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Abstract 

Dynamic and multiperiod flow problems arise frequently in management applications, 

communication systems, and process systems engineering with important applications 

in large-scale production scheduling and time-varying distribution planning. This thesis 

investigates various multiperiod distribution planning problems, where all problem 

parameters may change over time and or products. 

 

First, matrix decomposition is exploited through index sets of the models to delineate 

block structures and to develop some methods that lead to linear programming problems 

comprising a set of sparse polyhedrals. Considering the sparsity and repeating structure 

of the polyhedrals algorithmic approaches based on decomposition techniques of block 

angular and block staircase are proposed aiming to reduce the computational resources 

required and/or getting rapid near-optimal solutions. The efficiency of the proposed 

approaches is demonstrated through numerical experiments. Then, we use scaling and 

approximate optimality together with penalty function method to develop some 

network-based scaling approximation algorithms.  

 

Our algorithms exploit different ideas including matrix transformation from linear 

algebra, graph partitioning from graph theory, penalty methods from nonlinear 

optimization, and scaling and approximation algorithms from network flow theory. 

Moreover, we analyze the algorithms from both theoretical and practical perspectives. 

The practical performances corresponding to some electricity transmission distribution 

networks support the theoretical properties.  
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Anahtar Kelimeler: Doğrusal ve doğrusal olmayan programlama, blok ayrıştırma, ağ 

programlama, yaklaşık algoritmalar, ölçekleme algoritmaları 

 

 

Özet 

Dinamik ve çok zamanlı akış problemleri büyük ölçekli üretim planlaması, zamanla 

değişen dağıtım planlaması, yönetim uygulamaları, iletişim sistemleri ve süreç 

sistemleri mühendisliği alanlarında sıklıkla ortaya çıkar. Bu tez, tüm problem 

parametrelerinin zaman veya ürünler üzerinde değişebilir olduğu  çok zamanlı dağıtım 

planlaması problemlerine çözüm yöntemleri geliştirmek üzerinedir. 

 

İlk olarak, endeks setleri üzerinden matris ayrıştırması kullanılarak bloklar elde edilir. 

Bu merdiven şeklinde ve açısal bloklar kendileri tekrar ettiği için ve boyutları küçük 

olduğu için etkin bir şekilde ayrıştırma yöntemiyle en iyi veya en iyiye yakın çözümler 

bulunabilir. Yöntemin etkinliği bazı nümerik örnekler üzerinde sınanmıştır. Daha sonra 

ölçekleme ve yaklaşık en iyi olma şartları kullanılarak ağ bazlı bir ölçekleme 

algoritması geliştirilmiştir.  

 

Geliştirilen algoritmalar lineer cebirde kullanılan matris dönüşümlerinden, ağ parçalama 

algoritmalarına, doğrusal olmayan programlamada kullanılan ceza yöntemlerinden 

yaklaşık ölçekleme algoritmalarına kadar birçok kavram kullanır. Geliştirilen 

algoritmaların hem teorik hem pratik özellikleri çalışılmıştır. Nümerik sonuçlar için 

gerçek hayattan alınan elektrik dağıtım ağı topolojileri kullanılmıştır. 
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Chapter 1 

 

1 Introduction, Applications, and Problem Description 

 

1.1 Introduction and Background of the Study 

Network flow optimization problems arise in a wide variety of important fields, such as 

transportation, telecommunication, computer networking, financial planning, logistics 

and supply chain management, energy systems. Significant results have been achieved 

in both theory and applications of network flow optimization in the past few decades. 

 

Flow variation over time is a very important feature in network flow problems arising in 

various applications such as traffic control, production systems, communication 

networks, and financial flows  [6] [16] [29] [31] [32] [34] [35] [65] [80] [81]. However, most 

of studies consider static versions of network planning problems in the sense that 

parameters do not change over time. Another prominent assumption in network flows is 

the conservation of flow over the arcs. However, this assumption may also make it hard 

for many real life applications to model their characteristics. Many network planning 

problems in real world are time-varying and do not follow such structures; the network 

structure and problem parameters may be time-

dependent  [6] [16] [29] [30] [32] [34] [35] [36] [37] [38] [39] [40] [41] [80] [81]. In addition, it 

may take a certain amount of time for the flow to traverse an 

arc  [30] [31] [32] [34] [57] [65] [80] and there is no guarantee for the flow to be 

conserved  [3] [36]. Therefore, static (traditional) network flow fails to capture the time-

varying property. The need for more realistic network models led to the development of 

multiperiod and dynamic network flow. They have been applied to a wide variety of 

applications. In such applications, flow values on arcs are not constant but may change 

over time and not only the amount of flow to be transmitted but also the time needed for 

the transmission plays an essential role. 

 

Ford and Fulkerson, for the first time, dealt with the maximum flow problem in discrete 

time setting and developed a technique that is still widely used  [31] [32]. The main 

outcome of their work is the time-expanded networks. They show that a maximum flow 
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over time with a finite time horizon can be obtained by computing a maximum static 

flow in the time-expanded network (or by solving a minimum cost circulation problem 

on the original network)  [6] [34]. Since then, several further problems have been 

analyzed, such as the quickest, minimum cost or earliest arrival 

flows  [6] [30] [65] [80] [81]. Ford and Fulkerson add a time dimension to the static 

network flows to include the transition times of the flow along arcs. The network flow 

with flow transition time is called "flow over time". The term "dynamic flow" is also 

used for such kind of network flows. Subsequently several models of dynamic flow 

problems have been studied by Fleischer  [30], Hoppe  [34], Aronson  [6] and 

Lozovanu  [57]. Aronson  [6] concentrates on the maximum flow and transshipment 

problems in discrete time with an extensive coverage of applications. 

 

Since multiperiod and dynamic network flows are generalizations of static network 

flows, it should come as no surprise that multiperiod and dynamic networks also have 

many interesting practical applications. In these instances, to account properly for the 

evolution of the underlying system over time, we need to use dynamic/multiperiod 

network flow models. Multiperiod flow problems find applications in various areas, 

such as process systems engineering (with essential applications in large production 

scheduling and multiperiod production planning), information communication 

technology (ICT), network design and communication network, electricity distribution 

network, multisite production planning 

system   [5] [17] [18] [28] [32] [47] [48] [49] [52] [55] [59] [60] [61] [70] [72] [73] [79] [81] [82]. 

 

This thesis addresses non-simultaneous shipment of commodity (or commodities) from 

production sites (sources) to markets (sinks) in time-dependent (or multiperiod) 

production-distribution networks with deterministic production and demand capacities 

at the minimum cost over a finite planning horizon while all shipment cost and arc 

capacities are varying over time and/or commodities. We study, model, and investigate 

this class of problems by various network models and various solution approaches by 

including horizon capacities, time-commodity varying capacities (and/or time varying 

capacities), time-commodity varying costs, and time-commodity varying loss/gain 

factors over a finite planning horizon. The main focus is on the minimum cost dynamic 

flows (MCDF) on multiperiod networks (and multiperiod multicommodity networks) in 

which spoilage/storage in arcs/nodes is expected/allowed over time (and or commodity). 
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In such applications, flow values on arcs are not constant but may change over time 

because of the dynamic nature of the network. Moreover, flow may not travel through 

the distribution network with a conservative amount but it may be decreased or 

increased while circulating in the network on arcs. The third dimension is associated 

with the storage/waiting capability at nodes. In particular, when routing decisions are 

being made in one time window in the network, the effects can be seen in other time 

periods only after a certain time delay. The above mentioned aspects of network flows 

are not captured by the classic (static) network flow models. This is where dynamic 

multiperiod network flows come into play. They include those dimensions and therefore 

provide a more realistic modeling tool for numerous real-world applications. Theorems 

and efficient algorithms have been developed for static network flow problems as they 

have been in the focus of interest for many years. The differences from the classical 

problems make it necessary to devise new techniques, although most of the solution 

methods eventually reduce the dynamic and multiperiod problems to static ones and 

then employ existing algorithms. 

 

There are some approaches to address somewhat similar kind of problems, like State-

Task Network and Resource-Task Network  [59]  with important differences with 

respect to the assumption of continuity or discreteness of the time horizon. Terrazas et 

al.  [84] use temporal and spatial Lagrangean decompositions to solve the multi-site, 

multiperiod planning problems. In a similar problem, Chen et al.  [17] use Lagrangean-

based decomposition techniques for solving the temporal decomposition of a continuous 

flexible process network. They use subgradient methods to solve the decomposed 

problem. Neiro et al.  [66] use temporal Lagrangean decomposition to solve a 

multiperiod mixed-integer non-linear programming planning problem under uncertainty 

concerning a petroleum refinery. Mouret et al.  [63] present a unified representation and 

modeling approach for process scheduling problems and introduce four different time 

representations (by using of priority-slots and order of  executions of operations/tasks), 

and apply to single-stage and multi-stage batch scheduling problems, as well as crude-

oil operations scheduling problems. 

 

Those works mostly focus on scheduling problems (or makespan minimization 

in multipurpose batch plants) or multiproduct planning problem with sequence-

dependent changeovers-with emphasis on modelling issues-which are modeled 



4 

 

as MILP problems. The main objective of those works is generally to develop 

some modelling approaches for scheduling problems in order to facilitate the 

evaluation of several time representations, or minimize the makespan of 

multipurpose batch plants, or present temporal and spatial Lagrangean 

decompositions that allow the independent solution of time periods, production 

sites, and markets  [17] [18] [28] [47] [48] [52] [59] [63] [64] [66] [72] [82]. 

 

This section of the thesis gives a very brief description of dynamic and multiperiod (and 

multiproduct multiperiod) distribution network flows along with some applications. To 

this aim, we briefly review all chapters of the thesis, and then point out the main 

problems of interest and solution approaches. We do not describe the solution methods 

in detail here and do not give precise mathematical models, but we always give 

references to the relevant chapters where the interested reader can find the details. All 

chapters are self-contained. 

 

A very general setting of the problem of interest is presented as 
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In this setting,  IRTcijq ],0[:  and  IRTciq ],0[:  represent the non-negative 

distribution cost function with respect to product q , and storage/waiting cost function, 

respectively. Constraints (1.2) involve the flow conservation constraints for each 

commodity in which iqv  denotes the pre-defined deterministic supply/demand capacities 

at node i over the entire time horizon. The flow storage is presented in constraints (1.3). 

We refer to (1.4) as horizon capacity constraints. Horizon capacity of an arc limits the 

amount of total flow (of all commodities) on that arc throughout the entire horizon 

planning. Constraints (1.5) represent the maximum possible amount of total flow that 

can enter ),( ji at time t : it is referred to as the moment capacity constraint. Constraints 

(1.6) are the time-commodity varying capacity constraint for each commodity at each 

time moment. Finally, constraints (1.7) ensure that there should be no follow circulating 

in the network after the horizon planning. Furthermore, each arc ),( ji is assigned a time-

commodity varying non-negative gain/loss factor )(tijq  with respect to each time period 

time t and commodity q . When )(txijq units of flow of commodity q  is sent from node i 

via arc ),( ji at time t , )()( txt ijqijq  units of flow arrive at node j at the same time. If

1)( tijq , the arc is lossy; if 1)( tijq  the arc is gainy on that time with respect to that 

commodity. 

 

First of all, the methods used in discrete and continuous time are quite different in the 

context of multiperiod and dynamic flow problems. In general, there could be more 

practical solutions for discrete-time multiperiod/dynamic problems, whereas for 

continuous-time problems one may often find only theoretical results. The usual 

approach to give practical algorithms for continuous-time network problems is to 

convert it to discrete time. Chapters 2 and 3 describe a natural transformation with time 

discretization for both multiperiod and multiproduct multiperiod problems. In these 

transformations, we solve the discrete versions of the problems and then prove that the 

optimal continuous solution can be achieved from the discrete solution by extending the 

flow values to the unit intervals separating the discrete time instances. Discretization 

works by choosing a suitable time unit and considering the continuous time as split into 

discrete time periods. 
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Chapter  2 analyzes the optimal dynamic shipping problem with time-varying network 

parameters in multiperiod distribution networks when the network contains only one 

commodity to ship. It also discusses the generalized multiperiod dynamic network flows 

where time-varying spoilage on arcs (and/or time-varying storage at nodes) is a key 

factor for the problem. Furthermore, it introduces a set of capacities, so-called horizon 

capacity, which limits the total flow passing arcs over all periods, and proposes some 

approaches employing polyhedrals/blocks to obtain optimal/suboptimal solutions for a 

pre-specified finite planning horizon and to reduce the computational resources 

required. 

 

Solving large multiperiod problems is usually very memory intensive. Decomposition 

techniques have some niche areas in large scale primal block angular structured 

problems. We describe heuristics for partitioning practical large-scale multiperiod 

planning problems into suitable block structures. Such heuristics are of great importance 

for decomposing large multiperiod problems into forms that are amenable to 

decomposition techniques and/or parallel processing to reduce the computational 

expenses and/or getting a rapid near-optimal solution. 

 

Chapter  3 addresses the most general case of discrete-time minimum cost flow problem 

on multiperiod multiproduct distribution systems by allowing spoilage and or storage. 

All network parameters change over time and products. We investigate how suitable 

block structures can be inferred from the mathematical model of the practical 

multiperiod multiproduct network planning problems. This chapter describes some 

reformulation techniques to obtain sparse polyhedrals for problem to be amenable to 

decomposition approaches and/or parallel processing. We also discuss some special 

cases of such systems and propose some alternative approaches. The main step of 

reformulation techniques is based on matrix/graph partitioning by using the index sets. 

 

Even though GAMS/Cplex manages memory very efficiently, the most common 

difficulty when solving large scale multiperiod planning problems is running out of 

memory. We show that a set of properly decomposed constraints into the blocks can 

decrease the computational effort in of solving such large scale planning problems by 

using decomposition techniques. We show how to reorder the variables and constraints 

of multiperiod multiproduct systems in order to detect underlying blocks. This is done 
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by adding dummy variables and nodes to the associated matrix of the multiperiod 

problem. These dummy elements enable the resulting blocks to have sparse matrices. 

Therefore, the large sets of constraints will be partitioned into a manageable number of 

independent blocks of constraints, linked together by relatively few linking variables 

and coupling constraints (e.g., see Figure  1.1). At the end, we discuss how modern 

computers can also take advantage of the algorithm’s inherent parallelism to efficiently 

improve the elapsed time to motivate use of such parallel processing and block 

decomposing. 

 

 

Figure  1.1   A typical problem with its original structure and decomposed structure 

 

Chapter  4 develops a cost-scaling-based approximation algorithm to solve the minimum 

cost flow problem on multiperiod multiproduct distribution network flow problems with 

time-commodity varying network parameters. To develop the algorithm, we discuss 

topics from Non-Linear Programming, Approximation Algorithms, Network Flow 

Theory, and Scaling Algorithms. Having transformed the continuous-time multiperiod 

multiproduct distribution network problem into the discrete-time version, we discuss 

how to formulate any such problem with time-commodity varying lower/upper bounds 

as a problem without lower/upper bounds, as it is necessary for our solution approach.  

 

Such problem formulations usually lead to huge LPs that cannot be handled by a direct 

application of an LP software. Hence, we associate different penalty problems to the 

original problem and try to solve the penalty problems through scaling phases aiming to 

get a good approximation solution in a reasonable amount of time and computational 

resources. The methods are based on the Transformation Approach in Non-Linear 

Programming and are designed to solve the minimum cost and feasibility multiperiod 
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multicommodity network flow problems. Our algorithm keeps iteratively detecting and 

shifting time-commodity varying flows around cycles at each scaling phase to improve 

the nonlinear objective function of the associated penalty problem; then, it jumps to the 

next scaling phase. In order to determine the cycles of interest (negative cost cycles), we 

introduce an auxiliary time-commodity varying residual network. 

 

The basis of the methods consists of solving a sequence of penalty problems with an 

increasing penalty parameter ρ to find a δ-optimal solution to the penalty problem in the 

sense that the solution is an approximation solution to the original problem. As a result, 

the influence of some constraints on the auxiliary function of the penalty problem is 

gradually relinquished and finally removed in the limit. Moreover, we introduce the 

multiperiod multiproduct feasibility distribution problem in which the objective is to 

determine whether it is possible to have a production circuit and shipping good within a 

finite time period. If there is no such dynamic feasible flow, the goal is to determine 

where and when this infeasibility occurs and the magnitude of the infeasibility. Based 

on this information, the decision maker may be able to get rid of the infeasibility by 

providing the necessary budget for creating more capacity. 

 

We analyze the algorithms from both theoretical and practical perspectives using many 

instances corresponding to some real electricity transmission-distribution networks from 

our case study and many random instances. The practical performances support the 

theoretical properties we derive. 

 

Chapter  5 closes this thesis with more promising areas for further directions of research. 

 

1.2 Multiperiod (Multiproduct) Network Flows and Some Applications 

Although network flow theory is one of the younger branches of mathematics, it is 

fundamental to a number of applied fields, including operations research, computer 

science, and social network analysis. Networks are pervasive and arise in numerous 

application settings. Physical networks, which are the most readily identifiable classes 

of networks, arise in many applications in many different types of systems: 

communications, hydraulic, ecology, electronic, and transportation  [3] [9] [11] [15]. 
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In graph theory, a network flow is a directed graph A)G(V,:G   with vertex set V , edge 

set  , where each edge has a capacity and each edge receives a flow. The amount of 

flow on an edge cannot exceed the capacity of the edge. Often in Operations Research, a 

directed graph is called a network, the vertices are called nodes and the edges are 

called arcs. A flow must satisfy the restriction that the amount of flow into a node 

equals the amount of flow out of it, except when it is a source, which has more outgoing 

flow, or sink, which has more incoming flow  [9] [11]. The capacity iju  of an edge ),( ji

can be thought of as the maximal amount of some commodity (such as water, gas, 

electrical energy, number of cars, bits of information, etc.) that can be transported from 

station i to j, along the edge ),( ji . Flows can pertain to people or material over 

transportation networks or electricity over electrical distribution systems. For any such 

physical network, the flow coming into any intermediate node needs to equal the flow 

going out of that node. This conservation constraint was formalized as Kirchhoff's 

current law. 

 

Network flows find many applications in many real life problems. Electrical and power 

networks bring lighting and entertainment into our homes Telephone networks permit 

us to communicate with each other almost effortlessly within our local communities and 

across regional and international borders  [1] [3] [4] [33] [55]. National highway systems, 

rail networks, and airline service networks provide us with the means to cross great 

geographical distances to accomplish our work, to see our loved ones, and to visit new 

places and enjoy new experiences  [2] [3] [9] [23]. Manufacturing and distribution 

networks give us access to life's essential food stock and to consumer 

products  [5] [8] [32] [35] [87]. Computer networks, such as airline reservation systems, 

have changed the way we share information and conduct our business and personal 

lives  [3] [9]. In all of these problem domains, and in many more, we wish to efficiently 

move some entity (electricity, a consumer product, a person or a vehicle, a message etc.) 

from one point to another through an underlying network both to provide good service 

to the users of the network and to use the underlying transmission facilities effectively.  

 

The applications we have considered offer only a very brief glimpse of the wide-ranging 

practical importance of network planning problems; although our discussion of 

applications in this section is limited, it provides at least one example of the network 

http://en.wikipedia.org/wiki/Graph_theory
http://en.wikipedia.org/wiki/Directed_graph
http://en.wikipedia.org/wiki/Operations_Research
http://en.wikipedia.org/wiki/Electrical_distribution
http://en.wikipedia.org/wiki/Kirchhoff%27s_current_law
http://en.wikipedia.org/wiki/Kirchhoff%27s_current_law
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models related (or similar) to multiperiod/time-varying flow problems that we have 

been dealing with. There are, of course, other applications which are not mentioned here, 

especially, for network flow problems with a dimension of time (time-varying) whose 

structure is more general. Many other applications including Ecology, Fluid Dynamics, 

Gas Pipeline Simulation, Road Networks, Survey Design, Optimal Energy Policy, 

Image Segmentation, Hydraulic Engineering Systems, Electric Distribution Systems, 

Import and Export Models, Material Requirement Planning (MRP) can be found in the 

literature  [1] [14] [19] [46] [49] [56] [60] [61] [62] [68] [69] [70] [71] [73] [79]. 

 

1.2.1 Local Low-Voltage Electricity Distribution Network 

This is actually the application that the author has been mostly dealing with. We have 

used this kind of networks and applied our solution procedures to instances of a model 

of an electricity-distribution (transportation) network. This sort of applications are 

usually a distribution network that is a local low-voltage (LV) part of the electricity 

system that connects the customers to the long-distance high-voltage transmission 

system which, in turn, connects to generating plants (see Chapter  4). The distribution 

network is viewed as connecting to the transmission system, via a substation, at a single 

point or source (it may connect to several points)  [1] [4] [35] [36]. In cities and large 

towns, standardized LV distribution cables form a network through link boxes. Some 

links are removed, so that each distributor leaving a substation forms a branched open-

ended radial system. The standard 3-phase 4-wire distribution voltage level is 

220/400V. However, LV systems are being converted to the latest IEC standard of 

220/400V nominal (IEC 60038)  [1] [4]. Low-voltage and medium-voltage distribution 

substations, mutually spaced at approximately 500-700 meters, are typically equipped 

with: 

 A 3-way or 4-way MV switchboard (often made up of incoming and outgoing load-

break switches) and two MV circuit-breakers or combined fuse/ load-break switches 

for the transformer circuits. 

 One or two 1,000k VA MV/LV transformers. 

 One or two (coupled) 6-way or 8-way LV 3-phase 4-wire distribution fuse boards, 

or circuit-breaker boards, control and protect outgoing 4-core distribution cables, 

generally referred to as “distributors”. 
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The output from a transformer is connected to the LV busbars via a load-break switch, 

or simply through isolating links. In densely-loaded areas, a distributor is laid to form a 

network, with one cable along each pavement and 4-way link boxes located in manholes 

at street corners, where two cables cross  [1] [4] [46]. 

 

 
Figure  1.2   A simple electrical distribution network 

 
 

 
 

1.2.2 Scheduling, Manufacturing and Planning 

In these applications, time comes into play and the network is often partitioned into time 

steps. Multiperiod multi-item production scheduling problems are common in practice, 

and are widely considered in management science literature. The problem is to pass the 

products through several stages of production and shipment from raw materials to end 

use. At each stage and in each period, there are interrelated decisions about lot-sizing, 

timing, and stockpiling to be made. Zahorik et al.  [87] considered a special case of this 

problem, in which each of many items went through the same set of production steps in 

the same sequence. 
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This problem fits industrial situations such as production, of different styles of chairs, 

steel pipes of different sizes, air conditioners of different sizes, etc. The nodes in this 

model represent different time periods and production stages, and arcs represent the 

possibility of a product to move directly from one node to another. Such problems can 

be viewed as networks. The constraints on the total production and inventory are the 

bundle constraints. Thus, using the method described in this study such problems may 

be solved as multiperiod multiproduct network flow problems. 

 

1.2.3 Multi-Site Sequence-Dependent Production Planning Problem 

The optimal planning of a network of manufacturing sites and markets is a complex 

problem. It involves assigning which products to manufacture in each site (at each time 

period), how much to ship to each market and how much to keep in inventory to satisfy 

future demand. Each site has different production capacities and operating costs, while 

demand for products varies significantly across markets. Production and distribution 

planning is concerned with mid to long-term decisions usually involving several 

months, adding a temporal dimension to the spatial distribution given by the multi-site 

network. The production of each product can involve a setup or cleaning time that in 

some cases is sequence dependent. This planning problem turns out to be a mixed-

integer linear programming (MILP) problem when setups and sequence-dependent 

transitions are to be included in the problem’s assumptions. The computational expense 

of solving such large-scale MILP problems will be decreased by using decomposition 

techniques  [47] [52] [66] [84]. 

 

1.2.4 Crude Oil Distribution Network Problem  

As mentioned, dynamic flow problems can be used to model a variety of real world 

problems that arise in traffic control, production systems, communication networks (e. 

g., the internet), and pipeline systems for transporting. Here, a problem of pumping 

crude oil around a crude oil distribution network is illustrated to motivate the study of 

dynamic networks. 

 

A crude oil distribution system is considered as the essential part of an oil supply chain, 

and the management of this part can critically affects the performance of the crude oil 
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supply chain. Traditionally, this system was managed without much assistance of 

scientific methods  [14] [35] [65]. A large oil company operates more than refineries, 

which process several million barrels of crude oil every day. Due to the high 

transportation costs of barrels, implementing scientific methods instead of traditional 

ones can dramatically reduce total cost and improve customer satisfaction. 

 

A crude oil network links a number of production units to consumption centers 

(refineries and export terminals) by pipelines. There also are intermediate pump stations 

and storage tanks next to them.  A decision support system was developed for a world-

wide oil supply chain by using discrete event simulation and optimal control. Although 

simulation is a powerful tool, it misses the optimization potential. However, the oil 

transportation system can be modeled as a dynamic network flow problem as time is the 

most important parameter in such transportation-distribution networks  [65]. 

 

 
Figure  1.3   An instance of the crude oil distribution network  [65] 

 

1.2.5 Network Design and Communication Network 

Multiproduct (multiperiod) network models can also be used in communication 

networks  [3] [55] [78].  In a communication network, the nodes may represent ‘origin’ 

and destination for messages and the arcs may represent ‘transmission lines’ or 

‘communication channels’. Similarly, in a computer communication network, the nodes 

may represent storage devices or computer systems. The supplies and demands 
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correspond to the transmission rates between nodes. Products may represent messages 

between pairs of nodes or messages from each origin to all of its destinations. Each 

transmission line has a fixed capacity over time periods which may be increased at a 

certain cost per unit. 

 

There could be two basic applications for a communication network design model. In 

the first one, the objective is to determine the capacity of the network that satisfies the 

demand at the minimum cost over time. In the second one, a network with fixed arc 

capacities already exists, and a minimum cost routing is desired. Multiperiod 

multiproduct solution approaches can be used to determine the routing of circuits and 

construction of additional arc capacities in a telecommunication network satisfying 

forecasted circuit requirements at minimum cost. 

 

Moreover, the reliability communication network problem can also be considered as a 

multiproduct multiperiod maximum flow problem. The motivation for this problem 

comes from the need to improve the reliability and flexibility of public communication 

networks.  At the periods of failure, the communication between a number of origins 

and destinations are blocked. The problem of how to restore the communication over 

the same/future time periods would be formulated and solved as a multiperiod 

multiproduct maximum flow problem. A fixed amount of flow requirements between 

each pair of nodes is usually assumed over the time periods. The objective is to 

maximize the total amount of assigned flows over time without exceeding the channel 

capacities  [3]. 
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Chapter 2 

 

2 A Model-Based Approach and Analysis for Multiperiod 

Networks 
 

The aim of this chapter is to address a general class of multiperiod distribution network 

problems where time-varying spoilage on arcs or and storage in nodes are inevitable. 

Having a set of capacities, so-called horizon capacity which limits the total flow passing 

arcs over all periods, the optimal dynamic shipping problem with time-varying network 

parameters is investigated. We propose some approaches employing polyhedrals/blocks 

to obtain optimal/suboptimal solutions for a pre-specified planning horizon. 

 

Our method describes some reformulations based on polyhedrals that lead to LP 

problems comprising a set of sparse subproblems. Considering the sparsity and 

repeating structure of the polyhedrals, algorithmic approaches based on decomposition 

techniques of block angular and block staircase are proposed to handle the global 

problem aiming to reduce the computational resources required. While the original 

description of the algorithm was motivated by its reduced memory usage, modern 

computers can also take advantage of the algorithm’s parallelism. This is because the 

Dantzig-Wolfe method is inherently parallel and can be implemented to take advantage 

of clusters of machines or multiple cores on a single machine. 

 

The existence and process of identifying such block structures is a prerequisite for 

decomposition methods to be considered as practical optimization techniques. It will 

always be the step which requires the most involvement from the practitioner, as 

success at identifying block structures is essentially a mixture of practical experience 

and trial and error (if not a systematic approach is applied). In this chapter, we describe 

a number of block structures, show how they are defined by a partition of the entities, 

and shortly discuss a various ways to identify them in multiperiod planning problems to 

be exploited by decomposition techniques. 

 

The results of this chapter and a specific version of the problem are published in 

Hosseini et al.  [36] [41]. 
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2.1 Minimum Cost Dynamic Flow Problem in a Multiperiod Network 

As discussed in previous chapter, there are plenty of relevant decision making problems 

in practice that can be formulated as optimization models on dynamic or multiperiod 

networks. Furthermore, important characteristics of real-world networks, such as arc 

costs and capacities, demands and supplies etc., may be subject to fluctuations over 

time. Consequently, also flow values on arcs can change over time. On the other hand, 

many applications do not obey flow conservation assumption. 

 

In our setting in this chapter, each arc has a positive time-varying factor associated with 

it representing the fraction of flow that remains when it is sent at a specific time period. 

We study a certain type of dynamic networks, multiperiod dynamic network flows, 

containing horizon capacities and loss/gain factors over a pre-specified time horizon T. 

This study deals with minimum cost dynamic flow (MCDF) on generalized multiperiod 

dynamic network flow (GMPDNF), in which spoilage/storage in arc/nodes is 

expected/allowed. Each arc will be assigned a non-negative time-varying gain/loss 

factor, a non-negative time-varying capacity function, a non-negative horizon capacity, 

and a non-negative time-varying cost function. 

 

Our problem is dealing with non-simultaneously time-discrete shipping 

commodity/energy from sources to sinks in a transportation network, such that no 

capacity conditions are violated, and this time-dependent shipping should optimally 

happen in a pre-defined planning horizon, and to this aim we propose some simple, 

efficient LP models aiming to develop polyhedral-based approaches. We present some 

model-based approaches for GMPDNF problems, which propose some reformulations 

based on polyhedrals that lead to LP problems comprising a set of subproblems with 

exceptional structure. Considering the repeating structure of the subproblems, 

algorithmic approaches based on decomposition techniques of block-angular and block-

staircase are proposed to handle the global problem aiming to reduce the computational 

resources required. The structural similarity of the subproblems helps us use 

decomposition techniques to improve the computational efficiency. Our approaches rely 

on an appropriate defining of polyhedral sets. They show that the MCDF problem on a 

multiperiod network can be reduced to some linear programs, whose special structures 

permit efficient computation of its solution. 
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As mentioned in the previous chapters, in contrast to static flows, a dynamic flow 

specifies the flow rate entering an arc for each time period/moment. Let be a 

directed graph with node set , arc set , and integral time horizon . Each arc

has an associated non-negative time varying capacity with it, which limits the rate 

of flow entering at any moment, a horizon capacity  which represents the 

maximum amount of flow which can be carried on arc within the entire time horizon , 

and a non-negative transit time . Transit time measures the time a unit flow takes to 

get from the tail the head of an arc. A dynamic flow satisfies the supplies and 

demands if by time  the net flow into each sink equals the demand at the sink and the 

net flow out of each source equals the supply at the source: 

 

 , (2.1) 

 

where  is the pre-defined supply/demand of source/sink/intermediate node i over the 

entire time horizon. Given ,  is called a dynamic feasible flow if it satisfies 

(2.1) - (2.4): 

 

 ,  (2.2) 

 , ,  (2.3) 

 , ,  (2.4) 

 

where is the amount of flow passing arc ),( ji  at time moment t . Constraint (2.1) 

denotes the flow conservation constraint. Condition (2.2) specifies the upper limit on the 

total flow that can be sent from node i  along arc  over , and condition (2.3) 

represents the maximum possible amount of flow that can enter at time . The last 

condition emphasizes that flow can be traveling in the network until the end of pre-

specified time horizon. 

 

In the traditional min-cost flow problems, there is a capacitated network, and the aim is 

to send a commodity from some sources to some sinks without exceeding the arc 
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capacity limits at the minimal cost disregarding the time dimension. The minimum cost 

dynamic flow (MCDF) problem involves non-simultaneously shipping 

commodity/commodities from sources through intermediate nodes to sinks in a (single) 

network, such that the total amount of flow going through each arc (path) does not 

exceed its capacities (time-varying and horizon capacities), and this shipping should 

optimally take place in a pre-defined planning horizon . 

 

Hence, having a continuous cost function , MCDF problem is a decision 

problem where we are trying to find a feasible dynamic flow satisfying (2.7)-(2.10) 

minimizing the following objective function: 

 

 .  (2.5) 

 

Therefore, we may formulate the MCDF problem, in continuous-time model as follows: 

 

 , (2.6) 

 , (2.7) 

 , (2.8) 

 , , (2.9) 

 , . (2.10) 

 

The model presented in (2.6)-(2.10) lets no storage at nodes. It may be necessary that 

the flow waits at some intermediate nodes until it can continue on an arc, as it appears in 

many applications such as batch process scheduling, traffic routing, evacuation 

planning, energy transmission, inventory, and telecommunications 

 [3] [30] [31] [32] [34] [35]. This leads to a slightly different notion of flow conservation. 

Storage means that the flow conservation is not satisfied at each time instance because 

the amount of flow arriving at a (intermediate) node at a given time can be different 
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from the amount of flow that leaves the node at that time. If we let the set of vertices 

be divided into three subsets , , comprising source, intermediate, and sink 

nodes, respectively, we can state the flow conservation constraints as following. In this 

case,  is a dynamic feasible flow if it satisfies constraints (2.7)-(2.10) and 

(2.11) as well 

 

 , .  (2.11) 

 

As flow travels through the network, we may allow limited (or unlimited) flow storage 

at nodes, but prohibit any deficit by constraint (2.11). As before, all demands must be 

met, flow must not remain in the network after time T and each source/sink must not 

exceed its supply/demand. 

 

2.2 Continuous-Time Model versus Discrete-Time Model 

Time may pass in discrete increments or continuously. In discrete-time models we look 

at the network at times by choosing a suitable unit. In practical models 

time can be discretized, thus converting continuous flow models to discrete ones. The 

Continuous-time version looks for flow distributed continuously over time within period 

 while the discrete one is looking for the flow rates over discrete periods. On the 

other hand, the choice of the time unit has a considerable impact on the complexity of 

the problem. To be able to use general notations that are valid for both discrete and 

continuous models, we denote the time domain by T, thus in a discrete-

time model and  in a continuous-time model. It might be of use to have a short 

discussion on the relationship between continuous-time and discrete-time dynamic 

flows in multiperiod networks. There is a natural transformation of continuous dynamic 

flow x  with integral time horizon T  to a discrete flow x of the same horizon, and vice 

versa. To this end, let  be the total amount of flow sent into arc  during time 

interval , i.e.,  
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We define capacity  and cost  by 

 

,   and  , 

 

where , , and . 

 

The last equality holds true because c and  are non-negative continuous functions 

(see, for example,  [10] [74]). The flow x is feasible. For any integral time step  and 

time horizon T we can bound  as follows: 
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where the above inequalities hold because  is feasible. It is easy to verify that flow 

conservation constraints hold and x satisfies all such constraints 
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In this transformation, the flow cost is preserved. 

 

 dxc

ji

T

ijij 
),( 0

)()(  

. 

 

2.3 Angular and Staircase Structures in Multiperiod Networks 

Certain structural forms of large-scale problems reappear frequently in applications, and 

large-scale systems theory concentrates on the analysis of these problems. In this 

context, structure means the pattern of zero and nonzero coefficients in the constraints; 
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the most important such patterns are depicted in the following figure. Several large-

scale problems including any with block angular or near-network structure become 

much easier to solve when some of their constraints are removed. The decomposition 

method is one way to attack these problems. It essentially considers the problem in two 

parts, one with the ‘easy’ constraints and one with the ‘complicating’ 

constraints  [21] [22] [25] [26] [76] [83] [86]. It uses the shadow prices of the second 

problem to specify resource prices to be used in the first problem. This leads to 

interesting economic interpretations, and the method has had an important influence 

upon mathematical economics. It also has provided a theoretical basis for discussing the 

coordination of decentralized organization units, and for addressing the issue of transfer 

prices among such units  [83] [85]. 

 

 
Figure  2.1   Most common structural forms of large-scale problems 

 

DW decomposition is a solution method for the class of LP problems in which the 

constraint matrix, A, exhibits the primal block angular structure. DW relies on delayed 

column generation for improving the tractability of large-scale linear programs. For 

http://en.wikipedia.org/wiki/Delayed_column_generation
http://en.wikipedia.org/wiki/Delayed_column_generation
http://en.wikipedia.org/wiki/Tractable_problem
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most linear programs solved via the revised simplex algorithm, at each step, most 

columns (variables) are not in the basis. In such a scheme, a master problem containing 

at least the currently active columns (the basis) uses a subproblem or subproblems to 

generate columns for entry into the basis such that their inclusion improves the 

objective function. To apply it, there are two major steps. The formulation step, which is 

carried out implicitly, is to reformulate the original problem into a form amenable to 

decomposing: the reformulated problem is called the master problem. The algorithmic 

step is to solve the master problem using a specialized algorithm, which treats a much 

smaller, restricted master problem and a set of small pricing problems to obtain a 

solution to the full master problem, and thus the original problem. The pricing problems 

are based on the block structure present in the original problem. 

 

The existence and process of identifying block structures is a building block for our 

modelling approach to exploit decomposition methods as practical solution approaches. 

Here, we are going to have a short discussion on some general principles and guidelines 

for identifying block structures in LPs, and subsequently MDNF problems, by 

considering the algebraic formulation and some other insights. One method is to think 

about a plot of the non-zero elements in the constraint matrix of a problem instance. It 

might be supposed that it would be easy to identify a block structure from a constraint 

matrix of an arbitrary problem instance, but this is not the case  [83] [85] [86]. The rows 

and columns almost invariably do need permuting in order to realize a block structure. 

Natural formulations of LP problems group the entities by function rather than by index, 

i.e., all variables associated with production for all products occur together, rather than 

all variables (production, storage etc.) associated with a particular product. Even with a 

relatively small problem instance, it is hard to pick out a block structure visually from a 

plot of the non-zero elements, when the rows and columns are not arranged to expose it. 

A second approach could be to pose the problem of identifying block structure as an 

optimization problem in itself, and use optimization software to identify a structure. 

 

Various studies have been conducted into this area, but with limited success. One 

argument against such an approach is that any potential benefit obtained by using a 

decomposition method to solve the original problem is more than outweighed by the 

extra effort required to identify the block structure in the first place. This argument loses 

some of its weight if the same problem is to be solved many times with different data 

http://en.wikipedia.org/wiki/Simplex_algorithm
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sets, as the structure obtained can be used for different data sets (provided they are of 

the same size), but the longer it takes to solve the block structure problem, the greater 

the gain needed to compensate in using decomposition methods to solve the original 

problem  [76] [83] [86]. 

 

A further difficulty is that if the structure obtained does not correspond to an underlying 

structure in the algebraic model, then it will not scale and will be inapplicable to the 

same model with different sized data sets. It is our opinion and that of 

others  [53] [83] [85] [86] that the criteria for a good block structure are too ill-defined for 

the result of a block structure optimization problem to be useful. Criteria such as 

minimizing the size of the global blocks or maximizing the number of subsystem blocks 

are used, but these are poor proxies for the ultimate objective of a block structure that 

results in a good performance of a decomposition method. 

 

Maybe, one of the other efficient ways to obtain a block structure for an LP model for 

use with a decomposition method is to study the algebraic formulation and generate 

block structures from the index sets of the model. With a little practice it is not difficult, 

and with good modelling support tools one can try a number of alternatives to find one 

that works well. One may consult Borndorfer and Ferreira  [13], Ferris et al.  [25] [26], 

Kernighan and Lin  [53], and Weil and Kettler ‎[86] to get more information on this 

matter. Structures that rely on the algebraic formulation, rather than a specific data 

instance, have the key advantage of being scalable, that is, applicable to any data 

instance of the problem. The key point is to consider how production/usage/storage at 

one period is affected by production/storage of the previous time step. 

 

Given an arbitrary matrix A, think of a pair of partitions of the rows and columns: 

suppose the rows are divided into sets and the columns into  sets

. The rows (respectively columns) in each set  (resp. ) need not be 

adjacent in the matrix. The partitions of the rows and columns clearly impose a partition 

on the matrix elements. We say that the elements are partitioned into blocks

, and we refer to the partition of the matrix elements as a 

block structure. A block structure is thus defined by a pair of partitions on the rows 

 and columns . Given the constraint matrix A from a large sparse 

1T },...,,{ 10 TIII 1T

},...,,{ 10 TJJJ  tI tJ 

}|{ ,, tttttt JtandItaA  

},...,,{ 10 TIII },...,,{ 10 TJJJ 
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LP problem (like MCDF), it is often possible to choose a pair of partitions so that the 

non-zero elements of A are connected to relatively few of the blocks in the block 

structure (and normally these blocks will themselves be sparse). The two block 

structures that are amenable to decomposition methods and we discussed in previous 

chapters are of the block angular and staircase forms. 

 

2.3.1 Block-Angular Structured Systems 

The matrix has a set of rows 0I  that connect with all sets of columns, and sets of rows 

tI  that each connect with a single set of columns . We had such a constraint in 

previous sections and we called it master constraint. In some practical applications, 

there is usually an additional set of columns 0J  that interacts solely with the row set 0I

.The block angular structure is one of the most widely known and recognized structures 

in decomposition, as it is the basis for the original decomposition method developed by 

Dantzig and Wolfe. The structure may typically arise where the system being modeled 

splits naturally into a set of subsystems, e.g., a set of facilities/time periods, independent 

apart from a number of global constraints. The variables and constraints referring to a 

single subsystem t correspond to the rows and columns in sets tI  and tJ . The constraints 

that link the subsystems, corresponding to rows 0I , may express limits of system-wide 

scarce resources or ensure that materials balance correctly between the subsystems (e.g., 

facilities or time periods), and are referred to as global, common or linking constraints. 

 

2.3.2 Staircase-Structured Systems 

The block staircase structure is best explained as a dynamic (time stage) structure. Let 

column set comprise the columns of variables related directly to time period t. Row 

set  comprises the rows for constraints linking the decisions made in period t with 

those made in the previous period . It’s usually said that staircase structure has a 

time lag of one, as activities in period are related directly to those in period , but 

not to those from earlier periods. However, we mentioned that the production/storage 

policy of the current period may only be affected by the previous step, and so this 

attribute (time lag of one) well describe the storage policy needed for MPDNFs. We will 

use it later when we have to include storage into the problem’s parameters. In general, 

tJ

tJ

tI

1t

t 1t
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the staircase structure may have longer time lags. These types of structure can be 

exploited by nested DW decomposition. 

 

It should be noted that, although DW algorithm works in a different feasible region 

from that of the original problem there is a correspondence between the master problem 

with feasible region PDW, and the original problem with feasible region P. Thus, under 

the Minkowski Mapping (Caratheodory Theorem), the master problem and original 

problem are equivalent, in the sense that a solution to one implies an equivalent solution 

to the other, where solution is taken in its broadest sense to encompass a primal or dual 

point or ray  [9] [22]. A basic DW algorithm  [21] [22] [44] [45] [83] can be formulated as 

following and we show how to implement it by GAMS through a multiperiod problem. 

 

 

 

2.4 A Model-Based Approach for Multiperiod Networks with Storage 

An MPDNF is determined by a directed graph , where V is a set of vertices 

and A is a set of arcs. It consists of two non-negative capacity functions 

 and , and a pre-defined non-negative time-varying cost 

function , where  is the set of discrete periods. In the 

meanwhile, flow is allowed to be stored in nodes at any period, and we can use the 

),(V, TG 

 IRu }V{:  IRuT :

 IRc }V{:  1,...,1,0  T

{Initialization} 
Choose initial subsets of variables 
While true do 
{Master problem} 
      Solve the restricted master problem 
       µ1     :=  duals of master constraints 
       µ2

(t) :=  duals of the  tth convexity constraints 
{Subproblems}                                             
       for t = 0, . . . ,T do 
              Plug µ1 and µ2

(t )into subproblem t 
              Solve subproblem t 
               if (reduced cost)t = min (ct - µ1M)Yt  - µ2

(t)<0 then 

               Add proposal Yt to the restricted master problem 
               end if 
end for 
               if no proposals generated then 
               Stop: optimality 
               End if 
end while 
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stored flow for the next time. The discrete-time model is considered, in which all times 

are integral and bounded by an integer horizon. A discrete dynamic flow in , which 

satisfies the following constraints, is said to be feasible. Such a flow is a non-negative 

function satisfying (2.12)-(2.16). 

 

 , (2.12) 

 , , (2.13) 

 , (2.14) 

 , , (2.15) 

 , . (2.16) 

 

In this formulation,  is the amount of flow passing through arc  at time period t. 

We refer to constraints (3.14) as horizon capacity constraints. Flow must not remain in 

the network after time T, and this is ensured by conditions (2.12) and (2.16). 

 

Let  be the storage cost in node i at period t. Thus, the total cost of a discrete 

dynamic flow x is defined by 

 

 . (2.17) 

 

Having introduced the unrestricted variables )(tvi , we may reformulate the problem as 
 

 

 , (2.18) 

 , , (2.19) 

 , (2.20) 

 , , (2.21) 
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 , (2.22) 

 , , (2.23) 

 , , (2.24) 

 , , (2.25) 

 

where )(tvi is an unrestricted variable which defines the difference between outflow and 

inflow at node i at time step t. Needless to say, )(tvi  differs from storage decision 

variables, and we leave them to the algorithm to optimally determine.  and  are 

the amount and cost of stored flow at node in period . We set  for each i and t. 

Clearly, there is no need to have flow storage in period , and this is ensured by 

(2.25).One can easily check that conditions (2.19)-(2.21) are equivalent to condition 

(2.12) and (2.13) subject to considering (2.25). We prove that this model possesses a 

nice property which enables us to reduce the MCDF problem to a problem with special 

structure. By substituting  for )(tvi , our problem is reduced to the following 

matrix form as an LP, whose special structure helps us exploit very efficient 

computation algorithm of its solution. 
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where and  are the vectors of flow and storage 

at time period t , and  are the vectors of flow 

capacities and storage at , respectively, the vector of pre-defined 

horizon capacities.  and  are the vectors of pre-

defined flow costs on arcs and storage costs in nodes, respectively. Let 

represent the vector of decision variables showing the differences 

between outflow and inflow of nodes at time .  is the node-arc incidence matrix 

of the network.  is decomposed to  and .  is the vector of pre-

defined supply/demand numbers. Let   be the vector of initial storage which is 

zero, and  be the vector of slack variables. Without any loss of generality, let 

and . Matrix properties help us manipulate the problem to extract the 

following efficient matrix form. 
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The system arisen above emphasizes that the production/usage/storage at one period 

might be affected by production/storage of the previous time step, and affects the 

amount of usage/storage of the following period. The matrix form of the problem shows 

that we can formulate any MCDF problem on a multiperiod dynamic network (with 

storage) as a problem which possesses the staircase structured system. This structure 

permits efficient handling. One general approach might be the technique of 

decomposition. Here, we may refer to those constraints with general structure as master 

constraint and ones with special structures as subproblems while applying 

decomposition methods, DW decomposition or Benders decomposition. In other words, 

the original problem is reformulated into a series of structurally similar LP 

subproblems. 

 

The structural similarity of the subproblems and the sparsity of constraints matrices 

allow us to use decomposition techniques to improve the computational efficiency. In 

addition to structural similarity, this modelling technique has converted MCDF problem 

to one with many sparse matrices. Generally, decomposition algorithms have inherent 

efficiency for large-scale problems. On the other hand, while the original description of 
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the algorithm is motivated by its reduced memory usage, modern computers can also 

take advantage of the algorithm’s inherent parallelism. In Chapter 3, we will discuss the 

parallelism of Dantzig-Wolfe algorithm and we will report very promising results from 

Rios  [76] for such parallel processing. However, prior to taking advantage of 

algorithm’s parallelism we should be able to decompose the problem into suitable 

blocks to be attacked by DW. We also might note that the foregoing formulation of the 

MCDF problem has a simple constraint structure. It has got  constraints and 

variables (including the slacks), where m is the cardinality of arc 

set, and n the network size. 

 

2.5 Slice Modelling 

One of the strategies to handle optimization problems formed by subproblems with 

similar structures is slice modelling. The modelling language used in this study may 

resemble slice modelling system. Although they may seem similar, there are some 

important differences between slice modelling system and polyhedral-based approach of 

this thesis. The resemblance and differences of the problems can directly arise from the 

definition/assumptions of slice modelling. In a broad sense, a slice model consists of a 

series of mathematical programs with the same structure but different data. Further, in 

slice models, often the data elements are related: some or most of the data may stay the 

same between programs, and so the programs differ only in a few rows or columns. 

Because of this, the basic structure in a slice model remains the same from program to 

program. To get a better understanding, one may consult with Ferris et al.  [25] [26]. For 

the k-th slice program, this idea can be expressed as follows: 

 

(Objective slice) 

(Slice constraint) 

x (Core constraint) 

 

Where  represents the matrix of constraint coefficients which (along with right-hand-

side ) are unique to the k-th program. The set X represents the (core) constraints and 

program structure that remain constant between programs  [85]. One of the fundamental 

differences between the subproblems generated in the paper and slice problems is that in 
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slice problems none of the variables of one subproblem is involved on another 

(independency). But in our case, as discussed, the arisen system shows that the 

production/storage at any period will affect the production/storage of the next period, 

which means some of the decision variables of the current period will appear in the next 

period’s decision variables set, and our decision at each step cannot be independent of 

that from the previous period. On the other hand, in contrast to slice modelling, our 

model considers a non-separable common objective function-for all subproblems-where 

all variables included in all subproblems are appeared. Furthermore, slice modelling 

system can be interpreted as a series of mathematical programs which must be solved in 

order to obtain the complete solution of the optimization problem, but this is not the 

case in our model which thinks of the MCDF problem as a whole comprising some 

polyhedrals. 

 

2.6 Generalized Multiperiod Network Flows (MPDNF with Spoilage) 

In each of the models we have considered up to now, we have made a fundamental 

assumption, namely, flow has to be conserved on every arc. This assumption seems 

reasonable in many applications, including those we expressed in the previous sections. 

However, many other practical applications may violate this conservation assumption. 

For example, in the transmission of a volatile gas, we may lose flow because of 

evaporation; or, in the transmission of liquids such as raw petroleum crude, we might 

lose flow due to leakage  [3]. 

 

The generalized multiperiod dynamic network flow problem (GMPDNF) is a natural 

generalization of the problem stated in the foregoing chapter. GMPDNF problem is 

going to develop multiperiod network problem by allowing flow to leak as it is sent 

through the network. In this setting, each arc has a time varying non-negative 

capacity and horizon capacity . Additionally, each arc will be assigned a time-

varying non-negative gain/loss multiplier  associated with it. We will refer to  

as the factor of arc at time . When we send  units of flow from node  via arc 

 at time ,  units of flow arrive at node at the same time. If , the 

arc is lossy; if  the arc is gainy (on that time). Therefore, for example, if there is 
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flow spoilage (loss) on an arc during the all periods, then model may be represented as 

the initial one by assigning a loss factor to the related arc. 

 

 .   (2.26) 

 

Generalized multiperiod networks can successfully model many application settings that 

cannot appropriately be represented as ordinary min-cost flow problems. The factors 

can represent physical transformations of one commodity into a less or greater amount  

of the same commodity. Some examples may include: spoilage, theft, evaporation, 

taxes, seepage, deterioration, interest, or breeding. The gain/loss factors may also model 

the transformation of one commodity into a different commodity. Some examples for 

this case could include: converting raw materials into finished goods, currency 

conversion, and machine scheduling  [3][ [62] [70].  

 

A generalized multiperiod network  consists of node set , arc set , two 

non-negative capacity functions and , pre-defined non-

negative cost function , and pre-defined non-negative time-varying 

gain/loss function , where  is the set of discrete periods. A 

discrete feasible dynamic flow in will be a non-negative function 

satisfying (2.27)-(2.30). 

 

   , (2.27) 

   , (2.28) 

   , , (2.29) 

   , . (2.30) 

 

The equations stated above are the conditions for flow feasibility in a generalized 

MPDNF. Note that we are assuming that the arc capacity  is an upper bound on the 

flow sent from node at time step t , not on the flow that becomes available at node j . 

Similarly,  should be interpreted as the cost for each unit of flow that we send from 
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node , not the per unit cost of the flow that reaches node j. Now, we can formulate the 

minimum cost dynamic flow problem on GMPDNF 

 

               , 

                                                      Subject to (2.27)-(2.39). 

 

For this case, we will also show that the problem possesses the property which enables 

us to reduce the MCDF problem to a problem with special structure without being have 

to use time-expanded network. By introducing the unrestricted variable , we 

reformulate the problem as: 

 

 , (2.31) 

 , , (2.32) 

                                                         
i

t

t
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,                                     (2.33) 

 , (2.34) 

 , . (2.35) 

 

where is a free decision variable which defines the difference between outflow and 

inflow at node i at time step t, and  for each i and t. It is easy to check that 

conditions (2.32) and (2.33) together are equivalent to condition (2.27). To develop our 

polyhedral-based approach we need to define a two-level matrix transformation as 

following. To this end, we introduce secondary matrix  as: 

 

 , 

 

where  is a -diagonal  matrix whose elements are the arc factors of our MP 

network in the same order that arcs appear in m-vector  (  is the number of arcs 

of the network). Now, for a fixed time period t we construct  as 

following. 
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  (2.36) 

 

where and represent the elements of the matrices and ][Φ , 

respectively. We refer to matrix  as the generalized node-arc incidence matrix of 

the multiperiod network. Hence, we call  as the generalized node-arc incidence 

matrix of GMPDNF at time step t . Note that, due to changes in arc factors over time, 

incident matrices are not necessarily the same for each time step, but since the time-

varying gain/loss functions are pre-defined, all matrices can be computed off-line when 

we have a jump in time. As an illustration of this idea, let’s consider the 3-dimensional 

incidence matrix of the network presented in Figure  2.2 for a fixed period, and see how 

this idea works. 

 

 

Figure  2.2   A typical GMPDNF at a fixed time period 

 

Suppose  is the vector of supply/demand numbers. We get the vector of 

flows , node-arc incidence matrix , and diagonal matrix as 

following. 
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Now, let’s introduce ancillary matrix ][Φ as discussed. It is 
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Having ][Φ at hand, we can construct the generalized node-arc incidence matrix . 
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. 

 

It is easy to see that  yields exactly required conditions for a flow in GMPDNF 

problem. 

 

= = = . 

 

By substituting  for  ( ) and considering the two-level matrix 

transformation, the model can be stated as: 

 

,    

 ,  

 ,  

            ,  

                       , 

                                   

                                            , 

          .   

 ,            , 

 

where and  are the vectors of flow and capacities in . 

is the vector of horizon capacities. Let represent the vector of arc 

costs at  and be the generalized node-arc incidence matrix.  and 

are defined as before. Matrix properties allow us to express the following 
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matrix form as a linear program whose special structure has a great advantage to exploit 

efficient algorithms for its solution. let and .  

 

, 

+ 

, 

 

 , 

                  

 ,  

                              

                                 

 , 

. 

 

Our modelling procedure reveals that we can formulate any MCDF problem on a 

GMPDNF as a problem which possesses the block diagonal or angular structure. It is 

approached conveniently by either the decomposition procedure or a technique referred 

to as generalized upper bounding  [25] [26] [77] which is available on many commercial 

mathematical-programming systems. Block diagonal structure is very desirable because 

it can speed up the solution process for our linear programming problem. This structure 

may be exploited by splitting the original problem into smaller subproblems (those 

which form the diagonal) while having a coupling constraint, master constraint. In this 

setting, we call the first set of constraints as master constraint. The structure of the 

block-angular system suggests that we try to break the problem down into a set of some 

independent smaller parts and then adjust the solution to take into account the 

interconnections. 
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DW decomposition is very well suited for problems with this kind of structure. 

Interestingly enough, the master constraint in the matrix form (and subsequently, in the 

master problem) has the same matrix for any set of variables . This plus 

the sparsity of the matrices are the most essential ingredients of this modelling 

approach, which facilitates to reach the optimal/suboptimal by decomposition method. 

Of course, it is not necessary for either set of constraints to have special structure, but 

when available, improves the efficiency of the procedure, which is the case in our 

problem. Thus, we may apply the block diagonal decomposition techniques to solve the 

foregoing problem to achieve the desired effect. For further discussion, one is referred 

to Chapter 3. 

 

Let’s consider an application of a decomposition algorithm to the problem. For this aim, 

define  polyhedral sets  for each as: 
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For the first case, let’s assume that each component of ][ t
U is finite so that the 

polyhedral set for each  is definitely bounded (polytop). Considering 

Caratheodory Theorem, any can be expressed as a convex combination 

of a finite number of extreme points of  . 
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where are the extreme points of polytop and denote 

Lagrange multipliers. Replacing each  by its corresponding convex 

representation yields the following equivalent formulation, master problem, of 

GMPDNF in an utterly different space of variables. 
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Due to having a huge number of extreme points for each polyhedron set, enumerating 

all the extreme points, and directly solve this problem seems impossible. Rather, we 

should find a reasonable solution approach of the problem without enumerating all the 

extreme points. This is where we suggest decomposition techniques, especially due to 

the special structure of our problem that affects the memory usage of the decomposition 

methods. Let’s go a further ahead and reduce our new problem to a condensed master 

problem.  

 

, 

 , 

, 

, . 

 

Since the vast majority of the t
i  variables are valued zero at any given iteration, most 

columns are irrelevant (that is, nonbasic) to the master. This leads to the heart of the 

decomposition algorithm. Only potentially useful columns are added to a so-called 

reduced master problem. For each (sparse) polyhedral, an independent LP is created, 

which is easy to solve. Assuming there are T subproblems in a DW implementation, at 

any iteration of the algorithm there are up to T potential columns to add to the reduced 

master formulation. 

 




















































 



V

U
x

II0

00I
...x

II0

00I
x

II0

00I Tk

i

T
i

T
i

nnm

nnm
k

i

ii
nnm

nnm
k

i

ii
nnm

nnm

T 110

11

11

0

00 ][][][ 

1

1




tk

i

t
i }{Tt 

0t
i }{Tt  tki ,...,1

]).[.(

1


 Nt

k

i

t
i

tt
i

t

t
i

x,0,0CMin 



























 
 

V

U
x

II0

00I T

Nt

k

i

t
i

t
i

nnm

nnm

t

1

].[

1

1




tk

i

t
i }{Tt 

0t
i }{Tt  tki ,...,1



39 

 

Note also that the new formulation of the MCDF problem shows a much simpler 

constraint structure than the usual matrix form. It possesses only constraints 

rather than in the ex-form, and this again adds a point to the efficiency of the 

algorithms which may be applied to solve the problem on this new form. 

 

Observation 2.1   Considering the relationship between the extreme points and inner 

points stated in Caratheodory mapping, the optimal solution (corresponding to the 

optimal basis) obtained for GMPDNF from the master problem determines one set of 

original variables of form   for each time step conveying a positive flow 

 [9] [83]. 

 

Remark 2.1   Any optimal basis will detect one arc set for every time step t that 

transports a positive amount of flow. Moreover, the values of  for each i and t will be 

determined at any basis, particularly in the optimal basis. 

 

Remark 2.2     It immediately follows that the optimal arc sets for every time step are 

not necessarily the same. 

 

Furthermore, if we eliminate the restriction over components of , we may let the 

polyhedrals have some extreme directions and hence, under the Caratheodory mapping 

the original problem can be reformulated as the following condensed master problem 

where are extreme directions (if any) of polyhedral .  
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Problems of this structure might be well amenable by many decomposition algorithms 

and so the computational advantage of the algorithm arises from the efficiency of the 

decomposition methods. We propose DW decomposition or Benders algorithm to obtain 

optimal solutions optimizing min-cost flow employing our polyhedral based 

approaches. As we proved, the original problem can be reformulated into a series of 

structurally similar LP subproblems, which may be solved employing GAMS. 

 

The structural similarity of the subproblems and the sparsity of the associated matrices 

allow us to use any decomposition technique to well improve the computational 

resources. One of the other interesting features of this approach is that our algorithms 

considers the dynamic network problem as a linear programming problem which does 

not need the underlying graph to be connected, or does not force the data to be integer. 

In contrast with many other network algorithms, this one solves the (dynamic) problem 

under any sort of conditions. Our method basically relies on the modelling aspects of 

the multiperiod network flows, and then it tries to extract the special structure hidden in 

this kind of problems. As the last point regarding the algorithm, it should be mentioned 

that the problem in the primitive form could not have been solved efficiently due to the 

high dimension of the problem caused by the horizon time and size of the network. It 

seems as if the problem has many thousands of rows and unsolvable in a reasonable 

amount of time, however, our approach suggests a method to convert the large-scale 

(high dimensional problem) into one or more appropriately coordinated smaller 

problems of manageable sizes. 

 

2.7 Multiperiod Networks with Storage and Spoilage (SS Networks) 

In this Section, we will introduce the most general case of multiperiod networks, i.e., 

MPDNF with storage at nodes and spoilage in arcs. We call these networks as SS 

network flows. The SS network flow problem is going to develop the multiperiod 

network flow problem by allowing the flow to leak and be stored, at the same time, as it 

is sent through the network. Naturally, the min-cost SS network problem in the 

continuous time setting will be of the form stated in (2.38)-(2.43) 
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  (2.38) 

 , (2.39) 

 ,  (2.40) 

  ),( ji , (2.41) 

 , (2.42) 

 . (2.43) 

 

 

If we replace (2.31) and (2.32) by (2.44) and (2.45), we get the min-cost SS network 

problem in the discrete time setting subject to introducing free variable (

). 

 

 , (2.44) 

 , .  (2.45) 

 

To develop a polyhedral-based approach, we use again the two-level matrix 

transformation introduced in (2.36). It yields the node-arc incidence matrix of SS 

network with respect to each time step. Let  be the node-arc incidence matrix at 

step t . Therefore, having done all the necessary changes, the min-cost SS network 

problem can be modeled as that in previous section. The only difference will be the 

subproblems’ matrices. It suffices to replace  

 

 

by 

                   for any t. 
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2.8 Examples, Applications, and Testing 

Multiperiod dynamic flow problems arise frequently in Process Systems Engineering 

and dynamic generative network flows with essential applications in large production 

scheduling, multiperiod production planning, data/energy transmissions, and 

information communication technology. Dynamic Flows are widely used in modeling of 

control processes from different technical, electrical, economic and informational 

systems. Electricity and data transmissions, road or air traffic control, production 

systems, evacuation planning, production and distribution, telecommunication, 

transportation, communication, and management problems can be formulated and 

solved as single-commodity or multi commodity problems on (multiperiod) dynamic 

networks  [6] [16] [17] [29] [32] [35] [57] [65] [71] [72] [80] [81]. The need for more realistic 

network models led to the development of the dynamic network flow theory and 

nowadays, they have been applied to a variety of situations including production, crude 

oil transportation, inventory, and workforce models. When the above models involve a 

parameter of time horizon, they may often be modeled as dynamic or multiperiod flows. 

 

Below, we give a potential application as a representative sampling. Consider a number 

of cities with demand for a certain good (that may vary over time or not) over a 

specified time period, e.g., demand for electricity -which we have been dealing with in 

our case study. We assume that demand is satisfied by shipping electricity in a fixed 

number of wires from a number of supply/production sites, where the cost of production 

is assumed to be time varying (or fixed for each time period). 

 

We restrict our attention to the case in which each wire/cable/line must unload all of its 

goods (electricity) at the demand site upon arriving. The objective is to determine the 

production circuit and shipping electricity over the time period, so as to minimize the 

daily cost (horizon time was considered a day for our case study). We are going to 

consider the case for which capacities and costs change over time during a day. Note 

that the transmission times for electricity over wires are negligible, and so can be 

estimated as zero, if desired. The mentioned problem may be formulated using the 

techniques discussed in this section as a MP network flow if loss is expected, or as that 

discussed earlier or storage assumption can/must be applied in sites. The problem can be 

formulated as follows: (1) Production site i has a fixed amount of supplies iv over time 



43 

 

horizon T  (Horizon time = a day); (2) Demand site has a fixed demand iv for 

electricity over a day for; (3) The number of wires can be bounded above and below; (4) 

Storage can be allowed at the production and demand sites at a cost, or not; (5) Losses 

may be expected at wires or not (it is about zero in this case study).Constraints (3) and 

(4) are related in that flow is measured in goods traveling over time; if storage is 

allowed, then storage will be interpreted as throughput as will a wire traveling. 

Simultaneously, allowing both (3) and (4) results in a problem that is NP-complete even 

for problems with exactly one wire. The NP-completeness can be proved via a 

transformation from the traveling salesman problem. 

 

The static network has node set },...,2,1{ n . For each production site i and demand site j, 

there are arcs and ),( ij with zero transit times. Thus the static network is a complete 

directed bipartite graph. For each arc ),( ji there is an additional constraint that the flow 

into arc in each time period is bounded above and below. To test the applicability of the 

proposed models, we conducted a series of experiments using a set of real data from our 

case study on grid networks and on random MP networks. Several parameters must be 

specified in order to generate the network topology, arc capacities and costs, losses and 

gains, and node storage capacities (if desired). These parameters are random seed, time 

horizon , number of supply/demand nodes, indegree and outdegree of each node, 

minimum and maximum values of arc capacities, losses, gains, and costs, which all 

must be nonnegative. The cost on each arc (for each time period) is randomly chosen 

from a uniform distribution between user defined parameter  and , and 

gain/loss factors for each period are also chosen from a ],0[ max uniform distribution 

where  is given. 

 

The user also sets the number of time periods, supply nodes, and demand nodes. Then, 

we may randomly select as many source-sink pairs as desired. The demand for each 

time step is to be randomly chosen from a uniform distribution between  and a pre-

given parameter  , and likewise for supply, storage capacity, spoilage, arc 

capacities. The experiments are conducted on random networks with 20, 26, 30, 40, 46, 

62, 74, 82, and 100 nodes and time horizon for each case is set to be 10, 13, 15, 20, 23, 

31, 37, 41, and 50. For each choice of n nodes, we create networks with different 

indegree and outdegree in a range from 2 to 8. We denote by   the density of the 

i

),( ji

T

minc maxc

max

minv

maxv
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network, that is nm / . The minimum and maximum loss/gain is set to 0 and 2, 

respectively, the minimum and maximum capacity is set to 50 and 70, respectively, the 

minimum and maximum cost is set to 1 and 10. For each specific setting of n and m, we 

test a random MP network. 

 

 

Figure  2.3   Sensitivity to the number of time increments 

(a case study problem(dotted line) vs.  a random network (solid line)) 

 

 

 

Figure  2.4   Sensitivity to density 

 
In order to better illustrate the sensitivity of the method to various data parameters 

(number of time increments and network density), Figure  2.3 and Figure  2.4 give the 

plots of execution time with respect to each of them for increasing larger problem 

instances. A plot for each different network parameter,   and T , helps us visualize the 

effects of time splitting and density on the growth of the problem or the average CPU 

time. Figure  2.4 shows that CPU time increases exponentially in denser networks. In 

addition, we have performed several computational tests and analyzed decomposition 
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approach on a variety of MPDNF problem instances. These tests have included the 

investigation of different implementation ideas and the testing of the sensitivity of the 

method to various data parameters, such as the number of arcs, number of time 

increments and the congestion in the multiperiod network. We generated many MPDNF 

of various sizes, different number of time periods, and different levels of congestion. 

Each generated network has an underlying random-complete form or a grid graph. For 

each grid network, the length L (the number of arcs in each horizontal line) and the 

height H (the number of arcs in each vertical line) are user defined. Each grid network is 

derived from an undirected network, i.e., there are two oppositely directed arcs between 

each pair of connected nodes. Our linear programming models, decomposition methods, 

were implemented in GAMS/Cplex on a personal computer with a 3GHz processor and 

4GB physical RAM. The results of a very small number of runs are summarized in 

Table  2.1. We let the storage be zero at any node in any moment of time. Computational 

experiences shown in the first four rows correspond to some grid MPDNFs from our 

case study having parameters. The remaining rows represent the results for some 

multiperiod random networks. 

  

  Table  2.1   Sizes and computational results 

  

Number of  

Polyhedrals 

 

Number 

of 

Variables 

 

Number of 

Constraints 

 

Number of 

Non-zeros 

Work 

space 

Allocated 

(Mb) 

 

Computational 

Time (s) 

Data set 1 11 2490 410 401 1.4 05.45 

Data set 2 14 5226 689 677 1.4 07.31 

Data set 3 16 7860 915 901 1.4 08.05 

Data set 4 21 17980 1620 1601 1.9 14.98 

Data set 5 24 26956 2047 2117 1.9 21.87 

Data set 6 32 64356 3875 2853 3.0 20.02 

Data set 7 38 108114 5513 5477 4.5 58.04 

Data set 8 42 146206 6765 6725 5.6 76.09 

Data set 9 51 262450 10050 10001 8.2 68.09 

 

Also observe that, in practice, this approach usually develops a very good 

approximation quickly, but then expends considerable effort to refine it (Figure  2.5). In 

a practical application, there is often the need to get solutions quickly, within a given 

time, even if it means compromising the quality of the solutions. DW method provides 

feasible solutions if halted prematurely, and the quality of the solutions improves 

monotonically as it progresses.  
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Remark 2.3 It is proved  [9] [83] that the DW algorithm provides an upper bound (dual 

bound) on the value of the objective function at each iteration, which allows the quality 

of the current solution to be assessed, so that the trade of between time and quality can 

be quantified. Tebboth  [83] proved that given a dual (optimal) solution to the original 

problem there is an obvious corresponding dual (optimal) solution to the master 

problem (by a simple projection) and vice versa. Applying his argument to our case 

yields that if (µ1, v) is dual feasible for the original problem, then (µ1, µ2) is dual feasible 

for the master problem, where µ2
(t)=vtbt (b: rhs vector). Conversely, if (µ1, µ2) is dual 

feasible for the master problem, then (µ1, v) is dual feasible for the original problem, 

where vt is a dual solution to subproblem problem t. Therefore, (µ1, v) is a dual feasible 

solution to the original problem, and the corresponding dual objective value z = µ1b0 + 

v1b1+...+ vTbT is a dual (upper) bound on the optimal value of the original problem, and 

thus also of the master problem. Hence, at each iteration of the algorithm, once the 

restricted master problem is feasible, a new dual solution of the restricted master 

problem is available and we can calculate a new dual bound. It provides a guarantee on 

the quality of the current solution to the restricted master problem  [83]. In practice, a 

near optimal solution may be acceptable and so the algorithm can be terminated early 

once the gap (The difference between the primal value of the restricted master problem 

and the least dual bound obtained during the course of the algorithm) falls to within an 

acceptable limit. 

 
Remark 2.4 One particularly attractive feature of decomposition, in contrast to the 

simplex method, is the relatively straightforward potential for a parallel computational 

version. The pricing phase of the algorithm consists of solving a set of mutually 

independent LP problems, which can also be accomplished in parallel  [76] [83]. The 

parallelism is coarse grained, uses distributed memory, and is ideally suited to networks 

of serial computers that are in common everyday use. Furthermore, provided that the 

work to solve the pricing problems is not trivial, and, in particular, it is not dominated 

by the work to solve the master problem, the parallelism is likely to be efficient. To 

know more about parallelism and different parallelism strategies of DW, please read the 

last section of Chapter 3. 
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Generally, since the convergence of this approach has turned out to be slow in the final 

stages, such a termination procedure might be of great importance to employ. 

Consequently, when decomposition is applied on a min-cost MPDNF problem, the 

objective value usually decreases rapidly and then slowly tails off by approaching the 

optimal objective value. Figure  2.5 plots the progress of a random problem for an 

application of the decomposition method showing how the objective values and upper 

bounds converge as the number of iterations (time) increases. 

 
 

 

Figure  2.5   Objective and upper bound progress of decomposition application for a 

random problem 

 
The problems are min-cost flow problems, so the objective value descends from above 

while the bound ascends from below. The plots show how much more rapid the 

convergence is with the set decomposition, and the length of the tail of the time 

decomposition. Figure  2.5 also shows the relative gap between the objective value and 

dual bound as the algorithm progresses. 

 

2.9 Summary and Concluding Remarks 

This chapter addresses discrete-time dynamic min-cost flow problem on multiperiod 

network flows under the generalization of node storage or/and arc spoilage. We have 

developed some model-based approaches to solve the dynamic min-cost flow problem 

employing polyhedral sets hidden in the underlying network structure. By generating 

block structures from the index sets of the model, the original problem(s) is 

reformulated into a series of structurally similar sparse LP subproblems (polyhedrals), 

which are solved by GAMS/CPLEX/DW. The structural similarity of the subproblems 
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allows us to use decomposition techniques to well improve the computational resources. 

We propose some algebraic approaches by plotting the non-zero and zero elements in 

the constraint matrix of a problem instance to generate the blocks of interest. 

 

What is important to note is that our approach is a two-phase method. The first phase is 

the matrix transformation/decomposition, and the second one is an application of DW 

method. Needless to say, the performance of our algorithm highly depends on the two-

level matrix transformation we already introduced. A simple analysis reveals that the 

running time needed for all transformations is . However, for more general 

cases, where the underlying MP network has no loss/gain on its arcs or has fixed 

loss/gain during the planning time, the running time can be improved to  if a 

simple data structure is used to maintain the factors for each time period. As mentioned 

before, although the nature of the MP network is time varying, all the node-arc 

incidence matrices and matrix transformations can be updated/run off-line and parallel. 

Therefore, if the solutions of the first phase are calculated in parallel, we can expect to 

obtain the optimal solution for any min-cost MPDNF problem in a reasonable time, as 

shown in Table  2.1. 
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Chapter 3 

 

3 A Decomposition-Based Approach for the Multiple-

Product Distribution Problems over Time 
 

In this chapter, we will attack the most general case of multiperiod multiproduct 

network planning problems, where we allow spoilage on arcs and/or storage at nodes. In 

our models, all network parameters change over time and products. The minimum-cost 

flow problem in the discrete-time model with varying network parameters is 

investigated when we allow storage and or spoilage, and some reformulation techniques 

employing polyhedrals are developed to obtain optimal solutions for a predefined 

horizon. Our methods rely on appropriate definitions of polyhedrals and identification 

of block structures that lead to LP problems comprising a set of sparse subproblems 

with repeated components. 

 

Little has been written on identifying block structure in practical large LP problems. We 

show how block structure can be inferred from the algebraic model description of the 

problem, by recognizing that underlying structure in the problem is identified through 

index sets in the model. Our method is to consider a plot of the non-zero and zero 

elements in the constraint matrix of a problem instance. Matrix decomposition is 

utilized to illustrate the transformation from the original problem to the Dantzig-Wolfe 

master problem and to establish how solutions are obtained from the decomposition 

algorithm correspond to solutions of the original problem. 

 

Solving LP problems is quite memory intensive. When memory is limited, 

GAMS/Cplex automatically makes adjustments which may negatively impact 

performance. Having properly decomposed constraints into the (sparse) blocks, 

computational expenses of solving such large-scale planning problems can be decreased 

by using decomposition techniques  [9] [11] [15] [83]. On the other hand, modern 

computers can also take advantage of the algorithm’s inherent parallelism to efficiently 

improve the elapsed time. 
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In a very recent inspiring work, Rios  [76] has reported computational results to motivate 

use of such parallel solvers, as this implementation outperforms state-of-the-art 

commercial solvers (like CPLEX) in terms of wall-clock runtime by an order of 

magnitude or more on several problem instances. Applying his approach (in 

implementation) and ours (in decomposing) simultaneously will sufficiently 

demonstrate the utility of our approach. 

 

The results of this chapter are published in Hosseini et al.  [37]. 

 

3.1 The Problem of Min-Cost Flow on Multiperiod Multiproduct Networks 

The single-commodity multiperiod distribution problem, discussed in previous chapter, 

can be extended to the multi-commodity multiperiod distribution network flow problem. 

Motivated by time-dependent multi-item distribution planning problems, we study an 

extension of multiperiod flow problems as a generalization of Hosseini  [36] [41] by 

including horizon capacities, time-commodity varying capacities, time-commodity 

varying costs, and time-commodity varying loss/gain factors over a finite horizon. 

 

This chapter focuses on the minimum cost dynamic flows (MCDF) on multiperiod 

multiproduct networks (MMN), in which spoilage/storage in arcs/nodes is 

expected/allowed. In such applications, each arc is assigned a non-negative time-

commodity varying gain/loss factor, two non-negative time and time-commodity 

varying capacity functions, a non-negative horizon capacity, and a non-negative time-

commodity varying cost function. In our setting, a positive time-commodity varying 

factor represents the fraction of flow that remains when it is sent at a specific time 

period. We consider non-simultaneous shipment of commodities from production sites 

(sources) to markets (sinks) in a distribution network such that no capacity conditions 

are violated and this time-commodity dependent shipment should optimally happen in a 

pre-defined horizon. Hence, the problem here is a decision problem aiming to find a 

dynamic flow minimizing a pre-defined non-negative distribution cost function. 

 

We assume that the size of the problem prohibits its direct solution; and we develop 

algorithmic approaches based on block-angular and block-staircase decomposition 

techniques as alternatives to overcome this challenge. Relatively little attention has been 
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devoted to the issue of problem formulation while considerably more attention is given 

to improvements in algorithms for a given solution method. Having this in mind, we 

show that any MCDF problem on a MMN can be formulated as an LP problem with 

special structures that permit efficient computation of its solution and help save storage 

requirements. 

 

In the MCDF problem on MMN, given is a set of products that are manufactured in 

several multiproduct production sites (sources) and shipped to a set of markets (sinks) 

where they are sold, and the objective is to find a routing plan to non-simultaneously 

ship the products from source nodes to sink nodes through a distribution network 

without exceeding the arc capacities (time-varying, time-commodity varying, and 

horizon capacities) at the minimal cost during a finite-length planning horizon. Here,

)K,,(V, TG   denotes a distribution (directed) network where V is the set of production 

and demand sites (nodes), A  is the set of all possible connections between sites (arcs), 

}{1,2,...,K K  is the set of products, and T represents the length of the planning horizon. 

Then, by describing the dynamic flow decision variable )(txijq  as the vector of flow rates 

of commodity q entering arc ),( ji at time period t , the formulation for the MCDF on 

MMN becomes as 
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   ),( ji , ],0[ Tt , (3.4) 

 )()(0 tutx ijqijq     ),( ji , q , ],0[ Tt , (3.5) 

 0)( txijq    ),( ji , q , Tt  . (3.6) 
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In this setting,  IRTcijq ],0[:  is the non-negative cost function with respect to product 

q , and iqv  denotes the pre-defined supply/demand capacities at node i over the entire 

time horizon. Constraint (3.2) involves the flow conservation constraints for each 

commodity. We refer to (3.3) as horizon capacity constraints. Horizon capacity of an 

arc limits the amount of total flow (of all commodities) on the arc throughout the entire 

horizon. Constraint (3.4) represents the maximum possible amount of total flow that can 

enter ),( ji at time t : it is referred to as the moment/period capacity constraint. Constraint 

(3.5) is the time-commodity varying capacity constraint for each commodity at each 

moment. The domain of decision variables prescribed in (3.6) also emphasizes that 

commodities can flow on the network only until the end of pre-specified time horizon. 

 

The problem formulation in (3.1)-(3.6) represents MCDF in a continuous-time setting. 

However, as an approximation to this setting time may be represented in discrete 

increments. By using a similar transformation discussed in Section 2.2, a continuous-

time multiproduct flow x  can be estimated by a discrete multiproduct flow x  and vice 

versa. Let )(txijq  represent the total amount of flow sent into arc ),( ji  during time 

interval [1,[ tt , then  

 

 dxtx

t

t

ijqijq 




1

)(:)(    and    dutu

t

t

ijqijq 




1

)(:)(  q , and  

  )(:)( tijqijq ctc    q , (3.7) 

where  [1,]  ttt , t . 

 

3.2 Multiperiod Multiproduct Network Flows with Spoilage (SMMN) 

Any of the models discussed up to now, has a fundamental assumption, namely, flow 

has to be conserved on any arc with respect to any commodity. However, some practical 

applications do not satisfy such a conservation assumption  [3]. In the transmission of a 

volatile gas, for example, we may lose some portion of the flow due to evaporation; or, 

in the transmission of liquids such as raw petroleum crude, some flow may be lost due 

to leakage. In the setting where spoilage on arcs is also considered, each arc ),( ji  has a 

time-commodity varying non-negative gain/loss factor )(tijq  with respect to each time 

period time t and commodity q . When )(txijq units of flow of commodity q  is sent from 
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node i via arc ),( ji at time t , )()( txt ijqijq  units of flow arrive at node j at the same time. If

1)( tijq , the arc is lossy; if 1)( tijq  the arc is gainy on that time with respect to that 

commodity. Therefore, if there is flow spoilage (loss) on an arc during all periods with 

respect to all commodities, then the model may be represented as the initial one by 

assigning a loss factor to the related arc. 

 

                iq
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T
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j

T

ijq dttxtdttx v)()()(

00

       Vi , q .            (3.8) 

 

Such a production-distribution planning problem in discrete-time setting has an 

underlying graph )K,,(V, TG   consisting of three sorts of capacity functions 

 IRut
q K: ,  IRut : and  IRu : , pre-defined non-negative cost 

function  IRct
q K: , and pre-defined non-negative time-commodity varying 

gain/loss function  IRt
q K: . Therefore, a discrete feasible dynamic flow is a 

non-negative function  IRxx t
ijq K:}{ satisfying (3.10)-(3.14), and the discrete-

time minimum-cost dynamic flow problem becomes as: 
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    ),( ji , t , (3.12) 

 t
ijq

t
ijq ux 0      ),( ji , q , t , (3.13) 

 0t
ijqx      ),( ji , t , q . (3.14) 

 

The equations stated in (3.10)-(3.14) represent the flow feasibility conditions in a 

SMMN. Here, we assume that the arc capacity t
ijqu  is an upper bound on the q-flow 

(flow of commodity q) sent from node i  at time period t , not on the flow that becomes 

available at node j . Similarly, t
ijqc  should be interpreted as the cost for each unit of flow 
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which is sent from node i . In order to benefit from an efficient decomposition-based 

solution method by transforming the formulation structure, we introduce an unrestricted 

variable t
iqv , and the formulation becomes 

 

  
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q t ji
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ijq
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                                                 iq
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t
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    Vi , q , (3.17) 
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 t
ijq

t
ijq ux 0      ),( ji , q , t , (3.20) 

 0t
ijqx      ),( ji , t , q , (3.21) 

 

where t
iqv  denotes the difference between the outflow and the inflow of commodity q at 

node i at period t. It is easy to check that conditions (3.16) and (3.17) together are 

equivalent to condition (3.10). To develop our polyhedral-based approach, we need to 

define the node-arc incidence matrix including the time dimension of the problem. 

Given an underlying SMM network and pre-defined loss/gain factors, introduce an 

auxiliary matrix mn
t
q ][Φ  for a time period t  and for a product q  as 

 

 mm
t
qmnmn

t
q   ][][:][ ΣAΦ , (3.22) 

 

where ][A is the node-arc incidence matrix of the underlying distribution network 

(which remains unchanged during the planning horizon) and ][ t
qΣ  is a mm -diagonal  

matrix whose elements are the pre-defined arc factors (at time t with respect to q) in the 

same order that arcs appear in m-vector 1][ m
t
qX  ( m  is the number of arcs of the 

network). For a time period t  and a commodity q , we construct mn
t
q ][B  as 
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where ij
t
q ][B and ij

t
q ][Φ  represent the thji ),( elements of the matrices ][ t

qB and ][ t
qΦ , 

respectively. We refer to matrix mn
t
q ][B  as the t-q-node-arc incidence matrix of the 

SMM network, and it represents the node-arc incidence matrix of SMMN at time t  for 

commodity q . Due to the changes in arc factors over time and commodity, incident 

matrices are not necessarily the same during the complete planning horizon with respect 

to each product. However, since the time-commodity varying gain/loss functions are 

pre-defined, all matrices can be computed off-line. In order to illustrate, let’s consider 

the t-q-incidence matrix of the SMM network presented in Figure  3.1 for a fixed period 

and product. 

 

 

Figure  3.1   A typical SMMN at a fixed period t for a fixed product q 
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t
qV  is the vector of supply/demand at time t for commodity q. 

Based on the network information and the distribution network’s topology, we get the 

vector of flows  t
ijq

t
q x][X  and the gain/loss matrix ][ t

qΣ as following. 
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Considering (4.23), we may construct the ancillary matrix 54][ 
t
qΦ and the t-q-node-arc 

incidence matrix ][ t
qB  for each t and q as 
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It is now easy to see that 
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Substituting t
iq

t
iq vv    for t

iqv  ( 0,0  
t
iq

t
iq vv ), considering relations (3.22)-(3.23), and 

having defined some appropriate vectors and matrices, the formulation for the problem 

becomes: 
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where ][ t
qV  and ][ qV are defined as the vector of free variables at time t with respect to 

commodity q and the vector of supply/demand numbers with respect to commodity q . 

][ t
qX and ][ t

qU  are the m-vectors of flow and capacities in t for commodity q. ][U is the m-

vector of horizon capacities and ][ t
U  is the m-vector of period capacities with respect to 

period t. Let ][ t
qC represent the vector of arc costs at t  for commodity q. 

 

Matrix decomposition allows us to express the following matrix form as a linear 

program whose special structure has a great advantage to exploit efficient algorithms for 

its solution. If we set ][][][ 0VV  
T
q

T
q  and let without loss of generality ][][ 0U T while

][ 1
T

X , ][ 2
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X ,…, ][ T
KX  and ][ 0

S , ][ 1
S ,…, ][ T

S denote the slack variables, then the above LP 

can be rewritten as: 
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which becomes as the following condensed form: 
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Our modeling procedure reveals that we can formulate any MCDF problem on a 

SMMN as a problem which possesses the block angular structure. To show this, define 
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According to the newly introduced representation and applying our notations, the LP 

formulation of the problem becomes 
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Block diagonal structure is desirable to speed up the solution process for a sparse linear 

programming problem. We may also conveniently exploit the decomposition 

procedures, slice modelling systems, and generalized upper bounding (GUB) techniques 

to solve such problems efficiently. However, Dantzig-Wolfe decomposition (delayed 

column generation method) is often the best method of choice when dealing with large 

scale sparse problems arising from repeated components, especially in terms of storage 

requirements and good-quality suboptimal solutions. DW decomposition will not rival 

mainstream techniques as an optimization method for all LP problems, but it has some 

niche areas of application: certain large scale classes of primal block angular structured 

problems, and in particular where the context demands rapid results using parallel 

optimization, or near optimal solutions with a guaranteed quality  [83]. 

 

To better illustrate, let’s assume an MMN problem with T subproblems, each with n

conservation constraints and with a master condition of 0n constraints (all in standard 

form). The storage requirement of the revised simplex method for the original problem 

will be ))(( 2
0 TnnO  , which is the size of the revised simplex tableau. In contrast, the 

storage requirements of the decomposition method for the same problem turns out to be

))(( 2
0 TnO   for the tableau of the master problem, and )( 2nOT   for the revised simplex 

tableau of subproblems (that are easy to solve). Moreover, applying decomposition on a 

MMN problem maintains only one tableau stored in the main memory at any time. For 

instance, let 1000T  and Tnn  0 . In this case, the main memory requirement of the 

decomposition method will be 000,000,1  times smaller than those of the revised simplex 
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method. Therefore, while the memory is a key bottleneck in handling very large LPs, 

like MMN problems, the decomposition approach dramatically enlarges the range of 

problems that can be solved practically  [9] [15] [83] [86]. 

 

Interestingly enough, in our approach, the master constraint has the same matrix for any 

set of variables transtt
K

t
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ttttt
K

tt )( 221121 SVV...VVVVX...XX  . In 

general, it is not necessary for either set of constraints to have a special structure, but 

when available, it helps speed up the solution method. Meanwhile, although the 

modeling language used in this study may resemble the slice modelling systems, there 

are a couple of important discrepancies between slice modeling and our polyhedral-

based approach in this section (See Section 2).  

 

In order to use the DW decomposition on our problem, the constraint matrix should be 

exploited by splitting the original problem into smaller subproblems and a connecting 

constraint, master constraint (the one containing the master matrix M ). The structure of 

the time-varying block-angular system admits a natural decomposition into a set of 

1T independent well-structured smaller parts instead of solving the original problem 

whose size and complexity are beyond what can be solved within a reasonable amount 

of time, and then adjust the solution to take into account the interconnections. Thus, we 

may apply the block diagonal decomposition techniques to solve the foregoing problem 

to achieve the desired effect. Let us consider an application of a decomposition 

algorithm to the problem: define 1T  polyhedral sets tχ  for each  Tt ,...,1,0 as: 
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Considering Minkowski’s Representation Theorem, any tt χ][ Y can be expressed as a 

convex combination of a finite number of extreme points of tχ as 

 

)( 221121
tt

K
t
K

ttttt
K

tt
SVV...VVVVX...XX 

tχ    

][][][

11






tt l

j

t
j

t
j

k

i

t
i

t
i

t
dyY  , 

1

1




tk

i

t
i , 0t

i  for tki ,...,1 , and 0t
j  for tlj ,...,1 , 

 



64 

 

where ][][][ t
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t
1 ty,...,y,y and ][][][ t

k

t
2

t
1 td,...,d,d are extreme points and extreme directions (if 

any) of polyhedral tχ . The original problem can be reformulated as the master problem 

under Minkowski’s mapping as follows. 
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Due to having a huge number of extreme points for each polyhedron, enumerating all 

the extreme points, and solving this problem directly seems impossible. Rather, we 

should find a reasonable approach without enumerating all the extreme points  [9]. This 

is where we suggest the use of decomposition techniques, especially due to the special 

structure of our problem that greatly intensifies the efficiency of the decomposition 

methods. Next, we develop the most general form of the min-cost flow problem 

formulation for a SMMN as 
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The formulation of the SMMN problem shows a much simpler constraint structure than 

the usual matrix form. It possesses only 1 TKnm constraints rather than

))(2( KnmT  in the earlier formulation. Problems of this type are well amenable by 

many decomposition algorithms and column generation methods. As a result, the 

computational advantage of the algorithm depends on the efficiency of the 

decomposition methods. We propose DW decomposition (or Benders algorithm for the 

dual) and so, the same analysis is applied for this case.  

 

When the problem has many thousands of rows and unsolvable in a reasonable amount 

of time, however, our approach suggests a method to convert the large-scale (high 

dimensional problem) into one or more appropriately coordinated smaller sparse 

problems of manageable sizes. Having the restricted master problem (the latter model 

with only a small number of variables), a general Dantzig-Wolfe decomposition 

algorithm for a MMNF problem can be summarized as that in the following page. 

 

Remark 3.1  Considering Minkowski mapping and feasibility of the problem the 

optimal solution (corresponding to the optimal basis) of SMMNF from the condensed 

master problem will determine a set of original variables of form 

)( 221121
tt

K
t
K

ttttt
K

tt
SVV...VVVVX...XX   for each time step with 

respect to each commodity conveying a positive flow. Any obtained optimal basis will 

detect one arc set for every time step t and for each commodity q that transports a 

positive amount of flow. Moreover, the values of t
iqv  for each i, t, and q will be 

determined at any basis. Moreover, it immediately follows that the optimal arc sets for 

every time step and for any commodity are not necessarily the same. 
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{Initialization} 
                        Choose initial subsets of variables 
                        While true do 
                        {Master problem} 
                                                       Solve the restricted master problem 
                                                       µ1 :=  duals of master constraints 
                                                       µ2

(t) := duals of the tth convexity constraints 
                        {Subproblems}                                             
                                               for t = 0, . . . ,T do 
                                               Plug µ1 and µ2

(t) into subproblem t 
                                               Solve sub-problem t 
                                                                 if (reduced cost)t = min (ct - µ1 M)Yt  - µ2

(t) < 0 then 

                                                                 Add proposal Yt to the restricted master problem 
                                                                 end if 
                                                     end for 
                                                                 if no proposals generated then 
                                                                 Stop: optimality 
                                                                 end if 
                            end while 

 

MMNF DANTZIG-WOLFE ALGORITHM 
       
{Initialization} 
Choose initial subsets of proposals 
 
set kk(k) 'current proposal'; 
kk('proposal1') = yes; 
 
loop((q,t), 
solve subproblem, check feasibility 
     c(i,j) = cost(q,t,i,j); 
     u(i,j) = capacity(q,t,i,j); 
     u(i,j) = capacity(t,i,j); 
      . 
      . 
      . 
     µ1 (i,j) = 0; 
     µ2

(t,q) = 0. 
 
while (true) do 
    solve restricted master; 
    solve subproblems; 

    until no more proposals. 
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For the initialization step of DW algorithm, we first solve each subproblem. If any of 

the subproblems is infeasible, the original MMN problem is clearly infeasible. 

Otherwise, we use the optimal values Yt (or the unbounded rays) to generate an initial 

set of proposals/columns. The initial proposals may violate the master constraints. We 

formulate a Phase I problem by introducing artificial variables and minimizing those 

(e.g.  [9]). The reduced costs of a Phase I problem are slightly different from the Phase II 

problem. 

 

The Minkowski mapping proves that decomposition solves SMMNF problem by 

generating coefficient data as needed. Since the master problem is an LP, the 

decomposition algorithm inherits finite convergence from the (revised) simplex method. 

Recall that the simplex method solves LP problems in a finite number of steps, provided 

that a cycling prevention rule is used. For decomposition, the subproblem calculation 

ensures that the vectors introduced into the basis have positive reduced cost. 

Consequently, from the linear programming theory, the master problem is solved in a 

finite number of steps; the procedure thus determines an optimal solution by solving the 

condensed master problem and subproblem alternately a finite number of times  [9] [15]. 

 

3.3 A Solution Approach for MM Networks with Storage 

In certain practical problems, the intermediate storage policy is another important issue 

that issue that has to be considered in the models. It may be necessary that the q-flow 

(flow of commodity q) waits at some nodes until it can continue on an arc, as it appears 

in many applications such as batch process scheduling, traffic routing, evacuation 

planning, energy transmission, inventory, and telecommunications  [3] [35]. This affects 

both the problem’s complexity and optimal solution. When there are no storage 

equipments, Non-intermediate Storage (NIS) policy is assumed. It is also common in 

the industry for a process to have different storage policies for different intermediates 

that is called Mixed Intermediate Storage (MIS) policy. 

 

In our model, we let the q-flow be stored at some (or all) intermediate nodes (or demand 

nodes) for only one time period with finite (or infinite) storage capacity depending on a 

pre-defined capacity function for each t , q , and i . Note that, the dependency of 

capacity functions on time (and commodity) allows us to have different storage policies 
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in different time periods with respect to different products, but the time lag is still one. 

In general, the staircase structure may have longer time lags which will be discussed in 

the upcoming sections. We can allow flow storage in MMN by introducing loops in 

those nodes in which storage is allowed. 

 

 

Figure  3.2   A typical MMN with flow storage at nodes 

 

This leads to a slightly different notion of flow conservation. If we let the set of vertices

V be divided into three subsets QVS , QVI , QVD comprising of source, intermediate, and 

sink nodes with  respect to each q, respectively, we can state the flow conservation 

constraints as following. In this case,  IRtx :)(  is a dynamic feasible flow if it 

satisfies constraints (3.2)-(3.6) and (3.24) as well 

 

               0)()(

00

 dttxdttx

j

jiq

j

ijq



     Qi VSV\ , q , [,0] T              (3.24) 

 

As flow travels through the distribution network, we may allow limited (or unlimited) 

flow storage at nodes, but prohibit any deficit by constraint (3.24). As before, all q-

demands must be met, flow must not remain in the network after time T , and each 

source/sink must not exceed its forecasted supply/demand. 

 

The discrete-time model is considered, in which all times are integral and bounded by 

an integer horizon. A discrete dynamic flow inG , which satisfies the following 

constraints, is said to be feasible. Such a flow is a non-negative function 

 IRx K}V{: satisfying (3.25)-(3.30). 
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Let )(tciiq  be the storage cost in node i  at period t with respect to q . Thus, the total cost 

of a discrete dynamic flow x is defined by 
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Having introduced the unrestricted variables )(tviq , we may reformulate the problem as 
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where )(tviq  is a free variable which defines the difference between q-outflow and q-

inflow at node i at time period t. Needless to say, )(tviq  differs from storage decision 

variables, and they are determined optimally by the algorithm. )(txiiq  and )(tciiq are the 

amount and cost of stored flow at node i in period t of product q . We set 0)( tciq  for 

each i, t, and q. Clearly, there is no need to have flow storage in period 1T , and this is 

ensured by (3.40). We prove that this model possesses a property which enables us to 

reduce the MCDF problem to a problem with special structure. By setting )(tviq

t
iq

t
iq vv   , our problem is reduced to the following matrix form as an LP, whose special 

structure enables efficient solution of the model. 
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Where    t
ijqijq

t
q xtx  )(][X and    t

iiqiiq
t
sq xtx  )(][X  are the vectors of flow and storage at 

time period t ,    t
ijijq

t
q utu  )(][U and    t

iiqiiq
t
sq utu  )(][U  are the vectors of flow 

capacities and storage at t , respectively, ][U , ][ t
U , ][ t

qC , and ][ t
qV are defined as 

before.    t
iiqiiq

t
sq ctc  )(][C  is the vector of pre-defined storage costs. mn][A  is the node-

arc incidence matrix of the underlying network. 

 

In order to obtain a standard LP problem we decompose ][ t
qV  to non-negative vectors

][ t
qV  and ][ t

qV .  iqq v][ V  is the vector of pre-defined supply/demand numbers of 

nodes with respect to commodity q . Let  0][ 1 
sqX  be the vector of initial storage and ][S

be the vector of slack variables. Without any loss of generality, let ][][:][ 1 0XS  T
,

][][ 2 0X T
,…, ][][ 0X T

K , ][][][ 0VV  
T
q

T
q , and ][][ 0U T (since we do not need any flow in 

the last period). Then, we can convert the model into the following form by 

manipulating and introducing some matrices. 
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The system arisen above emphasizes that the production/usage/storage at one time 

period might be affected by production/storage of the previous time step for any 

product, and affects the amount of usage/storage of the following time period. The 

foregoing reduces to the following matrix form 
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The matrix form of the problem shows that we can formulate any min-cost problem on a 

multiperiod dynamic network (with storage) as a problem which possesses the staircase 

structured system. To show this, let’s define 

 

).........(:][ 22112121
tt

K
t
K

ttttt
sK

t
s

t
s

t
K

tt
SVVVVVVXXXXXXY                             

 Tt ,...,1,0 , 

 

 0000000CCCCCCC .........:][ 2121
t
sK

t
s

t
s

t
K

ttt                  Tt ,...,1,0 , 

 

 
trans

t
KK

t
sKs

t
s

t
K

ttt
UVVVVVVUUUUUUW .........:][ 2211

2
2121  

 Tt ,...,1,0 , 

transt )...(:][ U0000W                                                                               Tt ,...,1,0 , 

 



78 

 

:][M  





































0

0

0

0

0

I

0

0

0

I

...

0

...

...

0

...

0

0

0

0

0

0

0

0

0

0

I

0

0

0

I

0

0...000

0...000

0...000

0...00I

...

...

...

...

0

0

0

I

0

0

0

I


                     (master matrix) 

 :][][ tAA  









































I

0

0

0

0

I

0

0

0

I

0

0

0

0

I

0

0

0

I

0

0

0

0

I

0

0

0

I

000I

I00A

00I00

00I0

I

0

A

0

I

0

0

A

...

...

...

...

...

...

...

...

...

...

...

2

1


t
K

t

t

                      Tt ,...,1,0 , 

:][M





































0

0

0

0

0

0

0

0

0

0

...

0

...

...

0

...

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0000

I000

00I00

00I0

...

...

...

...

0

0

0

0

0

0

0

0



...

...

...

.

 

 

Now, by considering the constraints structure and using our notations, we obtain 
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where ][][ 1
0Y  . Note that we assume ][][ t

AA   for every t , since the underlying 

network will remain unchanged over time with respect to any product. Otherwise, we 

can use incidence matrix ][ t
A for time period t  in the staircase formulation. Such 

structures have enjoyed a wide variety of applications in the form of production 
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planning and/or scheduling, distribution, integrated production-distribution models, 

manpower smoothing models, discrete optimal control problems with efficient handling. 

However, the most general approach might be the technique of using decomposition 

approach. In other word, the original problem is reformulated into a series of 

structurally similar LP subproblems with more tractable combinatorial structures. The 

structural similarity of the subproblems allows us to use decomposition techniques to 

well improve the computational efficiency  [83]. In addition to structural similarity, this 

modelling technique has converted the MCDF problem to one with many sparse 

matrices/subproblems. 

 

3.4 MM Networks with Storage and Spoilage (SSMM Network Flows) 

This Section considers the most general case of multiperiod networks, i.e., MMN with 

storage at nodes and spoilage in arcs. We call these networks as SSMM network flows. 

The SSMM problem develops the MM network flow problem by allowing the q-flow to 

leak and be stored, at the same time, as it is sent through the network. Naturally, the 

min-cost SSMMN flow problem in the continuous time setting will be of the form stated 

in (3.41)-(3.47). 
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If we replace (3.15) and (3.16) by (3.48) and (3.49), we get the min-cost SSMM 

network problem in the discrete time setting subject to introducing free variables 

t
iq

t
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t
iq vvv  :  ( 0,0  

t
iq

t
iq vv ). 
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To develop a polyhedral-based approach, we again use the t-q-node-arc incidence 

matrix introduced in (3.23). It yields the node-arc incidence matrices of SS network 

with respect to each time step and commodity. As before, let mn
t
q ][B  be the q-t-node-arc 

incidence matrix at step t with respect to q. Therefore, having done all the necessary 

changes and transformations, the min-cost SSMM network problem can be modeled as 

that in previous Section. The only difference will be the polyhedrals’ matrices. It 

suffices to make the following change with respect to each time period. 
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The process of identifying block structures is a key step for our modeling approach. It 

might be supposed that it would be easy to identify a block structure from a constraint 

matrix of an arbitrary problem instance, but this is not the case. Even with a relatively 

small problem instance, it is a hard task to pick out a block structure visually from a plot 
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of the non-zero elements, when the rows and columns are not arranged to expose it. In 

other words, the way the model is developed is critical for constructing/identifying the 

block structures  [13] [53] [85] [86]. One may consult Voelker ‎[85], Borndorfer and 

Ferreira  [13], Kernighan and Lin  [53], and Weil and Kettler ‎[86] to get more 

information on this matter. 

 

3.5 An Alternative Approach for MM Networks Having no Period Capacity 

If we slightly change the definition of our master matrix and our decision vectors, we 

get the following alternatives for the min-cost flow problem on a MM network. In this 

setting, we define our parameters so as they look time-commodity varying. 

Consequently, we allow several different convex combinations and linear combinations 

(think of Minkowski theorem) for each subproblem (the set of constraints for each time 

step and product) since, as you will see, we have )1( TK convexity constraints. This 

adds more flexibility to our approaches (in a lower dimensional space), but at the same 

time, increases the number of polyhedrals (and also, subproblems) from )1( T to )1( TK  

 

3.5.1 Case 1: MM Networks with Spoilage 

In this setting, we let our decision vectors ][ t
qY be time-commodity varying. They will 

consist of one set of nonnegative variables t
qX in the q-th place for each t, and t

qV
 
and

t
q _V in the (K+2q-1)-th and (K+2q)-th places, respectively, and the other entries are set 

to zero. Note that, any place in our vector is a group of arc variables. 
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Analogously, we should change our nod-arc incidence matrices with respect to each t 

and q. 

 

                                 000II0B00A  ......:][ t
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We also need to redefine our master matrix as follows. 



82 

 































I

0

0

0

I

0

0

0

0

...

...

...

0

I

0

0

0

I

0

0

0

0

I

0

0

0

I

0

0

0

0

I

...

...

...

...

0

0

0

I

0

0

0

I

M



:][ . 

 

In this case, also, the modeling procedure reveals that we can extract the block-angular 

structure from the problem, but with a bit more flexibility due to having time-commodity 

varying subproblems. Hence, the flow conservation conditions turn out to have the 

following from. 
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t
q

t
q

t
q

t
q ............][     

q , t . 

 

Applying our notations yields the desired structure provided that we define the cost and 

capacity vectors as follows. 
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q
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 000VV0U00W qq
t
q

t
q ......:][          q , t . 

 

Then we conclude the following form for the min-cost MM network problem with 

spoilage. 
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                       ][]][[ 00
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                                         ][]][[ 1
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1
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                                                   

 

                                                           ][]][[ 11 0YA TT
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                                                                    

                                                           ][]][[ 0YA T
K

T
K , 

                        ][][][ t
q

t
q WY0           q , t .  
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To proceed, we need to define )1( TK  time-commodity varying polyhedrals t
qχ  and 

Minkowski’s mapping as follows.  
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where ][][][ t

qk

t
2q

t
1q t

q

y,...,y,y and ][][][ t

qk

t
2q

t
1q t

q

d,...,d,d are extreme points and extreme 

directions (if any) of polyhedrals t
qχ . The same analysis as that in Section 3 then can be 

applied.  

 

3.5.2 Case 2:  MM Networks with Storage 

In this setting, our time-commodity varying decision vectors ][ t
qY will consist of one set 

of nonnegative variables t
qX  and t

sqX  in the q-th and (q+K)-th places for each t, and t
qV

and t
q _V in the (2K+2q-1)-th and (2K+2q)-th places, respectively, and the other entries 

are set to zero. 
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Similarly, we change our nod-arc incidence matrices with respect to each t and q. 

 

 00II0I00A00AC ............:][:][  t
q                       q , t ,

 00000I00000C ............:][                                   q , t . 

 

We should redefine our master matrix as following. 
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Hence, the flow conservation constrains will be of the following from. 
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Having defined some appropriate vectors, we can formulate any min-cost problem on a 

multiperiod dynamic network (with storage) as a problem which possesses the staircase 

structured system. To show this, let’s define 
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Now, reconsider the constraints structure and use our notations. 
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             ][]][[ 0
0YC q          q , 

             ][]][[]][[ 10
0YCYC  qq            q , 

                                ][]][[]][[ 21
0YCYC  qq          q , 

                                                    

                                                ][]][[]][[ 1
0YCYC  T

q
T
q        q , 

][][][ t
q

t
q WY0        q , t . 

 

Note that we assume ][][ t
qAC   for every t and q, since our distribution network is 

unchanged over time with respect to any product. Otherwise, we can use incidence 

matrix ][ t
qA for time period t (for any q) in the staircase formulation. Still our problem 

has a time lag of length one. Namely, the amount of q-flow that should be distributed 

depends on the previous step’s distributed flow and stored flow. 

 

3.5.3 Case 3:  MM Networks with Storage and Spoilage (SS Networks) 

To handle this case, let ][ t
qB  be the q-t-node-arc incidence matrix at step t with respect to

q . Hence, having done all the necessary changes and definitions the same as those in 

Case 2, it is enough to do the following replacement with respect to each t and q. 

 

 00II0I00A00 ............      

↓ 

  00II0I00B00 ............ t
q . 

 

3.6 On Applications and Computational Tuning-Testing 

Electricity and data transmissions, road or air traffic control, evacuation planning, 

production and distribution, and transportation problems can be viewed as single-

commodity or multi-commodity problems. When the above models involve a parameter 

of time, they may often be modeled as dynamic network flows (or multiperiod dynamic 
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networks). This section applies DW to instances of a model of an electricity-distribution 

(transportation) network and we present the results of our experiments that demonstrate 

the effectiveness of our approach. The topology of this class of network models has 

been already described in detail in previous chapters and also in Chapters 1 and 2, so we 

give only a brief description here. 

 

We consider a distribution network that is a local, low-voltage part of the electricity 

system that connects the customers to the long-distance, high-voltage transmission 

system which, in turn, connects to generating plants. The distribution network may be 

viewed as connecting to the transmission system, via a substation, at a single point or 

source (in reality, it may connect to several points). We consider a number of customers 

(cities, factories etc.) with demand for a certain product (that may vary over time) over a 

specified time period, e.g., demand for electricity in our case study. We assume that 

demand is satisfied by shipping electricity in a fixed number of wires from a number of 

supply/production sites, where the cost of production is assumed to be time varying (or 

fixed for each time period). We restrict our attention to the case in which each wire must 

unload all of its goods (electricity) at the demand site upon arrival. The objective is to 

determine the production circuit and shipping electricity within the time period so as to 

minimize the daily cost (the planning horizon time is a day). To illustrate the 

performance of our approach, we conducted a series of experiments using a set of real 

data from our case study on real and random complete-bipartite MMNs. However, our 

results should be applicable to other types of problems as well. 

 

Several parameters must be specified in order to generate the MMN topology, arc 

capacities and costs, losses and gains, and node storage capacities (if desired). These 

parameters are random seed, number of periods T, number of products K , number of 

supply/demand nodes, indegree and outdegree of each node, minimum and maximum 

values of arc capacities for each q and t, losses, gains, and costs associated with the arcs, 

which must be all nonnegative. The cost on each arc (for each time period for each 

product) is randomly chosen from a uniform distribution between user defined 

parameter minc  and maxc , and gain/loss factors for each commodity and period are also 

chosen from a ],0[ max uniform distribution where max  should be given for each q. The 

user also sets the number of time periods, supply nodes, and demand nodes. The 
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demand for each time step with respect to each product q  is to be randomly chosen 

from a uniform distribution between minvq  and maxvq , and likewise for supply, storage 

capacity, spoilage, arc capacities. 

 

The experiments are conducted on random multiperiod transportation networks with 26, 

40, 46, 62, 74, 82, 100 nodes and time horizon 13, 20, 23, 31, 37, 41, 50 for the first two 

cases and random networks with 6, 10, 14, 22, 26, 30, 34 nodes and time horizon 3, 5, 7, 

11, 13, 15, 17 for the last case. For each value of n (n=n1+n2 is the total number of 

generating plants and demand sites), we create distribution networks with different 

indegree and outdegree in a range from 1 to max{n1, n2}. We denote by   the density of 

the network ( nm / ). The minimum and maximum loss/gains are set to 0.999 and 

1.100, respectively, the minimum and maximum capacities are set to 50 and 70, 

respectively, the minimum and maximum costs are set to 10 and 100. For each specific 

setting of n and m, we test a random transportation MMN. In addition, we have 

performed several computational tests and analyzed decomposition approach’s 

sensitivity on a variety of min-cost MMN problem instances. We have investigated 

different implementation ideas and sensitivity of the method to various data parameters, 

such as the number of arcs, number of time increments and the congestion in the 

multiperiod network. We generated many MMN of various sizes, different number of 

time periods, and different levels of congestion. 

 

 

Figure  3.3   Sensitivity to time increments 
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Figure  3.4   Sensitivity to density 

 

A plot for each different network parameter,  and T , helps us visualize the effects of 

time splitting and density on the growth of the problem or the average CPU time.  

Figure  3.4 shows that execution time increases exponentially in denser networks. In any 

problem instances we tested, our solution approach showed an almost linear sensitivity 

with respect to time increments as shown in Figure  3.3. The same sensitivity is also 

observed with respect to number of products. This behavior is generally related to the 

increase in the numbers of subproblems; since any increase in the number of time 

periods or products will directly affect the numbers/complexity of subproblems, and 

consequently, the algorithm’s running time increases. Our linear programming models, 

decomposition methods, were implemented in GAMS in a personal computer with a 

2.13GHz processor and 4GB physical RAM. The results of a very small number of runs 

are summarized in Tables 3.1-3.4. Computational experiences shown in the first four 

rows of Tables 3.1-3.3 correspond to some electricity transmission MMNs from our 

case study. 

 

Table  3.1   Sizes and Computational Results for Some MMNs with |K|=1 (T=13, 20, 

23, 31, 37, 41, 50) 

 # of  

Polyhedrals 
# of 

Variables 

# of 

Constraints 

# of 

Non-zeros 

Work space 

Allocated (Mb) 

Computational 

Time (s) 

Data set 1 14 5070 4758 677 7.7 12.05 

Data set 2 21 17600 16840 1601 8.2 17.10 

Data set 3 24 26450 25438 2117 8.2 19.80 

Data set 4 32 63426 61566 3845 9.3 26.90 

Data set 5 38 106782 104118 5477 10.8 32.50 

Data set 6 42 144566 141286 6725 11.9 37.10 

Data set 7 51 260000 255100 10001 15.0 48.60 
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Table  3.2   Sizes and Computational Results for Some MMNs with |K|=7 (T=13, 20, 

23, 31, 37, 41, 50) 

 # of  

Polyhedrals 

# of 

Variables 

# of 

Constraints 

# of 

Non-zeros 

Work space 

Allocated (Mb) 

Computational 

Time (s) 

Data set 1 98 35490 19110 677 8.7 70.9 

Data set 2 147 123200 67480 1601 10.8 119.2 

Data set 3 168 185150 101890 2117 12.9 142.9 

Data set 4 224 443982 246450 3845 19.7 225.1 

Data set 5 266 747474 416694 5477 27.1 319.9 

Data set 6 294 1011962 565390 3362 33.9 764.7 

Data set 7 357 1820000 1020700 10001 54.3 2510.2 
 

 

Table  3.3   Sizes and Computational Results for Some MMNs with |N|=2|K|=2T 

(T=3, 5, 7, 11, 13, 15, 17) 

 # of  

Polyhedrals 

# of 

Variables 

# of 

Constraints 

# of 

Non-zeros 

Work space 

Allocated (Mb) 

Computational 

Time (s) 

Data set 1 12 270 162 37 7.7 14.7 

Data set 2 30 1750 950 101 7.7 37.8 

Data set 3 56 6174 3234 197 7.7 68.6 

Data set 4 132 34606 17666 485 8.7 134.2 

Data set 5 182 65910 33462 677 9.8 114.6 

Data set 6 240 114750 58050 901 10.8 145.3 

Data set 7 306 186694 94214 1157 12.9 557.3 

 

DW also provides a bound on the value of the objective function at each iteration, which 

allows the quality of the current solution to be assessed, so that the trade of between 

time and quality can be quantified. As a result, the procedure can be terminated, prior to 

finding an exact optimal solution, with a good estimate of how far the current value of 

the objective function can be from its optimal value  [9] [15] [83]. 

 

 

Figure  3.5   Objective and dual bound progress of two instances 
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Practical experience suggests when decomposition is applied on an MCDF problem on 

an MMN, the algorithm makes substantial progress in the beginning, but the cost 

improvement becomes very slow later on. However, in spite of possible ill-conditioning 

of a decomposed problem, it usually turns out that its optimal solution is close to the 

true optimal solution, and so we may terminate it before the end having a very good 

suboptimal solution. 

 

Table  3.4   Computational Resources for Some Large Feasible MMNs 
 

An application of our approach  and CPLEX for some large random feasible instances with: 

Uniform flow requirement U(100, 900), Uniform capacity U(100,000*|K|, 1,000,000*|K|), and Uniform cost 

U(1,100). 
 

 

For all problems, the planning horizon time is 24 hours, but with different discretization. 
 

                  

  Instances  
 
 

     Data 

 
 

P.1 

 

 

P.2 

 

 
 

P.3 
 

 

P.4 

 

 

P.5 
 

 

P.6 

 

Problem’s Status 
 

 ***  Feasible  *** 
 

# Node-Commodities 
 

65,110 
 

200,000 
 

79,202 

 
 

26,026 
 

60,000 
 

52,800 
 

# Arc-Commodities 
 

6,155,700 

 

1.00000E+7 
 

7,880,599 
 

1.30260E+7 
 

9,000,000 
 

2.11200E+7 
 

# Commodities 
 

170 
 

100 
 

199 
 

13 
 

100 
 

33 
 

# Constraints 
 

6,293,230 
 

1.03100E+7 
 

8,039,003 
 

1.50560E+7 
 

 9,240,000 
 

2.24528E+7 
 

# Variables 
 

6,155,700 
 

1.0000E+7 
 

7,880,599 
 

1.30260E+7 
 

9,000,000 
 

2.11200E+7 
 

Network Density 
 

94.543 
 

50.000 
 

99.500 
 

500.500 
 

150.00 
 

400.000 
 
 

# Periods 
 

1/24 

 

10/24 
 

1/24 
 

13/24 
 

1/24 
 

33/24 
 

Total Cost 
 

6.65645E+7  

 

1.40419E+8  

 

3.33284E+7 
 

6,589,735.0 
 

1.99913E+7 
 

1.36029E+7 
 

Work Space Allocated 

for DW 

(reported by GAMS) 
 

 

 

321.7 Mb 

 

 

517.3 Mb 

 
 

407.2 Mb 

 

 

916.8 Mb  

 
 

471.2 Mb 

 
 

1206.7 Mb 

 

Work Space Allocated 

for CPLEX 

(reported by GAMS) 

 
 

> 1,800 Mb 
 

 

 

> 2,400 Mb 
 

 
 

> 2,000 Mb 
 

 

 

> 3,500 Mb 
 

 

 

> 2.100 Mb 
 

 
 

4,000 Mb 
 

 

Elapsed Time for DW  

(by GAMS) 
 

 

1,209 

SECONDS 

 

9,799 

SECONDS 

 

1,756 

SECONDS 

 

2,026 

SECONDS 

 

3,436 

SECONDS 

 

3,928 

SECONDS 
 

Elapse Time for 

CPLEX (by GAMS) 

 

Failed to 

solve after  

410.14 SEC 

 

Failed to 

solve after 

500.28 SEC 

 

Failed to  

Solve after 

400.00 SEC  

 

Failed to  

Solve after 

158.52 SEC 
 

 

Failed to  

Solve after 

401.89 SEC 

 

Failed to  

Solve after 

500.00 SEC 

 

Figure  3.5 plots the progress of a pair of randomly generated MMN problems when we 

apply the decomposition method. The plots show how the objective values and dual 

bounds converge as the number of iterations (time) increases. Since we are dealing with 

min-cost flow problems, the objective value descends from above and the dual bound 

ascends from below. 
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Figure  3.6   The relative duality gap observed solving the sample problem (density =8.5, 

T=17, K=17) 

 

Throughout Chapters 2 and 3, we discussed how to properly decompose MMN 

constraints into (sparse) blocks to be amenable to DW in order to save the 

computational expenses of solving such large-scale planning problems (see Table  3.4). 

On the hand, the decomposition method naturally lends itself to a coarse grained 

distributed memory parallelism based on assigning the pricing problems to different 

processors and solving them simultaneously. Hence, having decomposed to blocks, 

modern computers can take advantage of the algorithm’s inherent parallelism to 

efficiently improve the elapsed time for MMN problems. In general, any properly 

decomposed problem can be provided to the DW algorithm for solving. 

 

In a very inspiring work, Rios  [76] reported computational results to motivate use of 

such parallel solvers; as such implementation outperforms state-of-the-art commercial 

solver, CPLEX 11.2, in terms of elapsed time. Applying his approach (in 

implementation) and ours (in decomposing) simultaneously will sufficiently 

demonstrate the utility of our approach in decomposing problems and his approach in 

parallelism. Here, we give a brief description on how this parallel implementation works 

and at the end we report the work done by Rios for such parallelism. 

 

At the simplest level the master problem and pricing problems reside on separate 

processors; when there are more problems than processors, each processor may hold 

several problems which may be solved locally in sequence. Mirroring the algorithm, 

control is maintained by the process handling the master problem: it sends out prices to 

start up the slave processes; the slave processes solve the pricing problems and send the 

generated proposals back to the master processes [44] [45] [50] [76] [83]. 

0 

200 
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800 

1000 

0 20 40 60 80 100 
The Relative Duality Gap 
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The measure which is widely used to assess the performance of a parallel application in 

comparison to a serial application performing the same task is speedup. For this case in 

which Cplex is used, it is stated as 

 

Speedup = (Time Cplex) / (Time DW Parallel), 

 

where Time is either a measure of elapsed time or total CPU time. However, in most 

cases, the two speedups are similar. This implies that much of the speedup comes from 

the effectiveness of the DW algorithm at handling these LPs rather than the 

parallelization of the algorithm. The largest discrepancy between the elapsed time and 

CPU time speedups occurs with large subproblems. This is due to the fact that the 

parallelization in DW is exercised to solve the various subproblems in parallel versus 

being stuck in the serial bottleneck of solving-resolving the reduced master problem. 

With an understanding of DW, the results follow what might be expected  [76] [83]. 

 

The first parallel implementation of the decomposition method was the prototype 

‘decompar’ by Ho et al.  [44] [45] [50] based on the serial decomposition software 

‘decomp’ used by Ho and Loute. decomp, and its underlying LP software ‘ lpm1’, were 

by now over fifteen years old, and much inferior to other LP software available. 

However, it could not be used for practical computational work. Because the maximum 

problem size was very restricted, with at most 10 blocks, each with 400 rows, 1000 

columns and 10,000 non-zeros; and up to 99 global rows. When implemented in 

parallel, a new area of flexibility is opened up in the algorithm: the order in which the 

problems are solved on each cycle, and whether all problems are solved on every cycle.  

 

A major implementation issue involves how the subproblems should be solved. This 

decision is based on several factors including coding complexity, computing resources, 

and problem size. Some problem instances of DW may have only one single 

subproblem, and thus do not have to be concerned with the decision of whether to solve 

subproblems in parallel or serially. Five strategies may be distinguished by the action 

taken in a typical cycle [76]: 
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Basic strategy: Solve all pricing problems, then solve the master problem. 

First pricing problem strategy: Start solving all pricing problems, then as soon as one 

finishes, solve the master problem. 

First proposal strategy: Start solving all pricing problems, then as soon as one proposal 

is generated, then solve the master problem. 

Instant feedback strategy: All new information is acted on immediately all pricing 

problems and master constantly being solved, send out proposal from each pricing 

problem after every pivot, and send out prices from master after each pivot. 

Accelerated feedback strategy: Whenever a pricing problem finishes, send out 

proposals generated, check for new prices, and start solving again as soon as new prices 

found. Whenever the master problem finishes, send out new prices, check for new 

proposals, and start solving again as soon as any found. 

 

The original implementation by Ho could not be used for practical computational work 

and it was also tied to a no-longer available commercial LP solver from IBM. Recently, 

Rios described a general, parallel implementation of DW decomposition. By his 

approach it is hoped that future researchers in various domains will have access to a 

stable platform from which to begin experimentation without the need to implement the 

algorithm from scratch. Rios  [76] detailed the implementation of the software in terms 

of parallelization and synchronization. 

 

 2.3 ≤ Speedup[Rios’s method] ≤ 8.5. 

 

As he has shown, to minimize elapsed runtime, solving all subproblems in parallel is 

more efficient in the presence of multicore or cluster computers. All subproblems were 

launched simultaneously and each one was solved completely at each iteration of the 

DW algorithm as long as the subproblem had a new objective function for that iteration. 

All generated columns that might improve the master’s objective function were added to 

the reduced master. When all subproblem threads had been serviced exactly once, the 

master thread performed additional computations while the subproblem threads block, 

awaiting the next iteration. 
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3.7 Summary and Concluding Remarks 

This chapter addresses discrete-time dynamic min-cost network flow problem on 

multiperiod multiproduct distribution-production networks under the generalization of 

node storage or/and arc spoilage. We develop some decomposition-based approaches to 

solve the min-cost flow problem employing polyhedral sets hidden in the underlying 

distribution network. Having appropriately defined some matrices, the original 

problems are re-formulated into a series of structurally similar sparse LP subproblems 

(polyhedrals) which are utilized to develop decomposition-based techniques to decrease 

storage requirements. At the end, we discussed different issues and strategies on 

parallelization of the algorithm to improve the wall-clock time along side with 

computational recourses. 

 

Note that our approach should be seen as two-phase method. In the first phase, we get 

the t-q-node-arc incidence matrices, and the second phase is an application of DW 

method. Evidently, the performance of our algorithm highly depends on the first phase. 

A simple analysis reveals that the overall complexity of the first phase is )( 2TKnmΟ if a 

simple data structure is used to maintain the factors for each time period with respect to 

each product. As mentioned, although we consider time-commodity varying network 

parameters, all the t-q-incidence matrices/transformations can be updated/run off-line 

and in parallel. Therefore, if the solutions of the first phase are calculated in parallel, we 

can expect to obtain the optimal solution for any min-cost MMN problem in a 

reasonable amount of time. 

 

 

 

 

 

 

 



98 

 

Chapter 4 

 

4 A Penalty-Based Scaling Algorithm for Multiperiod 

Multiproduct Distribution Planning Problem 
 

This chapter addresses the minimum cost dynamic flow (MCDF) on multiperiod 

multiproduct distribution planning problem in the discrete-time settings with varying 

network parameters, and a network-based scaling algorithm is developed to obtain an 

optimal solution for a deterministic predefined finite planning horizon. The basis of our 

solution approach exploits ideas from penalty function methods in nonlinear 

programming and scaling algorithms in network flow theory, simultaneously. 

 

We formulate a mathematical programming problem to find an optimal non-

simultaneous shipment of commodities from production stations (sources) to 

consumption sites (sinks) minimizing a deterministic non-negative distribution cost 

function such that no capacity conditions are violated. We develop a cost-scaling-based 

approach to solve the MCDF problem on a multiperiod multiproduct network. Our 

algorithm solves the MCDF problem as a sequence of nonlinear penalty problems, each 

of which is constructed by relaxing some constraints and adding a term for their 

violation to the objective function. Each penalty problem’s objective function is 

improved through some augmentations until reaching a user-defined accuracy using a 

network based scaling algorithm. This method keeps iteratively detecting and modifying 

time-commodity varying flows around cycles at each scaling phase to improve the 

objective function of the nonlinear penalty problem. The algorithm finds a δ-optimal 

solution to the penalty problem. 

 

Static network flow problems with multiple commodities can be posed as single 

commodity network problem with side constraints. Many applications of such problems 

lead to huge LPs that are too large to be handled by a direct application of an LP 

software. Hence, researchers have developed specialized adaptations of LP algorithms 

that exploit the special structure and the sparsity inherent in this class of problems. 

Exact algorithms for such problems are mostly based on DW decomposition and 

specializations of the simplex method. There are also a couple of heuristic algorithms to 
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handle side-constrained network problems. They use Lagrangean relaxation techniques 

to determine lower bounds, and decomposition to determine upper bounds for the value 

of the solution. Some approximation algorithms so far have also been developed for 

static network flow problems  [3] [11] [15] [20] [24] [48] [51] [54] [75] [78]. 

 

4.1 Penalty Function Method - Transformation Approach 

The mathematical programming problem (MPP) is to determine a vector 

),...,,( **
2

*
1

*
nxxxx   that solves the problem 

 

)(MPP                                             ),...,,( 21 nxxxfMin  

           0),...,,( 21 nxxxg  

         0),...,,( 21 nxxxh  

 

When the problem functions f , g , and h  are all linear, the (MPP) is called a linear 

programming problem. If any of the functions is nonlinear the problem is called a 

nonlinear programming problem. There are other terms, such as convex, concave, 

separable, quadratic, and factorable, which may apply to special cases of (MPP). 

Usually the functions of (MPP) are required to be continuous. Much of the theory of 

nonlinear programming concerns the case when the functions are continuously 

differentiable, or twice continuously differentiable. In these instances, it is possible to 

prove theorems which characterize solutions to (MPP). These theorems in turn 

influence the development of algorithms for solving the mathematical programming 

problems. Particular results and algorithms have been obtained for quadratic 

programming where )(xf  is a positive semi-definite quadratic form, and the constraints 

are linear  [7] [12] [24] [27] [58] [75]. 

 

Special methods have been developed when )(xf  is a convex function and the 

constraints are concave/linear. The smoothness of the problem functions makes the 

problem well behaved, and the convexity-concavity assumptions assure that the feasible 

region is convex and, most importantly, that any local solution is also 

global  [7] [12] [27]. 
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Our penalty-scaling method is based on Transformation Approach in Non-Linear 

Programming. Transformation Approach is executed by defining an appropriate 

auxiliary function, in terms of the problem functions, to define a new objective function 

whose minima are unconstrained in some domain of interest. By gradually removing the 

effect of the constraints in the auxiliary function, a sequence (or family) of 

unconstrained problems with solutions converging to a solution of the original 

constrained problem is generated  [27]. For the sake of simplicity, we proceed formally 

to sketch the basic idea. The problem is to find a solution *x of 

 

)1( MPP                                          ),...,,( 21 nxxxfMin  

                                   0),...,,( 21 ni xxxg  ,      mi ,...,2,1 . 

 

A typical unconstrained auxiliary function may have the form 

 

)),...,,(()(),...,,(:))(,( 21

1

21 ni

m

i

in xxxgGtxxxftxMPP  


 , 

 

where t  is a parameter, )(ti are weighting factors, ),...,,( 21 nxxxx  , and )(yG  is 

generally a monotonic function of y  that behaves in some well-chosen manner at 0y . 

Typical choices are either that 0)( yG for 0y  and 0)( yG for 0y . The former choice 

usually is associated with procedures that are not concerned with constraint satisfaction 

except at the solution, and the latter, where constraint satisfaction is enforced 

throughout. When successful, the method generally proceeds computationally as 

follows. Select a sequence }0;{ kk tt , and kt as k . Compute a minimum n-

vector kx of ))(,( txMPP  for ,...2,1k . Under appropriate conditions such an kx always 

exists and is an unconstrained minimum of ))(,( txMPP  . Usually the most desirable 

result is that *xxk   as k , a solution of )1( MPP . A weaker result is that 

)()( *xfxf k   a minimum value of the objective function. The result follows that  

 

  0)),...,,(()( 21

1




ni

m

i

i xxxgGt     as   k . 

 

So that we will have 
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)())(,( *xftxMPP k
k      as    k . 

 

That is, the modified objective function ))(,( txMPP  converges to the same minimal 

value, as the original objective function )1( MPP . This means that the influence of the 

constraints on the modified objective or auxiliary function is gradually relinquished and 

finally removed in the limit.  

 

Penalty function methods solve a constrained optimization problem by a sequence of 

optimization problems in which all or some of the constraints are relaxed. A penalty 

term for the violation of the relaxed constraints is added to the objective function. We 

refer to the resulting problem as the penalty problem. Thus, the penalty problems are 

either unconstrained or have a special structure. Detailed descriptions of penalty 

methods can be found in Fiacco and McCormick  [27] and Luenberger  [58]. In most 

penalty function algorithms, the optimal solutions to the sequence of penalty problems 

approach the optimal solution to the original problem. A penalty problem associated 

with )(MPP above may be depicted as 

 

)( MPPPenalty                          ))(())(()( xhxgxf  Min . 

 

Observe that ),...,,( **
2

*
1

*
nxxxx   is the optimal solution of )( MPPPenalty   if and only if it 

is the optimal solution of )(MPP (Luenberger  [58]). In practice, the optimization of 

)( MPPPenalty   is difficult due to the discontinuity of the objective function on the 

boundary of the feasible region; this is why we consider some special functions for )(x

and )(x . The parameter   is called the penalty parameter. In order to cope with the 

discontinuity curse, we will consider some continuous functions as )(x and )(x

satisfying the following conditions: 

 

0)(

0)(0
))((










xg

xg

if

if

M
xg           and       

0)(

0)(0
))((










xh

xh

if

if

M
xh , 

 

where M is a constant positive number. However, in theory and implementations we 

often use )(x and )(x of the following forms: 
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axgxgxg ])()([
2

1
))((        or     axgxg )}](,0[max{))((         

   and    

    
b

xhxh )())((  , 

 

where a, b =1 or 2 usually. 

 

In general, penalty function approaches consist of solving a sequence of penalty 

problems, such as )( MPPPenalty  , with an increasing penalty parameter  . 

 

Theorem 4.1   KKT necessary conditions  [7] [27] 

Consider the following nonlinear program (NLP). 

 

)(NLP                                                 )(xfMin , 

                       0)( xg i     mi ,...,2,1 , 

                      0)( xh j     lj ,...,2,1 . 

 

Suppose that the objective function )(xf  and the constraint functions  )(xg i  and )(xh j

are continuously differentiable at a point ),...,,( **
2

*
1

*
nxxxx   . If *x  is a local minimum 

that satisfies some regularity conditions, then there exist constants i  and j  , called 

KKT multipliers, such that 

 

0)()()( *

1

*

1

*  


xhxgxf j

l

j

ji

m

i

i   

   0)( * xg i     mi ,...,2,1     

  0)( * xh j      lj ,...,2,1  

     0i         mi ,...,2,1  

0)( * xg ii      mi ,...,2,1 . 

 

 

The KKT conditions (also known as KT conditions) are first order necessary 

conditions for a solution in continuous nonlinear programming to be optimal, provided 

that some regularity conditions are satisfied  [27] [58].

 

http://en.wikipedia.org/wiki/Necessary_and_sufficient_conditions
http://en.wikipedia.org/wiki/Necessary_and_sufficient_conditions
http://en.wikipedia.org/wiki/Nonlinear_programming
http://en.wikipedia.org/wiki/Optimization_(mathematics)
http://en.wikipedia.org/wiki/Karush%E2%80%93Kuhn%E2%80%93Tucker_conditions#Regularity_conditions_.28or_constraint_qualifications.29
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Theorem 4.2    KKT conditions for an NLP with non-negativity constraints  [58] 

Suppose that in the following NLP problem, the objective function )(xf  and the 

constraint functions )(xg i  satisfying certain regularity conditions are differentiable at 

),...,,( **
2

*
1

*
nxxxx  . 

 

)( NLPeNonnegativ                             )(xfMin  

                     0)( xg i     mi ,...,2,1 , 

                     
0jx        nj ,...,2,1 . 

 

Then, ),...,,( **
2

*
1

*
nxxxx   can be an optimal solution for )( NLPeNonnegativ   only if there 

exist numbers i  and j  such that all the following KKT conditions are satisfied: 

 

0)()( *

1

* 











ji
j

m

i

i
j

xg
x
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   nj ,...,2,1  

0)()( *

1

** 

























xg
x

xf
x

x i
j

m

i

i
j

j    nj ,...,2,1  

0)( * xg ii       mi ,...,2,1  

0)( * xg i      mi ,...,2,1  

0i            mi ,...,2,1  

0jx , 0j    nj ,...,2,1  

 

In some cases, the necessary conditions are also sufficient for optimality. In general, the 

necessary conditions are not sufficient for optimality and additional information is 

necessary, such as the Second Order Sufficient Conditions.

 
 

Theorem 4.3    Sufficient conditions  [7] [12] [27] 

The KKT conditions are necessary to find an optimum, but not necessarily sufficient. 

However, these necessary conditions are sufficient for optimality if the objective 

function )(xf  and the inequality constraints )(xg i  are continuously differentiable convex 

functions and the equality constraints )(xh j  are affine functions. 
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Theorem 4.4   Sufficient conditions for convex problem with linear constraints  [27] 

Suppose the case 0m  i.e., when there are no inequality constraints in )(NLP . If 

),...,,( 21 nxxxf is a convex function and each ),...,,( 21 nj xxxh are linear function, then any 

point ),...,,,,...,,( **
2

*
1

**
2

*
1

*
lnxxxx  satisfying the following condition  

 

0),(...),(),(),(...),(),(
2121







































 xLxLxLxL

x
xL

x
xL

x ln

, 

 
 

will yield an optimal solution ),...,,( **
2

*
1

*
nxxxx  to )(NLP . 

 

4.2 Network Flow - Scaling Approach 

Scaling is a powerful idea that has produced algorithmic improvements to many 

problems in combinatorial optimization like network flow problems (see Dinic  [23]). In 

our case, we start with the optimality conditions for the network flow problem we are 

examining, but instead of enforcing these conditions exactly, we generate an 

approximate solution that is permitted to violate one (or more) of the conditions by an 

amount  . Initially, by choosing   quite large we are able to find a starting solution that 

satisfies the relaxed optimality conditions. We then reset the parameter   to F and re-

optimize so that the approximate solution now violates the optimality conditions by an 

amount of at most F . We then repeat the procedure, re-optimizing again until the 

approximate solution violates the conditions by an amount of at most FF 1 , and so 

on. Scaling algorithms rely on the integrality assumption. Integrality ensures 

applicability of the method. It requires the given numbers to be integers. This permits an 

easy transition from a current solution to optimum. If the given numbers are rational 

they must be scaled up to integers before the method is applicable. So scaling approach 

can find a solution with any desired accuracy  [3] [23]. 

 

 Residual Network 

Associated with any network flow A)G(V,:G  with node set V , arc set , and each flow

x , there is another network flow, called residual network, giving the amount 

of available capacity. We define the residual network )(xG  with respect to a given 

feasible flow x  as )(V,)( 21
rrxG   where 
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 ijij
r xuji  :),(1      and    ij

r xji  0:),(2 . 

 

The residual network )(xG  is provided with residual arc capacities as: 

 

ijij
r
ij xuu   for rji 1),(      and    ij

r
ji xu   for rji 2),(  . 

 

 Δ-Residual Network 

Given the residual network )(xG with respect to flow x , we define the Δ-residual 

network ),( xG as a sub graph of )(xG containing arcs whose residual capacity is at least 

Δ. Note that )()1,( xGxG  for a network flow with integral capacities. 

 

 Augmenting Path and Cycle 

A path constructed by repeatedly finding a path of positive capacity from a source s to a 

sink t and then adding it to the flow. Equivalently, an augmenting path is a path 

niiii ,...,,, 321  in the residual network, where si 1 , tin   and 0r
iju  for any kii   and

1 kij . A cycle W (not necessarily directed) in G  is called an augmenting cycle with 

respect to the flow x  if by augmenting a positive amount of flow )(Wf around the cycle, 

the flow remains feasible. The augmentation increases the flow on forward arcs in the 

cycle W and decreases the flow on backward arcs in the cycle. In other words, an 

augmenting cycle is a directed cycle niiii ,...,,, 321  in the residual network, where si 1 ,

sin  , and 0r
iju  for any kii   and 1 kij . 

 

 The Cost and Mean Cost  of a Cycle 

We next extend the notations of )(Wij and )(Wc for cycles that are not necessarily 

directed. We define )(Wij as 

 

                             1)( Wij          if arc ),( ji is a forward arc in the cycle W , 

                                        1)( Wij        if arc ),( ji  is a backward arc in the cycle W , 

                                        0)( Wij          if arc ),( ji  is not in the cycle W .  
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Notice that in terms of residual networks, each augmenting cycle W with respect to a 

flow x  corresponds to a directed cycle W in )(xG and vice versa. We define the cost of 

an augmenting cycle W as  

 






Wji

ijij WcWc

),(

)()(  . 

 

The cost of an augmenting cycle represents the change in the cost of a feasible solution 

if we augment one unit of flow along the cycle. Therefore, the change in flow cost for 

augmenting )(Wf units along the cycle W  is )()( WfWc . We also define the mean cost of 

a cycle as its cost divided by the number of arcs it contains. A minimum mean cycle is a 

cycle whose mean cost is as small as possible. 

 

 Reduced Cost of an Arc 

In many network flow algorithms, we measure the cost of an arc related to some cost 

associated with the nodes. These costs are typical intermediate data of the algorithm.  

Suppose that A)G(V, is a directed network flow with some real numbers i  associated 

with each node Vi  as the potential of node i . For a given set of node potentials i , we 

define the reduced cost as  

 

jiijij cc  :
   

 ),( ji . 

 

These reduced costs are applicable to the residual network as well as the original 

network. That is 

 

jiijij cc  :
  

)(),( 21
rrji  . 

 

Remark 4.1   In many minimum cost flow algorithms, the reduced cost replaces the 

cost, especially in the residual network. Thus, it is crucial to understand the relationship 

between c  and c with respect to the minimum flow problem. We define the reduced 

costs in the residual network just as we did the costs, but now using 
ijc  in place of ijc  . 
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Theorem 4.5   Shortest path optimality conditions  [3] 

Suppose that A)G(V,:G   is a directed network flow. Let us define the reduced arc 

length d
ij  of an arc A),( ji with respect to the distance label function (.)d as

jiij
d
ij ddc : . And suppose that (.)d  is such that for every node i , )(id denotes the 

length of some directed path from the source node to node i . Then the numbers )(id

represent shortest path distances if and only if they satisfy the following shortest path 

optimality conditions: 

 

0:  jiij
d
ij ddc      ),( ji . 

 

Various uses of the shortest path optimality conditions suggest that similar sets of 

conditions might be valuable for designing and analyzing algorithms for the minimum 

cost flow problem, and also they yield three different (but equivalent) optimality 

conditions for minimum cost flow problem. All these optimality conditions have an 

intuitive network interpretation and are rather direct extensions of their shortest path 

counterparts. We will consider three optimality conditions: (1) negative cycle optimality 

conditions, (2) reduced cost optimality conditions, and (3) complementary slackness 

optimality conditions. 

 

Theorem 4.6   Negative cycle optimality conditions  [3] 

Suppose that A)G(V,:G   is a directed network flow. A feasible solution x  is an optimal 

solution of the minimum cost flow problem if and only if the residual network )(xG

contains no negative cost directed cycle. 

 

Theorem 4.7   Reduced cost optimality conditions  [3]    

Suppose that A)G(V,:G   is a directed network flow. A feasible solution x  is an optimal 

solution of the minimum cost flow problem if and only if some set of node potentials i  

satisfy the following reduced cost optimality conditions: 

 

 0:  jiijij cc      )(),( 21
rrji  . 

 



118 

 

We know that a flow is optimal if there is no negative cost cycle in the residual network 

[3]. If there is no negative cost cycle in the residual network, it means that the shortest 

path distance is well defined with respect to the cost function. On the contrary, if there 

is a negative cost cycle, the shortest path distance is not well-defined. We will express 

the ‘well-definedness’ of the shortest path in terms of reduced costs, thanks to the 

shortest path optimality conditions. This gives rise to the following theorem. 

 

Theorem 4.8   Complementary slackness optimality conditions  [3]  

Suppose that A)G(V,:G   is a directed network flow. A feasible solution x is an optimal 

solution of the minimum cost flow problem if and only if for some set of node potentials

i , the reduced costs and flow values satisfy the following complementary slackness 

optimality conditions: 

 

If 0
ijc , then 0ijx     ),( ji , 

If 0
ijc , then ijij ux      ),( ji , 

If ijij ux 0 , then 0
ijc     ),( ji . 

 

4.3 Min-Cost Multiperiod Multiproduct Distribution Problem 

As mentioned, in the min-cost multiperiod multiproduct distribution networks we aim to 

find a routing plan to non-simultaneously ship the products from source nodes to sink 

nodes through a distribution network without exceeding the time-varying, time-

commodity varying, and horizon capacities at the minimal cost during the finite 

planning horizon. The products may either be differentiated by their physical 

characteristics or simply by their origin-destination pairs. However, arc capacities bind 

different products together. In fact, the essential issue addressed by the multiperiod 

multiproduct network problem is the allocation of the capacities of each arc to the 

individual products in a way that minimizes overall flow costs. 

 

Given distribution network )KT,Α,(V,G  where V is the set of sources and sinks, A is 

the set of all possible connections between sites (arcs), }{1,2,...,K K  is the set of 

products, and T  is the time horizon, the MCDF on MMN can be expressed as: 
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)(CTMCDF     
 q ji

T

ijqijq
tx

dttxtc
ijq

),( 0
)(

)()(Min ,  (4.1) 

 dttdttxdttx iq

j

jiq

j

ijq  













)(v)()(    Vi , q , ],0[, T  , (4.2) 

 ij

q

T

ijq udttx 
 0

)(       ),( ji , (4.3) 

 )()( tutx ij

q

ijq 


        ),( ji , ],0[ Tt  , (4.4) 

 )()()(0 tutxtl ijqijqijq          ),( ji , q , ],0[ Tt , (4.5) 

 0)( txijq          ),( ji , q , Tt  . (4.6) 

 

In this setting, )(txijq  describes the dynamic flow decision variable as the vector of flow 

amount of commodity q entering arc ),( ji  at time moment t , and  IRT][0,:ijqc  is the 

non-negative time-varying cost function with respect to product q , and )(v tiq  denotes 

the pre-defined supply/demand capacities at node i over time. Constraint (4.2) involves 

the flow conservation constraints for each commodity. We refer to (4.3) as horizon 

capacity constraints. Horizon capacity of an arc limits the amount of total flow (of all 

commodities) on the arc throughout the entire horizon. Constraint (4.4) represents the 

maximum possible amount of total flow that can enter ),( ji at time t : it is referred to as 

the moment capacity constraint. Constraint (4.5) is the time-commodity varying 

capacity constraint for each commodity at each moment. The domain of decision 

variables prescribed in (4.6) also emphasizes that commodities can flow on the network 

only until the end of pre-specified time horizon. 

 

4.3.1 Canceling the Time-Commodity Varying Lower Bounds 

The dynamic flow )(tx with time horizon T is a feasible flow of the )(CTMCDF problem if 

it satisfies the conditions (4.2)-(4.6). By replacing )()()( tltxtx ijqijqijq   for every ),( ji

, we obtain the following equivalent constraints: 
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 dttdttdttxdttx iqiq

j

jiq

j

ijq  

















)(v)(v)()(      Vi , q , ]T0,[,   ,   (4.7) 

 )()( tutx ij

q

ijq 


         ),( ji , ]T0,[t , (4.8) 

   ij

q

T

ijq udttx 
 0

)(     ),( ji , (4.9) 

     )()(0 tutx ijqijq         ),( ji , q , ]T0,[t , (4.10) 

 

Where 

 
 

  

j

ijq

j

jiqiq tltlt )()()(v ,    (4.11) 

 

is considered as supplies/demands of node i at time ]T0,[t  for product q . Observe that 

 

  )(tuijq )()( tltu ijqijq  , (4.12) 

 




K 0

)(

q

T

ijqijij dttluu , (4.13) 

  




q

ijqijij tltutu )()()( . (4.14) 

 

Therefore, the network problem formulated in (4.1)-(4.6) is equivalent to the problem in 

the transformed network with parameters mentioned in (4.11)-(4.14). That is if )(txijq  is 

a multiperiod multiproduct feasible flow in the transformed network, then 

)()()( tltxtx ijqijqijq   is a multiperiod multiproduct feasible solution of the original 

network. 

 

Using the discussion above, we can formulate any )(CTMCDF  problem on a MMN with 

time varying lower bounds as a )(CTMCDF problem without lower bounds. Henceforth, 

we only focus on the )(CTMCDF  problems without lower bounds. Another approach can 

also be used to remove the time-commodity varying upper bounds (Ahuja et al.  [3]). 
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4.3.2 Discrete Time Multiperiod Multiproduct Distribution Problem 

The problem formulation in (4.1)-(4.6) represents MCDF in a continuous-time setting. 

By using the natural discretization transformation mentioned in Sections 2.2 and 3.1, 

we can alternatively represent MCDF by discrete time increments. 

 

We also observe that a )(CTMCDF  problem with multiple sources and multiple sinks for 

each product can be easily transformed to a single-source, single-sink )(CTMCDF

problem. One way of transformation is by adding an artificial source node (super-

source) and an artificial destination node (super-sink) for each product. The artificial 

super-source is connected with each origin of that product with a cost of zero (for each 

time period), and the artificial super-sink is connected with each source of that product 

with cost of zero (for each time period). Any flow in the single-source single-sink 

network corresponds to a flow in the multi-source multi-sink network, and vice versa. 

Hence, we can only consider single-source single-sink multiproduct multiperiod 

network flow problems. To better illustrate this transformation, we provide Figure  4.1. 

 

 
Figure  4.1   Transformation of a multi-source multi-sink single-product multi-period 
network problem into a single-source single-sink single-product multi-period network 
problem 

 

 
Therefore, a discrete multiproduct multiperiod feasible flow is a non-negative function

 IRKΝΑ:}{ t
ijqxx  satisfying (4.15)-(4.18), and the discrete-time minimum cost 

dynamic flow problem becomes as 
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)(DTMCDF                                     
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t
ijq vxx      Vi , q , t ,   (4.15) 
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q t

t
ijq ux 

 

    ),( ji , (4.16) 

 

t
ij

q

t
ijq ux 

K

     ),( ji , t , (4.17) 

 
t
ijqx0      ),( ji , t , q . (4.18) 

 

(4.15)-(4.18) represent the flow feasibility conditions in a MMN in discrete time 

settings. For each commodity q there is a required time-varying flow of t
qv  units at time 

period t from its source node qs  to its sink node qt . The cost of a unit q-flow at period t 

on arc ),( ji  is t
ijqc  and the amount of flow is denoted as t

ijqx . Let t
iqv  be the flow balance 

of commodity q at node i at period t.  Thus, we conclude that 
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4.4 The Penalty-Based Scaling Approach for MCDF 

We introduce a penalty-based scaling algorithm for the )(DTMCDF problem. The 

efficiency of the algorithm is induced by using the scaling approach and by exploiting 

the network structure of the problem. The scaling network-based algorithm finds a 

optimal  solution to the penalty problem as discussed earlier while this solution is 

optimal to another problem in which part of the data is modified by at most  . We 

develop a penalty problem )MCDF(  of )(DTMCDF  problem by moving the horizon and 

period capacity constraints to the objective function and choosing a quadratic penalty 

function for violation. As discussed, a sequence of solutions to the penalty problem 

)MCDF( with increasing penalty parameter converges to the optimal solution of

)(DTMCDF . The quadratic penalty problem is formulated as 
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By using the definition of absolute value function |.| , we can modify the objective 

function in )MCDF(  by defining the following excess functions. 
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In fact, )(xeij  and )(xet
ij are the amount by which the total flow on arc ),( ji exceeds its 

horizon and period capacity (with respect to period t). The resulting penalty problem 

)MCDF( is 
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         t
ijqx0                             ),( ji , q , t .  (4.22) 

 

Generally, any penalty function other than the quadratic may be used. However, we 

prefer the quadratic function because (1) it assigns large penalty to a large excess in a 

nonlinear fashion, and (2) the penalty objective function becomes convex, and its 

derivative is linear. The objective function, however, is non-separable and nonlinear. 
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Hence, we eliminate the complicating constraints and we decomposed )MCDF(  into 

some single-product flow problems, but introduce convex and non-separable terms into 

the objective function. These features simplify the analysis and the derivation of the 

theoretical properties. 

 

In order to determine the cycles of interest (negative cost cycles), we build an auxiliary 

residual network. A δ-shift for product q at time t is found by detecting a negative cost 

cycle on the residual network which corresponds to that product at that time. Here, at 

each scaling phase we use an associated δ-residual network ),( xG t
q with respect to each 

t and q, and flow x. A negative cost cycle on a δ-residual network means that shifting δ 

units around this cycle results with a negative net change of the value of the penalty 

objective function )(xf . To shift δ units around a cycle t
qW  is to increase the flow of 

commodity q at period t by δ units on original arcs, which correspond to forward arcs in

),( xG t
q that in the cycle, and to decrease the flow of commodity q at period t by δ units 

on original arcs, which correspond to backward arcs in ),( xG t
q that in the cycle. 

 

 The Cost of a δ-Flow Around a Cycle 

The cost of a δ-flow around cycle t
qW , which is not necessarily directed, is the net 

change in the objective function of )MCDF( problem by sending δ units of q-flow 

around it at period t. We define the cost of cycle t
qW with respect to product q at time t 

and with respect to parameter  as 

 

 
)( t

qWc )()),(( xfWxxf t
q    ,   (4.23) 

 

where )),( t
qWx represents a δ units of t-q-flow around cycle t

qW . 

 

 δ-Residual Network 

For a given flow x and scaling parameter δ, we define δ-residual network 

)(V,),( 21
rrt

q xG   for each q and t as 

 

 t
ijq

r xjiji  0,),(:),(1    and  t
ijq

r xjiij  ,),(:),(2 . 
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Using the )MCDF( objective function, we define the cost of each arc in the t-q- residual 

network as following: 

 
t
ijqC : Cost of each forward arc ),( ji  in the residual network for time period t and 

product q will be equal to the net change in )(xf  obtained by increasing the q-flow on 

arc ),( ji by units at period t. 

 
t
jiqC : Cost of each backward arc ),( ij  in the residual network for time period t and 

product q is defined as the net change in )(xf  obtained by decreasing the q-flow on 

arc ),( ji by units at period t. 

 

Observation 4.1   The original arcs of the network form the forward arcs of the residual 

network. Moreover, if ),( ji  is a forward arc in the associated δ-residual network 

),( xG t
q then the cost of arc ),( ji  in the residual network for time period t and product q 

will be obtained by  
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Observation 4.2   A backward arc will be included in the δ-residual network of time t 

for product q if and only if we can decrease the flow of product q at period t. Therefore, 

a backward arc may be used in a negative cost cycle only if the flow of product q on its 

corresponding forward arc is at least δ. Moreover, if ),( ji  is a backward arc in the 

associated δ-residual network ),( xG t
q , then the cost of arc ),( ji  in the residual network 

for period t and product q will be obtained by  
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The algorithm starts with an initial value for the scaling parameter δ. At each scaling 

phase, δ has a fixed value. Focusing on one product at a time period, we try to improve 

the objective function of )MCDF( by modifying some of the flows of this product by 

exactly δ units. A flow of that product on an arc may either increase by δ, decrease by δ, 

or remain unchanged. We call such a modification a δ-shift. When there is no δ-shift 

which leads to an improvement for any product at any time, the value of δ is decreased. 

We have chosen to decrease δ by a factor of 2 at the end of each scaling phase (Ahuja et 

al.  [3]). So, our algorithm, MMNF algorithm, can be outlined as follows. 

 

Algorithm MMNF 

begin 

      Determine an initial feasible dynamic solution x (satisfying only flow requirements); 

      Set values for the parameters R,  , u ; 

      Choose initial values for δ and  ; 

       while   the algorithm’s termination criteria are not met  do 

               begin 

               IMPROVE-APPROXIMATION (x,‎δ,  ); 

               δ‎:=‎δ/2;  uR  ,min: ; 

               end 

 end 
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Let SEARCH(q, t) be a procedure that searches for a negative cost cycle on ),( xG t
q , 

and let AUGMENT( t
qW ,δ) be a procedure which shifts δ units of q-flow around a cycle 

t
qW . Then, the procedure IMPROVE-APPROXIMATION may be described as follows. 

 

Procedure IMPROVE-APPROXIMATION 

begin 
          LIST: = K; 

          while LIST ≠ null  do 

          begin 

                   select a commodity q  from LIST; 

                  t
qW : = SEARCH(q, t) for any t; 

                   if t
qW  = null then delete q from LIST 

                   else 

                         begin 

                                 AUGMENT( t
qW , δ); 

                                 LIST: = K; 

                         end 

            end 

end 

 

 

Our network-based approach for )MCDF( can be viewed as a scaling algorithm in 

which the step size at each phase is fixed at a value of δ. The algorithm will be trying to 

find a direction of interest such that by modifying the flow by δ units in this direction 

the penalty objective function )(xf decreases. When it is unable to find such an 

improving direction with step size δ, it decreases the step size to δ/2. The accuracy of 

the algorithm highly depends on the value of   and how we want to increase the 

penalty cost  [75]. Hence, we consider an upper bound for   (say  ) and we set a fixed 

value for increasing the penalty cost (say R) for use in the termination rule. 

 

For setting the initial flow satisfying (only) the supply/demand constraints one may, for 

example, satisfy the requirement of each product by sending each demand on the 

shortest path from its origin to its destination with respect to the flow costs. Other initial 

solutions which satisfy the supply/demand constraints may be used as well. As a very 

common choice in scaling algorithms, we may let the initial value of δ be the size of the 

largest demand, i.e., max0 : v where  qtvv t
q ,:maxmax   or  )log(

0
max2:

v
 . The best initial 

penalty parameter value and its modification rate, R, may be empirically 
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determined  [75] [78]. However, we believe that 9.15.00  and R=1.3-1.9 are some good 

choices. 

 

Observe that δ and   are modified simultaneously. For theoretical purposes, which are 

already discussed, we need   to decrease in each phase. Eventually we would like

0 . Since δ decreases by a factor of 2 at each phase, we require that R < 2. 

Moreover,   is chosen small enough to assure that sufficient number of phases are 

performed. Thus, it assures that δ is sufficiently small and   is sufficiently large at the 

end of the algorithm  [20] [75]. In practice, to help maintain numerical stability, we might 

want to preclude large values of the penalty parameter. In addition, the user may want to 

control the final value of   in order to help maintain numerical stability or to ensure 

faster termination of the algorithm. For these reasons, we bound  from above by a user-

defined value u . The algorithm terminates when   is sufficiently small (or the duality 

gap is sufficiently small) for a penalty problem with a sufficiently large penalty 

parameter. The value of   indicates how close the solution is to optimality. The user 

defined lower bounds on   provides the user the option to compromise a bit on the 

quality of the solution in order to have the algorithm run faster  [75] [78]. 

 

At each step, we need to pick a product q for some t and search for an improving cycle. 

To this aim, we calculate the costs of the arcs in the δ-residual network ),( xG t
q of 

product q for any t. As mentioned in Observations 4.1 and 4.2, the cost of each arc is the 

costs of modifying the flow of product q on that arc by δ. Then, determine whether there 

is a negative cost cycle in ),( xG t
q . If a negative cost cycle for commodity q is detected, 

we shift δ units of flow around it. This means: increasing the flow of commodity q by δ 

on original arcs which correspond to forward arcs in ),( xG t
q and belong to the cycle, 

and decreasing the flow of commodity q by δ on original arcs which correspond to 

backward arcs in ),( xG t
q and belong to the cycle. If all the commodities have been 

scanned and no negative cost cycle has been found, we terminate the current scaling 

phase and we modify the values of δ and  as δ := δ/2 and  R:  (if uR   ). 
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4.4.1 Some Notes on the Theoretical Properties  

We present some theoretical properties of our algorithm regarding optimality and 

convergence. These properties lead to some bounds on the number of basic operations 

which the algorithm performs. Typically, we introduce and prove general properties 

first, and then we deduce the properties applied to algorithm. Some background on 

computational time bounds and complexity analysis may be found in Ahuja et 

al.  [3] [20]. The proofs in this section are based on the ideas of (δ,‎ε)-optimality and (0, 

ε)-optimality.  

 

 Approximate Optimality or  ε-optimality 

A flow (or pseudo flow) x is said to be ε-optimal for some ε>0 if for some node 

potentials π, the pair (x, π) satisfies the following ε-optimality conditions: 

 

 
 ijc            0ijx ,     (4.24) 

 
   ijc       ijij ux 0 ,     (4.25) 

 
 ijc        ijij ux  .  (4.26) 

 
These conditions are relaxations of the (exact) complementary slackness optimality 

conditions we already discussed; these conditions reduce to complementary slackness 

optimality conditions when ε=0. The exact optimality conditions imply that any 

combination of ),( 
ijij cx lying on the thick lines shown in Figure  4.2 is optimal. The ε-

optimality conditions (4.24)-(4.26) imply that any combination of ),( 
ijij cx lying on the 

thick lines or in the hatched region in Figure  4.3 is ε-optimal  [3]. 

 

 
Figure  4.2   Exact optimality for (i, j) 
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Figure  4.3  Approximate optimality for (i, j) 

 
The ε-optimality conditions assume the following simpler form when stated in terms of 

the residual network: A flow x or a (pseudo flow) x is said to be ε-optimal for some ε>0 

if x, together with some node potential vector π, satisfies the following ε-optimality:  

 

 
 ijc     for every arc ),( ji  in the residual network. (4.27) 

 
 

 (δ, ε)-optimal solution 

If we define t
jq

t
iq

t
ijij

t
ijq

t
ijq xexecr   )(2)(2  as the reduced cost for each product q 

and period t for some node potentials µ, then a flow (or pseudo flow) x is said to be (δ,‎

ε)-optimal solution to the penalty problem for some ε>0 if the pair (x, µ) satisfies the 

following (δ,‎ε)-optimality conditions: 

 

 
t

ijqx              t
ijqr ,     (4.28) 

 
t

ijqx           t
ijqr .     (4.29) 

 

The (δ,‎ε)-optimality conditions show that x is a (δ,‎ε)-optimal solution if by modifying 

the flow by at most δ units we get a solution which is optimal to another problem in 

which the demands are modified by at most δ and the flow costs are modified by at most 

δ. In other words, let x" be a flow in which each flow component is different by at most 

δ from its corresponding component in x. We refer to x" as a δ-modified flow. In 

addition, let P" be a penalty problem in which the demands are different by at most δ 

from the demands in P, and the flow costs are different by at most δ from the flow costs 

in P. We also refer to these demands and costs as the δ-modified demands and δ-
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modified costs, respectively. Thus, x is a (δ,‎ε)-optimal solution to P if x" is an optimal 

solution to P". A (δ,‎ ε)-optimal solution is therefore a solution which is optimal to 

another problem in which only the flow costs are modified by at most δ. 

 

To improve the theoretical convergence of the algorithm, we can limit our search only 

to sufficiently negative cycles. To this aim, we let the mean of a cycle be the average 

cost per arc. More formally, 

 

)( t
qWMean 

Aji

t
qij

t
q WWc

).(

)()(  . 

 

Thus, we can limit our search to cycles whose mean is at most  . Therefore, in the 

algorithm, one can determine whether there is a negative cost cycle on ),( xG t
q whose 

mean    rather than determining whether a negative cost cycle. As shown in Lemma 

4.1, one way to limit the search to cycles with mean less that   is to add  units to the 

cost of each arc in the δ-residual network. It is proved that, in this case, detecting 

negative cost cycles on the residual network when   units are added to the cost of each 

residual arc is equivalent to detecting negative cost cycles whose mean   . For 

example, in our algorithm we can add  2  units to the cost of each arc in the δ-residual 

network. Thus, we can begin searching for very negative cycles and when such cycles 

cannot be found, we search for less negative cycles. 

 

Lemma 4.1   When  units are added to the cost of each arc in the residual network, the 

mean of a negative cost cycle is at most  . Moreover, shifting δ units of flow around a 

cycle in the δ-residual network whose mean is less than  improves the penalty 

objective function value by at least  . 

 

Proof   Let t
qW  be a negative cost cycle, and let t

ijqC be the costs on the δ-residual 

network ),( xG t
q . By adding  to the cost of each residual arc ),( ji  the cost on that arc 

becomes t
ijqC . Thus, for each detected negative cycle: 
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and therefore,  

 

)( t
qWMean 
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t
qij

t
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).(

)()(    
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To prove the second part, note that the costs in the δ-residual network are referred to the 

change in the objective function value resulting from sending exactly δ units of t-q-flow. 

Thus, if we send δ units around a cycle t
qW , the improvement in the objective function is 

| )( t
qWc |. When the mean is at most  , we get 

 

)( t
qWc 





Aji

t
qij

Wji

t
ijq W

t
q

).().(

)(C  . 

 

Thus, the improvement resulting from any cycle of mean at most   is at least  .    □ 

 

We already discussed the optimality conditions for various types of nonlinear 

programming problems along with KT conditions. When applied to a )MCDF( problem, 

the optimality conditions for each arc ),( ji  and product q, and period t turn out to be: 

 

  0)(2)(2  t
jq

t
iq

t
ijij

t
ijq

t
ijq xexecx  , 

0)(2)(2  t
jq

t
iq

t
ijij

t
ijq xexec  , 

t
iq , t

jq  free variables. 

 

The optimality conditions may now be written as: 

 

 
0t

ijqx           0)(2)(2  t
jq

t
iq

t
ijij

t
ijq xexec  ,   (4.30) 

 
0t

ijqx           0)(2)(2  t
jq

t
iq

t
ijij

t
ijq xexec  .   (4.31) 

 

Theorem 4.9   The solution at the end of a δ-ρ-phase of the MMNF algorithm is a (δ,‎

δρ)-optimal solution to the penalty problem )MCDF( . Furthermore, a flow x is optimal 

for problem )MCDF(  if and only if x is (δ,‎ ε)-optimal for all sufficiently small (non-

negative) values of δ.  
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Proof   Considering that there is no negative cycle, the shortest path problem from the 

source node of each product to any other node in the residual network is well 

defined  [3]. It is also easy to see that with respect to the following arc costs there will be 

no negative cost cycle either. 

 

For each forward arc ),( ji in ),( xGt
q :            )(2)(2

~
xexec t

ijij
t
ijq

t
ijqC , 

For each backward arc ),( ij in ),( xGt
q :         )(2)(2

~
xexec t

ijij
t
ijq

t
jiqC .  

 

Let t
iq denote the length of the shortest path from the source node of product q to node i 

in ),( xGt
q with respect to cost vector C

~
. By the optimality conditions of the shortest 

path problem the following conditions be satisfied. 

 

For any forward arc ),( ji  in the residual network ),( xGt
q : 

 

t
iq

t
ijq

t
jq   C

~
             t

iq
t
ijij

t
ijq

t
jq xexec )(2)(2 .

 

 

The last inequality can be written as following by rearranging the terms. 

 

 
t
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t
iq

t
ijij

t
ijq xexec   )(2)(2  . (4.38) 

 

For any backward arc ),( ij  in the residual network ),( xGt
q ’ 

 

 t
jq

t
jiq

t
iq   C

~
             t

jq
t
iq

t
ijij

t
ijq xexec )(2)(2 . (4.39)

 

 

Note that we include a backward arc in the residual network only for a forward arc 

whose q-flow at period t is  . Therefore, for each arc ),( ji with flow t
ijqx  

inequalities (4.38) and (4.39) apply, and therefore, 

 

  t
jq

t
iq

t
ijij

t
ijq xexec )(2)(2         ),( ji : t

ijqx . 

 

For each arc ),( ji  with flow t
ijqx  only inequality (4.38) applies. Then, we get 

 

t
jq

t
iq

t
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t
ijq xexec   )(2)(2                 ),( ji : t

ijqx . 
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Thus, at the end of a δ-ρ-phase the following conditions are satisfied:  

 

        t
ijqx             t

ijqr , 

t
ijqx           t

ijqr . 

 

Consequently, the (δ,‎ε)-optimality conditions reveal that the solution at the end of a δ-

ρ-phase of our algorithm is (δ,‎ δρ)-optimal solution to the penalty problem )MCDF( .     

Now, by letting δ→0 and using the definition of (δ,‎ε)-optimal we will meet the exact 

optimality conditions.                                                                                                        □ 

 

As mentioned before, one way to assure that the algorithm detects only negative cost 

cycles whose mean means is at most   is to add  units to the cost of each arc in the 

residual network. The following lemma proves that in such a case, our algorithm finds a

 ),(  optimal solution at the end of a δ-ρ-scaling phase. 

 

Lemma 4.2   Assuming that there is no negative cost cycle in the  -added residual 

network whose mean is   . Then, the solution is a  ),(  optimal solution to 

the penalty problem )MCDF( . 

 

Proof   The proof is similar to the proof of Theorem 4.9, with an amount of   added to 

the cost to assure detections of cycles whose mean   . Note that a positive amount   

is added to both forward and backward arcs. Thus, the cost of each forward arc (i, j) 

becomes t
ijqC and the flow cost on each backward arc (j, i) becomes t

jiqC . 

Therefore, along the same lines as those in Theorem 4.9 we get: 

 

 

t
ijqx             t

ijqr , 

t
ijqx                t

ijqr  . 

 

Thus, when the search is limited to cycles whose mean is at most  , the algorithm 

finds a  ),(  optimal solution to the penalty problem at the end of a δ-ρ-phase.  □ 
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In our algorithm, we first determine the step size and then we look for an improving 

direction, so it can be referred to as the δ-shift scaling algorithm. However, there are 

some other approaches known as optimal-shift scaling algorithm. The algorithm is 

motivated by Frank-Wolfe gradient-based algorithm for quadratic 

programming  [24] [75] [78]. The optimal-shift scaling algorithm, however, is more 

similar to conventional nonlinear algorithms. Having determined the direction of 

improvement, the optimal step size along this direction is then calculated. There are two 

main differences between the optimal shift scaling algorithm and our algorithm. These 

differences are in the cost of the arcs of the residual network and the amount of flow 

shifted around negative cost cycles. A direction of improvement is found by detecting a 

negative cost cycle in the residual network of each product. The cost of an arc in the 

residual network ),( xGt
q  is the derivative cost of the penalty objective function )(xf   

with respect to the flow t-q-flow on that arc. The costs will be calculated as follows: 

 

For each forward arc ),( ji  in ),( xGt
q :      )(2)(2 xexec t

ijij
t
ijq

t
ijq  C ,  (4.32) 

For each backward arc ),( ij in ),( xGt
q :    )(2)(2 xexec t

ijij
t
ijq

t
jiq  C . (4.33) 

 

In the optimal-shift scaling algorithms, once a negative cycle is detected, the amount of 

flow to be shifted around is calculated. They shift the optimal amount, i.e., the amount 

which results in the maximum improvement of the penalty objective function. To 

determine the amount of shifted flow they need to solve a one-dimensional search 

problem. There are various methods in the literature for solving one-dimensional search 

problems for convex functions  [7] [12]. The following lemma shows that the optimal 

amount is the amount that drives the derivative cost along the cycle to 0. 

 

Lemma 4.3   The optimal amount to shift on a negative cost cycle with respect to 

derivative costs is the amount which drives the total cycle cost to 0. 

 

Proof    In the residual network ),( xG t
q , the costs on the arcs are the derivative cost of 

the penalty objective function with respect to the flow on the arc. Therefore, as long as 

the total derivative cost of the cycle is negative, shifting an additional infinitesimal 

amount improves/decrease the penalty objective function value. Let  be the amount 

which derives the cycle cost to zero. Once  is shifted, any additional infinitesimal 
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amount shifted around the cycle increases the penalty objective function. Thus,   leads 

to the maximum improvement of the penalty objective function. 

 

Lemma 4.4   Consider the residual network where the arc costs represent the derivative 

costs as in (4.32)-(4.33). If there are no negative cost cycles on the residual network, the 

current solution is optimal. 

 

Proof   Given the fact that there is no negative cycle, the shortest path problem from the 

source node of each product to any other node in the network is well defined. The 

negative of a dual variable of each node in an optimal solution of a shortest path 

problem equals the cost of the shortest path from the origin to that node  [3]. Let t
iq

denote the length of the shortest path from the source node of product q to node i in

),( xGt
q . Note that t

iq for each t and q could be different because the arc costs are not 

necessarily the same for each product at each time period. By the optimality conditions 

of the shortest path problem the following conditions are satisfied. 

 

For any forward arc ),( ji  in the residual network ),( xGt
q : 
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(4.34) 

 

By using the optimality conditions, inequality (4.34) can be written as: 
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For any backward arc ),( ij  in the residual network ),( xGt
q :    
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t
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(4.36) 

 

By rearranging the terms, inequality (3.36) can be written as: 

 

 
t
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ijq xexec   )(2)(20 . (4.37) 

 

Therefore, for each arc ),( ji  with flow 0t
ijqx  inequalities (4.35) and (4.37) apply. 

 

t
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t
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For each arc ),( ji  with flow 0t
ijqx  only inequality (4.35) applies. 

 

0)(2)(2  t
jq

t
iq

t
ijij

t
ijq xexec           ),( ji : 0t

ijqx . 

 

Thus, in the absence of negative cycles on ),( xGt
q the optimality conditions (4.30)-

(4.31) are satisfied, and so, the solution is optimal.                                                          □  

 

Remark 4.2   If we set  2 , then the solution at the end of a δ-ρ-phase of the 

algorithm, when the search is limited to cycles whose mean is  , is a (δ,‎2δρ)-optimal 

solution to the penalty problem )MCDF( . 

 

Remark 4.3   When the search is limited to cycles with mean  2 , the improvement 

in the objective function resulting from shifting δ units of flow around a negative cost 

cycle is at least  2 . Hence, we can set a lower bound on how much the penalty 

objective function improves when one shifts δ‎units of flow around a negative cost cycle 

in algorithm. 

 

Remark 4.4   The best implementation of the Label Correcting Algorithm, which 

permits arcs with negative cost, performs O(nm) operations  [3]. Hence, let O(nm) be the 

time bound to detect negative cost cycle. Since we search for a negative cycle on a 

residual network of one product at a time, we may search at most T*K times before 

detecting a negative cost cycle. Thus, the number of operations performed before a 

negative cost cycle is detected is )(nmTΚO . 

 

Remark 4.5   One may prefer to use another approach to detect the cycles. The bound 

on the number of negative cycles detected at each δ-ρ-phase is derived by dividing the 

maximum possible improvement at this phase by the lower bound on the improvement 

per negative cost cycle as given in Lemma 4.1. Klein et al  [51] and Schneur  [78] present 

a detailed analysis of the bounds on the number of algorithmic operations for some 

problems with side constraints. By taking their works and feasibility of the problem into 

account, the most possible improvement in the objective function will be )( maxvnO  . 
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Since the improvement for sending flow around a negative δ-cycle is at least  2 , the 

number of negative cost cycles detected in each phase is )( max nvO .
  

 

4.5 Analysis of the Algorithm and Two Specific Implementations 

Nowadays, dynamic and multiperiod network flow models are applied to a variety of 

situations. Dynamic multiperiod flows are widely used in modeling of control processes 

from different technical, electrical, economic and information systems. Electricity and 

data transmissions, road or air traffic control, production systems, evacuation planning, 

production and distribution, telecommunication, transportation, communication, and 

management problems can be formulated and solved as single-commodity or multi-

commodity problems on (multiperiod) dynamic networks. Examples and applications 

can be found in the literature such as Aronson  [6], Cal  [16], Hoppe  [34], Lozovanu ‎[57], 

Skutella  [80], Moret  [63] ,Moin  [64], Neiro  [66], and Stefansson  [82]. 

 
 

 

 
Figure  4.4   A typical diagram of an AC electricity distribution from generation stations 
to consumers. 

 

This section focuses on the computational testing and analysis of our algorithm on 

electricity distribution-transmission network mentioned in Chapter 1. The problem is to 

determine the production circuit and shipping pattern within a finite planning horizon so 

as to minimize the daily cost (the planning horizon is a day). To illustrate the 

performance of our approach, we conduct a series of experiments using real data from 

our case study. However, our results should be applicable to any other types of 

problems as well. We mainly consider an interconnected distribution network that is a 

local low-voltage part of a large distribution-transmission electricity system that 
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connects the customers to the long-distance high-voltage transmission system which, in 

turn, connects to generating plants. It contains a number of customers (cities, factories, 

homes etc.) with demand for certain products (different voltage of electricity) over a 

specified time period. 

 

 

Figure  4.5   A general layout of an electricity network 

 

We assume that demand is satisfied by shipping electricity in a fixed number of 

wires/lines from a number of supply/production sites, where the cost of production is 

assumed to be varying for different time increments and fro different voltage of 

electricity (or fixed for each time period). We concentrate on the case in which each 

wire must unload all of its goods (electricity) at the demand site upon arrival.  
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Several parameters must be specified in order to illustrate topology of the grid, namely, 

various types of arc capacities (time-varying, time-commodity varying, and horizon), 

arc costs, node storage capacities (if desired), production sites, demand sites, the 

connections (wiring), number of periods |N|, number of products |K|, indegree and 

outdegree of each site, minimum and maximum values of arc capacities for each 

product and time period, and finally, the production/consumption capacity of each site 

which are, of course, varying over time and commodity. 

 

Chapter 4 mostly discusses the scaling algorithm for minimum cost multiproduct 

multiperiod distribution flow problems exploiting an associated penalty problem with 

quadratic penalty functions. However, the general framework can be used when 

applying other forms of penalty functions. In this part, we investigate the MMN 

problems by introducing a linear penalty function into the auxiliary non-linear penalty 

problem, which leads to develop a special implementation of the MMNF algorithm. 

Moreover, a similar framework may also be used for solving other MMN problems, as 

well as MMN problems with side constraints. For example, the multiproduct multiperiod 

feasibility problem (MMFP) is similar to the minimum cost multiproduct multiperiod 

distribution flow problem. Here, we also discuss feasibility problem and we propose a 

specific implementation of MMNF algorithm as a solution approach for MMFP. Although the 

general steps of the algorithms are similar, they are quite different when it comes to 

constructing the residual networks and defining the residual costs. 

 

4.5.1 The Penalty-Based Scaling Approach with Linear Penalty Function 

If we define the excess functions associated with each violated capacity constraints as 

(4.19) and consider a linear penalty term for violation, we get the following penalty 

problem Linear)MCDF( . 

 

Linear)MCDF(           
 



t ji

t
ijq

t
ijq

q

xcxf

A),(K

)(Min  
 
















A),(

)()(

ji t

t
ijij xexe

N

  

                         t
iq

j

t
jiq

j

t
ijq vxx               Vi , q , t , 

                        t
ijqx0                           ),( ji , q , t . 



132 

 

In fact, we eliminate the complicating constraints and we decompose the problem into 

|T||K| single-product flow problems, but introduce non-separable piece-wise linear terms 

into the objective function. Termination of the algorithm depends on the values of δ and

 . The algorithm finds a direction of interest such that by modifying the flow by δ units 

in this direction the penalty objective function )(xf  decreases. When such an 

improving direction cannot be found, the step size is decreased to δ/2. 

 

Property 4.1   The original arcs of the network form the forward arcs of the residual 

network. Moreover, if ),( ji  is a forward arc in the associated δ-residual network 

),( xG t
q , then the cost of ),( ji  is the net change in the objective function of model 

Linear)MCDF( obtained by increasing the flow on arc ),( ji by δ units. 
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Property 4.2   A backward arc is included in the δ-residual network of time t for 

product q if and only if we can decrease the flow of product q at period t. Moreover, if 

),( ji  is a backward arc in the associated δ-residual network ),( xG t
q , then the cost of arc 

),( ji  in the residual network ),( ji  is the net change in the objective function of model 

Linear)MCDF( obtained by decreasing the flow on arc ),( ji by δ units. 
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4.5.2 The Multiperiod Multiproduct Feasibility Problem (MMFP) 

In a MMFP, a discrete multiperiod multiproduct feasible flow is a non-negative function

 IRKΝΑ:}{ t
ijqxx  satisfying (4.15)-(4.18). Due to the structure of the MMFP, the 

penalty terms will be the only components of the objective function in the associated 

penalty problem. On the other hand, the penalty parameter has no influence on the 

solution of the penalty problem and can be arbitrarily fixed. Thus, only one penalty 

problem is solved (through scaling phases) with a decreasing scaling parameter. 
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Therefore, if we define the excess functions associated with each violated capacity 

constraints as (4.19), and set the value of the penalty parameter  to 1, we get the 

following penalty problem )(MMFP for MMFP  : 
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ijqx0            ),( ji , q , t . 

 

An optimal solution to the penalty problem is a feasible solution to the MMFP if such a 

solution exists. Hence, the optimal value of the penalty objective function in this case is 

zero. The algorithm starts with an initial value for the scaling parameter δ. At each 

scaling phase, δ is fixed. Focusing on one product at one time period, we try to improve 

the objective function of )(MMFP by modifying some of the flows of this product by 

exactly δ units. The algorithm can be outlined as follows: 

 
Algorithm MMFP; 

begin 

   Determine an initial dynamic solution x satisfying (only) flow requirements; 

   Set values for the parameter  ; 

   Choose initial values for δ; 

   while  the algorithm’s termination criteria {    or/and ugapgap  } are not met  do 

           begin 

           IMPROVE-APPROXIMATION (x,‎δ); 

           δ‎:=‎δ/2; 

           end 

 end 

 
As already mentioned, the procedure IMPROVE-APPROXIMATION consists of two 

subroutines, namely, SEARCH(q, t) and AUGMENT( t
qW , δ). SEARCH(q, t) is a 

procedure that searches for a negative cost cycle on ),( xG t
q . AUGMENT( t

qW ,‎ δ) is a 

procedure which shifts δ units of q-flow around a cycle t
qW . The arc costs on the 

residual network should be defined according to the following properties. 
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Property 4.3   If ),( ji  is a forward arc in the δ-residual network ),( xG t
q , then the cost 

of arc ),( ji  in the residual network for time period t and product q is obtained by    
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Property 4.4   If ),( ji  is a backward arc in the δ-residual network ),( xG t
q , then the cost 

of arc ),( ji  in the residual network for period t and product q is obtained by 
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We have analyzed MMNF algorithm and its special implementations from both 

theoretical and practical perspectives. The practical performances seem also support the 

theoretical properties we have already derived. The results of a very small number of 

runs over the real networks will be summarized later in this section. Computational 

experiences and tuning are demonstrated using many actual instances corresponding to 

some transmission-distribution networks from our case study having different 

parameters. Our networks usually have a density of almost 6/5, 4/5, or 1 and sometimes, 

the self-similar patterns of our networks let us exploit parallel computing. The ratio of 

transshipment sites to electrical substations (t/e) is usually 1/5 or 1/2. 

 

http://en.wikipedia.org/wiki/Self-similar
http://en.wikipedia.org/wiki/Electrical_substation
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Figure  4.6   A typical self-similar pattern distribution network 

 

Some experiments are also conducted on some random (but with real topology) 

multiperiod distribution networks with various parameters. The cost on each arc (for 

each time period for each product) is randomly chosen from a uniform distribution 

between user defined parameter minc and maxc . The demand/requirement for each time 

step with respect to each product q is to be set such that the problem is feasible and 

likewise for arc capacities etc. For each value of n (n=ns+nd is the total number of 

production plants and demand sites), we create distribution networks with different 

indegree and outdegree in a range from 1 to max{ns, nd}. The minimum and maximum 

capacities are set to umin and umax (usually, 100|N| and 10000|N|, respectively), the 

minimum and maximum costs are varying from problem to problem (usually, between 

100 and 1000). For large values of umax no arc is saturated and therefore, the problem is 

easy to solve since it decomposes to K single-product problems. In order to have an 

interesting enough problem instances we selected a value of umax for which the problem 

is just feasible. To generate less congested problems, one may either use the same 

demand and increase the capacity, or decrease the demand and use the same capacity. In 

general, we expect that less congested problem instances have fewer saturated arcs at 

optimality. In order to generate less congested problem instance, one may solved the 

problem with umax replaced by 5umax. This also helps us generate feasible problems. One 

may consider large period and/or horizon capacities to guarantee the feasibility. 

 

For the sake of simplicity, for each arc the cost of sending a unit of flow on it is 

independent of the product and in addition, each product has one origin and one 

destination. In our tests the detected negative cost cycles have sufficiently large absolute 

costs relative to δρ. Thus, for practical purposes, there is no need to add an amount of δρ 

to each arc of the residual network. For each specific setting of n and m, we tested a 

random distribution network with a different topology and density. In addition, we have 

performed several computational tests and analyzed our approach’s sensitivity on a 
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variety of problem instances. However, the behaviors are similar across our problem 

instances. We have investigated different implementation ideas and parametric 

sensitivity of the method to various data parameters, such as the number of arcs, number 

of time increments, density (m/n), number of products, and the congestion in the 

multiperiod network, penalty parameter etc. Our algorithm and all modellings were 

implemented in GAMS (General Algebraic Modelling System) on a personal computer 

(Intel(R) Pentium(R) CPU P6200 @ 2.13GHz and 4 GB of RAM). 

   

For feasibility problem (MMFP), we restrict our attention to the case in which each arc 

must unload all of its goods at the demand site upon arrival. In the following, we check 

the validity of MMFP algorithm on some small instances. 

 

In MMFP, the objective is to determine whether it is possible to have a production 

circuit and shipping good within the predetermined time period. And if there is no 

feasible flow, the goal is to determine where and when this infeasibility occurs and the 

magnitude of the infeasibility. We may be able to handle this infeasibility curse by 

providing the necessary budget for creating more capacity. This feature is one of the 

most important attributes of our algorithm, which exactly detects where, when, and how 

much of infeasibility exists in the problem, rather than just reporting “infeasible”. 

 

 
 

Table  4.1   Tuning-Testing for Algorithm MMFP (checking) 

 

P
ro

b
le

m
 

  

 
 

Problem 

Status 

 
Density, 

|K|, m, n 

  

 

ε 

 

Total 

Cost by 

(MMFP) 

 

Max 

Violation 

(MMFP) 

 

Execution 

Time 

(MMFP) 

P. 1  

 

 

feasible 

 

 6/5, 2, 

12,10 

1 6.571099E-7 0.543 0.004 

P. 2 0.9 0.098 0.312 0.002 

P. 3 0.1 0.410 0.641 0.002 

 

P. 4  

 6/5, 2, 

12,10 

0.01 1.573935E-7 3.967285E-4 0.003 

P. 5 0.001 1.421085E-8 1.192093E-4 0.003 

P. 6 0.00001 0.000 0.000 0.005 

P. 7  
 

feasible  

 

1, 4, 

40,40 

0.1 0.006 0.076 0.008 

P. 8 0.001 1.455192E-7 3.814697E-4 0.010 

P. 9 0.00001 2.22045E-12 1.490116E-6 0.015 

 

P. 10  

infeasible 

( ≈1 unit 

infeasibility) 

 

 

 1, 4, 

40,40 

0.1 0.502 0.531 0.022 

P. 11 0.01 0.500 0.507 0.010 

P. 12 0.0001 0.500 0.500 0.013 

 

P. 13 
 

infeasible 

( ≈1 unit 

infeasibility) 

 

 6/5, 2, 

12, 10 

0.001 0.500 0.500 0.005 

P. 14 0.1 0.505 0.502 0.003 

P. 15 1 0.781 0.781 0.003 
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 Table  4.2   Some Various Settings for MMFP Algorithm 
 

Representing Some Good and Bad Settings for MMFP Algorithm for a Small Feasible Instance with 

Density 1 (m=n=40), and Minimum and Maximum Flow Requirement 100 and 900.     
 

 

The planning horizon is one day, i.e., T = One day.      |K|=4   ,   Umax =6000   ,   t/e=1/5. 

P
ro

b
lem

 

 
 

δ0    

 

ε 

 
 

 

Total Cost by  

MMFP Alg. 

 
 

Excess Cost 

 
 

Maximum  

Violation 

 
    Execution Time 

P.1 100000 0.00001 1.45804E-11 1.45804E-11 3.818423E-6 0.015 SECONDS 

P. 2 1000 0.00001 3.55271E-11 3.55271E-11 5.960464E-6 0.014 SECONDS 

P. 3 10000 0.00001 2.22045E-12 2.22045E-12 1.490116E-6 0.014 SECONDS 

P. 4 90000 0.999 0.244 0.244 0.494 0.008 SECONDS 

P. 5 1000 0.9 0.153 0.153 0.391 0.006 SECONDS 

P. 6 10000 0.9 0.117 0.117 0.342 0.007 SECONDS 

  

P. 7 10 0.1 0.000 0.000 0.000 0.020 SECONDS 

P. 8 50 0.01 0.000 0.000 0.000 0.009 SECONDS 

P. 9 50 0.0001 0.000 0.000 0.000 0.012 SECONDS 

P. 10 100 0.00001 0.000 0.000 0.000 0.011 SECONDS 

 

In any approximation algorithm, there are various ways of evaluating how close a given 

solution is to the optimality. Some useful measures in our case are the flow cost (FC), 

excess cost (EC), total cost (TC), and maximum excess. Once we know the optimal 

solution, we can compare it to the flow cost of the δρ-optimal solution. Note that flow 

cost may be smaller than the optimal solution, since we have already relaxed the 

capacity constraints (see Tables 4.1-4.5). The excess cost, which is the value of the 

penalty term, and its proportion of the total cost (TC=FC+EC), provide us information 

about the deviation from feasibility. 

 

Theoretical analysis of penalty methods show that the total cost and the flow cost 

increase between penalty phases when ρ increases  [27] [75]. This is intuitive since when 

ρ increases the penalty is greater. In our algorithm, however, we modify δ and ρ 

simultaneously, and δρ decreases. We already proved that the solution at the end of each 

δ-ρ-phase is (δ,‎δρ)-optimal, therefore, at each phase we typically have a solution that is 

closer to the optimal solution. Therefore, the total cost usually decreases between phases 

until it converges to the optimal solution. The excess cost is the difference between the 

total cost and the flow cost. When the penalty parameter increases we expect the excess 

to decrease. Sometimes this decrease is sufficient to lead to a net decrease in the total 

excess cost. The flow cost may go up or down. We observe that the flow cost and total 

cost converge to the solution value at the end of the algorithm and thus, the excess cost 

converges to zero (see Tables 4.3-4.11). 
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We also observe that the general behavior of the maximum excess is similar across the 

different data sets. An interesting observation may be found in following figure which is 

drawn for a data set of density 4/5 having 4 commodities (δ =1, ρu=11111, ε =0.00001). 

The figure shows that the maximum excess (and so, the excess term) sharply decrease in 

the first few phases, although the value of ρ is smaller than its value in later phases. This 

is probably due to the linear relationship between δ and the maximum excess, the 

somewhat quadratic relationship between δ and the excess term, and the fact that δ 

decreases in a faster rate than ρ increases.  

 

 

Figure  4.7   A typical maximum excess progress at the end of each scaling phase of 
some application of MMNF algorithm (setting: δ=1, ρu=11111, ε=0.00001) 

 

As we already proved, during each δ-ρ-phase of the MMNF algorithm the total cost 

decreases because flow is sent around negative cost cycles (see the last three sections). 

When a phase terminates we increase the penalty parameter and therefore, the total cost 

which corresponds to the new penalty parameter increases. The total cost decreases 

again during the next δ-ρ-phase. Thus, at the end of a δ-ρ-phase the total cost is not 

necessarily smaller than the total cost at the end of the previous phase. Nevertheless, the 

total cost typically decreases between phases (or it increases only by a little amount). 
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 Table  4.3   Parameter Settings and Tuning-Testing for Some MMNs 
 

For all feasible problem instances P. 1-11, the running time by GAMS ≤ 2s. 

For all feasible problem instances P. 12-16, the running time ≤ 10s. 

 

For all (real) problems, the planning horizon time is one day, i.e., T = One day.  

P
ro

b
lem

  

 

Density, 

|K|, m, n 

 

 

Optimal 

Solution 

 

 

Parl. 

Comp. 

 

R 

 

ρu 

 

ε 

 

Total 

Cost by  

MMNF Alg. 

 

 

Excess 

Cost 

 

 

Max 

Excess 

 

 

Execution  

Time (s) 

P. 1 4/5, 3, 12, 15 117700.0 no 1.7 113 0.001 117699.601 0.399 0.042 < 2 

P. 2 6/5, 3, 18, 15 168351.0 no 1.7 213 0.0001 168350.802 0.198 0.031 < 2 

P. 3 4/5, 6, 24, 20 199870.0 no 1.5 100 0.001 199869.877 0.122 0.035 < 2 

P. 4 4/5, 2, 8, 10 469560.0 no 1.7 777 0.0001 469558.599 1.402 0.042 < 2 

P. 5 4/5, 5, 20, 25 225900.0 no 1.3 70 0.01 225900.001 < 0.001 < 0.001 < 2 

P. 6 4/5, 6, 24, 30 199870.0 no 1.3 1000 0.0001 199869.988    0.012     0.003 < 2 

 

P. 7 4/5, 4,16, 20  469560.0 no 1.3 777 0.00001 469558.598 1.402 0.042 4.156 

P. 8 4/5, 6, 24, 30 199870.0 no 1.3 200 0.0001 199869.939 0.061 0.017 < 2 

P. 9  

6/5, 7, 42, 35 

 

 

311950.0 

no 1.3 311 0.001 311945.542 4.458 0.078 3.062 

P. 10 no 1.3 99 0.001 311935.996 14.003 0.245 < 2 

P. 11 no 1.3 111 0.001 311937.510 12.490   0.218 < 2 

 

P. 12  
 

6/5, 70,  

420, 350 

 

 

3119500.0 

yes 1.3 100 0.0001 3119478.97 21.03 0.145 11 

P. 13 yes 1.7 317 0.00001 3119493.37 6.63 0.046 < 2 

P. 14 yes 1.7 1113 0.00001 3119498.11 1.89 0.013 < 2 

P. 15 
 

4/5, 40,  

160, 200 

 

1914720.0 

yes 1.3 10 0.001 1914717.75 2.25 0.150 < 3 

P. 16 yes 1.7 
 

11111 0.00001 1914720.00 < 0.0001 <0.0001 < 3 

 

As reported in Tables 4.4 and 4.5, Cplex failed to solve most of our large instances. It 

also did not manage to generate a proper model of our instances after allocating a huge 

amount of work space. In contrast, MMNF algorithm found the solution of all samples 

of ours in a reasonable amount of time by allocating a very small amount of work space.  
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Table  4.4   Computational Results for Some Large Feasible MMNs 
 

An application of  MMNF algorithm for some large random feasible instances with: 

uniform flow requirement U(100, 900), and uniform cost U(1,100), and  

uniform capacity U(100*|T|, 10000*|T|)  for sample problems P.1 – P.4 and 

uniform capacity U(300, 900)  for sample problems P.5 – P.6. 
 

 

For all problems, the planning horizon time is one day(T=1).            |T|=24 (hrs)  for P.1 and P.2. 
 

                  

  Instances  
 

 

  Settings 

 

 

P.1 

 

 

P.2 

 

 

 

P.3 

 

 

P.4 

 

 

P.5 

 

 

P.6 

 

Problem’s Status 

 

 ***  Feasible  *** 

 

# Node-Commodities 
 

133,056 

 

165240 

 

73,227 

 

245,100 

 

64,800 

 

50,500 

 

# Arc-Commodities 
 

1.024531E+7 

 

1.366438E+7 
 

2.080964E+7 

 

6.606000E+7 

 

1.08141E+7 

 

1.300000E+7 

 

# Commodities 
 

24 

 

27 
 

77 

 

300 

 

100 

 

50 

 

# Constraints 

 

577,731 

 

692,415 

 

613,737 

 

685,500 

 

281,082 

 

570,500 

 

# Variables 

 

1.024531E+7 

 

1.366438E+7 
 

2.080964E+7 

 

6.606000E+7 

 

1.081410E+7 

 

1.300000E+7 

 

Network Density 
 

77 

 

82.694 

 

284.180 

 

269.523 

 

166.884 

 

257.426 

 

R 
 

1.700 

 

1.300 

 

1.700 

 

1.700   

 

1.300   

 

1.700   

 

ρu 
 

100 

 

113 

 

110 

 

110 

 

110 

 

110 

 

ε 
 

0.10 

 

0.001 

 

0.010 

 

0.010 

 

0.0010 

 

0.010 

 

MaxExcess 

(MMNF) 

 

0.000 

 

0.005 

 

0.096   

 

0.095 

 

1.177 

 

0.290 

 

Average Excess 

(MMNF) 

 

0.000 

 

0.001 

 

0.032 

 

0.032 

 

1.275 

 

1.519 

 

Work Space Allocated 

for MMNF 

(reported by GAMS) 

 

 

93.1 Mb 

 

 

135.6 Mb 

 

 

156.0 Mb 

 

 

620.6 Mb 

 

 

18.2 Mb 

 

 

14.5 Mb 

 

Work Space Allocated 

for CPLEX 

(reported by GAMS) 

 

 

> 2,000 

 Mb 

 

 

> 2,300  

Mb 

 

 

> 2,000 

 Mb 

 

 

> 2,200  

Mb 

 

 

> 1,800  

Mb 

 

 

> 1,800  

Mb 

 

Running Time for 

MMNF  (by GAMS) 
 

 

1,327 

SECONDS 

 

1572.247 

SECONDS 

 

3,630 

SECONDS 

 

21,454 

SECONDS 

 

290 

SECONDS 

 

249 

SECONDS 

 

Running Time for 

CPLEX (by GAMS) 

 

Failed to  

solve in >> 

2,000 Sec. 
 

 

Failed to 

solve in >> 

2,900 Sec. 
 

 

Failed to  

solve in >> 

4,000 Sec. 
 

 

Failed to  

solve in >> 

30,000 Sec. 
 

 

Failed to  

solve in >> 

1,800 Sec. 

 
 

Failed to  

solve in >> 

1,800 Sec. 
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As discussed earlier, MMNF algorithm not only reports the approximate amount of 

violation in the network, but it can also report the approximate cost to resolve this 

infeasibility, if desired. It, on the other hand, can detect for which arcs for which 

commodities for which time period the network has infeasibility. This reported excess 

cost, in this case, can be seen as the approximate necessary budget for the decision 

maker to get rid of the curse of infeasibility. 

 

Table  4.5   Computational Results for Some Infeasible MMNs 
 

An application of  MMNF algorithm for some random infeasible instances with: 

uniform flow requirement U(10000, 20000), uniform capacity U(100*|T|, 10000*|T|), and uniform cost 

U(1,100). 
 

 

For all problems, the planning horizon time is one day (T=1).         |T|=13   for P.1 and P.2. 
 

                  Instances  
 

 

  Settings 

 

 

P.1 

 

 

P.2 

 

 

 

P.3 

 

 

P.4 

 

 

P.5 

 
 

P.6 

 

Problem’s Status 

 

 ***  Infeasible  *** 

 

# Node-Commodities 
 

42,471 
 

28,431 
 

507 

 

12,397 

 

17,745 

 

65,667 
 

# Arc-Commodities 
 

1,401,543 
 

767,637 
 

6,591 

 

539,539 

 

968,877 

 

6,610,419 
 

# Commodities 
 

33 
 

27 
 

13 
 

77 
 

91 
 

177 
 

# Constraints 
 

88209 
 

59049 
 

1521 
 

26411 
 

39039 

 

140361 
 

# Variables 
 

1,401,543 
 

767,637 
 

6,591 
 

539,539 
 

968,877 

 

6,610,419 
 

Network Density 
 

33.000 
 

27.000 
 

13.000 
 

43.522 
 

54.600 
 

100.666 
 

R 
 

1.300 

 

1.300 

 

1.300 

 

1.300 

 

1.700 

 

1.300 
 

ρu 
 

99.000 

 

99.000 

 

113.000 

 

113.000 

 

113.000 

 

113.000 
 

ε 
 

0.001 

 

0.001 

 

0.0001 

 

0.010 

 

0.0100 

 

0.0010 
 

Maximum Violation 

(reported by MMNF) 
 

 

315254.004 
 

7771.000 
 

13252.000 
 

15549.001 
 

12836.002 
 

10795.000 
 

Average Violation 

(reported by MMNF) 

 

116230.668 
 

5059.131 
 

4417 
 

5183 
 

4278 
 

3598 
 

Work Space Allocated 

for MMNF 
 

 

16.6 Mb 
 

9.8 Mb 
 

1.4 Mb 
 

3.5 Mb 
 

6.6 Mb 
 

28.1 Mb 

 

Running Time for 

MMNF  (by GAMS) 
 

 

118 

SECONDS 

 

52 

SECONDS 

 

0.397 

SECONDS 

 

6 

SECONDS 

 

22 

SECONDS 

 

305 

SECONDS 

 

The influence of the number of products and the number of time increments on the 

performance of the algorithm is more or less similar. Both the number of cycle searches 

and the running time are mainly influenced by the number of products and time periods, 

usually as increasing function (but not always). It appears that there is no obvious trend, 

and therefore, we cannot deduce anything regarding the influence of products and time 

increments on the number of iterations. 
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Table  4.6   Parameter Settings for Algorithms ‘MMNF’ and ‘MMNF-Linear’ 

P
ro

b
lem

 
 

 
 

Optimal 

Solution 

 
R 

 

ρu 

 

ε 

 

Total 

Cost by 

(MMNF) 

 

Total 

Cost by 

MMNF-

Linear 

 

Max 

Excess 

(MMNF) 

 

Max 

Excess 

(MMNF

-Linear) 

 

Execution 

Time 

(MMNF) 

 
 

Execution 

Time 

(MMNF-

Linear) 

 

P. 1  

 

 
 

296736 

1.3 10000 0.0001 296736.784 296736.900 0.008 0.00 11.812 49.963 

P. 2 1.3 1000 0.001 296736.462 296736.900 0.028 0.00 1.477 50.118 

P. 3 1.3 300 0.001 296735.309 296736.900 0.073 0.00 0.305 49.909 

  

P. 4 1.2 10000 0.0001 296735.559 296736.903 0.077 0.00 6.949 262.331 

P. 5 1.2 500 0.001 296734.120 296736.903 0.159 0.00 0.915 264.465 

P. 6 1.2 55 0.0001 296728.220 296736.900 0.397 1.3E-6 0.077 262.085 

P. 7 1.2 33 0.0001 296722.433 1.3015E+8 0.662 1400.0 0.024 30.291 

 

P. 8  

 

 

 

80229 

 

1.3 213 0.0001 80228.144 80229.000 0.063 0.00 0.128 2.600 

P.9 1.3 500 0.1 80226.060 80229.001 0.312 0.001 0.014 2.698 

P. 10 1.2 377 0.0001 80227.921 80229.002 0.100 0.000 3.535 45.724 

  

P. 11 1.1 300 0.0001 80214.658 3341748.97 1.180 427.00 1.698 148.105 

P. 12 1.1 377 0.00001 80213.861 3169451.99 1.246 427.00 19.621 1784.644 

P. 13 1.2 777 0.1 80203.272 8506286.33 2.371 700.00 0.027 5.494 

  

P. 14 
 

 

469560 

1.3 1500 0.0001 469559.274 469560.001 0.022 0.00 4.062 17.290 

P. 15 1.4 1600 0.00001 469559.319 469560.451 0.021 0.00 1.133 2.644 

P. 16 1.5 2000 0.001 469559.456 469971.377 0.016 0.00 2.982 1.863 

 

As it is observed and we expected from penalty function methods  [7] [27] [78], in 

general, when the value of the penalty upper bound ρu is too small, then the excess on 

some arcs at the end of the last phase is not sufficiently small. Thus, more phases will 

be required in order to get a good solution. The algorithm also shows the same behavior 

when we remove ρ=ρu from termination criteria. In this case, when modification rate R 

is too small the final value of ρ is relatively small, and excess on some arcs at the end of 

the last phase is not small enough. 

 

For example, when we set R=0.1, even though ρ0 is relatively large, the final value of ρ 

is small. When some more phases are performed the amount of violation decreases, but 

the total number of iterations increases and therefore, the total time increases as well. 

See, for example, Table  4.7 and 4.9 - 4.11. 
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  Table  4.7   MMNF Sensitivity w.r.t. Penalty Parameter Upper Bound (ρu) 
 

For all feasible problem instances, the running time by GAMS ≤ 2s. 
 

P
ro

b
lem

 

 
 

 Density, 

|K|, m, n 

 

 

 4/5, 3, 

12, 15 

 
 

 
Optimal 

Solution 

 

117700.0 

 
R 

 

ρu 

 
δ0 

50 

 
ρ0 

1.3 

 
 

ε 
0.1 

 
 

Total 

Cost by  

MMNF Alg. 

 
 

Excess 

Cost 

 
 

Max 

Excess 

 
 

Execution 

Time (s) 

Set1 1.5 7 117693.554 6.542 0.684 < 2 

Set2 1.5 10 117695.488 4.533 0.476 < 2 

Set 3 1.5 17 117697.346 2.680 0.281 < 2 

Set4 1.5 23 117698.038 1.981 0.208 < 2 

Set5 1.7 27 117698.329 1.692 0.177 < 2 

Set6 1.7 57 117699.208 0.774 0.082 < 2 

Set7 1.7 113 117699.601 0.413 0.043 < 2 

  

Set1  

 

Density, 

|K|, m, n 

 

6/5, 7, 

42, 30 

 

 

Optimal 

Solution 

 

311950.0 

1.3 7  

δ0=20 

 

ρ0=1.3 
 

ε 
0.0001 

311751.946 198.053   3.464 < 2 

Set2 1.3 17 311868.449 81.551 1.426 < 2 

Set 3 1.3 57 311925.678 24.322 0.425 < 2 

Set4 1.3 87 311934.065 15.935 0.279 < 2 

Set5 1.7 99 311935.996 14.004 0.245 < 2 

Set6 1.9 99 311935.996 14.004 0.245 < 2 

Set7 1.1 99 311807.332   174.371 2.773 15.547 

 

Not surprisingly, on the other hand, when for some combinations of ρ0 and R the penalty 

parameter is too large in the initial phases, large values of excess are not allowed even 

in the initial phases, and so the algorithm tries to find a good solution without fully 

exploiting the relaxation of the horizon and period capacity constraints. As a result, the 

algorithm converges more slowly. Such cases usually occur when ρ0 >1.7 and R >2. 

 

Table  4.8   MMNF-Linear Sensitivity w.r.t. Penalty Parameter Upper Bound (ρu) 
 

The planning horizon time is set to be one day. 
 

P
ro

b
lem

 

 
 
 

 

 

Density, 

|K|, m, n 

 

 
 

1, 4, 

24, 20 

 
 

 
 

Optimal 

Solution 
 

 

469560.0 

 
R 

 

ρu 
 

δ0 

100 

 
 

ρ0 =1.7 
 

 
 

ε 
0.01 

 

 

Total 
Cost by  

MMNF-linear 

 
 

Excess 

Cost 

 
 

Max 

Excess 

 
 

Execution 
Time (s) 

Set1 1.3 99 469559.992 1.296576E-6 1.144409E-4 17.699 

Set2 1.3 111 469560.002 4.038156E-8 1.907349E-5 17.798 

Set 3 1.3 150 469559.999 5.456968E-8 1.907349E-5 17.764 

Set4 1.3 270 469560.002 0.000 0.000 17.777 

Set5 1.3 390 469560.002 0.000 0.000 17.847 

Set6 1.3 500 469560.001 0.000 0.000 17.800 

Set7 1.3 1000 469560.001 0.000 0.000 17.651 

  

Set1  

Density, 

|K|, m, n 
 
 

4/5, 4, 

16, 20 

      

Optimal 

Solution 
 

191472.0 

1.1 30 
 

δ0=30 
 

ρ0=1.1 
 

ε=0.0001 

191472.001 1.30302E-10 3.814697E-6 2.742 

Set2 1.1 110 191472.001 1.30302E-10 3.814697E-6   2.807 

Set 3 1.1 200 191472.001 1.30302E-10 3.814697E-6 2.774 

Set4 1.1 10000 191472.001 1.30302E-10 3.814697E-6   2.795 

Set5 1.1 100000 
 

3.814697E-6 
 

1.30302E-10 3.814697E-6 2.777 
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Similarly, when ρ0 = 1.5 and R = 2.9, the initial value of ρ is small enough, but the rate 

of modification is too large. This situation also leads to slower convergence, similar to 

the case in which ρ0 = 2.2 and R = 1.9 (see Tables 4.7, 4.8, 4.10, 4.11). Table  4.7 and 

4.8 show how ρu can improve or worse the progress of the objective function. However, 

it should be noted that assigning a large value to ρu cannot guarantee a better progress 

for objective function, but some good trade-off between R, ρu, ρ0, and ε‎can. 

 

To examine the influence of the increasing penalty parameter ρ0 and modification rate 

R, we tested several real distribution networks of our samples having different densities 

and commodities with different parameter settings, and compared the results in the 

following Tables. These tables present the maximum excess and execution time as a 

function of ρ0 and R for two problems sets. 

 

Table  4.9   MMNF Sensitivity w.r.t. Initial Penalty Parameter Value (ρ0) 
 

For all settings, the running time by GAMS ≤ 10s. 

P
ro

b
lem

 

S
ettin

g
 1

 

 
 

 

 
 

Density, 

|K|,  

m, 

n 

 

 
 

6/5, 

70, 

420, 

350 

 
 

 

 
 

 

 
     Optimal 

Solution 

 
3119500.0 

 
 

 
 

R 
1.9 

 

 
ρ0  

δ0=20 

 

ρu=77 

 

ε 

0.01 

 

 

Total 

Cost by  

MMNF Alg. 

 
 

Excess 

Cost 

 
 

Max 

Excess 

 
 

Computational 

Time (s) 

33 …. … … > 600 

23 3119472.69 27.3 0.188 20 

10 3119472.69 27.3 0.188 17 

1.9 3119319.95 180.05 0.315 8 

1.7   3119319.95 180.05 0.315 8 

1.5   3119319.95 180.05 0.315 < 8 

1.3   3119319.95 180.05 0.315 < 7 

  

P
ro

b
lem

 

S
ettin

g
 2

  

 

R 
1.3 

 

27 
 

δ0=20 

 

ρu 

100 
 

ε 

0.0001 

3119478.97 21.03 0.145 30 

17 3119478.97 21.03 0.145 16 

9 3119478.97 21.03 0.145 11 

1.9 3119361.36 138.64   0.243 10 

1.7 3119361.36 138.64 0.243 9 

1.5 3119361.36 138.64 0.243 9 

1.3 3119361.36 138.64 0.243 13 

 

It is observed that when the penalty parameter is fixed, the maximum excess decreases 

in the first few phases due to the additional shifting possibilities, which arise when δ‎

decreases. After a few phases, however, the maximum excess converges to a certain 

value much (larger than zero), and stays at that value for the remaining phases. When 

the penalty increases at each phase, the maximum excess decreases and converges to 

zero. 
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Table  4.10   MMNF-Linear Sensitivity w.r.t. Penalty Modification Rate (R) 
 

For all feasible problem instances, the running time by GAMS ≤ 2s. 
 

The planning horizon time is set to be two half days. 

P
ro

b
lem

 

S
ettin

g
 1

 

 

 

 

 

 

 

 

 

 

Density, 

|K| 

 

 

4/5, 

2 

 

 

 

 

 

 
 

 

    Optimal 

Solution 

 

 
 

469560.0 

 

R 
 

ρu = 77 

 

ρ0 = 1.3 

 

δ0 = 27 

 

ε = 0.01 

 

 

Total 

Cost by  

MMNF Alg. 

 

 

Excess 

Cost 

 

 

Max 

Excess 

 
 

Computational 

Time (s) 

5 469545.891 14.144 0.429 2.6 

2.3 469545.891 14.144 0.429 2.6 

1.9 469545.891 14.144 0.429 2.6 

1.7 469545.889 14.139 0.429 2.9 

1.3 469545.889 14.139 0.429 1.9 

1.2 469516.782 65.261 1.648 1.2 

1.1 469342.329 266.853 7.352 1.0 

  

P
ro

b
lem

 

S
ettin

g
 2

 

2.9 
 

 

ρu = 777 
 

ρ0 = 1.3 
 

δ0 = 57 
 

ε = 0.0001 

469558.599 1.402 0.042 15.016 

2.3 469558.599 1.402 0.042 22.953 

1.9 469558.599 1.402 0.042 22.641 

1.7 469558.599 1.402 0.042 0.218 

1.5 469558.599 1.402 0.042 0.313 

1.3 469558.599 1.402 0.042 2.907 

1.1 469495.616 78.694 2.168 21.265 

  

O
p

tim
a
l 

S
e
ttin

g
s 

 

ρ0 = 1.3,         R=1.7, 

ρu = 1110,       ε = 0.0001. 

 

469559.019 

 

0.981 

 

0.030 

 

0.938 

ρ0 = 1.5,         R=1.7, 

ρu = 2000,       ε = 0.0001. 

 

469559.456 

 

0.544 

 

0.016 

 

0.391 

ρ0 = 1.3,         R=1.7, 

ρu = 777,         ε = 0.001. 

 

469558.599 

 

1.401 

 

0.042 

 

0.891 

ρ0 = 1.3,          R=1.7, 

ρu = 1110,        ε = 0.001. 

 

469559.019 

 

0.981 

 

0.030 

 

0.953 

 

As it is seen, setting R without considering the other parameters does not have any good 

influence on the optimal solution value. Therefore, saying that there is unique good 

value for R is totally wrong, but a good combination of between R, ρu, ρ0, and ε‎is true. 

In one word, we do not recommend linear penalty function model, as it is so very 

sensitive to parameters which may cause a very large error in estimation of the objective 

function. This error is mostly due to the low cost of the negative cost cycles found in 

phases and/or having not enough number of phases. This all can only be resolved by 

setting the parameters carefully, which is different problem to problem. 
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Table  4.11   MMNF-Linear Sensitivity w.r.t. Penalty Modification Rate (R) 
 

The planning horizon time is set to be two half days. 
 

P
ro

b
lem

 

S
ettin

g
 1

 

 

 

 

 
 

 

 
 

 

 
 

 
Density, 

|K| 

 

 
1, 4 

 

 

 
 

 

 
 

 

 

 

 
Optimal 

Solution 

 
 
 

469560.0 

 
R  

δ0 = 200 

 

ρ0 = 1.7 

 

ρu = 400 
 
 

 

ε = 0.01 

 

 

Total 

Cost by  

MMNF-Linear 

 
 

Excess 

Cost 

 
 

Max 

Excess 

 
 

Computational 
Time (s) 

1.3 469560.018 0.000 0.000 8.983 

1.35 469964.974 0.000 0.000 3.420 

1.4 469560.272 0.000 0.000 1.280 

1.45 469965.155 0.000 0.000 0.633 

1.5 469560.723 0.000 0.000 2.415 

1.55 469965.020 0.000 0.000 0.321 

1.6 469969.806 0.000 0.000 0.138 

1.65 469967.462 0.000 0.000 0.166 

1.7 469969.806 0.000 0.000 0.136 

   

1.25 
 

 

δ0 = 77 

ρ0 = 1.5 

ρu = 300 
 

ε = 0.0001 

469560.059 0.000 0.000 147.469 

P
ro

b
lem

 

S
ettin

g
 2

 1.27 469560.059 0.000 0.000 73.768 

1.3 469965.194 0.000 0.000 35.518 

1.35 469966.404 0.000 0.000 11.264 

1.4 469967.269 0.000 0.000 5.722 

1.5 469973.059 0.000 0.000 1.660 

1.7 469997.121 0.000 0.000 0.436 

  

S
o

m
e  R

a
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3.28626E-11 

 
2.98023E-7 

 

20.742 

δ0 =200     ρ0 =1.7   

R=1.5        ρu==370        

ε=0.01 
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0.000 

 

0.000 

 

2.521 

δ0 =200       ρ0 =1.7  
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ε=0.01 

 

469560.723 

 

0.000 
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2.490 

δ0 =200      ρ0 =1.7  

R=1.5         ρu==430       

ε=0.0001 

 

469560.723 

 

0.000 

 

0.000 

 

2.502 
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4.6 Summary and Concluding Remarks 

This chapter addressed the multiperiod multiproduct distribution network problems, 

where all network parameters change over time and products. The linear minimum cost 

flow problem in the discrete-time settings with varying network parameters was 

investigated, and we used scaling and δ-optimality, together with penalty function 

methods, to develop the first network-based scaling algorithm for the minimum cost 

multiperiod multiproduct distribution planning problems. The feasibility problem of the 

distribution networks in the discrete-time settings with varying parameters was also 

investigated, and then, a specific implementation of our scaling-based algorithm was 

developed. 

 

Moreover, we analyzed the algorithms from both theoretical and practical perspectives. 

The practical performances supported the theoretical properties we already derived. 

Computational experiences and tuning were demonstrated using many actual instances 

corresponding to some real electricity transmission-distribution networks from our case 

study and many random instances. However, it should be noted that our comparisons 

are all approximate, and they are obtained by applying a set of typical data from our 

samples to provide some insight regarding the behavior of our scaling algorithm and the 

impact of various parameters on the performance of the algorithm. 

 

There may be many factors that can influence the running time, such as the amount of 

available RAM, the compiler and the programming language, network structure and 

topology, way of detecting negative cost cycles etc. In addition, some other approaches 

may find the optimal solution to our samples, but may spend some additional time to get 

from an approximately optimal solution to an optimal one. 

 

It is believed that an approximate solution which is within 0.01%-0.05% from 

optimality and from feasibility has the same practical value as an optimal solution. 
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Chapter 5 

 

5 Open Problems and Future Research 
 

Some issues and areas for future directions of research are outlined below: 

 

1. A very challenging, but very interesting and yet open, issue is the study of optimal 

routing in the multiperiod multiproduct distribution networks with uncertain costs 

and uncertain capacities. The purpose would be to obtain the uncertainty 

distribution of the total shipping cost. Uncertainty theory could be one tool to deal 

with indeterminacy factors in uncertain multiperiod (multiproduct) systems. 

 

2. In the last chapter, we focused on a penalty-based scaling algorithm for MCDF 

problem on an MMN. However, the general scheme, yet, can be used to solve other 

types of multiperiod network problems, as well as general network flow problems 

with side constraints. Our penalty-based algorithm itself may also be extended to 

other linear or nonlinear production-distribution systems in general or quadratic 

nonlinear systems in particular. Investigating more special cases of production-

distribution network flow problems with side constraints could be of interest. 

 

3. The feasibility of the uncertain multiperiod multiproduct distribution problems can 

be another topic which can be handled by our algorithms by some essential 

modifications to cope with indeterminacy factors (e.g., uncertain capacities). 

 

4. Developing and testing a parallel version of the algorithm presented in the last 

chapter can be another topic for future research. Multiperiod multiproduct flow 

algorithm reveals an inherent parallelism that makes it attractive for parallel 

implementations. Such implementations usually require a modification of existing 

algorithmic techniques and require different data structures. 

 
 

5. Testing augmented Lagrangian methods instead of penalty methods to solve the 

multiperiod multiproduct flow problems could be one another issue of interest. 
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