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ABSTRACT 

 

 

NEXT-GENERATION SEQUENCING AND PHYSICAL MAPPING OF WHEAT 

CHROMOSOME 5D AND COMPARISON WITH ITS WILD PROGENITOR 

 

 

Bâlâ Anı Akpınar 

PhD Thesis 2015 

Prof. Dr. Hikmet Budak (Thesis supervisor) 

 

Keywords: Wheat, next-generation sequencing, physical mapping, chromosome 5D, 

comparative genomics 

 

Wheat is a staple grain crop, essential to human nutrition and animal feed. Despite 

its agronomic importance, wheat genomics research has long lagged behind its 

counterparts, due to its genome attributes. Bread wheat genome is almost six times as 

large as the human genome at a size of ~17 Gigabases, and is composed of >80% 

repetitive elements. The hexaploid genome is organized into three related sub-genomes, 

giving rise to numerous paralogous and homeologous loci. In this study, we 

characterized the flow-sorted 5D chromosome of bread wheat, Triticum aestivum, 

through survey sequencing and physical mapping, including its repeat landscape, gene 

content and conservation and putative tRNA repertoire. The virtual gene order of 5D 

chromosome suggested several perturbations in synteny, in addition to a number of 

putatively wheat-specific genome rearrangements. The 5DS physical map revealed that 

its gene space is largely organized into gene islands with an increasing gradient towards 

the telomere. Physical size estimates on the physical map indicated that cytogenetic 

estimates may considerably underestimate the 0.63-0.67 deletion bin interval. 

Comparative analyses of its wild progenitor, Aegilops tauschii 5D chromosome shed 

light into wheat genome evolution. The high density 5DS physical map at ~10.5 

markers/Mb and 1.34x-1.61x survey sequences of the entire chromosome provides the 

foundation of the reference sequencing of this chromosome and presents a valuable 

genomics resource that the breeders and the researchers should benefit from. 
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ÖZET 

 

 

BUĞDAY 5D KROMOZOMUNUN YENĠ-NESĠL DĠZĠLEMESĠ, FĠZĠKSEL 

HARĠTALAMASI ve YABANĠ ATASIYLA KARġILAġTIRILMASI 

 

 

Bâlâ Anı Akpınar 

Doktora Tezi 2015 

Prof. Dr. Hikmet Budak (Tez danıĢmanı) 

 

 

Anahtar kelimeler: Buğday, yeni-nesil dizileme, fiziksel haritalama, 5D kromozomu, 

karĢılaĢtırmalı genomiks 

 

 

BaĢlıca ekinlerimizden olan buğday, temel bir gıda maddesi ve hayvan yemi 

kaynağıdır. Tarımsal önemine rağmen, buğdayda genomik çalıĢmalar, genom özellikleri 

nedeniyle, uzun zamandır, diğer ekinlerin gerisinde kalmıĢtır. Ekmeklik buğday 

genomu, ~17 Gigabaz büyüklüğü ile insan genomunun neredeyse 6 katı büyüklükte 

olup, %80‟den fazla oranda tekrarlı dizi içermektedir. Hekzaploid genomu, birbirine 

benzer üç alt genomdan oluĢtuğu için pek çok paralog ve homeolog lokusu kapsar. Bu 

çalıĢmada, tekrarlı dizi düzeni, gen içeriği ve korunması ve muhtemel tRNA içeriği 

dahilinde, akıĢ sitometrisi ile saflaĢtırılmıĢ, ekmeklik buğday, Triticum aestivum, 5D 

kromozomunu karakterize ettik. 5D kromozomunun sanal gen sırası, buğdaya özgü 

genom düzenlemelerinin yanısıra, korunmuĢ gen bloklarında pek çok karıĢıklık 

olabileceğini ortaya çıkardı. 5DS fiziksel haritası ise, gen düzleminin telomere doğru 

artan yoğunlukta gen adacıklarından oluĢtuğunu gösterdi. Fiziksel boyut tahminleri, 

0.63-0.67 delesyon bölge aralığının sitogenetik tahminlerde ciddi ölçüde küçültülmüĢ 

olabileceğine iĢaret etti. Yabani atası Aegilops tauschii 5D kromozomu ile 

karĢılaĢtırmalı analizler ise buğday genom evrimine ıĢık tuttu. Megabaz baĢına ~10.5 

markör ile yüksek yoğunluklu 5DS fiziksel haritası ve 1.34x-1.61x kapsamalı tüm 

kromozom dizileri bu kromozomun referans dizilemesine temel teĢkil etmekte olup, 

hem ıslahçıların hem de araĢtırmacıların yararlanabileceği değerli bir genomik kaynak 

da sunmaktadır.  
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1. INTRODUCTION 

 

 

 

 

Agricultural production faces major challenges as the world population continues 

to grow and climate changes progressively affect crop yields, while the acreage of 

arable lands remains essentially the same. Through the agricultural history, 

domestication and systemic breeding have achieved steady yield gains at the expense of 

genetic diversity. Consequently, the gene pools of today‟s elite cultivars are 

considerably narrow, and further improvements through breeding appear to necessitate 

effective exploration and utilization of the germsplasms, including wild populations and 

landraces.  

The advances in molecular biology and reducing costs of sequencing technologies 

have opened up new avenues for crop improvement through genome sequencing and 

genomics research, which enable extensive characterization of genetic stocks and 

mutant collections. For the past few years, fierce efforts have unraveled genome 

sequences of many model and crop plants, and ongoing efforts are now directed to 

tackle the crop genomes that were once considered intractable.  

One such crop plant, bread wheat, has a 17 Gigabase long hexaploid genome that 

is composed of >80% repetitive elements. Despite being an essential component of 

nutrition and a leading crop, the genome attributes of wheat have long hindered 

genomics studies. The flow sorting and physical mapping of its largest chromosome, 

3B, have set the pace in wheat genomics and subsequently led to the very recent report 

of its reference sequencing (Paux et al., 2008; Choulet et al., 2014).  

Here we describe the next-generation sequencing and physical mapping of bread 

wheat, Triticum aestivum, chromosome 5D, and its comparison with its counterpart 

from the D-genome progenitor Aegilops tauschii. Genomic resources generated in this 

study can readily be applied to map-based cloning of important genes and alleles from 
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this chromosome. On the long run, these resources will provide a framework for the 

future reference sequencing of this chromosome, which represents a significant piece of 

the wheat genome puzzle.   
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2. OVERVIEW 

 

 

 

 

2.1.  Wheat as a leading crop 

 

 

 

Food security is a growing concern across the globe. Roughly one in seven 

individuals is estimated to be under- or malnourished worldwide (Foley et al., 2011). 

Although the prevalence of undernourishment has decreased during the past two 

decades, food security is likely to remain a major issue, as the world population is 

projected to exceed 9 billion by 2050, necessitating an estimated increase of 60% in 

global agricultural production to meet the food demand (FAO, 2013).  

Cereal crops are the main sources of human nutrition and animal feed. Among the 

cereals, wheat, a cereal grain crop, currently ranks the third, following rice and maize, 

with an annual production of over 713 million tonnes in 2013 (http://faostat3.fao.org/). 

Since maize is generally used as animal feed, wheat is actually the second major 

constituent of human nourishment and provides nearly 1/5 of the total caloric input 

(Reynolds et al., 2009; FAO, 2013). Wheat is the most extensively grown food crop, 

harvested across over 218 million hectares worldwide; due to its hardy nature, wheat is 

capable of growing across a wide range of environments. However, climate changes and 

the increasing use of crops for biofuel production hinder crop production (Foley et al., 

2011). In particular, climate trends are estimated to cause a 5.5% loss in wheat 

production between 1980-2008 (Lobell et al., 2011). Further improvements on crop 

production to feed the growing world population will be tightly linked to increased 

yields. 

 

 

 

 

 

http://faostat3.fao.org/
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2.2.  DNA Sequencing 

 

 

 

2.2.1. First generation sequencing technologies 

 

 

The sequence of the DNA had intrigued scientists since the discovery of the 

“double helix” in 1953. By that time, the notion of proteins made up of amino acid 

residues arranged in an arbitrary but defined order was already known, and the order of 

the amino acid residues was attributed to the sequence of the DNA fragment encoding 

the corresponding protein. However, the exact mechanism was unknown. However, the 

experimental determination of the DNA sequence could not be achieved for 15 years, 

largely because DNA molecules are usually much longer than proteins and the 

incorporation of only 4 bases in any DNA molecule complicates the chemical 

separation of different DNA fragments (Hutchison, 2007). 

The discovery of type II restriction nucleases cleaving DNA at specific 

recognition sites and the use of polyacrylamide gels for the separation of DNA 

fragments with different sizes had been crucial in the development of first generation 

sequencing methodologies. Type II restriction nucleases enabled the long DNA 

molecules to be cut into smaller fragments with specific ends that can be used in 

priming the sequencing reaction (Hutchison, 2007). Consequently, the first complete 

genome sequence was published in 1977, which belonged to the ~5,375 nucleotide-long 

genome of the ϕX174 bacteriophage (Sanger et al., 1977a). 

Near the end of 1977, Sanger and his colleagues described a new DNA 

sequencing methodology utilizing chain-terminating inhibitors (Sanger et al., 1977b). 

Although DNA sequencing had been carried out for a couple of years prior, the 

introduction of this new method, commonly known as the “Sanger sequencing” or 

“dideoxy sequencing” today, had been pivotal. Sanger sequencing relies on the 

termination of the growing DNA chain by 2',3'-dideoxynucleotides (ddNTPs), modified 

analogues of natural 2‟-deoxynucleotides (dNTPs). Since ddNTPs lack the 3‟-hydroxyl 

group, DNA polymerase cannot elongate the complementary DNA strand, once a 

ddNTP is incorporated into the growing chain. In the presence of a mixture of dNTPs 

and ddNTPs at a certain ratio, DNA polymerase produces a mixture of nested 

fragments, which can be separated by gel electrophoresis to deduce the sequence of the 
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original DNA fragment (Fig. 1) (Sanger et al., 1977b). Sanger sequencing quickly 

became the method of choice as the first generation DNA sequencing techniques and 

dominated the DNA sequencing era for three decades. Over the years, Sanger 

sequencing had been significantly improved through technological advances, including 

the use of fluorescent dyes, improved detection methods and capillary electrophoresis 

and microfluidic platforms, and was automated (Metzker, 2005), eventually, forming 

the basis of the Human Genome Project (Lander et al., 2001; Venter et al., 2001).  

 

Figure 1. Schematic overview of Sanger sequencing with the current techological 

advances. 

 

 

 

2.2.2. Next-Generation Sequencing technologies 

 

 

The completion of the Human Genome Project marked the beginning of a new era 

in DNA sequencing. As the benefits of sequencing and re-sequencing of human 

genomes were realized, in particular, for disease research, a tremendous need for 

sequencing quickly built up. However, despite the remarkable success of Sanger 

sequencing, the inherent limitations of this sequencing methodology necessitated the 

development of novel sequencing approaches (Metzker, 2010). Sanger sequencing is 

low-throughput, tedius and costly; in fact, the Human Genome Project was completed at 

a cost of $2.7 billion using automated Sanger sequencing (http://www.genome.gov/). 

http://www.genome.gov/
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Initially, Next-Generation Sequencing (NGS) technologies were developed for the 

re-sequencing purposes. Soon after, the high-throughput capacities of these NGS 

platforms able to carry out reasonably accurate sequencing at considerably reduced 

costs have led to the adoption of these technologies as the primary sequencing 

approach. Currently, NGS technologies are applied to a broad range of research areas, 

including but not limited to genomics, transcriptomics, metagenomics, forensic science, 

epidemiology, diagnostics and therapeutics (Metzker, 2005; Hutchison, 2007). 

Remarkably, the utility of NGS technologies has moved beyond the sequencing 

purposes; for instance, NGS platforms are being increasingly used in gene expression 

studies, where prior information about the sequence of a transcript is not required to 

detect its expression, in contrast to hybridization-based microarray platforms (Metzker, 

2010).  

Most NGS technologies, as well as the first-generation Sanger sequencing, are 

DNA polymerase-dependent, however, they differ in their template preparation, 

sequencing, imaging and data analysis steps (Metzker, 2010). A number of NGS 

plaforms are commercially available, among which Illumina/Solexa 

(www.illumina.com) and Roche/454 (www.454.com) platforms are currently the 

leading ones.  

NGS technologies generally require clonal amplification of the template DNA to 

be sequenced, as most imaging systems are not capable of detecting single fluorescence 

or luminescence events. This amplification step introduces an amplification bias, in 

which certain sequences are replicated more than others, and may induce mutations 

during the amplification. Genome assemblies and sequence alignments, indeed, 

demonstrated an underrepresentation of AT-rich or GC-rich target sequences that are 

sequenced through Illumina/Solexa and Roche/454 technologies (Metzker, 2010). In 

order to overcome this issue, “third generation”, or sometimes referred to as “next-next-

generation sequencing”, technologies are being developed, which act on single-

molecule templates. However, these third generation technologies have not been widely 

applied in research programmes yet (Bolger et al., 2014). 

 

 

http://www.illumina.com/
http://www.454.com/
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2.2.2.1.  Illumina/Solexa platform 

 

 

Solexa technology is commercialized by Illumina, hence, is generally referred to 

as the Illumina/Solexa platform. The Illumina/Solexa platform works on either single 

end or paired-end libraries, which are generated from the randomly sheared fragments 

of the template DNA. These sequencing libraries are then clonally amplified through 

solid-phase amplification, also known as the bridge amplification. Similar to the Sanger 

sequencing, Illumina/Solexa platform utilizes the chain terminator chemistry for DNA 

sequencing. Fluorescently labeled chain-terminating nucleotides are added to the 

growing DNA chain in a reversible manner (Metzker, 2010). The incorporation of 

reversible chain terminators, and thus, DNA synthesis is not highly efficient. 

Consequently, read lengths obtained by the Illumina/Solexa platform is generally 

shorter than the Roche/454 platform (Hutchison, 2007). 

The most common error type in Illumina/Solexa generated sequences are base 

substitutions, particularly following the incorporation of a guanine base in the previous 

cycle (Metzker, 2010). Despite the shorter read lengths, Illumina/Solexa technology can 

provide better depth of coverage at reduced costs, compared to the Roche/454 platform 

(Metzker, 2010; You et al., 2011). 

 

 

2.2.2.2.  Roche/454 Platform 

 

 

Pyrosequencing, which forms the core of the Roche/454 platform, was first 

described in 1988 (Hutchison, 2007). This non-fluorescence technique relies on a 

number of sequential enzymatic reactions, which begins with the incorporation of a 

dNTP into the growing DNA chain and ends with the generation and detection of 

visible light (Fig. 2). The incorporation of a dNTP molecule by the action of DNA 

polymerase during a sequencing reaction releases an inorganic pyrophosphate 

molecule, which is converted to an ATP molecule by the ATP sulfurylase in the 

presence of Adenosine 5‟ Phosphosulfate (APS). This ATP molecule is then used by 

Luciferase to convert lucferin into oxyluciferin, generating visible light in the process. 

The amount of generated light is proportional to the amount of ATP, which, in turn, is 

proportional to the initial amount of pyrophosphate molecules released, and thus, the 
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amount of dNTPs incorporated. Finally, Apyrase removes all the unused dNTPs and 

ATPs to prevent cross-signals (Agah et al., 2004).   

 

Figure 2. Pyrosequencing chemistry. DNA pol: DNA polymerase, sulfurylase: ATP 

sulfurylase, dTTP: Thymidine triphosphate, dTMP: Thymidine monophosphate, ATP: 

Adenosine triphosphate, AMP: Adenosine monophosphate, PPi: Pyrophosphate. 

 

Margulies and his colleagues were the first ones to describe the use of 

pyrosequencing in an NGS system, which is commercialized by 454 Life Sciences 

(Roche Applied Sciences, Basel, Switzerland). In order to perform high-throughput 

DNA sequencing, the Roche/454 platform combines an emulsion-based method with 

pyrosequencing carried out inside picoliter-sized wells of a solid support. Prior to 

sequencing, the DNA template is randomly sheared to generate a sequencing library of 

small DNA fragments. Each DNA fragment is captured by a bead through the base-

pairing of adapter sequences and clonally amplified in an oil-water emulsion, which is 

called emulsion PCR (emPCR). A Sequencing-By-Synthesis (SBS) reaction following 

pyrosequencing chemistry takes place within the picoliter-sized wells of a 

PicoTiterPlate (PTP) device, where each nucleotide flows through the pico-wells one at 

a time (Margulies, 2005). 
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In contrast to other sequencing approaches, pyrosequencing does not involve any 

chain termination. Instead, nucleotides are supplied at a defined and sequential order at 

limiting amounts (Hutchison, 2007). The limiting amounts of the dNTP supply, 

however, complicate the sequencing of long homopolymer repeats as it might lead to 

incomplete extension by the DNA polymerase (Metzker, 2005). Homopolymer repeats 

are the major sources of errors in Roche/454 platforms (Hutchison, 2007).  

 

 

 

2.3.  Crop genome sequencing 

 

 

 

The first plant genome sequence was published in 2000, which was the 125 Mb-

long genome of the model plant, Arabidopsis thaliana (The Arabidopsis Genome 

Initiative, 2000). Since the promises of a whole genome sequence offer for crop 

improvement have long been recognized, the first crop genome sequence, that of rice, 

was published soon after (Goff et al., 2002; Yu et al., 2002). Both of these studies relied 

on traditional Sanger sequencing of a minimal set of overlapping Bacterial Artificial 

Chromosomes (BACs).  

Genome sequencing efforts basically proceed through two approaches. Initial 

genome sequencing projects adopted a clone-by-clone approach, as described above. 

This approach includes laborious cloning steps and requires physical mapping of the 

BAC clones to guide the sequence assembly, which may not cover the entire genome. A 

more recent approach is the Whole Genome Shotgun (WGS), which involves the direct 

sequencing of different sized fragments of the genome to be sequenced. WGS 

eliminates the need for the cloning and physical mapping steps at the cost of accuracy, 

particularly in repetitive regions (Jackson et al., 2011). 

Automated Sanger sequencing had been the method of choice for early plant 

sequencing projects (Metzker, 2010). Despite the long reads obtained by Sanger 

sequencing (up to 1 kb), this methodology is low-throughput and both time- and 

resource-intensive. Therefore, NGS technologies initially developed for re-sequencing 

purposes are being increasingly employed in de novo sequencing projects. NGS 

platforms circumvent tedious steps of Sanger sequencing, such as bacterial cloning, and 
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also provide multiplexing options (Varshney et al., 2009). NGS methodologies, 

however, typically suffer from short read lengths, which complicate the subsequent 

sequence assembly, usually resulting in fragmented assemblies (Bolger et al., 2014). 

Despite the advances in sequencing technologies and the decreasing costs, plant 

genome sequencing has been mostly limited to small genomes with low repetitive 

content (Fig. 3). Genome sizes in crop plants vary greatly in size. The ploidy level and 

repeat/transposable element content of the genome account for most of the variation in 

crop genome sizes (Feuillet et al., 2011). These two factors constitute the major 

challenges in crop genome sequencing. 

 

 

Figure 3. Status of crop genome sequencing. Green bars indicate a „finished‟ genome 

sequence, while light blue bars indicate high-quality draft genome. Bread wheat genome 

indicated by a dark blue bar is at the draft status currently. The 748 Mb 5D chromosome 

is indicated by the purple bar at the right end. Adapted from Metzker et al., 2010. 

 

  A high quality genome sequence has multiple uses. Genome sequences of model 

plants provide clues into plant biology, which can be used to identify similar genes, 

structural features or networks in economically important crops or to investigate 

evolutionary history through comparative analyses. In particular, genome sequencing in 

crops allows for the exploration and exploitation of the genetic diversity found within a 

germplasm. Structural variations, such as Copy Number Variation (CNV) or Presence-

Absence Variations (PAVs) underlying the polymorphisms observed among individuals 
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can be detected by mapping re-sequencing data on a high quality reference genome 

(Feuillet et al., 2011). These polymorphisms can then be used to design several 

molecular markers assisting in map-based cloning of agronomically important traits or 

Marker-Assisted Selection (MAS) (Varshney et al., 2009; Morrell et al., 2011). 

Remarkably, comparative analysis of genome sequences may indicate Linkage 

Disequilibrium (LD) patterns of related genomes, which can be utilized to target the 

most efficient genome segments for introgression, that is, regions with low LD 

(Varshney et al., 2009).  

In the absence of a complete genome sequence, high-throughput and low coverage 

survey sequences are also capable of revealing certain aspects of the genome, thereby, 

offering a wide range of application areas, summarized below. 

 

 

 

2.4.  Applications of NGS technologies in crops 

 

 

 

2.4.1. Gene expression and regulation 

 

 

Prior to the introduction of NGS technologies, sequencing in crop species was 

already widespread, mostly in terms of transcript sequences. Sequencing of Expressed 

Sequence Tags (ESTs) even provided clues into important agronomic traits, such as 

drought tolerance (Ergen and Budak, 2009). Currently, over 6 million ESTs from four 

crops, maize, soybean, wheat and rice, are deposited in the EST database of National 

Center for Biotechnology Information (NCBI, 

http://www.ncbi.nlm.nih.gov/genbank/dbest, last accessed 22.01.2015). With the 

technical improvements and decreasing costs, NGS technologies are now beginning to 

dominate transcriptome profiling and gene expression studies.  

RNA-Sequencing (RNA-Seq) utilizes deep sequencing through NGS platforms to 

identify and quantify transcripts of an organism expressed under certain conditions and 

offers several advantages over the traditional hybridization-based microarray platforms. 

Microarrays require prior knowledge of genome of transcriptome sequences in order to 

design hybridization probes, suffer from background noise due to cross-hybridizations, 

http://www.ncbi.nlm.nih.gov/genbank/dbest
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have a low dynamic range, involve complicated normalization steps and provide low 

resolution data. In contrast, RNA-Seq is able to provide de novo sequences, which is 

particularly important for species lacking extensive genomic or transcriptomic sequence 

data, at single base resolution with low to no background noise. As RNA-Seq does not 

impose an upper limit for quantification, transcripts with very low or very high 

expression levels can be detected (Wang et al., 2009).  

Targeting the expressed portion of the genome greatly reduces the complexity of 

genome, particularly those with high repetitive contents, such as wheat. In an 

experimental design, referred as „exome capture‟, probes derived from expressed 

sequences are used to capture coding sequences, prior to sequencing. This approach is 

particularly useful for Triticeae genomes, where repeat contents usually exceed 80% 

(Smith and Flavell, 1975). Consequently, exome capture enables the sequencing of the 

protein-coding regions to provide much higher coverages (Winfield et al., 2012). 

Additionally, aligning these exome sequences against transcriptomes of related species 

reveal SNPs, CNVs, duplications and deletions, which can be efficiently used for 

genotyping (Saintenac et al., 2011; Wendler et al., 2014). Remarkably, exome capture 

has been used to screen and detect chemically induced mutations F2 populations in both 

diploid rice and hexaploid wheat (Henry et al., 2014). Exome capture may be a better 

alternative to RNA-Seq for detecting variations, as it enables targeted sequencing and 

enrichment for specific transcripts. 

Recently, NGS technologies are integrated with chromatin immunoprecipitation 

(ChIP), a technique called as ChIP-Sequencing, to explore epigenetic modifications or 

DNA-protein interactions (Varshney et al., 2009). Interestingly, RNA-Seq and ChIP-

Seq were used in combination to reveal targets of the transcription factor, VRN1, which 

is involved in vernalization pathway, an important trait for Triticeae tribe (Deng et al., 

2015). 

 

 

 

2.4.2. Molecular markers 

 

 

Crop breeding depends on genetic diversity for crop improvement. One aspect of 

the widespread applications of NGS technologies with remarkable implications on 
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breeding has been the design of molecular markers. Through sequencing and re-

sequencing, polymorphisms, such as SNPs, CNVs and PAVs, as well as Insertion-

Deletions (InDels) or Simple Sequence Repeats (SSRs) can be readily identified, from 

which numerous molecular markers can be designed (Feuillet et al., 2011). Although 

SNP discovery is most efficient in the presence of a reference genome sequence, You 

and his colleagues have come up with a pipeline for SNP discovery without a reference 

genome sequence (You et al., 2011). This approach utilizes relatively longer reads of 

one NGS platform (such as Roche/454) or sequence assemblies as reference sequences 

to map shorter reads of another platform (such as Illumina/Solexa). Resulting nucleotide 

differences are filtered against SNP proximity and depth, to avoid misidentification 

(You et al., 2011). Recently, unique sequences flanking the insertion site of a 

Transposable Element (TE) were used to design Insertion Site-Based Polymorphism 

(ISBP) markers, which are particularly useful for crops with highly repetitive genomes, 

such as wheat and barley (Paux et al., 2010). Additionally, variations within coding 

sequences, ESTs or conserved orthologous sequences can also be used to design gene-

associated molecular markers (Quraishi et al., 2009; Varshney et al., 2009). Different 

types of molecular markers characterize different regions of the genome (coding or 

repetitive, for example). Thus, saturation of genetic maps with various types of 

molecular markers is crucial. 

In general, molecular markers are utilized to explore genetic diversity in 

germplasm collections, identification of phlygenetic relationships to define cultivars, 

characterization of genetic resources and association mapping of agronomic traits 

(Edwards and Batley, 2010). An essential tool for modern breeding is Marker-Assisted 

Selection (MAS), the use of molecular markers tightly linked to traits of interest to track 

the trait through crosses. MAS is particularly useful for traits that are difficult to score, 

under complex genetic and/or environmental control, that manifest late in development 

or under particular conditions such as pathogen infection, or that exhibit low heritability 

(Akpinar et al., 2013). Introgression of traits through interspecific crosses leads to the 

co-transfer of linked segments, which may have unprecedented, negative effects on crop 

performance, a phenomenon called as „linkage drag‟. A number of back-crosses are 

required to eliminate or minimize this linkage drag. Tightly linked molecular markers 

flanking both sides of the target gene can define the desired segment precisely, and thus, 

enable efficient transfer of the trait. Additionally, early selection of traits through the 
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use of molecular markers, stable across environments and conditions, can considerably 

accelerate back-crossing steps (Edwards and Batley, 2010; Akpinar et al., 2013).  

Molecular markers also aid in Map-Based Cloning (MBC) of agronomically 

important traits. MBC constructs a high-density genetic map covering the chromosomal 

segment suspected to contain causal gene of a trait. This „mini‟ map, integrated with a 

physical map, is then used for chromosome walking to eventually isolate the gene 

(Varshney et al., 2006).    

High-throughput sequences generated by NGS platforms provide an important 

source for the design and development of a variety of molecular markers that can be 

used to saturate the genetic maps and facilitate their integration with the physical maps 

or other genetic resources, which, in turn, can be used for MAS or MBC purposes in 

breeding programmes.  

 

 

 

2.4.3. Comparative genomics and crop evolution 

 

 

Cereal genomes exhibit a remarkable level of conservation, which allows 

researchers to the trace back and reconstitute the ancestral grass genome (Bolot et al., 

2009; Pont et al., 2013; Murat et al., 2014). Consequently, these related grass genomes 

share conserved blocks of genes which are colinear and are referred as „syntenic‟ blocks 

(The International Brachypodium Initiative, 2010). The high conservation and syntenic 

relationships among grasses have contributed to the identification of conserved genes or 

chromosomal rearrangements from low-coverage NGS data in species lacking a 

reference genome sequence, such as wheat and barley (Mayer et al., 2011; Wicker et 

al., 2011; Vitulo et al., 2011; Akpinar et al., 2014; Lucas et al., 2014). Notably, 

syntenic relationships and comparative genomics have provided the means to fine-map 

several important genes in species with limited genetic and genomic resources, such as 

the wild wheat germplasm, to access the genetic diversity maintained within (Zhang et 

al., 2010; Wu et al., 2013; Ouyang et al., 2014; Wang et al., 2014). 

The draft sequences of all 21 chromosomes of bread wheat has been published 

very recently (Mayer et al., 2014). These draft sequences provided valuable insights 

into wheat evolution. The D-genome of the modern bread wheat was revealed to result 
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from an ancient hybridization between A and B genomes, which explains the 

observation that both A and B genomes are more similar to the D-genome than to each 

other, despite the relatively recent incorporation of the D-genome into the bread wheat 

genome (Marcussen et al., 2014). 

 

 

 

2.5.  Wheat genome evolution 

 

 

 

Extensive research on genome biology and evolution suggests that the Poaceae 

family of grasses, including cereals, co-evolved from a common ancestor, with 5 

ancestral chromosomes, approximately 55-75 Mya (Gill et al., 2004; Murat et al., 

2014). Reconstruction of the ancestral karyotpe indicates that modern genomes of major 

cereals, rice, wheat, barley, sorghum and maize, are variations of this ancestral genome 

through different chromosome breakage, fusion and duplication events. As a result, rice 

has 12 basic sets of chromosomes, while sorghum and maize each have 10 and the 

Triticeae tribe, including wheat and barley, has 7 basic sets of chromosomes, which 

share extensive homology (Salse, 2012). Cereals vary in ploidy levels (the presence of 

one or more genome copies, or sub-genomes), while barley is a diploid organism, 

wheat, from the same tribe, can be diploid, tetraploid (durum wheat) or hexaploid 

(bread wheat) (Feuillet et al., 2007). Nevertheless, all cereals, and the majority of the 

grass species, are considered as diploidized paleopolyploids, due to the shared ancestral 

genome duplications (Murat et al., 2014).  

Wheat genome evolution had profound effects on the genome size and structure of 

modern wheat species. The modern bread wheat genome has been shaped by three 

hybridization and two Whole Genome Duplication (WGD) events (Marcussen et al., 

2014). Recent research suggests that approximately 6.5 million years ago (Mya) 

Triticum and Aegilops species diverged from their common ancestor, forming A and B 

genome lineages. The first hybridization event of the bread wheat evolution involved 

these two genome lineages ~5.5 Mya, giving rise to the D genome lineage (Marcussen 

et al., 2014). The second hybridization event between Triticum urartu (AA genome) 

and an unknown relative of Aegilops speltoides from the Sitopsis section (BB genome) 

was followed by a WGD event, giving rise to the tetraploid Triticum turgidum (AABB 
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genome). This species was domesticated, and several T. turgidum subspecies had been 

cultivated for thousands of years. Although most of these cultivars are no longer 

commercially produced, durum wheat, T. turgidum ssp. durum, is still an economically 

important crop (Feuillet et al., 2007). Finally, a third hybridization event, dating back to 

only ~10.000 years ago, combined the tetraploid T. turgidum genome (AABB genome) 

and diploid Aegilops tauschii genome (DD genome, from the D lineage) and formed the 

hexaploid Triticum aestivum, modern bread wheat, genome, through the second WGD 

event (AABBDD genome). Consequently, modern bread wheat contains three related 

but divergent sub-genomes, which are organized into an „allohexaploid‟ genome 

constitution (Fig. 4).  

 

Figure 4. Recently proposed model for the genome evolution of bread wheat. Numbers 

denote estimated dates of the paleohistoric events in Mya. Whole Genome Duplication 

(WGD) events are indicated by red circles. Adapted from Marcussen et al., 2014. 

 

Paleohistory of the wheat genome suggests that bread wheat is a diploidized 

paleopolyploid; that is, despite being hexaploid, wheat acts as diploid. Diploidization 

refers to the elimination of duplicated gene redundancy in polyploid genomes, either at 

the structural level, through gene deletion, or, at the functional level, through neo- or 



17 

 

sub-functionalization, pseudogenization and concerted evolution. Although 

diploidization efficiently turns duplicated gene copies back into singleton status, certain 

genes, such as Transcription Factors (TFs), are diploidization-resistant, and thus, are 

retained as paralogous copies (Murat et al., 2014). Therefore, modern bread wheat 

genome is composed of diploidization-sensitive and diploidization-resistant blocks with 

numerous paralogous, related and pseudogenic loci across the entire genome (Pont et 

al., 2013).  

 

 

 

2.6.  Wheat genomics 

 

 

 

The hexaploid bread wheat genome is a grave challenge for genomics research. 

With a genome size of approximately 17 Gigabases (Gb), bread wheat genome is almost 

three times as large as the human genome (Mayer et al., 2014). By nature, the 

allohexaploid genome contains several homeologous and paralogous loci within the 

related yet divergent sub-genomes. Additionally, Triticeae genomes have a marked 

abundance of repetitive elements, making up to >80% of the entire genome (Smith and 

Flavell, 1975), which complicates genome sequencing and subsequent assembly of the 

sequences. These attributes of its genome have long hindered genomics research on 

bread wheat, and achieving the sequencing of its huge and complex genome has been 

considered as practically impossible or highly unfeasible until very recently (Paux et al., 

2008).  

While the isolation of individual chromosomes using flow cytometry has been 

reported four decades ago in hamsters and humans, flow cytometric sorting of plant 

chromosomes were complicated due to the low levels of metaphase synchronization and 

the presence of cell walls (Doležel et al., 2012). Fortunately, advances in chromosome 

sorting techniques enabled isolation of individual chromosomes from plants by flow 

cytometry (Kubaláková et al., 2002; Simková et al., 2008; Safár et al., 2010). Flow-

cytometric sorting of chromosomes greatly reduces the genome complexity; rather than 

the entire genome, parts of the genome can be studied one at a time. Additionally, the 

use of flow-sorted chromosomes eliminates complicating homeologous and paralogous 

loci found elsewhere in the genome, thereby allowing the identification of chromosome-
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specific features. Consequently, the International Wheat Genome Sequencing 

Consortium (IWGSC), a collaborative platform of several research groups from public 

or private institutions, employed a chromosome-by-chromosome approach to tackle the 

daunting task of sequencing the bread wheat genome. In this approach, each 

chromosome is allocated to a specific research group for the ultimate goal of reference 

sequencing (Fig. 5) (http://www.wheatgenome.org/). 

 

Figure 5. Bread wheat chromosomes allocated to research groups from different 

countries for the ultimate goal of reference sequencing (http://www.wheatgenome.org/). 

 

The IWGSC approach to sequence the entire bread wheat genome to a reference 

quality involves sequencing each flow-sorted chromosome by the clone-by-clone 

sequencing strategy. This strategy includes the construction of the physical maps from 

BAC libraries of flow-sorted chromosomes (Fig. 6). As the first step, the isolated 

chromosome or chromosome arm is fragmented and cloned into BAC vectors to 

generate a chromosome-specific BAC library. These BAC clones are then fingerprinted 

using the high-throughput SNaPshot
TM

 High-Information Content Fingerprinting 

(HICF) procedure. Briefly, each BAC clone is digested with 4 rare cutters producing 3‟ 

overhangs, and a frequent cutter producing blunt ends. Different overhangs are labeled 

with four different fluorescent dyes, and restriction patterns (or fingerprints) are 

http://www.wheatgenome.org/
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analyzed by capillary electrophoresis (Luo et al., 2003). The fingerprints are compared 

through computational software to determine clone overlaps and build the BACs into a 

preliminary physical map. While traditionally FingerPrinted Contig software (Nelson et 

al., 2005) was widely used to construct physical maps from BAC fingerprints, recently 

introduced Linear Topology Contig (LTC) software is increasingly employed in recent 

studies due to its ability to produce fewer and longer contigs and to allow evaluation of 

clone overlaps (Frenkel et al., 2010). The next step following the physical map 

construction is selecting the „Minimum Tiling Path (MTP)‟, that is the minimal set of 

overlapping BAC clones covering the entire physical map, which will be used for 

further refinement of the physical map and for clone-by-clone sequencing efforts. BAC-

based physical maps serve as framework to guide the assembly of genomic sequences, 

and also present valuable sources for various applications, such as map-based gene 

cloning (Stein, 2007). 

 

Figure 6. Schematic overview of the physical mapping of sorted chromosomes. A 

sample flow karyogram from which 5D chromosome arms and 3B chromosome, 

represented by single peaks, can be flow-sorted is given on top left. I, II, III on flow 

karyogram correspond to composite peaks that contains multiple chromosomes. 

Chromosomes are stained with DAPI (blue) and the purity of the sorted chromosomes 

are determined through the telomeric microsatellites (Kubaláková et al., 2002). 
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The feasibility of this approach was first demonstrated on the longest bread wheat 

chromosome, 3B, which is 1 Gb long (Paux et al., 2008). Chromosome 3B is the only 

chromosome among all 21 chromosomes of bread wheat, which can be sorted from the 

standard flow karyogram. Due to its remarkable size, 3B is represented as an individual 

peak, whereas other chromosomes are represented within three composite peaks (Fig. 

6). Fortunately, the plasticity of the bread wheat genome capable of tolerating 

aneuploidy allowed for the construction of large cytogenetic stocks, which are used to 

isolate all remaining chromosomes and chromosome arms (Endo and Gill, 1996; Safár 

et al., 2010). 

Following the construction of 3B physical map (Paux et al., 2008), five more 

physical map reports ensued, for chromosomes 1AL (Lucas et al., 2013), 1AS (Breen et 

al., 2013), 1BL (Philippe et al., 2013), 1BS (Raats et al., 2013) and 6A (Poursarebani et 

al., 2014). While the physical maps of 1A, 1B and B chromosomes relied on  

SNaPshot
TM

 HICF (Luo et al., 2003), the 6A physical map was constructed using a 

Whole Genome Profiling (WGP) approach.  

While the physical mapping projects are in progress towards the ultimate goal of 

reference sequencing (http://www.wheatgenome.org/), bread wheat genome structure 

and organization have been under close scrutiny for the past few years through the use 

of NGS technologies. Initial attempts targeted NGS of selected BAC clones from 

chromosome 3B chromosome (Wicker et al., 2011) or BAC-End Sequencing (BES) of 

chromosome-specific BAC libraries of chromosomes 3B, 1AL and 3AS (Paux et al., 

2006; Lucas et al., 2012; Sehgal et al., 2012). Additionally, survey sequencing of 

chromosomes 4A, 5A, 5D, 6B, 7BS and 7DS have also been published (Berkman et al., 

2011; Berkman et al., 2012; Vitulo et al., 2011; Hernandez et al., 2012; Tanaka et al., 

2013; Lucas et al., 2014). These sequences have been highly informative on the genome 

structure and organization of the bread wheat; presented a general view of the gene 

space, gene conservation, putative microRNA and tRNA encoding genes, repetitive 

landscape and comparative relationships with related grasses; and have been a rich 

source for the development of several molecular markers. The entire bread wheat 

genome has also been sequenced to a 5X coverage, the highest achieved at the time 

(Brenchley et al., 2012). Besides bread wheat, the draft genome sequences of its two 

diploid progenitors, T. urartu and Ae. tauschii, were published, providing valuable 

http://www.wheatgenome.org/
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insight into the A and D genomes, respectively (Ling et al., 2013; Jia et al., 2013). 

Finally, the draft genome sequences of all 21 bread wheat chromosomes and the 

reference sequencing of chromosome 3B have been reported very recently (Mayer et al., 

2014; Choulet et al., 2014). 

 

 

 

2.7.  Chromosome 5D in an agronomical context 

 

 

 

At a size of 748 Mb (258 Mb short arm, 5DS; 490 Mb long arm, 5DL), 

chromosome 5D is the second largest chromosome of the D-genome and constitutes 

approximately 4.4% of the entire bread wheat genome (Safár et al., 2010). The 5D 

chromosome harbors a number of agronomically important genetic loci. Among these, 

Pina-D1 and Pinb-D1 alleles located within the Ha locus for grain Hardness are 

responsible for the grain texture, which determines the end-use-quality of wheat. The 

protein products of these alleles, puroindolines a and b, confer the grain a soft texture. 

The absence of either of these proteins, conversely, results in a hard texture, which is 

the case for durum wheat. The Ha locus is located on the short arm of chromosome 5D 

(5DS, hereafter) (Morris, 2002). Both chromosome arms also carry Pro1 and Pro2 

genes that are related to the protein content of the grain (Mcintosh et al., 2008). The 

long arm of the 5D chromosome, 5DL hereafter, is attributed to at least 2 vernalization 

loci, Vrn-D1 and Vrn-D4. Vernalization, exposure to low temperatures before 

germination, affects the flowering time in wheat, and the length of the vernalization 

required varies among the genetic stocks (Mcintosh et al., 2008; Yoshida et al., 2010; 

Zhang et al., 2012). Additionally, Lr1 gene mapped to the 5DL provides resistance 

against the leaf rust disease, causing major yield losses globally (Cloutier et al., 2007). 

A few additional loci are mapped to both 5DS and 5DL, conferring resistance against 

different Puccinia strains (such as Lr57, Yr40, and Sr30) or Blumeria graminis (such as 

Pm2, Pm4, and Pm35), the causal agent of powdery mildew; however, only Lr1 gene 

could be cloned to date (Mcintosh et al., 2008). Considering the arms race with the 

pathogen evolution and the disease response, cloning and characterization of further loci 

related to biotic stress will remain an important issue.  
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3. MATERIALS and METHODS 

 

 

 

 

3.1.  Isolation of 5D chromosome by flow cytometry 

 

 

 

The seeds for the double ditelosomic 5D line (2n=40+2t5DS+2t5DL) of Triticum 

aestivum L. cv. Chinese Spring were kindly provided by Prof. B.S. Gill (Kansas State 

University, Manhattan, USA). Liquid suspensions of intact mitotic chromosomes from 

synchronized root tips of young seedlings were used to sort short and long arms of 

chromosome 5D as described by Vrána et al. (Vrana et al., 2000). The purities of the 

sorted fractions were determined by Fluorescence In Situ Hybridization (FISH) with 

probes for Afa and telomeric repeats. Briefly, three batches of 1000 chromosomes were 

sorted onto microscopic slide into 10µl drop of PRINS buffer supplemented with 2.5% 

sucrose. The sample was air-dried and sorted chromosomes were analyzed with FISH 

(Kubaláková et al., 2002; Hernandez et al., 2012). 

 

 

 

3.2.  Next-Generation Sequencing of 5D chromosome 

 

 

 

Prior to sequencing, chromosomal DNA was purified from chromosome arms 

sorted in 40µl deionized water and subsequently amplified by Multiple Displacement 

Amplification (MDA) using the illustra GenomiPhi DNA Amplification kit (GE 

Healthcare, Chalfont St. Giles, United Kingdom) as reported previously  (Simková et 

al., 2008).  

Next-generation sequencing of sorted chromosome arms were carried out on GS 

FLX Titanium platform (454 Life Sciences, Roche Diagnostics Corporation, 

Indianapolis, IN, USA) as outlined in Lucas et al. (2014). Shotgun sequencing libraries 
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were prepared using the GS FLX Titanium Rapid Library Kit (Product no. 

05608228001, 454 Life Sciences). The library quantification was performed on Agilent 

2100 Bioanalyzer using the High Sensitivity DNA Analysis Kit (Agilent Technologies, 

Santa Clara CA, USA). Enrichment, amplification and sequencing steps were performed 

using GS FLX Titanium emPCR (Product no. 05618428001, 454 Life Sciences) and 

Sequencing Kits (Product no. 05233526001, 454 Life Sciences). 

The experimental procedures were performed following the manufacturer‟s 

instructions.  

 

 

 

3.3.  Identification and characterization of repetitive elements 

 

 

 

The repetitive elements were identified using RepeatMasker version 3.3.0 

(http://www.repeatmasker.org/) with a custom repeat database made up of Triticeae 

repeat sequences from TREP release 10 (http://wheat.pw.usda.gov/ITMI/Repeats)  with 

Repbase Update release 15.11 (Jurka et al., 2005) and TIGR Plant Repeat Databases 

(Ouyang and Buell, 2004), which indicated that each chromosome arm contained >70% 

repetitive elements.   

Additionally, 454 sequences were assembled using gsAssembler tool of the 

Newbler software v2.6 (454 Life Sciences). The assembly was carried out at default 

values with „large and complex genome‟ and „heterozygotic mode‟ options and the 

empirically determined minimum overlap identity of 95%. Assembled sequences 

revealed that contigs with low depths had <70% of known repeat content, while the 

repeat content rised to over 80% with contig depths 3 to 6. Therefore, all contigs with a 

depth of 5 or more were considered as collapsed repeats of unknown type, based on the 

above observations and the average sequence coverage of 1.34-1.61x. All sequences 

from these high depth contigs, together with the sequences masked by RepeatMasker, 

were excluded from subsequent analyses.  

For comparative analyses with Ae. tauschii 5D data, unmasked reads were masked 

against a more recent repeat element database, MIPS Repeat Element Database (v. 9.3) 

http://www.repeatmasker.org/
http://wheat.pw.usda.gov/ITMI/Repeats
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for Poaceae (ftp://ftpmips.helmholtz-muenchen.de/plants/REdat/), using the 

RepeatMasker software (Akpinar et al., 2014). 

 

 

 

3.4.  Genetic marker, gene, protein and assembled transcript sources 

 

 

 

Cytogenetic map positions of 5D-mapped EST and SSR markers were retrieved 

from URGI Genetic and Genomic Information Center (GnpMap, map name: 

DEL_050308). EST sequences were retrieved from GrainGenes 

(http://wheat.pw.usda.gov/wEST/), while SSR and COS sequences were kindly 

provided by P. Sourdille and J. Salse, respectively.  

Proteome annotations of fully sequenced grass genomes were retrieved from the 

following sources:  Brachypodium distachyon genome annotation v1.2 (The 

International Brachypodium Initiative, 2010) and Sorghum bicolor genome assembly 

v1.4 (Paterson et al., 2009) from MIPS PlantsDB (http://mips.helmholtz-

muenchen.de/plant/genomes.jsp); Oryza sativa genome assembly IRGSP-1.0 (Tanaka et 

al., 2008) from The Rice Annotation Project Database 

(http://rapdb.dna.affrc.go.jp/download/irgsp1.html); UniGene sequences for  Triticum 

aestivum, Hordeum vulgare, Panicum virgatum, Saccharum officinarum, and Zea mays 

from NCBI UniGene Repository (ftp://ftp.ncbi.nih.gov/repository/UniGene/); UniProt 

sequences (The UniProt Consortium, 2012) from UniProt KnowledgeBase 

(http://www.uniprot.org/). The 2.2x coverage Ae. tauschii 5D chromosome survey 

sequences were retrieved from a recent study (Akpinar et al., 2014). 

 

 

 

3.5.  Sequence similarity searches and gene modeling 

 

 

 

In order to eliminate organellar DNA contaminations, non-repetitive 5D survey 

sequence reads were compared against T. aestivum mitochondrial and chloroplast 

genome sequences and all hits with ≥95% identity over ≥75% of the read length were 

discarded.  

ftp://ftpmips.helmholtz-muenchen.de/plants/REdat/
http://wheat.pw.usda.gov/wEST/
http://mips.helmholtz-muenchen.de/plant/genomes.jsp
http://mips.helmholtz-muenchen.de/plant/genomes.jsp
http://rapdb.dna.affrc.go.jp/download/irgsp1.html
ftp://ftp.ncbi.nih.gov/repository/UniGene/
http://www.uniprot.org/
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Similarity searches against the annotated proteins of B. distachyon, O. sativa and 

S. bicolor and UniProt sequences were performed using blastx and tblastn (-evalue 1E-

6, -length 30, -ppos 75). Alignments with at least 75% similarity over 30 amino acids 

were considered significant at an e-value cutoff of 10
-6

 (Vitulo et al., 2011). Only best 

reciprocal hits on blastx and tblastn searches were retained. For UniGene sequences, 

blastn searches (-evalue 1E-30, -length 90, -pident 75) were performed and only the best 

hits with at least 75% sequence identity over 90 nucleotides at an e-value cutoff of 10
-30

 

were retained, except for T. aestivum UniGenes, where the sequence identity cutoff was 

raised to 95%. EST, SSR and gene-based marker sequences were identified using blastn 

(-evalue 1E-30, -length 90, -pident 95). 

For all blast searches, redundant 5D sequence reads covering the exact same 

region on a protein or gene were removed to eliminate amplification bias (Wicker et al., 

2011). BLAST+ stand-alone toolkit, version 2.2.25 was utilized for all blast searches 

(Camacho et al., 2009). 

All positive blast hits from the grass genomes and UniGenes (the order of 

precedence: Brachypodium, rice, sorghum, UniGene) were used as references onto 

which all non-repetitive 5D reads were mapped using gsMapper tool of the Newbler 

software v2.6, with  auto trimming on and a minimum overlap of 40 nucleotides (454 

Life Sciences). Multiple sequence reads mapped on the same reference sequence were 

merged by filling non-aligned parts with strings of „N‟ using an in-house Perl script. For 

UniProt hits that could not be associated with any other grass genes or UniGene 

sequences, matching reads were de novo assembled using gsAssembler tool Newbler 

software v2.6 (454 Life Sciences), as no reference DNA sequence could be obtained for 

mapping.  

 

 

 

3.6.  Visualization and annotation of genes 

 

 

 

Genomic positions of annotated genes of model grass genomes were retrieved 

from MIPS PlantsDB (http://mips.helmholtz-muenchen.de/plant/genomes.jsp). Gene 

conservation patterns were visualized on heatmaps constructed in MATLAB R2010b 

http://mips.helmholtz-muenchen.de/plant/genomes.jsp
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with a sliding window approach of 50 kb step size. Circle plots were generated using 

Circos software, utilizing binlinks and bundlelinks (≥50 membership along 1Mb 

intervals) tools (Krzywinski et al., 2009). The virtual gene order was constructed using 

the „genome zipper‟ approach as described previously (Mayer et al., 2009). 

Gene Ontology (GO) annotations of the gene models were performed using 

Blast2GO software (Conesa and Götz, 2008). Initial blast step was run locally against 

all non-redundant Viridiplantae proteins (-evalue 1E-6, -outfmt 5, -max_target seqs 1). 

Blast results generated as .xml files were imported into the Blast2GO Software, where 

mapping, annotation and GO Slim steps were performed at default values for plants. 

Multilevel charts were generated for Biological Process, Cellular Component and 

Molecular Function terms. Fisher‟s exact test (two-tailed) was used to evaluate 

statistically significant differences, among the annotations for a given term, between 

conserved gene models and non-conserved gene-related sequences, compared to the 

total number of remaining annotations in the same category.  

Putative tRNA genes were predicted using tRNAscan-SE software (Lowe and 

Eddy, 1997). The program was run locally at the default parameters for eukaryotic 

genomes. 

As an exception, in order to reliably compare functional gene spaces of T. 

aestivum 5D chromosome and its wild progenitor, Ae. tauschii 5D chromosome, a 

different pipeline was followed. First, NGS sequences from both chromosomes were 

masked against the most recent and comprehensive repeat element database for Poaceae 

family of grasses, MIPS Repeat Element Database (v. 9.3) for Poaceae 

(ftp://ftpmips.helmholtz-muenchen.de/plants/REdat/), using the RepeatMasker software. 

Additionally, these sequences were compared against Ae. tauschii chloroplast genome 

(GenBank: JQ754651.1), T. aestivum chloroplast genome (GenBank: KC912694.1), T. 

aestivum mitochondrial genome (NCBI: NC_007579.1) (1E-15, -dust „no‟) and all 

Triticum rRNA sequences (1E-5, -dust „no‟) to eliminate organelle-associated 

sequences. To avoid redundancy, remaining non-repetitive sequences were assembled 

gsAssembler tool Newbler software v2.6 (454 Life Sciences) with the following 

parameters: large and complex genome, heterozygotic mode, extend low-depth overlaps 

and 98% minimum overlap identity. The sequence assemblies were compared against 

the fully annotated model grass genomes as detailed above and, also, against the high-

confidence barley proteins retrieved from MIPS PlantsDB (http://mips.helmholtz-

ftp://ftpmips.helmholtz-muenchen.de/plants/REdat/
http://mips.helmholtz-muenchen.de/plant/barley/
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muenchen.de/plant/barley/). For barley high-confidence proteins, blast parameter for 

similarity was raised to 90%. Additionally, UniProt sequences of Ae. tauschii 

(http://www.uniprot.org/, a total of 34.639 sequences, last accessed on 15.09.2014) and 

UniGene sequences from T. aestivum (Build #63) were used for the identification of 

putative wheat-specific genes. For UniProt sequences, 96% and 98% similarity 

parameters were applied for filtering for T. aestivum and Ae. tauschii 5D sequences, 

respectively. Conversely, for UniGene sequences, 98% and 96% identity parameters 

were used for T. aestivum and Ae. tauschii 5D sequences, respectively (-evalue 1E-30, -

length 100). All sequences from both assemblies that were associated with any of the 

above mentioned protein or UniGene/UniProt sequences were annotated using 

Blast2GO as detailed above. 

 

 

 

3.7.  5DS-specific BAC library construction, fingerprinting and assembly 

 

 

 

The short arm of chromosome 5D was flow sorted as described in Section 3.1. A 

total of 8,120,000 sorted chromosome arms were then embedded in agarose miniplugs, 

and the 5DS chromosome-specific BAC library was constructed according to Šimková 

et al. (Simková et al., 2011). The 5DS-specific BAC library was composed of 36,864 

BAC clones with an average insert size of 137 kb, giving 17x coverage of the 258 Mb-

long chromosome arm (Safár et al., 2010). This library was designated as 

TaaCsp5DShA.  

For fingerprinting, 26,112 BAC clones, with an average insert size 143 kb, 

representing 12.5x coverage of the chromosome arm, were selected. These clones were 

fingerprinted using SNaPshot
TM

 High-Information Content Fingerprinting (HICF) 

procedure (Luo et al., 2003). Prior to preliminary map construction, BAC fingerprints 

were processed using the FingerPrint Background removal (FPB) software (Scalabrin et 

al., 2009) to eliminate the following: (1) bands derived from either the vector or the host 

gDNA, (2) bands generated by incomplete digestion or star activity, (3) bands of 

unexpected sizes, (4) background noise. Parameters used in FPB were as follows: 

Tolerance=0.4; Peak width=15; Size=50-500; Multiply factor=30; Min bands=40; Max 
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sizes=250. True bands of 50-500 bp range were further analyzed with the GenoProfiler 

software to remove cross-contaminations and negative controls (You et al., 2007).   

 

 

3.8.  Preliminary map construction 

 

 

 

After processing with FPB and GenoProfiler, a total of 21,656 good-quality 

fingerprints were obtained. These fingerprints were used to construct two separate 

preliminary maps using FingerPrintedContig (FPC) and Linear Topology Contig (LTC) 

softwares. 

FPC assembly was carried out using parameters optimized for complex and 

repetitive genomes (Nelson et al., 2005). Initial build of contigs was performed under 

extremely stringent conditions, at a Sulston Score probability cutoff of 1e
-75

. The 

stringency was then gradually decreased by -5 in each step, until 1e
-45

, to incrementally 

extend the core of high-confidence contigs. Manual merging was performed by 

comparing contig ends at a more relaxed cutoff of 1e
-25

, according to the following 

criteria: (1) a unique and reciprocal relationship exists between the contig ends, (2) two 

clones from the end of each contig have significant matches at this stringency OR a 

single clone match is supported by marker data. Consensus Band (CB) map is 

calculated for the putative merged contig when the ends of two contigs are considered 

for merging. If the CB map reveals >10% questionable clones (Q-clones) or any other 

structural aberrations, merge is rejected. If a pair of contigs share the same molecular 

marker, these contigs are merged regardless of the presence of matching clones. Short 

contigs that contain 6 or less clones or that are smaller than 200kb are discarded as these 

contigs are considered uninformative. The FPC assembly constructed as detailed above 

contained 350 contigs with an N50 of 1141 kb.  

LTC assembly was carried out as previously described (Lucas et al., 2013). The 

initial net of significant clone overlaps was generated at a relatively liberal cutoff of 10
-

15 
(same Sulston Scoring scheme). From this net of clone overlaps, Q-clones and Q-

overlaps were eliminated at cutoffs of 10
-15

 and 10
-25

, respectively. The first round of 

adaptive clustering was performed at the cutoff of 10
-15

, and the stringency was 
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increased by decreasing the cutoff to 10
-33

 at 6 consecutive steps, in order to split non-

linear contigs. Persistent non-linear contigs were inspected individually by visualizing 

the net of clone overlaps. Thirteen clones suspected of causing the branching in non-

linear contigs were identified and excluded from the second round of adaptive 

clustering. The second round of adaptive clustering resulted in 164 contigs, of which 44 

were short contigs with <6 clones. 

 

 

 

3.9.  Minimum tiling path selection and BAC pooling strategy 

 

 

 

The minimum tiling path (MTP) of the LTC assembly contained several buried 

clones. Therefore, the LTC map was imported into the FPC program and a new MTP 

was picked with the following parameters and a preference for large clones: Minimum 

overlap=30, Maximum overlap=250, FromEnd=0, Minimum shared bands=12. Clone 

overlaps of the MTP picked by FPC were evaluated using LTC. By definition, overlaps 

statistically significant under conditions less stringent than the conditions used to build 

the initial net of clone overlaps are considered unreliable. All such overlaps were 

supported by the manual addition of 210 clones to the MTP clones that cover potentially 

unreliable overlaps. Finally, a total of 163 Q-clones were added to the MTP, as these 

clones might act as bridges if supported by molecular markers. Overall, manually edited 

MTP representing the 5DS physical map contained 2528 clones.   

The MTP clones were re-gridded on 7 x 384-well plates. A 3D pooling strategy 

was applied to facilitate MTP screening. BAC clones on each row, column and plate 

were pooled together, giving rise to 16 row, 24 column and 20 plate pools. Additionally, 

all clones were also combined into a single superpool, for positive control purposes. 

BAC DNA was isolated from each pool and amplified, then re-organized into one 96-

well plate. DNA amplification was performed by the MDA method using random 

primers and phi29 DNA polymerase (GenomiPhi V2 DNA polymerase Kit, GE 

Healthcare). Pools were diluted 1:200 in PCR Grade water before screening. 

 

 

 



30 

 

3.10.   MTP screening using molecular markers 

 

 

 

MTP clones were screened using a variety of molecular markers. 2 gene-based 

markers, 63 EST, 23 SSR and 13 COS markers were retrieved as described in Section 

3.4. Additionally, 16,727 high-confidence ISBP markers were designed from 1.34x 

coverage 5DS survey sequences using IsbpFinder.pl and IsbpSort.pl scripts (Paux et al., 

2010). Of these, 99 high-confidence ISBP markers were tested on MTP pools.  

Screening of MTP pools was performed in a 10µl PCR reaction volume, using 

standard Taq polymerase (Fermentas) as follows: 1µl 10X KCl Buffer (-MgCl2), 0.8µl 

25 mM MgCl2, 0.2µl 2.5mM each dNTP, 0.25µl 10µM Forward Primer, 0.25µl 10µM 

Reverse Primer, 1µl 1:200 diluted BAC pools, 0.05µl Taq Polymerase, 6.45µl dH2O. 

Reaction conditions were as follows: Initial denaturation, 94
o
C 5 min, 35 cycles of 

{Denaturation, 94
o
C 30 sec, Annealing, variable 30 sec, Extension 72

o
C 30 sec}, Final 

extension 72
o
C 7 min. PCR products were analyzed on 1% agarose gel, run at 100V for 

15 minutes. Multiple hits in row, column and/or plate pools were resolved through 

colony PCRs on original MTP clones, testing all possibilities. 

 

 

 

3.11.   Microarray design and hybridization 

 

 

 

Three sources of sequences were used to design probes for an Agilent SurePrint 

G3 Gene Expression Custom Microarray, 8x60k format (Agilent Technologies). These 

were: 1) Genetically mapped gene/marker sequences, 2) Conserved 5DS sequence 

reads, 3) ISBP markers designed from 5DS survey sequences. For the first group of 

sequences, 7 genes mapped on 5DS (Pina-D1, Pinb-D1, Gsp-1, MdH-D3, Nor-D3, 

Pro2, 5S-RNA-D2), 13 COS markers, 122 EST markers and 20 SSR markers (a total of 

162 gene/marker sequences), in addition to 3 SNP sequences mapped to 5DS (Allen et 

al., 2013), were used to design probes with a Tm matching methodology, with the 

parameters as follows: probe length=60bp, probes per target=5, preferred probe Tm 

85
o
C. Additionally, 109 SNPs mapped to 5D by Illumina sequencing (Poland et al., 

2012) were included within this group; however, these sequences were too short to 
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design probes, thus used directly used in 5 exact copies in the overall design. For the 

second group of sequences, 6,996 conserved gene associated 5DS survey sequences, 

identified by blast searches against fully annotated grass genomes as described in 

Section 3.5, were used to design probes with the same criteria given above. For the 

remaining features on the array, the third group of sequences made up of 5,120 ISBP 

marker sequences (amplicon size >150bp) designed from 5DS survey sequences were 

used. Probes were designed as explained above. Overall, the final design included 1,370 

probes for genetically mapped genes/markers, 34,980 probes derived from conserved 

gene reads, and 25,600 probes for ISBP markers.  

SureTag DNA Labeling Kit (Agilent Technologies, Cat. No. 5190-3400) was used 

to label MTP pools with Cy3 and Cy5, in a dye-swap design, using the following the 

manufacturer‟s instructions. Each pool was labeled, hybridized and analyzed separately 

using both Cy3 and Cy5 to detect reproducible results. Hybridization and wash steps 

were performed as instructed by the manufacturer, and NimbleGen MS 200 microarray 

scanner (Roche NimbleGen, Inc.) was used to scan the arrays with at 2 nm resolution 

with autogain. Fluorescence data from the scanned images was extracted using Agilent 

Feature Extraction Software (v. 11.5.1.1). Data normalization and deconvolution were 

performed independently for row, column and plate pools, as previously described, 

using slightly modified custom R scripts (Rustenholz et al., 2010; Lucas et al., 2013).  

Among the 5 probes designed from each query sequence detailed above, outliers 

within each pool were discarded. Normalization was then carried out for each pool with 

respect to each other by subtracting the median and dividing by the standard deviation 

of all signal intensities within the pool. Two complementary statistical methods were 

utilized to identify positives within each pool type, on the normalized signal intensity 

data. In the first method, if the median intensity for all the probes for a single query in a 

single pool exceeded [Mean + C x Standard Deviation] of the intensities for that query 

across all the pools, for a given pool type, the signal was scored as positive. C value 

indicates a pre-defined threshold co-efficient and this value was determined separately 

for each pool type. High confidence C values were set as 2.8, 1.6 and 2.6 for column, 

plate and row pools, respectively. In the second method, Student‟s t-Test was used to 

decide, assuming equal variance, whether the intensities for a given query in one pool 

were significantly different from all the other pools at p-value<0.01. Gene associated 
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sequences or markers, used to design microarray probes, were putatively assigned to 

specific BACs, only if they passed both statistical tests. For queries assigned to multiple 

pools passing both tests, only those found on overlapping BAC clones of the 

preliminary map were considered true positives.  

 

 

 

3.12.   Supercontig construction and contig elongation 

 

 

 

The latest version of the LTC introduces a new feature to elongate contigs into 

supercontigs (Breen et al., 2013). The net of clone networks for the clones located at the 

ends of each contig of the 5DS preliminary map was tested possible overlaps with other 

contigs at the cutoff of 10
-15

. Elongations were accepted if they are detected reciprocally 

(if A elongates into B, B should elongate into A). 

To aid in contig ordering, deletion bin mapping of ISBP markers were performed 

on homozygous deletion lines of 5DS, 5DS-2 and 5DS-5. These deletion lines contain 

0.78 and 0.67 of the full length chromosome arm, respectively. Leaf tissues from 4-

week old seedlings were frozen in liquid nitrogen. Genomic DNA (gDNA) was isolated 

using Wizard® Genomic DNA Purification Kit (Promega, Madison, WI, USA) from 

200 mg frozen tissue according to the manufacturer‟s instructions.  

Deletion bin mapping was performed in a 10µl PCR reaction volume, using 

standard Taq polymerase (Fermentas) as follows: 1µl 10X KCl Buffer (-MgCl2), 0.8µl 

25 mM MgCl2, 0.2µl 2.5mM each dNTP, 0.25µl 10µM Forward Primer, 0.25µl 10µM 

Reverse Primer, 1µl deletion line gDNA, 0.05µl Taq Polymerase, 6.45µl dH2O. 

Reaction conditions were as follows: Initial denaturation, 94
o
C 5 min, 35 cycles of 

{Denaturation, 94
o
C 30 sec, Annealing, variable 30 sec, Extension 72

o
C 30 sec}, Final 

extension 72
o
C 7 min. PCR products were analyzed on 1% agarose gel, run at 100V for 

15 minutes. 

Genetic map positions of genetically mapped EST, SSR, COS markers and 

deletion-bin mapped ISBP markers, assigned to BAC clones from the 5DS physical map 

through PCR or microarray, were used to order 5DS contigs along the chromosome 

arm. Contigs assigned to each deletion bin were ordered within the bin using the order 
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of orthologous sequences from the recently published physical map of the Aegilops 

tauschii genome (Luo et al., 2013). Orthologous Aegilops sequences were identified 

through similarity searches against positive probe sequences using blastn (-evalue 1E-

10) as described in Section 3.5. For contigs that could not be associated with an Ae. 

tauschii ortholog, the order of the Brachypodium orthologs on our 5DS genome zipper 

was used.  
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4. RESULTS 

 

 

 

 

4.1.  Survey sequencing of 5D chromosome using 454/Roche platform 

 

 

 

4.1.1. Flow sorting, sequencing and repeatmasking of 5D chromosome arms  

 

 

The double ditelosomic 5D line (2n = 40 + 2t5DS +2t5DL) of Triticum aestivum 

L. var. Chinese Spring was used to isolate short and long arms of 5D chromosome (5DS 

and 5DL, hereafter) from flow karyograms of DAPI-stained mitotic chromosomes, at 

90.18% and 85.5% for purities, respectively (Fig. 7).  

 

 

Figure 7. Flow karyogram of double ditelosomic line 5D of T. aestivum cv. Chinese 

Spring. Peaks representing telocentric 5DS and 5DL chromosomes are indicated. Inset: 

Flow-sorted 5DS stained by DAPI (blue). Afa repeats (green) and telomeric repeats 

(red) are labeled with FISH. x-axis: Relative fluorescence intensity, y-axis: Number of 

particles. 
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The flow-sorted telosomes were subsequently amplified by Multiple 

Displacement Amplification (MDA) yielding 15.81 μg (5DS) and 9.64 μg (5DL) DNA, 

as isolating sufficient amounts of DNA by flow-cytometry is prohibitively resource and 

time-intensive. Resulting amplified DNA was directly sequenced using GS FLX 

Titanium system of Roche/454 Platform (454 Life Sciences, Roche Applied Sciences, 

Basel, Switzerland). Good quality reads of 791 Mb and 347 Mb cumulative lengths 

were obtained for 5DS and 5DL, respectively, corresponding to 1.34x and 1.61x 

coverages (Table 1).  

Table 1. Summary of sequencing data for 5D telosomes. 

Arm Size
1 
 

S 

(Mb)
 

No. of reads 

N 

Mean read 

length  

L  

(bases) 

Total read 

length 

(Mb) 

Coverage
1 

Purity Representation 

probability
2 

5DL 490 2,271,366 347.25 791 1.61x 85.5% 0.684 

5DS 258 937,264 370.28 347 1.34x 90.2% 0.667 

1
Calculated based on cytogenetic chromosome arm length estimates (Safár et al., 2010) 

2
Calculated as: P = [1 – (1 - L/S)

N 
] x Purity 

 

The Triticeae tribe genomes are marked by high repetitive content of their 

genomes, exceeding 80% in most cases (Smith and Flavell, 1975), which interfere with 

the subsequent sequence assembly procedures. Therefore, the 1.34x and 1.61x survey 

sequences were masked against a custom repeat database, which included the TREP 

Database release 10 (http://wheat.pw.usda.gov/ITMI/Repeats) with the Repbase Update 

release 15.11 (Jurka et al., 2005) and the TIGR Plant Repeat Database (Ouyang and 

Buell, 2004). Additionally, sequences collapsing into high depth contigs when 

assembled were eliminated as potential repeat elements of unknown type. Repeat 

masking of 5DS and 5DL survey sequences revealed that approximately 76% and 75% 

of 5DS and 5DL sequences, respectively, were comprised of repetitive elements. As 

expected, LTR retrotransposons were the most abundant type of repeat elements, 

making up over three-fourths of all repeat annotations. Repetitive element distributions 

of major repeat superfamilies were similar for both chromosome arms. However, 

CACTA superfamily of DNA transposons appeared to be more abundant among 5DS 

sequences, compared to 5DL, in contrast to the LTR retrotransposons (Fig. 8). A 

summary of all repeat annotations classified by repeat superfamilies is given in 

Appendix A. 

 

http://wheat.pw.usda.gov/ITMI/Repeats
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Figure 8. Distribution of repeat elements of 5DS and 5DL classified by superfamily. 

 

The remaining non-repetitive sequences made up a total of 84.6 Mb for 5DS and 

201 Mb for 5DL. These non-repetitive sequences for examined for the presence of 

seven genes previously cloned from the 5D chromosome (Table 2).  

 

Table 2. Previously cloned genes identified in masked 5D sequences. 

Gene No. of 

matching 

reads 

Total 

length 
Matched 

length 
Coverage 
(%) 

Average depth 

5DS 

Pina-D1 6 447 447 100.00 2.48 

Pinb-D1 6 828 447 53.99 2.29 

Nor-D3* 165 887 887 100.00 50.54 

5S-RNA-D2* 71 486 486 100.00 32.59 

5DL 

Vrn-D1 9 980 833 85.00 2.16 

ADH1D 3 1140 235 20.61 1.60 

VrnD3 1 1100 135 12.27 1.00 

Lr1 90 4035 3958 98.09 7.00 

 *Repetitive reads were included in searches for these sequences. 

 

The agronomically important Pina-D1, Pinb-D1, VrnD1 and Lr1 genes were 

evenly covered to 50-100% coverage of the respective gene, while ADH1D and VrnD3 

genes were only partially covered by the 5D sequence reads. Interestingly, the coverage 

of the Lr1 gene was higher than expected, which may indicate the presence of multiple 

genes with high sequence similarity on 5D, assuming minimal to none amplification 

bias. rRNA genes usually exist in multiple copies and, therefore, may be misidentified 
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as repetitive sequences. Unmasked 5D reads revealed the presence of 5S-RNA-D2 gene 

and the Nucleolus Organizing Region, Nor-D3, at high depths of coverage, although 

these were elusive among the masked 5D sequences.  

 

 

 

4.1.2. Gene content and conservation of 5D chromosome 

 

 

The non-repetitive sequences of 5DS and 5DL were compared against the fully 

annotated grass proteomes of Brachypodium distachyon, Oryza sativa (rice) and 

Sorghum bicolor (sorghum); UniProt sequences from related monocotyledonous plants; 

and UniGenes from T. aestivum, Hordeum vulgare, Panicum virgatum, Saccharum 

officinarum, and Zea mays, to explore potential protein-coding loci on 5D chromosome. 

A total of and 26,535 and 53,163 reads from 5DS and 5DL, respectively, retrieved 

significant matches from at least one of the above mentioned datasets. Among these, 

18,771 reads (70.7%) from 5DS and 33,619 reads (59.9%) from 5DL yielded matches 

from only one of the query datasets, while 1,210 reads (4.5%) and 4,208 reads (7.5%) 

from 5DS and 5DL, respectively, yielded matches from all three query datasets, 

suggesting that 5DL may contain a higher proportion of highly conserved genes. 

 

Table 3. The numbers of 5D survey sequence reads exhibiting homologies to model 

grass proteins, UniGene or UniProt sequences. 

  Matching reads from 5DS  Matching reads from 5DL 

 Bdi Osa Sbi UniG UniP Bdi Osa Sbi UniG UniP 

# of total read 5665 4035 4260 18521 8063 13413 9863 11054 39266 18844 

B. distachyon 1303 2737 1826 2628 2265 5598 6190 6852 7111 7117 

O. sativa  374 1618 2195 1975  4840 5704 5767 6091 

S. bicolor   861 2216 1905   4988 6364 6788 

Unigene set    13004 3610    12055 10660 

Uniprot set     3229     6138 

Bdi+Osa+Sbi 1210 4208 

 

Impurities from chromosome sorting are unlikely to be represented by more than 

one unique read among the survey sequences (Wicker et al., 2011). Thus, annotated 

grass proteins and UniGene/UniProt sequences covered by only a single 5D survey 

sequence read were excluded to avoid contaminants. A small number of 

UniGene/UniProt sequences with more than 50 matching 5D reads were also discarded 
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based on the suspicion that these might correspond to novel or uncharacterized 

repetitive elements. Following this elimination step, 1,493 and 2,829 proteins from 

model grass genomes remained with significant matches from 5DS and 5DL survey 

sequences, respectively (Fig. 9).  

 

 

Figure 9. Gene conservation between the annotated model grass genomes and 5D. 

Light and dark gray shading indicate the presence of a UniGene/UniProt homolog for at 

least 70%  and 90% of genes within the specified group, respectively. 

 

UniGene/UniProt sequences provide evidence from related organisms without 

fully sequenced genomes; therefore, the presence of a UniGene/UniProt homolog 

increases the likelihood of a gene-associated sequence, conserved in model grasses, 

represents a functional gene (Fig. 9, gray shading). Gene putatively encoded by 5DL 

appears to have more UniGene/UniProt homologs, than that of 5DS, consistent with our 

previous observation. It can be argued that 5DS has accumulated more mutations or has 

undergone extensive neo- or subfunctionalization that resulted in the diversification of 

the conserved gene loci.  

On the other hand, 1,812 and 4,500 UniGene/UniProt queries, majority of which 

were derived from T. aestivum and its close relative H. vulgare, were matched by 2 or 

more 5DS and 5DL sequence reads, respectively, which did not retrieve any matches 

from the model grass proteomes. A subset of these alignments is likely to correspond to 

Triticeae tribe-specific features; however, considering the prevalence of pseudogenes in 
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the wheat genome (Wicker et al., 2011), most of these matches should represent 5D 

genes that accumulated several mutations through the Triticeae evolution that impaired 

the functionality of the genes.   

A total of 4289 gene models (3147 high-confidence and 1142 low-confidence) 

were predicted from all T. aestivum 5D reads and annotated based on all Viridiplantae 

proteins (Fig. 10). The gene models were classified as „conserved‟ and „non-conserved‟ 

depending on the sequence reads, incorporated into the gene models, which matched the 

model grasses for the former, and UniGene/UniProt sequences, for the latter. 

 

Figure 10. The most abundant GO annotations of 5D gene models for (a) Biological 

Process, (b) Cellular Component, and (c) Molecular Function terms. Significant 

differences between conserved and non-conserved gene model annotations for a given 

term are indicated by asterisks, deduced from Fisher‟s exact test for two-tailed 

probabilities (*p-value <0.05, **p < 0.01, ***p < 0.001). 

  

As shown in Figure 10, certain annotations within BP, CC and MF terms were 

enriched among conserved and non-conserved 5D gene models. For instance, 

„generation of precursor metabolites and energy‟ annotation of BP terms, 

„mitochondrion‟ annotation of CC terms, and „nucleotide binding, hydrolase activity 

and RNA binding‟ annotations of MF terms were significantly enriched amon non-
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conserved gene models; whereas, conserved gene models were enriched for „plasma 

membrane‟ annotations of CC terms. Considering that some of the non-conserved gene 

models correspond to Triticeae specific genes, the enriched annotations may suggest 

novel genes related to energy related pathways might have evolved in the wheat genome 

after the divergence of the Triticeae tribe. Hydrolase activity annotations predicted 

exclusively from non-conserved gene models at high statistical significance (p-value = 

1.01 × 10−8
, Fisher‟s exact test) were also intriguing. 

 

 

 

4.1.3. Putative tRNA genes encoded by 5D chromosome 

 

 

Putative tRNA genes were explored using 5D sequences, unmasked and masked 

against repetitive elements, following the observation of an unusual abundance for 

tRNA
Lys

 species predicted from the survey sequence of wheat chromosome 6B (Tanaka 

et al., 2013). Similarly, unmasked 5D sequences revealed a striking abundance for 

tRNA
Lys

 species, followed by tRNA
Met

 (Fig. 11). The same trend was not observed 

among the masked 5D sequences, which suggests that either some repetitive sequences 

are similar to tRNA coding sequences or some tRNA genes are located within the 

repetitive sequences. In particular, the striking abundance for tRNA
Lys

 species among 

repetitive sequences might have resulted from a Transposable Element(TE)-driven 

capture and subsequent proliferation through TE expansion. The prevalence of tRNA
Met

 

species was retained among non-repetitive sequences. This is not surprising as majority 

of proteins start with a Met residue. In general, putative tRNA genes of 5DS and 5DL 

followed a similar distribution; however, 5DL had a higher content of putative tRNA 

genes per Mb of its size (0.59 tRNAs/Mb vs 0.29 tRNA/Mb, Appendix B). 
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Figure 11. Putative tRNA genes predicted from repetitive and non-repetitive 5D survey 

sequences. 

The origin of the abundance for the tRNA
Lys 

species is intriguing. In addition to 

wheat chromosomes 5D and 6B sequenced by Roche/454 technology, putative tRNA 

repertoires predicted from Illumina sequence contigs from T. aestivum group 5 

chromosomes exhibited the same pattern for tRNA
Lys

 (Tanaka et al., 2013; Mayer et al., 

2014). This observation indicated that tRNA
Lys

 abundance is common to different 

homeologous groups, independent of the sequencing technology (Fig. 12).   

 

Figure 12. Putative tRNA counts predicted from chromosome 5D sequences, compared 

to the IWGSC Illumina contigs from homeologous group 5 chromosomes. 
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Bread wheat chromosomes 5D and 6B are believed to originate from different 

ancestral grass chromosomes (A12, A9 and A2, respectively). Therefore, a TE-driven 

capture of tRNA
Lys

 genes might have occured in the ancestral genome. Through wheat 

evolution, the expansion of TEs could lead to the proliferation of nested tRNA
Lys

 genes, 

greatly expanding this family of tRNA species as a genome-wide pattern in the modern 

bread wheat genome.  

 

 

 

4.1.4. Syntenic relationships with model grasses 

 

 

The chromosomal locations of all protein-coding loci from Brachypodium, rice 

and sorghum were used to determine conserved genomic regions by mapping 

orthologous 5D sequence reads onto the model grass chromosomes. As seen in Figure 

13, 5DS reads identified a conserved block on the proximal end of Brachypodium 

chromosome 4 (Bd4) where several orthologous reads were clustered in that region, in 

contrast to orthologous reads scattered along the chromosome. Similarly, 5DL reads 

identified two regions of high conservation, at the proximal and distal ends of 

Brachypodium chromosomes 1 and 4, respectively (Bd1 and Bd4), as expected from the 

previous observations (The International Brachypodium Initiative, 2010). Comparison 

of T. aestivum 5D heatmaps of Brachypodium chromosomes 1 and 4 with T. aestivum 

5A heatmaps, constructed by the same procedure using Roche/454 sequences of this 

chromosome, demonstrated that the two homeologous chromosomes share a similar 

structure. The 5A chromosome had a secondary conserved region, however, at the distal 

end of Bd1, which corresponds to the well documented 4AL/5AL translocation (Nelson 

et al., 1995; Vitulo et al., 2011). 
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Figure 13. Heatmaps demonstrating conserved regions across the Brachypodium 

genome. (a) Conserved blocks on Brachypodium genome with 5DS and 5DL, (b) 

Conserved blocks on Brachypodium chromosomes 1 and 4 with T. aestivum 5A and 5D. 

The effect of previously documented 4AL/5AL translocation is indicated by a red 

arrowhead. Bd1-5: Brachypodium chromosomes 1-5. 

 

Additionally, orthologous 5DS and 5DL reads identified conserved regions on 

Oryza sativa chromosomes 12 and 3 & 9 (Os12, Os3 & Os9), respectively. These 

regions were spread along the rice chromosomes, rather than concentrating at the 

chromosome ends. The 5DS chromosome arm exhibited a small region of homology at 

the distal end of Sorghum bicolor chromosome 8 (Sb8), whereas the 5DL chromosome 

arm identified two clear conserved blocks on sorghum chromosomes 1 and 2 (Sb1 and 

Sb2). These observations define large scale conservation patterns between the wheat 5D 

chromosome and the model grasses, consistent with the previous findings (The 

International Brachypodium Initiative, 2010) (Fig. 14). 
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Figure 14. Heatmaps demonstrating conserved regions on Oryza sativa (top) and 

Sorghum bicolor (bottom) orthologous to 5DS and 5DL sequences Os1---Os12: Oryza 

sativa chromosome 1---12; Sb1---Sb10: Sorghum bicolor chromosome 1---10.  

 

Orthologous 5D reads matching two or more model grass genomes were used to 

visualize syntenic relationships between these genomes (Fig. 15). These syntenic 

relationships were largely consistent with the gene conservation patterns. However, 

additional regions of synteny were also observed on non-orthologous Brachypodium 

chromosomes 2 & 5 and sorghum chromosomes 3, 5 & 6. These regions were 

composed of few orthologous genes conserved as blocks, maintaining micro-colineraity 

(Fig. 15, histograms). Thus, these minor syntenic regions likely reflect genome 

rearrangements, where small groups of genes are moved from orthologous regions to 

non-orthologous locations during the wheat genome evolution.   
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Figure 15. Syntenic relationships among model grass genomes assessed by orthologous 

5DS (yellow ribbons) and 5DL (red ribbons) sequence reads. Histograms indicate the 

gene counts within the ribbons.  

 

 

 

4.1.5. Virtual gene order and the 5D ‘genome zipper’ 

 

 

In the absence of a reference genome sequence, Mayer and his colleagues 

described a powerful approach that utilizes genetically mapped molecular markers and 

synteny to define a virtual gene order for barley chromosome 1H (Mayer et al., 2009). 

This „genome zipper‟ approach was subsequently applied to all 7 barley chromosomes 

(Mayer et al., 2011). The 5D genome zipper was constructed by mapping 518 deletion 

bin-mapped wheat EST and SSR markers onto the syntenic gene reads. Using the 

genetic mapping data for bin-mapped ESTs and SSRs, some of which also had positions 

on the International Triticeae Mapping Initiative (ITMI) wheat reference genetic map, 

co-linear genes were ordered, keeping the order on the Brachypodium genome wherever 
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a genetic map data was not available. The 5DS genome zipper indicated a that 

Bradi4g00200 – Bradi4g07997 interval on Brachypodium chromosome 4 (Bd4) was 

mostly colinear with 5DS, except an inversed section between Bradi4g02840 – 

Bradi4g03750 (Fig. 16). Similarly, the telomeric region of 5DL revealed an inverse 

colinearity between Bradi1g15730 – Bradi1g00227 genes on the short arm of Bd1, 

despite a few genes apparently translocated to other deletion bins. The rest of the 5DL 

exhibited extensive perturbations and fragmented patterns of colinearity as depicted in 

Figure 16. Delineated by Bradi4g23910 – Bradi4g45397, three separate regions (1, 2, 3) 

on Bd4 were colinear, within these regions, with 5DL in a rearranged fashion (3, 2, 1). 

Within these colinear segments, however, several small-scale rearrangements were also 

evident. The boundary between the regions 1 and 2 on Bd4 could not be precisely 

determined with the current information; therefore, any further small-scale 

rearrangements between Bradi4g38980 – Bradi4g39020 would require increased 

resolution through more molecular markers mapped to this region. The centromeric 

region of 5DL was colinear with Bradi4g08180 – Bradi4g08900 segment from Bd4 

(Fig. 16). It is important to note that the virtual gene order of chromosome 5D is not 

absolute; the wheat reference genome sequence will ultimately define the positions of 

all genomic features, revealing all small-scale rearrangements and breaks in micro-

colinearity. 
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Figure 16. A virtual gene order for 5D chromosome constructed using the genome 

zipper approach.  

 

 

 

4.1.6. Wheat specific genome rearrangements 

 

 

Recently, a three-way comparison of the model grass genomes Brachypodium, 

rice and sorghum provided clues into genome specific rearrangements. Genome 

sequences of these model grasses indicate that sorghum diverged from rice and 

Brachypodium ~50 Mya, while rice and Brachypodium diverged from each other ~40 

Mya (The International Brachypodium Initiative, 2010). Considering the evolutionary 

history of the three model grasses, a gene that is non-coliner in Brachypodium, but 

colinear in the other two suggests that the gene may have been „moved‟ specifically in 

the Brachypodium genome (Wicker et al., 2010). Following the same rationale, 

othologous genes that are found in colinear positions on the three model grass genomes, 

but in non-colinear positions on wheat chromosome 5D were explored to identify genes 

possibly moved in the wheat lineage. Contaminants from the impure fraction of the 
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sorted chromosomes are unlikely to be represented by more than one sequence read; 

thus, all orthologous genes covered by a single 5D sequence read were excluded from 

this analysis.  

Of the the remaining non-syntenic genes, 86 (5DS) and 309 (5DL) were 

conserved across the three grass genomes, covered by 294 5DS and 905 5DL sequence 

reads. Sequence reads derived from pseudogenes or gene fragments, in general, exhibit 

uneven coverage of the functional gene. Therefore, candidate non-syntenic genes were 

examined for coverage. Genes covered by at least 4 sequence reads were visually 

evaluated for even coverage (see Appendix C, for an example). Genes covered by 2 or 3 

sequence reads were divided into 2 or 3 equal parts, respectively, and accepted as 

genuine copies only if all parts are covered. After the eliminatiın of pseudogenes and 

gene fragments, 32 and 129 putative non-syntenic genes remained for 5DS and 5DL, 

respectively. Of these, 22 and 36 orthologous genes were colinear in Brachypodium, 

rice and sorghum, but, found on 5DS and 5DL, respectively (Appendix D). For 

instance, Bradi1g17710, Os02t0167700 and Sb04g004540 are located on syntenic 

chromosomes in model grasses, covered by 19 sequence reads from the non-syntenic 

5DS chromosome, which implies that the wheat ortholog may have been moved to the 

non-syntenic 5DS chromosome after wheat and Brachypodium lineages diverged from 

each other.   

 

 

 

4.2.  The 5DS Physical Map 

 

 

 

4.2.1. Construction of the preliminary physical map 

 

 

The double ditelosomic line 5D of Triticum aestivum cv. Chinese Spring (Sears 

and Sears, 1978) was used to isolate individual arms of chromosome 5D, as outlined in 

Section 4.1.1. The purity of the flow-sorted 5DS fractions was 88% as indicated by 

Fluorescence In Situ Hybridization (FISH) of the characteristic repeat families. The 

contaminating particles included a random mixture of fragments from various other 

chromosomes and chromatids.  
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A 5DS-specific BAC library, composed of 36,864 BAC clones, was generated 

from 8,120,000 sorted chromosome arms and designated as TaaCsp5DShA. The 

average insert size of the library was 137 kb, yielding 17x coverage of the 258 Mb-long 

chromosome arm (Safár et al., 2010). Of this library, 26,112 BAC clones, giving 12.5x 

coverage of the chromosome arm, with an average insert size of 143 kb were picked for 

fingerprinting. Following SNaPshot
TM

 HICF procedure, good-quality fingerprints were 

obtained for 21,656 clones (Luo et al., 2003). These fingerprints were used to construct 

the preliminary physical map of 5DS.  

Traditionally, the construction of physical maps from fingerprinted BAC clones 

has been achieved by the FingerPrinted Contig (FPC) software, which was also 

implemented in the initial physical mapping studies carried out under the framework 

established by the International Wheat Genome Sequencing Consortium (IWGSC) 

(Nelson et al., 2005). Recently, however, an alternative software, Linear Topology 

Contig (LTC), has been reported to build longer contigs, resulting in more reliable maps 

comprised of fewer contigs. LTC also enables the visual control of the contig topology 

to improve or eliminate problematic contigs with local disruptions of contig linearity 

(Frenkel et al., 2010). Therefore, LTC has been increasingly adopted in recent studies 

and the comparison of the FPC- and LTC-constructed maps favors the latter approach 

(Lucas et al., 2013; Philippe et al., 2013). Initially, both software programs, FPC and 

LTC, were independently used to construct the 5DS physical map and the resulting 

preliminary maps were compared to choose the most promising map to progress with 

(Table 4). 

 

Table 4. The comparison of FPC and LTC constructed 5DS preliminary maps. 

 FPC assembly LTC assembly 

Total no. of clones 21656 21656 

Number of contigs (>5 clones) 350 120 

MTP clones 1894 2155* 

Assembly length 202728 kb 176838 kb 

Average contig size 579 1078 

Largest contig size 4053 kb 6649 kb 

N50 1141 kb 2173 kb 

L50 53 27 

Contigs>1Mb 63 58 

*Picked by FPC software. 
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As seen in Table 4, the number of LTC-constructed contigs was considerably less 

than that of FPC, with the average contig size almost twice the size of the average FPC-

contigs (1078 kb vs. 579). Consistently, the N50 value, regarded as the quality measure 

of the LTC physical map, was almost twice as large as the N50 value of the FPC 

physical map. Therefore, despite the lower coverage of the LTC-constructed map 

compared to the FPC-constructed map (78% versus 68%), LTC map was concluded to 

be more reliable and informative than the more fragmented FPC map, and adopted as 

the method of choice for the map construction.  

The evaluation of the Minimum Tiling Path (MTP) picked by LTC in the LTC-

constructed map revealed several buried clones that were smaller subsets of longer 

clones. Hence, the MTP of the LTC map was discarded, and, a new MTP comprised of 

2,155 clones was picked from the LTC map using the FPC software to select longer 

clones. The FPC-selected MTP was further evaluated by the LTC in terms of clone 

overlaps, as statistically insignificant clone overlaps may lead to gaps at the sequence 

level. Any clone overlaps that were not significant below a cutoff of 10
-14

 was 

reinforced by the manual addition of 210 supplementary clones to cover the overlap 

region. This significance cutoff was picked relative to the significance cutoff of 10
-15

 

used by LTC to build the contigs (Frenkel et al., 2010). Also, 163 clones deemed as 

Questionable clones (Q-clones) by LTC were added to the MTP. These Q-clones can 

cluster into 2 or more contigs. While some Q-clones are chimaeric clones that lead to 

problematic contigs, some are bridge clones that can be used to merge separate contigs 

of low coverage, if supported by molecular marker data. In total, the manually edited 

FPC-picked MTP of LTC-constructed preliminary 5DS physical map was comprised of 

2,528 clones.  

 

 

 

4.2.2. Assessment of the 5DS preliminary map 

 

 

The LTC-constructed 5DS preliminary map had an assembly length of 176 Mb, 

covering over 68% of 258 Mb-long chromosome arm, organized into 164 contigs of 

which 120 had 6 or more clones. The N50 value of the preliminary map indicated that 

half of the assembly was covered with contigs longer than 2173 kb. The L50 value, 

denoting the number of such contigs, was 27. Additionally, 58 contigs were larger than 
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1 Mb in the 5DS physical map, the largest being over 6.6 Mb (Table 4). Compared to 

the N50 values of the previously published chromosome-specific wheat physical maps 

of 1AL (1166 kb), 1BL (961 kb), 1AS (798 kb), 1BS (2430 kb), 6AS (1106 kb) and 

6AL (921 kb), the N50 value of 5DS map at 2173 kb, including the short contigs with 5 

or less clones, indicates a high quality map for this chromosome arm (Lucas et al., 

2013; Philippe et al., 2013; Breen et al., 2013; Raats et al., 2013; Poursarebani et al., 

2014).  

To assess the contig length distribution of the preliminary map, contig sizes were 

plotted against the number of contigs and megabases of the assembly covered by the 

contigs in the respective size range. For visualization purposes contig sizes are 

distributed in size ranges of 100 kb for contigs smaller than 200 kb, 500 kb for contigs 

larger than 3000 kb, and 200 kb for the remaining contigs (Fig. 17).  

 

 

Figure 17. Distribution of contig lengths and corresponding size of the assembly 

covered across different size ranges. 

 

As seen in Figure 17, many contigs fell in the 100 – 400 kb range; however, the 

fraction of the assembly covered by each size group was similar across all ranges. The 
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assembly depth of the contigs was calculated by dividing the estimated contig length by 

the actual length of the contig length, and then plotted against the contig lengths (Fig. 

18). This revealed that while smaller contigs were clustered around a depth of 1 – 5x, 

large contigs clustered around higher depths around 12 – 20x, closer to the average 

assembly depth, 14x (estimated assembly length/actual assembly length). In particular, 

65 contigs had 14x or higher depth. The preliminary map details are given in Appendix 

E. 

 

Figure 18. Depth of assembly by contig length. 

 

 

 

4.2.3. MTP screening with molecular markers 

 

 

In order to refine the preliminary 5DS physical map and order the contigs along 

the chromosome arm, a variety of molecular markers, including Simple Sequence 

Repeat (SSR), Conserved Orthologous Set (COS), Expressed Sequence Tag (EST) and 

Insertion Site-Based Polymorphism (ISBP), were used to anchor the contigs of the 

physical map through Polymerase Chain Reaction (PCR). A 3D pool approach was 

adopted to screen the MTP clones, in which, instead of screening each clone one by 

one, MTP clones are rearranged in 3 dimensional pools as row, column and plate 

Appendix F). Initially, 23 genetically mapped SSR markers (6 BARC, 9 CFD, 3 WMC, 

4 WMS and 1 GPW), 13 COS markers, 10 EST markers and 2 gene-based markers 

(Pina-D1, Pinb-D1) were used to screen the MTP pools. Of these, 13 SSR markers 
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(56%), 12 COS markers (92%) and 2 gene-based markers (100%) were successfully 

assigned to specific MTP clones. In contrast, only 1 out of 15 EST markers could be 

assigned to a specific clone, whereas the remaining markers failed to amplify on 

multiple occasions. Intronic sequences found within the MTP clones were concluded to 

interfere with the amplification of EST-based markers in which intronic sequences are 

spliced out. To resolve this issue, the sequences of genetically mapped EST markers 

retrieved from Grain Genes (http://wheat.pw.usda.gov/GG3/) were blasted against 1.34x 

coverage genomic survey sequences of 5DS, in an attempt to determine intron-exon 

boundaries. Using these alignments, new markers were designed from sequences 

belonging to a single or two closely adjacent exons. A total of 43 out of 50 newly 

designed EST markers (86%) could be assigned to MTP clones. Validating this 

approach, two EST markers, namely BF483719 and CD882766 that failed to amplify 

from any of the MTP pools previously, were anchored to contigs 115 and 134 through 

the newly designed primer sets. For the remaining 12 EST markers from the initial set, 

the above mentioned approach could not find favorable sequences to be amplified.  

In addition to the genetically mapped markers, 47 ISBP markers (out of a total of 

16,727) designed from 1.34x survey sequences were screened on the MTP pools, 

anchoring 30 of them to specific MTP clones. In total, out of the 164 contigs of the 5DS 

physical map, 48 were physically anchored by at least 1 molecular marker via PCR 

(Appendix G).  

Recently, a customized microarray hybridization approach was proposed and 

validated to screen BAC-based MTP pools by large numbers of markers, in a dye-swap 

design (Rustenholz et al., 2010). Accordingly, an 8x60k Agilent SurePrint G3 Gene 

Expression Custom Microarray (Agilent, Santa Clara, CA, USA) was designed from the 

genetically mapped gene(7), SSR(20), COS(13), SNP(112) and EST(122) markers, 

along with the ISBP markers(5,120) and conserved gene-associated sequences(6,996) 

deriving from 1.34x 5DS survey sequences. Of these, 25% of SSR (5 out of 20), 23% of 

COS (3 out of 13), 12% of EST (15 out of 122), 15% of SNP (17 of the 112), 18% of 

conserved reads (1,306 out of 6,996), and 8% of ISBP (416 out of 5120) were putatively 

assigned to specific 5DS MTP clones through microarray hybridization, following data 

normalization and deconvolution. Processing of probes from 3 conserved genes and 2 

ISBPs resulted in ambiguous assignments, and, thus, these assignments were discarded. 

http://wheat.pw.usda.gov/GG3/
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In the end, 1,762 unique gene or marker associated sequences were putatively assigned 

to 3,066 MTP clones of the 5DS physical map at high stringency (Appendix H). 

In summary, a total of 1,865 molecular markers were confidently anchored to 105 

of the 164 contigs of the 5DS physical map using the two approached mentioned above 

corresponding to a marker density of ~10.5 markers per Mb. The total length of the 

anchored contigs comprised approximately 91% of the total assembly length (161Mb of 

the total 176Mb).  

 

 

Figure 19. Size distribution of the anchored and not-anchored contigs. Both green and 

blue bars indicate anchored contigs; blue bars indicate anchored contigs without defined 

locations on the 5DS chromosome arm (see the following section). Purple bars represent 

contigs that could not be anchored by either of the PCR or microarray approaches. 
 

The contigs that could not be anchored by the molecular markers using either of 

the approaches were mostly short contigs that were of little informative value, as 

demonstrated in Figure 19 (purple bars). In fact, when short contigs composed of 5 or 

less clones were excluded, the assembly length of the anchored contigs (100 out of 120) 

made up approximately 95% of the total assembly length (160Mb of the total 168Mb, 

excluding short contigs).  

 

 

 

4.2.4. Ordering 5DS contigs and supercontigs along the chromosome arm 

 

 

Following the construction of the 5DS preliminary map, 5DS contigs were re-

evaluated to build „supercontigs‟ to aid in the mapping of contigs along the 5DS 

0

2000

4000

6000

8000

co
n
ti
g
 s

iz
e
 (

k
b
)

contigs

anchored not-anchored



55 

 

chromosome. Both ends of each contig were checked on a one-by-one basis on LTC for 

possible elongation into other contigs. The elongate function of LTC searches for 

statistically less significant overlaps (cutoff>10
-15

) between the clones of different 

contigs, once the contigs are built at a stringent cutoff (cutoff <10
-15

) (Breen et al., 

2013). This procedure allowed the construction of 21 supercontigs involving 45 contigs.  

 

 

Figure 20. Network of clone overlaps for two representative supercontigs, SC2 and 

SC10 (Table 5). Vertices indicate individual BAC clones and edges with different 

colouring indicate clone overlaps with different levels of significance. 

 

Two representative supercontigs are shown in Figure 20, and all supercontigs are 

listed in Table 5. A supercontig is accepted only when elongation from all participating 

contigs yield the same structure.  
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Table 5. All 21 supercontigs of the 5DS physical map. 

Supercontig no. contigs # of clones total # of clones status 

SC1 [CTG98-CTG54-CTG68] 86, 21, 583 690 mapped 

SC2 [CTG56-CTG58] 38, 33 71 mapped 

SC3 [CTG57-CTG162] 74, 101 175 anchored 

SC4 [CTG66-CTG122] 34, 135 169 mapped 

SC5 [CTG70-CTG145-CTG146] 231, 14, 104 349 mapped 

SC6 [CTG71-CTG100] 26, 318 344 mapped 

SC7 [CTG74-CTG109] 9, 9 18 anchored 

SC8 [CTG77-CTG127] 138, 393 531 mapped 

SC9 [CTG79-CTG80] 11, 3 14 anchored 

SC10 [CTG143-CTG120-CTG82] 251, 61, 136 448 mapped 

SC11 [CTG88-CTG90] 38, 96 134 mapped 

SC12 [CTG92-CTG64] 99, 2 101 Notanchored 

SC13 [CTG111-CTG112] 211, 62 273 mapped 

SC14 [CTG158-CTG118] 224, 70 294 mapped 

SC15 [CTG144-CTG121] 372, 113 485 mapped 

SC16 [CTG136-CTG148] 218, 124 342 anchored 

SC17 [CTG140-CTG149] 217, 256 473 mapped 

SC18 [CTG159-CTG150] 76, 62 138 mapped 

SC19 [CTG131-CTG151] 48, 16 64 mapped 

SC20 [CTG157-CTG156] 358, 373 731 mapped 

SC21 [CTG105-CTG108] 28, 26 54 anchored 

 

In order to order the contigs and supercontigs from the 5DS physical map along 

the chromosome arm, molecular marker data and syntenic relationships with the model 

grass Brachypodium distachyon or the D-genome progenitor Aegilops tauschii were 

utilized. In the case of molecular markers, for the previously mapped SSR, EST and 

COS markers, genetic map positions were retrieved (Quraishi et al., 2009, 

http://wheat.pw.usda.gov/GG3/), and for the ISBP markers, deletion bin mapping was 

performed using the 5DS deletion stocks of wheat (Endo and Gill, 1996). 

The D-genomes of Ae. tauschii and T. aestivum are highly similar due to the 

relatively recent hybridization of Ae. tauschii with T. turgidum, creating the hexaploid 

T. aestivum. The physical map and the draft genome of Ae. tauschii were published very 

recently, providing invaluable resources for the wheat community (Luo et al., 2013; Jia 

et al., 2013). Based on the extensive similarities between Ae. tauschii and T. aestivum 

D-genomes, within a deletion bin, allocated 5DS contigs, which were linked to an 

orthologous sequence from Ae. tauschii 5D chromosome, were further ordered within 

the bin according to the order of Ae. tauschii orthologs on its 5D chromosome. In cases 

where such an orthologous sequence from Ae. tauschii could not be detected, the order 

on the 5DS genome zipper, built by the syntenic relationships with the model grass 

Brachypodium distachyon, was retained to locate an associated contig. Anchored 

contigs that could not be associated with any orthologous sequences from Ae. tauschii 
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or B. distachyon were only assigned to the relatively large deletion bin intervals, with 

the order undetermined.  

A total of 80 contigs (39 contigs in 18 supercontigs and 41 contigs) and 79 (39 

contigs in 18 supercontigs and 40 contigs) of the 105 and 100 anchored contigs of the 

5DS physical map with or without short contigs, respectively, were allocated to 4 

cytogenetically defined deletion bins using the approaches explained above 

(https://www.ksu.edu/wgrc/Germplasm/Deletions/group5.html, 5DS bins: 1.00-0.78, 

0.78-0.67, 0.67-0.63, 0.63-0, Appendix I). Of these, 63 were further ordered within the 

deletion bins utilizing syntenic relationships primarily with Ae. tauschii or, secondarily 

with B. distachyon (Fig. 21). 

 

 

 

 

https://www.ksu.edu/wgrc/Germplasm/Deletions/group5.html
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Figure 21. Final bin-map of the 5DS chromosome with ordered contigs or supercontigs. 

Contigs highlighted in light-green indicate ordering based on Ae. tauschii ortholog; 

contigs that are not highlighted indicate  ordering based on B. distachyon ortholog; 

contigs in grey indicate unknown order. 
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According to the mapping and ordering of contigs and supercontigs on 5DS 

chromosome, the most distal bin, 0.78-1.00, and the most proximal bin, 0.63-0, 

contained 23 contigs and 42 contigs, respectively. Intriguingly, the narrow 0.63-0.67 

interval, representing only 4% of the chromosome arm based on cytogenetic estimates, 

was allocated 13 contigs, whereas the relatively larger bin, 0.67-0.78, had 2 contigs 

allocated. Some contigs appeared to be located at or close to the bin junctions. For 

instance, CTG78 and SC1[CTG98-CTG54-CTG68] were assigned to 0.63-0.67 deletion 

bin; however, the relative positioning of these contigs based on the 5DS genome zipper 

implied that these contigs might be located at the junction of the deletion bins 0-0.63 

and 0.63-0.67. Curiously, CTG93 was assigned to the 0.67-0.78 bin by synteny, but 

CFD81 SSR marker anchoring this contig indicated to the most proximal 0-0.63 which 

may indicate a break in micro-colinearity.  

 

 

 

4.2.5. Analysis of the 5DS genome structure 

 

 

Contigs and supercontigs that were assigned to specific intervals were used to 

estimate the physical sizes of the cytogenetically determined deletion bins. The size 

estimates were corrected by the 54% chromosome coverage of the mapped contigs. The 

physical size estimate of the most distal bin, 0.78-1.00, was close to the cytogenetic 

estimates (22% of the chromosome arm), at a little over 49 Mb, comprising 19.2% of 

the 5DS. The relatively narrow deletion bin, 0.67-0.78, which cytogenetically 

represented 11% of the chromosome arm, had an estimated physical size of almost 15 

Mb, corresponding to 5.7% of the chromosome arm. Strikingly, the physical size of the 

much smaller deletion bin, 0.63-0.67, was over 55 Mb, roughly 21% of the entire arm, 

which suggested that either one of the estimates was highly inaccurate, or, this deletion 

bin was overrepresented in our BAC library due to some unknown artifact. The 

estimated physical size of the most proximal deletion bin, 0-0.63, was 138 Mb. The 

difference between the estimated physical (53.5%) and cytogenetic (63%) sizes of this 

deletion bin may reflect an inaccuracy of the cytogenetic estimates of the two 

consecutive deletion bins. However, it is equally likely that some deletion bins are over- 

or underrepresented in our dataset as only 54% of the chromosome arm was covered 
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with mapped contigs. A third explanation could be the unequal representation of the 

deletion bins by the genetically mapped molecular markers.  

The 1BS physical map reported a bias in the number of clones in mapped contigs. 

The telomeric contigs contained fewer clones on average, in contrast to the centromeric 

contigs (Raats et al., 2013). Such a bias was not observed in the 5DS physical map, 

although the cumulative lengths of the contigs tended to decrease towards the telomere.  

While the number of clones per Mb was slightly lower in the most distal deletion bin, at 

93.1 clones/Mb, these values were more consistent across the remaining bins (105.2, 

105.7 and 106.6 clones/Mb for 0.67-0.78, 0.63-0.67 and 0-0.63 intervals, respectively). 

This observation suggests that mapping of the contigs or supercontigs across the 

deletion bins were generally uniform, regardless of the bin size.  

Despite the lack of an apparent bias in the number of the clones in contigs mapped 

to different deletion bins, contig lengths allocated to deletion bins revealed an 

interesting situation. While over than half of the contigs assigned to the most distal bin 

were smaller than 1 Mb, much longer contigs, including the longest, CTG138, were 

assigned to the most proximal bin, 0-0.63 (Fig. 22).  

 

 

Figure 22. Distribution of contig lengths assigned to different deletion bins. Contigs are 

grouped into 1 Mb-intervals. 
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4.2.6. Small-scale genome rearrangements and perturbations in micro-

colinearity 

 

 

The refined 5DS physical map, incorporating conserved genomic features from 

the Ae. tauschii physical map the draft genome (Luo et al., 2013; Jia et al., 2013), 

enabled further improvements to the 5DS genome zipper, constructed from 1.34x 

survey sequences. The improved genome zipper was compared against the 5DS genome 

zipper constructed by the IWGSC from Illumina contigs, revealing several small scale 

inconsistencies (Mayer et al., 2014). The „Genome Zipper‟ approach was first 

demonstrated by Mayer and his colleagues for the barley chromosome 1H, which was 

subsequently extended to all seven barley chromosomes (Mayer et al., 2009; Mayer et 

al., 2011). In the absence of extensive genomic resources, these genome zippers had 

been highly useful in building a virtual gene order. Although genome zipper approach is 

a powerful tool to explore the gene space, particularly for species that lack a reference 

genome sequence, the inconsistencies observed between the genome zippers by IWGSC 

and by our group indicates that these tools should be utilized cautiously (Fig. 23a). 

 

 

Figure 23. Comparisons of the 5DS genome zippers of (a) by IWGSC, (b) by Lucas et 

al., 2014 (refined by the 5DS physical map). Deletion bins are color-coded, where dark 

green, light green, blue and yellow corresponds to 0.78-1.00, 0.67-0.78, 0.63-0.67 and 

0-0.63 bins, respectively. Gray shaded regions on the lower genome zipper indicate 

locations of uncertainty. Contigs and supercontigs matching Brachypodium orthologs 
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are indicated as pink or purple boxes, respectively, below the genome zipper. Sizes of 

the boxes do not necessarily reflect corresponding contig/supercontig sizes. 

 

Among the inconsistencies between the genome zippers (Fig. 23a), one region 

involving a number of genes was intriguing. Orthologous Brachypodium genes 

delineated by Bradi4g00450-Bradi4g00790 were assigned to the 0.78-1.00 deletion bin 

of the 5DS physical map, while this region was located much closer to the 0-0.63 

deletion bin in the IWGSC genome zipper. Strikingly, Bradi4g05880, within this region, 

was previously located to the 0-0.63 bin in our genome zipper, but was relocated to the 

distal deletion bin 0.78-1.00, based on the Ae. tauschii physical map. Additionally, three 

putative duplications involving Brachypodium orthologs, Bradi4g00980, Bradi4g02450, 

Bradi4g06000, were detected, which were not previously reported, through the 

refinements by the 5DS physical map. These putative duplications are indicated by blue 

and green lines in Figure 23a, where blue lines correspond to the suspected duplicated 

copies.  

Despite the extensive homology between Ae. tauschii and T. aestivum, the 

improved genome zipper revealed putative small-scale rearrangements between the two 

genomes. For instance, the EST marker BE443751, relocated from the 1.00-0.78 distal 

bin to 0.63-0 proximal bin, based on additional information by CTG100 also anchored 

by this marker, suggested small-scale rearrangement (Fig. 23b, green single line among 

the yellow lines). In addition, CTG134 revealed significant similarities to two separate 

locations on Ae. tauschii 5D chromosome, one of which is found close to the telomere 

region, suggestive of a putative duplication event (Fig. 23b, isolated gray line). The 

borders of the deletion bins largely remained uncertain between the most distal and 

proximal bins (Fig. 23b, multiple gray lines). These regions may carry additional small-

scale rearrangements, which remains elusive at this time. Small-scale rearrangements 

are common among the highly dynamic Triticeae genomes (Wicker et al., 2011).  

 

 

 

4.2.7. Gene space organization of chromosome 5DS 

 

 

Putative assignment of conserved gene-associated probes to MTP clones through 

microarray hybridization allowed the exploration of the gene space and organization of 
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5DS. The 1.34x 5DS survey sequences were blasted against three fully annotated grass 

genomes, Brachypodium, rice and sorghum, from which reciprocal best hits were 

retained as „conserved gene-associated sequences‟, which were later used to design 

microarray probes. A total of 1,306 sequences were associated with specific MTP 

clones of the 5DS physical map; of these 95, 41, 105 and 231 were found within 

deletion bins 0.78-1.00, 0.67-0.78, 0.63-0.67 and 0-0.63, respectively. Considering the 

estimated physical sizes of the deletion bins, these numbers indicate gene densities 

ranging from 3.17 genes/Mb to 5.17 genes/Mb, with the highest gene density observed 

for the 0.67-0.78 bin (Table 6).  

 

Table 6. The gene content and organization of 5DS across deletion bins, as assessed by 

the conserved gene-associated probe hybridizations. 

 
Syntenic  

Non-

syntenic  Total  

In 

islands  Isolated  
 

Interval  N  D  N  D  N  D  N  D  N  D  
Cumulative 

length (Mb)  

0-0.63  131  1.80  100  1.37  231  3.17  192  2.63  39  0.53  72.92  

0.63-0.67  44  1.48  61  2.05  105  3.53  83  2.79  22  0.74  29.71  

0.67-0.78  13  1.64  28  3.53  41  5.17  33  4.16  8  1.01  7.93  

0.78-1.00  20  0.75  75  2.83  95  3.58  79  2.98  16  0.60  26.54  

* N: Number, D: Density. 

** Cumulative lengths are based on physical size estimates.  

 

The conserved gene-associated sequences assigned to 5DS MTP clones were 

classified as „syntenic‟ if the sequence was derived from syntenic regions across 5DS, 

or „non-syntenic‟ otherwise. Despite the positive gradient of gene densities towards the 

telomere, syntenic gene densities were not significantly correlated with the overall gene 

density gradient (Pearson‟s correlation coefficient r = 0.16, p-value = 0.84), in contrast 

to the non-syntenic gene density (r = 0.87, p-value=0.13), although the correlation was 

relatively weak.  

Two or more genes located on the same or overlapping BAC clones can be 

assumed to form “islands” of genes and the gene space of the wheat genome has been 

suggested to be dominated by gene islands, compared to the isolated genes (Choulet et 

al., 2010; Raats et al., 2013; Philippe et al., 2013). The same trend was observed for the 

5DS; genes assigned to MTP clones tended to cluster together (Fig. 24, Table 6). 
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Furthermore, the density of the genes forming gene islands was highly correlated with 

the overall gene gradient across the deletion bins (r = 0.9956, p-value = 0.0044); such a 

correlation was not observed for the isolated genes (r = 0.9509, p-value = 0.0491).  

 

 

Figure 24. Gene space organization of 5DS chromosome. 

 

To functionally characterize the 5DS gene space, 1,306 conserved gene-associated 

sequences assigned to the 5DS physical map were annotated against all Viridiplantae 

proteins. The annotation of these sequences revealed the top species in terms of 

sequence similarity as Ae. tauschii, as expected from the close evolutionary 

relationships between wheat and Aegilops (Fig. 25a).   
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Figure 25. Gene ontology annotations of conserved gene-associated sequences assigned 

to the 5DS physical map. 

 

The Gene Ontology (GO) terms assigned for Biological Process (BP), Molecular 

Function (MF) and Cellular Component (CC) terms suggested a variety of processes 

and functions involving several cellular compartments (Fig. 25b-d), which would be 

consistent with the transcriptional autonomy of wheat sub-genomes (Mayer et al., 

2014). BP terms were enriched for transport, catabolic process and protein modification, 

among others, while MF terms were highly enriched for nucleotide binding, hydrolase 

activity and kinase activity, together comprising over 60% of all MF terms. On the other 

hand, plastid or mitochondrion annotations dominated CC terms, pointing out to energy-

related pathways, although related processes of functions were not prominent among BP 

or MF terms, respectively. 
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4.3.   Comparative analysis of T. aestivum 5D with its wild progenitor 

 

 

 

4.3.1. Repeat contents of T. aestivum and Ae. tauschii 5D chromosomes 

 

 

Although the recent hybridization of the Ae. tauschii with T. turgidum giving rise 

to T. aestivum occurred relatively recently, repeat contents of Ae. tauschii and T. 

aestivum 5D chromosomes exhibited significant differences in terms of repeat families 

(Fig. 26). While Gypsy superfamily of LTR retrotransposons were the most abundant 

repeat type for both chromosomes, this superfamily made up almost 46% of all repeats 

in T. aestivum 5D and only 40% that of Ae. tauschii 5D chromosome. Conversely, 

CACTA superfamily of DNA transposons comprised a larger fraction of all repeats in 

Ae. tauschii 5D chromosome (~27%), compared to T. aestivum 5D chromosome 

(~21%). This observation suggested an expansion in retroelements, coupled with the 

shrinking of DNA transposons.  

 

 

Figure 26. The relative percentages of major repeat superfamilies assessed from survey 

sequences of T. aestivum and Ae. tauschii 5D. 

 

The estimated physical sizes of the most abundant repeat families revealed that 

while Jorge family of DNA transposons, represented by CACTA elements, were 

roughly same in size, certain Gypsy family of LTR retrotransposons has expanded in T. 

aestivum 5D chromosome (Fig. 27). In particular, Sabrina, Wilma and Sakura elements 
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had >75% growth, accounting for approximately 40 Mb of sequences in total. The 748 

Mb-long T. aestivum 5D chromosome is 30% larger than its wild progenitor, 577 Mb-

long Ae. tauschii 5D chromosome. Specific LTR retroelements rather than an overall 

increase in TE activity, appear to contribute to the genome expansion observed in the 

polyploidy wheat, consistent with the previous observations of grass genomes differing 

in repeat composition and abundance (Middleton et al., 2012).  

 

 

Figure 27. Physical size estimates of the 20 most abundant repeat families in 

megabases, calculated by multiplying the percentages with the respective chromosome 

sizes. DTC = DNA transposon, CACTA; RLG = retroelement, LTR, Gypsy; RLC = 

retroelement, LTR, Copia. 

 

 

 

4.3.2. Putative tRNA repertoires of T. aestivum and Ae. tauschii 5D 

chromosomes 

 

 

Putative tRNA repertoires of the two 5D chromosomes, predicted from masked 

and unmasked survey sequences, revealed a similar distribution (Fig. 28). The unusual 

abundance for the tRNA
Lys

 species among unmasked sequences was observed for both 

chromosomes, consistent with an ancient TE capture scenario of some tRNA
Lys

 genes 

leading to their extensive proliferation in the modern genomes. Whether those tRNA 

genes captured by and co-expanded with TEs remained functional is elusive at this time. 

The total number of putative tRNA genes encoded by non-repetitive portion of T. 
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aestivum and Ae. tauschii 5D chromosomes, masked against the most recent and 

comprehensive repeat element database for Poaceae, were comparable (153 vs. 142, 

respectively), despite the considerable size difference between the two chromosomes. In 

fact, orthologous Brachypodium chromosomes 1 and 4, Bd1 and Bd4, 74 and 48 Mb in 

size, respectively, encoded 166 and 109 putative tRNA genes. Considering the sizes of 

the respective chromosomes, T. aestivum and Ae. tauschii 5D chromosomes had 

putative tRNA gene densities of 1.24 and 2.16 tRNAs/Mb for unmasked, and, 0.20 and 

0.25 tRNAs/Mb for masked sequences; while the relatively small Brachypodium 

genome had putative tRNA gene densities of 2.24 and 2.27 for Bd1 and Bd4, 

respectively. The repetitive content of the Brachypodium genome is much lower (The 

International Brachypodium Initiative, 2010); therefore, wheat genomes are likely to 

encode far fewer tRNA genes than their close relative. Compared to its wild progenitor, 

T. aestivum 5D had a lower putative tRNA gene content which suggests that tRNA 

genes had not been major components of genome expansion in wheat.  

 

Figure 28. Putative tRNA gene predictions from masked and unmasked T. aestivum  

and Ae. tauschii 5D chromosomes, along with orthologous Brachypodium chromosomes 

1 (Bd1) and 4 (Bd4). 
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4.3.3. Gene conservation and organization of T. aestivum and Ae. tauschii 5D 

chromosomes 

 

 

Wild progenitors and landraces provide a rich source of genetic diversity for 

wheat improvement. Recently, draft chromosome sequences of T. aestivum suggested 

133,090 high-confidence protein coding loci for the entire 17 Gb bread wheat genome 

(Mayer et al., 2014), while draft genome sequences of its A-genome and D-genome 

progenitors, T. urartu and Ae. tauschii, reported 34879 and 34498 protein-coding loci 

for the estimated 4.94 and 4.36 Gb of entire genomes, respectively, at this level of 

confidence (Jia et al., 2013; Ling et al., 2013). Considering the average gene lengths of 

2000, 3207 and 2772 bases estimated for T. aestivum, T. urartu and Ae. tauschii, 

respectively, these predicted gene loci correspond to genic fractions of 1.57% for the 

bread wheat genome, and 2.19% and 2.26% for the wild progenitors (Vitulo et al., 

2011; Ling et al., 2013; Luo et al., 2013).  

A total of 4289  gene models (3147 high-confidence) were constructed from T. 

aestivum 5D survey sequences with homologies to annotated proteins of model grasses 

Brachypodium, rice and sorghum, as well as to related grass UniGene/Uniprot 

sequences. These suggest a genic fraction of 0.84-1.15% assuming an average coding 

sequence length of 2000 bases (Vitulo et al., 2011). Although T. aestivum 5D survey 

sequence may have overlooked a fraction of genuine genes due to the coverage, it is 

likely that  T. aestivum 5D chromosome harbors fewer protein-coding loci than its wild 

progenitor, Ae. tauschii 5D chromosome. 

Gene conservation patterns also revealed significant differences between T. 

aestivum  and Ae. tauschii 5D chromosomes (Fig. 29). Consistently, both chromosomes 

revealed orthologous relationships with Brachypodium chromosomes 1 & 4, rice 

chromosomes 3, 9 & 12, and sorghum chromosomes 1 and 2; although, gene 

conservation was observed to a lesser extent for Ae. tauschii 5D chromosome. The most 

striking difference, however, was the orthologous regions along rice chromosome 3 

(Fig. 29). While T. aestivum 5D orthologous sequences were dispersed along the 

chromosome, Ae. tauschii 5D orthologous sequences were concentrated at the distal 

region of this chromosome. This observation suggest extensive rearrangements in T. 
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aestivum 5D chromosome, involving genes orthologous to rice chromosome 3, which 

might have led to several breaks in synteny between T. aestivum and rice.  

 

Figure 29. Orthologous relationships of T. aestivum  and Ae. tauschii 5D chromosomes 

with the model grasses, Brachypodium distachyon (Bd), Orzya sativa (Os) and Sorghum 

bicolor (Sb). Bd (5), Os (12) and Sb (10) chromosomes were ordered, from bottom to 

top, in an ascending order. 

 

Genome zippers of T. aestivum and Ae. tauschii 5D chromosomes were compared, 

along with the published gene order for orthologous barley chromosome 5H (Mayer et 

al., 2011), to explore genome rearrangements (Fig. 30). In accordance with the close 

evolutionary relationships between T. aestivum and Ae. tauschii 5D chromosomes, the 

virtual gene orders on both chromosomes were mostly colinear, with few putative 

translocations (Fig. 30, pink lines). This colinearity was largely preserved with the 

virtual gene order of orthologous 5H chromosome of barley, the close relative of wheat 

from the Triticeae tribe. Interestingly, a group of genes involved in an apparent 

inversion between barley 5H chromosome and Ae. tauschii 5D chromosome (Fig. 30, 

inversed bundle of cyan links) was found in colinear order between Ae. tauschii 5D and 
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T. aestivum 5D chromosomes, which may point out to a species-specific inversion, 

occured after wheat and barley had diverged from their last common ancestor.  

 

Figure 30. Comparative maps of H. vulgare 5H, Ae. tauschii 5D and T. aestivum 5D 

chromosomes. 

  

It should be noted that the genome zippers do not represent the ultimate order of 

the entire gene repertoires. The reference genome sequences of wheat and barley may 

add up to these putative rearrangements and define precise relationships between these 

genomes.  

 

 

 

4.3.4. Functional gene spaces of T. aestivum and Ae. tauschii 5D chromosomes 

 

 

In order to compare functional gene spaces of T. aestivum and Ae. tauschii 5D 

chromosomes, survey sequences masked against Poaceae repeat elements and 

assembled with the same parameters using gsAssembler tool of Newbler software 2.6 

(454 Life Sciences). Both assemblies were compared against annotated proteins from 

Brachypodium, rice, sorghum; high-confidence barley proteins; Ae. tauschii UniProt 

sequences; and T. aestivum UniGene sequences to reveal gene-associated sequences 

with adjusted parameters. Finally, these sequences were annotated based on all 

Viridiplantae proteins for Biological Process (BP), Molecular Function (MF) and 

Cellular Component (CC) terms (Fig. 31).  
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Functional annotation of gene-associated survey sequences from T. aestivum and 

Ae. tauschii 5D chromosomes revealed enrichments for different BP, MF and CC terms. 

Energy related BP terms, „generation of precursor metabolites and energy‟ and 

„photosynthesis‟, were enriched among T. aestivum 5D sequences. These enrichments 

were also reflected in CC terms, where „plastid‟ and „mitochondrion‟ associated 

sequences were leading among T. aestivum 5D sequences. In MF terms, „structural 

molecular activity‟ and „protein binding‟ were more prominent for T. aestivum 5D 

chromosome, while Ae. tauschii 5D chromosome was enriched in „chromatin binding‟. 

These observations suggest that T. aestivum 5D chromosome may harbour genes related 

to photosynthetic machinery and energy metabolism to a greater extent, compared to its 

wild progenitor.  

 

 

Figure 31. Gene-ontology annotations of T. aestivum  and Ae. tauschii 5D gene-

associated sequences.(a) Biological Process, (b) Molecular Function, and, (c) Cellular 

Component terms. Only GO terms with differential enrichments are emphasized. 

 

 

 

 

 

 

 



73 

 

 

 

 

 

 

 

5. DISCUSSION 

 

 

 

 

Wheat is a hardy, cereal grain crop that is capable to grow across a wide range of 

environments. Accordingly, wheat is the most extensively harvested crop worldwide 

and ranks the third, after rice and maize, in terms of production, placing this crop as an 

essential component of human and animal nutrition. Growing world population, global 

climate changes and the increasing use of crops in biofuel industry demand significant 

increases in crop production in the upcoming decades. Genetic diversity forms the basis 

for crop improvement for better production; however, domestication and subsequently, 

thousands of years of agricultural practices have considerably narrowed the gene pools 

of modern cultivars. Genome sequencing and genomics research are promising tools to 

explore and exploit natural genetic diversity found within wild populations, to create 

diversity within elite populations or to elucidate genome biology and functioning on a 

grand scale.  

Despite its agronomic importance, wheat genomics has been largely hampered by 

the wheat genome size and complexity. Bread wheat, Triticum aestivum, accounting for 

>95% of all wheat production, has a hexaploid genome, composed of >80% repetitive 

elements (Feuillet et al., 2007). The bread wheat genome is 17 Gb in size, almost three 

times as large as the human genome. Tackling this huge and repetitive genome had been 

considered intractable until recently. The International Wheat Genome Sequencing 

Consortium has been established to handle this daunting task and employed a 

chromosome-by-chromosome approach to elucidate the genome sequence and structure 

of bread wheat. In this study, the structure and organization of 5D chromosome of bread 

wheat were investigated, through a combination of genome sequencing and physical 

mapping approaches, and 5D chromosome was compared to its wild progenitor in order 

to gain insights into wheat genome evolution. 
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Survey sequencing of T. aestivum L. cv. Chinese Spring chromosome 5D 

indicated that up to 82% of the chromosome was made up of repetitive elements, as 

assessed by the similarity searches against known Poaceae repeat elements, consistent 

with previous observations from both BAC-based and chromosome-specific sequencing 

studies from wheat (Choulet et al., 2010; Vitulo et al., 2011; Brenchley et al., 2012; 

Hernandez et al., 2012; Lucas et al., 2014; Mayer et al., 2014). As expected, LTR 

retrotransposons were the most abundant repeat type, accounting for over three fourths 

of all repeat annotations. In fact compared to the 5D chromosome of its wild progenitor, 

Ae. tauschii, LTR elements appeared to have expanded in T. aestivum 5D chromosome 

(Fig. 25) (Akpinar et al., 2014; Lucas et al., 2014). Nested insertions within 

retroelements do not interfere with the proliferation of repetitive elements and are 

implicated as a major component of wheat genome expansion (Li et al., 2004). It is 

likely that the hexaploid bread wheat genome could have tolerated nested insertion to a 

greater extent than its diploid progenitor, leading to the expansion of certain 

retroelements in T. aestivum 5D chromosome, but not in Ae. tauschii 5D chromosome. 

Non-repetitive survey sequences from 5DS and 5DL chromosome arms revealed 

significant matches to 1,493 and 2,829 annotated proteins, respectively, from model 

grasses Brachypodium distachyon, rice and sorghum, a subset of which were also 

supported by UniGene/UniProt sequences from related monocot species. Interestingly, 

5DS survey sequences matched a high proportion of genes conserved between B. 

distachyon and rice, but not sorghum, while 5DL survey sequences matched a high 

proportion of genes conserved between B. distachyon and sorghum, but not rice (Fig. 9). 

This observation can be explained by variable mutation rates at different regions on 

chromosome 5D acted at different stages of evolutionary history, as Panicoidae family, 

to which sorghum belongs, has diverged from the Pooidae family that includes 

Brachypodium and wheat, earlier than the Ehrhartoideae family of rice (The 

International Brachypodium Initiative, 2010). Comparative analyses between T. 

aestivum 5D chromosome and the model grasses revealed syntenic regions on 

Brachypodium chromosomes 1 & 4, rice chromosomes 3, 9 & 12 and sorghum 

chromosomes 1, 2 & 8, consistent with large-scale patterns of synteny observed 

previously (The International Brachypodium Initiative, 2010). Intriguingly, while 

sequences from T. aestivum 5D chromosome orthologous to rice chromosome 3 were 

dispersed across the chromosome, orthologous sequences from its wild progenitor Ae. 
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tauschii 5D chromosome revealed a more concentrated conserved block on the distal 

region (Fig. 29). This observation suggested extensive rearrangements on T. aestivum 

5D chromosome, causing several breaks into this syntenic region. Diploidization 

following polyploidization may have resulted in such extensive rearrangements leading 

to gene losses in the hexaploid wheat genome, in contrast to its diploid progenitor 

(Murat et al., 2014). Conserved blocks of few genes were also observed on non-

orthologous Brachypodium chromosomes 2 & 5 and sorghum chromosomes 3, 5 & 6, 

pointing out to small scale genome rearrangements (Fig. 15). The genome zipper 

approach used to construct a virtual gene order for T. aestivum 5D chromosome 

revealed further small scale rearrangements particularly on 5DL, in addition to an 

apparent inversed block on 5DS (Fig. 16).  

Functional characterization of 5D gene space through both gene models predicted 

from survey sequences or gene-associated microarray probes revealed a wide array of 

biological processes, molecular functions and cellular components (Fig. 10, 26), 

consistent with the transcriptional autonomy of the sub-genomes (Mayer et al., 2014). 

Hydrolase activity, intriguingly, had a marked abundance among both functional 

characterization attempts. Curiously, hydrolase activity was also prominent in the 

secretome of an apple pathogen Venturia inaequalis which is closely related to the 

wheat pathogen Pyrenophora tritici-repentis (Thakur et al., 2013), and reported from 

the transcriptome of the wheat pathogen Heterodera avenae (Kumar et al., 2014). 

Whether these hydrolase activity related 5D sequences are associated with disease 

responses remain unclear at the moment. 

Putative tRNA predictions revealed an unusual abundance for the tRNA
Lys 

species 

among repetitive sequences, speculated to result from co-proliferation following an 

ancient TE-capture, as observed previously for 6B chromosome (Tanaka et al., 2013). 

Among the non-repetitive sequences, however, the most abundant tRNA species were 

tRNA
Met

, tRNA
Val

, tRNA
Gly

, tRNA
Gln

 and tRNA
Glu

 species. A species-specific 

preference for the second position in a protein sequence is speculated to exist for the 

majority of proteins starting with a Methionine (Met) residue, with implicated effects on 

the translation, and thus regulation, of the protein. A strong preference was reported in 

Arabidopsis thaliana that favoured Alanine (Ala) residues, followed by Serine (Ser) 
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residues, at the second position (Shemesh et al., 2010). Putative tRNA gene abundances 

may reflect a similar preference of amino acids in T. aestivum 5D proteome (Fig. 11).  

In addition to survey sequences, physical maps provide valuable insights into the 

wheat genome structure and organization and serve as a framework for reference 

sequencing studies. In this study, a physical map of chromosome 5DS was constructed 

which contained 164 contigs, of which 120 had 6 or more clones, with an average 

contig size of 1078 kb. The longest contig was 6649 kb, comparable to the LTC-maps 

of 1AL, 1BL and 1BS, for which the longest contig size ranged between 5.8 Mb to over 

7 Mb (Lucas et al., 2013; Philippe et al., 2013; Raats et al., 2013). A variety of 

molecular markers were used to anchor 105 of the 164 contigs through PCR screening 

or microarray hybridization. PCR screening yielded success rates of 56% for SSR, 92% 

for COS, and 86% for EST markers that were previously mapped the 5DS chromosome. 

The relatively low success rate for the SSR markers could stem from the sequence 

divergence between T. aestivum L. cv. Chinese Spring used to isolate the 5DS 

chromosome and the cultivars which the SSR markers were designed from. Deriving 

from conserved genic sequences, COS and EST markers were relatively easy to anchor 

to the 5DS map, as expected. As a relatively recent approach, microarray hybridization 

was utilized to 647, 1,122, 1,615 and 3,878 UniGenes to the physical maps of 1AS, 

1AL, 1BL and 1BS, respectively (Breen et al., 2013; Lucas et al., 2013; Philippe et al., 

2013; Raats et al., 2013). While all these studies used the same pre-designed 

NimbleGen 40k UniGene microarray (Choulet et al., 2010), differences in chromosome 

arm sizes and the stringency levels applied to the microarray data might have resulted in 

the differences in the number of UniGenes assigned to each map through this approach. 

In addition to the NimbleGen 40k UniGene array, 1BL physical map also included 

putatively assigned 3912 ISBP markers, through a custom-design 17k ISBP NimbleGen 

array (Philippe et al., 2013). A custom-design Agilent array incorporating probes from a 

variety of gene- and marker-associated sequences enabled 1762 markers to be putatively 

assigned to the 5DS map unambiguously. Seventeen of the 18 markers physically 

anchored to the 5DS map and also included in the microarray design were in complete 

agreement, indicating that the stringency levels used in the interpretation of the 

microarray data gave reliable results.  
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The percentage of anchored contigs (105 out of 164, 64%) was improved 

compared to the 1AL physical map constructed by our group previously (Lucas et al., 

2013). More recent wheat physical maps reported anchored contig percentages of 74-

79%, similar to the 5DS physical map (83%, excluding the non-informative short 

contigs). The anchored molecular markers yielded a marker density of ~10.5 

markers/Mb of the chromosome arm. This marker density was close to that of the 1BL 

physical map (11 markers/Mb), and exceeded the 1BS physical map (10.1 markers/Mb), 

indicating a high-quality map saturated with molecular markers. This highly saturated 

5DS map is likely to provide a useful resource for future map-based cloning or marker-

assisted genomics studies. 

Of the anchored contigs, 80 were ordered along the 4 deletion bins of 5DS, 

covering 53.6% of the chromosome arm at a cumulative length of 138.3 Mb. The 

coverage of the chromosome arm by the mapped contigs exceeded that of 1BL, at 48% 

(Philippe et al., 2013), despite lower coverage of the chromosome arm by the physical 

map. 

The 1BL physical map revealed a bias in the number of clones in mapped contigs, 

where telomeric contigs contained far fewer clones (Philippe et al., 2013). Such a bias 

was not observed for the 5DS physical map, however, telomeric contigs tended to have 

smaller cumulative lengths. The most proximal bin, 0-0.63, contained relatively larger 

contigs, including the longest contig (CTG138), whereas, more than half of the contigs 

smaller than 1 Mb were assigned to the most distal deletion bin, 0.78-1.00. Gene 

densities are observed to increase towards the telomeric ends of Triticeae chromosomes 

(Choulet et al., 2010). Therefore, telomeric ends are more likely to be populated by 

genetically mapped markers, which may have facilitated the mapping of shorter contigs 

to the telomeric bins of the 5DS physical map.  

The physical sizes of 5DS deletion bins estimated from the cumulative lengths of 

the contigs mapped to each respective bin suggested discrepancies with the cytogenetic 

estimates for the proximal deletion bins. While the physical size estimate was close to 

the cytogenetic estimate for the most distal deletion bin, 0.78-1.00 (19.2% vs. 22%), 

physical size estimates were considerable underestimated for 0.67-0.78 and 0-0.63 bins, 

at 15 Mb (5.7%) and 138 Mb (53.5%), respectively, compared to cytogenetic estimates. 
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Strikingly, the cytogenetically smallest deletion bin, 0.63-0.67, estimated to contain 

only 4% of the 5DS was estimated to cover 55 Mb (21%) based on mapped contigs.  

The inconsistencies between the cytogenetic and physical size estimates may be, in 

part, explained by the low coverage of the chromosome arm by the mapped contigs 

(54%). Additionally, unequal representation of the deletion bins by the genetically 

mapped molecular markers may have led to an underestimation of proximal deletion 

bins in physical size estimates. However, gene densities assessed by positively assigned 

gene-associated microarray probes paint an intriguing picture on this issue. Of the 1306 

gene-associated markers putatively assigned to the contigs of the 5DS physical map, 95, 

41, 105 and 231 markers were allocated to 0.78-1.00, 0.67-0.78, 0.63-0.67 and 0-0.63 

bins, respectively. These correspond to gene density estimates between 3.17-5.17 

genes/Mb along the chromosome arm, assuming estimated physical sizes. A similar 

high gene density estimate was reported for the 1AS physical map, at 5.1 genes/Mb 

(Breen et al., 2013). However, the gene density rises up to 19 genes/Mb for the 0.63-

0.67 bin, if the cytogenetic size estimates are taken into account, which is highly 

unlikely. Additionally, the 0.67-0.78 bin, represented by only two contigs, revealed the 

highest gene density, further corroborating the adequacy of the physical size estimates, 

regardless of the unequal distribution of genetically mapped molecular markers across 

different deletion bins. Therefore, the physical size estimates is concluded to reflect the 

actual sizes of the deletion bins, albeit with moderate accuracy due to the low 

chromosome coverage by the mapped contigs. 
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6. CONCLUSIONS 

 

 

 

Advances in next-generation sequencing technologies have greatly accelerated 

genomics research in wheat. Combined with the genetic stocks, these genomics 

resources are anticipated to provide efficient tools for molecular breeding studies for 

crop improvement. As our understading of its genome expands, we are able to dissect 

wheat genome evolution to greater extents, which provides critical clues into its 

domestication at the molecular level, which, in turn, can be utilized in wheat breeding. 

Large-scale sequences generated by ongoing efforts present a rich resource from which 

polymorphisms can be readily identified and screened through molecular markers, 

enabling the utilization of natural genetic diversity found within wild germplasms. 

Additionally, BAC-based physical maps provide resources that can be readily utilized; 

physical segments of chromosome harboring a gene-of-interest can be identified using 

linked molecular markers and a chromosome-walking approach can be initiated for 

positional cloning of genes for functional characterization. In the long term, these 

genomics studies will pave the way for the ultimate goal of unraveling the bread wheat 

genome to a reference quality. Accordingly, the genomics resources presented in this 

study will be an integral part of this long term goal.  
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APPENDIX A 

 

Summary of all known repeat annotations, classified by superfamily, for 5DS and 5DL. 

Chromosome arm 5DS 5DL 

Total no. of reads 937266 2271393 

      bp % bp % 

Total read length 347752702 100 791451651 100 

Total length masked as repeats 245325262 70.55 553392605 69.92 

Repeat type Order Superfamily         

Retroelements 
 

  197996023 56.94 462267357 58.41 

  LTR   194642140 55.97 453806906 57.34 

  
 

Copia 29371613 8.45 75960597 9.6 

  
 

Gypsy 161788197 46.52 371664487 46.96 

  
 

Unclassified 3482330 1.0 6181822 0.78 

  SINEs   33240 0.01 85271 0.01 

  LINEs   3320643 0.95 8375180 1.06 

  
 

CRE/SLACS 0 0 0 0 

  
 

L2/CR1/Rex 0 0 0 0 

  
 

R1/LOA/Jockey 0 0 0 0 

  
 

R2/R4/NeSL 0 0 0 0 

  
 

RTE/Bov-B 106 0 1212 0 

    L1/CIN4 503852 0.14 1649518 0.21 

DNA transposons     42420333 12.2 81486264 10.3 

  
TIR (Terminal Inverted 

Repeats)         

  
 

hAT (hobo-Activator) 156157 0.04 651834 0.08 

  
 

CACTA (En-Spm) 37881304 10.89 70737844 8.94 

  
 

Tc1/Mariner 1338606 0.38 3139514 0.40 

  
 

Mutator 1903993 0.55 4125581 0.52 

  
 

PIF/Harbinger 699077 0.20 1751131 0.22 

  Helitron (Rolling Circles) 261914 0.07 862142 0.11 

Unclassified interspersed repeats 3837426 1.1 7075768 0.89 

Other recurring elements           

  
 

Small RNAs 16963 0.005 49379 0.006 

  
 

Satellites 14109 0.004 27081 0.003 

  
 

Simple repeats 561033 0.16 1166830 0.15 

    Low complexity 496338 0.14 1369305 0.17 
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APPENDIX B 

 

All tRNA counts for the masked 5DS and 5DL survey sequences and for all unmasked 

5D sequences. Ta5DS: T. aestivum 5DS; Ta5DL: T. aestivum 5DL. 

 

tRNA 

type 
Masked Unmasked 

Ta5DS Ta5DL Ta5D Ta5D 

Ala 8 19 27 27 

Arg 0 5 5 75 

Asn 0 4 4 33 

Asp 0 12 12 27 

Cys 2 12 14 33 

Gln 12 21 33 38 

Glu 5 26 31 43 

Gly 10 25 35 36 

His 3 14 17 22 

Ile 1 16 17 17 

Leu 2 23 25 26 

Lys 0 3 3 176 

Met 9 51 60 120 

Phe 0 1 1 16 

Pro 1 9 10 36 

Ser 3 15 18 82 

Thr 1 0 1 29 

Trp 1 3 4 27 

Tyr 1 4 5 20 

Val 17 28 45 48 
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APPENDIX C 

 

Coverages of two non-syntenic genes by 5D survey sequences, given as examples. Two 

Brachypodium genes, Bradi1g17710 and Bradi1g32050 were matched by 19 5DS and 9 

5DL survey sequence reads, respectively. Bradi1g17710 was covered evenly along its 

length, indicating that its wheat ortholog is possibly a genuine gene. In contrast, 

matching reads were clustered close to the 5‟ end of Bradi1g32050, indicating a 

truncated ortholog on wheat chromosome 5DL that is likely a pseudogene. 
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APPENDIX D 

List of all orthologous genes putatively rearranged after the divergence of Triticeae. 

5DS 

Brachypodium 

ortholog 

Rice 

ortholog 

Sorghum 

ortholog 

# of reads 

matching 
Predicted function Source organism 

Bradi1g02740 Os03t0833700 Sb02g027580.1 2 putative RNA 3'-terminal phosphate cyclase-like protein  Aegilops tauschii 

Bradi1g11490 Os03t0713000 Sb01g010250.1 2 Threonine dehydratase biosynthetic, chloroplastic  Aegilops tauschii 

Bradi1g11640 Os03t0701000 Sb01g011010.1 1 Importin-5  Aegilops tauschii 

Bradi1g15330 Os03t0587200 Sb01g015490.1 4 Kinesin-like protein KIF15 Aegilops tauschii 

Bradi1g17710 Os02t0167700 Sb04g004540.1 19 Cullin-associated NEDD8-dissociated protein 1 Aegilops tauschii 

Bradi1g21030 Os03t0583900 Sb01g015670.1 1 Endoribonuclease Dicer-1-like protein Aegilops tauschii 

Bradi1g23880 Os12t0597400 Sb08g020230.1 2 hypothetical protein F775_30608 Aegilops tauschii 

Bradi1g25780 Os07t0531700 Sb02g035270.1 7 hypothetical protein F775_21310  Aegilops tauschii 

Bradi1g28790 Os07t0447800 Sb02g010840.2 2 Phosphomannomutase/phosphoglucomutase Aegilops tauschii 

Bradi1g35630 Os12t0568800 Sb08g018670.1 3 Importin subunit beta-1 Aegilops tauschii 

Bradi1g48880 Os06t0156900 Sb10g003920.1 2 hypothetical protein F775_52471 Aegilops tauschii 

Bradi1g59970 Os06t0498500 Sb01g032360.1 7 Nucleolar complex 3-like protein Aegilops tauschii 

Bradi1g61680 Os03t0364500 Sb01g034550.1 1 hypothetical protein F775_29736 Aegilops tauschii 

Bradi2g13137 Os01t0374200 Sb03g001460.1 2 hypothetical protein F775_07206 Aegilops tauschii 

Bradi2g44510 Os01t0634900 Sb03g028940.1 2 hypothetical protein F775_01416 Aegilops tauschii 

Bradi2g61830 Os01t0966700 Sb03g047060.1 2 Beta-fructofuranosidase, insoluble isoenzyme 4 Aegilops tauschii 

Bradi3g05950 Os12t0541500 Sb02g041940.1 5 Elongation factor Ts Aegilops tauschii 

Bradi3g11460 Os02t0312700 Sb04g010120.1 3 ATP synthase mitochondrial F1 complex assembly factor 1 Aegilops tauschii 

Bradi3g43010 Os01t0974000 Sb03g047410.1 4 hypothetical protein F775_21918 Aegilops tauschii 

Bradi3g54980 Os02t0812400 Sb04g036790.1 10 Translation initiation factor eIF-2B subunit epsilon Aegilops tauschii 

Bradi3g55920 Os02t0824000 Sb04g037860.1 4 hypothetical protein F775_16833 Aegilops tauschii 

Bradi4g41960 Os12t0160900 Sb08g003780.1 3 Protein FAR1-RELATED SEQUENCE 5 Aegilops tauschii 

5DL 

Brachypodium 

ortholog 

Rice 

ortholog 

Sorghum 

ortholog 

# of reads 

matching 
Predicted function Source organism 

Bradi1g16770 Os07g0691200 Sb02g002970.1 1 D-alanine--D-alanine ligase Aegilops tauschii 

Bradi1g19280 Os07g0296200 Sb02g032170.1 2 TATA-binding protein-associated factor 2N Triticum urartu 

Bradi1g35960 Os05g0370600 Sb10g024200.1 2 Multiple C2 and transmembrane domain-containing protein 1  Aegilops tauschii 
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Bradi1g36730 Os06g0602400 Sb10g023440.1 2 DEAD-box ATP-dependent RNA helicase 52A Aegilops tauschii 

Bradi1g53060 Os07g0264100 Sb02g008660.1 3 Glyoxylate reductase Aegilops tauschii 

Bradi1g53085 Os07g0260400 Sb02g008130.1 9 Phospholipase D delta Aegilops tauschii 

Bradi1g54250 Os07g0208500 Sb02g006290.1 1 Putative cellulose synthase A catalytic subunit 8 (UDP-forming) Aegilops tauschii 

Bradi1g54900 Os06g0151600 Sb10g003620.1 2 DNA repair radA-like protein Aegilops tauschii 

Bradi1g59910 Os03g0417900 Sb01g032420.1 3 hypothetical protein F775_28852 Aegilops tauschii 

Bradi1g61130 Os03g0379100 Sb01g034010.1 3 hypothetical protein F775_20122 Aegilops tauschii 

Bradi1g61750 Os03g0363600 Sb01g034610.1 2 Sugar transporter ERD6-like protein 16 Aegilops tauschii 

Bradi1g63160 Os03g0336300 Sb01g036110.1 3 Insulin-degrading enzyme Aegilops tauschii 

Bradi1g67790 Os03g0254800 Sb01g040790.1 2 Chorismate synthase 1, chloroplastic Aegilops tauschii 

Bradi1g69900 Os03g0215200 Sb01g042850.1 2 DL related protein Triticum aestivum 

Bradi1g70057 Os03g0213400 Sb01g042980.1 1 Activating signal cointegrator 1 complex subunit 3  Aegilops tauschii 

Bradi1g71600 Os08g0550100 Sb07g024800.1 1 Putative 26S proteasome non-ATPase regulatory subunit 3 Aegilops tauschii 

Bradi1g72490 Os03g0182400 Sb01g045110.1 2 hypothetical protein F775_06981 Aegilops tauschii 

Bradi1g72620 Os03g0180700 Sb01g045200.1 4 Chitobiosyldiphosphodolichol beta-mannosyltransferase Aegilops tauschii 

Bradi1g74580 Os03g0158200 Sb01g046570.1 6 DEAD-box ATP-dependent RNA helicase 38 Aegilops tauschii 

Bradi2g18270 Os09g0241100 Sb10g019730.1 3 hypothetical protein F775_04652 Aegilops tauschii 

Bradi2g62760 Os01g0977600 Sb05g002400.1 9 RING finger protein 160  Aegilops tauschii 

Bradi3g03990 Os02g0150100 Sb01g035760.1 3 DEAD-box ATP-dependent RNA helicase 35A Aegilops tauschii 

Bradi3g17770 Os10g0141900 Sb01g026340.1 6 Queuine tRNA-ribosyltransferase subunit qtrtd1 Aegilops tauschii 

Bradi3g19890 Os06g0255700 Sb07g002945.1 6 DNA repair protein rhp54 Aegilops tauschii 

Bradi3g32160 Os10g0537600 Sb01g030480.1 2 hypothetical protein F775_01806 Aegilops tauschii 

Bradi3g38690 Os09g0515800 Sb04g037270.1 4 GTPase-activating protein gyp1 Triticum urartu 

Bradi3g43050 Os04g0492300 Sb06g021120.1 2 DNA-directed RNA polymerase III subunit RPC1 Aegilops tauschii 

Bradi3g49150 Os02g0623500 Sb01g002140.1 2 Lysyl-tRNA synthetase Aegilops tauschii 

Bradi4g02010 Os03g0850100 Sb06g001010.1 2 CTD small phosphatase-like protein 2  Aegilops tauschii 

Bradi4g07541 Os12g0477700 Sb08g014300.1 1 hypothetical protein F775_02086 Aegilops tauschii 

Bradi4g08907 Os09g0266400 Sb02g015540.1 2 GPI inositol-deacylase Aegilops tauschii 

Bradi4g13940 Os11g0610900 Sb05g024270.1 4 Seryl-tRNA synthetase Aegilops tauschii 

Bradi4g15450 Os03g0804800 Sb05g022470.1 2 chaperonin family theta subunit Triticum aestivum 

Bradi4g17270 Os11g0528400 Sb05g019790.1 1 hypothetical protein F775_14529 Aegilops tauschii 

Bradi4g19937 Os07g0280200 Sb02g020270.1 2 ABP-1 Triticum aestivum 

Bradi5g09500 Os01g0896800 Sb01g048270.1 1 60S ribosomal protein L5 Triticum aestivum 
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APPENDIX E 

The details of the preliminary 5DS physical map, constructed by LTC. Contigs are 

sorted by their lengths. N50noshort*: N50 value excluding short contigs (<6 clones). 

Contig # of clones Length (kb) Length (CB) Cumulative kb 
 

Ctg138 722 6649 5541 6649 
 

Ctg78 572 5186 4322 11835 
 

Ctg68 583 4980 4150 16815 
 

Ctg135 501 4422 3685 21237 
 

Ctg102 434 4328 3607 25565 
 

Ctg99 438 4034 3362 29599 
 

Ctg93 396 3897 3248 33496 
 

Ctg156 373 3585 2988 37081 
 

Ctg144 372 3530 2942 40611 
 

Ctg87 329 3387 2823 43998 
 

Ctg127 393 3369 2808 47367 
 

Ctg115 384 3277 2731 50644 
 

Ctg157 358 3200 2667 53844 
 

Ctg96 303 2942 2452 56786 
 

Ctg125 317 2929 2441 59715 
 

Ctg128 305 2793 2328 62508 
 

Ctg100 318 2722 2269 65230 
 

Ctg155 246 2673 2228 67903 
 

Ctg123 295 2613 2178 70516 
 

Ctg70 231 2595 2163 73111 
 

Ctg126 246 2499 2083 75610 
 

Ctg124 292 2462 2052 78072 
 

Ctg89 252 2298 1915 80370 
 

Ctg86 263 2234 1862 82604 
 

Ctg65 206 2226 1855 84830 N50noshort* 

Ctg142 260 2187 1823 87017 
 

Ctg143 251 2173 1811 89190 N50 

Ctg134 214 2148 1790 91338 
 

Ctg53 194 2036 1697 93374 
 

Ctg140 217 1995 1663 95369 
 

Ctg158 224 1976 1647 97345 
 

Ctg149 256 1935 1613 99280 
 

Ctg111 211 1914 1595 101194 
 

Ctg113 213 1904 1587 103098 
 

Ctg136 218 1833 1528 104931 
 

Ctg97 192 1785 1488 106716 
 

Ctg84 149 1774 1479 108490 
 

Ctg116 209 1666 1389 110156 
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Ctg2 150 1658 1382 111814 
 

Ctg91 161 1506 1255 113320 
 

Ctg14 160 1497 1248 114817 
 

Ctg82 136 1465 1221 116282 
 

Ctg5 109 1378 1149 117660 
 

Ctg137 158 1335 1113 118995 
 

Ctg77 138 1299 1083 120294 
 

Ctg3 153 1269 1058 121563 
 

Ctg83 171 1224 1020 122787 
 

Ctg146 104 1216 1014 124003 
 

Ctg129 98 1210 1009 125213 
 

Ctg81 121 1183 986 126396 
 

Ctg121 113 1182 985 127578 
 

Ctg122 135 1167 973 128745 
 

Ctg19 94 1167 973 129912 
 

Ctg148 124 1107 923 131019 
 

Ctg55 115 1032 860 132051 
 

Ctg90 96 1015 846 133066 
 

Ctg57 74 1004 837 134070 
 

Ctg62 109 1002 835 135072 
 

Ctg1 111 963 803 136035 
 

Ctg98 86 956 797 136991 
 

Ctg117 84 955 796 137946 
 

Ctg17 95 946 789 138892 
 

Ctg92 99 919 766 139811 
 

Ctg95 98 915 763 140726 
 

Ctg22 78 913 761 141639 
 

Ctg162 101 858 715 142497 
 

Ctg8 77 848 707 143345 
 

Ctg159 76 844 704 144189 
 

Ctg16 61 825 688 145014 
 

Ctg150 62 810 675 145824 
 

Ctg118 70 782 652 146606 
 

Ctg20 67 757 631 147363 
 

Ctg61 70 756 630 148119 
 

Ctg12 74 754 629 148873 
 

Ctg18 62 740 617 149613 
 

Ctg101 59 729 608 150342 
 

Ctg21 57 729 608 151071 
 

Ctg11 44 694 579 151765 
 

Ctg112 62 682 569 152447 
 

Ctg25 71 669 558 153116 
 

Ctg9 58 661 551 153777 
 

Ctg131 48 648 540 154425 
 

Ctg15 58 637 531 155062 
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Ctg26 61 631 526 155693 
 

Ctg66 34 627 523 156320 
 

Ctg4 70 614 512 156934 
 

Ctg56 38 606 505 157540 
 

Ctg88 38 592 494 158132 
 

Ctg164 86 580 484 158712 
 

Ctg120 61 570 475 159282 
 

Ctg63 47 498 415 159780 
 

Ctg13 40 494 412 160274 
 

Ctg6 29 474 395 160748 
 

Ctg7 25 465 388 161213 
 

Ctg160 35 427 356 161640 
 

Ctg34 30 416 347 162056 
 

Ctg145 14 409 341 162465 
 

Ctg51 3 348 290 162813 
 

Ctg10 31 345 288 163158 
 

Ctg54 21 333 278 163491 
 

Ctg85 22 327 273 163818 
 

Ctg29 3 325 271 164143 
 

Ctg71 26 324 270 164467 
 

Ctg43 3 300 250 164767 
 

Ctg52 4 297 248 165064 
 

Ctg94 3 295 246 165359 
 

Ctg147 3 290 242 165649 
 

Ctg103 16 286 239 165935 
 

Ctg45 4 286 239 166221 
 

Ctg105 28 283 236 166504 
 

Ctg42 3 283 236 166787 
 

Ctg107 23 282 235 167069 
 

Ctg39 11 277 231 167346 
 

Ctg30 3 274 229 167620 
 

Ctg108 26 264 220 167884 
 

Ctg58 33 261 218 168145 
 

Ctg33 4 260 217 168405 
 

Ctg28 12 259 216 168664 
 

Ctg46 4 256 214 168920 
 

Ctg48 6 255 213 169175 
 

Ctg76 5 255 213 169430 
 

Ctg106 24 252 210 169682 
 

Ctg24 3 249 208 169931 
 

Ctg49 3 247 206 170178 
 

Ctg104 11 238 199 170416 
 

Ctg41 3 237 198 170653 
 

Ctg23 3 234 195 170887 
 

Ctg44 3 232 194 171119 
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Ctg50 4 228 190 171347 
 

Ctg79 11 220 184 171567 
 

Ctg67 7 218 182 171785 
 

Ctg32 3 216 180 172001 
 

Ctg27 12 213 178 172214 
 

Ctg139 4 213 178 172427 
 

Ctg161 12 211 176 172638 
 

Ctg141 2 204 170 172842 
 

Ctg80 3 199 166 173041 
 

Ctg109 9 195 163 173236 
 

Ctg74 9 186 155 173422 
 

Ctg38 6 183 153 173605 
 

Ctg151 16 180 150 173785 
 

Ctg75 5 171 143 173956 
 

Ctg35 3 169 141 174125 
 

Ctg72 6 168 140 174293 
 

Ctg37 2 163 136 174456 
 

Ctg31 4 146 122 174602 
 

Ctg40 3 144 120 174746 
 

Ctg110 2 144 120 174890 
 

Ctg47 3 142 119 175032 
 

Ctg114 5 140 117 175172 
 

Ctg152 2 140 117 175312 
 

Ctg133 3 136 114 175448 
 

Ctg73 5 135 113 175583 
 

Ctg153 2 135 113 175718 
 

Ctg154 5 132 110 175850 
 

Ctg36 3 132 110 175982 
 

Ctg163 2 132 110 176114 
 

Ctg64 2 122 102 176236 
 

Ctg69 2 114 95 176350 
 

Ctg60 2 112 94 176462 
 

Ctg59 5 100 84 176562 
 

Ctg119 2 99 83 176661 
 

Ctg132 2 99 83 176760 
 

Ctg130 2 78 65 176838 
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APPENDIX F 

 

The 3-Dimensional pool strategy for MTP screening. MTP clones are combined into 16 

row (A-P), 24 column (1-24) and 7 plate (1-7) pools. Positive signals from 3D pools 

indicate the coordinates (plate, row, column) of the original BAC clones. In the below 

example, COS marker GPI:C:758029 yielded 2 positive signals from row and plate 

pools, and 3 positive signals from the column pool, giving rise to 12 possibilities 

(2x2x3). In such cases, all possibilities were checked through colony PCR on original 

MTP clones. Colony PCR revealed (1F11), (1L13) and (4L19) as true positives. These 

coordinates corresponds to, TaeCsp5DShA_0036_K04, TaeCsp5DShA_0036_O01 and 

TaeCsp5DShA_0068_M22 clones, respectively. All PCR reactions were carried out at 

56
o
C. 

Pool screening: 

 

 

Colony PCR: 

 

 

 

plate pools row pools 

column pools 

F                             L                             1              4 

11      13                            19   

M 

M 

  1F11    1F13  1F19   1L11   1L13   1L19  4F11   4F13   4F19    4L11  4L13   4L19   
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APPENDIX G 

List of all contigs anchored by molecular markers through PCR. 

No. Marker name Marker type Contig 

1 Pina-D1 Gene CTG70 

2 Pinb-D1 Gene CTG70 

3 CFD78 SSR CTG159 

4 BARC130 SSR CTG146 

5 CFD18 SSR CTG66 

6 CFD81 SSR CTG93 

7 WMC233 SSR CTG66 

8 WMS190 SSR Bridge 

9 WMS205 SSR Bridge 

10 WMC608 SSR CTG99 

11 CFD189 SSR CTG113 

12 CFD74 SSR CTG144 

13 GPW326 SSR CTG70 

14 WMS16 SSR CTG99 

15 WMS358 SSR CTG157 

16 GPI:C:726959 COS CTG102 

17 GPI:C:728036 COS CTG149 

18 GPI:C:728956 COS CTG68 

19 GPI:C:729592 COS CTG156 

20 GPI:C:739811 COS CTG117 

21 GPI:C:741009 COS CTG124 

22 GPI:C:743567 COS CTG88 

23 GPI:C:744654 COS CTG124 

24 GPI:C:746971 COS CTG100 

25 GPI:C:758029 COS CTG89 

26 GPI:C:758334 COS CTG102 

27 GPI:C:762599 COS CTG102 

28 A1Z95 ISBP CTG144 

29 A78ID ISBP CTG89 

30 AFQ6M ISBP CTG2 

31 AMEBF ISBP CTG129 

32 B04N2 ISBP CTG15 

33 B2LTL ISBP CTG19 

34 B5PZZ ISBP CTG14 

35 B7QNM ISBP CTG95 

36 BA0XF ISBP CTG98 

37 BCLS8 ISBP CTG93 

38 BIC1N ISBP CTG159 
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39 BKSSP ISBP CTG99 

40 BQDJS ISBP CTG115 

41 BRAMT ISBP CTG26 

42 BT6NA ISBP CTG58 

43 BTCOT ISBP CTG96 

44 BV62B ISBP CTG99 

45 BUH5R ISBP CTG102 

46 BXQWE ISBP CTG100 

47 BYIFL ISBP CTG156 

48 BZB42 ISBP CTG138 

49 C0NIF ISBP CTG131 

50 EXX6A ISBP CTG156 

51 E1EKW ISBP CTG129 

52 D8U1H ISBP CTG102 

53 CRSMO ISBP CTG145 

54 CAJFV ISBP CTG68 

55 CAGIE ISBP CTG138 

56 C7J3U ISBP CTG78 

57 C0VNS ISBP CTG125 

58 BE403618 EST CTG127 

59 BE403785 EST CTG70 

60 BE404135 EST CTG15 

61 BE404490 EST CTG2 

62 BE405667 EST CTG70 

63 BE405839 EST CTG53 

64 BE422471 EST CTG137 

65 BE424775 EST CTG137 

66 BE591461 EST CTG156 

67 BE591734 EST CTG99 

68 BE591974 EST CTG156 

69 BE604729 EST CTG135 

70 BE606535 EST CTG65 

71 BE606637 EST CTG146 

72 BE606654 EST CTG127 

73 BE636795 EST CTG144 

74 BE444113 EST CTG70 

75 BE444644 EST CTG138 

76 BE585732 EST CTG146 

77 BE499257 EST CTG120 

78 BE471016 EST CTG83 

79 BE444720 EST CTG102 

80 BE497093 EST CTG124 

81 BE470750 EST CTG78 
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82 BE490781 EST CTG156 

83 BE498768 EST CTG125 

84 BF202632 EST CTG149 

85 BF291319 EST CTG88 

86 BF473658 EST CTG125 

87 BF474606 EST CTG26 

88 BF474953 EST CTG97 

89 BF483719 EST CTG115 

90 BF484212 EST CTG115 

91 BF485220 EST CTG88 

92 BG262914 EST CTG112 

93 BG263391 EST CTG26 

94 BG604740 EST CTG5 

95 BG607041 EST CTG70 

96 BG607697 EST CTG46 

97 GH722882 EST CTG96 

98 CD882766 EST CTG134 

99 AX462334 EST CTG159 

100 BF485261 EST CTG100 

101 BE403373 EST Bridge 
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APPENDIX H 

List of all contigs anchored by molecular markers through microarray hybridization. 

Conserved: Conserved gene-associated sequences; COS: Conserved orthologous 

sequence; EST: Expressed sequence tag; ISBP: Insertion site-based polymorphism; 

SNP: Single nucleotide polymorphism. 

Contig 
# of matching 

clones 
# of matching probes Probe sources 

CTG1 3 7 Conserved, ISBP 

CTG100 14 36 Conserved, COS, EST, ISBP 

CTG101 4 28 Conserved, ISBP 

CTG102 22 114 Conserved, ISBP 

CTG105 2 2 ISBP 

CTG106 2 10 Conserved, ISBP 

CTG11 3 7 Conserved, ISBP 

CTG111 6 8 Conserved, ISBP 

CTG112 7 14 Conserved, ISBP 

CTG113 2 2 ISBP 

CTG114 2 17 Conserved, ISBP 

CTG115 25 94 Conserved, ISBP 

CTG116 4 4 Conserved, ISBP 

CTG117 6 54 Conserved, COS, ISBP 

CTG12 7 22 Conserved, ISBP 

CTG120 4 11 Conserved, ISBP 

CTG121 4 6 ISBP 

CTG122 7 24 Conserved, ISBP 

CTG123 10 21 Conserved, ISBP 

CTG124 17 77 Conserved, COS, ISBP 

CTG125 22 119 Conserved, ISBP 

CTG126 4 12 Conserved, ISBP 

CTG127 8 16 Conserved, ISBP 

CTG128 13 28 Conserved, ISBP 

CTG129 4 5 Conserved, ISBP 

CTG131 5 14 Conserved, ISBP 

CTG134 9 44 Conserved, ISBP, SNP 

CTG135 18 82 Conserved, ISBP 

CTG136 6 24 Conserved, ISBP 

CTG137 12 40 Conserved, ISBP, SNP 

CTG138 33 170 Conserved, EST, ISBP 

CTG14 9 49 Conserved, ISBP 

CTG140 1 2 Conserved 

CTG142 7 29 Conserved, EST, ISBP 

CTG143 6 13 Conserved, ISBP 

CTG144 14 37 Conserved, ISBP 

CTG145 1 1 Conserved 
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CTG146 7 58 Conserved, EST, ISBP, SNP, SSR 

CTG147 2 52 Conserved 

CTG149 13 71 Conserved, ISBP 

CTG15 5 40 Conserved, ISBP 

CTG150 4 38 Conserved, EST, ISBP 

CTG155 8 67 Conserved, ISBP 

CTG156 26 163 Conserved, EST, ISBP 

CTG157 11 50 Conserved, ISBP 

CTG158 8 23 Conserved, EST, ISBP 

CTG159 3 26 Conserved, ISBP, SSR 

CTG17 7 11 Conserved 

CTG18 4 15 Conserved, ISBP 

CTG19 7 25 Conserved, ISBP 

CTG2 4 4 EST, ISBP 

CTG20 3 3 Conserved 

CTG21 4 23 Conserved, ISBP 

CTG25 4 16 Conserved 

CTG26 4 16 Conserved, ISBP, SNP 

CTG3 6 22 Conserved, ISBP 

CTG34 4 10 Conserved, ISBP 

CTG4 2 2 ISBP 

CTG46 1 1 ISBP 

CTG5 9 29 Conserved, ISBP 

CTG53 8 25 Conserved, ISBP 

CTG55 1 1 Conserved 

CTG56 2 2 Conserved 

CTG57 8 11 Conserved, ISBP 

CTG6 6 10 Conserved, ISBP 

CTG61 4 8 Conserved 

CTG62 11 55 Conserved, EST, ISBP, SNP 

CTG63 2 2 ISBP 

CTG65 12 62 Conserved, ISBP, SNP 

CTG66 5 12 Conserved, SSR 

CTG68 20 59 Conserved, EST, ISBP 

CTG7 3 10 Conserved, ISBP 

CTG70 12 69 Conserved, EST, ISBP, SNP, SSR 

CTG71 1 1 ISBP 

CTG74 3 13 Conserved, ISBP 

CTG77 5 9 Conserved, ISBP 

CTG78 29 98 Conserved, ISBP 

CTG79 1 1 ISBP 

CTG81 3 6 Conserved, ISBP 

CTG82 4 17 Conserved, ISBP 

CTG83 8 34 Conserved, ISBP 

CTG84 11 47 Conserved, ISBP, SNP 

CTG85 4 5 Conserved, ISBP 
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CTG86 4 4 ISBP 

CTG87 15 70 Conserved, ISBP 

CTG89 8 24 Conserved, ISBP 

CTG90 2 4 Conserved 

CTG91 6 34 Conserved, ISBP 

CTG93 28 126 Conserved, ISBP, SNP, SSR 

CTG94 1 1 Conserved 

CTG95 5 12 Conserved, ISBP 

CTG96 10 43 Conserved, ISBP 

CTG97 14 45 Conserved, ISBP, SNP 

CTG98 2 2 Conserved 

CTG99 25 77 Conserved, ISBP, SNP 
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APPENDIX I 

Final version of the 5DS physical map. Markers in black are physically anchored; markers in blue are putatively assigned via microarray; 

markers in green are anchored by both approaches. Contigs highlighted in green indicate the presence of an orthologous Ae. tauschii sequence. 

Deletion bin   Anchored marker/probe Contig 

0.78-1.00 

 

C0NIF, HJKAX1S01A3G1S, HJKAX1S01A8XG6_1, HJKAX1S01AFTIY, HJKAX1S01AICQU_1, HJKAX1S01B05PQ, HJKAX1S01BRYKN, HJKAX1S01C0NIF_1, HJKAX1S01DEGP7, 

HJKAX1S01EHUX6 
[CTG131-CTG151] 

0.78-1.00 

 

Pina-D1, Pinb-D1, BE403785, BE405667, BG607041, BE444113, BE637485, BF293305, gpw326, HJKAX1S01A70V1,HJKAX1S01A7347_1, HJKAX1S01A8B3O_1, HJKAX1S01A91G5, 

HJKAX1S01AF8UU, HJKAX1S01AG15D_1, HJKAX1S01AH62T, HJKAX1S01AI42B, HJKAX1S01AO2IM_1, HJKAX1S01ATT3Z_1, HJKAX1S01AWF2H_1, HJKAX1S01AXL6T, HJKAX1S01B6SGQ, 

HJKAX1S01B7OOQ_1, HJKAX1S01BG97Y_1, HJKAX1S01BHDPO, HJKAX1S01BKUGM, HJKAX1S01BVWHU, HJKAX1S01BXMEO, HJKAX1S01C4ZI8, HJKAX1S01CD7FZ, 

HJKAX1S01CGJMM_2, HJKAX1S01CW75S_1, HJKAX1S01D23GR_3, HJKAX1S01D6HM2, HJKAX1S01DAQ12, HJKAX1S01DDBY8, HJKAX1S01DMNTP, HJKAX1S01DR64Q, 

HJKAX1S01DRQWU, HJKAX1S01DYQMY, HJKAX1S01E0BTK, HJKAX1S01E3VOE, HJKAX1S01EKNNU, HJKAX1S01EX52F, synopGBS108640, synopGBS110356_7_8_A 

[CTG70 

0.78-1.00 
 

CRSMO, HJKAX1S01B90WE CTG145 

0.78-1.00 
 

BE606637, BARC130, BE585732, BE636954, HJKAX1S01A3NTM, HJKAX1S01A727K_1, HJKAX1S01AIFSZ, HJKAX1S01AP5C7, HJKAX1S01AREGM, HJKAX1S01AWAZM, HJKAX1S01B6LRX_1, 

HJKAX1S01B8HN9, HJKAX1S01B8PPZ, HJKAX1S01BERCR_1, HJKAX1S01BPL1Q, HJKAX1S01BQ6NP, HJKAX1S01BR82E, HJKAX1S01C54TY, HJKAX1S01C5H7F_2, HJKAX1S01C868X_1, 

HJKAX1S01CFT8W, HJKAX1S01CVP7I, HJKAX1S01D1IAU_1, HJKAX1S01D56LR, HJKAX1S01DHW82, HJKAX1S01DOMI4, HJKAX1S01DXYG2, HJKAX1S01DY2CB, HJKAX1S01E3U0J, 

HJKAX1S01EBAQH, HJKAX1S01EDGY7, HJKAX1S01EJV5W, HJKAX1S01EQ080, HJKAX1S01ER6UG, HJKAX1S01EXJN7, synopGBS102655_B 

CTG146] 

0.78-1.00 

 
CFD18, WMC233, cfd165, HJKAX1S01A7MLJ, HJKAX1S01CM6WO, HJKAX1S01CPX97, HJKAX1S01D5GB5, HJKAX1S01DMXJ8, HJKAX1S01EAEME, HJKAX1S01EECDM [CTG66-CTG122] 

0.78-1.00 

 

HJKAX1S01A8DE2, HJKAX1S01AK1FS_2, HJKAX1S01AK8JS, HJKAX1S01AMZPY_2, HJKAX1S01AZIKV_1, HJKAX1S01B2F31, HJKAX1S01B2QMF, HJKAX1S01B63H0, HJKAX1S01B74GC, 

HJKAX1S01BC19Q_1, HJKAX1S01BGEN2, HJKAX1S01BQS5H, HJKAX1S01BTO6R, HJKAX1S01BVKLW, HJKAX1S01BZLKT, HJKAX1S01C0CL3_1, HJKAX1S01C62IA, HJKAX1S01CKCGK, 

HJKAX1S01CTC87, HJKAX1S01D0JR9_1, HJKAX1S01DL5WK, HJKAX1S01DMUZH, HJKAX1S01DSRPF, HJKAX1S01DYHJ2, HJKAX1S01ESQAC, HJKAX1S01EVML2, synopGBS112823, 

synopGBS124013 

CTG84 

0.78-1.00 

 

HJKAX1S01A0PW6, HJKAX1S01AH52G_2, HJKAX1S01AJSEB, HJKAX1S01APUII, HJKAX1S01AZP0H, HJKAX1S01B1ERL_1, HJKAX1S01B4MEI, HJKAX1S01BHESQ, HJKAX1S01BL3SB, 

HJKAX1S01CMBCB, HJKAX1S01CZ1TS, HJKAX1S01EVS1K 
CTG18 

0.78-1.00 

 

BE606535, HJKAX1S01A44MH_1, HJKAX1S01A8XA8_1, HJKAX1S01AF8F9_1, HJKAX1S01AG9B5, HJKAX1S01AINB7_2, HJKAX1S01AIUC6, HJKAX1S01AO571, HJKAX1S01AR9ZC, 

HJKAX1S01AXP70_1, HJKAX1S01B27FE, HJKAX1S01BBAIZ_1, HJKAX1S01BGWSX, HJKAX1S01BI0P3, HJKAX1S01BOD1G_1, HJKAX1S01BVEYG, HJKAX1S01BXDC4, HJKAX1S01C2HR3_1, 

HJKAX1S01C9GI2_1, HJKAX1S01CBUEU, HJKAX1S01CP1IP, HJKAX1S01CVZFQ, HJKAX1S01CXXIW, HJKAX1S01CYJJA_1, HJKAX1S01DA1RU_1, HJKAX1S01DE6WM, HJKAX1S01DEBBX, 

HJKAX1S01DIWPI, HJKAX1S01DSST4, HJKAX1S01E0P00, HJKAX1S01EI56T, synopGBS108676, synopGBS114788, synopGBS119432 

CTG65 

0.78-1.00 
 

CD882766, HJKAX1S01A8B8T, HJKAX1S01A8XC0_1, HJKAX1S01AF0UY_1, HJKAX1S01AIG75_1, HJKAX1S01AMP1U, HJKAX1S01ARY5F_1, HJKAX1S01BBTKY, HJKAX1S01BIB29, 

HJKAX1S01BM04B_1, HJKAX1S01BUU8Q, HJKAX1S01BWCKO, HJKAX1S01CBM6D, HJKAX1S01CCYOO, HJKAX1S01CGBGZ, HJKAX1S01CGDI4, HJKAX1S01CIRZG, HJKAX1S01CZ7BB, 

HJKAX1S01DC0GZ, HJKAX1S01DCDZJ, HJKAX1S01DDZ7Y, HJKAX1S01DW9ZP, HJKAX1S01E0CLV, synopGBS118957 
CTG134 

0.78-1.00 

 
HJKAX1S01A2WM0, HJKAX1S01A3M7E, HJKAX1S01AQDW6_1, HJKAX1S01ASO8W_1, HJKAX1S01AUUUP_1, HJKAX1S01B2FXF, HJKAX1S01D549R [CTG57-CTG162] 

0.78-1.00 

 

BF292091, HJKAX1S01A4D9I, HJKAX1S01AD6GX, HJKAX1S01AF8WE_1, HJKAX1S01ATJOE, HJKAX1S01ATL6K_1, HJKAX1S01AV9J8_1, HJKAX1S01AXA1K, HJKAX1S01B0FUF, 

HJKAX1S01B1PLD, HJKAX1S01B5EBV, HJKAX1S01BDTPL_1, HJKAX1S01BIIUA_1, HJKAX1S01BMQEZ, HJKAX1S01BY8WA_1, HJKAX1S01BZCMK_1, HJKAX1S01CE3OL, 

HJKAX1S01CEQNK_1, HJKAX1S01CHEQ9_1, HJKAX1S01CMW98_1, HJKAX1S01COE5P, HJKAX1S01CX4AZ_1, HJKAX1S01D32OU, HJKAX1S01DAWNA, HJKAX1S01DG5DP, 

HJKAX1S01DG6FQ, HJKAX1S01DJB7O, HJKAX1S01DOAKR, HJKAX1S01DW3ZR, synopGBS105314_15_16_A 

CTG62 

0.78-1.00 

 
HJKAX1S01B2HMT, HJKAX1S01CRQII, HJKAX1S01CTHT5, HJKAX1S01CZILL, HJKAX1S01D1GT8, HJKAX1S01D3VJB, HJKAX1S01D8BED CTG17 

0.78-1.00 

mapped to 
0.78-1.00 

but order is 

uncertain 

B04N2, BE404135, HJKAX1S01A4F6S, HJKAX1S01A62CD_1, HJKAX1S01AJJTQ, HJKAX1S01ART7U, HJKAX1S01AVTBI, HJKAX1S01AXOWN, HJKAX1S01BCQAY, HJKAX1S01BQ7XQ_1, 

HJKAX1S01BUP39, HJKAX1S01C8PDJ_1, HJKAX1S01CBZ94_1, HJKAX1S01CGBAE, HJKAX1S01CJAA7, HJKAX1S01CKGF6_1, HJKAX1S01CL8CQ, HJKAX1S01CUHYM, HJKAX1S01CV459_1, 

HJKAX1S01D5EDW, HJKAX1S01DALSX, HJKAX1S01DD922, HJKAX1S01DIQXD, HJKAX1S01DIX1W, HJKAX1S01DJUUD, HJKAX1S01DL8H3, HJKAX1S01E050A, HJKAX1S01ET89S 
CTG15 

0.78-1.00 
B2LTL, HJKAX1S01AOIHY_1, HJKAX1S01AUXDJ, HJKAX1S01AVMN5_1, HJKAX1S01B20WK, HJKAX1S01B8UBF, HJKAX1S01B9FXW_1, HJKAX1S01BBF8R_1, HJKAX1S01BPS6P_1, 

HJKAX1S01CUA9Q, HJKAX1S01DJEM9, HJKAX1S01EL57B, HJKAX1S01ELPFZ, HJKAX1S01ENR0Q, HJKAX1S01EW3TX 
CTG19 

0.78-1.00 
BF474606, BG263391, BRAMT, HJKAX1S01A9C1T_2, HJKAX1S01AUOGV, HJKAX1S01AZ9E5, HJKAX1S01B6N64, HJKAX1S01BR51Q, HJKAX1S01BY6YM, HJKAX1S01EPNYP, 

synopGBS129672_A 
CTG26 

0.78-1.00 AMEBF, E1EKW, HJKAX1S01B29MO_1, HJKAX1S01B2TE7, HJKAX1S01D55YG, HJKAX1S01EORLM CTG129 

0.78-1.00 BG262914, HJKAX1S01C23SU_1, HJKAX1S01D5TB8_1, HJKAX1S01D8U82, HJKAX1S01DZW2V, HJKAX1S01E2M1Z, HJKAX1S01EW1Y8 [CTG112-CTG111] 

0.78-1.00 
BM137384, HJKAX1S01BGKTI, HJKAX1S01BUQEX_1, HJKAX1S01CDPOC_2, HJKAX1S01CE09M, HJKAX1S01CJZR8, HJKAX1S01CPF3S, HJKAX1S01CRAQQ, HJKAX1S01E1JGI, 

HJKAX1S01EAMZN, HJKAX1S01EX3XK 
[CTG158-CTG118] 
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0.67-0.78 

 

BV62B, BKSSP, WMC608, WMS16, BE591734, HJKAX1S01A1AL5_1, HJKAX1S01A8M7O_1, HJKAX1S01A8WLN_1, HJKAX1S01A9MKQ_1, HJKAX1S01AIE76, HJKAX1S01AMR6I_1, 

HJKAX1S01ANEAI_1, HJKAX1S01APUXE, HJKAX1S01ASKML_1, HJKAX1S01B0CI9, HJKAX1S01B0DFD_1, HJKAX1S01B3SEH_1, HJKAX1S01B8MNI_1, HJKAX1S01BAV84, 

HJKAX1S01BCHF3_2 HJKAX1S01BJN2Y, HJKAX1S01BMC7J, HJKAX1S01BROWL, HJKAX1S01BTC15, HJKAX1S01BYN71_1, HJKAX1S01C7C36, HJKAX1S01CA4L9, HJKAX1S01CFPH3_1, 

HJKAX1S01CQT5O, HJKAX1S01CRQP3, HJKAX1S01CWXCN_1, HJKAX1S01D0S5U, HJKAX1S01D20J0, HJKAX1S01D372T_1, HJKAX1S01DFKLE, HJKAX1S01DJMPS, HJKAX1S01DK80M, 

HJKAX1S01DQ3DA, HJKAX1S01DQ497, HJKAX1S01DQWG0, HJKAX1S01DXGDB, HJKAX1S01DZV05, HJKAX1S01E3TZA, HJKAX1S01EFSPO, HJKAX1S01EW0MA, HJKAX1S01EWJWA, 

synopGBS101007_08_B, synopGBS101137 

CTG99 

0.67-0.78 

 

BCLS8, CFD81, HJKAX1S01A19BM, HJKAX1S01A2R5Z, HJKAX1S01A37N1_1, HJKAX1S01A92WI_1, HJKAX1S01AE2X2, HJKAX1S01AF1XS, HJKAX1S01AF6LJ, HJKAX1S01AFTY0_1, 

HJKAX1S01AGTJU_1, HJKAX1S01AIVBR, HJKAX1S01AP5M4_1, HJKAX1S01APRPE_2, HJKAX1S01ASVPD, HJKAX1S01AT1GT, HJKAX1S01AXE9R_1, HJKAX1S01AY22M, 

HJKAX1S01AYADL, HJKAX1S01B0GUX_1, HJKAX1S01B0IJA_1, HJKAX1S01B1GIU, HJKAX1S01B1GOW_3, HJKAX1S01B2VNV_1, HJKAX1S01B6RXS, HJKAX1S01B777M_1, 

HJKAX1S01B7Q0X, HJKAX1S01BHO2A, HJKAX1S01BHO2A_2, HJKAX1S01BKH6A_1, HJKAX1S01BL8EE_1, HJKAX1S01BLL46, HJKAX1S01BLR8D, HJKAX1S01BM6YA, HJKAX1S01BMSG6, 

HJKAX1S01BU1IA, HJKAX1S01BW7L9, HJKAX1S01C203M_1, HJKAX1S01C6QO0, HJKAX1S01C7RIR_1, HJKAX1S01CAJOL_1, HJKAX1S01CBIA1, HJKAX1S01CBN1C, HJKAX1S01CHTNQ, 

HJKAX1S01CIO1T_2, HJKAX1S01CIWDN, HJKAX1S01CK3YH, HJKAX1S01CKE67, HJKAX1S01CP56D, HJKAX1S01CQNPH, HJKAX1S01CXFXT, HJKAX1S01CYVJ0, HJKAX1S01D3OK5_1, 

HJKAX1S01D5SB7, HJKAX1S01D662F, HJKAX1S01D8EDE, HJKAX1S01D8LYB, HJKAX1S01DA8NJ, HJKAX1S01DDRSP, HJKAX1S01DE1IL, HJKAX1S01DJ5JX, HJKAX1S01DUISU, 

HJKAX1S01DVCQG, HJKAX1S01DVNGU, HJKAX1S01DX51P, HJKAX1S01EDTQL, HJKAX1S01EIO8D, HJKAX1S01EJ7UI, HJKAX1S01EMLNR, HJKAX1S01ES7F6, HJKAX1S01ESQ3H, 

HJKAX1S01EVT17, HJKAX1S01EXCVX, synopGBS122594 

CTG93 

    

0.63-0.67 

 

HJKAX1S01A0AAJ_1, HJKAX1S01A3F5V_2, HJKAX1S01A6MNI, HJKAX1S01AGS4J, HJKAX1S01AJKII_1, HJKAX1S01AKBI9, HJKAX1S01AQYBU, HJKAX1S01ASI9T, HJKAX1S01B1890_1, 

HJKAX1S01BC8XL, HJKAX1S01BF4XX_1, HJKAX1S01BN4CY, HJKAX1S01BP9ZD, HJKAX1S01BREO3, HJKAX1S01BSDN3, HJKAX1S01C5OGS, HJKAX1S01C7M9W, HJKAX1S01CDL76_1, 

HJKAX1S01CH2FX, HJKAX1S01CH3EZ, HJKAX1S01CHNE5_2, HJKAX1S01CISK2_1, HJKAX1S01CX21Y, HJKAX1S01CXDQ1, HJKAX1S01CXDQ1_2, HJKAX1S01D0G7W, HJKAX1S01D1JN4, 

HJKAX1S01D1RRN, HJKAX1S01D4TLP, HJKAX1S01D83O4, HJKAX1S01DAHRI_2, HJKAX1S01DAMQJ_1, HJKAX1S01DO78I, HJKAX1S01E2M6P, HJKAX1S01ECL74, HJKAX1S01EPOUD, 

HJKAX1S01EQTN5, HJKAX1S01EWUBH, HJKAX1S01EWVZR 

CTG155 

0.63-0.67 

 

GPI:C:739811, HJKAX1S01A75RI, HJKAX1S01A81A2, HJKAX1S01AGRHC_1, HJKAX1S01ANBIF_1, HJKAX1S01AR8LO_1, HJKAX1S01ASP8I_2, HJKAX1S01ATD00, HJKAX1S01AYV7P, 

HJKAX1S01B02EY, HJKAX1S01B6N8I, HJKAX1S01BGYC8, HJKAX1S01BW5VS, HJKAX1S01BWXLW, HJKAX1S01BYL7P_1, HJKAX1S01CG6JT_1, HJKAX1S01CQ90A, HJKAX1S01CZBT4_2, 

HJKAX1S01D0963, HJKAX1S01D3Z3G_1, HJKAX1S01DDGKK, HJKAX1S01DEAKG, HJKAX1S01DNGW4, HJKAX1S01DPOPU, HJKAX1S01DT6F5, HJKAX1S01EJ63H, HJKAX1S01EK99Y, 

HJKAX1S01EMILZ, HJKAX1S01EPOQF, HJKAX1S01ERUB5 

CTG117 

0.63-0.67 

 

B5PZZ, HJKAX1S01A1UYT, HJKAX1S01A8F6O, HJKAX1S01AHVHY, HJKAX1S01AJGR2, HJKAX1S01ALBHW_1, HJKAX1S01ALZE3_1, HJKAX1S01ATHT9, HJKAX1S01AVYJ4, 

HJKAX1S01B888M, HJKAX1S01BQJ9E_1, HJKAX1S01BTBB2, HJKAX1S01CNGXM, HJKAX1S01CUOZ8_1, HJKAX1S01CZY4M_2, HJKAX1S01D0TCI, HJKAX1S01D3179, HJKAX1S01D4VZK, 

HJKAX1S01D8ZWT, HJKAX1S01DGA0V, HJKAX1S01DJER1, HJKAX1S01EC7QM, HJKAX1S01EE12I, HJKAX1S01EL42U 
CTG14 

0.63-0.67 

 

BQDJS, BF483719, BF484212, HJKAX1S01A18X0, HJKAX1S01A5BNJ_1, HJKAX1S01A8XU6, HJKAX1S01A9U9C, HJKAX1S01AD4FT_1, HJKAX1S01AD803, HJKAX1S01AF6Y7, 

HJKAX1S01AK035, HJKAX1S01AK4K0_1, HJKAX1S01AMNLR_1, HJKAX1S01AMP3Y, HJKAX1S01AUQQR, HJKAX1S01AZ757, HJKAX1S01B2TI9, HJKAX1S01B60A8_1, HJKAX1S01B77YA, 

HJKAX1S01B7JL7, HJKAX1S01B8QWS, HJKAX1S01BD7KT_2, HJKAX1S01BFM22_1, HJKAX1S01BIHWS, HJKAX1S01BJKKZ_1, HJKAX1S01BOPNV, HJKAX1S01BP7HO, HJKAX1S01BPBCP, 

HJKAX1S01C0XYL_1, HJKAX1S01C438M_1, HJKAX1S01C4TO7_1, HJKAX1S01C7O25, HJKAX1S01C87UH_1, HJKAX1S01CA2KW_1, HJKAX1S01CIT6V, HJKAX1S01CMUQ9, 

HJKAX1S01CZMSZ, HJKAX1S01D0J8E, HJKAX1S01D35V3_2, HJKAX1S01D72PG, HJKAX1S01D86UD, HJKAX1S01D8NSB, HJKAX1S01DLUKQ, HJKAX1S01DN5P2, HJKAX1S01DRFO0, 

HJKAX1S01DRFUU, HJKAX1S01DSW0E, HJKAX1S01DWI64, HJKAX1S01DY77U, HJKAX1S01DZ7XI, HJKAX1S01EAL70, HJKAX1S01ED1BY, HJKAX1S01EM0M8, HJKAX1S01EO56A, 

HJKAX1S01EO8II, HJKAX1S01EVGYU, HJKAX1S01EY011 

CTG115 

0.63-0.67 

 
HJKAX1S01AU0PR_1, HJKAX1S01BTQ49, HJKAX1S01BV159, HJKAX1S01DOSQS, HJKAX1S01DYLQY CTG81 

0.63-0.67 

 

BUH5R, D8U1H, GPI:C:758334, BE444720, HJKAX1S01A146U, HJKAX1S01A4T0V_1, HJKAX1S01A5I2W, HJKAX1S01A8VE4, HJKAX1S01A9D7T, HJKAX1S01A9QAF_1, HJKAX1S01AG8SM, 

HJKAX1S01AI7SW, HJKAX1S01AOUM4_1, HJKAX1S01APRNZ, HJKAX1S01AR1KC, HJKAX1S01AU5EA_1, HJKAX1S01AX2GY_1, HJKAX1S01B0LHG, HJKAX1S01B3DV7, 

HJKAX1S01B3IHJ_1, HJKAX1S01B5D48_1, HJKAX1S01B8BXX, HJKAX1S01B9F53_1, HJKAX1S01BEUXL, HJKAX1S01BLYQ6_1, HJKAX1S01BM7M4, HJKAX1S01BSMGH, HJKAX1S01BUEXD, 

HJKAX1S01BUH5R_1, HJKAX1S01BZ75R, HJKAX1S01C3EM0, HJKAX1S01C3WNF, HJKAX1S01C7QV4, HJKAX1S01C8UJZ, HJKAX1S01CB8Q9, HJKAX1S01CFT55, HJKAX1S01CH51F, 

HJKAX1S01CIKO2, HJKAX1S01CNCNC_2, HJKAX1S01CO6XK, HJKAX1S01CUQB7, HJKAX1S01CV3BC, HJKAX1S01CV9WG, HJKAX1S01CVF9K, HJKAX1S01CZ3ON, HJKAX1S01CZAUJ, 

HJKAX1S01D0QH7, HJKAX1S01D0RJK_1, HJKAX1S01D3P97, HJKAX1S01DALDV, HJKAX1S01DBYEP, HJKAX1S01DJP4A, HJKAX1S01DO9LI, HJKAX1S01DRN46, HJKAX1S01DTIA7, 

HJKAX1S01DUZ0Q, HJKAX1S01DY81J, HJKAX1S01E2UZ7, HJKAX1S01E41SX, HJKAX1S01EA00F, HJKAX1S01EB384, HJKAX1S01EESIY, HJKAX1S01EGKWX, JKAX1S01EKPZ0, 

HJKAX1S01EL17F, HJKAX1S01EP0WT, HJKAX1S01EVDIP, HJKAX1S01EVXOU 

CTG102 

0.63-0.67 junction 

 

C7J3U, BE470750, HJKAX1S01A7M7H_1, HJKAX1S01A8G7B, HJKAX1S01A9K39, HJKAX1S01AG6N7_2, HJKAX1S01AGBML, HJKAX1S01AKHI3, HJKAX1S01AL5J6, HJKAX1S01AM6QR_2, 

HJKAX1S01AO06D_1, HJKAX1S01APOQR, HJKAX1S01AQC78_1, HJKAX1S01ATC5F_2, HJKAX1S01AU5YH, HJKAX1S01AVFQ3, HJKAX1S01AZCW3_1, HJKAX1S01B07OU, 

HJKAX1S01B0UPA, HJKAX1S01B3V8V, HJKAX1S01B6J87_1, HJKAX1S01BANIX_1, HJKAX1S01BAOBK, HJKAX1S01BDUC1_1, HJKAX1S01BDY2R, HJKAX1S01BIU13, HJKAX1S01BM4MV, 

HJKAX1S01BM7ST, HJKAX1S01BO3FA, HJKAX1S01BOI0V, HJKAX1S01BRN76, HJKAX1S01BWWV8, HJKAX1S01BXTLX_1, HJKAX1S01BY2X8, HJKAX1S01BYC6R_1, HJKAX1S01BZ8RN, 

HJKAX1S01BZJ3R_1, HJKAX1S01C0X0F_1, HJKAX1S01C1PTR, HJKAX1S01C21X5, HJKAX1S01C5B07, HJKAX1S01CCR23_1, HJKAX1S01CD5Z0_1, HJKAX1S01CFIOF, HJKAX1S01CGP6U, 

HJKAX1S01CH1BV, HJKAX1S01CL7Y8, HJKAX1S01CO5MD, HJKAX1S01COAY5, HJKAX1S01CPHNH_1, HJKAX1S01CVEWZ, HJKAX1S01CWU40, HJKAX1S01CWY9F, HJKAX1S01CY6Q4, 

HJKAX1S01D0AYT, HJKAX1S01D31GD, HJKAX1S01D4C9M, HJKAX1S01DAMIK, HJKAX1S01DSF7K, HJKAX1S01DTOJH, HJKAX1S01DU2Z8, HJKAX1S01DX2HJ, HJKAX1S01DZCSQ, 

HJKAX1S01E6I84, HJKAX1S01EO9P9, HJKAX1S01EX9U6 

CTG78 

0.63-0.67 junction 

 

BA0XF, CAJFV, GPI:C:728956, HJKAX1S01DT5BD, BF292081, HJKAX1S01A1URF_1, HJKAX1S01A6VLE, HJKAX1S01AFX6F, HJKAX1S01AGCXF, HJKAX1S01AP8OI, HJKAX1S01AS0EZ, 

HJKAX1S01ATG0H_1, HJKAX1S01AW18C, HJKAX1S01B6W94, HJKAX1S01B6W94_1, HJKAX1S01B8GT3_1, HJKAX1S01BADPF, HJKAX1S01BDDYD, HJKAX1S01BR0N0_1, 

HJKAX1S01BVREN, HJKAX1S01C0R2D, HJKAX1S01C9CYQ_1, HJKAX1S01CDOE1, HJKAX1S01CEMIB, HJKAX1S01CENIX, HJKAX1S01CGKB8_1, HJKAX1S01CJ5KW_1, HJKAX1S01CMXJS, 

HJKAX1S01CNIFD, HJKAX1S01CU0X5, HJKAX1S01CWPXK_1, HJKAX1S01D0Z6S, HJKAX1S01D8AYP, HJKAX1S01D8XPL, HJKAX1S01DJUT1, HJKAX1S01DMJG4, HJKAX1S01DUCQC, 

HJKAX1S01EK889 

[CTG98-CTG54-
CTG68] 

   

  

0.63-0.67 mapped to 
A78ID, GPI:C:758029, HJKAX1S01ANCRF, HJKAX1S01AO5ZI, HJKAX1S01B2617_1, HJKAX1S01B5FIS, HJKAX1S01B8JO3, HJKAX1S01B98BO, HJKAX1S01BC3MN, HJKAX1S01BN6FG, 

HJKAX1S01C37RG, HJKAX1S01CX857, HJKAX1S01DU33U, HJKAX1S01ED9TT 
CTG89 



98 

 

0.63-0.67 

0.63-0.67 
but order is 

uncertain 

BF474953, HJKAX1S01A7UQV_1, HJKAX1S01A8TZB_2, HJKAX1S01ANOY5, HJKAX1S01AVZGE, HJKAX1S01B5VHT, HJKAX1S01BSGSF_2, HJKAX1S01C00XN_1, HJKAX1S01C0IAL, 

HJKAX1S01C60HW, HJKAX1S01CPOQ8, HJKAX1S01CSAS3, HJKAX1S01CWIDP, HJKAX1S01CYW8J_1, HJKAX1S01DELG0, HJKAX1S01DFVTG, HJKAX1S01DH3HO, HJKAX1S01DHOT1, 

HJKAX1S01DQJV3, HJKAX1S01EBBPF, HJKAX1S01EKSIV, HJKAX1S01EMS5L, HJKAX1S01ESWLW, synopGBS119454_5_6_B, synopGBS126656 
CTG97 

0.63-0.67 BG607697, HJKAX1S01B42H9_2 CTG46 

  
  

 

0-0.63 
 

BE499257, HJKAX1S01A34JE_1, HJKAX1S01A3ZKL, HJKAX1S01ADS67, HJKAX1S01BJFRB, HJKAX1S01BKVL3, HJKAX1S01BM5S6, HJKAX1S01COGRB, HJKAX1S01D4X3K, 

HJKAX1S01DR6B1, HJKAX1S01DSKKG 

[CTG143-CTG120-

CTG82] 

0-0.63 

 

GPI:C:728036, BF202632, HJKAX1S01A4YRJ_1, HJKAX1S01A9K8O, HJKAX1S01AECOA_1, HJKAX1S01AFZC8, HJKAX1S01AHSIJ_1, HJKAX1S01AMYSS, HJKAX1S01ATVBU, 

HJKAX1S01AUKGD, HJKAX1S01AVSPC, HJKAX1S01B3APK, HJKAX1S01BERCW, HJKAX1S01BGKQ5, HJKAX1S01BJD33_1, HJKAX1S01BJSNF, HJKAX1S01BMBPQ_1, HJKAX1S01BMJ5R, 

HJKAX1S01C02HV, HJKAX1S01C0XVX, HJKAX1S01C2GNE_1, HJKAX1S01C5LY4, HJKAX1S01C6F4R, HJKAX1S01CQ23G, HJKAX1S01D0404, HJKAX1S01DAV60, HJKAX1S01DC73P, 

HJKAX1S01DIBLR, HJKAX1S01DN1TQ, HJKAX1S01DOH9J, HJKAX1S01DRJUA, HJKAX1S01DUK7C, HJKAX1S01E565L, HJKAX1S01EFQMG, HJKAX1S01ENW61, HJKAX1S01EQ3M7, 

HJKAX1S01EXT6F 

[CTG149-CTG140] 

0-0.63 

 
HJKAX1S01A0IWX, HJKAX1S01AR1WB, HJKAX1S01AXG90, HJKAX1S01B015D, HJKAX1S01BFOKH, HJKAX1S01BPOV5, HJKAX1S01DJSTL, HJKAX1S01EY4R1 CTG25 

0-0.63 

 

BE497093, GPI:C:741009, GPI:C:744654, HJKAX1S01A180B_2, HJKAX1S01A6TPM, HJKAX1S01AGYZ1, HJKAX1S01AH8NN, HJKAX1S01AHZBG, HJKAX1S01AIDXK_1, HJKAX1S01ALFCG, 

HJKAX1S01AUG8G, HJKAX1S01B1W96, HJKAX1S01B5DOH, HJKAX1S01BBM1D, HJKAX1S01BG0MO, HJKAX1S01BIXSB, HJKAX1S01BP5F2_1, HJKAX1S01BUS5I, HJKAX1S01BUY5G, 

HJKAX1S01C2BHH, HJKAX1S01C2QMJ_1, HJKAX1S01C4F9I, HJKAX1S01CQB5D_1, HJKAX1S01CQR4D, HJKAX1S01CWDDE,  HJKAX1S01CYVKC, HJKAX1S01CZEPV_1, HJKAX1S01D4LGC, 

HJKAX1S01D67I2, HJKAX1S01D6PG8, HJKAX1S01D9DXQ_2, HJKAX1S01DAR2Q, HJKAX1S01DARR7, HJKAX1S01DAWY4, HJKAX1S01DD40V, HJKAX1S01DDM74, HJKAX1S01DLZKE, 

HJKAX1S01DMKUI, HJKAX1S01DOYS9, HJKAX1S01DS8ZI, HJKAX1S01DYU1G, HJKAX1S01DZTRS, HJKAX1S01E2JSA, HJKAX1S01EA0JP, HJKAX1S01ETGUO, HJKAX1S01EZ5AJ 

CTG124 

0-0.63 

 

A1Z95, CFD74, BE636795, HJKAX1S01A1BOC, HJKAX1S01AFQCP, HJKAX1S01AOWPC_1, HJKAX1S01AQQVV, HJKAX1S01ASP54, HJKAX1S01B1I4F_1, HJKAX1S01B1LFP, 

HJKAX1S01BBDK2_1, HJKAX1S01BI22I_2, HJKAX1S01BPNQZ, HJKAX1S01BRGQX, HJKAX1S01CFFRJ, HJKAX1S01CHQN7_1, HJKAX1S01D312L, HJKAX1S01D4904, HJKAX1S01D83H6_1, 

HJKAX1S01DGWXW, HJKAX1S01DPOGU, HJKAX1S01DV5W4, HJKAX1S01ECZ5S, HJKAX1S01EEZWJ, HJKAX1S01EWB7B, HJKAX1S01EXYES 
[CTG144-CTG121] 

0-0.63 

 

BXQWE, BF485261, GPI:C:746971, BE443751, HJKAX1S01A62C5_1, HJKAX1S01A7A8Q_1, HJKAX1S01A7J6H_1, HJKAX1S01A8VUC_1, HJKAX1S01AI0RH_2, HJKAX1S01ASXPP, 

HJKAX1S01AYD4U, HJKAX1S01B5OO8, HJKAX1S01BBVN8_1, HJKAX1S01BGFWN_1, HJKAX1S01BRADD, HJKAX1S01C9P4Z, HJKAX1S01CFQ7M, HJKAX1S01CLRU8, HJKAX1S01CUN29, 

HJKAX1S01DU8K9, HJKAX1S01ET2LL, HJKAX1S01EVK0B, HJKAX1S01EWPHW 
[CTG100-CTG71] 

0-0.63 

 

HJKAX1S01AU2R5, HJKAX1S01B0Y2T, HJKAX1S01B3WFU_1, HJKAX1S01B8UOO, HJKAX1S01BHDZ0, HJKAX1S01BQ6DT, HJKAX1S01BX79U, HJKAX1S01BZHBP, HJKAX1S01C3XOH, 

HJKAX1S01C60VA, HJKAX1S01D5VR9, HJKAX1S01DBDY5, HJKAX1S01DHU8D, HJKAX1S01ENBNW 
CTG101 

0-0.63 

 

BIC1N, AX462334, CFD78, HJKAX1S01AHTYI, HJKAX1S01B21Q2, HJKAX1S01B72B6_1, HJKAX1S01BAHDB, HJKAX1S01BBYNW, HJKAX1S01BDBB3, HJKAX1S01BDXF0, 

HJKAX1S01BGRQQ, HJKAX1S01BZMZ3_1, HJKAX1S01C0EH6_2, HJKAX1S01C94G9_3, HJKAX1S01CWJ6K_1, HJKAX1S01D02T9, HJKAX1S01DFYJO, HJKAX1S01DXC8A, HJKAX1S01EALL9, 

HJKAX1S01EIMS3 
[CTG159 

0-0.63 

 

BE490408, HJKAX1S01A7OJD, HJKAX1S01AXE2D, HJKAX1S01BEME5, HJKAX1S01BHONX, HJKAX1S01BHTUD, HJKAX1S01BYJSE, HJKAX1S01BZR5I_1, HJKAX1S01C3QQB, 

HJKAX1S01C665H, HJKAX1S01CCDHQ, HJKAX1S01CP8L8, HJKAX1S01CRWKS, HJKAX1S01CVI8T, HJKAX1S01D3WSX, HJKAX1S01DKA6E, HJKAX1S01E18B6, HJKAX1S01E4H0T, 

HJKAX1S01ECB9T 
CTG150] 

0-0.63 

 

BE498768, BF473658, C0VNS, HJKAX1S01A1RCC, HJKAX1S01A40SK_1, HJKAX1S01A6QJ9_1, HJKAX1S01A9H5F_1, HJKAX1S01A9N2X, HJKAX1S01AEHM7, HJKAX1S01AJAQV, 

HJKAX1S01ALH1O, HJKAX1S01ALWPD, HJKAX1S01ASL57, HJKAX1S01AXO03, HJKAX1S01B0ABN, HJKAX1S01B14OH, HJKAX1S01B3H5S_3, HJKAX1S01B45BL_1, HJKAX1S01BAWMR, 

HJKAX1S01BE4KV, HJKAX1S01BEY0P, HJKAX1S01BGVUW, HJKAX1S01BHSRP, HJKAX1S01BJFL1, HJKAX1S01BLWOD, HJKAX1S01BOEIK, HJKAX1S01BTOCJ, HJKAX1S01BV9HJ_1, 

HJKAX1S01BWULC_1, HJKAX1S01C09WH_1, HJKAX1S01C0VNS_1, HJKAX1S01C1B75, HJKAX1S01C252M, HJKAX1S01C2OOT, HJKAX1S01C4R2N, HJKAX1S01C7HMY, HJKAX1S01CBBE9, 

HJKAX1S01CBUUH, HJKAX1S01CEFTK_1, HJKAX1S01CG092_1, HJKAX1S01CG5AG, HJKAX1S01CIY61, HJKAX1S01CJPN3, HJKAX1S01CKCMM, HJKAX1S01CPT8Q, HJKAX1S01CTEZK_1, 

HJKAX1S01D0CJT, HJKAX1S01D2ZTU, HJKAX1S01D3APN, HJKAX1S01D3KTC, HJKAX1S01D6CRO_1, HJKAX1S01D6MZB, HJKAX1S01D9S47, HJKAX1S01DAIY6, HJKAX1S01DBFFW, 

HJKAX1S01DHE09, HJKAX1S01DNPOR, HJKAX1S01DP9VT, HJKAX1S01DQFRA, HJKAX1S01DQQ02, HJKAX1S01DQWL7, HJKAX1S01DRUIX, HJKAX1S01DUVID, HJKAX1S01E2WE1, 

HJKAX1S01EDL81, HJKAX1S01EEFIM, HJKAX1S01EKROW, HJKAX1S01EKVCT, HJKAX1S01EZRIJ 

CTG125 

0-0.63 
 

BE606945, HJKAX1S01A1ZCL_2, HJKAX1S01A4PVO, HJKAX1S01A8D02, HJKAX1S01AY7IZ_1, HJKAX1S01B2EEN, HJKAX1S01B8B7Z, HJKAX1S01BCSK4, HJKAX1S01BGM23, 

HJKAX1S01BVG5I, HJKAX1S01BVMEB, HJKAX1S01C21ZF, HJKAX1S01C3BWZ, HJKAX1S01C5NQY, HJKAX1S01CEZ4D, HJKAX1S01D0Q65, HJKAX1S01DA0E1, HJKAX1S01DS69M, 

HJKAX1S01DTMWB, HJKAX1S01EA4QY, HJKAX1S01EIP6C 
CTG142 

0-0.63 
 

BG604740, HJKAX1S01A9E0N, HJKAX1S01AGXDH_1,HJKAX1S01AJVK3, HJKAX1S01BADKM, HJKAX1S01BI1FF, HJKAX1S01BLOPY, HJKAX1S01C80NZ, HJKAX1S01CT63B, 

HJKAX1S01D0A1J, HJKAX1S01DA19P, HJKAX1S01DAKW0, HJKAX1S01DIIGQ, HJKAX1S01DQHDD, HJKAX1S01EJSMO, HJKAX1S01EJWQN, HJKAX1S01EK8AT 
CTG5 

0-0.63 
 

BYIFL, EXX6A, GPI:C:729592, BE591974, BE490781, BE591461, HJKAX1S01A0GAM, HJKAX1S01A3JCJ, HJKAX1S01A3JPQ, HJKAX1S01A4V4G, HJKAX1S01A7D6L, HJKAX1S01A7MCG, 

HJKAX1S01A7VJ0, HJKAX1S01A9IU7, HJKAX1S01A9L82_1, HJKAX1S01AD2LT, HJKAX1S01AERNY, HJKAX1S01AF62V_1, HJKAX1S01AF8Z4_1, HJKAX1S01AFLP1, HJKAX1S01AGQW8, 

HJKAX1S01AJVB0_1, HJKAX1S01ALICS_1, HJKAX1S01AOSZE_1, HJKAX1S01AQFDW, HJKAX1S01AQXAZ, HJKAX1S01ASV0A_1, HJKAX1S01ATKU3, HJKAX1S01B0L3S, HJKAX1S01B2H41, 

HJKAX1S01B2PR8, HJKAX1S01BES6E, HJKAX1S01BH05G, HJKAX1S01BJTGJ, HJKAX1S01BL5SE, HJKAX1S01BL7FA, HJKAX1S01BLL22, HJKAX1S01BMV52, HJKAX1S01BQFRY_2, 

HJKAX1S01BTY1E, HJKAX1S01BU9MJ, HJKAX1S01BW595, HJKAX1S01C1DLU, HJKAX1S01C5B1Q, HJKAX1S01C5CLD, HJKAX1S01C6F1Z_1, HJKAX1S01C77SJ, HJKAX1S01C9CYC, 

HJKAX1S01C9LL1, HJKAX1S01CA1CU, HJKAX1S01CF43N, HJKAX1S01CFZ2P, HJKAX1S01CGSHQ, HJKAX1S01CHYBI, HJKAX1S01CIEB1, HJKAX1S01CMOXI, HJKAX1S01CP1C1_1, 

HJKAX1S01CPU3S, HJKAX1S01CQSVL, HJKAX1S01CUHC7, HJKAX1S01CWVR7_1, HJKAX1S01CY5QG_1, HJKAX1S01CYR9E, HJKAX1S01CYZJP, HJKAX1S01D4AVF, HJKAX1S01DDJ4H, 

HJKAX1S01DDL6H, HJKAX1S01DEV48, HJKAX1S01DFD81, HJKAX1S01DG3DQ, HJKAX1S01DGSFU, HJKAX1S01DGUFJ, HJKAX1S01DHS1R, HJKAX1S01DJF7V, HJKAX1S01DMRCR, 

HJKAX1S01DVMQX, HJKAX1S01DWBDC, HJKAX1S01E0O6B, HJKAX1S01E1ENY, HJKAX1S01E2N80, HJKAX1S01E4L46, HJKAX1S01E4RF7, HJKAX1S01EACSM, HJKAX1S01EI1GL, 

HJKAX1S01EKHG2, HJKAX1S01ENC26, HJKAX1S01EO4N7, HJKAX1S01ERU6A, HJKAX1S01ERW22, HJKAX1S01EXDLS, HJKAX1S01EYHHB, HJKAX1S01EYPXD 

[CTG156 

0-0.63 
 

WMS358, HJKAX1S01ARCBJ, HJKAX1S01ASPAQ, HJKAX1S01ATZWT, HJKAX1S01B04RQ, HJKAX1S01B64O0_1, HJKAX1S01B8ZKY, HJKAX1S01B8ZKY_1, HJKAX1S01BKP8T, 

HJKAX1S01BKW53_1, HJKAX1S01BNSOS_1, HJKAX1S01BTIZZ, HJKAX1S01BYFXT, HJKAX1S01CJAA3, HJKAX1S01COOBU_1, HJKAX1S01CPPKC, HJKAX1S01CQR6R, HJKAX1S01CXT3Z, 

HJKAX1S01CZFHJ, HJKAX1S01D3CPD, HJKAX1S01D3M6P, HJKAX1S01D7PIM_1, HJKAX1S01D8IEF, HJKAX1S01DJAZH, HJKAX1S01DY8OA, HJKAX1S01DYD1U, HJKAX1S01DZGY4, 

HJKAX1S01EEUPZ, HJKAX1S01EHUJ2, HJKAX1S01EL9F4, HJKAX1S01EMJ57, HJKAX1S01EOI0R 

CTG157] 
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0-0.63 
 

B7QNM, HJKAX1S01B7QNM_1, HJKAX1S01B9MNZ_1, HJKAX1S01BAV97, HJKAX1S01BRWJZ, HJKAX1S01DCJ4B, HJKAX1S01E2WL4 CTG95 
0-0.63 

 
AFQ6M, BE404490, HJKAX1S01BOBJ9_1 CTG2 

0-0.63 

 

BZB42, CAGIE, BE444644, BE500291, HJKAX1S01A14N8_1, HJKAX1S01A6Y6R, HJKAX1S01A75OR, HJKAX1S01A7YQ8, HJKAX1S01A91XM, HJKAX1S01ADNOS_1, HJKAX1S01AEF3A_1, 

HJKAX1S01AFGD9, HJKAX1S01AFZAB_1, HJKAX1S01AHD5D_1, HJKAX1S01AI7CB_1, HJKAX1S01AIHGE, HJKAX1S01AOK3I_1, HJKAX1S01AQCXN, HJKAX1S01ARIOW, 

HJKAX1S01ART2Q_1, HJKAX1S01ARVXO, HJKAX1S01AT38K_1, HJKAX1S01AVXCJ_1, HJKAX1S01B1NJG_2, HJKAX1S01B2LU7_1, HJKAX1S01B3R65_1, HJKAX1S01B3S3B, 

HJKAX1S01B43O1, HJKAX1S01B8G76, HJKAX1S01BCUJ6, HJKAX1S01BDTVT_1, HJKAX1S01BIUZS, HJKAX1S01BJRZV_1, HJKAX1S01BLR42, HJKAX1S01BLY7X_1, HJKAX1S01BMDH6, 

HJKAX1S01BN2NQ, HJKAX1S01BPSGZ, HJKAX1S01BSDRV, HJKAX1S01BUKIE_1, HJKAX1S01BVL6K_2, HJKAX1S01BVVMJ_1, HJKAX1S01BYJV6_1, HJKAX1S01BZB42_1, 

HJKAX1S01C0U0X_1, HJKAX1S01C11DG, HJKAX1S01C3D3M, HJKAX1S01C3DSZ, HJKAX1S01C4PJ6_1, HJKAX1S01C5Z0L_1, HJKAX1S01C871O, HJKAX1S01C9I9E_1, HJKAX1S01C9IE1, 

HJKAX1S01CAC7F_1, HJKAX1S01CAGIE_1, HJKAX1S01CC4IW, HJKAX1S01CC657, HJKAX1S01CFZNN, HJKAX1S01COA45, HJKAX1S01CPXMH, HJKAX1S01CQA3C, HJKAX1S01CREL0, 

HJKAX1S01CTCV0, HJKAX1S01CVAAW, HJKAX1S01CXOHS, HJKAX1S01CY9YZ, HJKAX1S01D13LQ, HJKAX1S01D3TDB, HJKAX1S01D4H6V, HJKAX1S01D4MO7, HJKAX1S01DDP19, 

HJKAX1S01DEZ4S, HJKAX1S01DFEFA, HJKAX1S01DKB2P, HJKAX1S01DO8VD, HJKAX1S01DOB2V, HJKAX1S01DPX42, HJKAX1S01DRJAS, HJKAX1S01DSI8Z, HJKAX1S01DU9TI, 

HJKAX1S01DX8NU, HJKAX1S01DXVH5, HJKAX1S01DYLHS, HJKAX1S01DYSJD, HJKAX1S01DZX98, HJKAX1S01EA4PP, HJKAX1S01EC836, HJKAX1S01EFB0R, HJKAX1S01EGSL7, 

HJKAX1S01EGWOI, HJKAX1S01EH27D, HJKAX1S01EKRDC, HJKAX1S01ELHNL, HJKAX1S01ELQ2S, HJKAX1S01ETU2G, HJKAX1S01ETZEL, HJKAX1S01EVTVY, HJKAX1S01EY5TK  

CTG138 

0-0.63 

 

BE604729, HJKAX1S01A06QF, HJKAX1S01A2GYR, HJKAX1S01A3R4H_1, HJKAX1S01A4MV4, HJKAX1S01A7MQ2, HJKAX1S01ARCHY, HJKAX1S01ARDFO, HJKAX1S01AS7FU_2, 

HJKAX1S01AW9CU, HJKAX1S01AXSE2_1, HJKAX1S01AZ7G1, HJKAX1S01B07MH_2, HJKAX1S01B0UGI, HJKAX1S01B2JKX, HJKAX1S01B3X79, HJKAX1S01BB4MQ, HJKAX1S01BC2G7, 

HJKAX1S01BFA3W_1, HJKAX1S01BO3IL_1, HJKAX1S01BPTSV, HJKAX1S01BPYUO, HJKAX1S01BZMB6, HJKAX1S01C3D4K, HJKAX1S01C92SG, HJKAX1S01CA292, HJKAX1S01CCP4R, 

HJKAX1S01CDBM0_1, HJKAX1S01CFAYF, HJKAX1S01D2OLY, HJKAX1S01D53SX_1, HJKAX1S01D64T0, HJKAX1S01DDAJX, HJKAX1S01DFRTL, HJKAX1S01DGSKS, HJKAX1S01DH5EM, 

HJKAX1S01DII0K, HJKAX1S01E5953, HJKAX1S01ECHJE, HJKAX1S01EED8I, HJKAX1S01EHWNI, HJKAX1S01ETXRX 

CTG135 

0-0.63 

 

BTCOT, GH722882, HJKAX1S01A3M9G, HJKAX1S01A7SYZ, HJKAX1S01A99ZE, HJKAX1S01AZ5XR, HJKAX1S01B6W77, HJKAX1S01B8KRV, HJKAX1S01BLNL2, HJKAX1S01BUGTT, 

HJKAX1S01C0AZM, HJKAX1S01C0SVI, HJKAX1S01C2QQP_1, HJKAX1S01C8Q9W, HJKAX1S01C9SJ1, HJKAX1S01CDGMS, HJKAX1S01CIFWA, HJKAX1S01CQ0M0_1, HJKAX1S01CSNIP, 

HJKAX1S01CUEGO, HJKAX1S01DCZ9G, HJKAX1S01DER4J, HJKAX1S01DHA7J, HJKAX1S01E23NS, HJKAX1S01EDT5X, HJKAX1S01EFQDK, HJKAX1S01EVKXG, HJKAX1S01EVYMG, 

HJKAX1S01EWBBH 

CTG96 

0-0.63 

 
HJKAX1S01AKAVO, HJKAX1S01C2VXY, HJKAX1S01DA8PE, HJKAX1S01DV89Q CTG61 

0-0.63 
 

HJKAX1S01A6ED3_3, HJKAX1S01A6FRH, HJKAX1S01ANBH4, HJKAX1S01B1HV3_1, HJKAX1S01B4XDY, HJKAX1S01B5MQ7, HJKAX1S01BA33Q, HJKAX1S01BE2Z7_2, HJKAX1S01BJQG7, 

HJKAX1S01BK8WL, HJKAX1S01BNLCQ_1, HJKAX1S01BOZPD, HJKAX1S01BRF2J, HJKAX1S01BS34C_2, HJKAX1S01BWU5Y, HJKAX1S01CEU9S, HJKAX1S01CGN2C, HJKAX1S01CHGID, 

HJKAX1S01CI6CC_1, HJKAX1S01CIG0P, HJKAX1S01CRTSC, HJKAX1S01D2XQE, HJKAX1S01D3HL3, HJKAX1S01DEUDO, HJKAX1S01DFUEE, HJKAX1S01DGERT, HJKAX1S01DGO4L, 

HJKAX1S01DIV4Y, HJKAX1S01DJGXM, HJKAX1S01DLWYL, HJKAX1S01DWO9Y, HJKAX1S01EBY4L, HJKAX1S01EH1Y3, HJKAX1S01EJF10, HJKAX1S01ENNHQ, HJKAX1S01ESWWG, 

HJKAX1S01EWFTN 

CTG87 

0-0.63   HJKAX1S01BN0H2 CTG55 

0-0.63 

 
HJKAX1S01A353Y, HJKAX1S01AJLEK, HJKAX1S01AMRNL, HJKAX1S01B79U7_1, HJKAX1S01BVOG0_3, HJKAX1S01C5P90, HJKAX1S01EFC5Y [CTG74-CTG109] 

0-0.63 

 

HJKAX1S01ANPI7, HJKAX1S01ANPI7_1, HJKAX1S01AVSNZ_1, HJKAX1S01AY9ZK_1, HJKAX1S01B45J4, HJKAX1S01B7TQH_1, HJKAX1S01C4BTV, HJKAX1S01CJN0Q_2, 

HJKAX1S01CKPWS, HJKAX1S01CZTRC, HJKAX1S01E3KDN, HJKAX1S01EHR2B 
CTG21 

0-0.63 

 

BE471016, HJKAX1S01A766A, HJKAX1S01A777G, HJKAX1S01A9714, HJKAX1S01AKMFT_1, HJKAX1S01AQOX2_1, HJKAX1S01AYT8J, HJKAX1S01B1Z4F, HJKAX1S01B3QTI_1, 

HJKAX1S01B5VCT, HJKAX1S01BR7WR_1, HJKAX1S01BXPEO, HJKAX1S01CKP5W, HJKAX1S01CMJHG, HJKAX1S01CZ1ZH_1, HJKAX1S01D70US, HJKAX1S01DGY1H, HJKAX1S01DQCJ7, 

HJKAX1S01EABJD, HJKAX1S01EQEFN, HJKAX1S01EVNEI, HJKAX1S01EYWXU, HJKAX1S01EZVKE 
CTG83 

0-0.63 

 

BE403618, BE606654, BF485220, HJKAX1S01A1JA2, HJKAX1S01A5EE1_2, HJKAX1S01A5IOK_1, HJKAX1S01AQX07, HJKAX1S01BJABO_1, HJKAX1S01BXGZV_1, HJKAX1S01C01HO, 

HJKAX1S01C6XPU, HJKAX1S01CYQL1_1, HJKAX1S01DBDQI_2 
[CTG127-CTG77] 

0-0.63 

 

BE405839, HJKAX1S01A06F6_1, HJKAX1S01A51MN, HJKAX1S01AION7_1, HJKAX1S01ARMA5_1, HJKAX1S01ATWON_1, HJKAX1S01AYJWI, HJKAX1S01B47DU, HJKAX1S01B82XB_1, 

HJKAX1S01BD76B, HJKAX1S01BG6FB, HJKAX1S01BI3PM, HJKAX1S01CC7DY, HJKAX1S01DDPND, HJKAX1S01DLITF, HJKAX1S01EQNFH, HJKAX1S01ES7OU, HJKAX1S01ETB3Y 
CTG53 

0-0.63 

 

HJKAX1S01AEPAH_1, HJKAX1S01ANN34, HJKAX1S01ATX39, HJKAX1S01AW9QN, HJKAX1S01AYBTC, HJKAX1S01AZ089, HJKAX1S01B3UBU, HJKAX1S01BLOQY, HJKAX1S01C6LYA_1, 

HJKAX1S01CMQVW, HJKAX1S01DPHIW, HJKAX1S01EL74D 
[CTG136-CTG148] 

0-0.63 
mapped to 

0-0.63 but 
order is 

uncertain 

BE424775, HJKAX1S01ANFYW, HJKAX1S01AP0TA_1, HJKAX1S01AQ36F_1, HJKAX1S01ATB7G, HJKAX1S01AUTOL_1, HJKAX1S01BA23Z_1, HJKAX1S01BAS0I, HJKAX1S01BRN80, 

HJKAX1S01BRUTM, HJKAX1S01BS4DX, HJKAX1S01BYQK1, HJKAX1S01BYSP1_1, HJKAX1S01CCR76_2, HJKAX1S01CL3NH, HJKAX1S01CONOO_1, HJKAX1S01CRZ16, HJKAX1S01CZMAY, 

HJKAX1S01DHLU4, HJKAX1S01DYLBL, HJKAX1S01EXG64, HJKAX1S01EXRJV, HJKAX1S01EXTWT, synopGBS118852 
CTG137 

0-0.63 GPI:C:743567, BF291319, BF485220 [CTG88-CTG90] 

0-0.63 BT6NA [CTG58-CTG56] 

0-0.63 CFD189, HJKAX1S01BU82A_1 CTG113 
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APPENDIX J 

 

Reagents and molecular biology kits 

 

6X DNA Loading dye  Thermo Scientific  R0611 

Agarose  Sigma    A5093 

Boric acid  Sigma    B6768 

dNTP Mix  Thermo Scientific  R0193 

Ethidium bromide  Applichem   A1151 

Ethylenediaminetatraaceticacid (EDTA) Calbiochem   324503 

Ethyl Alcohol Absolut %99.8   Riedel de Haen  32221 

GeneRuler 100 bp DNA Ladder   Thermo Scientific             SM0241 

GeneRuler DNA Ladder Mix   Thermo Scientific  SM0332 

Isopropanol     Merck    1.09634 

Nuclease free water   Qiagen    129114 

Sodium dodecyl sulfate  Molekula   15171947 

Taq DNA polymerase (recombinant)  Thermo Scientific  EP0401 

i-Taq
TM

 DNA Polymerase  iNtRON   25022 

Trizma(R) base>=99.9%(titration)  Sigma    T1503 

Tween
®
 20  Sigma    P2287 

Wizard
®
 Genomic DNA Purification Kit Promega              A1120 

 

 



101 

 

APPENDIX K 

 

Equipment 

 

Autoclave  Hirayama, Hiclave HV-110, JAPAN 

   Nüve 0T 032, TURKEY 

Balance  Sartorius, BP221S, GERMANY 

   Schimadzu, Libror EB-3 200 HU, JAPAN 

Centrifuge  Microfuge 18 Centrifuge Beckman Coulter, USA 

   Eppendorf, 5415D, GERMANY 

   Eppendorf, 5415R, GERMANY 

Deepfreeze  -20
o
C Bosch, TURKEY 

   -80
o
C Thermo electron corporation, USA 

Distilled water Millipore, MilliQ Academic, FRANCE 

Electrophoresis ENDURO™ Gel XL Electrophoresis System, USA 

   Labnet, Electrophoresis-Gel System, USA 

Gel documentation Biorad, UV-Transilluminator 2000, USA 

Heating block  Thermostat Bio TDB-100, LATVIA 

Ice machine  Scotsman Inc., AF20, USA 

Incubator  Memmert, Modell 300, GERMANY 

Laminar flow  Heraeus, Modell HS 12, GERMANY 

Magnetic stirrer VELP Scientifica, ITALY 

Microarray system Microarray hybridization chamber and assemblies, G2534A, 

Agilent, USA    

NimbleGen MS 200 Microarray Scanner 

Micropipettes  Gilson, Pipetman, FRANCE 

   Eppendorf, GERMANY 

   Thermo Scientific, USA 

Microwave oven Bosh, TURKEY 

Nitrogen tanks Linde Industrial Gases, TURKEY 

pH meter   WTW, pH540, GLP MultiCal, GERMANY 

Refrigerator  +4 
o
C Bosh, TURKEY 

Sequencer  Roche 454 GS FLX Sequencer, Basel, SWITZERLAND 
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Thermal cycler Eppendorf, Mastercycler Gradient, GERMANY 

Prime Elite Thermal Cycler, Techne, UK 

PTC-100® Thermal Cycler, Biorad, USA 

Tissue lyser  Qiagen Retsch, USA 

Vacuum  Heto, MasterJet Sue 300Q, DENMARK 

Vortex mixer   Stuart, SA8, UK 

Water bath   Memmert, GERMANY 
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