacing in both dimensions is used and particles within
a diamond of intended diagonal 𝑑′

𝑖 are considered as the droplet of interest, phase 3 (figure
4.2-a), while remaining top and bottom portions are marked as phases 1 and 2, respectively.
It is notable that due to finite spacing between particles, actual diagonal of the diamond
is 𝑑𝑖, which is slightly smaller than 𝑑′

𝑖 . Computational domain length is chosen such that
𝑙 = 2.6𝑑′

𝑖 and diamond is relaxed in two-phase mode by setting 𝛾(12) = 0. The resulting
circular droplet has an acquired diameter of 𝑑𝑜 and is used as an initial condition for particle
arrangement (figures 4.1-c and 4.2-c).

In both cases, initial velocities are set to zero. These initial configurations are tested
against analytical equilibrium lens diameter. Assuming that equilibrium contact angle is
defined by

sin 𝜃(1)
𝛾(23)

= sin 𝜃(2)
𝛾(13)

= sin 𝜃(3)
𝛾(12)

(4.1)

and 𝜃(1) = 𝜃(2), equilibrium lens diameter is found using the following relation [189, 190],

𝑑𝑎 = ⎛⎜
⎝

2(𝜋 − 𝜃(1)) − sin(2(𝜋 − 𝜃(1)))
4𝐴2𝑜 sin2(𝜋 − 𝜃(1))

⎞⎟
⎠

−1/2
. (4.2)

This defines the distance between two triple junctions and is based on Young’s law where
𝐴𝑜 represents initial droplet area and 𝜃(𝛼) is the contact angle of phase 𝛼 with two other
phases. Figure 4.1-e shows non-dimensional lens diameter versus time at early stages of
simulation for both initial conditions at resolution 𝑅2 where all binary surface tension coef-
ficients are equal to 1. It is observable that results obtained using the first initial condition
type start to fall behind those of the second type at early stages of simulation. This trend
continues at later simulation times yielding an equilibrium diameter, 𝑑𝑓 /𝑑𝑎, of 0.9519 for
the first method against 0.9785 for the second method of initial condition generation. This
is mainly due to inaccurate measurement of initial condition acquired diameter, 𝑑𝑜, in the
first method of initial condition generation as well as intermittent surface tension force
observed when using a circular arrangement carved out of a Cartesian initial position.
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Therefore, all the simulation results presented hereafter are initialized using the second
method.

Effect of resolution and surface tension coefficient ratio

In this section, effects of resolution and surface tension coefficients on the evolution of
liquid lens are studied. It is worthwhile to note that different resolutions have different
initial acquired diameter, 𝑑𝑜, because of the relaxation process involved in initial condition
generation. It is not possible to create diamonds with the same acquired diagonal, 𝑑𝑖,
using equally spaced particles at different resolutions for the same computational domain
size as only multiples of the finite particle spacing is accessible. This results in different
final acquired diameters, 𝑑𝑜, for initial diamond droplets of different resolution. However,
once divided by the analytic equilibrium diameter, the resulting non-dimensional initial
diameters will have the same value for each surface tension ratio group, 𝑉1 through 𝑉5,
which is shown in table 4.1 as 𝑑𝑜/𝑑𝑎. This ensures that when presented in non dimensional
form, the results will not be affected by the relaxation process.

Figure 4.3-a shows near tip droplet profile for the three resolutions considered in this
study while figures 4.3-b, c and d are non-dimensional lens diameter versus time plots for
cases 𝑉1, 𝑉3 and 𝑉5. It is observed that as the droplet lengthens under the effect of sur-
face tension forces exerted, an equilibrium diameter is obtained. At this stage, the droplet
starts to exhibit oscillations in diameter which is an expected behavior, providing that these
oscillations will die out eventually. However, as the approximated differentiation and nu-
merical implementation have small inherent round off errors affecting surface tension force
which drives the lengthening phenomenon, the oscillations are not quite regular and are
not damped out during the simulation times considered here. To circumvent this short-
coming, the lens diameter is time averaged after a certain threshold. Here, the averaging
process starts as soon as the non-dimensional lens diameter reaches 95% of the analytic
diameter. The time averaged equilibrium lens diameter is shown as a straight line for each
resolution on figures 4.3-b, c and d and also in table 4.1 under 𝑑𝑓 /𝑑𝑎. The result of this
simple averaging criteria is not quite informative for cases with lower resolution as it dis-
regards the transitional behavior and focuses on equilibrium diameter. This may result in
over predicting the performance, as it is the case for 𝑅1𝑉1 where time averaged equilibrium
diameter is satisfactory despite abnormally long transitional period. However, combining
it with timed plots of non-dimensional diameter, which reveal irregular behavior such as
slow lengthening observed in case 𝑅1𝑉1, renders it a sufficient criteria for assessing the
performance of the proposed method.

Comparing the time averaged values shown in table 4.1, it is seen that better steady
state results are obtained at higher resolutions. The effect of higher resolution is to make
the triple junction slimmer, observable in figure 4.3-a as sharper lens tip and less abrupt
cut, so that the remaining portion of droplet has a smoother shape thus allowing it to extend
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Figure 4.3: (a) Effect of resolution on equilibrium shape of test case 𝑉3 (𝑉3𝑅1, 𝑉3𝑅2 and
𝑉3𝑅3); (b, c and d) Effect of resolution on equilibrium diameter of lens for cases 𝑉1, 𝑉3
and 𝑉5 where ▶, ◀ and � denote 𝑅1, 𝑅2 and 𝑅3 resolutions, respectively. Straight lines and
corresponding markers on vertical axis are time-averaged values, 𝑑𝑓 /𝑑𝑎, shown in table
4.1.
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furthermore toward the equilibrium diameter. Conducting a similar analysis on transient
characteristics of the simulations (figures 4.3-b, c and d), it is possible to observe that the
test case with lowest resolution, 𝑅1, has the lowest rate of lengthening among all resolu-
tions while higher resolutions considered here, 𝑅2 and 𝑅3, exhibit the same characteristic
initial lengthening rate. Slow lengthening is augmented for 𝑅1 cases as the final lens di-
ameter becomes larger (more slender lens shape), which occurs as the ratio of surface
tension coefficients, 𝛾(13)/𝛾(12), has a lower value. The reason for this effect may also
be seen in figure 4.3-a. As the resolution is reduced, it is possible to identify an abrupt
cut near the tip of the lens which affects the accuracy of the computed surface curvature
and subsequently surface tension force. At higher surface tension coefficient values, more
slender equilibrium shapes occur which in turn should have sharper (smaller 𝜃(3)) three-
phase junctions. This demands a higher resolution to be fully captured which results in
worse performance for lower resolution test case and signifies the importance of higher
resolution requirements for higher surface tension coefficient ratios.

Figure 4.4 shows time snapshots of 0.5 level contour of color function of droplet, phase
3, along with particle positions for test cases 𝑉1𝑅3, 𝑉3𝑅3 and 𝑉5𝑅3. As both dimensions are
non-dimensionalized using analytic equilibrium lens diameter, final length of the droplet
will be equal to 0.5 while it’s height would be different. It is possible to observe that in
all test cases shown, particles are spread fairly evenly across the computational domain,
a desired property in SPH simulations which is a result of artificial particle displacement
method employed here.

Figure 4.5 shows time snapshots of 0.5 level of color function contour at different time
steps for all three-phases of case 𝑉3𝑅3. Each phase is actually treated as a separate entity
when calculating surface tension forces using phase specific surface tension coefficients.

4.2.2 Droplet levitation
In this section, results of the levitation of a circular droplet, initially at rest between two
layers of immiscible fluids, are presented (figures 4.1-c and 4.1-d). Droplet levitation
presents a more challenging and dynamic problem to test the capabilities of the proposed
three-phase formulation as the droplet breaks free of the bottom surface and rises in top
fluid solely because of surface tension forces as no other body forces are present. Here
initial particle arrangement is obtained by relaxing a diamond shaped two-phase droplet
consisting of 200 × 200 particles into a circle of diameter 𝑑𝑜. Particle velocities in both
directions are set to zero. All fluid properties except for surface tension coefficients are
set to unity. As indicated in table 4.2, surface tension coefficients between phases 1 and
2 (𝛾(12), top fluid and bottom fluid) and between phases 1 and 3 (𝛾(13), top fluid and
droplet) are set to unity while the surface tension coefficient between droplet and bottom
fluid varies for different test cases. No slip and zero pressure gradient boundary conditions

48



t
=

0
.0

1
5
s

0

0.5

t
=

0
.3

s

0

0.5

t
=

0
.9

s

0

0.5

t
=

2
.2

5
s

0

0.5

t
=

4
.5

s

0 0.5
0

0.5

0 0.5 0 0.5
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Table 4.2: Simulation parameters and results for droplet levitation test case

Test Case 𝛾(23)/𝛾(13) Maximum
(𝛾(12) = 𝛾(13)) 𝑢𝑎𝑣,𝑦

𝐿1 2.5 0.1730
𝐿2 5 0.4186
𝐿3 10 0.8541

are applied to all the walls encompassing the computational domain, a square of 3.3𝑑𝑜 side
length.

Figure 4.6 provides time snapshots of droplet levitation for all three test cases con-
sidered here. As the droplet starts to break off from the bottom surface, it experiences a
deformation as a result of surface tension force exerted. The ratio of 𝛾(23)/𝛾(13) has an
important implication here as it directly influences the initial amount of the force exerted.
This is better observable if the average velocity, 𝐮𝑎𝑣 = ∑𝐽(3)

j=1 ( ̂𝑐(3)𝐮j/𝐽(3)), of all particles
belonging to phase 3, 𝐽(3), is investigated. Figure 4.7 shows average vertical velocity, 𝑢𝑎𝑣,𝑦,
of the droplet for all the test cases. Times when snapshots in figure 4.6 have been taken
are marked on figure 4.7 by identical letters. It is evident that larger surface tension ratios
give rise to larger initial vertical velocity values. Table 4.2 summarizes maximum average
vertical velocity for all cases studied here. Another impact of larger 𝛾(23)/𝛾(13) is smaller
𝜃(1) (angle between droplet and bottom fluid) at the time when droplet barely touches the
bottom fluid. After separation is completed and droplet is free of the bottom fluid, droplet
and top fluid pair are expected to act as a two-phase flow. This would result in a circular
shape for the droplet after it comes to rest. All test cases studied here comply with this
expectation although minor penetrations happen at the trailing edge of the droplet as it
separates from bottom fluid. The position where the droplet comes to rest is also affected
by the value of 𝛾(23)/𝛾(13). Larger values results in a higher final position for the droplet.
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Figure 4.6: Time snapshots of 0.5 level contour for all phases. Top row: case 𝐿1; Middle
row: case 𝐿2; Bottom row: case 𝐿3; Column letters 𝑎 through 𝑘 are at times 0, 0.03, 0.075,
0.15, 0.3, 0.6, 1.05, 1.5, 2.25, 3.0 and 4.5 seconds. Both 𝑥 and 𝑦 axes are non dimensional
with respect to 𝑑𝑜 and tick marks are spaced 0.82 units apart.
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4.2.3 Droplet spreading
In order to demonstrate the capability of the proposed interface treatment scheme in han-
dling moving contact line problems, droplet spreading simulations involving different
Eotvos numbers are conveyed and results are compared to analytical solutions. The prob-
lem of interest is treated as a three-phase system where each of the fluid and solid phases
have a distinct smoothed color function, 𝑐(𝛼), associated with them. Here, phases 1, 2
and 3 indicate surrounding fluid, droplet and solid bottom surface, respectively. A half
circle droplet having a radius of 𝑅0 is positioned on the bottom surface centered at the
origin. The computational domain has a non dimensional size of 3 × 10 and is discretized
by 60 × 200 of equally spaced particles in a Cartesian initial positioning. In addition to
the particles within the computational domain, four rows of immovable particles are also
appended to phase 3. These particles are lined up below the solid surface boundary with
the same spacing as of the particles above the boundary. The motivation behind using this
method is to have an accurate value for the smoothed color function, 𝑐(𝛼), unit normal,
𝐧(𝛼), and curvature, 𝜅(𝛼). These particles are neither included in calculation of other field
variables nor in maintaining boundary conditions on the bottom surface.

Initially, all particles are assumed to be motionless. No slip and zero pressure gradient
boundary conditions are enforced on all bounding walls, however, in order to circumvent
shear stress singularity arising near contact line, no slip condition is relaxed to a local
free slip at the vicinity of triple junction. Hence horizontal velocity is found using 𝑢𝑥 =
𝜍 (𝜕𝑢𝑥/𝜕𝑦)𝑤𝑎𝑙𝑙, where slip length, 𝜍, is assumed to be infinite for particles having non zero
𝑐(𝛼) for all phases. Accounting for the interface thickness, at most four boundary particles
in the vicinity of the contact line are subject to this condition.

Under combined effects of surface tension and gravitational forces, the droplet deforms
until reaching its equilibrium shape. The steady state shape obtained by the droplet is
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dependent on the equilibrium contact angle, 𝜃𝑒, and Eotvos number,

Eo = 𝜌(2) − 𝜌(1)
𝛾(12)

𝑔𝑅2
0, (4.3)

where 𝜌(1) and 𝜌(2) are densities of droplet and surrounding fluid, respectively, and 𝑔 is the
gravitational acceleration acting downward. In all cases, 𝜌(2)/𝜌(1) is assumed to be equal
to 20. Contact angle between droplet and solid surface is determined by the equilibrium of
surface tension forces on the triple junction as indicated by (classical argument by Young,)
𝛾(23) + 𝛾(12) cos 𝜃𝑒 − 𝛾(13) = 0, which upon incorporating the definition of phase specific
surface tension coefficients (2.23) may be rewritten as

𝜃𝑒 = cos−1 (𝛾(1) − 𝛾(2)
𝛾(1) + 𝛾(2)

) . (4.4)

In all test cases considered here, 𝛾(1) is set equal to 𝛾(2), resulting in an equilibrium angle
of 90∘.

A high Eo (i.e. Eo ≫ 1) implies that droplet shape is governed by gravitational forces
whereas a low Eo (i.e. Eo ≪ 1) indicates a surface tension dominated shape at steady state.
Flows with intermediate values of Eo feature a non-trivial competition between these two
effects. For Eo ≫ 1, the analytical solution for the maximum height of the droplet is
given by 𝐻 = 𝑅0 (1 − cos 𝜃𝑒) √𝜋 (2𝜃𝑒 − 2 cos 𝜃𝑒 sin 𝜃𝑒) . As for Eo ≪ 1, the analytical
solution indicates that the maximum height of the deformed droplet is proportional to Eo
as 𝐻 = 2𝑅0Eo−1/2 sin (𝜃𝑒/2). A set of simulations for 0.1 ≤ Eo ≤ 13.3 are performed
and the results are compared with the aforementioned asymptotic analytical solutions.

Figure 4.8 provides plots of 0.5 level contour of color function as well as particle place-
ments at equilibrium for different Eo while figure 4.9 provides normalized steady state
droplet height for 0.1 ≤ Eo ≤ 13.3. As the difference between initial and final shapes of
droplet for case Eo = 0.1 is negligible, its contour plot is not shown here. It is observable
that the computed normalized droplet height agrees well with the asymptotic solutions
given for Eo ≫ 1 and Eo ≪ 1. As for the intermediate values of Eo, a transition between
spherical cap and puddle shape occurs. At higher Eo, the difference between asymptotic
solution and numerical results decreases.

4.3 Remarks
In this chapter, the proposed ISPH method for modeling incompressible, immiscible three-
phase fluid flows has been tested. Surface tension coefficients are decomposed into phase
specific coefficients and surface tension force is exerted by implementing CSF model. To
complement this, a unique color function is associated with each phase and then smoothed
out to improve the robustness of the method while a threshold has been implemented for

53



0

0.5

1

1.5

y/
R

0

0

0.5

1

1.5

y/
R

0

−3 −2 −1 0
0

0.5

1

1.5

y/
R

0

x/R0

0 1 2 3
x/R0

(a)

(c)

(e)

(b)

(d)

(f)

Figure 4.8: Equilibrium particle position and droplet boundary (0.5 level contour of color
function, phas 2). Only half of the computational domain has been shown for brevity.
Solid lines indicate bottom wall (phase 3). (a) Eo = 0.475; (b) Eo = 0.95; (c) Eo = 1.9;
(d) Eo = 3.8; (e) Eo = 7.6; (f) Eo = 13.3

10
−2

10
−1

10
0

10
1

10
2

0.2

0.4

0.6

0.8

1

Eo

H
/
R

0

a

b
c

d

e

f

 

 
Eo ≪ 1

Eo ≫ 1

Present Simulation

Eo

0.1

0.475

0.95

1.9

3.8

7.6

13.3

H/R0

0.9956

0.9596

0.8906

0.8079

0.6507

0.4856

0.3595

Figure 4.9: Normalized equilibrium droplet height versus Eo. Letters 𝑎 through 𝑓 corre-
spond to the droplet shapes shown in figure 4.8.

54



choosing reliable normals to increase the accuracy of computed surface tension force.
Furthermore, artificial particle displacement has been employed to ensure uniform spread
of particles throughout the computational domain. Several test cases have been simulated
to ensure the capability of the method in handling various three-phase flow combinations.

Having an analytical solution, formation of a lens shape from a circular droplet under
surface tension forces have been studied to facilitate testing the accuracy of the proposed
method. Results show that this test case is highly sensitive to initial particle positioning, fa-
voring an arrangement obtained from two-phase diamond droplet relaxation over a droplet
simply carved out of an equally spaced particle arrangement. Simulations have been car-
ried out in three different resolutions, revealing that an abrupt cut at the tip of the lens is
responsible for the inaccuracies incurred at low resolutions. The results obtained from high
resolution simulations at different surface tension ratios using improved initial condition
are found to be compatible with analytical solution of the equilibrium lens length. To fur-
ther test the capabilities of the proposed method in handling dynamic problems, a droplet
levitation test case has been simulated for different surface tension ratios. It is observed
that, higher surface tension ratios result in faster break up from surface due to larger force
exerted at triple junction. Furthermore, higher surface tension ratio resulted in larger max-
imum droplet velocity and higher stopping height. As the last test case, droplet spreading
with a contact angle of 90∘ has been considered. With minor modifications, the method
has been able to simulate contact line dynamics for a variety of Eotvos numbers, demon-
strating the flexibility of the method and its capability in handling density and viscosity
differences between phases. Results obtained for Eo ≫ 1 and Eo ≪ 1 are compatible with
analytical results available for these two extremes while a transition form spherical cap to
puddle shape occurs for Eo values in between.

The simulations conducted here and the comparison of the results show that the pro-
posed ISPH scheme is capable of handling flows with up to three unique phases. This
proves it as a suitable basis for the addition of the electrostatic and fluid-structure/solid
interaction components which will be tested further in chapters 5, 6 and 7.
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Chapter 5

Electrohydrodynamics∗

5.1 Introduction
An interface between two immiscible fluids may be subject to capillary, viscous and grav-
itational forces, depending on the flow configuration. Manipulation of this interface by
introducing an external electric field has been of great interest. Earlier works on this
subject have been carried out by Taylor [138], who proposed the leaky dielectric model.
Melcher conducted further studies on the effects of tangential and perpendicular fields on
the interface [139, 191]. A review of several flow configurations are provided by Saville
[108]. Some examples of the applications of electrically manipulated interfaces are found
in spraying [192, 193], flow focusing [194], dispersion [195], micromixing [196–198] and
pattern formation [199, 200], to name a few.

The manipulation of the interface with the electric field is highly dependent upon the
orientation of the electric field with respect to the interface and the electrical properties of
the fluids in question. The electric field may be parallel or perpendicular to the initially
undisturbed interface while the fluids may be either perfect or leaky dielectrics. Pease and
Russel [201] investigated the pattern formation in leaky and perfect dielectric fluids using
linear stability analysis, pointing out the importance of conductivity in the liquid. Shankar
and Sharma [202] conducted a similar study for leaky dielectric fluids using lubrication
theory. Craster and Matar [200] investigated the instabilities in thin films in the non-linear
regime and reported the effects of fluid properties on the formation of instabilities. In these
studies the electric field direction is perpendicular to the interface. Tilley et al. [203] in-
vestigated small-amplitude capillary waves on a non-conducting (perfect dielectric) liquid
sheet subject to a parallel electric field, and showed that the electrical force delays rupture
in the sheet. Further extension to arbitrary amplitudes was carried out by Papageorgiou
and Vanden-Broeck [204]. The effects of parallel and perpendicular electric fields on the

∗Appears in: N. Tofighi, M. Ozbulut, J.J. Feng and M. Yildiz, The effect of normal electric
field on the evolution of immiscible Rayleigh-Taylor instability, Theor. Comput. Fluid Dyn. (2016).
doi:10.1007/s00162-016-0390-0
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evolution of the interface in (pressure driven) channel flows were studied by Uguz and
Aubry [205]. Their results show that both parallel and perpendicular electric fields may
be used to stabilize or destabilize the interface.

The studies mentioned above disregarded gravity because of the dominating role of
electrical and capillary forces. One configuration where gravity plays an important role
in driving the flow is Rayleigh-Taylor Instability (RTI). First observed by Lord Rayleigh
[206] and Taylor [207], the instability happens when a heavier fluid sits atop a lighter one.
The effects of an external electric field on the RTI have been well studied [198, 208–212].
Mohamed and Shehawey [208] investigated the effects of a perpendicular electric field
for perfect dielectric fluids using the method of multiple-scale perturbations. Their re-
sults show that the electric field may stabilize or destabilize the interface depending on the
electric permittivity and density ratios. Elbade [210] studied the effects of parallel elec-
tric field and identified a stabilizing regime for RTI of inviscid perfect dielectric fluids.
Barannyk et al. [212] further investigated this case for the limit of thin upper layer and re-
ported a periodic motion at the interface for large enough electric fields. Joshi et al. [211]
derived the dispersion relation for perturbation at the interface, emphasizing the viscous
and leaky dielectric nature of the fluids. Most of the studies on electrohydrodynamic RTI
are limited to the linear regime, and little has been done on the nonlinear development on
longer time scales. To author’s knowledge, the only exception is Cimpeanu et al. [198],
who performed Direct Numerical Simulation (DNS) of RTI in perfect dielectric medium
subject to parallel electric field and found the results in the linear regime to be in agree-
ment with their linear stability analysis. They further investigated the non-linear regime
using DNS and proposed a method for modulating the interface using timed electric field
application.

Another limitation of the prior studies is their use of the perfect dielectric model. In
reality, conductivity plays an important role in the evolution of interfacial forces in most
fluids of interest [211, 213, 214]. The evolution of RTI in viscous leaky dielectric fluids in
the presence of an external field involves complex interaction of surface and body forces.
In this regard, a close observation of the interfacial forces and vorticity generation may
provide valuable information regarding the later stages of the RTI evolution. To this end,
RTI perturbed by a small-amplitude cosine wave subject to a perpendicular electric field
is simulated. Unlike a parallel field, a perpendicular electric field does not result in sup-
pression of the instability, allowing us to study the effects at later stages of the evolution.

The current method has been used successfully to simulate Rayleigh-Taylor instabil-
ity [215] and deformation of a neutrally buoyant droplet suspended in an external electric
field [216]. As RTI in the presence of an external field is a combination of the aforemen-
tioned cases, no further validation studies are conducted and electrohydrodynamic RTI is
simulated directly. The results obtained here show that within the range of the param-
eters covered, the surface charges play an important role in shaping the interface. The
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electrical forces are concentrated on either of the bubble or the spike tips, depending on
the parameters, and compete with the surface tension forces. The dominant mechanism in
vorticity generation is found to be the surface tension force. However, the electric forces
show comparable role at later stages of the simulation for higher field strengths.

5.2 Dimensionless form of the equations
The governing equations are made dimensionless assuming the following characteristic
scales

𝐱∗ = 𝐱
𝑊 , 𝑡∗ = 𝑡

√𝑊/𝑔
, 𝐮∗ = 𝐮

√𝑔𝑊
, 𝜅∗ = 𝜅𝑊, (5.1)

𝑝∗ = 𝑝 − 𝜌𝐠 ⋅ 𝐱
̄𝜌𝑔𝑊 , 𝜌∗ = 𝜌

̄𝜌, 𝐠∗ = 𝐠
𝑔,

𝐄∗ = 𝐄
𝐸∞

, 𝜙∗ = 𝜙
𝐸∞𝑊 , 𝑞∗ = 𝑞𝑣

̄𝜀𝐸∞/𝑊 ,

where � denotes arithmetic average between heavier and lighter fluid values. 𝑊 is the
width of the computational domain while 𝐸∞ and 𝑔∞ denote undisturbed electric field
strength and gravitational acceleration, respectively. In addition, ratios of heavy to light
fluid values are defined as

𝒜 = 𝜌ℎ − 𝜌𝑙
2 ̄𝜌 , 𝒱 = 𝜇ℎ − 𝜇𝑙

2�̄� , 𝒫 = 𝜀ℎ − 𝜀𝑙
2 ̄𝜀 , 𝒞 = 𝜎ℎ − 𝜎𝑙

2�̄� . (5.2)

where subscripts �ℎ and �𝑙 denote heavy and light fluids, respectively. Implementing
these scales, the dimensionless numbers may be rewritten as

Re =
̄𝜌√𝑔∞𝑊3

�̄� , Bo = ̄𝜌𝑔∞𝑊2

𝛾 , Eg = ̄𝜌𝑔∞𝑊
̄𝜀𝐸2∞

, (5.3)

where Re, Bo and Eg are Reynolds, Bond and Electro-gravitational numbers [217], re-
spectively. Taking Re, Bo, 𝒜 and 𝒱 constant, the remaining effective parameters are
Eg, 𝒫 and 𝒞, allowing this study to assess the effects of electrical properties and electric
field intensity on the evolution of the instability. The motivation behind choosing 𝒫 and
𝒞 in their current form is to determine the force directions by observing the sign of these
parameters.

To maintain the relative magnitude of the interfacial forces when comparing them, 𝐟(𝑠)
and 𝐟(𝑒) are normalized with ̄𝜌𝑔∞.
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5.3 Forces on a flat interface midway of flat electrodes
To demonstrate the underlying relation between 𝒫, 𝒞 and 𝐟(𝑒), a simplification for flat
regions is derived here. As bubble and spike tips have relatively flat surfaces, this will
provide further insight about the behavior of these structures with respect to 𝒫 and 𝒞.
Using dimensional form of the variables and starting with the definition of a divergence
free electric field (equation (2.41)), it is possible to approximate the divergence of the
electric field across the interface as

𝛁 ⋅ 𝐄 ≈ −�̄� ⋅ 𝛁𝜎
�̄� . (5.4)

It is notable that the strength of electric field due to finite potential Δ𝜙 on a flat interface
depends on its position with respect to the electrodes and 𝒞 as

�̄� ≈ Δ𝜙
(𝐻 − 𝑦) (1 − 𝒞) + 𝑦 (1 + 𝒞)𝐧. (5.5)

Without a loss in generality, it is assumed that �̄� = ̄𝜀 and test cases are set according to
this assumption. Upon setting 𝛁𝑓 = −𝛿𝐧Δ𝑓 , where Δ𝑓 = 𝑓ℎ − 𝑓𝑙 represents permittivity
or conductivity difference between heavy and light fluids, one may rewrite equation (2.35)
as

𝑞𝑣 ≈ −2 ̄𝜀𝛿�̄� ⋅ 𝐧 (𝒫 − 𝒞) . (5.6)

As noted before, positive normal vector points from heavier fluid to the lighter one in this
study. This means that surface normal and electric field vector point in the same direction
on the flat portions of the interface. Consequently, approximations of 𝐟(𝑒𝑞) and 𝐟(𝑒𝑝) follow
as

𝐟(𝑒𝑞) ≈ −2 ̄𝜀𝛿 (𝒫 − 𝒞) �̄�2𝐧, 𝐟(𝑒𝑝) ≈ ̄𝜀𝛿𝒫�̄�2𝐧, (5.7)

while 𝐟(𝑒) may be approximated as

𝐟(𝑒) ≈ − ̄𝜀𝛿 (𝒫 − 2𝒞) �̄�2𝐧. (5.8)

Equations (5.5), (5.7) and (5.8) provide a coarse approximation to the electric field and
the electric force applied to the bubble and the spike tip regions, facilitating a general
observation of the trends.
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5.4 Contribution of the interfacial forces to the vortex
sheet strength

Following Dopazo et al. [218] and Wu [219], the vortex sheet strength on an infinitesimal
path of length 𝛿𝜔 perpendicular to the interface may be written as

𝚪 = ∫0

−𝛿𝜔/2
𝜔𝑙d𝑛 + ∫𝛿𝜔/2

0
𝜔ℎd𝑛. (5.9)

The contribution of pressure to D𝚪/D𝑡 may be written as

𝐧 × ∥ 1
𝜌𝛁𝑝∥ = 𝐧 × 𝛁 ∥ 𝑝

𝜌∥ , (5.10)

where ∥𝑓 ∥ = 𝑓ℎ − 𝑓𝑙. Rearranging ∥𝑝/𝜌∥ into

∥ 𝑝
𝜌∥ = ∥𝑝∥

𝜌ℎ
− ( 1

𝜌𝑙
− 1

𝜌ℎ
) 𝑝𝑙 (5.11)

and considering the stress balance on the interface [216], one may rewrite the left hand
side of equation (5.10) as

𝐧 × ∥ 1
𝜌𝛁𝑝∥ = −𝐧 × 𝛁 (𝐧 ⋅ 𝐟(𝑒) + 𝐧 ⋅ 𝐟(𝑠))

̄𝜌 (1 + 𝒜) − 𝐧 × 2𝒜
̄𝜌 (1 − 𝒜2)𝛁𝑝𝑙, (5.12)

where both fluids have identical viscosities while 𝒜 and ̄𝜌 denote Atwood number and
average density, respectively. The first term on the right hand side of the above equation
will be computed to study the effects of the interfacial forces on vortex sheet strength.
Although the above definition assumes an infinitesimally thin interface, the forces used to
evolve a diffuse representation of the interface in the simulations are employed here. As
such, the forces are interpolated at the nominal location of the interface (0.5 level contour
of color function) before calculating equation (5.12).

5.5 Results
In this study Re, Bo, 𝒜 and 𝒱 are assumed to be constants and equal to 225, 150, 1/3 and
0 while 𝒫, 𝒞 and Eg are varied to study the effects of electrical forces. The computational
domain consists of a rectangle of size 1 × 4 discretized by 80 × 320 particles arranged on
a Cartesian grid. This corresponds to a uniform particle spacing of 1/80 for the base
resolution. Top and bottom walls obey the no-slip condition and have a constant potential
difference. Side walls allow slip but prohibit penetration. The electric field direction is
fixed pointing downward and parallel to the side walls. To define heavier and lighter fluid
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regions, an initial interfacial perturbation according to

̂𝑐 (𝑥, 𝑦) =
⎧{
⎨{⎩

0, 𝑦 > 2 + 0.025 cos (2𝜋𝑥) ,
1, 𝑦 < 2 + 0.025 cos (2𝜋𝑥) ,

(5.13)

is used. Two sets of parameters, PN (Positive permittivity ratio 𝒫 = 0.3, Negative conduc-
tivity ratio 𝒞 = −0.3, Eg = 90) and NP (Negative permittivity ratio 𝒫 = −0.3, Positive
conductivity ratio 𝒞 = 0.3, Eg = 90), are referred to as baseline cases. When studying
the effects of each parameter, the other parameters are kept constant at the baseline values.
First the convergence of the numerical results with respect to spatial resolution is estab-
lished. Then the baseline cases are compared to RTI with no electric field and the general
behavior of the interfacial forces are presented. The effects of the electrical properties of
the fluids are investigated by simulating RTI at different 𝒫 and 𝒞. Finally, by varying Eg,
the effects of electric field intensity on the evolution of instability is studied.

5.5.1 Spatial resolution
As the particles are initially arranged in an equally spaced Cartesian grid, equation (5.13)
results in an interface with a resolution-dependent step-like pattern. While the computa-
tional method is extensively tested for RTI without an external electric field [215], addition
of electric forces necessitates further confirmation of proper resolution. To test the effects
of the resolution on the results, case NP with particle spacings of 1/40, 1/60, 1/80, 1/100
and 1/120 is simulated and the results are compared.

Figure 5.1 plots the simulation results where the lowest point of the heavier fluid is
called the “spike tip” (�𝑠) and the highest point of the lighter fluid is referred to as the
“bubble tip” (�𝑏). Interface profiles are taken at moments when the spike reaches the
following positions: 𝑦𝑠 = 1.7, 1.4, 1.1, 0.8 and 0.5. Due to its initial step-like nature,
the interface retains a slightly sinuous profile during the simulation. This results in a
wavy pattern in surface tension force as it depends on the second derivative of the color
function (cf. figures 5.3 and 5.4). However, as it is seen in figure 5.1-a and 5.1-b, position
and velocity profiles are quite similar for 1/80 and finer particle spacings. The interface
profiles in the vicinity of the spike and bubble (figure 5.1-c) have similar structures as
well. Based on these observations and considering that this study focuses mostly on the
behavior of the spike and bubble regions, the base resolution is found adequate.

5.5.2 Effects of an external electric field
In order to identify the effects of the electric field on Rayleigh-Taylor instability, the evo-
lution of baseline cases are compared to that of a case with No Electric field, NE. Figure
5.2 provides spike and bubble tip positions and velocities along with snapshots of interface
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Figure 5.1: Spike and bubble tip positions (a) and velocities (b) versus time for different
particle spacings; (c) interface profiles at 𝑦𝑠 = 1.7, 1.4, 1.1, 0.8 and 0.5.

profiles at 𝑦𝑠 = 1.7, 1.4, 1.1, 0.8 and 0.5. For case NP, the electric field affects the position
of the spike tip much more than the bubble tip. The spike moves faster while the bubble
is slightly slower. The opposite is true for case PN where the bubble is the faster feature.
When compared at similar spike tip position, the longer side tails of case PN may also be
attributed to its faster bubble ascent.

To better demonstrate the force composition (and analyze its effects) along the inter-
face, figures 5.3 and 5.4 provide the force components perpendicular to the interface versus
normalized interface length at spike tip position 𝑦𝑠 = 1.4. A superscript �𝑛 is used to de-
note the normal component when necessary. A positive value indicates a force pointing
from heavier fluid to the lighter one. The only tangential component (not shown) applied
to the interface is due to 𝐟(𝑒𝑞) which is an order of magnitude smaller than its normal com-
ponent and two orders of magnitude smaller than the surface tension force.

Figures 5.3-b and 5.4-b show the normal electric force 𝐟𝑛
(𝑒) and its components, 𝐟(𝑒𝑝)

and 𝐟𝑛
(𝑒𝑞), as defined in equation (2.29). The polarization force 𝐟(𝑒𝑝) always points in the

opposite direction of the permittivity gradient, i.e. toward the heavier fluid for case NP
and in reverse direction for case PN. The Coulomb force 𝐟(𝑒𝑞) is only parallel to the electric
field and its direction is dependent on 𝑞. At this stage of the simulation, the extrema of 𝐟𝑛

(𝑒𝑞)
occur at the spike tip, bubble tip and the relatively flat region between the two inflection
points along the interface. 𝐟(𝑒𝑝) has a smaller and relatively uniform magnitude along the
interface when compared to 𝐟𝑛

(𝑒𝑞).
Figures 5.3-c and 5.4-c plot the electric force 𝐟𝑛

(𝑒), surface tension 𝐟(𝑠) and their sum-
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Figure 5.2: Spike and bubble tip positions (a) and velocities (b) for cases NP (red), PN
(blue) and NE (green); (c) interface profiles at 𝑦𝑠 = 1.7, 1.4, 1.1, 0.8 and 0.5.
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Figure 5.3: Profiles of normal force magnitudes along the interface for case NP; (a) inter-
face profile; (b) electrical force and its components; (c) electrical force, surface tension and
the resultant interfacial force; the cross marks on the interface are placed at 0.1 intervals
of normalized interface length. Symbols on the interface and horizontal axes correspond
to spike tip (▽), middle point of interface (#) and bubble tip (△).
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Figure 5.4: Profiles of normal force magnitudes along the interface for case PN; (a) inter-
face profile; (b) electrical force and its components; (c) electrical force, surface tension and
the resultant interfacial force; the cross marks on the interface are placed at 0.1 intervals
of normalized interface length. Symbols on the interface and horizontal axes correspond
to spike tip (▽), middle point of interface (#) and bubble tip (△).

mation 𝐟𝑛
(𝑖). Compared to the surface tension, which is larger at sharper corners of the

interface, the electric force is almost negligible except at bubble tip (case PN) or spike tip
(case NP). The role of the resultant electric force in these cases may be described as that
of countering the hindrance of surface tension force which tends to minimize the surface
energy by reducing the curvature. In case NP, the total force on the spike region is reduced
due to the presence of the external electric field while the impeding force on the bubble
is slightly increased. Having the inverse force configuration, case PN experiences the op-
posite situation where bubble ascent is less prohibited and spike descent is slightly more
hindered. This results in faster bubble ascent for case PN and faster spike descent for case
NP, as observed in figure 5.2.

5.5.3 Effects of electrical permittivity and conductivity ratios
To study the effects of the permittivity ratio, the conductivity ratio is kept constant at
𝒞 = ±0.3 while 𝒫 is varied from −0.9 to +0.9 in steps of 0.2. As for the effects of the
conductivity ratio, 𝒫 = ±0.3 while 𝒞 is varied from −0.5 to +0.5 in steps of 0.2.

Figure 5.5 shows spike and bubble positions and velocities with respect to time for
constant 𝒞. The arrows show the direction of increasing permittivity ratio 𝒫. The effect
of increase in 𝒫 is identical for both 𝒞 = ±0.3, resulting in an increase in bubble ascent
velocity while hindering the spike descent. Comparing the two cases, it is notable that the
effects are more pronounced in the spike for 𝒞 = +0.3 while the bubble is more affected
in 𝒞 = −0.3. Assuming that the bubble or the spike tip of different cases passing through
the same height experience the same electric field, it is seen that 𝐟(𝑒) and its components
𝐟(𝑒𝑝) and 𝐟(𝑒𝑞) have a linear relationship with 𝒫 (cf. Appendix). Increasing 𝒫 at constant
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Figure 5.5: Spike and bubble tip position (a,b) and velocity (c,d) for 𝒞 = −0.3 (a,c) and
𝒞 = +0.3 (b,d); the arrow shows the direction of increasing 𝒫.
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Figure 5.6: Spike and bubble tip position (a,b) and velocity (c,d) for 𝒫 = −0.3 (a,c) and
𝒫 = +0.3 (b,d); the arrow shows the direction of increasing 𝒞.

𝒞 increases 𝐟(𝑒) which in turn reduces the spike descent velocity and increases the bubble
ascent velocity. For 𝒞 < 0, the electric field is stronger at larger 𝑦 thus having greater
effect on the bubble while 𝒞 > 0 has a similar effect on the spike (cf. equation (5.5) in
Appendix).

Figure 5.6 provides spike and bubble tip positions and velocities with respect to time
for different 𝒞 at constant 𝒫. Increasing 𝒞 reduces the ascent velocity of the bubble
while increasing the descent velocity of the spike. For the range of parameters studied
here, the bubble tip position tends to converge to a similar profile for 𝒞 > 0 whereas such
convergence for the spike happens for 𝒞 < 0. A similar observation is valid for the tip
velocities as well. The reason behind this behavior lies in the relation between electric
field intensity and 𝒞 (cf. equation (5.5) in Appendix). At 𝒞 = 0 the electric field intensity

65



0.5 1 1.5 2
−1

0

1

f (i)

← y
s

0.5 1 1.5 2
−1

−0.5

0

f (s
)

0.5 1 1.5 2
−0.5

0

0.5

f (e
)

0.5 1 1.5 2
−0.5

0

0.5

f (e
q)

0.5 1 1.5 2
0

0.1

0.2

f (e
p)

2 2.5 3 3.5
−0.5

0

0.5
f (i)

y
b
 →

2 2.5 3 3.5
0

0.5

1

f (s
)

2 2.5 3 3.5
−1

0

1

f (e
)

2 2.5 3 3.5
−1

0

1

f (e
q)

2 2.5 3 3.5
0

0.1

0.2

f (e
p)

 

 

C=−0.5 C=−0.3 C=−0.1 C=0.1 C=0.3 C=0.5

Figure 5.7: Magnitude of spike tip forces (left) and bubble tip forces (right) with respect
to tip position for 𝒫 = +0.3.

is uniform and equal to 𝐸∞. Further increase in 𝒞 results in a reduction in electric field
intensity at the bubble region. The difference in electric field intensity between consecutive
levels of 𝒞 is also reduced for larger 𝒞. As a result, the electric force magnitude tends to
converge to a minimum value at larger 𝒞, as seen in figure 5.7-right for 𝒫 = +0.3. The
reverse is true for the spike region where the electric force profiles converge for 𝒞 < 0
(figure 5.7-left). Figure 5.7 also shows surface tension and resultant interfacial force for
bubble and spike tips with respect to the related feature’s position. Surface tension is
mostly insensitive to changes in electrical properties. As expected, surface tension is the
dominant interfacial force where electrical force has the smallest magnitude, i.e. for 𝒞 < 0
on the spike and for 𝒞 > 0 on the bubble. As a result, a converging profile is observed for
each feature in its respective interval of 𝒞. Similar observations are valid when 𝒫 = −0.3.

5.5.4 Effects of electric field intensity
Positions, velocities and interface profiles

To investigate the effects of the electric field intensity, the electro-gravitational number is
started from 5.625 and multiplied by two for consecutive cases until Eg = 360 where a
lower Eg denotes larger electric field intensity. The permittivity and conductivity ratio are
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Figure 5.8: Spike and bubble tip position (a,b) and velocity (c,d) for NP (𝒫 = −0.3 –
𝒞 = +0.3) (a,c) and PN (𝒫 = +0.3 – 𝒞 = −0.3) (b,d); the arrows show the direction of
increasing Eg (decreasing field intensity).

kept at baseline values of NP and PN.
Figure 5.8 provides spike and bubble tip positions and velocities for both NP and PN

baselines. Larger electric field intensities augment the effects observed in section 5.5.2,
i.e. an increase in the spike velocity and a decrease in the bubble velocity for NP. For PN,
the reverse is true. The effects are more pronounced in the spike tip for NP and in the
bubble tip for PN. After an initial movement at Eg = 5.625, the bubble and spike tips
are almost stationary for cases NP and PN, respectively. Combined with the fast motion
of the opposite feature, this results in significant deviations from the interface profiles for
RTI at 𝒜 = 1/3 in the absence of the electric field which will be discussed further in the
following paragraphs. The potential flow region (constant velocity movement) of evolution
is reached earlier at smaller Eg while reacceleration of spike does not appear during the
simulation times considered here.

Figure 5.9 plots interface profiles at Eg = 5.625, 22.5, 90 and 360. The interface
profiles are shown at identical spike tip positions for NP. Fast spike motion and nearly
stagnant bubble at Eg = 5.625 result in a lack of heavy fluid at the spike region. This in
turn leads to a very small spike tip and thin stem with completely suppressed side tails.
This behavior resembles that of very high 𝒜 RTI. Increasing Eg results in thicker stem and
well developed side tails. As for PN, the interface profiles are plotted at identical bubble tip
heights. At Eg = 5.625, the spike tip moves much slower than the bubble tip. This leads
to a thick spike with a small structure rising at its side. This structure resembles bubbles
rising in quiescent fluid at high Bo numbers (small surface tension). At Eg = 22.5, the
spike and the bubble cover similar distances with respect to time, which is a feature of very
low 𝒜 RTI. By further increasing Eg, the profiles approach those in the absence of the
electric field.
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Figure 5.9: Interface profiles for Eg = 5.625 (blue), 22.5 (cyan), 90 (yellow) and 360
(red); (a) NP (𝒫 = −0.3 – 𝒞 = +0.3) at spike height 𝑦𝑠 = 1.7, 1.4, 1.1, 0.8 and 0.5; (b)
PN (𝒫 = +0.3 – 𝒞 = −0.3) at bubble height 𝑦𝑏 = 2.1, 2.3, 2.5, 2.7 and 2.9.

Vortical structures

To investigate the effects of the electric field intensity on the vortical structures, figure 5.10
shows vorticity contours and streamlines near the interface drawn in red at Eg = 5.625.
The figure shows case NP at 𝑦𝑠 = 1.7, 1.1 and 0.5 and case PN at 𝑦𝑏 = 2.1, 2.5 and
2.9. These six panels correspond to those of figure 5.11 which depicts 𝐧 × 𝛁 (𝐧 ⋅ 𝐟(𝑒)),
𝐧 × 𝛁 (𝐧 ⋅ 𝐟(𝑠)) and their summation as a measure of the first term on the right hand side
of equation (5.12) along the interface. The interface is marked at 0.1 intervals of the
normalized interface length on the contour lines of figure 5.10 and horizontal axes of
figure 5.11, where symbols ▽, # and △ correspond to the spike tip, middle point of the
interface and the bubble tip, respectively.

In figure 5.10, the single vortex generated at early stages of the simulation is highly
skewed toward the heavier fluid for case NP and toward the lighter fluid for case PN. This
structure, which rotates counter-clockwise, encompasses large regions of one fluid while
leaving the other fluid almost stagnant, except near the interface (figure 5.10-a,d). Vorticity
generation sites are clearly observable near the tip of the preferred structure (spike for NP
and bubble for PN) in figure 5.10-b,e. Occasionally, counter-rotating vortices may emerge
near the main vortex in the lighter fluid for case NP and in heavier fluid for case PN (not
shown here). A co-rotating vortical structure emerges at the later stages shown in figure
5.10-c,f. Such co-rotating vortices are not observed in the NE simulation. The co-rotating
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Figure 5.10: Contours of vorticity (fills) and streamlines (lines); the cross marks on the in-
terface are placed at 0.1 intervals of normalized interface length. Symbols on the interface
(figure 5.11 on the horizontal axes) correspond to spike tip (▽), middle point of interface
(#) and bubble tip (△). (a,b,c) NP with Eg = 5.625 at 𝑦𝑠 = 1.7, 1.1 and 0.5 (blue contours
in figure 5.9-a); (g,h,i) PN with Eg = 5.625 at 𝑦𝑏 = 2.1, 2.5 and 2.9 (blue contours in
figure 5.9-b).

vortices of case PN merge as the bubble rises to 𝑦𝑏 = 3.8 while the co-rotating vortices in
case NP persist during the simulation time (until 𝑦𝑠 = 0.2).

Figure 5.11 provides a measure of the role of the electric forces in generation of the ob-
served vortical structures. The very early stages involving generation of small co-rotating
vortices are similar to that of the case NE (cf. section 5.5.1). However, the rest of the
evolution is different when large electric field values are used. As is seen in figure 5.11-
a,d, the dominant vorticity generation mechanism is through electric forces near the tip of
the preferred structure (spike for NP and bubble for PN). As the features start to extend
(5.11-b,e), additional sites are introduced where surface tension is the dominant genera-
tion mechanism. The sites dominated by the electric force also start to move away from the
tips (5.11-c,f) which results in the generation of the smaller co-rotating vortex observed in
5.10-c,f. At later stages of the simulation, both surface tension and electric forces play an
equal role in vorticity generation.
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Figure 5.11: Electric force (red), surface tension (blue) and resultant contribution of inter-
facial forces (black) on vortex sheet strength in right hand side of equation (5.12); symbols
on the horizontal axes correspond to spike tip (▽), middle point of interface (#) and bub-
ble tip (△). These symbols correspond to those in figure 5.10 on the interface. (a,b,c) NP
with Eg = 5.625 at 𝑦𝑠 = 1.7, 1.1 and 0.5; (d,e,f) PN with Eg = 5.625 at 𝑦𝑏 = 2.1, 2.5 and
2.9.
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5.6 Remarks
Rayleigh-Taylor instability appears when a heavier fluid lies on a lighter one in a grav-
itational field and serves as one of the basic test cases where interfacial effects may be
investigated. Manipulation of this instability using electric fields has been the subject of
many studies. Most of these studies, however, are based on linearized or simplified models.
In this study, incompressible immiscible RTI of leaky dielectric fluids is simulated until
its late stages using Smoothed Particle Hydrodynamics method at Re = 225, Bo = 150,
𝒜 = 1/3 and 𝒱 = 0. The electric field is taken to be perpendicular to the initial inter-
face so as to maintain the unstable evolution. Interfacial forces and vortex generation are
studied to explain how the interfacial evolution is affected by the permittivity ratio, the
conductivity ratio and the electric field intensity.

The results show that increasing the top-to-bottom permittivity ratio augments the rise
of the bubble while hindering the descent of the spike. On the other hand, increasing the
conductivity ratio results in a decrease in the bubble velocity while augmenting the spike
movement. At large conductivity ratios, the bubble is more affected when the permittivity
ratio is positive whereas the spike is more affected when permettivity ratio is negative.
Increasing the electric field intensity has different effects depending on the combination
of the permittivity and conductivity ratios. Applying larger field intensities results in nar-
rower structures. At higher field intensities, electric forces dominate vorticity generation
at early stages of the simulation. However, the role of surface tension and electric forces
become comparable at later stages of the evolution.

To summarize, it is shown that manipulating the electric field intensity in conjunction
with electrical properties of the fluids allow for control of the interrfacial morphology by
suppressing certain features while augmenting others in a fluid-fluid interface. Further
effects on fluid-solid interfaces and particle trajectories will be investigated in section 7,
after the fluid-structure/solid interaction scheme is validated in section 6.
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Chapter 6

Fluid-structure/solid interaction∗

6.1 Introduction
The interaction of a solid structure with a fluid is one of the most common features ob-
served in nature and industry. These phenomena cover a wide spectrum of objects in-
teracting with a fluid environment such as airfoils and hydrofoils [220], flexible bodies
[221, 222], impacting solids [103–105], sedimentation and motion of rigid and deformable
particles [57, 59, 102, 223, 224] and blood cells [225–227] to fluid interacting with mov-
ing boundaries such as flow in biological systems [60, 228] and motion in containers
[101, 106, 229]. When considered individually, computational fluid dynamic methods
have conventionally embedded an Eulerian perspective while computational solid me-
chanics are generally described in a Lagrangian framework. The Coupling schemes may
be loosely grouped as those that introduce external terms into Navier-Stokes equations
and those that rely on specific boundary conditions [230]. The combination of discretiza-
tion scheme and coupling method has resulted in the emergence of a number of prevalent
modeling schemes for numerical simulation of fully resolved fluid-structure interaction. In
this study, only the motion of particles conforming to the rigid body movement constraints
have been considered.

The most straightforward modeling scheme in simulation of fluid flow around solid
bodies is to assume the object as a moving wall while imposing relevant boundary condi-
tions [102, 220, 231, 232]. These methods do not bring any external terms in Navier-Stokes
equations. One such scheme used to capture the interaction of a solid object and fluid body
is known as ALE method which relies on body fitted mesh. The mesh then is convected
with respect to the frame of reference [47, 53]. As the fluid boundary mesh moves in tan-
dem with the body in a Lagrangian manner, it may deform and distort at large translational
or rotational motion. Different strategies have been employed to alleviate such a problem,

∗Appears in: N. Tofighi, M. Ozbulut, A. Rahmat, J.J. Feng and M. Yildiz, An incompressible
smoothed particle hydrodynamics method for the motion of rigid bodies in fluids, J. Comput. Phys. (2015).
doi:10.1016/j.jcp.2015.05.015
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the most common being remesing approach where the computational domain is spatially
rediscretised. Depending on the implementation, such operations may incur substantial
computational time. The ALE scheme is used extensively to simulate a variety of FSI
problems [223, 228, 233].

Another class of modeling schemes are those that impose boundary conditions or solid
behavior via external terms while using fixed grids. One of the most prevalent methods in
this category is the IB method [60, 61] which introduces a forcing term in the governing
equations of the flow to impose the boundary conditions. This force term, locally effective
around boundary regions and applied via a pseudo delta function, allows for simulation of
the interactions between fluid and solid without a need for movement of fluid mesh. Several
variations of the method have been proposed and employed to simulate complex flows
involving passive and active solid objects in two and three-dimensions [152, 234, 235].
An extensive review of IB method has been provided in [236].

A closely related scheme used on fixed meshes is the FD method. While IB method
generally focuses on boundary regions, most FD methods impose rigidity constraints to
recover rigid-like behavior within the entire fluid region intersecting with solid objects.
One such scheme is the DLM method, generally used in conjunction with FEM discretiza-
tion techniques [57, 237]. Governing equations of fluid and solid are solved and coupled
via distributed Lagrange multipliers (acting as external forcing in governing equations) to
mimic rigid body motion. DLM has been successfully applied to several problems such
as particle sedimentation and movement of flexible bodies in fluid [221, 222, 237, 238].
Another class of FD uses a penalization term, several orders of magnitude larger than the
prevalent terms in governing equations of the flow, to induce rigid motion [239]. Such
terms may be external to NS equations, such as Brinkman tpye penalization [240, 241],
or internal such as VP method which employs the dissipation within the NS equations
[58, 59, 153].

In terms of spatial discretization, a solid body may be meshed and followed in a La-
grangian fashion (interface tracking) or evolved via LS, VOF or PF methods (interface
capturing) [224]. On the other hand, fluid may be discretized by moving (body fitted) or
stationary Eulerian mesh, possibly featuring local refinement, or resolved by Lagrangian
discretization points. There is an inherent advantage in discretizing both fluid and solid
phases in a Lagrangian fashion, using particle methods. By proper initialization of parti-
cle positions, it is possible to trace all the moving boundaries without additional treatment
[242]. A review of different particle methods has been provided in [243]. SPH has been
successfully used to simulate sloshing motion [101], sedimentation and particle dynamics
[102], rigid body impact problems [103–105] and elastic bodies [106].

The ISPH scheme described in section 2 is extensively tested in five cases involving
the linear motion, rotational motion and their combinations for one or two particles in
two dimensions. First, the linear motion is validated against literature data. To this end,
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sedimentation of a single circular disc is tested in section 6.3.1 and the interaction of two
discs descending in quiescent fluid is investigated in section 6.3.2. Then, the rotational
motion of circular disc in simple shear is validated in section 6.3.3. Finally, migration of
a circular disc in shear flow and sedimentation of an elliptic particle in quiescent fluid are
used to test the scheme for combined linear and rotational motions in sections 6.3.4 and
6.3.5. These problems are chosen because of comparable results in the literature. However,
the scheme may be generalized in a straightforward way to a multiphase SPH solver for
many embedded solid particles.

6.2 Dimensionless variables
Dimensionless values of this chapter are formed using the following scales

𝐱 = 𝐱∗/𝑙𝑐, 𝜌 = 𝜌∗/𝜌𝑓 , 𝐮 = 𝐮∗/𝑢𝑐, 𝑡 = 𝑡∗ (𝑢𝑐/𝑙𝑐) , (6.1)

𝑝 = (𝑝∗ − 𝜌𝐠 ⋅ 𝐱) / (0.5𝜌𝑢2
𝑐) , 𝒟 = 𝜌𝑠/𝜌𝑓 , 𝒱 = 𝜇𝑠/𝜇𝑓 ,

leading to a Reynolds number defined as

Re = 𝜌𝑓 𝑢𝑐𝑙𝑐
𝜇𝑓

, (6.2)

where 𝐱 is the position vector, 𝐠 is the constant gravitational acceleration vector and 𝑙𝑐 and
𝑢𝑐 denote characteristic length and velocity, respectively.

6.3 Results
In this section, the results of the simulations carried out during this study are presented.
Each of the test case groups are assigned an abbreviation to facilitate further reference.
These are CC (Calibration Cases), SDD (Single Disc Descent), DDD (Double Disc De-
scent), SDR (Single Disc Rotation), SDM (Single Disc Migration) and SED (Single Ellipse
Descent). Schematics for all cases are presented in figure 6.1 for brevity. Unless other-
wise noted, all results are presented in dimensionless forms obtained from characteristic
variables provided in the respective section.

6.3.1 Single disc descent
Calibration of model parameters

The proposed scheme for simulation of passive rigid bodies treats all phases as liquids of
different viscosities initially, only to differentiate the solid phase by the rigidity constraints
(2.70-2.72) afterwards. As such, the viscosity ratio between the phases and the way the
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Figure 6.1: Schematic of all test cases included in this study; (a) CC/SDD; (b) DDD; (c)
SDR; (d) SDM; (e) SED.

phase transitions are carried out have significant effects on the results obtained [59, 153].
To identify a suitable range for 𝒱 and choose the appropriate interpolation scheme, several
simulations of a rigid disc descending from rest under gravity in quiescent fluid have been
conducted. Characteristic length and velocity are chosen as 𝑙𝑐 = 𝑑 and 𝑢𝑐 = √𝑔𝑑 (cf.
figure 6.1-a) while dimensionless numbers governing this case are Re𝑝 = 𝜌𝑓 √𝑔𝑑3/𝜇𝑓 ,
ℎ/𝑑, 𝒟 and 𝒱. Reynolds number is set to 39.1, ℎ/𝑑 is equal to 16 and a density ratio of
1.25 is chosen while 𝒱 and interpolation scheme vary as noted in table 6.1. No-slip, no
penetration and zero gradient pressure boundary conditions are applied at bounding walls.

The computational domain consists of an 8 × 24 rectangle discretized by 62300 parti-
cles arranged with respect to their phase for easier setup. Particles within the rigid body
conform to the boundaries and are positioned along concentric circles at uniform radial
spacing around the rigid disc’s center. The radial spacing is chosen such that 10 circles
fit inside the disc while the number of particles along each of these circles vary to keep
the overall inter-particle spacing as uniform as possible. Fluid particles are arranged on
a uniformly spaced Cartesian grid where particles coinciding with the rigid body are re-
moved. As seen in figure 6.2-a, the particle spacing in the vicinity of the rigid body is not
uniform and has a step-like pattern. However, figure 6.2-b shows that this is not permanent
and the particles are adapted to the boundaries as the disc starts to descend. This uniform
distribution is due to the APD which comes into effect as the disc starts to move [174].

As the proposed scheme treats all phases as liquids and applies rigidity constraints af-
terwards, the velocities obtained by individual solid particles during liquid phase treatment
affects the overall motion of the solid after the constraints are applied. It is expected to
achieve a solid-like behavior at large enough viscosities. However, a threshold has to be
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Figure 6.2: Closeup view of initial particle distribution at the vicinity of the solid disc.
Black points denote solid particles whereas gray points are fluid particles. (a) Initial ar-
rangement; (b) particle positions at 𝑦 = 6

Table 6.1: Viscosity ratio and interpolation scheme for calibration purpose; C stands for
calibration test cases.

Case CCH1 CCH2 CCH3 CCH4 CCH5 CCH6 CCH7 CCA5
𝒱 1 3 10 30 100 300 1000 100

Interp. Sch. WHM WHM WHM WHM WHM WHM WHM WAM
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Figure 6.3: Vertical velocity (a) and vertical position (b) of the solid disc’s center of mass
versus time for calibration test cases.

Table 6.2: Time and vertical velocity of rigid disc’s center of mass at 𝑦 = 6 for calibration
test cases

Case CCH1 CCH2 CCH3 CCH4
𝑡 31.6301 32.4237 32.7429 32.8264
𝑢𝑦 -0.3703 -0.3614 -0.3579 -0.3571

Case CCH5 CCH6 CCH7 CCA5
𝑡 32.8634 32.8760 32.8780 35.5742
𝑢𝑦 -0.3568 -0.3567 -0.3568 -0.3327

set as larger viscosity ratios may destabilize the simulation. To this end, viscosity ratios
of 1 through 1000 are tested (table 6.1). Figure 6.3 presents vertical velocity and vertical
position of the rigid disc’s center of mass versus time. Focusing on cases with WHM in-
terpolation, it appears that the profiles converge at about a viscosity ratio of 𝒱 = 100. To
demonstrate the difference between disc positions better, figure 6.4 provides contours of
the solid disc when case CCH5 is at 𝑦 = 6, during its descent at terminal velocity. The
differences between profiles become negligible for viscosity ratios above 100. Time until
the disc reach 𝑦 = 6 and their terminal velocity at the same height are provided for all test
cases in table 6.2.

In conjunction with the viscosity ratio, the interpolation scheme used to transition
through phase boundaries affects the outcome of the simulation as well. To demonstrate
this effect, WAM scheme is compared to WHM scheme. In WAM, the transition occurs
at equal distances at both sides of the phase boundaries whereas in WHM the transition is
skewed toward the higher-valued material property. Specifically in these test cases, the ef-
fective transition region is 4 particle-spacing wide, covering two rows of particles on each
side of the interface. In WAM, both sides are involved in transition whereas in WHM, the
viscous diffuse interface is effectively limited to particles inside the rigid body. As higher
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Figure 6.5: Velocity and pressure of case CCH5 at 𝑦 = 6; (a) velocity vectors are shown
on the left half while the right half plots streamlines. Velocity vectors are drawn at in-
terpolated positions and do not correspond to actual particle locations; (b) left half shows
velocity magnitude while right half plots pressure contours. The two halves share the same
scale and color bar.
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viscosity generates larger skin friction, it is desired to avoid transition in fluid domain as
much as possible. In this sense the use of WAM, which generates a thicker region of higher
viscosity inside the fluid domain than WHM, hinders the descent of the disc. Simulation
results presented in figures 6.3, 6.4 (bearing the marker “o”) and table 6.2 confirm this
observation as WAM case lags behind the respective WHM case. Compared to WHM, a
substantially weaker convergence rate has been observed when similar viscosity ratios are
tested for WAM cases up to 𝒱 = 100 (not shown here).

Figure 6.5 provides pressure and velocity plots of case CCH5 at 𝑦 = 6. Left figure
provides velocity vectors and streamlines while right figure shows velocity magnitude and
pressure contours. Rigid disc’s boundary is visualized as 0.5 level contour of the color
function. Velocity vectors within the disc are parallel and equal in length following the
linear rigid body motion while two vortices are observed to the sides of the body. It is
notable that while pressure solution extends inside the body, contours passing through the
interface are relatively perpendicular to the perceived boundary of the object.

Based on the simulation results presented here, it may be inferred that a viscosity ratio
of 𝒱 = 100 along with WHM interpolation scheme produces consistent results. These
values along with the initial particle arrangement method are maintained throughout the
simulations conducted in this study, unless noted otherwise.

Comparison of results

In order to test the ability of the proposed method in capturing linear motion in the absence
of angular motion, descent of a rigid disc in quiescent fluid under gravitatinal acceleration
is simulated. Geometry is presented in figure 6.1-a and particle arrangement scheme and
simulation parameters are identical to those of the calibration case CCH5. To summarize,
dimensionless parameters are set as Re𝑝 = 39.1, 𝒟 = 1.25 and 𝒱 = 100.

Figure 6.6 provides simulation results at three resolutions with total number of particles
of 37650, 62230 and 119986. When released from rest, all cases undergo an acceleration,
descent at semi-constant velocity and deceleration stage when approaching the bottom
boundary. As it is seen in the figure, while the difference in position increases at later
stages of the simulation, it is almost negligible for two higher resolution cases. The case
with lower resolution accelerates faster than the others, has larger terminal velocity and
experiences the effects of the bottom boundary earlier. The cases with higher resolution
experience nearly identical acceleration while the case with higher resolution descends
slower during the constant velocity stage which spans about 30 percent of the evolution.

Based on the differences observed for the resolutions tested above, the middle case is
chosen for comparison with WCSPH results of Hashemi et al. [102] and DLM simulations
of Glowinski et al. [57]. The results for vertical position and vertical velocity are presented
in figure 6.7. The current method overestimates the vertical position of the disc during the
simulation, however, the trend in vertical velocity is not as straightforward. Simulations by
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Figure 6.6: Comparison of simulation results at different spatial resolutions for the rigid
disc’s center of mass of case SDD/CCH5; (a) vertical position; (b) vertical velocity

Hashemi et al. and Glowinski et al. agree better during the acceleration stage while SDD
predicts a slower descent. However, the terminal velocities predicted by SDD are in better
agreement with DLM results while WCSPH overestimates the terminal velocity. The final
deceleration stage is the most varied stage as DLM starts to experience boundary effects
before others while SDD shows such effects the last. Based on these results, it is possible
to infer that the proposed method shows quantitative agreement with the numerical results
provided by [57, 102] for the overall duration of the simulation.

6.3.2 Double disc descent
Definition of spring-type repulsive forces

In this section, the interaction between two rigid discs descending in quiescent fluid is
studied. This test case will help in measuring the success of the proposed method in han-
dling multiple bodies and the interaction of interpolation regions. To this end, two rigid
discs with equal diameter are placed such that the line connecting the centers of the discs is
parallel to vertical walls and has a length 𝑐. A schematic of the test case is shown in figure
6.1-b while initial particle positions follow the scheme presented in figure 6.2-a. Charac-
teristic parameters are identical to SDD and the problem is fully described by specifying
domain size, ℎ/𝑑, Re, 𝒟, 𝒱 and an additional parameter, 𝑐/𝑑.

It is known that when released from rest, such configuration of discs will undergo
drafting-kissing-tumbling (DKT) [244] stages. In other words, the following disc catches
up with the leading counterpart where they descend at constant terminal velocity while at
near contact configuration. However, this configuration is unstable and a rotational motion
will ensue which results in discs breaking off and drifting apart. Due to its uniform spatial
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Figure 6.7: Comparison of simulation results with literature data; (a) vertical position; (b)
vertical velocity

resolution, the method proposed here is not suitable for resolving near-contact situations
that happen during DKT. As a result a repulsive force is required to ensure a minimum
distance of one particle-spacing is maintained between the rigid bodies. Such repulsive
forces have been extensively used in literature and take different forms such as lubrication
force [231, 245] and spring force [57, 231, 246]. The general composition of a spring
force may be broken down to three components, a measure of center-to-center distance, a
direction vector and a constant coefficient representing the force magnitude (cf. [57] for
a detailed discussion). In this study, the spring force is formulated to benefit from the
information available to individual particles during the simulation. As such, the center-to-
center distance is replaced by the value of opposing rigid body particles’ smoothed color
function at rigid body particle of interest. Similarly, the average distance vector between
particle of interest and all particles of opposing rigid body within its support domain is
used to determine the direction of repelling force. Denoting 𝑐𝑟 as the constant coefficient,
the repulsive force applied to rigid body 𝛼 due to its proximity with rigid body 𝛽 may be
formulated as

𝐟(𝛼𝑟)i = 𝑐𝑟
𝜆 (𝑐(𝛽)i

𝑐(𝛼)i
)

𝑛𝑟 𝐽𝑛

∑
j=1

𝐫ij ̂𝑐(𝛽)j
𝛿𝑝

, (6.3)

which will be added to the right hand side of equation (3.41) as 𝐟(𝛼𝑟)iΔ𝑡/𝜌𝑠. In above
formulation, 𝑛𝑟 is a value to manipulate the sharpness of the curve with respect to color,
𝜆 is a parameter to manipulate the maximum force value at a certain color threshold and
𝛿𝑝 represents the particle spacing. Although this study does not deal with rigid objects
of arbitrary shapes, dividing 𝑐(𝛽)i by 𝑐(𝛼)i increases the repulsive force at sharp corners as
particles at these positions have lower 𝑐(𝛼)i. The repulsive force defined here is applied to
individual particles, resulting in higher 𝑐𝑟 than full body repulsive forces. A spring force

81



benefiting from LS function has been derived in [247].
The spring force noted above is formulated in terms of color function and its spatial

magnitude relies on the particle distribution. To demonstrate the effectiveness of the for-
mulation, it is tested by simulating DDD with Re𝑝 = 56, 𝒟 = 1.1, ℎ/𝑑 = 25, 𝑐/𝑑 = 2 in
a 30 × 10 computational domain discretized by 62226 particles. Table 6.3 provides spring
force parameter pairs used in the simulations. It is worth noting that only drafting and
kissing stages were observed when particles were initially arranged in a symmetric layout.
To destabilize the solution, particles belonging to both rigid discs were rotated by 10 de-
grees from the initial configuration shown in figure 6.2-a. While generating asymmetry
in fluid field solutions, such perturbation has a side effect on the spring force formulation
which will be elaborated in the following paragraphs.

Figure 6.8 shows force magnitude versus the distance between disc surfaces for dif-
ferent (𝑛𝑟, 𝜆) pairs. Minimum values of this distance are presented in table 6.3 as well.
The negative values observed for (2, 5), (2, 10) and (2, 100) denote a crossover between
the discs during the simulation. It is notable that the numerical method is able to handle
such crossovers, however, the results are devoid of physical meaning. A look at the overall
shapes of the forces reveals that crossover changes the force profile in a substantial man-
ner. This is an expected outcome as the direction vector and distance measures rely on
the smoothed color function which no longer represents the transition surfaces during a
crossover. Excluding cases with crossover, it is possible to observe the actual effect of pa-
rameter pairs in spatial domain. While profile change is negligible for (0.5, 0.25), (1, 0.25)
and (2, 0.25), increasing 𝑛𝑟 delays the onset of force application. On the other hand, in-
creasing 𝜆 reduces the minimum distance between the discs for a given 𝑛𝑟 as larger force
magnitudes are shifted toward shorter distances (larger color function) while the onset of
force application remains unchanged.

To further assess the effects of parameter pairs on the evolution of DDD in time, figure
6.9 provides vertical position, vertical velocity and total force magnitude between discs
with respect to time for cases without crossover. Considering the vertical position, it is
possible to say that the parameter pairs have negligible effect in drafting and kissing stages
while a lower 𝜆 expedites the tumbling stage. As noted before, rigid particle positions
are not symmetric and this results in a moment due to repulsive spring force. When 𝜆
is reduced, spring force is larger at a further distance, resulting in greater moments and
subsequently an earlier tumbling motion. The effects of earlier tumbling motion is also
visible in vertical velocity as disc velocities diverge. However, reduction in 𝜆 has a distinct
effect in vertical velocity when repulsive forces are activated. In particular, a bouncing
motion is observed when 𝜆 = 0.1, while the corresponding oscillation is reflected in the
force profile as well. Such behavior is not present at higher values of 𝜆 and a smooth
transition is observed in both velocity and force magnitude. It is worth noting that kissing
stage remains mostly unaltered for all parameter pairs.
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Table 6.3: Force parameter pairs and minimum distance between disc surfaces during
the simulation for DDD cases. Negative values denote crossover. dimensionless particle
spacing is approximately 0.0625.

Case R1 R2 R3 R4 R5
𝑛𝑟 0.5 1 2 2 2
𝜆 0.25 0.25 0.1 0.25 0.5

min(𝑐−𝑑
𝑑 ) 0.0999 0.0796 0.0659 0.0524 0.0408

Case R6 R7 R8 R9 R10
𝑛𝑟 2 2 2 2 2
𝜆 0.75 1 5 10 100

min(𝑐−𝑑
𝑑 ) 0.0321 0.0254 -0.0253 -0.0449 -0.656
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Figure 6.8: Repulsive force magnitude with respect to (𝑐 − 𝑑) /𝑑. Legend denotes (𝑛𝑟, 𝜆)
pairs. A negative value indicates crossover of the discs.

Figure 6.10 provides the relative positions of discs during DKT motion. In accordance
with previous observations, the final distance between discs is the most affected stage of
the simulation. Cases with smaller 𝜆 rotate further during tumbling stage before drifting
apart and tend to depart faster. As explained before, this is a side effect of the asymmetric
repulsive force acting at farther distances, generating larger moments.

Comparison of results

In this section the results of case DDD at two different Re𝑝 is compared to numerical
results provided in [57, 102]. Spring force parameters are set to (2, 0.25) for both cases
while dimensionless parameters governing the cases are presented in table 6.4.

Figure 6.11 provides vertical position and vertical velocity of DDD1 compared to WC-
SPH results of [102]. Positions appear to be identical until tumbling stage while a slight
difference in vertical velocities is observed upon kissing stage. Tumbling stage shows no-
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Figure 6.9: Vertical position (a), vertical velocity (c) and force magnitude (e) for cases
with 𝑛𝑟 = 2 and no crossover. Legend denotes (𝑛𝑟, 𝜆) pairs. Close ups of boxed region
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Figure 6.10: Snapshots of disc positions for cases without crossover at 𝑡 = 0.2, 21, 31.5,
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disc; (Blue) bottom disc. Disc to disc contact or lack thereof is not accurately represented
in this figure due to line thicknesses. Refer to table 6.3 for minimum distance between
discs during the simulation.

84



Table 6.4: Dimensionless parameters for DDD cases compared to literature data.
Case Re𝑝 𝒟 𝐽𝑑 𝐻 × 𝑊 𝑐/𝑑 ℎ/𝑑

DDD1 56 1.1 62226 30 × 10 2 25
DDD2 391.3 1.5 74846 24 × 8 2 18
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Figure 6.11: Comparison of simulation results at Re𝑝 = 56. (a) vertical position; (b)
vertical velocity.

ticeable difference between the two cases as DDD1 delays in its initiation, however, barring
the delay the velocity curves appear to be identical to those of [102]. It should be noted
that in these simulations DKT is a result of numerical instabilities and highly dependent
on the repulsive force employed, whereas the physical counterpart is due to imperfections
in particle surface [248]. As such, it may be deduced that the current method agrees with
the results of [102] at low Re𝑝.

To assess the performance the proposed scheme at higher Re𝑝, simulation results of
DDD2 are compared to those of [57] in figure 6.12. DDD2 overestimates vertical position
and has significant delay in tumbling stage when compared to [57]. Vertical velocity is
underestimated during drafting stage, however, the shapes of the curves follow that of [57]
closely, featuring the crossover between velocity curves of top and bottom discs at about
𝑡 = 6. While similar bouncing motion is observed during the kissing stage in both cases,
Glowinski’s case tumbles almost immediately at 𝑡 ≈ 10 whereas DDD2 delays kissing
until 𝑡 ≈ 11, remains in contact and tumbles later at 𝑡 ≈ 13. Considering the discrepancies
in repulsive force application and noting higher Re𝑝 of this test case, it is possible to assess
that the current method has been able to capture the essential characteristics of DKT up to
the Re𝑝 tested here.
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Figure 6.12: Comparison of simulation results at Re𝑝 = 391.3. (a) vertical position; (b)
vertical velocity.

6.3.3 Single disc rotation
In order to isolate the angular motion and assess the performance of the proposed method
in the absence of linear motion, rotation of a neutrally buoyant, single rigid disc suspended
in Couette flow is simulated and the results are compared with the data available in litera-
ture. This test case has been subject to extensive experimental and numerical investigation,
spanning a wide range of Reynolds numbers [232, 238, 249]. Dimensionless numbers gov-
erning this case are bulk Reynolds number Re𝑏 = 𝜌𝑓 𝐺𝐻2/𝜇𝑓 , particle Reynolds number
Re𝑝 = 𝜌𝑓 𝐺𝑟2/𝜇𝑓 and confinement ratio 𝐻/𝑟. 𝐺 is the shear rate of the undisturbed flow
where 𝑈𝑤 = 𝐺𝐻.

A series of simulations with increasing Re𝑝 have been conducted for three 𝐻/𝑟 values
while Re𝑏 is limited to 500. A channel flow with no disturbance may remain stable until
Re𝑏 ≈ 1500 [250]. However, the presence of the disc within the channel causes consider-
able disturbance, lowering the threshold substantially [249, 251]. The rigid disc is placed
at the center of the computational domain at rest while fluid particles are initialized with
the analytical velocity of a Couette flow with respect to their initial position. A schematic
of the computational domain is provided in figure 6.1-c while initial particle arrangement
is set similar to case SDD such that 15 layers of particles fit inside the rigid disc. Total
number of particles used are 14385, 28769 and 57566 for 𝐻/𝑟 = 4, 8, 16, respectively.
Horizontal walls are set to move at 𝑈𝑤/2 in opposite directions while no slip and zero
pressure gradient conditions are applied. Computational domain is stretched up to 8𝑟 on
both sides of the disc in streamwise direction ending in periodic boundaries.

When suspended in unbound linear shear, the disc is known to attain a dimensionless
angular velocity of 𝜔/𝐺 = 0.5. At higher values of Re𝑝, the angular velocity is reduced
in a linear fashion with a slope of -0.5 [232, 252]. This trend is extended to finite confine-
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ment ratios where the general behavior of the angular velocity consists of an initial plateau
followed by a linear reduction in logarithmic scale at higher Re𝑝. A reduction in plateau
and slope values have been reported in both experimental and numerical investigations
[232, 238, 249, 253]. Despite the agreement in characteristics of the flow, discrepancies
are observed at higher Reℎ values among literature data. As current discretization scheme
is not suitable for direct simulation of turbulent bounded flows, Re𝑏 is limited to 500 to
avoid explicit turbulence models. Figure 6.13 provides dimensionless angular velocity
versus Re𝑝 for the confinement ratios considered here. As it is seen in the figure, excellent
agreement is achieved in the plateau region, however, the current method overestimates the
angular velocity in the linear region. It is possible to observe that the onset of linear region
is shifted to lower Re𝑝 at higher 𝐻/𝑟 in current simulations, a characteristic in agreement
with the numerical observations of [238].

Figure 6.14-a provides streamwise and normal components of the velocities for 𝐻/𝑟 =
4 at Re𝑝 = 20. Streamwise velocity is skewed toward 𝑦 > 2 where the flow accelerates
as it leaves the vicinity of while a slow down is observed when the flow approaches the
rotating disc for 𝑦 < 2. Normal component of the velocity is relatively symmetric with
respect to the center line of the channel and represents a reverse flow compared to the linear
velocity of the disc. Both profiles are in good agreement with numerical and experimental
data provided by [232]. Figure 6.14-b the distance from stagnation point to disc surface
at 𝐻/𝑟 = 8 for Re𝑝 up to 4. The stagnation point gets closer to the surface as Re𝑝 number
increases, a trend followed by numerical [232] and experimental [254] results. Stagnation
distances obtained with the current method are in quantitative agreement with those of
Ding and Aidun [232].

Figure 6.15 provides streamlines inside and outside of the solid objects for Re𝑝 of 0.02
and 20. Particle positions are shown in the background while perceived boundary of the
rigid body is shown by 0.5 level contour of the color function. The streamlines present may
be categorized into three types. Those that travel across the periodic boundaries contribute
a positive torque to rotate the disc by passing between the moving wall and rigid body.
Reversing streamlines change direction in the vicinity of the disc and oppose its rotation.
Closed streamlines move around the disc due to the viscous penalty mimicking the no-
slip condition on the disc surface. As Re𝑝 increases the streamlines become skewed in
the direction of rotation and reversing and closing streamlines draw closer to one another.
Similar patterns have been observed in numerical and experimental results as well [232,
249, 253]

Based on the results presented in this section, it is possible to infer that the proposed
method is able to capture the isolated rotational motion up to Re𝑝 and Re𝑏 studied here.
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Figure 6.14: (a) comparison of streamwise (Blue) and normal (Yellow) velocity profiles at
1.25𝑟 of the rigid disc’s center of mass at Re𝑝 of 20. Refer to [232] for experimental data
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with respect to Re𝑝. Poe and Acrivos utilize an 𝐻/𝑟 = 6 ∼ 12 in their experiments.
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Figure 6.15: Streamlines at the vicinity of the disc for 𝐻/𝑟 = 4. Particle positions inside
the rigid body (dark) and fluid phase (light) are shown in the background. Rigid body
boundary is defined as 0.5 level contour of the color function and is marked by the thicker
line. (a) Re𝑝 = 0.02; (b) Re𝑝 = 20.

6.3.4 Single disc migration
To assess the interaction of combined linear and angular motion in the absence of any body
force, migration of a neutrally buoyant rigid disc in plane Couette flow is simulated. When
released from rest (or any other streamwise velocity) at a distance 𝑐 from the middle of the
channel, it is expected that the disc will migrate toward the centerline while moving with
the flow. Dimensionless numbers governing this test case are similar to those of case SDR
with an additional distance to radius ratio of 𝑐/𝑟 = 2. Computational domain consists of
an 8×32 rectangle discretized by 14402 particles initially arranged similar to the case SDD
such that 9 concentric circles cover inside the rigid disc. Boundary and initial conditions
are similar to case SDR. A schematic of this case is provided in 6.1-d.

In order to compare the results with numerical data provided in [223, 246, 249], Re𝑝
and Re𝑏 are set equal to 0.625 and 40, respectively. The changes in the evolution of the
disc due to initial slip velocity of the rigid body has not been substantial and only those
starting from rest at ℎ/𝐻 = 0.25 and 0.75, cases SDM1 and SDM2, are presented here.
Figure 6.16 provides normal position and normal velocity of the disc during its migration
toward the center of the channel. The positions are in excellent agreement with literature
data. Normal velocity versus normal position shows an oscillatory behavior observed by
[244] and bound in a similar range while [246] presents a smooth curve with slightly
larger magnitude. It is notable the current method predicts similar range for both SDM1
and SDM2 whereas vertical velocity of [244] is smaller when ℎ/𝐻 = 0.25.

Figure 6.17 provides streamwise position and streamwise velocity for both cases. As

89



0 50 100 150 200
0.2

0.3

0.4

0.5

0.6

0.7

0.8

t*G

y*
/H

 

 
SDM
Feng et al. (1994)
Feng et al. (2004)
Yan et al. (2007)

0.3 0.35 0.4 0.45 0.5

0

2

4

6
x 10

−3

y*/H

u y*/
G

H

(a) (b)

Figure 6.16: Comparison of vertical position with respect to time (a) and normal velocity
with respect to vertical position (b). (Blue) ℎ/𝐻 = 0.75; (Yellow) ℎ/𝐻 = 0.25.

the behavior of the rigid body in SDM1 and SDM2 should be identical, the difference
between the streamwise values may serve as a test of accuracy and symmetry of the simu-
lations carried out here. As it is observed, the position and velocity differences are main-
tained to 𝒪 (−3). While the error in velocity is consistent throughout the simulation,
position difference becomes noticeable when the discs reach steady state in the middle of
the channel and start to oscillate around the point of equilibrium.

6.3.5 Single ellipse descent
To combine the effects of linear and angular motion in the presence of an external body
force, sedimentation of a rigid ellipse in quiescent fluid is simulated. It is known that
drastically different motion patterns may ensue depending on the channel width, initial
angle and positioning of the elliptic particle [231, 244]. In this study, two cases at moderate
and low Re are simulated and compared to the results provided by Xia et al. [231] and
Suzuki and Inamuro [152]. Dimensionless parameters governing this test case are Re, 𝒟,
aspect ratio 𝑎/𝑏, blockage ratio 𝑊/𝑎 and ℎ/𝑑. Characteristic length and velocity scales
are defined as 𝑙𝑐 = 𝑑 = √𝑎𝑏 and 𝑢𝑐 = √𝑔𝑑, resulting in a Reynolds number defined as
Re𝑝 = 𝜌𝑓 √𝑔𝑑3/𝜇. Alternatively, using major axis length, 𝑎, as length scale and terminal
velocity, 𝑢𝑡, as the velocity scale, one may rewrite Reynolds number as Re𝑡 = 𝜌𝑓 𝑢𝑡𝑎/𝜇. A
schematic view of the test case is provided in figure 6.1-e. Computational domain consists
of a 45.25 × 5.65 rectangle discretized by 80035 particles while the center of ellipse is
placed at ℎ/𝑑 = 34 with an angle of 𝜃 = 𝜋/4. Aspect ratio and blockage ratio are set to 2
and 4, respectively. Boundary conditions are similar to that of case SDD. Other important
parameters are included in table 6.5.
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Figure 6.17: (a) horizontal position versus vertical position of the disc; periodic boundary
conditions are assumed to imitate a longer channel. The position of the disc starting at the
top half is converted to an equivalent of the one starting at the bottom half. The difference
between the two curves is reflected on the right axis. (b) horizontal velocity versus time;
The difference between absolute values is reflected on the right axis.

The elliptic disc is discretized such that a relatively uniform particle distribution is
achieved in the transition region where the solid particles are within the support domain
of the fluid particles. To this end, the rigid body is divided into concentric ellipses, each
obtained by shrinking the major and minor axes of the ellipse by one particle spacing.
Denoting major and minor axes of the outermost ellipse by 𝑎 and 𝑏 respectively, the 𝑗th
layer has its axes set to 𝑎𝑗 = 𝑎−(𝑗 − 1) 𝛿𝑝 and 𝑏𝑗 = 𝑏−(𝑗 − 1) 𝛿𝑝, where 𝛿𝑝 is the particle
spacing. The following equations are used to arrange the particles on the first quadrant of
the 𝑗th ellipse:

𝑥𝑖+1 = 𝑥𝑖 + 𝛿𝑝

√1 + 𝑏2
𝑗 𝑥2

𝑖
𝑎2

𝑗 (𝑎2
𝑗 −𝑥2

𝑖 )

, (6.4)

𝑦𝑖+1 = 𝑏𝑗√1 − 𝑥2
𝑖+1
𝑎2

𝑗
. (6.5)

The remaining quadrants are arranged by mirroring the first quadrant. If two particles are
placed closer than one particle spacing, they are combined into a single particle placed
midway between the original particles. Figure 6.18 shows the particle arrangement of the
elliptic disc used in this study. Particle spacing is chosen such that particles are arranged
in 7 concentric ellipses. The rest of the particles (fluid region) are arranged in a Cartesian
formation with uniform spacing and particles overlapping with solid region are removed.
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Table 6.5: Simulation parameters and Re𝑡 for SED and numerical simulations of Xia et al.
[231] and Suzuki and Inamuro [152].

SED [231] [152]
Case 𝒟 Re𝑝 Re𝑡 Re𝑡 Re𝑡

1 1.1 58.8 13.5 12.9 12.6
2 1.01 58.8 2.15 2.08 1.92

Figure 6.19 provides horizontal position and angle of the ellipse versus vertical position
of its center of mass. At 𝒟 = 1.1, the ellipse tends to have an oscillatory motion that damps
out at later stages, leaving the ellipse in a horizontal position at the center of the channel
descending at constant velocity. In this configuration, the results of [231] and [152] are
in complete agreement while SED1 tends to miss the points where the ellipse changes its
movement direction. It is possible to identify the reason for such behavior by examining
the vertical velocity of the ellipse provided in figure 6.20. Since SED1 descends faster,
it is expected that changes in direction occur in consecutively further points compared to
[231]. Due to oscillatory nature of the flow, the error is compounded at each extrema until
the motion damps out. Despite this, the characteristic behavior and final configuration of
the ellipse are captured accurately. At 𝒟 = 1.01, the prediction of position by each of the
numerical simulations shown in figure 6.19 is equally accurate and comparable. In terms
of angle and vertical velocity, SED2 is in good agreement with results of Xia et al. [231]
while [152] predicts a slightly larger angle. All cases end up at the middle of the channel
in a horizontal position. Table 6.5 provides Re𝑡 for SED and reference simulations. In
both 𝒟, SED predicts the largest Re𝑡 while [152] assumes the smallest.

6.4 Remarks
The proposed two dimensional smoothed particle hydrodynamics method has been tested
for moving rigid discs in Newtonian fluids. The method treats all phases as liquids of
different viscosity while applying rigidity constraints to particles within the solid region.
As a result, the method of transitioning between fluid viscosities representing solid and
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Figure 6.19: Comparison of horizontal position (a) and angle of the ellipse (b) versus
vertical position at high (—) and low (– –) Re𝑡 or 𝒟.
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fluid regions and the ratio between these viscosities play an important role in the accuracy
and robustness of the scheme. To calibrate these parameters, descent of a rigid disc in
quiescent medium is simulated and weighed harmonic interpolation in conjunction with a
viscosity ratio of 100 is found to provide consistent results.

In order to fully measure the performance of the proposed method in capturing isolated
and combined linear and rotational motion, a series of test cases are simulated. Single and
double disc descending in quiescent medium are used to measure the performance of the
method in simulating linear motion and near contact situations where interpolation regions
overlap. A repulsive force benefiting from color information available to SPH particles is
developed and successfully tested. Rotation of a neutrally buoyant single disc in Couette
flow is tested to measure the performance of the method in rotational motion. The results
within the test range are in quantitative agreement with literature data. Combined linear
and angular motion is tested by simulating the migration of a neutrally buoyant circular
disc placed off center in Couette flow and sedimentation of an elliptic disc in quiescent
medium under gravity. Results of both cases are found to be in agreement with literature
data.

The tests carried out in this chapter show the suitability of the proposed FSI scheme
in capturing the behavior of rigid bodies in Newtonian flow. This concludes the separate
testing of all the required elements of the scheme, i.e. two- and three-phase flows, EHD and
FSI. The next chapter combines all these elements for numerical simulation of electrostatic
fluid-structure/solid interaction.
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Chapter 7

Electrostatic fluid-structure/solid
interaction

7.1 Introduction
External electric field, as a means of manipulation of particle position in quiescent fluid,
is of great importance in micro- and nano-fluidics for assembly of colloidal particles or
biological entities [121, 255]. In particular, dielectrophoresis (DEP) has become one of
the more popular methods for characterization, manipulation and actuation of particles
[256, 257]. This is due to better control and faster response when compared to other
methods such as capillary [258], sedimentation [123] and chemical [259]. DEP has been
used to trap [260–264], separate [265–271] and concentrate [264, 272, 273] particles and
biological entities, assembly of colloidal particles into two-dimensional crystals [274] and
nanowires [123] as well as formation of tissues using biological cells [136, 275, 276].

The process of DEP, caused by spatial non-uniformities in electric field, is studied
numerically for both AC [122, 255, 277, 278] and DC [121, 256, 257, 279, 280] elec-
tric fields. When compared to its surrounding fluid, a more polarizable particle migrates
toward higher electric field gradients while a less polarizable particle drifts away from
regions with high electric field gradients [255]. The non-uniformities in the electric field
may be due to electrode placement, proximity of the particles to one-another or to the elec-
trodes which creates asymmetric force distribution on particle surface. The non-uniformity
due to electrode placement results in particle movement while proximity of the particles
leads to particle attraction to or repulsion from the electrode surface. Two particles sus-
pended in a quiescent medium is the basic configuration for study of the DEP assembly.
The presence of particles distorts the local electric field, causing a force imbalance which
in turn results in relative motion between the particles [137, 281]. Ai and Qian [121],
Hossan et al. [256], Kang [279] and Xie et al. [280] investigate the interaction of a pair
of neutrally buoyant particles suspended in uniform DC electric field for various sets of
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electrical properties. They use fully resolved numerical simulations where electric stresses
are defined through Maxwell stress tensor [139]. Their results show that a pair of parti-
cles with similar electrical properties tend to align with the electric field while dissimilar
particles position such that their center-to-center line is perpendicular to the electric field
direction.

A series of studies of particle motion subject to an external electrical field is presented
in this chapter. First, the motion of a single circular disc suspended in uniform shear flow
is investigated in section 7.2. The particle is affected by the proximity of the electrodes
and shows different behavior depending on material properties. The second case of sec-
tion 7.3 investigates the chaining behavior of a pair of particles suspended in quiescent
fluid under different material properties and geometrical configurations. As the third case,
sedimentation of an elliptical particle within a constrained or infinitely large environments
is examined in section 7.4.

7.2 Migration of a rigid disc in Couette flow
In this section, migration of a neutrally buoyant rigid disc in plane Couette flow subject
to an external electric field is simulated. When no electric field is present, a circular disc
released at a distance ℎ from the middle of the channel is expected to migrate toward the
centerline while moving with the flow for Re ≤ 2 [223, 238]. When exposed to an external
electric field, the motion of the disc may be altered depending on the properties of the fluid,
solid and their proximity. A schematic of this case is provided in figure 7.1-a. Similar to the
case without electrical field of section 6.3, the computational domain consists of an 8 × 32
rectangle discretized by 13806 particles initially arranged in a Cartesian grid for fluid and
concentric circles for the solid. A close-up view of the particle arrangement at the vicinity
of the solid disc is provided in figure 7.1-b. The confinement ratio is 𝒟 = 0.125 while
the disc is placed at ℎ/𝐻 = 0.25 below the centerline. To investigate the effects of electric
field, Ei is set to Re/4 to provide a large enough electric force while Re is equal to 0.625.
Top and bottom walls abide by no-slip condition and are moving in opposite directions at a
velocity of 𝑈𝑤/2 where 𝑈𝑤 = 𝐺𝐻. A constant electric potential difference of Δ𝜙 = 𝐸∞𝐻
is imposed between the moving walls, resulting in an electric field perpendicular to the
flow. Periodic boundary condition is imposed in streamwise direction for all variables.
Permittivity and conductivity ratios are individually varied as 0.2, 0.5, 2 and 5 (table 7.1).
When 𝒫 = 𝒞, 𝐟(𝑒𝑞) vanishes. This leads to electric forces that are perpendicular to the
disc’s surface, in-plane with the flow. This force configuration does not contribute to the
disc’s rotation, although it affects its translational motion due to its proximity to channel
walls in the particular setup used here. Equal permittivity and conductivity ratios are
avoided here.

There are two primary reasons for different behavior of the electrified cases compared
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Figure 7.1: (a) Schematic of the test case. (b) Closeup view of initial particle distribution
at the vicinity of the solid disc. Black points denote solid particles whereas gray points
are fluid particles.

to the case with no external electric field present. The first one is the DEP due to proximity
of electrodes and the other is the tendency of electrical forces in changing the angular
velocity of the disc. If the electrical timescale of the solid is larger than that of the fluid,
𝜏𝑠/𝜏𝑓 > 1, the rigid body will migrate to regions of lower electric field gradient, i.e.
toward the electrodes in this case. The reverse is true for 𝜏𝑠/𝜏𝑓 < 1 where the body
favors regions of higher electric field gradient [255]. The effects on angular rotation are
also tied to the relationship between electrical timescales of the fluid and solid. When
𝜏𝑠/𝜏𝑓 > 1, the electrical forces point from fluid toward solid, resulting in an electrical
torque that is unstable and tends to rotate the disc. Given large enough electric field and a
preferred direction, a spontaneous rotation called Quincke rotation may ensue [282, 283].
If 𝜏𝑠/𝜏𝑓 < 1, the electrical torque will resist the rotation of the disc. In this study, the linear
shear dictates the preferred direction, however, the electric field intensity is not enough to
generate Quincke rotation all cases that satisfy 𝜏𝑠/𝜏𝑓 > 1 (table 7.1). Regardless, the
torque generated by the electric forces is enough to affect the rotational motion of the disc.

Figure 7.2 plots the trajectory and velocity of the disc for the case without electric field
(NE) and for (𝒫, 𝒞) pairs of (0.2, 5) and (5, 0.2). The disc in case (0.2, 5) is accelerated
toward the centerline while in case (5, 0.2), it is moved toward the wall. Case (5, 0.2) is
solved until the disc touches the bottom wall. Noting that 𝜏𝑠/𝜏𝑓 = 𝒫/𝒞, case (0.2, 5) is
more polarizable and migrates toward larger electric gradient. In this case, both hydrody-
namic and electrical forces lead the particle away from the channel wall, resulting in faster
migration toward channel center when compared to NE. The difference between normal
velocities of (0.2, 5) and NE becomes smaller as the disc moves away from the wall and
the gradient of electric field becomes more symmetric. On the other hand, (5, 0.2) is less
polarizable and this results in its attraction to smaller electric field gradient. In this case,
electrical forces act against the hydrodynamic forces and bring the disc toward the wall.
The normal motion of the disc comes to a stop when it reaches the bottom wall. Figure
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Figure 7.2: Comparison of the vertical position (a) and vertical velocity (b) of the disc’s
center of mass versus time.
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Figure 7.3: Angular velocity for cases NE (black), (0.2, 5) (red) and (5, 0.2) (blue).

7.3 shows the angular velocity of the aforementioned cases. The configuration of electric
forces in case (5, 0.2) is such that the condition for Quincke rotation is satisfied. This re-
sults in an electric torque that assists the rotation of the disc in the flow, resulting in faster
angular velocity compared to case NE. On the other hand, the electrical torque applied to
(0.2, 5) resists the rotation and this results in reduced angular velocity compared to case
NE.

Figure 7.4 shows streamlines and electric field lines for cases NE, (0.2, 5) and (5, 0.2)
at steady state. The electric field lines are attracted to the solid body when 𝒞 > 1 and avoid
the body as much as possible when 𝒞 < 1. As expected for Re = 0.625, the streamlines
are fairly symmetric for case NE. While case (0.2, 5) reaches a steady state in the middle
of the channel, its streamline pattern is different from NE. As shown in figure 7.3, the
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Figure 7.4: Stremlines (blue) and electric field lines (black) for case NE (a) and permittiv-
ity and conductivity pairs of (0.2, 5) (b) and (5, 0.2) (c). Rigid body particles are in darker
gray while fluid particles are shown in light gray.

Table 7.1: Time until the disc reaches one radius distance of channel center (regular)
or bottom wall (bold). An underline shows that all conditions for Quincke rotation are
satisfied. The disc reaches channel center at 𝑡∗𝐺 = 25.94 when no electric field is applied.

𝒫 0.2 0.5 2 5

𝒞
0.2 - 80.05 19.18 13.34
0.5 17.79 - 44.89 29.37
2 13.49 17.18 - 33.59
5 13.81 16.89 24.07 -

disc rotates in clockwise direction. However, since the disc’s rotation is hampered, the
streamlines are skewed in counter-clockwise direction to satisfy the no-slip behavior. In
case (5, 0.2), the disc ends up at the channel wall, resulting in a large vortical structure in
the middle of the channel directly above it. The structure is leaning in the direction of the
flow at the upper half of the channel which is not obstructed by the disc.

Table 7.1 provides the time until the disc comes to one radius distance of the bottom
wall or the channel center. Bold numbers show that the disc approaches the bottom wall
while an underline indicates that conditions for Quincke rotation are satisfied. The disc
reaches the channel center at 𝑡∗𝐺 = 25.94 when no electric field is applied. When 𝜏𝑓 > 𝜏𝑠
(lower triangle), the disc travels faster toward the channel center while when 𝜏𝑓 < 𝜏𝑠
(upper triangle) the disc travels slower toward the channel center or moves toward the
channel wall. Such observations are reported in experiments as well [284]. As it is seen,
increasing the permittivity ratio at a constant conductivity ratio results in a gradual increase
in the time needed for the disc to reach the channel center. At large enough permittivity
ratios the trajectory is reversed and the disc migrates toward the channel wall. At this point,
further increase of the permittivity ratio results in a faster migration toward the channel
wall. The inverse of this trend is observed when the permittivity ratio is kept constant and
the conductivity ratio is increased.
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7.3 Dielectrophoretic chaining of circular discs

7.3.1 Geometric properties, characteristic values and test cases
In this section, dielectrophoretic interaction of two neutrally buoyant circular discs sus-
pended in quiescent background fluid is examined. The pair of discs begin to move and
eventually chain together when an external field is applied. Their trajectory depends on
the electrical properties of the materials as well as the initial orientation of the discs. The
behavior is observed in both perfect dielectric [121, 280] and leaky dielectric [256, 279]
models as well as experiments [123, 137, 285]. Discs with identical polarizability, com-
pared to the background fluid, tend to chain such that the line connecting the centers of
both discs is parallel to the electric field. When one disc is more polarizable than the fluid
and the other is less polarizable, the final orientation is such that the center-to-center line
lies perpendicular to the electric field. The perfect dielectric model is used here and the
parameters are chosen such that the results are valid for micro-scale particles [121, 280].

Figure 7.5 provides a schematic of the problem considered here. Two circular discs
with radii of 𝑟1 and 𝑟2 are suspended in a square cavity of side length 𝐻 = 20𝑟1. For better
distinction, disc one is shown in white while disc two is in gray. The distance between disc
centers is referred to as 𝐿𝑐 here while a surface-to-surface distance of 𝐿𝑠 = 𝐿𝑐 − 𝑟1 − 𝑟2
is also defined. Since in its most general form discs one and two may not have identical
radius, 𝐿𝑠 provides a better measure of the distance and facilitates comparison. The discs
are positioned at an angle of 𝜃 with horizontal line at a distance 𝐿𝑠/2 = 𝑟1/2 from the
center of the computational domain. A constant potential difference of Δ𝜙 is applied
between horizontal walls, shown as continuous lines, resulting in an undisturbed electric
field in vertical direction. This means that the center-to-center line is at 𝜋/2 − 𝜃 with the
electric field and when aligned with the field, 𝜃 is equal to 𝜋/2. Defining 𝜃 as shown in
figure 7.5 facilitates the presentation of the results as 𝜃 increases with time. Side walls,
shown in dashed lines, are insulated and electric field lines are parallel to these walls. All
bounding walls are subject to no-slip condition.

Since no mechanical input is applied to the system, characteristic velocity is based on
dielectrophoretic velocity scale. According to Saville [108],

𝑢𝑐 = 𝜀𝑐𝑙𝑐𝐸2
𝑐

𝜇𝑐
. (7.1)

All other characteristic values are chosen as

𝜌𝑐 = 𝜌𝑓 , 𝜇𝑐 = 𝜇𝑓 , 𝜀𝑐 = 𝜀𝑓 ,
𝑙𝑐 = 𝑟1, 𝐸𝑐 = 𝐸∞ = Δ𝜙/𝐻, 𝑝𝑐 = 𝜌𝑐𝑢2

𝑐 , (7.2)
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Figure 7.5: Schematic of the DEP chaining of two circular discs. Discs one and two are
colored in white and gray for distinction.

leading to the following dimensionless numbers

Re = 𝜌𝑓 𝜀𝑓 (𝑟1𝐸∞
𝜇𝑓

)
2

, (7.3)

Ei = 𝜌𝑓 𝜀𝑓 (𝑟1𝐸∞
𝜇𝑓

)
2

, (7.4)

ℛ = 𝑟1
𝐻 , ℛ𝑟 = 𝑟2

𝑟1
,

𝒫 = 𝜀1
𝜀𝑓

, 𝒫𝑟 = 𝜀2
𝜀1

. (7.5)

As it is seen, Reynolds and Electro-inertial numbers are identical which means the charac-
teristic velocity of equation (7.1) may be obtained if the equality Re = Ei in characteristic
form is solved for 𝑢𝑐.

Several parameters affect the trajectory followed by each of the discs. Kang [279]
and Hossan et al. [256] discuss the behavior of leaky dielectric discs with similar and
dissimilar electrical properties. Xie et al. [280] examine the effects of different size on the
motion of the discs. However, all the above cases are limited to low Re since they discard
the convective terms of the momentum equation (2.6). SPH handles the convective terms
naturally and allows for seamless extension to larger Re numbers. The studies conducted
here are confined to discs that have larger permittivities than the surrounding fluid and a
permittivity ratio of 𝒫 = 40 is chosen to match the studies made in [121, 280]. Four cases
will be considered here. First, the effect of initial angle with the electric field is inspected.
Then the effect of Re on the behavior of the discs will be examined. Specifically, the cases
examined by Ai and Qian [121] and Xie [280] concentrate on Re = 0.007. Here, Re
values up to 116 are simulated to provide a better understanding of the chaining behavior,
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Figure 7.6: (a) Trajectory of disc one (continuous) and disc two (dashed) with different
starting angles; (b) center-to-center separation distance with respect to center-to-center
angle with electric field.

especially since the chaining happens faster at higher Re and is of practical interest. The
third case investigates the effects of dissimilarities in electrical properties. The difference
between permittivities of the discs is gradually increased to range from a simple defect to
different materials. The final case considers the behavior of discs with different radii.

7.3.2 The effect of initial angle
In this section, the behavior of the discs at five starting angles of 𝜃𝑖 = 80, 60, 45, 30 and 5
degrees, corresponding to 10, 30, 45, 60 and 85 degrees with the electric field, is consid-
ered. Since the positioning of the discs results in slightly different particle arrangements,
each case is discretized by different number of particles. The number of particles for each
case in the order mentioned above are 22514, 22498, 22506, 22498 and 22512. The discs
are identical and have a permittivity ratio of 𝒫 = 40 while Re = Ei = 0.007. All simu-
lations are carried out until 𝜃 = 89∘ and the corresponding dimensionless times for each
case are 8.13, 8.62, 10.94, 12.22 and 37.08.

Figure 7.6 provides trajectories of the discs as well as the center-to-center distance 𝐿𝑐
with respect to 𝜃. A circle marker shows the initial position of the discs. As expected
from identical discs, all cases rotate and align with the electric field. In all cases, with the
exception of 5∘, the distance between the discs decreases during their travel. For 𝜃𝑖 = 5∘,
the distance between the discs increases until 𝜃 = 37∘ reaching a maximum of 𝐿𝑐 = 3.65
before dropping to 𝐿𝑐 = 2.25 at 𝜃 = 89∘. This also explains the big jump in time required
for reaching 𝜃 = 89∘ when starting from an initial angle of 5 degrees.

A better understanding of the effect of angle on the behavior of the discs may be ob-
tained by observing the changes of electrical forces with respect to 𝜃 and 𝐿𝑐. Figure 7.7
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plots the electric force component in the center-to-center direction 𝑓(𝑒𝑛) where a positive
value indicates an attractive force as well as the electric force component normal to the
center-to-center direction 𝑓(𝑒𝑠), which results in a clockwise rotation if its value is pos-
itive. It is expected that as the discs align with the electric field, the center-to-center
force reaches a maximum while the component causing the rotation vanishes. Figure 7.7-
a shows that center-to-center component remains attractive throughout the trajectory for
cases with 𝜃𝑖 ≤ 45∘. Cases starting at 30 and 5 degrees experience an initially repulsive
𝑓(𝑒𝑛). The angular span of the repulsive force is rather short in case 𝜃𝑖 = 30∘ and is not
enough to cause an increase in the initial separation between the discs. On the other hand,
approximately one third of the travel angle in case 𝜃𝑖 = 5∘ is spent in repulsive region
and this results in significant increase in separation distance as shown in figure 7.6-b. It is
worth noting that in both 30∘ and 5∘ cases the repulsive force changes to an attractive one
at about 𝜃 = 37∘, which also corresponds to the angle when the trajectory of case 𝜃𝑖 = 5∘

changes from a diverging path to a converging one (figure 7.6-b). The maximum value of
𝑓(𝑒𝑛) is comparable for all cases, regardless of the starting angle and resides in the final por-
tions of the travel. Unlike 𝑓(𝑒𝑛), the magnitude of the 𝑓(𝑒𝑠) is dependent on the starting angle
of the discs and the largest magnitude among all cases belongs to 𝜃𝑖 = 45∘. If the case in
question does not pass 𝜃 = 45∘ during its travel, i.e. 𝜃𝑖 = 80∘ and 60∘, then the maximum
𝑓(𝑒𝑠) is achieved at the initial stages of the travel. However, if the discs pass through the 45
degrees point, the maximum of 𝑓(𝑒𝑠) lies slightly after 45∘ mark. The relation between disc
separation and 𝑓(𝑒𝑛) and 𝑓(𝑒𝑠) is provided in figure 7.7-c and d, respectively. The shift in
𝑓(𝑒𝑛) from repulsion to attraction at maximum separation distance is clearly visible for case
𝜃𝑖 = 5∘ in figure 7.7-c. As the discs become closer, the differences between 𝑓(𝑒𝑛) becomes
smaller and all cases reach a maximum at 𝐿𝑐 = 2.25. The reason for reaching maximum
center-to-center force prior to chaining may be attributed to a shortage of particles resolv-
ing the electric field between the discs. As the discs get closer than the compact support
range of the kernel, the number of fluid particles between the discs becomes smaller and
the particles belonging to the solid phase start to interact with one another across the discs.
This results in a reduction in gradients across different phases and reduces the electrical
forces. As for 𝑓(𝑒𝑠) for cases with 𝜃𝑖 ≤ 60∘ , there is a direct relationship between the
rotational component and separation distance as the maximum value lies slightly below
𝐿𝑐 = 3. In case 𝜃𝑖 = 5∘, there is an increase in 𝑓(𝑒𝑠) for 3 < 𝐿𝑐 < 3.5 followed by a decrease
as the discs converge.

Due to the electrostatic model used here, all changes in the geometrical configuration
of the components affect the electrical properties of the computational domain and in turn
have immediate effects on the field intensity observed at the walls. Figure 7.8 provides
average electric field intensity ̄𝐸 taken at the upper wall of the computational domain.
Since the discs have larger permittivity than the fluid, the overall permittivity of the com-
putational domain is larger than that of the fluid only system. This results in a slightly

103



0 30 60 90
−0.2

0

0.2

0.4

0.6

0.8

1

θ

f (e
n)

 

 
80o

60o

45o

30o

5o

0 30 60 90
0

0.05

0.1

0.15

0.2

0.25

0.3

θ

f (e
s)

2 2.5 3 3.5 4
−0.2

0

0.2

0.4

0.6

0.8

1

L
c

f (e
n)

2 2.5 3 3.5 4
0

0.05

0.1

0.15

0.2

0.25

0.3

L
c

f (e
s)

(a) (b)

(c) (d)

Figure 7.7: Center-to-center (a,c) and rotational (b,d) components of electric forces with
respect to angle (a,b) and separation distance (c,d) for different 𝜃𝑖.
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Figure 7.8: Average electric field intensity at the upper wall with respect to angle (a) and
separation distance (b) for different 𝜃𝑖.

larger field intensity than 𝐸∞. While the initial average intensity is different for different
starting angles, all cases approach the same value of ̄𝐸 toward the end of the simulation.
This observation may be used to approximate the orientation of the discs without visual
confirmation. A comparison with figure 7.7-a,c also shows that ̄𝐸 has similar behavior to
𝑓(𝑒𝑛).

7.3.3 The effect of Reynolds number
In this section, the effects of Reynolds and Electro-inertial numbers on the behavior of
the discs is studied. Reynolds and Electro-inertial numbers are identical in this case and
electric field intensity is used to change their value. From a practical standpoint, changing
the field intensity is one of the control parameters in the chaining phenomenon and has a
parabolic relationship with characteristic velocity, as seen in equation (7.1). This means
that using larger electric field will expedite the chaining process. Based on the observations
made in previous section, two initial angles of 45 and 5 degrees are chosen for these tests.
The number of particles discretizing the domain is identical to the values given in the
previous section for respective starting angles. Electric field is doubled in successive cases
resulting in Reynolds numbers of 0.007, 0.028, 0.113, 0.453, 1.813, 7.253, 29.01 and
116.1. Figure 7.9-a and b provides times 𝑡𝑓 until a stable 𝜃 = 89∘ is achieved with respect
to Reynolds number. A stable 𝜃 = 89∘ is assumed to be a situation where the discs will
align with the electric field in their next approach to a 90 degrees angle. As seen in figure
7.9, the time remains relatively constant for Re < 1 for both cases and increase rapidly for
Re > 1. This means that while the dimensional time of the process drops continuously as
long as chaining occurs, the time gained by increasing Reynolds number is much smaller
for Re > 1. As such, it may be inferred that it is best to carry out the chaining process
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Figure 7.9: Dimensionless time for reaching 𝜃 = 89∘ with respect to Reynolds number for
𝜃𝑖 = 45∘ (a) and 𝜃𝑖 = 5∘ (b).

close to unit Reynolds number.
Figures 7.10 and 7.11 provide trajectories and separation distances for starting angles

of 45 and 5 degrees, respectively. As expected, the difference in trajectories for cases with
Re ≤ 0.113 is negligible. Cases with Reynolds numbers about unity, i.e. Re = 0.113 and
1.813, have insignificant overshoot from the 90∘ mark where the center-to-center line of
the discs becomes aligned with the electric field. At higher Re numbers the discs pass the
90∘ and travel further before aligning with the electric field. This reduces the effectiveness
of the chaining procedure at higher Re, as observed in figure 7.9. For the highest Reynolds
number studied here at 𝜃𝑖 = 45∘, the discs make multiple passes at the 90∘ mark. At 𝜃𝑖 =
5∘, the separation becomes so large that the discs no longer interact with one another and
no chaining occurs. A comparison of separation distance between 𝜃𝑖 = 45∘ and 5∘ shows
that the effects of the increase in Re is much more pronounced at smaller initial angle.
The reason for this is the increase in separation distance between the discs for 𝜃𝑖 = 5∘ at
the initial stages of the simulation which has significant effects on the interactions of the
discs.

To better demonstrate the reason behind the effects of the Reynolds number on the
chaining behavior, electrical forces are shown in figures 7.12 and 7.13. Regardless of the
Reynolds number, both 𝑓(𝑒𝑛) and 𝑓(𝑒𝑠) are comparable in scale. The observations regard-
ing the similarity in trajectories for cases with Re ≤ 0.113 holds for center-to-center and
rotational forces as well. For cases with a starting angle of 45 degrees, the force remains
attractive for all Re while the maximum shifts to larger angles at higher Re. A comparison
of figures 7.12-a and c shows that the reason is due to the fact that cases with larger Re
achieve smaller 𝐿𝑐 at larger 𝜃. Since 𝑓(𝑒𝑛) is directly related to 𝐿𝑐, this delays the angle
where maximum attraction is achieved. The rotational force of cases with 𝜃𝑖 = 45∘ scales
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Figure 7.10: (a) Trajectory of disc one (continuous) and disc two (dashed) for 𝜃𝑖 = 45∘

starting angle at different Reynolds numbers; (b) center-to-center separation distance with
respect to angle.
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Figure 7.11: (a) Trajectory of disc one (continuous) and disc two (dashed) for 𝜃𝑖 = 5∘

starting angle at different Reynolds numbers; (b) center-to-center separation distance with
respect to angle.
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Figure 7.12: Center-to-center (a,c) and rotational (b,d) components of electric forces with
respect to angle (a,b) and separation distance (c,d) for different Reynolds numbers at 𝜃𝑖 =
45∘.

well with angle and the difference between different Re is quite small. As expected, the
rotational force is zero when discs are aligned with the electric field. The cases passing
90∘ experience a negative rotational force which causes counter-clockwise rotation, re-
turning them toward an aligned position. The effects of increasing Re is more dramatic
for 𝜃𝑖 = 85∘. The effects of increase in separation distance is evident in figures 7.13-a and
c. The increase in attractive force with respect to 𝜃 is much slower for larger Re while
the change from repulsion to attraction happens at greater distance. The initial increase in
separation distance affects the rotational force as well where it decreases significantly at
larger Reynolds numbers.
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Figure 7.13: Center-to-center (a,c) and rotational (b,d) components of electric forces with
respect to angle (a,b) and separation distance (c,d) for different Reynolds numbers at 𝜃𝑖 =
5∘.
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7.3.4 The effect of difference in permittivites
In this section, the effects of difference in permittivity between the discs is investigated.
Both initial angels of 45 and 5 degrees are considered and Re is set 0.113. The number of
particles discretizing the domain is identical to the values given in the previous section.
The reasons behind changes in electrical properties may range from production defects to
chaining of particles of different materials. To mimic such conditions, the permittivity of
the second disc is changed while disc one remains identical between different cases, result-
ing in disc-to-disc permittivity ratios of 𝒫𝑟 = 1, 0.975, 0.95, 0.9, 0.85, 0.8, 0.75, 0.5 and
0.25. All simulations are carried out until 𝜃 = 89∘ and the corresponding dimensionless
times for each case at 45∘ are 10.76, 11.05, 11.05, 11.33, 11.33, 11.61, 11.90, 13.03 and
16.71. For the starting angle of 5 degrees, the times of reaching 𝜃 = 89∘ are 39.39, 39.39,
39.96, 41.10, 41.67, 42.80, 44.32, 48.76 and 57.27.

Figures 7.14 and 7.15 plot trajectories and center-to-center distance of the discs for
cases starting form 45 and 5 degrees, respectively. The trajectories of the discs remain
identical for 𝒫𝑟 ≥ 0.9, especially for disc one. The differences in trajectory for 𝜃𝑖 = 45∘

become more significant as 𝒫𝑟 decreases. For 𝒫𝑟 ≤ 0.5, disc two starts to move toward
the top electrode while disc one follows it and moves to align the center-to-center line with
the electric field. This results in discs reaching the 89∘ mark at a position above the center
of the computational domain and skewed toward the left. Despite this, the separation
distance between the discs remains almost identical for all 𝒫𝑟. This means that disc one
travels larger distances after disc two to maintain the separation distance at smaller 𝒫𝑟.
Compared to the drastic changes in trajectory observed for 𝜃𝑖 = 45∘, almost all cases with a
starting angle of 5 degrees maintain the chaining position at the center of the computational
domain. As 𝒫𝑟 decreases, disc one starts to take a longer route further away from the center
of the computational domain while disc two takes shorter arcs that are closer to the center.
The separation distance remains similar for all cases, except 𝒫𝑟 = 0.25, showing that the
shorter and slower route taken by disc two is compensated by faster and longer route of
disc one.

The reason behind the different routes taken by the discs is better explained in figures
7.16 and 7.17 where center-to-center and rotational components of the electrical forces
are plotted. Since discs one and two experience different force magnitudes, both discs are
shown in the figures. To differentiate between the discs, a negative 𝑓(𝑒𝑛) shows attractive
force for disc two while a negative 𝑓(𝑒𝑠) causes clockwise rotation. The movement of the
disc pair may be assessed based on the resultant force exerted on the discs. A general
observation is that the forces see little change on disc one, which has identical properties
across all test cases, while there is significant variation on forces exerted on disc two. The
reason behind little change in disc one is that different permittivity values on disc two
only affect the field lines passing in between the discs. This changes field intensity in the
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Figure 7.14: (a) Trajectory of disc one (continuous) and disc two (dashed) for 𝜃𝑖 = 45∘

with different disc-to-disc permittivity ratios; (b) center-to-center separation distance with
respect to angle.
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Figure 7.15: (a) Trajectory of disc one (continuous) and disc two (dashed) for 𝜃𝑖 = 5∘

degrees starting angle with different disc-to-disc permittivity ratios; (b) center-to-center
separation distance with respect to angle.
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(c) (d)Figure 7.16: Center-to-center (a) and rotational (b) components of electric forces with
respect to angle for different disc-to-disc permittivity ratios at 𝜃𝑖 = 45∘.

vicinity of disc one, indirectly affecting it. On the other hand, disc two sees the combined
effect of changing field intensity and reduction in permittivity gradient which ultimately
reduces the magnitude of the forces exerted on it. Examining cases starting from an initial
angle of 45 degrees in figure 7.16, it is evident that the resultant force at smaller 𝒫𝑟 points
toward second quadrant of the computational domain which in turn causes the chaining
point to skew upward and to the left of the center of the computational domain. On the
other hand, the smaller force magnitude on disc two explains the shorter path taken by the
disc. Similarly, the shorter path taken by disc two for cases starting at 𝜃𝑖 = 5∘ is due to
smaller magnitude of the force exerted on these discs. The reason for a more pronounced
effect in the chaining position of 45∘ when compared to 5∘ lies in the angular span of the
effective resultant force. Since discs at 𝜃𝑖 = 5∘ pass the 45∘ mark at a larger separation, the
resultant force is smaller for the majority of the angular span. The resultant force is only
comparable to that of 𝜃𝑖 = 45∘ in final stages of chaining. To quantify this observation, it is
possible to calculate the work done by resultant forces on the middle point of the center-to-
center line where chaining is supposed to happen. Case 𝒫𝑟 is used for comparison where
both starting angles show some deviation from the center of the computational domain.
The work done by x and y components of the resultant force and the total work for case
𝜃𝑖 = 45∘ are 0.0921, 0.3815 and 0.4736 while the same components for case 𝜃𝑖 = 5∘

are 0.0824, 0.3155 and 0.3979. While x components are relatively close, the difference
between the y components shows that the resultant forces in case 𝜃𝑖 = 45∘ is better inclined
to carry the disc pair toward upper wall.
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respect to angle for different disc-to-disc permittivity ratios at 𝜃𝑖 = 5∘.

7.3.5 The effect of difference in disc diameters
In this section, the interactions between discs of different sizes are investigated. The discs
are arranged in both 45 and 5 degrees starting angles and Re and 𝒫 are set to 0.113 and 40,
respectively while approximately 22500 particles are used to discretize the computational
domain. To change the ratio of radii, the radius of disc two is increased such that ℛ𝑟 = 1.0,
1.5, 2.0, 2.5 and 3.0 while the domain size and the radius of disc one are kept constant.
Since the discs are positioned such that their surfaces have equal distance from the center
of the computational domain, the center of disc two will be further away when compared
to disc one. Since center-to-center separation will be different for each ℛ𝑟, the results are
presented in terms of surface-to-surface separation 𝐿𝑠, when applicable. All simulations
are carried out until 𝜃 = 89∘ and the corresponding dimensionless times for each case at
45∘ are 10.77, 9.35, 8.21, 8.83 and 10.20. For the starting angle of 5 degrees, the times of
reaching 𝜃 = 89∘ are 39.39, 41.67, 24.64, 29.18, and 34.29.

Figures 7.18 and 7.19 plot the trajectory and surface-to-surface separation distance
of the discs. When ℛ𝑟 ≤ 1.5, disc one turns toward the center of the computational
domain as the discs approach for chaining. The chaining point is skewed toward the starting
position of the larger disc. The surface-to-surface separation remains almost identical
for 𝜃𝑖 = 45∘ while it increases for larger ℛ𝑟 when starting angle is set to 5 degrees.
On the other hand, for ℛ𝑟 ≥ 2.0, the larger disc tends to move toward the upper wall
and away form the smaller disc. Surface-to-surface separation decreases significantly for
𝜃𝑖 = 45∘ after ℛ𝑟 = 2, however, it remains almost constant for larger values. In the case
of 𝜃𝑖 = 5∘, a similar drop in 𝐿𝑠 is observed, however, the maximum surface-to-surface
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Figure 7.18: (a) Trajectory of disc one (continuous) and disc two (dashed) for 𝜃𝑖 = 45∘

with different radii; (b) center-to-center separation distance with respect to angle.

separation increases as ratio of radii increases beyond ℛ𝑟 = 2. In all cases, regardless of
initial starting angle, the distance traveled by the smaller disc increases for larger ℛ𝑟.

Center-to-center and rotational components of the electric forces are shown in figures
7.20 and 7.21 for starting angles of 45 and 5 degrees, respectively. Both 𝑓(𝑒𝑛) and 𝑓(𝑒𝑠)
show an increase for the smaller disc as the ratio of radii grows. This is in line with the
observations made in [122] for AC electric fields and the results of [280] for DC electric
fields. The transition in the behavior of the larger disc between ℛ𝑟 = 1.5 and 2 is also
visible here as the gap between the two cases does not follow the trend before and after
ℛ𝑟 = 2. The more interesting observation here is about the larger disc, i.e. disc two.
The magnitude of both center-to-center and rotational components of the electric forces
decrease as the radius of disc two increases. This could be expected since the figures
are based on the volumetric force applied to particles. However, by accounting for the
differences in the surface area between discs one and two, the forces applied to disc two
are merely on the same order of magnitude as that exerted on disc one. In fact, the attractive
forces on disc one become larger than that of disc two for ℛ𝑟 = 2 causing the resultant
force on the disc pair to point toward upper wall. The decrease in 𝑓(𝑒𝑛) and 𝑓(𝑒𝑠) applied to
the larger disc may be attributed to the changes in the electric field distortion pattern. As
the radius of disc two grows, its scale becomes comparable to that of the computational
domain. This causes interaction with the walls as well as disc one. A larger radius means
the ratio of disc two’s surface facing disc one becomes smaller. This reduces the ratio
of asymmetric electric forces on surface to symmetric ones, thus reducing the ratio of
dielectrophoretic force to the surface area due to proximity with the smalller disc. On the
other hand, if the larger disc is of comparable scale with the computational domain, the
portion of the disc interacting with the wall remains constant regardless of its radius. This

114



−4 −2 0 2 4
−4

−2

0

2

4

x

y

0 30 60 90
0

0.5

1

1.5

2

2.5

θ

L s

 

 

1
1.5
2
2.5
3

(a) (b)

Figure 7.19: (a) Trajectory of disc one (continuous) and disc two (dashed) for 𝜃𝑖 = 5∘ with
different radii; (b) center-to-center separation distance with respect to angle.

means that a larger disc moves slower toward the wall. As a result, the disc pair is slower
in moving toward the upper wall for larger ratios of radii after the transition in ℛ𝑟 = 2
(figures 7.22 and 7.23). The difference in path length followed by each disc is also due to
the similar magnitude of forces applied on discs of different sizes [122, 280].

7.4 Sedimentation of an elliptic disc in external electrical
field

In this section, the sedimentation of an elliptic disc subject to an external electric field will
be examined. The elliptic shape is of particular interest in biological systems. It is known
that elliptic discs may exhibit complex motions while descending in quiescent fluid and
interacting with bounding walls in the absence of an electric field [231]. The presence of
the electric field may provide an additional parameter to influence the motion and possibly
control it. To better understand the motion, a series of simulations are carried out here.
First, the behavior of a neutrally buoyant ellipse in quiescent fluid is investigated. To enable
longer simulations, the shifting boundary condition in the absence of the electric field is
tested. Finally, the sedimentation of the ellipse with different electrical and boundary
configurations is tested and the results are compared.

7.4.1 Ellipse Alignment in Electric Field
Alignment of elliptic particles with the external electric field is observed in experiments
[257] and simulations [257, 281]. When left in quiescent fluid, the major axis of the ellipse
becomes parallel to the external electric field. The schematic of the case is similar to the
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(c) (d)Figure 7.20: Center-to-center (a) and rotational (b) components of electric forces with
respect to angle for different disc radii at 𝜃𝑖 = 45∘.
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one provided in figure 6.1-e. To observe this effect, the elliptic particle is pinned at the
middle of a rectangular box (𝐻 = 𝑊 ) with 𝐻/𝑎 = 4. Two sets of permittivity ratio
and conductivity ratio pairs of (10, 20) and (20, 0.1) are used and will be referred to as
cases S and U, respectively. The significance of the electrical parameters chosen is that
the former has 𝜏𝑠 < 𝜏𝑓 while the latter has 𝜏𝑠 > 𝜏𝑓 . Characteristic velocity of this
case is 𝑢𝑐 = 𝜀𝑓 (𝐸∞𝐻)2 /𝜇𝑓 𝑎 [108]. Reynolds and Electroinertial numbers are tied as
Ei = Re (𝐻/𝑎)2 and are set to 0.4 and 6.4, respectively.

This means that the electrical forces resist rotation for case S while the situation for
case U is more complex.

Five initial orientations of 0∘, 22.5∘, 45∘, 67.5∘ and 90∘ are simulated and the orien-
tation of the ellipse with respect to time is plotted in figure 7.24. When released from
rest, the ellipse starts to rotate in counterclockwise direction to align its major axis with
the electric field. As the ellipse rotates, it passes the alignment angle at least once be-
fore returning to the 90∘ mark. Comparing the two sets of parameters, the ellipse remains
stationary in case S after achieving the alignment while it continues to oscillate in case
U even after the deviations become smaller than one degree. This is due to the electric
force distribution across the surface of the ellipse. In case S, the distribution is such that
the torque generated due to deviation from 90 degrees helps with the realignment of the
ellipse. In case of U, there is a race between two opposing torques. The first component,
mainly due to 𝐟(𝑒𝑞), is applied to the tips and resists the alignment. The other component,
mainly exerted by 𝐟(𝑒𝑝), is applied to the sides of the ellipse and enforces the alignment.
At exact alignment, no torque is applied to the ellipse. However, slight perturbations are
inevitable and this results in the back and forth motion seen in case U which is caused by
the interaction of the opposing torques. As expected, the ellipse at 90∘ which is already
aligned with the electric field does not rotate in case S and merely oscillates in case U.
The ellipse at 0∘ starts its rotation only after the other cases are aligned with the electric
field. This is an expected behavior as the 0∘ is an unstable equilibrium position and a slight
numerical asymmetry may disturb the balance, causing the ellipse to rotate. This behavior
is also reported in BEM simulations [281]. It is notable that case U starts its rotation from
the 0∘ starting angle before case S.

7.4.2 Validation of the shifting boundary condition
A sedimenting ellipse is likely to move in a periodic manner. However, the period of such
motion may be very long and the effects of bounding walls may be substantial. As such,
the long-term simulation of the sedimentation of the elliptic particle may be necessary
for observing the periodic motion in some cases. There are two common methods for the
long-term simulation of the sedimenting bodies in a confined computational domain. The
first one is the moving reference frame method, where the reference frame is fixed to the
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Figure 7.24: Orientation of the elliptic disc with different initial starting angles while
aligning with the electric field for case S (a) and case U (b). The electric field is oriented
at 90∘ (vertical).

Table 7.2: Configurations for testing the shifting boundary condition.
Case A B C D

Top and bottom No-slip Shifting No-slip Shifting
Side walls No-slip No-slip Periodic Periodic

moving body and momentum equations and domain boundaries are modified so that the
computational domain is following the object. This method requires proper resolution of
the bounding walls, prior estimate of the velocity of the rigid body and an accurate choice
for the acceleration of the frame of reference. The second method is the shifting boundary
condition proposed in section 3.4, which avoids the need for any a priori knowledge of
the motion and is exceptionally suitable for particle methods. In order to facilitate the
simulation of long term sedimentation and observing the periodic motion of the ellipse,
the shifting boundary condition is used here.

Since the motion of the ellipse without electric field is well studied, the method is
tested in the absence of an external electric field. The configuration is similar to the one
given in section 6.3 with 𝒟 = 1.1, Re = 58.8, 𝑎/𝑏 = 2, 𝑊/𝑎 = 4, ℎ/𝑑 = 34 and 𝜃 = 𝜋/4.
Computational domain is given in figure 6.1-e and is discretized by 80035 particles. The
combination of the boundary conditions used here are given in table 7.2.

In most cases, the effects of top and bottom walls should not contaminate the results
and the simulations are terminated before wall effects appear. However, the effects of side
walls are unavoidable in sedimentation in confined domains and are sometimes studied
deliberately [231]. In this sense configurations A-B and C-D are paired for comparison.
It is expected that cases B and D behave similar to cases C and D as long as the ellipse
is far from the bottom wall. Figure 7.25 plots the horizontal position and orientation of
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Figure 7.25: Horizontal position (a) and orientation (b) of the elliptic disc while sediment-
ing.

the particle with respect to its vertical position. Cases A and C reach the bottom wall at
𝑦∗/𝑊 = 6 while cases B and D may continue indefinitely. The agreement between A-B
and C-D pairs is excellent and this means that from a hydrodynamic point of view, the
implementation of the shifting boundary has no effect on the sedimentation. It is worth
mentioning that in all cases, the ellipse comes to a horizontal orientation while its position
is dependent on the side wall boundary condition. With a no-slip wall, the hydrodynamic
forces move the ellipse toward the center of the domain while in periodic configuration, the
ellipse is settle further away from its starting horizontal position. The Reynolds number
based on terminal velocity, Re𝑡, is equal to 13.5 and 14.4 for A-B and C-D pairs, respec-
tively. As expected, this shows that the ellipse descends slower in confined domain due to
wall effects.

7.4.3 The effect of boundaries on the sedimentation of the elliptic par-
ticle subject to an external electric field

The introduction of the electrical field may significantly alter the behavior of the ellipse
sedimenting in quiescent fluid. To test such effects, the parameter sets studied in section
7.4.1 are combined with the boundary configurations used in section 7.4.2. Additional
boundary conditions are required to solve the electrical potential. A constant potential
difference of Δ𝜙 is applied to the top and bottom walls for all configurations while the
side walls have different boundaries depending on the hydrodynamic configuration. For
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Table 7.3: Terminal Reynolds number Re𝑡 for cases S and U for different boundary con-
figurations. When no electric field is applied Re𝑡 = 13.5 (cf. table 6.5).

Case A B C D
S 19.8 19.6 20.4 20.4
U 17.6 8.6 9.95 10.05

configurations A and B no field lines pass through the side walls while in configurations C
and D, the side walls are periodic. Reynolds number is set to 58.8 while Electro-inertial,
Ei = 𝜌𝑓 𝑔𝑑/𝜀𝑓 𝐸2

∞, is equal to 27.7.
Figures 7.26 and 7.27 provide horizontal position and orientation of the ellipse ver-

sus its vertical position for electrical properties of S and U, respectively. For case S, the
ellipse aligns itself with the electric field almost instantly, regardless of the boundary con-
figuration, with cases A-B and C-D following the same trajectory. The alignment with
the electric field is in line with the stable behavior observed in quiescent fluid in figure
7.24-a. When side walls are present, i.e. configurations A and B, the ellipse moves slowly
toward the center of the computational domain whereas in configurations C and D, the el-
lipse remains to the right of its starting horizontal position. It is worth noting that the early
horizontal deviation in electrified cases is in the opposite direction of the cases without the
electric field. Unlike case S, case U shows remarkably different trajectories with different
boundary configurations. While cases CU and DU behave similarly with a periodic mo-
tion, cases AU and BU are completely unrelated. This shows that the electrical boundaries
have notable effects when there is a race between 𝐟(𝑒𝑝) and 𝐟(𝑒𝑞), as described in section
7.4.1. Cases CU and DU follow a periodic trajectory to the left of their starting position
and rotate up to ten degrees around the flat orientation. Case BU follows a periodic motion
of equal horizontal distance and angular span to that of CU and DU at a higher frequency
in the center of the channel. Unlike others, case AU does not follow a periodic trajectory
and stays mostly in an upright orientation. It moves back and forth near the left wall before
changing direction in 𝑦∗/𝑊 = 4 and heading toward the right wall. Table 7.3 provides Re𝑡
for all cases. For oscillating cases, the average vertical velocity is used instead of the termi-
nal velocity in computation of Re𝑡. In agreement with the observations made above, cases
AS-BS and CS-DS have similar terminal Reynolds numbers. For case U, the oscillatory
motion reduces the descent velocity resulting in smaller Re𝑡. As expected, cases CU and
DU have similar terminal Reynolds numbers while the largest Re𝑡 belongs to AU which
descends in a mostly upright orientation.

To explore the effects of the electrical forces on the motion of case S in more detail,
figures 7.28 and 7.29 provide the torques and horizontal component of the forces applied
to the ellipse during its descent. The electrical force and torque are computed directly
from the electrical forces applied to particles of the solid phase. Since the FSI coupling
technique used here does not provide an explicit interface for the solid body, the hydrody-
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Figure 7.26: Horizontal position (a) and orientation (b) of the elliptic disc of case S while
sedimenting in an external electric field.
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Figure 7.27: Horizontal position (a) and orientation (b) of the elliptic disc of case U while
sedimenting in an external electric field.
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namical parts are found by subtracting the electrical components from the resultant torque
and force applied to the body. The resultant components are calculated using the position
and orientation of the ellipse in time. The results are smoothed using a Gaussian filter to
remove spurious oscillations.

The differences between case AU and other cases are apparent in both torque and forces
exerted on it. Having both side and top boundaries in its vicinity, the ellipse behaves
similar to case U of section 7.4.1. This means that the initial electrical torque turns the
ellipse in counter-clockwise direction to align it with the electric field. The hydrodynamic
torque is comparable but smaller than the electrical counterpart and the ellipse maintains
its orientation. This causes it to approach the left wall where it is deflected due to electrical
forces (𝑦∗/𝑊 ≈0.75). While descending near the wall from 𝑦∗/𝑊 ≈ 1 to 4, the electric
torque encourages a flat orientation whereas the hydrodynamic torque opposes it. The
ellipse gets closer to the left wall progressively with each approach and this reduces the
hydrodynamic forces pushing it toward the wall. At 𝑦∗/𝑊 ≈ 4, the ellipse breaks off the
left wall and heads toward the opposing wall. While passing the middle of the channel,
the electrical and hydrodynamical forces become negligible. At this position, electrical
torque encourages a counter-clockwise rotation while a slightly larger hydrodynamical
torque resists it. After 𝑦∗/𝑊 ≈ 5, the bottom wall affects the simulation.

Despite sharing the same side wall configuration with case AU, replacing top and bot-
tom boundaries with shifting walls changes the electrical effects exerted on case BU sig-
nificantly. Throughout its motion, the electrical torque remains the dominant term and
dictates both rotation and horizontal position. Initially, the electrical torque turns the el-
lipse toward a flat position while the hydrodynamic torque resists it. The electrical torque
is clockwise for positive angles and counter-clockwise for negative angles. Electrical and
hydrodynamic forces are in agreement and act to move the ellipse away from the wall. The
period of both forces are similar with electrical component lagging behind the hydrody-
namical part.

Cases CU and DU act in a similar fashion. Since the ellipse lies at the proximity of only
one set of electrical boundaries, the initial electrical response is similar to that of the case
BU. The electrical and hydrodynamical torques alternate as the ellipse pivots around its
flat orientation. The torques oppose each other with the electrical torque as the dominant
component. On the other hand, the dominant force term is the hydrodynamic component.
Although there are no side walls to induce electrical forces in the horizontal direction, the
domain width is small enough for the periodic boundary to make an effect. The ellipse
interacts with itself through the periodic boundary and as the symmetry breaks a horizontal
force is exerted on the ellipse. The electrical force points in the negative direction for
positive angles and in positive direction for negative angels. This means that the ellipse
is electrically forced to the left for positive angles and to the light for negative angles,
which is also in line with hydrodynamic tendency of the ellipse. As a result, electrical
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Figure 7.28: Hydrodynamic torque (blue), electric torque (red) and resultant torque ap-
plied to the ellipse of case U with boundary configurations of A (a), B (b), C (c) and D
(d) while sedimenting in an external electric field. A positive value induces a counter-
clockwise rotation.

and hydrodynamical forces have the same period with the electrical part slightly lagging
behind.

7.5 Remarks
The individual elements of the scheme proposed and tested in previous chapters are com-
bined together to investigate three different cases in electrostatic fluid-structure/solid in-
teraction involving dielectrophoresis.

The first case shows the effects of electric field on the motion of a circular particle in
proximity of the channel walls in simple shear. Depending on its electrical properties, the
disc may approach the wall or channel center. This is in line with the relationship between
electrical timescales of the background fluid and the disc.

The second case covers the interaction between two particles suspended in quiescent
fluid. When subject to an external electric field, the particles align in the direction of the
electric field while approaching each other. The effect of initial angle, electric field inten-
sity, permittivity ratio and disc radii on the trajectories of the particles are investigated.
The results are in qualitative agreement with those found in the literature.

The third case involves the sedimentation of an elliptic particle subject to different
boundary conditions. The shifting boundary condition is tested for non-electrified sedi-
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Figure 7.29: Horizontal component of hydrodynamic force (blue), electric force (red) and
resultant force applied to the ellipse of case U with boundary configurations of A (a), B
(b), C (c) and D (d) while sedimenting in an external electric field. A positive value moves
the ellipse to the right.

mentation and it is shown that there are no effects on the hydrodynamic behavior of the
elliptic disc due to the shifting boundary. Using the shifting boundary condition, long-
term simulations of the sedimentation in finite computational domains becomes possible.
The simulations in the presence of the electric field are carried out for two sets of elec-
trical properties and four different boundary configurations. The results show that both
electrical properties and the boundaries have significant effects on the trajectory of the
sedimentation.

The cases considered in this chapter show the role of the electric field in controlling
the motion of particles in fluids and the possibility of manipulating their motion through
electrical properties. There are relatively few numerical studies dealing with such cases
and those simulated using SPH are sparse. This chapter proves the capability of the pro-
posed ISPH scheme in handling this class of phenomena and paves the way for its future
use.
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Chapter 8

Conclusion

An incompressible smoothed particle hydrodynamics method for modeling immiscible
and isothermal flow of two- and three-phase Newtonian fluids has been developed. Sur-
face tension coefficients are decomposed into phase specific coefficients and implemented
in continuum surface force framework. Each phase is assigned to a unique color function
which is then smoothed out to compute surface normals, curvature and surface tension as
well as interpolating electrical and thermodynamic properties of the fluids. Perfect and
leaky dielectric models are used to describe the electrical state of the system. A fluid-
structure/solid interaction scheme based on viscous penalty method is coupled with rigid-
ity constraints to simulate the motion of rigid particles submerged in Newtonian fluids.

The equations are discretized using SPH differential operators corrected for inconsis-
tencies in particle distribution while the artificial particle displacement has been employed
to ensure uniform spread of the particles throughout the computational domain. Linked list
algorithm is used for establishing neighborhood relationship between the particles while
ghost particle method is used to impose the boundary conditions. The projection method
is used to advance the governing equations of the flow and electric field in time.

The multiphase component of the flow is tested by simulating the formation of a lens
shape, levitation of a droplet as well as spreading of a droplet on a flat surface. The results
show the importance of particle arrangement in certain test cases as well as the success of
the proposed scheme in handling two- and three-phase flows. The multiphase treatment
developed is used as a basis for the addition of the electrostatic and fluid-structure/solid
interaction components.

The electrohydrodynamic component is used to simulate Rayleigh-Taylor instability
as a basic test case combining capillary, viscous and gravitational forces. The fluids are
assumed to be leaky dielectrics and the effects of electrical properties as well as electric
field intensity on the evolution of the instability is investigated in detail.

The proposed fluid-structure/solid interaction component is tested for several config-
urations of moving rigid particles in Newtonian fluids. Translational motion, rotational
motion and their combination are tested separately to fully address the suitability of the
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method. The simulation results within the range of parameters used in this study are found
to be in quantitative agreement with literature data.

The combination of the individual elements of the numerical method is used to sim-
ulate the motion of rigid particles submerged in Newtonian fluids subject to an external
electric field. The behavior of the particles are found to be in agreement with experimental
and numerical observations found in the literature. This shows the applicability of the pro-
posed ISPH scheme in simulating such complex phenomena and paves the way for further
investigation of this relatively unexplored field in computational fluid dynamics.
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