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ABSTRACT 

 

Micromilling process has a rising demand in recent years where the production industry is 

becoming more competitive with the advancing technology. In hi-tech industries such as aerospace, 

biomedical, electronics, the increasing demand for high precise micro products with complex 

geometries create necessity to improve micro machining processes for more accurate, repeatable, 

and efficient production. 

 

Micro end milling process is relatively a new developing research area. It varies from conventional 

milling with its unique cutting dynamics due to the geometrical size reduction. In terms of the both 

micro tool and the workpiece, size reduction brings new difficulties to the process. The ratio of 

hone radius to uncut chip thickness creates a great difference between micro and conventional 

milling processes and precludes the application of conventional milling models to micromilling 

process. By the nature of the micromilling and its industries of usage, high accuracy and surface 

quality is expected in micro products. This makes the surface roughness and burr formation critical 

for micromilling process. On the other hand, since micro tools with very small radii are more fragile 

than conventional milling tools, workpiece-tool contact and cutting forces have also a remarkable 
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importance. Due to the same reason, tool costs and tool life are another significant point. All of 

these conditions make pre analysis and the parameter selection of micro end milling process 

essential for micromilling. 

 

The main aim of this research is to determine micromilling parameters and conditions for improved 

productivity and part quality by considering multiple constraints and objectives at a time, unlike 

the previous studies on micro end milling process optimization which are limited and focus to 

optimize one objective at a time. The objectives in this study are the production time and production 

cost. Production time involves the actual cutting time, which involves the calculation of material 

removal rate (MRR), tool idling and changing time and time spent without any cutting. In 

production cost, tool costs, which is related with the tool life, machine idling costs, labour and 

overhead costs are included. Production time and cost are minimized respecting certain values of 

cutting forces, burr size and surface quality constraints. The effects of parameters; cutting speed, 

feed rate, and depth of cut on these objectives and constraints were investigated. For the first time, 

parameter selection in micro end milling process is done through multi-objective optimization 

using Particle Swarm Optimization method. Optimal process parameters are proposed for 

minimum process cost and minimum process time.  

 

Keywords:  Micro end milling, Multi-objective optimization, Parameter selection, Tool life, 

Production time, Production Cost, Surface roughness, Burr height, Cutting forces 
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ÖZET 

 

Mikro frezeleme operasyonu, üretim endüstrisinin gelişen teknolojinin etkisiyle daha rekabetçi bir 

hale gelmesi ile son senelerde daha yüksek talep görmeye başlamıştır. Havacılık, biyomedikal, 

elektronik gibi ileri teknoloji endüstrilerinde, karmaşık geometriye ve yüksek hassasiyete sahip 

mikro parçacık ihtiyacının artması beraberinde mikro işleme operastonlarının daha hassas, 

tekrarlanabilir ve verimli gerçekleştirilebilmesi gereksinimini getirmiştir. 

 

Mikro frezeleme operasyonu yeni gelişmekte olan bir araştırma alanıdır. Mikro frezeleme 

operasyonu, takım ve iş parçasındaki boyut küçülmesinin sebep olduğu, kendine özgü kesme 

dinamiğiyle geleneksel frezeleme operasyonundan çok önemli farklılıklar taşımaktadır. Mikro 

frezeleme operasyonunun kullanım alanlarında, parçalarda yüksek hassasiyet ve yüzey kalitesi 

beklenmektedir. Bu nedenle, yüzey pürüzlülüğü ve çapak oluşumu mikro frezeleme için önemli 

kriterlerdir. Öte yandan, mikro frezeleme operasyonlarında kullanılan takımın çok küçük yarı çapa 

sahip olması ve dolayısıyla geleneksel freze takımlarından çok daha kırılgan olması, takım-iş 

parçası temasını ve kesme kuvvetlerini daha önemli bir hale getirmektedir. Aynı sebepten ötürü, 

takım maliyetleri ve takım ömrü önem kazanan noktalardır. Takım ucu radyüsünün kesilmemiş 

talaş kalınlığına olan oranı operasyon şartlarını oldukça değiştirmektedir ve  bu durum geleneksel 

frezeleme operasyonu üzerinde yapılan çalışma ve modellemeleri mikro frezeleme operasyonuna 

uygulamayı imkansız kılmaktadır. Bu oran ve mikro boyutlar aynı zamanda çapak oluşumuna ve 

ısı üretimine ayrı bir önem kazandırmaktadır. Bu koşullar, mikro frezeleme operasyonlarında ön 

analizin ve parametre seçiminin önemini vurgulamaktadır. 

 

Bu tez çalışmasının ana amacı, çok amaçlı eniyileme yöntemi kullanarak, mikro frezeleme 

operasyonunda parametre ve koşulların, üretim performansını ve parça kalitesini artırtmaya 

yönelik belirlenmesidir. Daha önceki yapılan bir çok çalışma oldukça sınırlıdır ve tek seferde tek 

amaç hedeflenerek eniyileme yapılmıştır. Bu tez çalışmasında üretim süresi ve maliyeti minimize 

edilmeye çalışılmıştır. Üretim süresi, asıl kesme süresi, kesme yapılmayan süre, ve takımın boşta 

çalıştığı süreleri kapsamaktadır. Malzeme kaldırma hızı hesaplamaları, asıl kesme süresine dahil 

edilmiştir. Üretim maliyeti ise takım maliyeti, ve üretim süresine bağlı olarak işgücü maliyetlerini 

kapsamaktadır. Üretim maliyetinin önemli bir kısmını takım maliyetleri oluşturur, ki bu da 
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doğrudan takım ömrü ile alakalıdır. Yüzey pürüzlülüğü, çapak boyutları ve kesme kuvvetleri ise 

belirli değerlerin altında tutulmaya çalışılmıştır. Kesme hızı, ilerleme hızı, ve kesme derinliği 

değerlerinin etkileri araştılışmış ve bu değerler optimize edilmeye çalışılmıştır. İlk defa, mikro 

frezeleme operasyonu, Parçacık Sürü Optimizasyonu yöntemi ile çok kriterli eniyileme problem 

olarak modellenmiştir. En az maliyet ve en hızlı üretim göz önünde bulundurulacak şekilde 

parametre seçimi sunulmuştur.  

 

Anahtar Kelimeler:  Mikro-frezeleme, Çok kriterli eniyileme, Parametre seçimi, Üretim maliyeti, 

Üretim süresi, Takım ömrü, Yüzey pürüzlülüğü, Çapak yüksekliği, Kesme kuvvetleri 
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1. INTRODUCTION 

 

1.1 Overview 

With the rapid technological advancements in recent years, mechanical components and parts are 

becoming tinier. Especially in aerospace, biomedical, electronics and optics industries, for the 

production of micro dies and moulds, high precision is required in miniature and complex 

structures.  

 

Many different micro machining techniques can be used to respond dimensional accuracy and 

surface quality needs such as additive techniques, lithographic processes, laser, ultrasonic etc. In 

some cases, those micro machining processes cannot be used due to the workpiece material, 

operational difficulties and expensive or time consuming solutions. Micromilling is one of the 

micro manufacturing techniques which is widely preferred when process flexibility and material 

variety is needed. It is the right solution to machine high strength workpiece materials with complex 

details. In order to maintain high precision requirements with the high process performance, 

process modelling, cutting tool and parameter selection are the key considerations. 

 

Popular usage of micro end milling in recent years accelerated the process development for 

improved process capabilities. A research on micromilling shows that the process fundamentals 

are different from conventional milling in terms of dynamics, kinematics, chip formation, heat 

generation and tool-workpiece contact [1]. The developments on micromilling are mainly 

concentrated on reducing the production cost and reducing the production time while obtaining a 

high surface quality.  

 

One of the important issues in micromilling is tool wear and tool life. Tools with diameters smaller 

than 1 mm are weaker and more expensive compared to conventional milling tools. In addition to 

wear, they can easily be damaged due to micro vibrations, excessive heat and rubbing [1]. 

Parameter selection for maximizing the tool life can considerably reduce the production cost. 

 

Material removal rate is remarkably low in micromilling since uncut chip thickness is less than few 

microns. In order to shorten production time, MRR is kept at maximum values without sacrificing 
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process quality. By the fine selection of process parameters, the uncut chip thickness should be 

kept at maximum to maximize the material removal rate [2].  

 

Excessive cutting forces may lead to early tool breakage and poor part quality. In micromilling, 

hone radius has a remarkable effect on cutting forces [3]. The effect of hone radius can mostly be 

neglected in conventional milling, since the hone radius is very small compared to other tool 

dimensions and parameters. Since conventional tools can be considered as sharp. However, hone 

radius has a considerable size in micromilling relative to the other cutting dimensions and the 

cutting forces are directly affected by the hone radius [1]. In order to avoid excessive cutting forces, 

hone radius selection is very important [4]. 

 

Other important criteria in selection of milling conditions are the burr formation and surface 

quality. Burr formation is hard to be avoided; however, it can be minimized under acceptable 

values. Excessive burr sizes cause poor part precision and high heat generation which may lead to 

early tool breakage [5]. On the other hand, surface roughness should also be controlled to maintain 

geometrical accuracy.  

 

From the manufacturer’s perspective, these conditions should be considered simultaneously; 

conditions optimizing one objective does not make sense commercially. Minimizing surface 

roughness may degrade production time or tool life, or vice versa. Therefore, product quality and 

process performances should be maximized together in micromilling operations. Conditions should 

be determined to maintain a better tool life, better product quality while minimizing production 

cost and time. 

 

As mentioned, problems in micromilling can be summarized as; premature tool breakages, high 

accuracy demand with low surface roughness and burr sizes, while maintaining low production 

cost and production time. Such problems as micromilling which include multiple conflicting 

objectives and parameters can be solved by different multi-optimization techniques. Unlike single 

optimization problems, for multi-objective problems (MOOPs), a set of feasible solutions are found 

in which all the solutions are non-dominating each other. Each of these solutions are a better 

respond to a different objective function. Considering the weight of the selected objective function 
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importance, preferred solution can be chosen among the list of the solutions by a decision maker 

(DM).  

  

In this research, the aim is to optimize micromilling process for a minimum production time and 

production cost considering the process limitations. Tool life and material removal rate (MRR) will 

be included in the calculations of these objective functions. Surface roughness, burr height and 

cutting forces are to be kept under acceptable values during process optimization for a developed 

process performance and part quality.  

 

MATLAB code is going to be developed outputting the optimized values for the cutting speed, 

feed rate, and depth of cut aiming minimized production time and cost. The algorithm is a particle 

swarm optimization algorithm, which depends on the idea of moving particles towards the best 

positioned particles. A Pareto curve is created representing particles giving the minimum 

production cost and production time. 

 

1.2 Thesis Outline 

The main objective of this thesis is to obtain process parameters for an optimized micromilling 

operation of a product considering production efficiency and part quality. MATLAB code has been 

developed for this multi objective optimization problem where experimental applications have 

been completed in order to support code outcomes.   

 

In Chapter 2, detailed literature survey about micro end milling process, multi objective problem 

solution methods and formulations of objective functions and constraints that are presented. 

 

Chapter 3 presents more unique mechanisms of micromilling process in details. In this chapter, 

size effect, minimum chip thickness, chip removal process and effects of process parameters on 

process outcomes are evaluated in order to shed a light for further formulations which are going to 

be used in formulations for problem solution. 

 

Chapter 4 will be the main chapter of the thesis in which the selected method for multi objective 

optimization problem is investigated. The objective functions and constraints will be explained in 
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details and formulations will be presented. In the last section of Chapter 4, MATLAB code 

algorithm will be explained and some parts of the code will be provided. 

 

Experimental applications and case studies will be presented in Chapter 5. Results obtained by the 

algorithm will be compared with results from standard cutting parameters. The comparisons will 

be made in terms of production cost and time, as well as surface roughness, burr formation and 

cutting forces. Predicted results from the code will also be compared to experimental results 

achieved using the Pareto solutions. 

 

In Chapter 6, summary, results and discussions will be given. Thesis conclusion and potential 

future work will be presented. 
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2. LITERATURE SURVEY 

 

2.1 Overview 

Micromilling is an emerging manufacturing field where high precision production is required. 

Findings regarding conventional milling cannot be applied to micromilling since micromilling 

gives different outcomes than expected. Researchers are trying to highlight how micromilling 

kinematics, dynamics and thermal aspects are affected by the size reduction. The purpose of this 

thesis is to optimize tool geometry and process parameters by taking multiple objectives into 

consideration. The optimization procedure considers tool life, MRR, surface roughness, burr height 

and cutting forces which are the main elements of micromilling, affecting efficiency and cost. The 

parameters which are going to be investigated are the most effective parameters on these objectives 

and constraints [6] [7], which are feed rate, uncut chip thickness and cutting speed. Micro end mill 

tool will also be investigated for optimal geometry. In this chapter, previous research studies that 

are conducted on related subjects will be presented. 

 

2.2 Tool Life  

Tool life has been a popular research area in micromilling since tool breakage is a frequently 

encountered problem when using tools in small diameters. Tool wear in micromilling is very hard 

to notice by process monitoring. Tool can break suddenly or product quality can be poor at the end 

because of the unnoticed tool wear. That is why tool wear is an important research area in 

micromilling to increase process quality. It is observed by Rahman et al. [8] that high cutting 

temperatures cause rapid tool wear and the cutting forces should be kept minimum. In another 

article, Tansel et al. [9] stated that high feed rates causes abrasive wear which results in increased 

cutting edge radius and ploughing force. Martin et al. [10] concluded that the while machining 

aluminium, higher cutting speeds increases tool life.  

 

Recent studies on tool life mostly depend on experimental curve fitting implications to a very 

earlier and well-known modelling of Taylor [11]. In later studies, researchers generally add 

unknown exponents with specific parameters and implement experimental data to Taylor’s 

formulation. In one of those researches, Wu [12] estimated tool life by surface response 
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methodology and took feed rate, 𝑓 and depth of cut, 𝑑 into consideration. Later on, Kuljanic and 

Solaja [13] stated that the depth of cut is not too important to consider in such equation, depending 

on the fact that the exponent of depth of cut is found out to be negative in many researches.  

 

There are also other conditions and parameters which should be considered to maximize tool life. 

Especially for the hard workpiece materials, tool life is limited due to high wear rate. Kajaria [14] 

worked on the tool coatings and lubrication conditions to increase tool life in micromilling. He 

investigated the tungsten carbide end mills coated with TiN, Ti-AlN, Ti-CN under dry, mist (2210 

EP and blasercut mist) and wet (blasercut flood) conditions. Aramcharoen et al. [1] stated that the 

cutting edge of the tungsten carbide micro end mills is generally broken when the coating layer is 

peeled off. Among the coating materials, TiN is found to be more protective compared to TiAlN, 

TiCN, CrN and CrTiAlN. 

 

Other approaches include investigations of cutting parameters which increase tool life. Rahman et 

al. [8] suggested that the increase in depth of cut increases the tool life while increase in cutting 

speed decreases the tool life. His suggestion is an expected one since the high cutting speeds causes 

more heat generations; similarly Liu [15] stated that the high cutting temperature speeds up the tool 

wear rate.  

 

Guimaraes et al. [16] used data acquisition techniques and demonstrated that there is a high  

correlation between the cutting forces and tool wear. Their results agreed with the Taylor’s tool 

life equation [11]. Twardowski et al. [17] investigated tool wear and tool life of coated carbide and 

cubic boron nitride tools. They used different tool geometries and found out that after a critical 

cutting speed, tool life has a sudden decrease. The decrease is at higher cutting speed when using 

ball end mill cutters than toroidal milling cutters. They also experienced that boron nitride edges 

can resist to higher cutting speeds. 

 

It is shown that the studies on tool life have a wide range of topics; from geometrical analysis to 

coatings etc. Cutting parameter analysis is a common and practical method for maximizing tool 

life in many applications. 
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2.3 Material Removal Rate 

Material removal rate (MRR) is an important performance parameter in micromilling which affects 

process cost and production rate. In roughing operations, MRR has the primary importance to 

increase process performance.  

 

One of the reasons to choose micromilling over other micro machining techniques is that it has 

relatively high MRR. However, due to the micromilling process nature, there are many limitations 

for obtaining higher MRRs, such as small uncut chip thickness due to weak cutting edges and tools. 

MRR can be considerably increased by adjusting the process parameters.  

 

The researches on MRR in micromilling generally focuses on optimization of cutting parameters 

to increase MRR. Periyanan et al. [18] used Taguchi method to optimize cutting parameters to 

achieve high MRR considering the spindle speed, feed rate and depth of cut. They found out that 

the optimal parameter combination to maximize MRR is medium cutting speed, high feed rate and 

high depth of cut. 

 

One of the other approaches to maximize MRR is by federate scheduling. Merdol and Altintas [19] 

maximized MRR by calculating maximum allowed federate and spindle speed for each cutter 

locations for an oblique cutting operation.  

 

Tool life and process performance criteria, such as surface roughness and chatter, limit MRR. 

However, increasing MRR while staying under the limitations is possible through optimizing 

process parameters. 

 

2.4 Surface Roughness 

Especially in finishing operations, surface roughness carries primary importance for increased part 

quality. For micromilling, high precision products necessitate good surface finish. The research on 

surface roughness is generally on studies with surface roughness modelling or parameter selection. 

Studies which aim to optimize process parameters to decrease surface roughness shows that unlike 

conventional milling, decreasing the feed rate, and thus chip thickness, may cause ploughing which 
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would result in increasing the cutting forces and the surface roughness in micromilling [20] [21] 

[22]. 

 

Many researchers studied surface roughness because of its high importance in micromilling. 

Different surface roughness models exist, considering the cutting duration, chip formation 

dynamics, tool and process geometries, and the dynamics special to micromilling such as minimum 

chip thickness and ploughing effect. In all modelling attempts, it is observed that the most affecting 

parameters are the minimum chip thickness, ploughing mechanisms and the feederate among the 

cutting parameters [23] [24]. In another research, it is claimed that the increase in the cutting edge 

radius also increases the surface roughness and the critical chip thickness, which is the minimum 

chip thickness value that the tool is able to remove which is usually around 20-40% of cutting edge 

radius [25]. Another research about micromilling of aluminium, supports the previous study by 

claiming the ratio of minimum chip thickness-to-cutting edge radius as 30% [26].  

 

Surface roughness is evaluated from different aspects in different studies. Some studies try to 

optimize average roughness (𝑅𝑎) which is the arithmetic average of the absolute values of the 

profile heights through the evaluation line, whereas some studies consider the average maximum 

length of the profile (𝑅𝑧), and some studies try to minimize maximum height of the profile, (𝑅𝑡). 

In his thesis, Hatipoglu [27] investigated surface formation and affecting parameters to model 

surface roughness. After his experimental studies, he found out that the depth of cut increases 

cutting temperature and chip formation. As the feed rate and cutting speed increases, burr formation 

is reduced. Deriving from process geometry, he has modelled and verified the surface roughness 

which will be given in details in Chapter 4. 

 

2.5 Burr Formation 

Burr is initially defined by Ko and Dornfeld [28] as the workpiece extension on its edge or surface 

which is not a desired geometry. Burr formation is more important in micromilling since it is more 

essential to achieve product precision and accuracy in miniature parts. The dimensional accuracy 

and surface quality highly demand on burr formation. It may be impossible to achieve totally burr-

free parts in many applications, but burr sizes can be reduced under acceptable limits. 
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Figure 2.1 - Schematics of poisson burr, tear burr and roll-over burr [22] 

Researches classify burrs in terms of their cause, location, shape and formation mechanism. There 

are three main types of burr formation, as shown in Figure 2.1, caused by different reasons such as 

bulging of the material at the sides when compressed (poisson burr), tearing of the material (tear 

burr) and bended chip rather than sheared (roll-over burr) which is the most common of all [29]. 

In terms of locations, burrs are classified according to their locations (see Figure 2.2) where exit 

burr is the most common. 

 

The measurement of the burr sizes also vary from study to study. Some studies measure burr 

heights, some measure burr width or the thickness, which are the most common detection methods. 

There are also studies measuring burrs with their volume or even the hardness. Stylus method, 

metallographic profile, optical microscope and SEM are some of the devices used to measure burr 

sizes. 

 

Burr formation depends on the workpiece material, tool geometry and process parameters. There 

are different approaches to the complex mechanisms of burr formation and minimization methods 

in literature either by controlling or preventing, or removing as a separate process. Chu and 

Dornfeld [30], suggest different ways to minimize burrs for various workpiece materials. Gillespie 

and Blotter [31] examine the effect of process parameters on burr formation and formation 

mechanisms of different burr types. To control burr formation, Kou et al. [29] employed supporting 

material on top of the workpiece and increased workpiece rigidity. Komatsu et al [32] examined 

the grain size effect on burr formation and applied micromilling tests on stainless steel. They argued 
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that it is possible to minimize burr by decreasing grain sizes. Saptaji et al. [33] investigated the 

effects of side edge angle and effective rake angle on top burr formation. There are many other 

studies work on the process parameter effects on burr formation [34] [6]. Chen et al. [35] observed 

burr formation in slot milling process while using titanium alloy as the workpiece material and 

modelled burr formation mechanism. Schueler et al. [36] also used titanium alloy and examined 

micro end milling operations. 

 

 

Figure 2.2 - Types of burrs in end milling [5] 

 

An extensive research on burr formation in micromilling [5] concludes that the burr formation is 

the result of three mechanisms; lateral deformation of the material, bending and tearing of the chip. 

It is observed that the depth of cut and the tool diameter are the main parameters affecting burr 

height and thickness, but ANOVA analysis shows that number of flutes, feed rate and their 

interaction determines the 95% of burr height and burr width [5]. For the minimization of the burr 

size, high feed rates, tool diameter and number of flutes should be selected. From process geometry, 

they derived a model predicting burr height with a low accuracy within 0.65-25% [5]. 

 

Besides the surface roughness, minimum chip thickness and the ploughing effect also increase the 

burr formation. As the federate increases, it is observed that the burr formation decreases [22]. 

Weinert et al. stated that the ratio of minimum chip thickness to tool cutting edge radius increases, 

burr formation also increases [37]. 
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The effect of machining strategies on burr formation was investigated by Cardoso and Davim [38] 

who tested constant overlap spiral, parallel spiral and parallel zigzag techniques. The best burr 

height and surface roughness performances are achieved with constant spiral technique. 

 

2.6 Cutting Forces  

In micromilling, the control of cutting forces is very important due to flexible and weak cutting 

tool which may easily break.  Force control can also provide a better tool life and good surface 

finish [27]. Micro tools are more prone to be affected by cutting temperatures and wear. It is 

observed by Rahman et al. [8] that high cutting temperatures speed up the tool wear rate and the 

cutting forces should be kept minimum. High cutting temperatures and a worn tool distorts the 

surface quality. Therefore, cutting forces need to be kept under critical values in micromilling for 

better process performances. 

 

Due to the substantial size reduction from macro milling to micromilling, the process mechanisms 

totally differ from each other. The uniqueness of micromilling creates necessity to the unique 

mechanism modelling for micromilling. There are different approaches to model micromilling 

forces in the literature. Due to the size reduction effect, tool hone radius gains importance and it 

cannot be neglected as in macro-milling. It is proven that the hone radius has a great effect on 

cutting forces in micromilling [21]. Kim and Kim [39] modelled the cutting forces with considering 

the hone radius and ploughing mechanism. Bissacco et al. [40] also developed a cutting force model 

by calculating force components acting on the finite number of elements of the tool.  

 

There are other approaches such as dividing the workpiece material into regions according to the 

type of the material deformation mechanisms. These regions are named primary, secondary and 

third deformation zones [41] as in Figure 2.3. This theory is called slip-line field theory. For 

rounded edge cutting tools, Fang [42] developed another cutting force model by using the slip-line 

field theory. Altintas et al. [43] developed an analytical prediction modelling. They also used slip-

line theory for the prediction of material and friction effect on chip formation.  

 



 12 

 

Figure 2.3 - Slip-line Field Theory [41] 

There also mechanistic approaches which predicts cutting forces in micro end milling considering 

size effect, minimum chip thickness and ploughing mechanism [44] [45] [46] . For the investigation 

of the ploughing mechanism, they separated the cutting mechanisms as shearing dominant and 

ploughing dominant which changes with the varying chip thickness due to the trochodial path of 

the tool.  

 

Another modeling approach is the finite element analysis (FEM). Afazov et al. [47] used FEM 

analysis for micro end milling by using ABAQUS/Explicit. By using FEM approach, he included 

the material behaviour in his modelling. 

 

Recently in his thesis, Hayri [3] developed a thermo-mechanical model which predicts cutting 

forces in micromilling by considering primary, secondary and third deformation zones separately 

due to unique deformation mechanisms taking place. When we consider the newly formed 

workpiece surface, cutting force is still observed even though shearing does not take place. This 

force is due to the continuous tool-workpiece contact in third deformation zone and the ploughing 

mechanism. In another work [48], they investigated the stagnation point, which separated the newly 

formed surface and chip formation. They stated that under stagnation point, peak in cutting force 

measurements are due to ploughing mechanism. Ploughing force has a high contribution to the 

total cutting forces.  
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2.7 Tooling Performance: Material, Coating, and Geometry Design 

Small tool size may lead to sudden tool breakage in micromilling. Studies on tool selection includes 

tool geometry design and application of coatings. Tools in micromilling should be chemically 

stable under high temperatures. Micro tools are generally made up of high speed steels (HSS), 

carbide, ceramics, cubic boron nitride (CBN) or diamond (PCD). The performance of micro tool 

materials and their usage on different workpiece materials are listed by Childs [48] as in Error! 

Reference source not found. and Table 2.2. From the tables, the tool materials can be listed from 

the worse to the best as; HSS, carbide, ceramics, CBN and diamond. Of course, tool cost increases 

with the same order as well.  

 

Table 2.1- Tool material performances [48] 

 

 

 

Table 2.2 - Tool materials and their applications on workpiece materials [48] 
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The hardness of the tool is not related with the tool wear resistance [49]. For instance, with tungsten 

carbide tools, generally high wear rate is observed. Coatings are applied on tools for more wear 

resistance and they may also provide lower friction between the tool and the workpiece. 

Aramcharoen et al. [1] investigated the effect of different coatings on tool wear and surface finish. 

They found out that TiN coating provides the longest tool life and the best surface quality among 

CrN, TiCN, TiAlN and CrtiAlN. 

 

Sooraj and Mathew [7] used Taguchi’s orthogonal array L18 to improve surface quality and top-

burr width. They investigated the effects of tool type, cutting speed, feed per tooth and the axial 

depth of cut. Their result showed that top burr is higher in up milling operation and TiN coating 

created more top burr than an uncoated tool. However, tool with the TiN coating improves the 

surface quality. They saw that the increasing spindle speed and the feed per tooth caused more top 

burrs. Decreasing axial depth of cut also increased burr formation and it has more dominant effect 

on burr formation than other cutting parameters. On the other hand, increasing the spindle speed 

improved the surface finish, while decreasing the feed rate improved the surface finish.  

 

With the right selection of tool geometry, tool stiffness can be increased further. By Finite Element 

Analysis, Li [50] claimed that the negative rake angle, and low helix and relief angle can lower 

down the maximum stress on the tool. Fang et al. [53] also studied the tool geometry effects on 

tool wear. They tested different tool types such as two-flute end mills, triangle-based end mills and 

semicircle-based (D-type) end mills as shown in Figure 2.4. Among all, D-type end mills are found 

out to be most rigid one and showed better cutting performances. Bao and Tansel [54] investigated 

the tool run-out effects on cutting forces. They observed that tool run-out causes force fluctuations 

which can be avoided either by using collet-type tool holders or aligning tool cutting edges 

carefully with the setscrew at 90o. 

 

For micro end mills, Aurich et al. [54] proposed a new geometrical with the aim of producing tools 

which provide good chip formation and removal, cause low cutting forces and friction with newly 

formed surfaces. Torres et al. [55] analysed the performance of different coatings on micro end 

mills. They concluded that diamond coatings decrease friction and chemical inertness especially 
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for Aluminum. Uhlmann and Schauer [56] conducted dynamic load and strain tests on micro end 

mills and presented a new geometry. Cheng et al. [57] also designed and developed micro straight 

edge end mills to machine hard and brittle materials. 

 

 

 

Figure 2.4 - (a) Two-flute end mills, (b) Triangle type end mills with a straight body, (c) D-type end mills with a straight body, (d) 

triangle type end mills with a tapered body, and (e) D-type end mills with a tapered body 

 

There are also some important studies on tool deflection. The effects of tool deflection in 

conventional milling can be neglected for some cases. However, for micromilling operations, tool 

deflection causes noticeable problems such as ruined surface forms. In order to avoid ruining 

surface quality, there are many studies in literature on the modelling of tool deflection. Depince et 

al. [55] tried to compensate tool deflection errors by using mirror method. Another model by 

Zeroudi et al. [56] is a FE Model which also compensates tool deflection by using mirror method. 

Another FE model by Mamedov [57] has been developed which estimates the instantaneous 

deflection of the tool by taking cutting forces as distributed loads on flutes. Geometrical models 

have been developed by Larue [58] and Ryu [59] which estimate form errors in sidewall machining.  

 

One of the most popular models of tool deflection include cantilever beam model. Kim et al. [60] 

predicted tool deflection and three-dimensional error with cantilever beam representation. Rao and 

Rao [61] also used cantilever beam model and compensated surface errors. For force estimation, 

they used a mechanistic approach. Rodriguez and Labarga [62] considered the tool as a cantilever 

beam, too and they examined tool deflection effects on cutting forces. In their instantaneous chip 

thickness calculations, they’ve added the effect of tool deflection.  
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2.8 Process Parameters 

A research on adjusting spindle speed, feed rate and depth of cut to achieve maximum MRR is 

conducted [18]. They observed that higher MRR can be obtained at medium cutting speed, high 

feed rate and depth of cuts.  

 

Cutting speed, feed per tooth, axial and radial depth of cut are tested in a research [66] to investigate 

their effects on tool life while side milling of Ti-6Al-4V with a cemented carbide tool. Among all, 

cutting speed has the greatest influence on tool life, followed by depth of cuts. At small depth of 

cuts, friction between the tool and the workpiece increase, leading to hear generation and tool wear. 

The tools in micromilling generally undergo a sudden breakage due to the increasing cutting forces 

rather than wearing in time [9]. Additionally, tool wear rate can increase if the cutting temperature 

increases, for this reason, cutting temperature should be kept under control. Cutting temperature 

can be controlled by adjusting cutting parameters to reduce the friction and also by lubricants. 

Effects of cutting conditions such as lubricant types are also experimented and it is resulted that 

the misting rather than flooding provides a longer tool life and 2210 EP mist shows better results 

than blasercut mist [14].  

 

It is experimented on a titanium alloy that the most effective cutting parameter on surface 

roughness, 𝑅𝑎, is the feed per tooth, 𝑓𝑡 [67]. When the 𝑓𝑡 is increased, surface roughness decreases 

as half of the case when the spindle speed or the axial depth of cut is increased. Thus, clearly 𝑓𝑡 is 

determined as the dominant effective parameter for the surface roughness. They concluded that the 

lowest surface roughness is the outcome of the process with the high spindle speeds and feeds, and 

medium axial depth of cuts. In another research [23], surface roughness is observed to be the lowest 

at small tool edge radius and high feed rates. For aluminium, it is experimented that when the depth 

of cut is increased, surface roughness increases [27]. The reason can be shown as the increase in 

the depth of cut, also increases the cutting forces, which causes tool to be deflected and surface 

roughness to get worse. On the other hand, it is also observed that the increase in the cutting speed 

provides better surface quality up to a point, bounded by the vibration formation. 

 

Burr formation is a critical consequence in micromilling which affects the surface quality and 

geometrical accuracy. Generally, burr sizes are bigger at the entrance and at the exit way of the 
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tool. Workpiece material and tool geometry can provoke favourable condition for burr formation, 

however cutting parameters can also lead to important burr development. As mentioned earlier, the 

large tool edge radius-to-chip load ratio significantly increases burr sizes. In a study [67] examining 

the effects of spindle speed, axial depth of cut and feed per tooth on burr formation for a titanium 

alloy, axial depth of cut is found to be the slightly higher effective parameter compared to other 

parameters. They achieved lowest top burr sizes at high spindle speed and axial depth of cut, and 

low feeds. For aluminium, it is observed that the spindle speed has a decreasing effect on burr 

formation [27]. When the same test are applied on a stainless steel workpiece, similar to aluminium, 

it is observed that the increase in the feed and the cutting speed provide smaller burrs, and the 

increase in the cutting depth caused high burr formation. However, as a material, stainless steel 

caused less burr formation than aluminium due to its lower ductility.  

 

It can be concluded that, for burr formation mechanism, ploughing is an important phenomenon. 

Change in parameters that increase ploughing, such as a decrease in feed rate, also increases surface 

roughness and burr formation. As the feed rate increases, ploughing is lowered, so as the surface 

quality gets better and less burrs form. For the ductile materials, minimum chip thickness value is 

higher. Burr formation and higher surface roughness are observed at lower chip thicknesses. 

Increase in the axial depth of cut deteriorates the burr formation and the surface roughness.  

 

Cutting force is directly affected by many cutting parameters such as feed per tooth, cutting speed, 

depth of cut, hone radius and helix angle [68]. As mentioned earlier, due to the trochodial path of 

the tool, chip thickness varies during the material removal process. As the chip thickness changes, 

cutting force also changes accordingly.  

 

Another variable that should be considered for the development of milling performances is the tool 

geometry. The most effective parameters regarding the tool geometry are the cutting edge radius, 

helix angle and the number of the flutes. It is found out that the decrease in the flute number of the 

tool or the decrease in the helix angle increases the cutting forces and the surface roughness, and it 

also creates a more non-uniform surface topography [69]. As the flute number or helix angle 

increases, the volume of the tool in the workpiece goes down, which provides a uniform topology. 

It is also found out that the most dominant parameter effecting the average surface roughness, 𝑅𝑧, 
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is the tool run-out. The effect of the rake angle and the relief angle is found to be less effective but 

in a complex relation [70]. At the low relief and helix angles, process performance is high. When 

the relief angle is high, better performances are achieved at high helix angles. Tools with variable 

helix angles are very important to observe better performances. These tools are mostly designed to 

enhance chatter stability. Also, tool side edges can be tapered to increase side edge angles. When 

the side edge angles are increased, it is observed that the burr sizes are reduced [71]. 

 

2.9 Multiple Objective Optimization Methods 

Multi-objective optimization is used in problems when there is more than one objective with 

contradicting optimal solutions. For an optimization of a micromilling process, minimal cost, 

maximal quality, in a minimal time requires different optimal solutions, some of which sacrifices 

one objective over the other. Thus, determining cutting parameters for specified objectives can be 

treated as a multiple objective problem. 

 

For multiple objective optimization problems, there is no single solution satisfying all the 

objectives simultaneously. A better solution exists in the solution set, which optimizes a specific 

objective while degrading another one. Therefore, set of relatively better solutions are tried to be 

found which is called Pareto optimal solutions or non-dominated solutions [63]. In Pareto optimal 

solution set, none of the optimal solutions dominate each other, but the optimal solution is chosen 

by a decision maker (DM), considering the priority of the objectives. Multiple objective problems 

are found in the general form as [64]; 

 

Minimize/Maximize  𝑓𝑚(𝑥),                          𝑚 = 1, 2, … ,𝑀; 

                      subj. to  𝑔𝑗(𝑥) ≤ 0;  𝑗 = 1, 2,… , 𝐽; 

    ℎ𝑘(𝑥) = 0;  𝑘 = 1, 2,… , 𝐾; 

    𝑥𝑖
(𝐿)
≤ 𝑥𝑖 ≤ 𝑥𝑖

(𝑈)
; 𝑖 = 1, 2,… , 𝑛.                            (2.1)  

 

where 𝑓𝑚(𝑥) is the objective function which can be aimed to be minimized or maximized, x is the 

decision variable in the feasible set of 𝑋 = (𝑥1, 𝑥2, … , 𝑥𝑛)
𝑇, 𝑔𝑗(𝑥) and ℎ𝑘(𝑥) are the constraints to 

be satisfied by the solutions, and finally 𝑥𝑖
(𝐿)

 and 𝑥𝑖
(𝑈)

 are the lower and upper bounds 
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consecutively. These bounds represent the lower and upper limits that values should take due to 

the physical or mechanical limitations. 

 

 

Figure 2.5 - (a) Dominated solution in two objective space; (b) The Pareto front of a solution set in two objective space [65] 

 

If there is no other solution dominating the vector, 𝑥, then 𝑥 is a Pareto optimal solution. MOOPs 

methods try to achieve Pareto optimal solutions, then decision maker chooses the solution 

according to preference weights of the objectives.  

It is hard to achieve Pareto optimal solutions if the solutions are distributed non-continuously or in 

non-convex spaces [66]. In many engineering problems, discontinuous solution sets exist. There 

are many different methods to solve for the solution sets such as weighted methods (weighted sum, 

weighted min-max, weighted product, exponential weighted), goal programming methods, 

bounded objective methods, -constraint methods, meta-heuristic/stochastic methods etc. 

 

Methods to solve MOOP can be classified as no preference methods, a priori methods, a posteriori 

methods and interactive methods. These classification is done regarding the decision making 

process. In no preference methods, there is not a decision making step among the solution set. In a 

priori methods, which are commonly used before 1900s, preference information is defined 

beforehand and then the better solution is chosen accordingly. Weighted sum methods, -constraint 

method, weighted metric method and goal programming are types of a priori methods. In each run, 
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these methods find one Pareto optimal solution. These methods generally convert the multiple 

optimization problem into single optimization problem and then use deterministic or stochastic 

methods to give solutions. In posteriori methods, which are commonly proposed after 1900s, DM 

choses the preferred solution from the set of Pareto optimal solutions. These methods find many 

Pareto optimal solutions in one run. A posteriori methods consist of mathematical programming 

based methods and evolutionary algorithms. Mathematical methods can be subdivided into normal 

boundary intersection (NBI), modified normal boundary intersection (mNBI), normal constant 

(NC) etc. and evolutionary algorithms can be subdivided into multi objective generic algorithms 

(MOGA), non-dominated sorting generic algorithm-II (NSGA-II), strength Pareto evolutionary 

algorithm 2 (SPEA-2), particle swarm optimization (PSO) etc. In recent years, these methods are 

very popular due to their ability to achieve many Pareto optimal solutions in one run, and having 

no need to make assumptions on the objective functions  [67]. In interactive methods, DM guides 

the Pareto optimal solutions by making preferences at each iteration. Additionally, hybrid models 

are generated by merging different algorithms. 

  

In literature, multiple objective optimization methods are used in many different areas including 

micromilling process optimization. Jithin et al. [68] used generic algorithm on MATLAB to 

maximize MRR and minimize tool wear rate in micro ED milling. Studies in micromilling includes 

Yang et al. [69], who used generic algorithm (GA) for simultaneously decreasing the production 

cost and the production time. They determined the machine power, cutting force, machining speed, 

feed rate and the surface roughness as their constraints. Li et al. [70], optimized two objectives in 

micro end milling; the first one is to minimize production time and consumed tools, second one is 

to minimize production time, surface roughness and the residual stress. They used NGSA-II and 

minimized the values by 5%. Natarajan et al. [2] worked on achieving the maximum MRR and 

minimum surface roughness in micromilling using response surface methodology. Deb et al. [71] 

compared the methods and stated that NSGA-II performs better results than strength pareto 

evolutionary algorithm (SPEA) and pareto archived evolution strategy (PAES). 

 

Jha [72] used geometric programming (GP) and resulted that the GP is time-consuming. Wang et 

al. [73] developed a hybrid algorithm, combining GA and simulated annealing (SA) and optimize 
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machining parameters. By the help of local selection strategy of SA, they were able to eliminate 

premature convergence of GA.  

 

As stated earlier, MOOP methods generally converts the problem into single objective optimization 

problems. The conversion creates problems when the solutions are distributed discontinuously or 

in a non-convex area [74]. In recent years, particle swarm optimization (PSO), developed by 

Kennedy and Eberhart [75], is widely used in engineering problems due to its simplicity and 

efficient computing. It has a unique searching mechanism which gives feasible solutions for 

engineering optimization problems.  

 

PSO became popular in recent years, especially it is a very successful algorithm for the solutions 

of the problems with the real decision variable values [65]. The reasons why PSO became so 

popular can be summarized as: first, it has a simple logic and easy implementation to different 

problems; second, it has ability to give very good results in a short time [65]. It can be implemented 

to many different areasThere are many implementations of PSO to milling optimization problems 

in recent years. Natarajan et al. [2] used PSO to optimize cutting parameters and predict tool life. 

Thepsonthi and Ozel [76] also used PSO to find optimum parameters for minimum surface 

roughness and burr formation. In his dissertation, Thepsonthi [77] chose PSO to optimize 

micromilling process due to its efficiency and easy implementation, as he stated. Yang et al. [69] 

used PSO on a fuzzy global and personal best mechanism, which is called F-MOPSO. This 

algorithm avoids data clustering and therefore provides more effective results. In the study, 

researchers considered the statement by Deb et al. [71], which indicates the superior performance 

of NSGA-II, and compared PSO with the solutions they achieved by using NSGA-II. In the case 

studies they have made, they concluded that the NSGA-II failed to cover all Pareto optimal 

solutions and also gave solutions which are not true. For the all case studies, F-MOPSO performed 

better than NSGA-II. 
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2.10 Objective and Motivation 

The objective of this study is to optimize micro end milling process parameters with the purpose 

of production time and cost minimization considering surface roughness, burr formation and 

cutting forces. By using MOPSO algorithm, multiple objectives are minimized for better 

production performance and part quality. Tool geometry and some parameters for the part to be 

machined are entered as an input to the algorithm. The algorithm calculates surface roughness, burr 

size and cutting forces for each combination of random cutting parameters and keeps them in 

acceptable limits while minimizing production cost and time. The output of the algorithm is a 

Pareto curve of minimized objective function values and solution set of decision variables, which 

are determined as the cutting speed, feed rate and depth of cut, which are the most effective 

parameters on constraints. These decision variables are selected depending on the previous studies 

presented in the previous section. 

 

Many studies have been conducted on micromilling process optimization. These studies generally 

aim to minimize or maximize a certain criterion such as surface roughness or burr height. There 

are also multiple objective optimizations using some other techniques. This study is the first 

implementation of MOPSO algorithm on micromilling. It is also the first time of multiple objective 

optimization considering many constraints, offering a full solution for better production 

performance and part quality. 
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3. UNIQUE MECHANISMS OF MICROMILLING 

 

3.1 Fundamentals 

In today’s industry, micromilling is a rapidly emerging manufacturing process on account of its 

high precision capability and wide applicability in various industries. Micromilling can be used to 

manufacture high strength workpiece materials with complex geometries in tight dimensional 

tolerances where other micro machining techniques (additive manufacturing, lithography etc.) 

cannot be used. Furthermore, micromilling has much higher material removal rate and it is a 

flexible manufacturing method for customized products compared to other micro machining 

processes. 

 

Conventional milling is a familiar production process which is the shaping of the workpiece with 

a rotating cutting tool by removing chips. In micromilling process, tools, workpiece and the target 

product details are scaled down by ~1%. As the process precision is increased compared to 

conventional milling, researchers try to highlight kinematics, dynamics and thermal effects of chip 

formation in micromilling and how they are affected by the size reduction. Since tool failure is a 

common problem in micromilling, modelling of the process, selection of the tools and the 

parameter carry a crucial role. Proper selection of tool geometry, cutting speed, depth of cut and 

feed rate will provide improved tool life, surface roughness, cutting forces, burr formation, process 

time and cost. 

 

Micro end milling is generally used in the machining of metals and polymers. Hard to machine 

metals and their alloys are widely used in miniaturized geometries. Materials with biocompatibility 

such as titanium alloys and steel have a popular usage in medical industry. Titanium alloy is also 

widely used in aeronautical materials due to their high stiffness, oxidation and corrosion resistance. 

However, titanium alloys have low thermal conductivity; when heat is generated during the cutting 

process, it is hardly dissipated from the workpiece. Rapid tool wear and geometrical accuracy 

become a significant problem. Aluminium is also a common workpiece material for micromilling 

applications. Even though aluminium is a soft metal, because of its high ductility, burr formation 

is very high. Thus, it is hard to obtain good surface finish when machining aluminium. 
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There are various types of micromilling tool geometries including end mills, ball-nose mills. Tool 

cutting edge has a significant effect in micromilling since the cutting edge radius has a notable 

value (normally 1-5 m) due to miniature geometries. Tool materials are commonly tungsten 

carbide or diamond and different types of coatings exist such as TiAlN, AlCrN, TiCN, ZrN etc.  

 

 

Figure 3.1 - Nanofocus image from a flute of a 2mm micro end mill 

 

3.2 Minimum Chip Thickness and Ploughing Effect 

The major difference between conventional milling and micromilling arises from the size 

reduction, as noted before. The relation of process geometry and tool geometry changes 

considerably. With the micro tools having diameters less than 1mm, tool breakage under high chip 

loads are frequently encountered. To avoid tool breakage, chip thickness in micromilling are 

generally few hundreds of microns. Since the uncut chip thickness, 𝑡0 is very small; tool edge radii, 

𝑟𝑐, cannot be ignored. So the tool is not considered ‘sharp’ as in conventional milling, as shown in 

Figure 3.2 and the contact is analysed between the tool and the clearance face of the workpiece.  

 

Under a critical uncut chip thickness value, the material is compressed under the tool and no chip 

forms. After tool passes, it recovers back, so only elastic deformations exist [78]. In this case, the 

shear energy and the cutting force are very high. Right at the critical value, which is denoted as 

minimum chip thickness, 𝑡𝑐, tool starts to remove chips from the workpiece by mechanical shear 

force [79]. Still, there is elastic recovery in some portion. When the uncut chip thickness is higher 

than the minimum chip thickness, the material is removed as a chip. 
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When the uncut chip thickness value is below minimum chip thickness, only ploughing force exists. 

To investigate chip formation and ploughing effect, the ratio of minimum chip thickness to the 

cutting edge radius (hone radius) is taken as a basis. As the tool gets sharper, chip formation starts 

at lower minimum chip thickness values. Thus, if the aim is to remove a very thin layer from the 

workpiece, the tool needs to be as sharpest as possible, which is limited due to the tool production 

limitations and to the grain sizes. When the tool edge radius is higher, ploughing occurs at smaller 

chip thickness values. A study shows that the minimum chip thickness values ranges approximately 

between 20-40% of hone radius [25]. Ploughing force increases together with the cutting forces 

and surface roughness. Large burrs and tool wear are observed due to ploughing force, which is 

unwanted [20] [21]. 

 

Due to very low uncut chip thickness, another phenomenon emerged is the negative rake angle. 

When the ratio of minimum chip thickness-to-hone radius is equal or less than 1, the rake angle 

becomes negative. Negative rake angle leads to multiple material phases during the cutting process 

[80]. Existence of negative rake angle has significantly affects the cutting process which brings 

necessity to consider springback. Liu et al [81] stated that the size reduction in micromilling affects 

the cutting force, chip thickness, chip formation and surface quality. 

 

 

Figure 3.2 – (a) Macro-milling; (b)Micromilling [1] 

 

On the other hand, size effect also changes the relation between the process geometry and grain. 

Due to the size reduction and sensitivity of the process and the tool, grain structures cannot be 



 26 

neglected too. An average uncut chip thickness can have the same size with a grain as demonstrated 

in Figure 3.2. In this case, as it is much convenient to consider the process homogeneous in 

conventional milling, heterogeneity of the process comes forward in micromilling. When the tool 

is removing grains as it moves, due to the heterogeneity of the grain structure, cutting force 

fluctuates in time. 

 

The uncut chip thickness to the tool cutting edge radius is essential in micromilling for the chip 

formation processes. For a chip formation without ploughing effect, the ratio of minimum chip 

thickness-to-hone radius needs to be above 1, in order to have a positive rake angle. When the rake 

angle is negative, ploughing force exists, which causes higher cutting forces and surface roughness. 

 

The value of the ratio is examined in many researches for micromilling. Basuray et al. claimed that 

the ratio needs to be between 0.11-0.16 when the workpiece material is soft aluminium or mild 

steel. In another research, the ratio of the minimum chip thickness to the hone radius is said to be 

1/20 [82]. In other researches, this ratio is agreed to be between %20-%40 [25]. 

 

3.3 Chip Removal Process and Consequences 

In milling process, during chip removal, chip thickness is variable. As the tool enters the workpiece, 

the chip thickness increases from 0 to 𝑓𝑡 due to the trochodial path of the tool. Because of the 

minimum chip thickness phenomenon in micromilling, ploughing takes place at each time a tooth 

enters the workpiece. Until the tooth reaches the minimum chip thickness value, no chip forms. 

Consequently, as tool moves, it leaves uncut portions at lateral surface which causes burrs to form.    

 

Ploughing due to minimum chip thickness limitation also has an effect on the basal surface. In 

consequence of manufacturing capabilities, tools edges cannot be produced as sharp as to neglect 

hone radius in micromilling. In fact, micro tools have considerable hone radius to chip thickness 

ratio, as mentioned earlier. Because of the hone radius, tools remove the workpiece at the base in 

an arc-like profile. Thus, ploughing also takes place at basal surface of the workpiece and chip 

formation will not occur properly. It is investigated that the newly formed workpiece surface will 

be affected and formed with elastically deformed uncut material [23]. As the tool moves in a 

trochodial path, the following teeth will pass from the newly formed surface by the first cutting 
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tooth. When the fact that the residual materials will probably be smaller than minimum chip 

thickness value, following teeth will be lapping the surface material and the surface quality will be 

affected by the geometry of the cutting process. Plus, tool will be deflected by the excessive force 

evolving in the cutting direction and the contact geometry of tool entering the workpiece will be 

changed. As a result, chip profile will change and the friction between the rear tooth and the newly 

formed surface will diminish. 
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4. OPTIMIZATION OF MICROMILLING 

 

4.1 Multiple Objective Particle Swarm Optimization (MOPSO) 

Particle Swarm Optimization (PSO) is initially proposed by Kennedy and Eberhart in 1995 [85]. It 

is a population based heuristic global optimization method. Originally, it is modelled on the social 

behaviours of animals and insects, including bird flocking, fish schooling etc. Later on, the model 

attracted many attentions from various fields due to its simplicity and efficiency in computing and 

it is adapted to solving optimization problems.  

 

PSO is one of the evolutionary algorithms. Evolutionary algorithms have three main processes in 

common [86]. In the first step, they all begin with random initialization of the individuals. In the 

second step, fitness values for each individual is evaluated. Their next common step is to update 

individuals and fitness values iteratively. Generic algorithm (GA), particle swarm optimization 

(PSO) and differential evolution (DE) share these common steps. PSO has computationally 

advantage over many algorithms. Since the sorting of the fitness values is not required in PSO, it 

quickly creates the solution. In recent years, PSO is implemented in many difficult optimization 

problems due to its easy computation and rapid convergence to the optimum [86]. 

 

In PSO, each particle is a potential Pareto optimal solution. Iteratively, particles fly towards better 

fitness values by comparing information from its previous locations and calculating its velocity 

vector. As the position of particles are updated, the swarm converges around the optimal solutions. 

 

For each particle, the best position it achieved so far is called ‘personal best (pbest)’. The best 

position in the whole swarm is called ‘global best (gbest)’. The movement of a particle to its next 

position is determined by the personal and global best locations. The velocity and the next position 

of a particle is calculated as follows; 

 

𝑥𝑖(𝑡 + 1) = 𝑥𝑖(𝑡) + 𝑣𝑖(𝑡 + 1)              (4.1) 

    



 29 

𝑣𝑖(𝑡 + 1) = 𝜔[𝑣𝑖(𝑡)] + [𝑐1𝑟𝑖,1(𝑡) × (𝑝𝑏𝑒𝑠𝑡𝑖(𝑡) − 𝑥𝑖(𝑡))] + [𝑐2𝑟𝑖,2(𝑡) × (𝑔𝑏𝑒𝑠𝑡(𝑡) − 𝑥𝑖(𝑡))]      

(4.2) 

where 𝑖 = 1, 2, 3… , 𝑛 represents the particles and 𝑡 is the iteration number. 𝑥𝑖 and 𝑣𝑖 give the 

position and the velocity of the specified particle. Eq. 4.2is composed of three parts. The first term, 

which is related to the previous velocity is called ‘momentum’ term. In ‘momentum’ term, ω is the 

inertia weight; the weightage given to the previous velocity, so this terms provides particle 

movement to be in the direction of the previous velocity. The value of ω can be set to large numbers 

for the first iteration and decreased in later iterations in order to converge in a small region or it 

can be given randomly. Generally, if distance between pbest and gbest positions is large, the value 

of the ‘momentum’ term can be a large value which leads particles to jump over huge distances 

rather than to converge, even to go beyond the search space. To avoid those cases, velocity 

clamping method is applied; 𝑉𝑚𝑎𝑥 value, which is the maximum velocity that the particle can 

achieve, is defined [76].  

 

Remaining terms in Eq. 4.2 directs the particle towards pbest and gbest positions. The second term 

is called ‘cognitive’ term which symbolizes the possibility of a particle to turn back to its previous 

best positions and the third term is called ‘social’ term which represents the possible movement of 

a particle towards the other best positions obtained by other particles of the swarm. c1 and c2 are 

the learning factors, and r1 and r2 are the random numbers between 0 and 1, which give a stochastic 

approach to the algorithm [87]. 

 

The PSO algorithm starts with defining the population size. Inıtial positions and velocities are 

determined randomly. For each particle, fitness values, in other words the objective function values 

are calculated. In the first step, pbest of each particle is their current position and the gbest is the 

position of the particle giving the best objective function value. In the next iteration, new position 

is calculated according to the Eq. 4.1 and Eq. 4.2, the value of the objective function is calculated 

for the new position of each particle. pbest and gbest are updated with the better positions, if the 

new positions give better objective function values. The iterations continue repeatedly until the 

maximum iteration number is reached. In this way, particles converge to optimum values. The 

iterations in a PSO algorithm can be summarized as follows [87]; 
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Step 1. There are some PSO parameters which need to be defined in the first step. These 

parameters are the number of particles, dimension of the particles, the maximum velocity 

that the particles can move, learning factors, inertia weight and maximum iteration value. 

As the first step, the positions and velocities of the particles are determined randomly. Since 

they do not have a previous position, pbest is set as their current positions. According to 

their objective function values, gbest is chosen and stored. 

Step 2. By using Eq. 4.1 and Eq. 4.2 the new positions of the particles are determined and 

the objective function values are calculated. Accordingly, pbest value for each particle is 

updated with the position with the best fitness value and gbest is updated again with the 

best pbest value. 

 Step 3. All steps are repeated until the maximum iteration is reached. 

 

In PSO, ‘neighbourhood topology’ is commonly used. According to the neighbourhood topology, 

particles are grouped in a local region, from where the particle with the best objective function 

value is stored as the local best (lbest) value. Neighbourhood topology provides better chance to 

locate global optima of the swarm. Defining the ‘neighbourhood’ varies from algorithm to 

algorithm but some typical neighbourhood described are; empty graph, fully connected graph, star 

network, tree network etc. [65]. In their work, Coello Coello et al. [88] used gridification of the 

workspace to select leaders and stored them in repository. 

 

During the application of PSO to multi-objective optimization problems (MOPSO), there are some 

issues that need to be considered. One of them is the evaluation of the objective functions. There 

are two options; objective functions could be combined into one single function or each of them 

could be evaluated separately for each particle. Secondly, there are particles called ‘leader’ which 

are the guiding particles towards the best positions in the swarm and there are different methods 

regarding the selection of these particles. Thirdly, those leaders are stored in an external archive 

and maintaining the archive varies from algorithm to algorithm. Lastly, there is a potential problem 

for PSO which is the premature convergence into local optimums and maintaining diversity is 

another key issue [89]. 

 



 31 

As mentioned previously, particles have leading position (a leader) in their specified 

neighbourhood topology. In MOPSO, particles may have different leaders and among them, one 

leader is selected. In order to store the position of the leaders, ‘external archive’ is used in MOPSO. 

In the external archive, all the non-dominated solutions found so far are stored. In order to select a 

leader from the set of the leaders, ‘quality measure’ is defined [65].  

 

As the solution space is getting smaller, the velocities of the particles converge to 0. As a 

consequence, new solutions cannot be generated and the problem may be trapped in a local 

optimum. Usually in MOPSOs, cross over and mutation operator is used to overcome premature 

convergence. By mutating a single particle, the algorithm escapes from the local optima. Either the 

velocity or the position of a particle can be mutated. Mutation operator is applied after updating 

the positions of the particles. 

 

The steps used in MOPSO are as follows; 

 

Step 1. All PSO parameters and the initial position of the particles are initialized. A set of 

leaders is also initialized among the initial particles in an external archive.  

Step 2. According to the quality measure, a leader is selected from the external archive and 

the positions of the particles are updated. Mutation operator is applied and pbest values are 

updated if needed. 

Step 3. Leaders are updated and the quality measure is recalculated.  

Step 4. All steps are repeated until the maximum iteration is reached. 

 

4.2 Objective Functions 

In multi objective optimization problem of micromilling process, as in most of the studies, the 

objective functions are determined as the production time and production cost which are going to 

be minimized. 

 

4.2.1 Production Time 

Production time is the time spent to produce one single product. It considers the actual machining 

time (𝑇𝑚), time wasted without cutting (𝑇𝑖) and time spent during tool change (𝑇𝑐) [69].  
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𝑇𝑡𝑜𝑡𝑎𝑙 = 𝑇𝑚 + 𝑇𝑖 + 𝑇𝑐                (4.3) 

 

Actual machining time, 𝑇𝑚 depends on material removal rate (MRR). In micromilling, MRR is an 

important process performance criterion from both researchers’ perspective, in order to increase 

depth of cut limitations for micro tools, and from the manufacturer’s perspective, in order to 

increase production efficiency. For the manufacturer, it is important to achieve low cost production 

in a short time. MRR is the key performance criteria to achieve this purpose. However, increasing 

MRR yields more load on the tool, which shortens the tool life. Therefore, there should be an 

optimum boundary line, to minimize the production cost. MRR is calculated as follows; 

 

𝑀𝑅𝑅 = 
𝑓𝑛𝑎𝑑

1000
                (4.4) 

 

where 𝑑 is the tool diameter, 𝑎 is the depth of cut, 𝑓 is the feed rate and 𝑛 is the spindle speed. 

Production time involves both the roughing time and the finishing time. 𝑇𝑚 , 𝑇𝑖 and 𝑇𝑐 are calculated 

as the sum of the roughing and finishing operation times as follows;  

 

𝑇𝑚 = ∑
𝐿𝑟

𝑓𝑟

𝑛
𝑖=1 +

𝐿𝑓

𝑓𝑓
                (4.5) 

 

where 𝑛 is the number of the roughing cycles, 𝐿𝑟 and 𝐿𝑓 are the travel lengths for roughing and 

finishing operations, and 𝑓𝑟 and 𝑓𝑓 are feeds for roughing and finishing operations.  

 

𝑇𝑖 = 𝑇𝑝 + 𝑛(ℎ1𝐿𝑟 + ℎ2) + (ℎ1𝐿𝑓 + ℎ2)             (4.6) 

 

where 𝑇𝑝 is the setup time, ℎ1 (minutes per millimeter) and ℎ2 (minutes) are the constants related 

to tool movement before and after cutting. 

 

𝑇𝑐 = 𝑇𝑡𝑐∑
𝐿𝑟

𝑓𝑟
⁄

𝑇𝑙𝑖𝑓𝑒

𝑛
𝑖=1 +

𝐿𝑓
𝑓𝑓
⁄

𝑇𝑙𝑖𝑓𝑒
               (4.7) 

 

where 𝑇𝑡𝑐 is the tool change time and 𝑇𝑙𝑖𝑓𝑒 is the tool life. 
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4.2.2 Production Cost 

Similar to the production time, unit production cost is calculated combining the actual machining 

cost (𝐶𝑚), machining idle cost (𝐶𝑖), cost during tool change (𝐶𝑐) and the tool cost (𝐶𝑡)  [69]. Labour 

and overhead costs are included in the constant, 𝑘0 (dollars per minute) and 𝑘𝑡 (dollars per tool) is 

the unit tool cost. 

 

𝐶𝑡𝑜𝑡𝑎𝑙 = 𝐶𝑚 + 𝐶𝑖 + 𝐶𝑐 + 𝐶𝑡               (4.8) 

 

𝐶𝑚 = 𝑘0𝑇𝑚                 (4.9) 

 

𝐶𝑖 = 𝑘0𝑇𝑖                (4.10) 

 

𝐶𝑐 = 𝑘0𝑇𝑐                (4.11) 

𝐶𝑡 = 𝑘𝑡 ∑
𝐿𝑟

𝑓𝑟
⁄

𝑇𝑙𝑖𝑓𝑒

𝑛
𝑖=1 + 𝑘𝑡

𝐿𝑓
𝑓𝑓
⁄

𝑇𝑙𝑖𝑓𝑒
              (4.12) 

 

Tool cost, 𝐶𝑡 depends on tool life. For the process optimization, tool life maximization is one of 

the main purposes. Especially for micromilling, micro tool production is much costlier and tools 

are much more fragile compared to conventional milling, thus tool life maximization is even more 

essential. 

 

As ploughing mechanism is a common phenomenon in micromilling, tools often fail due to 

progressive wear or over chipping. When tool material goes through plastic deformation, tool is 

sorted as ‘weared’ [90]. As the tool wears, heat is generated and the surface roughness increases 

which is very undesirable if high precision production is intended. So, the tool life ends when tool 

wear is above a threshold value. 

 

Recent studies mostly depend on experimental curve fitting implications to a very earlier and well-

known modelling of Taylor [11]. Taylor defines tool life as follows; 

𝑉𝑇𝑙𝑖𝑓𝑒
𝑛 = 𝐶                 (4.13)

                    



 34 

where 𝑇𝑙𝑖𝑓𝑒 is the tool life (min), 𝑉 is the cutting speed (m/min), 𝑛 and C are the constants. 

According to the process conditions, such as dry/lubricated cutting, cutting parameters, workpiece 

and tool materials, geometries, the constants vary.  

 

4.3 Constraints 

As mentioned previously, high accuracy and part quality is demanded from micromilling 

operations. Because of this, for the multiple objective optimization problem of micromilling, the 

constraints are selected as the surface roughness, burr height and cutting forces. Solution set is 

determined under acceptable values for these constraints. 

 

4.3.1 Surface Roughness 

In micromilling, surface quality is the one of the main objectives. Since the purpose in micromilling 

materials is to produce miniature parts with complex geometries and high geometrical accuracy, 

minimization of surface roughness is one of the focal topics. There are many factors effecting 

surface roughness; from process strategies to cutting tool geometry, from CNC machine precision 

to process parameters. 

 

Surface roughness models carry an important role in order to predict process parameters and 

outcomes in advance. There are many studies on surface roughness in macro-milling. As mentioned 

earlier, micromilling process have different process dynamics than conventional milling, like 

ploughing effect or the hone radius-to-minimum chip thickness ratio. Thus, these models are 

inapplicable.  

 

 

Figure 4.1 - Cutting tool profile in micromilling [23] 
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In literature, there are some studies regarding to the surface formation in micromilling. It is proven 

that the dominant parameter effecting the surface roughness is the minimum chip thickness [23]. It 

is found out that the better surface quality is achieved in the single phase materials, ferrite and 

pearlite than the multiphase materials. In the study, the surface formation is modelled considering 

the geometry of the micro tool, as in Figure 4.1, and the effect of minimum chip thickness on the 

surface formation. As mentioned earlier, in micromilling, chip thickness should be above a certain 

value, which is stated as ‘minimum chip thickness’, in order for tool to remove chips from the 

workpiece. If not, tool will cause elastic and plastic deformations on workpiece. As the tool passes, 

elastic and plastic deformations may occur at previously formed surfaces since the chip thickness 

will be lower than the uncut chip thickness, and the chip will form from the parts that the chip 

thickness is above the minimum chip thickness value. Thus, final surface profile will be a 

combination of the previously formed surface and the newly cut surface. The tool profile is 

described as follows [27]; 

 

𝑦(𝑥) = {
−√𝑟𝑐2 − 𝑥2;                                            𝑥 > −𝑟𝑐 sin 𝛽

−𝑟𝑐 cos 𝛽 − [𝑥 + 𝑟𝑐 sin 𝛽] tan 𝛽 ;      𝑥 ≤ −𝑟𝑐 sin 𝛽
          (4.14) 

 

In a recent study [27], surface roughness is modelled considering the bottom surface formation. 

The parameters considered during modelling are the too geometry, feed rate and the minimum chip 

thickness. Other parameters, like cutting speed and depth of cut, are accepted as they are 

dominantly effecting the material behaviour in terms of heat generation and material deformation. 

Thus, these parameters will be determining the minimum chip thickness value.  

 

Figure 4.2 - Material removal process in trochodial tool path 
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Considering the tool geometry in Figure 4.1, chip thickness will vary due to the hone radius. 

Volume of the material removed will be as in as the tool moves in a trochodial path. As a result of 

the minimum chip thickness concept and the hone radius, during chip removal, some of the material 

will be removed, but some of them will undergo plastic deformation where chip thickness is below 

the minimum chip thickness, 𝑡𝑐, as shown in Figure 4.2.  

 

 

Figure 4.3 – Minimum chip thickness and plastically deformed area 

 

The angle between the x-axis of the tool hone center and the borderline separating the two regions 

(where the chip could be removed and where the chip could not be removed) is called rake angle 

(see Figure 4.3) and calculated as follows [27]; 

 

𝛼 = cos−1 (−
(𝑟𝑐−𝑡𝑐)

2−𝑓𝑡
2−𝑟𝑐

2

2𝑓𝑡𝑟𝑐
)              (4.15) 

 

As the tool moves in x+ direction at 𝑓𝑡, the area under the minimum chip thickness border which 

is going to be plastically deformed is built up as shown in Figure 4.4. Since the location of 𝑡𝑐 

borderline depends on  𝑓𝑡 value, for the cases 𝑓𝑡 < 𝑡𝑐, no chip will form. As the tool moves, chip 

thickness value is reached, and the chip begins to form, as shown in Figure 4.4.  
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Figure 4.4 - Case 1: 𝑓
𝑡
< 𝑡𝑐 

By periodically calculating the are under the tool, surface profile can be described as follows [27]; 

 

𝑦𝑝𝑟𝑜𝑓𝑖𝑙 = {
𝑦 = 𝑟𝑐 −√𝑟𝑐2 − 𝑥2                                               0 < 𝑥 ≤ 𝑟𝑐 cos 𝛼

𝑦 = 𝑟𝑐 −√𝑟𝑐
2 − 𝑥2                    𝑟𝑐 cos 𝛼 < 𝑥 ≤ 𝑓𝑡𝑛𝑓𝑡 + 𝑟𝑐 cos 𝛼 

        (4.16) 

 

where 𝑛𝑓𝑡 defines the number of the tool step at feed rate when the chip formation begins.  

 

As mentioned earlier, there are different measurements used to identify surface roughness degree. 

One of the methods is the distance between the minimum and the maximum surface levels, 𝑅𝑡, 

which is shown in Figure 4.4. 𝑅𝑡 can be calculated by the geometrical relation as follows [27]; 

 

𝑅𝑡 = 𝑟𝑐 −√𝑟𝑐2 − (𝑟𝑐 cos 𝛼)2              (4.17) 

 

For the cases 𝑓𝑡 > 𝑡𝑐 , the bottom edge of the tool also contacts to the workpiece. As it can be seen 

in Figure 4.5, the tool has hone radius continuously in an arc profile. The arc profile corresponds 

to an angle of 900+. Because of the tool geometry, bottom edge of the tool also has a contact with 

the workpiece. Thus, minimum chip thickness phenomenon will also be valid for the area at the 

bottom.  
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Figure 4.5 – Case 2: 𝑓
𝑡
> 𝑡𝑐 

The angle,  gives the boundary of the residual material at the bottom. The angle and the surface 

profile can be calculated as follows [27]; 

 

𝛾 = cos−1 (−
(𝑟𝑐−sin𝛽𝑓𝑡−𝑡𝑐)

2−𝑏 cos(90+𝛽)

𝑟𝑐
)            (4.18) 

 

𝑦𝑝𝑟𝑜𝑓𝑖𝑙 = {
𝑦 = 𝑟𝑐 −√𝑟𝑐2 − 𝑥2        0 < 𝑥 ≤ 𝑟𝑐 sin 𝛾

𝑦 = 𝑟𝑐 −√𝑟𝑐2 − 𝑥2        𝑟𝑐 sin 𝛾 < 𝑥 ≤ 𝑓𝑡
           (4.19) 

 

The distance between the maximum and minimum surface levels (𝑅𝑡) can be calculated as follows 

[27]; 

 

𝑅𝑡 = 𝑟𝑐 −√𝑟𝑐2 − (𝑟𝑐 sin 𝛾)2                          (4.20) 

  

4.3.2 Burr Height 

During milling process, there may be some cases that workpiece material could not be removed as 

chips, but it sticks to the edges or to the surface, outside the target geometry. In micromilling, burr 

formation is unacceptable for high precision products. Unfortunately, burr formation is 

unavoidable and manufacturers are contented to reduce burr sizes to an acceptable value. To reduce 

burr size, researchers try to optimize influent conditions such as material properties, tool geometry 
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and the cutting parameters. There are different burr size evaluation criteria; burr size can be defined 

by measuring burr height, burr width, burr thickness, burr volume or burr hardness, in some cases.  

 

 

Figure 4.6 – (a) Exit geometry in micromilling; (b) Geometry of burr formation [28] 

 

In literature, modelling of burr height is done through empirical formulations and curve fitting. A 

recent study by Kumar et al. [91] developed a mathematical model for predicting exit burr size in 

the micromilling of Ti6Al4V. They achieved a very small prediction error, 3%. They were able to 

reduce burr size by 90% by adjusting the cutting speed. Their model is based on the geometrical 

calculations made by Ko and Dornfeld [28], who defined the burr height in micromilling as follows; 

 

ℎ𝑓 = (𝑡0 + 𝜔 tan 𝛽0) cos 𝛽0              (4.21) 
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From Figure 4.6, the triangles AA’B, APB and A’PB give the following relations; 

 

𝐴𝐴′ = 𝑅𝑑𝜃 = 𝑙′𝑑𝛽               (4.22) 

𝑃𝐵 = 𝑙′ sin 𝛽 = 𝜔 tan 𝛽0 𝜃              (4.23) 

 

which can be written as; 

 

𝑙′ =
𝜔 tan𝛽0

sin𝛽
                (4.24) 

 

where 𝜃 is the tool rotation angle, 𝛽 is the negative shear angle, 𝛽0is the initial negative shear angle 

and 𝑑𝜃 and 𝑑𝛽 are very small angles. If Eq. 4.24 is substituted into Eq. 4.22, 𝜔, which is the initial 

tool distance from the workpiece, can be solved as; 

 

𝜔 = −
𝑅𝜃

log(
tan𝛽0
2

) tan𝛽0
               (4.25) 

 

where 𝑅 is the tool radius. Kumar et al. [91] used the mathematical chip thickness modelling of Y. 

H. Kang [92]; 

 

𝑡𝑐 = 𝑡𝑥 sin 𝜃 −
𝑁𝑡𝑥

2 cos 𝜃 sin𝜃

2𝜋𝑅+𝑁𝑡𝑥 cos 𝜃
+ 𝑅 − √𝑅2 − (

2𝜋𝑅𝑡𝑥 cos 𝜃

2𝜋𝑅+𝑁𝑡𝑥 cos𝜃
)
2
          (4.26) 

 

where 𝑡𝑐 is the chip thickness and 𝑡𝑥 is the feed per tooth. Since Kumar et al. [91] investigated burr 

formation at the exit, they took the tool rotation angle, 𝜃 as 0 and simplified the formulation and 

rewrite the model of Ko and Dornfeld [28] as; 

 

𝑡0 = 𝑡𝑥𝜃 −
𝑁𝑡𝑥

2𝜃

2𝜋𝑅+𝑁𝑡𝑥
+ 𝑅 −√𝑅2 − (

2𝜋𝑅𝑡𝑥

2𝜋𝑅+𝑁𝑡𝑥
)
2
           (4.27) 

 

ℎ𝑓 = [𝑡𝑥𝜃 −
𝑁𝑡𝑥

2𝜃

2𝜋𝑅+𝑁𝑡𝑥
+ 𝑅 −√𝑅2 − (

2𝜋𝑅𝑡𝑥

2𝜋𝑅+𝑁𝑡𝑥
)
2
−

𝑅𝜃

log (tan
𝛽0
2
)
] cos 𝛽0        (4.28) 
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In their work, Ko and Dornfeld [28] stated that the work done for burr formation is equal to work 

done to remove chips. Principle of continuity of work is given below; 

 

∆𝑊𝑐 = ∆𝑊𝑏                (4.29) 

 

∆𝑊𝑐 =
𝑏𝑡𝑥𝐾𝑡

4𝜋
[4𝜋𝑅 + 𝜋𝑡𝑥𝜃 − 𝑁𝑡𝑥 sin𝜃 sin 𝜃 + 𝜋 cos 𝜃 (𝑡𝑥 sin𝜃 − 4𝑅)]        (4.30) 

 

∆𝑊𝑏 = ∫ (
𝑘0

2
cos 𝛽0 cos 𝛽0 +

𝜎𝑒

4
tan 𝛽0)𝜔𝑅𝑑𝜃

𝜃

0
= (

𝑘0

2
cos 𝛽0 cos 𝛽0 +

𝜎𝑒

4
tan 𝛽0)𝜔𝑅𝜃      (4.31) 

 

where 𝐾𝑡 is the specific tangential cutting pressure, 𝑏 is the plunge depth, 𝑘0 is the yield shear 

strength and 𝜎𝑒 is the normal yield strength. From Von-Mises criterion, 𝑘0 =
𝜎𝑒

√3
.. By substituting 

the value of 𝑘0 from Von Mises criterion and the value of 𝜔 from Eq. 4.26, and the formulations 

for ∆𝑊𝑐 and ∆𝑊𝑏from Eq. 4.31 and Eq. 4.32 into Eq. 4.30, the following equation is obtained 

whose roots give the solution for the tool rotation angle, 𝜃; 

 

𝑏𝑡𝑥𝐾𝑡

4𝜋
[4𝜋𝑅 + 𝜋𝑡𝑥𝜃 − 𝑁𝑡𝑥 sin 𝜃 sin 𝜃 + 𝜋 cos 𝜃 (𝑡𝑥 sin 𝜃 − 4𝑅)] +

0.0126𝑅2𝜃2

log(
tan𝛽0

2⁄ ) tan𝛽0
(
𝜎𝑒

2√3
cos 𝛽0 cos 𝛽0 +

𝜎𝑒

4
tan 𝛽0) = 0           (4.32) 

 

The burr height can be calculated from Eq. 4.28 and Eq. 4.32 [91]. 

 

4.3.3 Cutting Forces 

In micromilling, cutting force is significant in terms of the tool life and surface quality due to the 

excessive heat generation. Modelling of cutting forces enable to achieve better surface 

performances regarding longer tool life and smoother surface. There are many different aspects to 

force modelling. Later studies adapt the slip-line theory, which is basically dividing the workpiece 

into sub-regions where different deformation mechanisms take place. As mentioned previously, 

chip thickness varies as the tool enters the workpiece. This variation depends on the immersion 

angle value. The variation of the chip removal has a periodic repetition which is described as [93]; 
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ℎ(∅) = 𝑓𝑡 . sin∅               (4.33) 

 

where 𝑓𝑡 is the feed per tooth (mm/rev.tooth) and ∅ is the instantaneous immersion angle. As the 

immersion angle changes, different combinations of ploughing and chip removal mechanisms take 

place. According to the slip-line theory, the workpiece is divided to three regions; primary, 

secondary and third deformation zones.  

 

A recent study uses thermo-mechanical approach to model cutting forces in micromilling which is 

going to be presented in this section. The study also includes bottom forces involving in the cutting 

process [3].  

 

Figure 4.7 - Primary, secondary and tertiary deformation zones 

 

4.3.3.1. Primary Deformation Zone 

The primary deformation zone is modelled according to the Johnson-Cook model as follows [94]; 

 

𝜏 =
1

√3
[𝐴 + 𝐵 (

𝛾

√3
)
𝑛
] [1 + ln (

�̇�

�̇�0
)
𝑚
] [1 − (�̅�)𝑣]           (4.34) 

 

where 𝛾 is the shear strain, �̇� is the shear strain rate, �̇�0 is the reference shear strain rate. 𝐴, 𝐵, 𝑛,𝑚 

and 𝑣 are the material constants. The reduced temperature, �̅� can be calculates as follows; 

 

�̅� =
(𝑇−𝑇𝑅)

(𝑇𝑀−𝑇𝑅)
                (4.35) 

 



 43 

where 𝑇, 𝑇𝑅, 𝑇𝑀 represent the absolute temperature, reference temperature and the melting 

temperature consecutively. Shear stress at the entrance and at the exit of the primary deformation 

plane is represented by 𝜏0 and 𝜏1 consecutively, and their relation can be calculated iteratively by 

[94]; 

 

𝜏1 = 𝜌(𝑉 sin ∅)
2 𝛾1 + 𝜏0              (4.36) 

 

where 𝜌, 𝛾1, 𝑉 and ∅ are the density of the workpiece, plastic shear strain at the exit, cutting speed 

and the shear angle, consecutively.  

 

4.3.3.2. Secondary Deformation Zone 

For the modelling of the secondary zone, two-zone contact model is used [3]. According to the 

two-zone contact model, contact between the tool and the workpiece can be sticking or sliding. In 

terms of two-zone contact model, the contact edge of the tool, which has a length of  𝑙𝑐, is divided 

into two parts where 𝑙𝑝 is the sticking zone part. For the analysis, the rake face of the tool is divided 

into three sections (see Figure 4.8) where the possible combinations of contact types are analysed.  

 

Figure 4.8 - Regions on the rake face of the tool 

 

The separation of the secondary and tertiary deformation zones is called stagnation point and it is 

marked with ‘A’ in Figure 4.8. The forces acting on each region in the secondary deformation zone 

are derived one by one.  
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For the first region, R1,  normal force is derived as follows [94]; 

 

𝐹𝑁1 (
𝐹𝑁1𝑥
𝐹𝑁1𝑦

) = (
∫ 𝑃0𝑎(1−

𝑥

𝑙𝑐
)
𝜁
sin𝛼𝑑𝑥

𝑙𝑐
𝑙2+𝑙3

∫ 𝑃0𝑎(1−
𝑥

𝑙𝑐
)
𝜁
cos 𝛼𝑑𝑥

𝑙𝑐
𝑙2+𝑙3

)            (4.37) 

 

where x is the distance from the tool tip, 𝑎 is the depth of cut,  𝜁 is the distribution expo, 𝑙𝑐 is the 

contact length and the 𝑙𝑝 is the sticking zone. Lengths of the regions can be calculated as follows; 

 

𝑙3 = 𝑟 (
𝜋

2
− 𝜃𝑠)                          (4.38) 

 

𝑙2 = 𝑟𝛼                (4.39) 

 

𝑙𝑐 = 𝑙1 + 𝑙2 + 𝑙3               (4.40) 

 

For R1, the friction can be either only sliding or the combination of sliding and sticking. If the 

sticking zone length, 𝑙𝑝 is larger than 𝑙2 + 𝑙3, it means that the sticking zone exist in R1. However, 

if it is smaller than 𝑙2 + 𝑙3, sticking zone ends within the boundaries of R2, and there is only sliding 

friction force in R1. The calculations for both cases are shown below [94]; 

 

𝐹𝐹1 (
𝐹𝐹1𝑥
𝐹𝐹1𝑦

) =

{
 
 

 
 (

−∫ 𝜇𝑃0(1−
𝑥

𝑙𝑐
)
𝜁
cos 𝛼𝑑𝑥

𝑙𝑐
𝑙2+𝑙3

,

∫ 𝜇𝑃0(1−
𝑥

𝑙𝑐
)
𝜁
sin𝛼𝑑𝑥

𝑙𝑐
𝑙2+𝑙3

),                      𝑙𝑝 ≤ 𝑙2 + 𝑙3

(
−∫ 𝜏1𝑤𝑑𝑥

𝑙𝑝
𝑙2+𝑙3

+∫ 𝜇𝑃0(1−
𝑥

𝑙𝑐
)
𝜁
cos 𝛼𝑑𝑥

𝑙𝑐
𝑙𝑝

∫ 𝜏1𝑤𝑑𝑥
𝑙𝑝
𝑙2+𝑙3

+∫ 𝜇𝑃0(1−
𝑥

𝑙𝑐
)
𝜁
sin𝛼𝑑𝑥

𝑙𝑐
𝑙𝑝

),     𝑙𝑝 > 𝑙2 + 𝑙3

         (4.41) 

 

For the second region, R2,  normal force is derived as follows [94]; 

 

𝐹𝑁2 (
𝐹𝑁2𝑥
𝐹𝑁2𝑦

) = {
∫ 𝑃0𝑤 (1−

𝑥

𝑙𝑐
)
𝜁
sin (

𝑥

𝑟
−

𝜋

2
+ 𝜃𝑠) 𝑑𝑥

𝑙2+𝑙3
𝑙3

∫ 𝑃0𝑤(1 −
𝑥

𝑙𝑐
)
𝜁
cos (

𝑥

𝑟
−

𝜋

2
+ 𝜃𝑠)𝑑𝑥

𝑙2+𝑙3
𝑙3

          (4.42) 

 



 45 

The friction force formulation depends on three cases for R2. Friction on R2 could be only sliding, 

combination of sliding and sticking, or only sticking. The cases are listed below sequentially [94]; 

 

𝐹𝐹2 (
𝐹𝐹2𝑥
𝐹𝐹2𝑦

) =

{
 
 
 
 

 
 
 
 (

−∫ 𝜇𝑃0(1−
𝑥

𝑙𝑐
)
𝜁
cos(

𝑥

𝑟
−
𝜋

2
+𝜃𝑠)𝑑𝑥

𝑙2+𝑙3
𝑙3

,

∫ 𝜇𝑃0(1−
𝑥

𝑙𝑐
)
𝜁
sin(

𝑥

𝑟
−
𝜋

2
+𝜃𝑠)𝑑𝑥

𝑙2+𝑙3
𝑙3

) ,                                                               𝑙𝑝 ≤ 𝑙3 

(
−∫ 𝜏1𝑤cos(

𝑥

𝑟
−
𝜋

2
+𝜃𝑠)𝑑𝑥−∫ 𝜇𝑃0(1−

𝑥

𝑙𝑐
)
𝜁
cos(

𝑥

𝑟
−
𝜋

2
+𝜃𝑠)

𝑙2+𝑙3
𝑙𝑝

𝑑𝑥
𝑙𝑝
𝑙3

∫ 𝜏1𝑤sin(
𝑥

𝑟
−
𝜋

2
+𝜃𝑠)𝑑𝑥+∫ 𝜇𝑃0(1−

𝑥

𝑙𝑐
)
𝜁
sin(

𝑥

𝑟
−
𝜋

2
+𝜃𝑠)

𝑙2+𝑙3
𝑙𝑝

𝑑𝑥
𝑙𝑝
𝑙3

) ,      𝑙2 + 𝑙3  > 𝑙𝑝 > 𝑙3 

(
−∫ 𝜏1𝑤cos(

𝑥

𝑟
−
𝜋

2
+𝜃𝑠)𝑑𝑥

𝑙2+𝑙3
𝑙3

∫ 𝜏1𝑤sin(
𝑥

𝑟
−
𝜋

2
+𝜃𝑠)𝑑𝑥

𝑙2+𝑙3
𝑙3

) ,                                                                   𝑙𝑝 ≥ 𝑙2 + 𝑙3

  (4.43) 

 

For the third region, R2,  normal force is derived as follows [94]; 

 

𝐹𝑁3 (
𝐹𝑁3𝑥
𝐹𝑁3𝑦

) = {
−∫ 𝑃0𝑤(1 −

𝑥

𝑙𝑐
)
𝜁
cos (

𝑥

𝑟
+ 𝜃𝑠) 𝑑𝑥

𝑙3
0

∫ 𝑃0𝑤(1−
𝑥

𝑙𝑐
)
𝜁
sin (

𝑥

𝑟
+ 𝜃𝑠) 𝑑𝑥

𝑙3
0

               (4.44) 

 

The friction force acting on R3 could be combinations of sliding and sticking zones, or only 

sticking friction may exist. The cases are given below sequentially [94]; 

 

𝐹𝐹3 (
𝐹𝐹3𝑥
𝐹𝐹3𝑦

) =

{
 
 

 
 
(
−∫ 𝜏1𝑤 sin(

𝑥

𝑟
+𝜃𝑠)𝑑𝑥

𝑙𝑝
0 −∫ 𝜇𝑃0(1−

𝑥

𝑙𝑐
)
𝜁
sin(

𝑥

𝑟
+𝜃𝑠)𝑑𝑥

𝑙3
𝑙𝑝

,

− ∫ 𝜏1𝑤cos(
𝑥

𝑟
+𝜃𝑠)𝑑𝑥

𝑙𝑝
0 −∫ 𝜇𝑃0(1−

𝑥

𝑙𝑐
)
𝜁
cos(

𝑥

𝑟
+𝜃𝑠)𝑑𝑥

𝑙3
𝑙𝑝

),        𝑙𝑝 < 𝑙3

(
−∫ 𝜏1𝑤sin(

𝑥

𝑟
+𝜃𝑠)𝑑𝑥

𝑙𝑝
0

−∫ 𝜏1𝑤cos(
𝑥

𝑟
+𝜃𝑠)𝑑𝑥

𝑙𝑝
0

),                                                     𝑙𝑝 ≥ 𝑙3

        (4.45) 

 

For the oblique cutting approach, several changes are made on the formulations [94]. First of all, 

the shear stress at the exit is calculated with considering the effect of the helix angle, 𝜆𝑠 as [94]; 

 

𝜏1 = 𝜌(𝑉 sin ∅ cos 𝜆𝑠)
2 𝛾1 + 𝜏0             (4.46) 

 

The normal forces can be found by; 

𝐹𝑁𝑖 = ∫ 𝑃𝑜𝑤𝑐 (1 −
𝑥

𝑙𝑐
)
𝜁𝑖+1

𝑖
𝑑𝑥              (4.47) 
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𝑃0 = 𝜏1
ℎ1(𝜁+1)

𝑙𝑐 sin∅

cos𝜆 cos𝜂𝑠

cos(∅+𝜆−𝛼)cos 𝜂𝑐
             (4.48) 

 

𝑤𝑐 =
cos 𝜂𝑐

cos 𝑖
                (4.49) 

 

The total contact length on the rake face, 𝑙𝑐 can be calculated from [94]; 

 

𝑙𝑐 = ℎ1
(𝜁+2)

2

sin(∅+𝜆−𝛼)

sin∅cos 𝜆 cos 𝜂𝑐
                    (4.50) 

 

where 𝑤𝑐  is the oblique cutting depth, 𝑖 is the helix angle and 𝜂𝑐 is the chip flow angle which can 

be calculated from [94]; 

 

(𝐴1
2 + 𝐵1

2)(sin 𝜂𝑐)
4 − (2𝐴1𝐶)(sin 𝜂𝑐)

3 + 2(𝐴1𝐶 + 𝐶𝐷) sin 𝜂𝑐 + (𝐶
2 − 𝐵1

2 − 2𝐴1
2 −

2𝐴1𝐷)(sin 𝜂𝑐)
2 + (𝐴1

2 + 𝐷2 + 2𝐴1𝐷) = 0            (4.51) 

 

for which, the necessary unknowns can be found by the following equations [94]; 

 

𝐴1 = −tan 𝑖 (tan ∅ sin 𝛼 + cos 𝛼)             (4.52) 

 

𝐵1 = tan∅                     (4.53) 

 

𝐶 = tan 𝜆𝑎                     (4.54) 

 

𝐷 = tan 𝑖 tan 𝛽 (cos 𝛼 tan ∅ − sin∅)            (4.55) 

 

Shear stress and shear flow angle are calculated as [94]; 

 

𝐹𝑠 = 𝜏1
𝑤ℎ1

sin∅ cos 𝑖
               (4.56) 

 

𝜂𝑠 = tan
−1 (

tan 𝑖 cos(∅−α)−tan𝜂𝑐 sin∅

cos𝛼
)             (4.57) 
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4.3.3.3. Third Deformation Zone 

The forces in the third deformation zone are consequences of the contact between the tool and the 

newly formed surface due to ploughing. As mentioned previously, the stagnation point, A separated 

the secondary and third deformation zones. The third deformation zone is the following region 

from A to the follow-up region on the flank edge of the tool as seen in Figure 4.7.  

 

 

Figure 4.9 – Third deformation zone regions and ploughing depth 

 

Just as in the secondary deformation zone, third deformation zone is also divided into three regions 

which are going to be referred as R4, R5 and R6 (see Figure 4.9). Contact lengths for each is given 

below [4]; 

 

𝑙4 = 𝑟𝜃𝑠                           (4.58) 

 

𝑙5 = 𝑟𝛾                (4.59) 

 

𝑙𝑐_𝑡ℎ𝑖𝑟𝑑𝑧𝑜𝑛𝑒 = 𝑙4 + 𝑙5 + 𝑙6              (4.60) 
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In the third deformation zone, the normal pressure is found to be related with the ploughing depth, 

which is shown as blue shaded area in Figure 4.9. The formulation for the normal pressure in third 

deformation zone is suggested as follows; 

 

𝑃3(𝑥) = 𝑎𝑥2 + 𝑏𝑥 + 𝑐                   (4.61) 

 

where 𝑥 is the distance from the tool tip and; 

 

𝑎 =
((𝑃0𝑙𝑐_𝑡ℎ𝑖𝑟𝑑𝑧𝑜𝑛𝑒)−𝑃0(𝑃𝑀𝐴𝑋𝑙𝑐_𝑡ℎ𝑖𝑟𝑑𝑧𝑜𝑛𝑒))

(𝑙𝑐_𝑡ℎ𝑖𝑟𝑑𝑧𝑜𝑛𝑒
2−(𝑙𝑐𝑙4))

            (4.62) 

 

𝑏 =
𝑃𝑀𝐴𝑋

𝑙4
− (𝑎𝑙4) − (

𝑃0

𝑙4
)                   (4.63) 

 

𝑐 = 𝑃0                      (4.64) 

 

For the forth region, R4,  normal force is derived as follows [3]; 

 

𝐹𝑁4 (
𝐹𝑁4𝑥
𝐹𝑁4𝑦

) = (
∫ 𝑤𝑃3(𝑥) cos(

𝜋

2
+
𝑥

𝑟
−𝜃𝑠)𝑑𝑥

𝑙4
0

−∫ 𝑤𝑃3(𝑥) sin(
𝜋

2
+
𝑥

𝑟
−𝜃𝑠)𝑑𝑥

𝑙4
0

)            (4.65) 

 

𝑃𝑀𝐴𝑋 is modelled experimentally as [3]; 

 

𝑃𝑀𝐴𝑋 = 𝑃0(−0.013𝑟𝑐 + 1.891)             (4.66) 

 

where 𝑤 is the axial depth of cut. For the friction forces, there are three possible cases. The first 

one is the case when the sticking contact length, 𝑙𝑝 is 0. In this case, only sliding friction exists. In 

the second case, 𝑙𝑝 is smaller than 𝑙4, so R4 has both sliding and sticking regions. The last case 

exists when 𝑙𝑝 is larger than 𝑙4 which leads to only sticking friction in R4. All cases are given 

below sequentially as mentioned [3]; 
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𝐹𝐹4 (
𝐹𝐹4𝑥
𝐹𝐹4𝑦

) =

{
 
 
 
 

 
 
 
 (

∫ 𝜇𝑃3(𝑥)sin(
𝜋

2
+
𝑥

𝑟
−𝜃𝑠)𝑑𝑥

𝑙4
0  

∫ 𝜇𝑃3(𝑥) cos(
𝜋

2
+
𝑥

𝑟
−𝜃𝑠)𝑑𝑥

𝑙4
0

) ,                                                                              𝑙𝑝 = 0 

(
∫ 𝜏1𝑤sin(

𝑥

𝑟
−
𝜋

2
+𝜃𝑠)𝑑𝑥+∫ 𝜇𝑃3(𝑥)sin(

𝜋

2
+
𝑥

𝑟
−𝜃𝑠)

𝑙4
𝑙𝑝_𝑡ℎ𝑖𝑟𝑑𝑧𝑜𝑛𝑒

𝑑𝑥
𝑙𝑝_𝑡ℎ𝑖𝑟𝑑𝑧𝑜𝑛𝑒
0

∫ 𝜏1𝑤cos(
𝜋

2
+
𝑥

𝑟
−𝜃𝑠)𝑑𝑥+∫ 𝜇𝑃3(𝑥)cos(

𝜋

2
+
𝑥

𝑟
−𝜃𝑠)

𝑙4
𝑙𝑝_𝑡ℎ𝑖𝑟𝑑𝑧𝑜𝑛𝑒

𝑑𝑥
𝑙𝑝_𝑡ℎ𝑖𝑟𝑑𝑧𝑜𝑛𝑒
0

), 0 > 𝑙𝑝 > 𝑙4 

(
∫ 𝜏1𝑤sin(

𝜋

2
+
𝑥

𝑟
−𝜃𝑠)𝑑𝑥

𝑙4
0

∫ 𝜏1𝑤 cos(
𝜋

2
+
𝑥

𝑟
−𝜃𝑠)𝑑𝑥

𝑙4
0

) ,                                                                                    𝑙𝑝 ≥ 𝑙4

  (4.67) 

 

For the fifth region, R5,  normal force is derived as follows [3]; 

 

𝐹𝑁5 (
𝐹𝑁5𝑥
𝐹𝑁5𝑦

) = (
−∫ 𝑤𝑃3(𝑥)sin(

𝑥

𝑟
−𝜃𝑠)𝑑𝑥

𝑙4+𝑙5
𝑙4

−∫ 𝑤𝑃3(𝑥)cos(
𝑥

𝑟
−𝜃𝑠)𝑑𝑥

𝑙4+𝑙5
𝑙4

)            (4.68) 

 

Again, there are three possible cases for the friction forces in R5. The first one is the case when the 

sticking contact length, 𝑙𝑝 is less than 𝑙4. In this case, only sliding friction exists. In the second 

case, 𝑙𝑝 is in between 𝑙4 and 𝑙4 + 𝑙5, so R5 has both sliding and sticking regions. The last case 

exists when 𝑙𝑝 is larger than 𝑙5 which leads to only sticking friction in R5. All cases are given 

below sequentially as mentioned [3]; 

 

𝐹𝐹5 (
𝐹𝐹5𝑥
𝐹𝐹5𝑦

) =

{
 
 
 
 

 
 
 
 (

∫ 𝜇𝑃3(𝑥) cos(
𝑥

𝑟
−𝜃𝑠)𝑑𝑥

𝑙4+𝑙5
𝑙4

 

∫ 𝜇𝑃3(𝑥)sin(
𝑥

𝑟
−𝜃𝑠)𝑑𝑥

𝑙4+𝑙5
𝑙4

) ,                                                                                      𝑙𝑝 < 𝑙4 

(
∫ 𝜏1𝑤 cos(

𝑥

𝑟
−𝜃𝑠)𝑑𝑥+∫ 𝜇𝑃3(𝑥) cos(

𝑥

𝑟
−𝜃𝑠)

𝑙4+𝑙5
𝑙𝑝𝑡ℎ𝑖𝑟𝑑𝑧𝑜𝑛𝑒

𝑑𝑥
𝑙𝑝𝑡ℎ𝑖𝑟𝑑𝑧𝑜𝑛𝑒
𝑙4

−∫ 𝜏1𝑤 sin(
𝑥

𝑟
−𝜃𝑠)𝑑𝑥−∫ 𝜇𝑃3(𝑥)sin(

𝑥

𝑟
−𝜃𝑠)

𝑙4+𝑙5
𝑙𝑝𝑡ℎ𝑖𝑟𝑑𝑧𝑜𝑛𝑒

𝑑𝑥
𝑙𝑝𝑡ℎ𝑖𝑟𝑑𝑧𝑜𝑛𝑒
𝑙4

),   𝑙4 < 𝑙𝑝 < 𝑙4 + 𝑙5 

(
∫ 𝜏1𝑤cos(

𝑥

𝑟
−𝜃𝑠)𝑑𝑥

𝑙4+𝑙5
𝑙4

−∫ 𝜏1𝑤sin(
𝑥

𝑟
−𝜃𝑠)𝑑𝑥

𝑙4+𝑙5
𝑙4

),                                                                                         𝑙𝑝 ≥ 𝑙4

 (4.69) 

 

For the last region on the flank face, R6,  normal force is derived as follows [3]; 

 

𝐹𝑁6 (
𝐹𝑁6𝑥
𝐹𝑁6𝑦

) = (
−∫ 𝑤𝑃3(𝑥)sin(𝛾)𝑑𝑥

𝑙𝑐_𝑡ℎ𝑖𝑟𝑑𝑧𝑜𝑛𝑒
𝑙4+𝑙5

−∫ 𝑤𝑃3(𝑥) cos(𝛾)𝑑𝑥
𝑙𝑐_𝑡ℎ𝑖𝑟𝑑𝑧𝑜𝑛𝑒
𝑙4+𝑙5

)            (4.70) 

 



 50 

Friction forces in R5 may appear in three cases as well. The first one is the case when the sticking 

contact length, 𝑙𝑝 is less than 𝑙4 + 𝑙5. In this case, only sliding friction exists in R6. In the second 

case, 𝑙𝑝 is in between 𝑙4 + 𝑙5 and 𝑙6, so R6 has both sliding and sticking regions. The last case 

exists when 𝑙𝑝 is larger than 𝑙6 which leads only sticking friction to appear in R6. All cases are 

given below sequentially as mentioned [3]; 

 

𝐹𝐹6 (
𝐹𝐹6𝑥
𝐹𝐹6𝑦

) =

{
 
 
 
 

 
 
 
 (

∫ 𝜇𝑃3(𝑥)cos(𝛾)𝑑𝑥
𝑙𝑐_𝑡ℎ𝑖𝑟𝑑𝑧𝑜𝑛𝑒
𝑙4+𝑙5

 

− ∫ 𝜇𝑃3(𝑥) sin(𝛾)𝑑𝑥
𝑙𝑐_𝑡ℎ𝑖𝑟𝑑𝑧𝑜𝑛𝑒
𝑙4+𝑙5

) ,                                                                  𝑙𝑝 < 𝑙4 + 𝑙5 

(
∫ 𝜏1𝑤cos(𝛾)𝑑𝑥+∫ 𝜇𝑃3(𝑥) cos(𝛾)

𝑙𝑐_𝑡ℎ𝑖𝑟𝑑𝑧𝑜𝑛𝑒
𝑙𝑝𝑡ℎ𝑖𝑟𝑑𝑧𝑜𝑛𝑒

𝑑𝑥
𝑙𝑝𝑡ℎ𝑖𝑟𝑑𝑧𝑜𝑛𝑒
𝑙4+𝑙5

−∫ 𝜏1𝑤 sin(
𝑥

𝑟
−𝜃𝑠)𝑑𝑥−∫ 𝜇𝑃3(𝑥) sin(𝛾)

𝑙𝑐_𝑡ℎ𝑖𝑟𝑑𝑧𝑜𝑛𝑒
𝑙𝑝𝑡ℎ𝑖𝑟𝑑𝑧𝑜𝑛𝑒

𝑑𝑥
𝑙𝑝𝑡ℎ𝑖𝑟𝑑𝑧𝑜𝑛𝑒
𝑙4+𝑙5

),    𝑙4 + 𝑙5 < 𝑙𝑝 < 𝑙6 

(
∫ 𝜏1𝑤 cos(𝛾)𝑑𝑥
𝑙𝑐_𝑡ℎ𝑖𝑟𝑑𝑧𝑜𝑛𝑒
𝑙4+𝑙5

−∫ 𝜏1𝑤 sin(𝛾)𝑑𝑥
𝑙𝑐_𝑡ℎ𝑖𝑟𝑑𝑧𝑜𝑛𝑒
𝑙4+𝑙5

),                                                             𝑙𝑝 = 𝑙𝑐_𝑡ℎ𝑖𝑟𝑑𝑧𝑜𝑛𝑒

    (4.71) 

 

Forces acting on the tool have two common directions; direction of feed and tangential direction, 

where 𝐹𝑓 and 𝐹𝑡 are the total forces exerted in the feed and tangential direction sequentially, 𝐹𝑓𝑐  

and 𝐹𝑡𝑐 are the cutting forces in these directions, and 𝐹𝑓𝑒 and 𝐹𝑡𝑒 are the edge forces in these 

directions; 

 

𝐹𝑓 = 𝐹𝑓𝑐 + 𝐹𝑓𝑒               (4.72) 

 

𝐹𝑡 = 𝐹𝑡𝑐 + 𝐹𝑡𝑒                (4.73) 

 

There are also bottom edge forces which are caused by the contact between the tool tip and the 

workpiece. These forces and cutting coefficients can be found experimentally [3]. Total forces 

acting on the tool can be found by summing up feed and tangential forces acting in all deformation 

zones; 

 

𝐹𝐹𝑒𝑒𝑑 = 𝐹𝐹𝑃𝑟𝑖𝑚𝑎𝑟𝑦 + 𝐹𝐹𝑆𝑒𝑐𝑜𝑛𝑑𝑎𝑟𝑦 + 𝐹𝐹𝑇ℎ𝑖𝑟𝑑 + 𝐹𝐹𝐵𝑜𝑡𝑡𝑜𝑚          (4.74) 

 

𝐹𝑇𝑎𝑛𝑔𝑒𝑛𝑡𝑖𝑎𝑙 = 𝐹𝑇𝑃𝑟𝑖𝑚𝑎𝑟𝑦 + 𝐹𝑇𝑆𝑒𝑐𝑜𝑛𝑑𝑎𝑟𝑦 + 𝐹𝑇𝑇ℎ𝑖𝑟𝑑 + 𝐹𝑇𝐵𝑜𝑡𝑡𝑜𝑚          (4.75) 
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4.4 Optimization of Micromilling Process 

MATLAB code is developed for micromilling process optimization regarding the objective 

functions and constraints explained in previous sections. Decision variables are chosen to be cutting 

speed, 𝑉𝑐, feed rate, 𝑓, and axial depth of cut, 𝑑 for both roughing and finishing operations. Before 

the initiation, upper and lower bound values for decision variables are given to determine the range 

of values that the code will output. For depth of cut, total stock to be removed is also entered. In 

order to avoid ploughing mechanism, minimum chip thickness is calculated as 20-40% of hone 

radius [25]. The lower bound of depth of cut for each pass is set respecting minimum chip thickness 

after hone radii measurements under microscope. Code also calculates the optimum number of 

roughing passes respecting the upper bound of depth of cut given. As an output, code generates a 

matrix of solution set including the number of roughing passes, and  𝑉𝑐 𝑓, 𝑑 values for each 

roughing pass and finishing pass. 

 

Some parameters for MOPSO algorithm is determined in the next step. These parameters are the 

maximum number of iterations, which is the stopping criteria, number of the population size and 

repository size, inertia weight and its damping rate, and learning coefficients as in Figure 4.10. 

These constant values are commonly used values in literature. For the maximum iteration number, 

it is observed that the Pareto curve does not change after 100 iterations roughly. Figure 4.11 shows 

Pareto curves from different runs with maximum iteration number is set to 100, 150 and 200 

consequently. Particles converge towards the global bests as iteration number increases. It is clear 

that no change occurs in Pareto curve after 100 iterations roughly. Therefore, maximum number of 

iterations is set to 150 for safety.  

 

 

Figure 4.10 - MOPSO parameters 
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Figure 4.11 - (a) Max. iteration =100; (b) Max. iteration = 150; (c) Max. iteration = 200 

 

In the initiation part of the code, initial positions and velocities of each particle are randomized. 

Values of objective functions for each particle are calculated and those values are accepted as the 

personal best values for the initiation. These values are stored in the external archive. 

 

For a better selection of global best, better convergence of solutions is needed. For this purpose, 

neighbouring topology is used as in the study of Coello Coello et al. [88]. In their study, an external 

repository is created in order to store nondominated solutions found so far. The external repository 

consists of two parts. The first one is the ‘Archive Controller’. The function of the archive 

controller is to control storing the new element to the archive or not by checking the dominance of 

the new element over the previous particles added to the archive. When the archive reaches to its 

maximum capacity, second part of the repository is triggered which is the ‘Adaptive Grid’. 

Adaptive grid creates hypercubes, which are a type of neighbourhood, containing a certain number 

of particles. The particles are grouped into neighbourhoods uniformly. Grid sizes can be defined 

by the user. Each hypercube is given a fitness value considering the number of particles inside it. 

Roulette Wheel approach is used to select a hypercube depending on its assigned fitness value. One 

hypercube is selected and a global leader is randomly selected inside that hypercube. The adaptive 

grid and roulette wheel approach encourages particles to be selected from the least crowded 

hypercubes which provides diversity and prevents premature convergence.  

 

As non-dominating Pareto solutions are selected and stored in an external repository, main loop of 

the algorithm selects leaders updates each particle’s velocities and positions towards the leaders. 
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Mutation operator is another method to overcome premature convergence. As mentioned in the 

previous sections, in some cases, velocity of particles converges to 0 and code fails to generate new 

solutions and diversity is lost. For those particles trapped in a local optimum, mutation operator is 

used. A single particle is mutated with a randomized velocity or position, in order to escape from 

local convergence. As the number of iterations increase, the effect of mutation operator decreases. 

If the personal best of each particle is dominated by its new position, its personal best is updated. 

The archive is updated with the global best values in each iteration. Pseudo-code of generated 

MATLAB code can be summarized as in Figure 4.12 and the code generates a Pareto curve for two 

objective function values as in Error! Reference source not found.. 

 

 

 

Figure 4.12 - Pseudo-code of MOPSO 
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Figure 4.13 - Pareto curve generated by MATLAB code 

 

4.5 Summary 

In this section, models and formulations which are going to be used in MOPSO algorithm are 

presented. The objective functions are selected as the production time and cost. They have a 

contradicted relation. In order to decrease production time, cutting speed could be increased, which 

on the other hand may decrease tool life, so the production cost increases. MATLAB code 

generated Pareto curve representing the relation of production time and cost. Meanwhile, surface 

roughness, burr size and cutting forces have limitation values. So the generated process parameters 

should result in process performances respecting these limitations. Decision variables which the 

code would generate is the number of roughing passes, and cutting speed, feed rate and the depth 

of cut for roughing and finishing passes. 
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5. APPLICATIONS AND CASE STUDIES 

 

5.1 Verification Test Setup 

In this section, results of verification tests for MATLAB code is presented. As mentioned in the 

previous section, MATLAB code generates 𝑉𝑐, 𝑓, and 𝑑 values for each roughing pass and the 

finishing pass. Two sets of cutting tests are applied. First, regular slotting tests are done with 

commonly used cutting parameters regarding the specified cutting tool and the workpiece. The 

values are average values taken from tests in literature and suggested values on tool catalogue. 

Parameter values used in the first set of tests are listed in Table 5.1.  

 

The second set of tests are conducted with the cutting parameters obtained from MATLAB code. 

Since the code generates cutting parameters for the finishing pass, there are values for finishing 

operation as well in Table 5.2. Surface roughness, burr formation and cutting forces are also 

measured for each slot in order to observe optimization results. Table 5.1 and Table 5.2 only 

includes values for production time, cutting force and surface roughness measurements. Additional 

tests are conducted for tool wear measurement. Tool wear is investigated under microscope to 

observe changes in tool life with optimized cutting parameters which would lead to lower 

production costs. 

 

Table 5.1 –First set of tests with recommended cutting parameters 
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Table 5.2 – Second set of tests with code generated cutting parameters 

 

 

In both sets of tests, slot milling is conducted with micro end mills with 2 mm in diameter and 4 

flutes on Ti-6Al-4V titanium alloy workpiece with cutting parameters listed in in Table 5.1 and 

Table 5.2. Each slot is 15 mm in length and total depth of cut is 0.1 mm. The workpiece is prepared 

before in 65x65 mm dimensions and milled on KERN Evo Ultra Precision CNC Machining Centre 

with the resolution of 0.1 𝜇𝑚 and positioning tolerance of ±0.1 𝜇𝑚 shown in Figure 5.2. Cutting 

forces are measured with Kistler type 9256C dynamometer in Figure 5.2. Tool wear, surface 

roughness and burr size are examined under Nanofocus µsurf Explorer in Figure 5.2. 

 

 

Figure 5.1 – (a) Tool and Workpiece Setup, (b)  Slot Milling Operation 
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Figure 5.2 – (a) KERN Evo Ultra Precision Machining Centre; (b) Kistler Type 9256C; (c) Nanofocus µsurf Explorer 

 

First, tools are observed under Nanofocus µsurf microscope and hone radii are measured as shown 

in Figure 5.3. It is observed that the average hone radius of the tools is 14 𝜇𝑚. In order to avoid 

ploughing mechanism, minimum chip thickness is calculated as 20-40% of hone radius [25], which 

makes 2.8 − 5.6 𝜇𝑚. The lower bound of depth of cut for each pass is set to 5.6 𝜇𝑚 in the code to 

stay on safe side. 

 

 

Figure 5.3 - Hone Radius Measurement under Nanofocus μsurf 
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In Table 5.3, measurements for cutting force components, surface roughness and production time 

are given from the first set of tests done with recommended cutting parameters. Table 5.4 has 

measurement results of tests with optimized process parameters and calculated values from the 

code. Results for each objective function and constraints will be explained in the following 

sections. 

 

Table 5.3 - Results from recommended cutting parameters 

 

 

Table 5.4 - Result from optimized parameters achieved by experimental measurement and model 
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5.2 Results and Discussions 

 

5.2.1 Production Time 

As mentioned previously, production time is calculated as the sum of actual machining time (𝑇𝑚), 

time wasted without cutting (𝑇𝑖) and time spent during tool change (𝑇𝑐). Tool changing time is a 

CNC machine characteristic and time spent without cutting can be reduced by feed path scheduling. 

Highest reduction in production time can be achieved by reducing the actual machining time, which 

can be done by optimizing cutting parameters by maximizing MRR. 

 

During each slot milling, machining time is recorded in with a cutting force based chronometer. 

When dynamometer reads a cutting force, chronometer counts. Table 5.4 includes measured and 

calculated production time. Production time calculated by MATLAB code is verified with the 

actual measured experimental data. Below, Figure 5.4 shows that the code calculations are reliable 

with the error of 12.6%. 

 

 

Figure 5.4 -- Measured production time vs calculated production time 

In the code, each particle in the solution set favours one objective. Figure 5.5 shows one of the 

Pareto curves generated in different runs. As mentioned in Chapter 4, parameters minimizing the 

production time degrades production cost. For instance, maximizing MRR for reducing production 

time leads to lower tool life and increase in production cost. The Pareto curve in Figure 5.5 gives 

different solutions in favour of different objective functions. Peaks in Figure 5.4 belong to tests 

with optimized parameters favouring production cost, therefore provides longer tool life. 
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Figure 5.5 - Example of Pareto curve generated by MATLAB code 

 

Average production time from the first set of tests and from second set of tests are shown below in 

Figure 5.6. As it can be seen from the graph, the average production time is reduced by %40 from 

the first set of tests to second one obtained by MATLAB results. Since production time is mostly 

effected by the actual machining time, rather than tool idling and changing time, it is possible to 

obtain such a big reduction by increasing MRR up to process performance and part quality limits 

defined. In following sections, it will be shown that production time is minimized without causing 

poor tool life, surface roughness or violating any other quality criteria. 

  

 

Figure 5.6 - Production time with recommended cutting parameters vs optimized cutting parameters 
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5.2.2 Production Cost 

Total production cost includes actual machining cost, machining idle cost, cost during tool change 

and the tool cost. Labour and overhead costs are included in the constant, 𝑘0 ($ per minute). 

Production cost is reduced also by reducing the production time, which indirectly reduces 

machining costs and labour costs. The main part of reduction comes from maximized tool life. As 

given in Chapter 4, tool life depends on the cutting speed and constants related to tool material and 

geometry [11] as given in  Eq. 4.12. 

 

Hone radii of unused tools are measured under Nanofocus µsurf microscope with an objective lens 

of 50x. Two new tools are used at the beginning of each set of tests. Average hone radius for each 

tool is calculated as 14.13 𝜇𝑚 for the first set of tests and 13.72 𝜇𝑚 for the second set of tests. 

After equal number of slots are machined, hone radii are measured again and tool wear is calculated 

as [27]; 

 

𝑇𝑜𝑜𝑙 𝑊𝑒𝑎𝑟 =  
𝑑𝑖+𝑑𝑓

2
                 (5.1) 

 

After cutting equal number of slots, it is seen from the measurements in Figure 5.7 that the hone 

radii enlarge averagely to 29.19 𝜇𝑚 and 22.81𝜇𝑚 consequently. So the tool wears are calculated 

from Eq. 5.1as in Figure 5.8. It is seen that tool wear rate is reduced by 21,8%. 

 

 

Figure 5.7 – Sample measurements of final tool hone radii; (a) with recommended parameters; (b) with optimized parameters 
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Figure 5.8 – Tool wear with recommended cutting parameters vs optimized cutting parameters 

 

5.2.3 Surface Roughness 

Surface roughness measurements are also carried out with Nanofocus µsurf microscope with an 

objective lens of 50x. Measured data from both sets of tests are given in the tables Table 5.3 and 

Table 5.4. Surface roughness values achieved by the code is verified with the test results. Figure 

5.9 shows that the code calculations are reliable with an error of 15.93%. Experimental 

measurements show a high surface roughness value on test no 9, that is because of an unexpected 

chatter vibration, which is also detected from microscope image given in Figure 5.10. 

 

 

 

Figure 5.9 - Measured surface roughness vs calculated surface roughness 
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Figure 5.10 - Nanofocus image and measurement table of a chatter vibration detected 

 

Figure 5.11 - An example measurement of surface roughness from tests with recommended cutting parameters 

 

Figure 5.12 -  - An example measurement of surface roughness from tests with optimized cutting parameters 
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After completing the first set of tests with recommended cutting parameters, surface roughness 

values of each slot are measured. An example from these measurements is shown in Figure 5.11. 

The average value of surface roughness from first set of tests is calculated as 0,58 𝜇𝑚. Depending 

on the average value, the upper bound of surface roughness in the code is set to 0,5 𝜇𝑚. Code 

generated values have an average surface roughness of 0,39 𝜇𝑚. After completing the second set 

of tests, average surface value of experimental data is measured as 0,42 𝜇𝑚. An example from 

these measurements is shown in Figure 5.12. Figure 5.3 shows the comparison of average surface 

roughness values from tests with recommended values and optimized values. It can be concluded 

that the surface roughness is decreased by 27,5% with the optimization of process parameters. 

 

 

Figure 5.13 - Surface roughness with recommended cutting parameters vs optimized cutting parameters 

 

5.2.4 Burr Formation 

Burr size measurements are also carried out with Nanofocus µsurf microscope with an objective 

lens of 10x. A sample measurement is done, which is shown in Figure 5.14, in order to set upper 

bound of burr height in MATLAB code. Images taken from top clearly indicates that burr formation 

is kept under control as shown in Figure 5.15 and Figure 5.16. 
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Figure 5.14 - Burr size measurement 

 

 

Figure 5.15 - Burr images from slots with recommended cutting parameters 

 

 

Figure 5.16 - Burr images from slots with optimized cutting parameters 
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5.2.5 Cutting Forces 

Cutting forces are calculated according to the model mentioned in Chapter 4.3. For the primary 

deformation zone, Johnson Cook’s parameters for Ti-6Al-4V are given in Table 5.5. 

 

Table 5.5 - Johnson's Cook parameters for Ti-6Al-4V 

 

 

During the experimental tests, cutting forces are measured with Kistler type 9256C dynamometer. 

Measured data from both sets of tests are given in the tables Table 5.3 and Table 5.4. After 

completing slotting operations with recommended cutting parameters, average feed and tangential 

force values are entered to code as upper boundaries for force calculations. Predicted force 

components in feed and tangential direction is verified with the test results. It is concluded that the 

code calculations are reliable as it can be seen in Figure 5.17 and Figure 5.18. Figure 5.19 shows 

that the forces are kept at maximum values during operations with optimized values. After 

completing the first set of tests, average force values for feed force and tangential force are entered 

in the code as the upper bounds of the relevant forces. Calculated forces remained under the average 

force values from the experiments with recommended cutting parameters. Average force in feed 

direction is reduced by 7.7% and in tangential direction by 16.4% which is shown in Figure 5.19. 

 

 

 

Figure 5.17 - Measured Feed Force vs Calculated Feed Force 
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Figure 5.18 - Measured Tangential Force vs Calculated Tangential Force 

 

 

Figure 5.19 – Cutting forces with recommended cutting parameters vs optimized cutting parameters 

 

5.2.5 Summary 

In micromilling operations, demand for high surface quality and geometrical accuracy increases 

production costs. On the other hand, high cutting forces cause short tool life and limits material 

removal rate, as well as the production time. Optimizing cutting parameters in order to find a 

balance between production time and cost with high part quality and production performance has 

been a target research topic in micromilling for researchers. Methods for solving multiple objective 

problems have different usages in engineering areas. In this thesis, Multi Objective Particle Swarm 

Optimization is adapted to optimization of micromilling in order to solve for cutting parameters 

for high part quality and better process performances. This method is selected for its easy 

adaptation and high computational efficiency. A MATLAB code is developed outputting number 
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of roughing passes and depth of cut for each roughing pass and finishing pass, cutting velocity and 

feed for each pass. Pareto curve representing the relation between the production time and 

production cost is drawn. Surface roughness, burr size and cutting forces are kept under given 

values. 

 

For verification, a set of experiments are designed. Calculations for production cost, production 

time, surface roughness and cutting forces are verified by applying tests with the output values for 

cutting parameters. The results are also compared with the results of another set of tests which are 

done with the average standard cutting parameters used in literature or recommended by the tool 

manufacturer.  It is observed that both production time and the production cost is lowered. Surface 

roughness, burr size and cutting forces are kept under control successfully. Predicted results, 

experimental results and their comparison are presented in this section. 
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6. CONCLUSION 

 

As mentioned earlier in Chapter 5, optimization of micromilling process is provided using multi 

objective particle swarm optimization (MOPSO) method. The code predicted values for production 

time, production cost, surface roughness, burr size and cutting forces. These predicted values are 

compared with experimental values. It can be concluded that the predicted values are reliable. 

Another comparison has been made with results obtained from tests with recommended cutting 

parameters. Following results are achieved: 

 

Production time is calculated during tests with optimized parameters and recommended 

parameters. It is observed that the production time is reduced by %40 from the first set of tests to 

second one. 

 

Reduction of production cost is depicted by the change in tool wear rate. Since other factors 

effecting production cost are constants such as labour cost, tool life is kept at maximum level to 

reduce production cost. After measuring tool wear rate after each test, it is calculated that the tool 

wear rate is reduced by 21,8%. It is also observed that the higher cutting velocities lead to higher 

tool wear rates. The reason is that increasing cutting velocity increases the material removal rate, 

therefore chip load increases on the tool and tool wears more rapidly. Measurement of cutting 

forces also supports that the tool wear increases with the increasing cutting velocity. 

 

Surface roughness is measured under microscope after each set of tests. It can be concluded that 

the surface roughness is decreased by %27,5 with the optimization of process parameters. It is 

observed that when tool wear increases surface roughness also increase since large hone radii 

causes high surface roughness. It can be also stated that the low feeds cause high surface roughness 

due to increasing ploughing mechanism.  

 

Burr sizes are observed under microscope and it is clearly seen that with optimized cutting 

parameters, burr sizes are reduced considerably. At high cutting velocities, burr size gets smaller 

because of the decreasing effect of ploughing mechanism. As depth of cut increases, burr size 

increases as well. 
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Cutting forces are kept at maximum possible force values in order to provide maximum material 

removal rates and minimum production time. Cutting force values show increasing trendline as 

tool wear increases. values. Force in feed direction is reduced by 7.7% and in tangential direction 

by 16.4%. 

 

The algorithm developed successfully solves optimization of micromilling process. It is now 

possible to use process parameters given by the code which would provide better productivity and 

part quality. It can be concluded that particle swarm optimization can be used as a solution method 

for multiple objective optimization of micromilling process to improve part quality and process 

performance. As a suggestion for further researches, other multiple objective optimization methods 

can be used for micromilling operations in order to reveal best applicable method for micromilling. 

 

There are several MOPSO parameters used in the algorithm such as number of particles, dimension, 

maximum change a particle can take, learning factors and inertia weight, and also some constants 

relevant to neighbourhood topology and mutation operator. There are common usages of certain 

values for these parameters in the literature, however for future work, fine-tuning of these 

parameters for micromilling operations can be developed. 

 

There are three process parameters calculated by the presented algorithm. An extensive algorithm 

can be developed which also optimizes other cutting parameters or tool parameters for better tool 

selection for a specific type of operation.  

 

Since the path length is manually entered to the algorithm, it is hard to implement the code for 

complex part geometries. The algorithm can be developed and merged with CAM file to calculate 

path length to provide optimization results specific to part geometry. It can also be merged with a 

path scheduling algorithm in order to provide a better reduction in production time. 
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