

MULTI-PERIOD MULTI-PRODUCT DISTRIBUTION PLANNING PROBLEMS:

MODEL-BASED AND NETWORK-BASED APPROACHES

by

S. Ahmad Hosseini

Submitted to the Graduate School of Engineering and Natural Sciences

in partial fulfillment of the requirements for the degree of

Doctor of Philosophy

in

Industrial Engineering

Sabancı Üniversitesi

Fall 2014

ACKNOWLEDGEMENTS

About three years ago, I came to Industrial Engineering Department at Sabanci

University for PhD studies. Now, my thesis has taken shape and I would like to thank

several people for their support.

In the first place, I would like to express my deepest gratitude to Tonguç Ünlüyurt and

Güvenç Şahin for supervising my thesis. They have been always so very patient and

kind with me and supported my research. At the same time, they allowed independent

work and development. I am truly indebted to them for giving me directions by asking

the right questions and finding the right answers, and I am also thankful for their trust.

My heartfelt thanks go to Rina Schneur, the 17
th
 president of Informs, without whom

this thesis would never even have started. Rina aroused my interest in research on this

thesis’s topic while I was still a master student. Her elegant and inspiring approaches on

applying operations research to industry problems in the areas of logistics, network

planning, and telecommunication with the emphasis on identifying the combinatorial

structure in the problem have all left a deep and eternal impact on me.

I am also grateful to my thesis committee, İlker Birbil, Hüsnü Yenigün, and Erhun

Kundakçıoğlu, for their careful proof-reading of different parts of the thesis and for their

helpful suggestions for improvement.

I am very fortunate to have been with a set of wonderful people who have made my stay

in Istanbul very lively with numerous interesting meetings. These include Ömer, Elif,

Berfu, Ceyda, Sezin, Ali, Gökhan, Faran, Öykü, Eqra, Mahir, İpek and others at the

department. Things would have been very different without them and I thank all of them

for all those great times. Special thanks to Elif and Ali for all those fruitful and funny

dinner-coffee discussions. I will always have many fond memories of wonderful food,

coffee, cooking, wine tasting, and lame jokes. 

Ahmad H.

December 30
th

, 2014

© S. Ahmad HOSSEINI

 All Rights Reserved

i

Multi-Period Multi-Product Distribution Planning Problems:

Model-Based and Network-Based Approaches

 S. Ahmad Hosseini

 Industrial Engineering, PhD Thesis

Thesis Supervisors: Assoc. Prof. Tonguç Ünlüyurt

 Assoc. Prof. Güvenç Şahin

Keywords: Linear and Non-Linear Optimization, Block Decomposition,

Network Programming, Approximation Algorithms, Scaling Algorithms

Abstract

Dynamic and multiperiod flow problems arise frequently in management applications,

communication systems, and process systems engineering with important applications

in large-scale production scheduling and time-varying distribution planning. This thesis

investigates various multiperiod distribution planning problems, where all problem

parameters may change over time and or products.

First, matrix decomposition is exploited through index sets of the models to delineate

block structures and to develop some methods that lead to linear programming problems

comprising a set of sparse polyhedrals. Considering the sparsity and repeating structure

of the polyhedrals algorithmic approaches based on decomposition techniques of block

angular and block staircase are proposed aiming to reduce the computational resources

required and/or getting rapid near-optimal solutions. The efficiency of the proposed

approaches is demonstrated through numerical experiments. Then, we use scaling and

approximate optimality together with penalty function method to develop some

network-based scaling approximation algorithms.

Our algorithms exploit different ideas including matrix transformation from linear

algebra, graph partitioning from graph theory, penalty methods from nonlinear

optimization, and scaling and approximation algorithms from network flow theory.

Moreover, we analyze the algorithms from both theoretical and practical perspectives.

The practical performances corresponding to some electricity transmission distribution

networks support the theoretical properties.

ii

Çok zaman dilimli ve çok ürünlü dağıtım planlama problemleri:

Model bazlı ve ağ bazlı yaklaşımlar

S. Ahmad Hosseini

Endüstri Mühendisliği, Doktora Tezi

Tez Danışmanı: Doç. Dr. Tonguç Ünlüyurt

 Doç. Dr. Güvenç Şahin

Anahtar Kelimeler: Doğrusal ve doğrusal olmayan programlama, blok ayrıştırma, ağ

programlama, yaklaşık algoritmalar, ölçekleme algoritmaları

Özet

Dinamik ve çok zamanlı akış problemleri büyük ölçekli üretim planlaması, zamanla

değişen dağıtım planlaması, yönetim uygulamaları, iletişim sistemleri ve süreç

sistemleri mühendisliği alanlarında sıklıkla ortaya çıkar. Bu tez, tüm problem

parametrelerinin zaman veya ürünler üzerinde değişebilir olduğu çok zamanlı dağıtım

planlaması problemlerine çözüm yöntemleri geliştirmek üzerinedir.

İlk olarak, endeks setleri üzerinden matris ayrıştırması kullanılarak bloklar elde edilir.

Bu merdiven şeklinde ve açısal bloklar kendileri tekrar ettiği için ve boyutları küçük

olduğu için etkin bir şekilde ayrıştırma yöntemiyle en iyi veya en iyiye yakın çözümler

bulunabilir. Yöntemin etkinliği bazı nümerik örnekler üzerinde sınanmıştır. Daha sonra

ölçekleme ve yaklaşık en iyi olma şartları kullanılarak ağ bazlı bir ölçekleme

algoritması geliştirilmiştir.

Geliştirilen algoritmalar lineer cebirde kullanılan matris dönüşümlerinden, ağ parçalama

algoritmalarına, doğrusal olmayan programlamada kullanılan ceza yöntemlerinden

yaklaşık ölçekleme algoritmalarına kadar birçok kavram kullanır. Geliştirilen

algoritmaların hem teorik hem pratik özellikleri çalışılmıştır. Nümerik sonuçlar için

gerçek hayattan alınan elektrik dağıtım ağı topolojileri kullanılmıştır.

iii

TABLE OF CONTENTS

1 Introduction, Applications, and Problem Description ...1

1.1 Introduction and Background of the Study ...1

1.2 Multiperiod (Multiproduct) Network Flows and Some Applications8

1.2.1 Local Low-Voltage Electricity Distribution Network10

1.2.2 Scheduling, Manufacturing and Planning ..11

1.2.3 Multi-Site Sequence-Dependent Production Planning Problem12

1.2.4 Crude Oil Distribution Network Problem ..12

1.2.5 Network Design and Communication Network ..13

2 A Model-Based Approach and Analysis for Multiperiod Networks 15

2.1 Minimum Cost Dynamic Flow Problem in a Multiperiod Network16

2.2 Continuous-Time Model versus Discrete-Time Model19

2.3 Angular and Staircase Structures in Multiperiod Networks20

2.3.1 Block-Angular Structured Systems ..24

2.3.2 Staircase-Structured Systems ...24

2.4 A Model-Based Approach for Multiperiod Networks with Storage..................25

2.5 Slice Modelling ...30

2.6 Generalized Multiperiod Network Flows (MPDNF with Spoilage)31

2.7 Multiperiod Networks with Storage and Spoilage (SS Networks)40

2.8 Examples, Applications, and Testing ..42

2.9 Summary and Concluding Remarks ..47

3 A Decomposition-Based Approach for the Multiple-Product Distribution

Problems over Time ...49

3.1 The Problem of Min-Cost Flow on Multiperiod Multiproduct Networks50

3.2 Multiperiod Multiproduct Network Flows with Spoilage (SMMN)52

3.3 A Solution Approach for MM Networks with Storage67

iv

3.4 MM Networks with Storage and Spoilage (SSMM Network Flows)................79

3.5 An Alternative Approach for MM Networks Having no Period Capacity........81

3.5.1 Case 1: MM Networks with Spoilage ..81

3.5.2 Case 2: MM Networks with Storage ...84

3.5.3 Case 3: MM Networks with Storage and Spoilage (SS Networks)88

3.6 On Applications and Computational Tuning-Testing...88

3.7 Summary and Concluding Remarks ..97

4 A Penalty-Based Scaling Algorithm for Multiperiod Multiproduct

Distribution Planning Problem ..98

4.1 Penalty Function Method - Transformation Approach.......................................99

4.2 Network Flow - Scaling Approach ... 104

4.3 Min-Cost Multiperiod Multiproduct Distribution Problem............................. 108

4.3.1 Canceling the Time-Commodity Varying Lower Bounds 109

4.3.2 Discrete Time Multiperiod Multiproduct Distribution Problem 111

4.4 The Penalty-Based Scaling Approach for MCDF ... 112

4.4.1 Some Notes on the Theoretical Properties .. 120

4.5 Analysis of the Algorithm and Two Specific Implementations 129

4.5.1 The Penalty-Based Scaling Approach with Linear Penalty Function 131

4.5.2 The Multiperiod Multiproduct Feasibility Problem (MMFP) 133

4.6 Summary and Concluding Remarks ... 149

5 Open Problems and Future Research ... 150

6 Bibliography .. 151

v

LIST OF FIGURES

Figure 1.1 A typical problem with its original structure and decomposed structure7

Figure 1.2 A simple electrical distribution network ..11

Figure 1.3 An instance of the crude oil distribution network ..13

Figure 2.1 Most common structural forms of large-scale problems21

Figure 2.2 A typical GMPDNF at a fixed time period ..34

Figure 2.3 Sensitivity to the number of time increments...44

Figure 2.4 Sensitivity to density ..44

Figure 2.5 Objective and upper bound progress of decomposition application for a

random problem ...47

Figure 3.1 A typical SMMN at a fixed period t for a fixed product q55

Figure 3.2 A typical MMN with flow storage at nodes ...68

Figure 3.3 Sensitivity to time increments ...90

Figure 3.4 Sensitivity to density ..91

Figure 3.5 Objective and dual bound progress of two case study instances92

Figure 3.6 The relative duality gap observed solving the sample problem (density =8.5,

T=17, K=17) ...94

Figure 4.1 Transformation of a multi-source multi-sink single-product multi-period

network problem into a single-source single-sink single-product multi-period network

problem .. 111

Figure 4.2 Exact optimality for (i, j) .. 120

Figure 4.3 Approximate optimality for (i, j)... 121

Figure 4.4 A typical diagram of an AC electricity distribution from generation stations

to consumers .. 129

Figure 4.5 A general layout of an electricity network .. 130

Figure 4.6 A typical self-similar pattern distribution network 137

Figure 4.7 A typical maximum excess progress at the end of each scaling phase of some

application of MMNF algorithm (setting: δ=1, ρu=11111, ε=0.00001) 140

vi

LIST OF TABLES

Table 2.1 Sizes and computational results..45

Table 3.1 Sizes and Computational Results for Some MMNs with |K|=1 (T=13, 20, 23,

31, 37, 41, 50) ...91

Table 3.2 Sizes and Computational Results for Some MMNs with |K|=7 (T=13, 20, 23,

31, 37, 41, 50) ...92

Table 3.3 Sizes and Computational Results for Some MMNs with |N|=2|K|=2T (T=3,

5, 7, 11, 13, 15, 17) ..92

Table 3.4 Computational Resources for Some Large Feasible MMNs93

Table 4.1 Tuning-Testing for Algorithm MMFP (checking) 138

Table 4.2 Some Various Settings for MMFP Algorithm .. 139

Table 4.3 Parameter Settings and Tuning-Testing for Some MMNs 141

Table 4.4 Computational Results for Some Large Feasible MMNs 142

Table 4.5 Computational Results for Some Infeasible MMNs 143

Table 4.6 Parameter Settings for Algorithms ‘MMNF’ and ‘MMNF-Linear’............ 144

Table 4.7 MMNF Sensitivity w.r.t. Penalty Parameter Upper Bound (ρu).................. 145

Table 4.8 MMNF-Linear Sensitivity w.r.t. Penalty Parameter Upper Bound (ρu) 145

Table 4.9 MMNF Sensitivity w.r.t. Initial Penalty Parameter Value (ρ0) 146

Table 4.10 MMNF-Linear Sensitivity w.r.t. Penalty Modification Rate (R) 147

Table 4.11 MMNF-Linear Sensitivity w.r.t. Penalty Modification Rate (R) 148

1

Chapter 1

1 Introduction, Applications, and Problem Description

1.1 Introduction and Background of the Study

Network flow optimization problems arise in a wide variety of important fields, such as

transportation, telecommunication, computer networking, financial planning, logistics

and supply chain management, energy systems. Significant results have been achieved

in both theory and applications of network flow optimization in the past few decades.

Flow variation over time is a very important feature in network flow problems arising in

various applications such as traffic control, production systems, communication

networks, and financial flows [6] [16] [29] [31] [32] [34] [35] [65] [80] [81]. However, most

of studies consider static versions of network planning problems in the sense that

parameters do not change over time. Another prominent assumption in network flows is

the conservation of flow over the arcs. However, this assumption may also make it hard

for many real life applications to model their characteristics. Many network planning

problems in real world are time-varying and do not follow such structures; the network

structure and problem parameters may be time-

dependent [6] [16] [29] [30] [32] [34] [35] [36] [37] [38] [39] [40] [41] [80] [81]. In addition, it

may take a certain amount of time for the flow to traverse an

arc [30] [31] [32] [34] [57] [65] [80] and there is no guarantee for the flow to be

conserved [3] [36]. Therefore, static (traditional) network flow fails to capture the time-

varying property. The need for more realistic network models led to the development of

multiperiod and dynamic network flow. They have been applied to a wide variety of

applications. In such applications, flow values on arcs are not constant but may change

over time and not only the amount of flow to be transmitted but also the time needed for

the transmission plays an essential role.

Ford and Fulkerson, for the first time, dealt with the maximum flow problem in discrete

time setting and developed a technique that is still widely used [31] [32]. The main

outcome of their work is the time-expanded networks. They show that a maximum flow

2

over time with a finite time horizon can be obtained by computing a maximum static

flow in the time-expanded network (or by solving a minimum cost circulation problem

on the original network) [6] [34]. Since then, several further problems have been

analyzed, such as the quickest, minimum cost or earliest arrival

flows [6] [30] [65] [80] [81]. Ford and Fulkerson add a time dimension to the static

network flows to include the transition times of the flow along arcs. The network flow

with flow transition time is called "flow over time". The term "dynamic flow" is also

used for such kind of network flows. Subsequently several models of dynamic flow

problems have been studied by Fleischer [30], Hoppe [34], Aronson [6] and

Lozovanu [57]. Aronson [6] concentrates on the maximum flow and transshipment

problems in discrete time with an extensive coverage of applications.

Since multiperiod and dynamic network flows are generalizations of static network

flows, it should come as no surprise that multiperiod and dynamic networks also have

many interesting practical applications. In these instances, to account properly for the

evolution of the underlying system over time, we need to use dynamic/multiperiod

network flow models. Multiperiod flow problems find applications in various areas,

such as process systems engineering (with essential applications in large production

scheduling and multiperiod production planning), information communication

technology (ICT), network design and communication network, electricity distribution

network, multisite production planning

system [5] [17] [18] [28] [32] [47] [48] [49] [52] [55] [59] [60] [61] [70] [72] [73] [79] [81] [82].

This thesis addresses non-simultaneous shipment of commodity (or commodities) from

production sites (sources) to markets (sinks) in time-dependent (or multiperiod)

production-distribution networks with deterministic production and demand capacities

at the minimum cost over a finite planning horizon while all shipment cost and arc

capacities are varying over time and/or commodities. We study, model, and investigate

this class of problems by various network models and various solution approaches by

including horizon capacities, time-commodity varying capacities (and/or time varying

capacities), time-commodity varying costs, and time-commodity varying loss/gain

factors over a finite planning horizon. The main focus is on the minimum cost dynamic

flows (MCDF) on multiperiod networks (and multiperiod multicommodity networks) in

which spoilage/storage in arcs/nodes is expected/allowed over time (and or commodity).

3

In such applications, flow values on arcs are not constant but may change over time

because of the dynamic nature of the network. Moreover, flow may not travel through

the distribution network with a conservative amount but it may be decreased or

increased while circulating in the network on arcs. The third dimension is associated

with the storage/waiting capability at nodes. In particular, when routing decisions are

being made in one time window in the network, the effects can be seen in other time

periods only after a certain time delay. The above mentioned aspects of network flows

are not captured by the classic (static) network flow models. This is where dynamic

multiperiod network flows come into play. They include those dimensions and therefore

provide a more realistic modeling tool for numerous real-world applications. Theorems

and efficient algorithms have been developed for static network flow problems as they

have been in the focus of interest for many years. The differences from the classical

problems make it necessary to devise new techniques, although most of the solution

methods eventually reduce the dynamic and multiperiod problems to static ones and

then employ existing algorithms.

There are some approaches to address somewhat similar kind of problems, like State-

Task Network and Resource-Task Network [59] with important differences with

respect to the assumption of continuity or discreteness of the time horizon. Terrazas et

al. [84] use temporal and spatial Lagrangean decompositions to solve the multi-site,

multiperiod planning problems. In a similar problem, Chen et al. [17] use Lagrangean-

based decomposition techniques for solving the temporal decomposition of a continuous

flexible process network. They use subgradient methods to solve the decomposed

problem. Neiro et al. [66] use temporal Lagrangean decomposition to solve a

multiperiod mixed-integer non-linear programming planning problem under uncertainty

concerning a petroleum refinery. Mouret et al. [63] present a unified representation and

modeling approach for process scheduling problems and introduce four different time

representations (by using of priority-slots and order of executions of operations/tasks),

and apply to single-stage and multi-stage batch scheduling problems, as well as crude-

oil operations scheduling problems.

Those works mostly focus on scheduling problems (or makespan minimization

in multipurpose batch plants) or multiproduct planning problem with sequence-

dependent changeovers-with emphasis on modelling issues-which are modeled

4

as MILP problems. The main objective of those works is generally to develop

some modelling approaches for scheduling problems in order to facilitate the

evaluation of several time representations, or minimize the makespan of

multipurpose batch plants, or present temporal and spatial Lagrangean

decompositions that allow the independent solution of time periods, production

sites, and markets [17] [18] [28] [47] [48] [52] [59] [63] [64] [66] [72] [82].

This section of the thesis gives a very brief description of dynamic and multiperiod (and

multiproduct multiperiod) distribution network flows along with some applications. To

this aim, we briefly review all chapters of the thesis, and then point out the main

problems of interest and solution approaches. We do not describe the solution methods

in detail here and do not give precise mathematical models, but we always give

references to the relevant chapters where the interested reader can find the details. All

chapters are self-contained.

A very general setting of the problem of interest is presented as

   
 K),(0

)()(

q ji

T

ijqijq dttxtcMin  




K 0

)]()()([)(

q i

T

j

ijqjiqjiqiq dttxtxttc  , (1.1)

 iq

j

T

jiqjiq

j

T

ijq dttxtdttx v)()()(

00

  Vi , q , (1.2)

 0)()()(

00

 dttxtdttx

j

jiqjiq

j

ijq



),0[T , Vi , q , (1.3)

 ij

q

T

ijq udttx 
K 0

)(),(ji , (1.4)

)()(tutx ij

q

ijq 


 ),(ji ,],0[Tt , (1.5)

)()()(tutxtl ijqijqijq  ),(ji ,],0[Tt , q , (1.6)

 0)(txijq ),(ji , Tt  , q . (1.7)

5

In this setting,  IRTcijq],0[: and  IRTciq],0[: represent the non-negative

distribution cost function with respect to product q , and storage/waiting cost function,

respectively. Constraints (1.2) involve the flow conservation constraints for each

commodity in which iqv denotes the pre-defined deterministic supply/demand capacities

at node i over the entire time horizon. The flow storage is presented in constraints (1.3).

We refer to (1.4) as horizon capacity constraints. Horizon capacity of an arc limits the

amount of total flow (of all commodities) on that arc throughout the entire horizon

planning. Constraints (1.5) represent the maximum possible amount of total flow that

can enter),(ji at time t : it is referred to as the moment capacity constraint. Constraints

(1.6) are the time-commodity varying capacity constraint for each commodity at each

time moment. Finally, constraints (1.7) ensure that there should be no follow circulating

in the network after the horizon planning. Furthermore, each arc),(ji is assigned a time-

commodity varying non-negative gain/loss factor)(tijq with respect to each time period

time t and commodity q . When)(txijq units of flow of commodity q is sent from node i

via arc),(ji at time t ,)()(txt ijqijq units of flow arrive at node j at the same time. If

1)(tijq , the arc is lossy; if 1)(tijq the arc is gainy on that time with respect to that

commodity.

First of all, the methods used in discrete and continuous time are quite different in the

context of multiperiod and dynamic flow problems. In general, there could be more

practical solutions for discrete-time multiperiod/dynamic problems, whereas for

continuous-time problems one may often find only theoretical results. The usual

approach to give practical algorithms for continuous-time network problems is to

convert it to discrete time. Chapters 2 and 3 describe a natural transformation with time

discretization for both multiperiod and multiproduct multiperiod problems. In these

transformations, we solve the discrete versions of the problems and then prove that the

optimal continuous solution can be achieved from the discrete solution by extending the

flow values to the unit intervals separating the discrete time instances. Discretization

works by choosing a suitable time unit and considering the continuous time as split into

discrete time periods.

6

Chapter 2 analyzes the optimal dynamic shipping problem with time-varying network

parameters in multiperiod distribution networks when the network contains only one

commodity to ship. It also discusses the generalized multiperiod dynamic network flows

where time-varying spoilage on arcs (and/or time-varying storage at nodes) is a key

factor for the problem. Furthermore, it introduces a set of capacities, so-called horizon

capacity, which limits the total flow passing arcs over all periods, and proposes some

approaches employing polyhedrals/blocks to obtain optimal/suboptimal solutions for a

pre-specified finite planning horizon and to reduce the computational resources

required.

Solving large multiperiod problems is usually very memory intensive. Decomposition

techniques have some niche areas in large scale primal block angular structured

problems. We describe heuristics for partitioning practical large-scale multiperiod

planning problems into suitable block structures. Such heuristics are of great importance

for decomposing large multiperiod problems into forms that are amenable to

decomposition techniques and/or parallel processing to reduce the computational

expenses and/or getting a rapid near-optimal solution.

Chapter 3 addresses the most general case of discrete-time minimum cost flow problem

on multiperiod multiproduct distribution systems by allowing spoilage and or storage.

All network parameters change over time and products. We investigate how suitable

block structures can be inferred from the mathematical model of the practical

multiperiod multiproduct network planning problems. This chapter describes some

reformulation techniques to obtain sparse polyhedrals for problem to be amenable to

decomposition approaches and/or parallel processing. We also discuss some special

cases of such systems and propose some alternative approaches. The main step of

reformulation techniques is based on matrix/graph partitioning by using the index sets.

Even though GAMS/Cplex manages memory very efficiently, the most common

difficulty when solving large scale multiperiod planning problems is running out of

memory. We show that a set of properly decomposed constraints into the blocks can

decrease the computational effort in of solving such large scale planning problems by

using decomposition techniques. We show how to reorder the variables and constraints

of multiperiod multiproduct systems in order to detect underlying blocks. This is done

7

by adding dummy variables and nodes to the associated matrix of the multiperiod

problem. These dummy elements enable the resulting blocks to have sparse matrices.

Therefore, the large sets of constraints will be partitioned into a manageable number of

independent blocks of constraints, linked together by relatively few linking variables

and coupling constraints (e.g., see Figure 1.1). At the end, we discuss how modern

computers can also take advantage of the algorithm’s inherent parallelism to efficiently

improve the elapsed time to motivate use of such parallel processing and block

decomposing.

Figure 1.1 A typical problem with its original structure and decomposed structure

Chapter 4 develops a cost-scaling-based approximation algorithm to solve the minimum

cost flow problem on multiperiod multiproduct distribution network flow problems with

time-commodity varying network parameters. To develop the algorithm, we discuss

topics from Non-Linear Programming, Approximation Algorithms, Network Flow

Theory, and Scaling Algorithms. Having transformed the continuous-time multiperiod

multiproduct distribution network problem into the discrete-time version, we discuss

how to formulate any such problem with time-commodity varying lower/upper bounds

as a problem without lower/upper bounds, as it is necessary for our solution approach.

Such problem formulations usually lead to huge LPs that cannot be handled by a direct

application of an LP software. Hence, we associate different penalty problems to the

original problem and try to solve the penalty problems through scaling phases aiming to

get a good approximation solution in a reasonable amount of time and computational

resources. The methods are based on the Transformation Approach in Non-Linear

Programming and are designed to solve the minimum cost and feasibility multiperiod

8

multicommodity network flow problems. Our algorithm keeps iteratively detecting and

shifting time-commodity varying flows around cycles at each scaling phase to improve

the nonlinear objective function of the associated penalty problem; then, it jumps to the

next scaling phase. In order to determine the cycles of interest (negative cost cycles), we

introduce an auxiliary time-commodity varying residual network.

The basis of the methods consists of solving a sequence of penalty problems with an

increasing penalty parameter ρ to find a δ-optimal solution to the penalty problem in the

sense that the solution is an approximation solution to the original problem. As a result,

the influence of some constraints on the auxiliary function of the penalty problem is

gradually relinquished and finally removed in the limit. Moreover, we introduce the

multiperiod multiproduct feasibility distribution problem in which the objective is to

determine whether it is possible to have a production circuit and shipping good within a

finite time period. If there is no such dynamic feasible flow, the goal is to determine

where and when this infeasibility occurs and the magnitude of the infeasibility. Based

on this information, the decision maker may be able to get rid of the infeasibility by

providing the necessary budget for creating more capacity.

We analyze the algorithms from both theoretical and practical perspectives using many

instances corresponding to some real electricity transmission-distribution networks from

our case study and many random instances. The practical performances support the

theoretical properties we derive.

Chapter 5 closes this thesis with more promising areas for further directions of research.

1.2 Multiperiod (Multiproduct) Network Flows and Some Applications

Although network flow theory is one of the younger branches of mathematics, it is

fundamental to a number of applied fields, including operations research, computer

science, and social network analysis. Networks are pervasive and arise in numerous

application settings. Physical networks, which are the most readily identifiable classes

of networks, arise in many applications in many different types of systems:

communications, hydraulic, ecology, electronic, and transportation [3] [9] [11] [15].

9

In graph theory, a network flow is a directed graph A)G(V,:G  with vertex set V , edge

set  , where each edge has a capacity and each edge receives a flow. The amount of

flow on an edge cannot exceed the capacity of the edge. Often in Operations Research, a

directed graph is called a network, the vertices are called nodes and the edges are

called arcs. A flow must satisfy the restriction that the amount of flow into a node

equals the amount of flow out of it, except when it is a source, which has more outgoing

flow, or sink, which has more incoming flow [9] [11]. The capacity iju of an edge),(ji

can be thought of as the maximal amount of some commodity (such as water, gas,

electrical energy, number of cars, bits of information, etc.) that can be transported from

station i to j, along the edge),(ji . Flows can pertain to people or material over

transportation networks or electricity over electrical distribution systems. For any such

physical network, the flow coming into any intermediate node needs to equal the flow

going out of that node. This conservation constraint was formalized as Kirchhoff's

current law.

Network flows find many applications in many real life problems. Electrical and power

networks bring lighting and entertainment into our homes Telephone networks permit

us to communicate with each other almost effortlessly within our local communities and

across regional and international borders [1] [3] [4] [33] [55]. National highway systems,

rail networks, and airline service networks provide us with the means to cross great

geographical distances to accomplish our work, to see our loved ones, and to visit new

places and enjoy new experiences [2] [3] [9] [23]. Manufacturing and distribution

networks give us access to life's essential food stock and to consumer

products [5] [8] [32] [35] [87]. Computer networks, such as airline reservation systems,

have changed the way we share information and conduct our business and personal

lives [3] [9]. In all of these problem domains, and in many more, we wish to efficiently

move some entity (electricity, a consumer product, a person or a vehicle, a message etc.)

from one point to another through an underlying network both to provide good service

to the users of the network and to use the underlying transmission facilities effectively.

The applications we have considered offer only a very brief glimpse of the wide-ranging

practical importance of network planning problems; although our discussion of

applications in this section is limited, it provides at least one example of the network

http://en.wikipedia.org/wiki/Graph_theory
http://en.wikipedia.org/wiki/Directed_graph
http://en.wikipedia.org/wiki/Operations_Research
http://en.wikipedia.org/wiki/Electrical_distribution
http://en.wikipedia.org/wiki/Kirchhoff%27s_current_law
http://en.wikipedia.org/wiki/Kirchhoff%27s_current_law

11

models related (or similar) to multiperiod/time-varying flow problems that we have

been dealing with. There are, of course, other applications which are not mentioned here,

especially, for network flow problems with a dimension of time (time-varying) whose

structure is more general. Many other applications including Ecology, Fluid Dynamics,

Gas Pipeline Simulation, Road Networks, Survey Design, Optimal Energy Policy,

Image Segmentation, Hydraulic Engineering Systems, Electric Distribution Systems,

Import and Export Models, Material Requirement Planning (MRP) can be found in the

literature [1] [14] [19] [46] [49] [56] [60] [61] [62] [68] [69] [70] [71] [73] [79].

1.2.1 Local Low-Voltage Electricity Distribution Network

This is actually the application that the author has been mostly dealing with. We have

used this kind of networks and applied our solution procedures to instances of a model

of an electricity-distribution (transportation) network. This sort of applications are

usually a distribution network that is a local low-voltage (LV) part of the electricity

system that connects the customers to the long-distance high-voltage transmission

system which, in turn, connects to generating plants (see Chapter 4). The distribution

network is viewed as connecting to the transmission system, via a substation, at a single

point or source (it may connect to several points) [1] [4] [35] [36]. In cities and large

towns, standardized LV distribution cables form a network through link boxes. Some

links are removed, so that each distributor leaving a substation forms a branched open-

ended radial system. The standard 3-phase 4-wire distribution voltage level is

220/400V. However, LV systems are being converted to the latest IEC standard of

220/400V nominal (IEC 60038) [1] [4]. Low-voltage and medium-voltage distribution

substations, mutually spaced at approximately 500-700 meters, are typically equipped

with:

 A 3-way or 4-way MV switchboard (often made up of incoming and outgoing load-

break switches) and two MV circuit-breakers or combined fuse/ load-break switches

for the transformer circuits.

 One or two 1,000k VA MV/LV transformers.

 One or two (coupled) 6-way or 8-way LV 3-phase 4-wire distribution fuse boards,

or circuit-breaker boards, control and protect outgoing 4-core distribution cables,

generally referred to as “distributors”.

11

The output from a transformer is connected to the LV busbars via a load-break switch,

or simply through isolating links. In densely-loaded areas, a distributor is laid to form a

network, with one cable along each pavement and 4-way link boxes located in manholes

at street corners, where two cables cross [1] [4] [46].

Figure 1.2 A simple electrical distribution network

1.2.2 Scheduling, Manufacturing and Planning

In these applications, time comes into play and the network is often partitioned into time

steps. Multiperiod multi-item production scheduling problems are common in practice,

and are widely considered in management science literature. The problem is to pass the

products through several stages of production and shipment from raw materials to end

use. At each stage and in each period, there are interrelated decisions about lot-sizing,

timing, and stockpiling to be made. Zahorik et al. [87] considered a special case of this

problem, in which each of many items went through the same set of production steps in

the same sequence.

12

This problem fits industrial situations such as production, of different styles of chairs,

steel pipes of different sizes, air conditioners of different sizes, etc. The nodes in this

model represent different time periods and production stages, and arcs represent the

possibility of a product to move directly from one node to another. Such problems can

be viewed as networks. The constraints on the total production and inventory are the

bundle constraints. Thus, using the method described in this study such problems may

be solved as multiperiod multiproduct network flow problems.

1.2.3 Multi-Site Sequence-Dependent Production Planning Problem

The optimal planning of a network of manufacturing sites and markets is a complex

problem. It involves assigning which products to manufacture in each site (at each time

period), how much to ship to each market and how much to keep in inventory to satisfy

future demand. Each site has different production capacities and operating costs, while

demand for products varies significantly across markets. Production and distribution

planning is concerned with mid to long-term decisions usually involving several

months, adding a temporal dimension to the spatial distribution given by the multi-site

network. The production of each product can involve a setup or cleaning time that in

some cases is sequence dependent. This planning problem turns out to be a mixed-

integer linear programming (MILP) problem when setups and sequence-dependent

transitions are to be included in the problem’s assumptions. The computational expense

of solving such large-scale MILP problems will be decreased by using decomposition

techniques [47] [52] [66] [84].

1.2.4 Crude Oil Distribution Network Problem

As mentioned, dynamic flow problems can be used to model a variety of real world

problems that arise in traffic control, production systems, communication networks (e.

g., the internet), and pipeline systems for transporting. Here, a problem of pumping

crude oil around a crude oil distribution network is illustrated to motivate the study of

dynamic networks.

A crude oil distribution system is considered as the essential part of an oil supply chain,

and the management of this part can critically affects the performance of the crude oil

13

supply chain. Traditionally, this system was managed without much assistance of

scientific methods [14] [35] [65]. A large oil company operates more than refineries,

which process several million barrels of crude oil every day. Due to the high

transportation costs of barrels, implementing scientific methods instead of traditional

ones can dramatically reduce total cost and improve customer satisfaction.

A crude oil network links a number of production units to consumption centers

(refineries and export terminals) by pipelines. There also are intermediate pump stations

and storage tanks next to them. A decision support system was developed for a world-

wide oil supply chain by using discrete event simulation and optimal control. Although

simulation is a powerful tool, it misses the optimization potential. However, the oil

transportation system can be modeled as a dynamic network flow problem as time is the

most important parameter in such transportation-distribution networks [65].

Figure 1.3 An instance of the crude oil distribution network [65]

1.2.5 Network Design and Communication Network

Multiproduct (multiperiod) network models can also be used in communication

networks [3] [55] [78]. In a communication network, the nodes may represent ‘origin’

and destination for messages and the arcs may represent ‘transmission lines’ or

‘communication channels’. Similarly, in a computer communication network, the nodes

may represent storage devices or computer systems. The supplies and demands

14

correspond to the transmission rates between nodes. Products may represent messages

between pairs of nodes or messages from each origin to all of its destinations. Each

transmission line has a fixed capacity over time periods which may be increased at a

certain cost per unit.

There could be two basic applications for a communication network design model. In

the first one, the objective is to determine the capacity of the network that satisfies the

demand at the minimum cost over time. In the second one, a network with fixed arc

capacities already exists, and a minimum cost routing is desired. Multiperiod

multiproduct solution approaches can be used to determine the routing of circuits and

construction of additional arc capacities in a telecommunication network satisfying

forecasted circuit requirements at minimum cost.

Moreover, the reliability communication network problem can also be considered as a

multiproduct multiperiod maximum flow problem. The motivation for this problem

comes from the need to improve the reliability and flexibility of public communication

networks. At the periods of failure, the communication between a number of origins

and destinations are blocked. The problem of how to restore the communication over

the same/future time periods would be formulated and solved as a multiperiod

multiproduct maximum flow problem. A fixed amount of flow requirements between

each pair of nodes is usually assumed over the time periods. The objective is to

maximize the total amount of assigned flows over time without exceeding the channel

capacities [3].

15

Chapter 2

2 A Model-Based Approach and Analysis for Multiperiod

Networks

The aim of this chapter is to address a general class of multiperiod distribution network

problems where time-varying spoilage on arcs or and storage in nodes are inevitable.

Having a set of capacities, so-called horizon capacity which limits the total flow passing

arcs over all periods, the optimal dynamic shipping problem with time-varying network

parameters is investigated. We propose some approaches employing polyhedrals/blocks

to obtain optimal/suboptimal solutions for a pre-specified planning horizon.

Our method describes some reformulations based on polyhedrals that lead to LP

problems comprising a set of sparse subproblems. Considering the sparsity and

repeating structure of the polyhedrals, algorithmic approaches based on decomposition

techniques of block angular and block staircase are proposed to handle the global

problem aiming to reduce the computational resources required. While the original

description of the algorithm was motivated by its reduced memory usage, modern

computers can also take advantage of the algorithm’s parallelism. This is because the

Dantzig-Wolfe method is inherently parallel and can be implemented to take advantage

of clusters of machines or multiple cores on a single machine.

The existence and process of identifying such block structures is a prerequisite for

decomposition methods to be considered as practical optimization techniques. It will

always be the step which requires the most involvement from the practitioner, as

success at identifying block structures is essentially a mixture of practical experience

and trial and error (if not a systematic approach is applied). In this chapter, we describe

a number of block structures, show how they are defined by a partition of the entities,

and shortly discuss a various ways to identify them in multiperiod planning problems to

be exploited by decomposition techniques.

The results of this chapter and a specific version of the problem are published in

Hosseini et al. [36] [41].

16

2.1 Minimum Cost Dynamic Flow Problem in a Multiperiod Network

As discussed in previous chapter, there are plenty of relevant decision making problems

in practice that can be formulated as optimization models on dynamic or multiperiod

networks. Furthermore, important characteristics of real-world networks, such as arc

costs and capacities, demands and supplies etc., may be subject to fluctuations over

time. Consequently, also flow values on arcs can change over time. On the other hand,

many applications do not obey flow conservation assumption.

In our setting in this chapter, each arc has a positive time-varying factor associated with

it representing the fraction of flow that remains when it is sent at a specific time period.

We study a certain type of dynamic networks, multiperiod dynamic network flows,

containing horizon capacities and loss/gain factors over a pre-specified time horizon T.

This study deals with minimum cost dynamic flow (MCDF) on generalized multiperiod

dynamic network flow (GMPDNF), in which spoilage/storage in arc/nodes is

expected/allowed. Each arc will be assigned a non-negative time-varying gain/loss

factor, a non-negative time-varying capacity function, a non-negative horizon capacity,

and a non-negative time-varying cost function.

Our problem is dealing with non-simultaneously time-discrete shipping

commodity/energy from sources to sinks in a transportation network, such that no

capacity conditions are violated, and this time-dependent shipping should optimally

happen in a pre-defined planning horizon, and to this aim we propose some simple,

efficient LP models aiming to develop polyhedral-based approaches. We present some

model-based approaches for GMPDNF problems, which propose some reformulations

based on polyhedrals that lead to LP problems comprising a set of subproblems with

exceptional structure. Considering the repeating structure of the subproblems,

algorithmic approaches based on decomposition techniques of block-angular and block-

staircase are proposed to handle the global problem aiming to reduce the computational

resources required. The structural similarity of the subproblems helps us use

decomposition techniques to improve the computational efficiency. Our approaches rely

on an appropriate defining of polyhedral sets. They show that the MCDF problem on a

multiperiod network can be reduced to some linear programs, whose special structures

permit efficient computation of its solution.

17

As mentioned in the previous chapters, in contrast to static flows, a dynamic flow

specifies the flow rate entering an arc for each time period/moment. Let be a

directed graph with node set , arc set , and integral time horizon . Each arc

has an associated non-negative time varying capacity with it, which limits the rate

of flow entering at any moment, a horizon capacity which represents the

maximum amount of flow which can be carried on arc within the entire time horizon ,

and a non-negative transit time . Transit time measures the time a unit flow takes to

get from the tail the head of an arc. A dynamic flow satisfies the supplies and

demands if by time the net flow into each sink equals the demand at the sink and the

net flow out of each source equals the supply at the source:

 , (2.1)

where is the pre-defined supply/demand of source/sink/intermediate node i over the

entire time horizon. Given , is called a dynamic feasible flow if it satisfies

(2.1) - (2.4):

 , (2.2)

 , , (2.3)

 , , (2.4)

where is the amount of flow passing arc),(ji at time moment t . Constraint (2.1)

denotes the flow conservation constraint. Condition (2.2) specifies the upper limit on the

total flow that can be sent from node i along arc over , and condition (2.3)

represents the maximum possible amount of flow that can enter at time . The last

condition emphasizes that flow can be traveling in the network until the end of pre-

specified time horizon.

In the traditional min-cost flow problems, there is a capacitated network, and the aim is

to send a commodity from some sources to some sinks without exceeding the arc

)(V, G

V  T),(ji

)(tuij

),(ji T
iju

T

ij

)(tx

T

iji

j

T

ji

j

T

ij dttxdttx v)()(

00

  Vi

iv

G
 Rtx :)(

T
ij

T

ij udttx 
0

)(),(ji

)()(0 tutx ijij  ),(ji],0[Tt

0)(txij ),(ji ijTt 

)(txij

),(ji],0[T

),(ji t

18

capacity limits at the minimal cost disregarding the time dimension. The minimum cost

dynamic flow (MCDF) problem involves non-simultaneously shipping

commodity/commodities from sources through intermediate nodes to sinks in a (single)

network, such that the total amount of flow going through each arc (path) does not

exceed its capacities (time-varying and horizon capacities), and this shipping should

optimally take place in a pre-defined planning horizon .

Hence, having a continuous cost function , MCDF problem is a decision

problem where we are trying to find a feasible dynamic flow satisfying (2.7)-(2.10)

minimizing the following objective function:

 . (2.5)

Therefore, we may formulate the MCDF problem, in continuous-time model as follows:

 , (2.6)

 , (2.7)

 , (2.8)

 , , (2.9)

 , . (2.10)

The model presented in (2.6)-(2.10) lets no storage at nodes. It may be necessary that

the flow waits at some intermediate nodes until it can continue on an arc, as it appears in

many applications such as batch process scheduling, traffic routing, evacuation

planning, energy transmission, inventory, and telecommunications

 [3] [30] [31] [32] [34] [35]. This leads to a slightly different notion of flow conservation.

Storage means that the flow conservation is not satisfied at each time instance because

the amount of flow arriving at a (intermediate) node at a given time can be different

T

 IRTcij],0[:

dttxtc

ji

T

ijij 
),(0

)()(

dttxtc

ji

T

ijij
txij
 

),(0
)(

)()(Min

i

j

T

ji

j

T

ij dttxdttx v)()(

00

 Vi

T
ij

T

ij udttx 
0

)(),(ji

)()(0 tutx ijij  ),(ji],0[Tt

0)(txij ),(ji Tt 

19

from the amount of flow that leaves the node at that time. If we let the set of vertices

be divided into three subsets , , comprising source, intermediate, and sink

nodes, respectively, we can state the flow conservation constraints as following. In this

case, is a dynamic feasible flow if it satisfies constraints (2.7)-(2.10) and

(2.11) as well

 , . (2.11)

As flow travels through the network, we may allow limited (or unlimited) flow storage

at nodes, but prohibit any deficit by constraint (2.11). As before, all demands must be

met, flow must not remain in the network after time T and each source/sink must not

exceed its supply/demand.

2.2 Continuous-Time Model versus Discrete-Time Model

Time may pass in discrete increments or continuously. In discrete-time models we look

at the network at times by choosing a suitable unit. In practical models

time can be discretized, thus converting continuous flow models to discrete ones. The

Continuous-time version looks for flow distributed continuously over time within period

 while the discrete one is looking for the flow rates over discrete periods. On the

other hand, the choice of the time unit has a considerable impact on the complexity of

the problem. To be able to use general notations that are valid for both discrete and

continuous models, we denote the time domain by T, thus in a discrete-

time model and in a continuous-time model. It might be of use to have a short

discussion on the relationship between continuous-time and discrete-time dynamic

flows in multiperiod networks. There is a natural transformation of continuous dynamic

flow x with integral time horizon T to a discrete flow x of the same horizon, and vice

versa. To this end, let be the total amount of flow sent into arc during time

interval , i.e.,

.

V

VS VI VD

 IRtx :)(

0)()(

00

 dttxdttx

j

ji

j

ij



VSV\i [,0] T

1,...,2,1,0  Tt

],0[T

 1,...,1,0  T

],0[T

)(txij),(ji

[1,[tt

 dxtx

t

t

ijij 




1

)(:)(

21

We define capacity and cost by

, and ,

where , , and .

The last equality holds true because c and are non-negative continuous functions

(see, for example, [10] [74]). The flow x is feasible. For any integral time step and

time horizon T we can bound as follows:

)()()(:)(

11

tududxtx ij

t

t

ij

t

t

ijij  


 and ,

where the above inequalities hold because is feasible. It is easy to verify that flow

conservation constraints hold and x satisfies all such constraints

,

.

In this transformation, the flow cost is preserved.

 dxc

ji

T

ijij 
),(0

)()(

.

2.3 Angular and Staircase Structures in Multiperiod Networks

Certain structural forms of large-scale problems reappear frequently in applications, and

large-scale systems theory concentrates on the analysis of these problems. In this

context, structure means the pattern of zero and nonzero coefficients in the constraints;

)(tuij)(tcij

 dutu

t

t

ijij 




1

)(:)()(:)(tijij ctc 

[1,]  ttt t  dxcdxc

t

t

ijtij

t

t

ijij 




11

)()()()(

x

t

)(txij

T
ij

T

ij

T

t

t

t

ij

t

ij udxdxtx   






 0

1

0

1

)()()(

x

 dxdxtxtx

j

T

t

t

t

ji

j

T

t

t

t

ij

j t

ji

j t

ij   














1

0

11

0

1

)()()()(

i

T

t

i

T

i

j

T

ji

j

T

ij tddxdx v)(v)(v)()(

1

0000

 






 dxc ij

ji

T

t

t

t

ij)()(

),(

1

0

1

  










 dxc

ji

T

t

t

t

ijtij  










),(

1

0

1

)()( 
 



),(

)()(

ji t

ijij txtc

21

the most important such patterns are depicted in the following figure. Several large-

scale problems including any with block angular or near-network structure become

much easier to solve when some of their constraints are removed. The decomposition

method is one way to attack these problems. It essentially considers the problem in two

parts, one with the ‘easy’ constraints and one with the ‘complicating’

constraints [21] [22] [25] [26] [76] [83] [86]. It uses the shadow prices of the second

problem to specify resource prices to be used in the first problem. This leads to

interesting economic interpretations, and the method has had an important influence

upon mathematical economics. It also has provided a theoretical basis for discussing the

coordination of decentralized organization units, and for addressing the issue of transfer

prices among such units [83] [85].

Figure 2.1 Most common structural forms of large-scale problems

DW decomposition is a solution method for the class of LP problems in which the

constraint matrix, A, exhibits the primal block angular structure. DW relies on delayed

column generation for improving the tractability of large-scale linear programs. For

http://en.wikipedia.org/wiki/Delayed_column_generation
http://en.wikipedia.org/wiki/Delayed_column_generation
http://en.wikipedia.org/wiki/Tractable_problem

22

most linear programs solved via the revised simplex algorithm, at each step, most

columns (variables) are not in the basis. In such a scheme, a master problem containing

at least the currently active columns (the basis) uses a subproblem or subproblems to

generate columns for entry into the basis such that their inclusion improves the

objective function. To apply it, there are two major steps. The formulation step, which is

carried out implicitly, is to reformulate the original problem into a form amenable to

decomposing: the reformulated problem is called the master problem. The algorithmic

step is to solve the master problem using a specialized algorithm, which treats a much

smaller, restricted master problem and a set of small pricing problems to obtain a

solution to the full master problem, and thus the original problem. The pricing problems

are based on the block structure present in the original problem.

The existence and process of identifying block structures is a building block for our

modelling approach to exploit decomposition methods as practical solution approaches.

Here, we are going to have a short discussion on some general principles and guidelines

for identifying block structures in LPs, and subsequently MDNF problems, by

considering the algebraic formulation and some other insights. One method is to think

about a plot of the non-zero elements in the constraint matrix of a problem instance. It

might be supposed that it would be easy to identify a block structure from a constraint

matrix of an arbitrary problem instance, but this is not the case [83] [85] [86]. The rows

and columns almost invariably do need permuting in order to realize a block structure.

Natural formulations of LP problems group the entities by function rather than by index,

i.e., all variables associated with production for all products occur together, rather than

all variables (production, storage etc.) associated with a particular product. Even with a

relatively small problem instance, it is hard to pick out a block structure visually from a

plot of the non-zero elements, when the rows and columns are not arranged to expose it.

A second approach could be to pose the problem of identifying block structure as an

optimization problem in itself, and use optimization software to identify a structure.

Various studies have been conducted into this area, but with limited success. One

argument against such an approach is that any potential benefit obtained by using a

decomposition method to solve the original problem is more than outweighed by the

extra effort required to identify the block structure in the first place. This argument loses

some of its weight if the same problem is to be solved many times with different data

http://en.wikipedia.org/wiki/Simplex_algorithm

23

sets, as the structure obtained can be used for different data sets (provided they are of

the same size), but the longer it takes to solve the block structure problem, the greater

the gain needed to compensate in using decomposition methods to solve the original

problem [76] [83] [86].

A further difficulty is that if the structure obtained does not correspond to an underlying

structure in the algebraic model, then it will not scale and will be inapplicable to the

same model with different sized data sets. It is our opinion and that of

others [53] [83] [85] [86] that the criteria for a good block structure are too ill-defined for

the result of a block structure optimization problem to be useful. Criteria such as

minimizing the size of the global blocks or maximizing the number of subsystem blocks

are used, but these are poor proxies for the ultimate objective of a block structure that

results in a good performance of a decomposition method.

Maybe, one of the other efficient ways to obtain a block structure for an LP model for

use with a decomposition method is to study the algebraic formulation and generate

block structures from the index sets of the model. With a little practice it is not difficult,

and with good modelling support tools one can try a number of alternatives to find one

that works well. One may consult Borndorfer and Ferreira [13], Ferris et al. [25] [26],

Kernighan and Lin [53], and Weil and Kettler ‎[86] to get more information on this

matter. Structures that rely on the algebraic formulation, rather than a specific data

instance, have the key advantage of being scalable, that is, applicable to any data

instance of the problem. The key point is to consider how production/usage/storage at

one period is affected by production/storage of the previous time step.

Given an arbitrary matrix A, think of a pair of partitions of the rows and columns:

suppose the rows are divided into sets and the columns into sets

. The rows (respectively columns) in each set (resp.) need not be

adjacent in the matrix. The partitions of the rows and columns clearly impose a partition

on the matrix elements. We say that the elements are partitioned into blocks

, and we refer to the partition of the matrix elements as a

block structure. A block structure is thus defined by a pair of partitions on the rows

 and columns . Given the constraint matrix A from a large sparse

1T },...,,{ 10 TIII 1T

},...,,{ 10 TJJJ  tI tJ 

}|{ ,, tttttt JtandItaA  

},...,,{ 10 TIII },...,,{ 10 TJJJ 

24

LP problem (like MCDF), it is often possible to choose a pair of partitions so that the

non-zero elements of A are connected to relatively few of the blocks in the block

structure (and normally these blocks will themselves be sparse). The two block

structures that are amenable to decomposition methods and we discussed in previous

chapters are of the block angular and staircase forms.

2.3.1 Block-Angular Structured Systems

The matrix has a set of rows 0I that connect with all sets of columns, and sets of rows

tI that each connect with a single set of columns . We had such a constraint in

previous sections and we called it master constraint. In some practical applications,

there is usually an additional set of columns 0J that interacts solely with the row set 0I

.The block angular structure is one of the most widely known and recognized structures

in decomposition, as it is the basis for the original decomposition method developed by

Dantzig and Wolfe. The structure may typically arise where the system being modeled

splits naturally into a set of subsystems, e.g., a set of facilities/time periods, independent

apart from a number of global constraints. The variables and constraints referring to a

single subsystem t correspond to the rows and columns in sets tI and tJ . The constraints

that link the subsystems, corresponding to rows 0I , may express limits of system-wide

scarce resources or ensure that materials balance correctly between the subsystems (e.g.,

facilities or time periods), and are referred to as global, common or linking constraints.

2.3.2 Staircase-Structured Systems

The block staircase structure is best explained as a dynamic (time stage) structure. Let

column set comprise the columns of variables related directly to time period t. Row

set comprises the rows for constraints linking the decisions made in period t with

those made in the previous period . It’s usually said that staircase structure has a

time lag of one, as activities in period are related directly to those in period , but

not to those from earlier periods. However, we mentioned that the production/storage

policy of the current period may only be affected by the previous step, and so this

attribute (time lag of one) well describe the storage policy needed for MPDNFs. We will

use it later when we have to include storage into the problem’s parameters. In general,

tJ

tJ

tI

1t

t 1t

25

the staircase structure may have longer time lags. These types of structure can be

exploited by nested DW decomposition.

It should be noted that, although DW algorithm works in a different feasible region

from that of the original problem there is a correspondence between the master problem

with feasible region PDW, and the original problem with feasible region P. Thus, under

the Minkowski Mapping (Caratheodory Theorem), the master problem and original

problem are equivalent, in the sense that a solution to one implies an equivalent solution

to the other, where solution is taken in its broadest sense to encompass a primal or dual

point or ray [9] [22]. A basic DW algorithm [21] [22] [44] [45] [83] can be formulated as

following and we show how to implement it by GAMS through a multiperiod problem.

2.4 A Model-Based Approach for Multiperiod Networks with Storage

An MPDNF is determined by a directed graph , where V is a set of vertices

and A is a set of arcs. It consists of two non-negative capacity functions

 and , and a pre-defined non-negative time-varying cost

function , where is the set of discrete periods. In the

meanwhile, flow is allowed to be stored in nodes at any period, and we can use the

),(V, TG 

 IRu }V{:  IRuT :

 IRc }V{:  1,...,1,0  T

{Initialization}
Choose initial subsets of variables
While true do
{Master problem}
 Solve the restricted master problem
 µ1 := duals of master constraints
 µ2

(t) := duals of the tth convexity constraints
{Subproblems}
 for t = 0, . . . ,T do
 Plug µ1 and µ2

(t)into subproblem t
 Solve subproblem t
 if (reduced cost)t = min (ct - µ1M)Yt - µ2

(t)<0 then

 Add proposal Yt to the restricted master problem
 end if
end for
 if no proposals generated then
 Stop: optimality
 End if
end while

26

stored flow for the next time. The discrete-time model is considered, in which all times

are integral and bounded by an integer horizon. A discrete dynamic flow in , which

satisfies the following constraints, is said to be feasible. Such a flow is a non-negative

function satisfying (2.12)-(2.16).

 , (2.12)

 , , (2.13)

 , (2.14)

 , , (2.15)

 , . (2.16)

In this formulation, is the amount of flow passing through arc at time period t.

We refer to constraints (3.14) as horizon capacity constraints. Flow must not remain in

the network after time T, and this is ensured by conditions (2.12) and (2.16).

Let be the storage cost in node i at period t. Thus, the total cost of a discrete

dynamic flow x is defined by

 . (2.17)

Having introduced the unrestricted variables)(tvi , we may reformulate the problem as

 , (2.18)

 , , (2.19)

 , (2.20)

 , , (2.21)

G

 IRx }V{:

i

j

T

t

ji

j

T

t

ij txtx v)()(

1

0

1

0










Vi

0)()( txtx

j

ji

j

ij VSV\i t

T
ij

t

ij utx 


)(),(ji

)()(0 tutx ijij  ),(ji t

0)(txij ),(ji t

)(txij),(ji

)(tcii














  

  

)()()()()(

V N),(

txtxtctxtc

j

ij

j

ji

i t

ii

t ji

ijij

 
   



Nt Vi

ii

t i

iiii

t ji

ijij
tvtxtx

tvtctxtctxtc
iiiij

)()()()()()(

V),(
)(),(),(

Min

0)()]1()([)()( tvtxtxtxtx iiiii

j

ji

j

ij t Vi

i

t

i tv v)(


Vi

)()(0 tutx iiii  t VSV\i

27

 , (2.22)

 , , (2.23)

 , , (2.24)

 , , (2.25)

where)(tvi is an unrestricted variable which defines the difference between outflow and

inflow at node i at time step t. Needless to say,)(tvi differs from storage decision

variables, and we leave them to the algorithm to optimally determine. and are

the amount and cost of stored flow at node in period . We set for each i and t.

Clearly, there is no need to have flow storage in period , and this is ensured by

(2.25).One can easily check that conditions (2.19)-(2.21) are equivalent to condition

(2.12) and (2.13) subject to considering (2.25). We prove that this model possesses a

nice property which enables us to reduce the MCDF problem to a problem with special

structure. By substituting for)(tvi , our problem is reduced to the following

matrix form as an LP, whose special structure helps us exploit very efficient

computation algorithm of its solution.

,

 ,

11
111100][][])[]([...])[]([])[]([





  nn
TT

V0VVVVVV ,

 ,

 ,

 ,

,

111][][][  n
t
sn

t
sn UX0 ,

, ,

T
ij

t

ij utx 


)(),(ji

)()(0 tutx ijij  ),(ji t

0)(txij ),(ji t

0)(txii Vi 1,1  Tt

)(txii)(tcii

i t 0)(tci

1T

t
i

t
i vv  






ΝtΝt
VXX

XCXCMin].[][].[][
][],[],[

t
s

transt
s

ttranst

tt
s

t

111
1

1
1

1
0][][][...][][


  m

T
mm

T
mm USXXX

1
00

1
1

1
0

1
0][])[]([][][][][][][


  nnsnnnsnnmmn 0VVXIXIXA

1
11

1
0

1
1

1
1][])[]([][][][][][][  nnsnnnsnnmmn 0VVXIXIXA



1
11

1
2

1
1

1
1][])[]([][][][][][][














  n

TT
n

T
snnn

T
snnm

T
mn 0VVXIXIXA

111][][][  m
t

m
t

m UX0 t

t

11][][  nn
t

0V 11][][  nn
t

0V t

28

where and are the vectors of flow and storage

at time period t , and are the vectors of flow

capacities and storage at , respectively, the vector of pre-defined

horizon capacities. and are the vectors of pre-

defined flow costs on arcs and storage costs in nodes, respectively. Let

represent the vector of decision variables showing the differences

between outflow and inflow of nodes at time . is the node-arc incidence matrix

of the network. is decomposed to and . is the vector of pre-

defined supply/demand numbers. Let be the vector of initial storage which is

zero, and be the vector of slack variables. Without any loss of generality, let

and . Matrix properties help us manipulate the problem to extract the

following efficient matrix form.

 ,

,

,

   
ji

t
ijjiij

t xtx
,,

)(][X    
i

t
iiiii

t
s xtx )(][X

   
ji

t
ijjiij

t utu
,,

)(][U    
i

t
iiiii

t
s utu )(][U

t  
ji

T
ij

T

,
][uU 

   
ji

t
ijjiij

t ctc
,,

)(][C    
i

t
iiiii

t
s ctc )(][C

   
i

t
iii

t vtv )(][V

t mn][A

][t
V][t

V][t
V  

iiv][V

][1
sX

][S
T

XS :

][][][0VV  
TT

 
  transttt

s
tt

s
t

t
ttt

s
t 






VVXX00CCMin

Νt
VVXX

.
,,,

...

1

1

1

1

1

1

1

1

0

0

0

0


























































































































T

T

T
s

T

n

n

n

n

n

n

m

ms

n

n

n

n

n

n

m

ms

n

n

n

n

n

n

m

m

V

V

X

X

I

0

I

0

0

0

0

I
...

V

V

X

X

I

0

I

0

0

0

0

I

V

V

X

X

I

0

I

0

0

0

0

I

,...



















































 V

U

V

V

X

X

I

0

I

0

0

0

0

I T

T

T

T
s

T

n

n

n

n

n

n

m

m

  1

0

0

0

0

][





 





















 n
s

nnnmn 0

V

V

X

X

IIIA

    1

1

1

1

1

0

0

0

0

][























































 n
s

nnnmn
s

nnnm 0

V

V

X

X

IIIA

V

V

X

X

00I0

29

 ,

 

     1

1

1

1

1

2

2

2

2

][



































































 n

T

T

T
s

T

nnnmn

T

T

T
s

T

nnnm 0

V

V

X

X

IIIA

V

V

X

X

00I0 ,

 ,

.

The system arisen above emphasizes that the production/usage/storage at one period

might be affected by production/storage of the previous time step, and affects the

amount of usage/storage of the following period. The matrix form of the problem shows

that we can formulate any MCDF problem on a multiperiod dynamic network (with

storage) as a problem which possesses the staircase structured system. This structure

permits efficient handling. One general approach might be the technique of

decomposition. Here, we may refer to those constraints with general structure as master

constraint and ones with special structures as subproblems while applying

decomposition methods, DW decomposition or Benders decomposition. In other words,

the original problem is reformulated into a series of structurally similar LP

subproblems.

The structural similarity of the subproblems and the sparsity of constraints matrices

allow us to use decomposition techniques to improve the computational efficiency. In

addition to structural similarity, this modelling technique has converted MCDF problem

to one with many sparse matrices. Generally, decomposition algorithms have inherent

efficiency for large-scale problems. On the other hand, while the original description of

    1

2

2

2

2

1

1

1

1

][























































 n
s

nnnmn
s

nnnm 0

V

V

X

X

IIIA

V

V

X

X

00I0

    1

1

1

1

1

][





























































 n

T

T

T
s

T

nnnmn

T

T

T
s

T

nnnm 0

V

V

X

X

IIIA

V

V

X

X

00I0

















































V

V

U

U

V

V

X

X

0
t
s

t

t

t

t
s

t

][t

31

the algorithm is motivated by its reduced memory usage, modern computers can also

take advantage of the algorithm’s inherent parallelism. In Chapter 3, we will discuss the

parallelism of Dantzig-Wolfe algorithm and we will report very promising results from

Rios [76] for such parallel processing. However, prior to taking advantage of

algorithm’s parallelism we should be able to decompose the problem into suitable

blocks to be attacked by DW. We also might note that the foregoing formulation of the

MCDF problem has a simple constraint structure. It has got constraints and

variables (including the slacks), where m is the cardinality of arc

set, and n the network size.

2.5 Slice Modelling

One of the strategies to handle optimization problems formed by subproblems with

similar structures is slice modelling. The modelling language used in this study may

resemble slice modelling system. Although they may seem similar, there are some

important differences between slice modelling system and polyhedral-based approach of

this thesis. The resemblance and differences of the problems can directly arise from the

definition/assumptions of slice modelling. In a broad sense, a slice model consists of a

series of mathematical programs with the same structure but different data. Further, in

slice models, often the data elements are related: some or most of the data may stay the

same between programs, and so the programs differ only in a few rows or columns.

Because of this, the basic structure in a slice model remains the same from program to

program. To get a better understanding, one may consult with Ferris et al. [25] [26]. For

the k-th slice program, this idea can be expressed as follows:

(Objective slice)

(Slice constraint)

x (Core constraint)

Where represents the matrix of constraint coefficients which (along with right-hand-

side) are unique to the k-th program. The set X represents the (core) constraints and

program structure that remain constant between programs [85]. One of the fundamental

differences between the subproblems generated in the paper and slice problems is that in

)1(Tnm 

)1()2( TnTnmm

)(xf k
x

Min

kk x bA )(

kA

kb

31

slice problems none of the variables of one subproblem is involved on another

(independency). But in our case, as discussed, the arisen system shows that the

production/storage at any period will affect the production/storage of the next period,

which means some of the decision variables of the current period will appear in the next

period’s decision variables set, and our decision at each step cannot be independent of

that from the previous period. On the other hand, in contrast to slice modelling, our

model considers a non-separable common objective function-for all subproblems-where

all variables included in all subproblems are appeared. Furthermore, slice modelling

system can be interpreted as a series of mathematical programs which must be solved in

order to obtain the complete solution of the optimization problem, but this is not the

case in our model which thinks of the MCDF problem as a whole comprising some

polyhedrals.

2.6 Generalized Multiperiod Network Flows (MPDNF with Spoilage)

In each of the models we have considered up to now, we have made a fundamental

assumption, namely, flow has to be conserved on every arc. This assumption seems

reasonable in many applications, including those we expressed in the previous sections.

However, many other practical applications may violate this conservation assumption.

For example, in the transmission of a volatile gas, we may lose flow because of

evaporation; or, in the transmission of liquids such as raw petroleum crude, we might

lose flow due to leakage [3].

The generalized multiperiod dynamic network flow problem (GMPDNF) is a natural

generalization of the problem stated in the foregoing chapter. GMPDNF problem is

going to develop multiperiod network problem by allowing flow to leak as it is sent

through the network. In this setting, each arc has a time varying non-negative

capacity and horizon capacity . Additionally, each arc will be assigned a time-

varying non-negative gain/loss multiplier associated with it. We will refer to

as the factor of arc at time . When we send units of flow from node via arc

 at time , units of flow arrive at node at the same time. If , the

arc is lossy; if the arc is gainy (on that time). Therefore, for example, if there is

),(ji

)(tuij
T
iju

)(tij)(tij

),(ji t)(txij i

),(ji t)().(txt ijij j 1)(tij

1)(tij

32

flow spoilage (loss) on an arc during the all periods, then model may be represented as

the initial one by assigning a loss factor to the related arc.

 . (2.26)

Generalized multiperiod networks can successfully model many application settings that

cannot appropriately be represented as ordinary min-cost flow problems. The factors

can represent physical transformations of one commodity into a less or greater amount

of the same commodity. Some examples may include: spoilage, theft, evaporation,

taxes, seepage, deterioration, interest, or breeding. The gain/loss factors may also model

the transformation of one commodity into a different commodity. Some examples for

this case could include: converting raw materials into finished goods, currency

conversion, and machine scheduling [3][[62] [70].

A generalized multiperiod network consists of node set , arc set , two

non-negative capacity functions and , pre-defined non-

negative cost function , and pre-defined non-negative time-varying

gain/loss function , where is the set of discrete periods. A

discrete feasible dynamic flow in will be a non-negative function

satisfying (2.27)-(2.30).

 , (2.27)

 , (2.28)

 , , (2.29)

 , . (2.30)

The equations stated above are the conditions for flow feasibility in a generalized

MPDNF. Note that we are assuming that the arc capacity is an upper bound on the

flow sent from node at time step t , not on the flow that becomes available at node j .

Similarly, should be interpreted as the cost for each unit of flow that we send from

i

j

T

jiji

j

T

ij dttxtdttx v)()()(

00

  Vi

),(V, TG  V 

 IRu :
 IRuT :

 IRc :

 IR:  1,...,1,0  T

G

 IRxx t
ji

t
ij :}{ ,

i

j

T

t

t
ji

t
ji

j

T

t

t
ij xx v

1

0

1

0










 Vi

T
ij

t

t
ij ux 



),(ji

t
ij

t
ij ux 0 ),(ji t

0t
ijx ),(ji t

t
iju

i

t
ijc

33

node , not the per unit cost of the flow that reaches node j. Now, we can formulate the

minimum cost dynamic flow problem on GMPDNF

 ,

 Subject to (2.27)-(2.39).

For this case, we will also show that the problem possesses the property which enables

us to reduce the MCDF problem to a problem with special structure without being have

to use time-expanded network. By introducing the unrestricted variable , we

reformulate the problem as:

 , (2.31)

 , , (2.32)

i

t

t
iv v



, (2.33)

 , (2.34)

 , . (2.35)

where is a free decision variable which defines the difference between outflow and

inflow at node i at time step t, and for each i and t. It is easy to check that

conditions (2.32) and (2.33) together are equivalent to condition (2.27). To develop our

polyhedral-based approach we need to define a two-level matrix transformation as

following. To this end, we introduce secondary matrix as:

 ,

where is a -diagonal matrix whose elements are the arc factors of our MP

network in the same order that arcs appear in m-vector (is the number of arcs

of the network). Now, for a fixed time period t we construct as

following.

i

)(GMPDNFTimeDiscrete   
 t ji

t
ij

t
ij

x
xc

t
ij),(

Min

t
iv

 
  



Nt Vi

t
i

t
i

t ji

t
ij

t
ij

vx
vcxc

t
i

t
ij),(

,
Min

0)( t
i

j

t
ji

t
ji

j

t
ij vxx  Vi t

Vi

T
ij

t

t
ij ux 



),(ji

t
ij

t
ij ux 0 ),(ji t

t
iv

0t
ic

mn][Φ

mmmnmn  ][][:][ΣAΦ

][Σ mm

1][mX m

mn
t

][B  mn][B

34

 (2.36)

where and represent the elements of the matrices and][Φ ,

respectively. We refer to matrix as the generalized node-arc incidence matrix of

the multiperiod network. Hence, we call as the generalized node-arc incidence

matrix of GMPDNF at time step t . Note that, due to changes in arc factors over time,

incident matrices are not necessarily the same for each time step, but since the time-

varying gain/loss functions are pre-defined, all matrices can be computed off-line when

we have a jump in time. As an illustration of this idea, let’s consider the 3-dimensional

incidence matrix of the network presented in Figure 2.2 for a fixed period, and see how

this idea works.

Figure 2.2 A typical GMPDNF at a fixed time period

Suppose is the vector of supply/demand numbers. We get the vector of

flows , node-arc incidence matrix , and diagonal matrix as

following.

   A























110

101

011

 and and and .

Now, let’s introduce ancillary matrix][Φ as discussed. It is

][Φ .

Having][Φ at hand, we can construct the generalized node-arc incidence matrix .






1

][
:][

ij

ij

Φ
B

if

if

,0][

,0][





ij

ij

Φ

Φ

ij][B ij][Φ thji ),(][B

mn][B

mn
t

][B

 
3,2,1

v][



iiV

  3,2,1

3,2,1
][






j

iijxX][A][Σ

X

















23

31

12

x

x

x
V

















3

2

1

v

v

v

   Σ

















23

31

12

00

00

00





































































2331

2312

3112

23

31

12

0

0

0

00

0

00

110

101

011













][B

35

.

It is easy to see that yields exactly required conditions for a flow in GMPDNF

problem.

= = = .

By substituting for () and considering the two-level matrix

transformation, the model can be stated as:

,

 ,

 ,

 ,

 ,

 ,

 .

 , ,

where and are the vectors of flow and capacities in .

is the vector of horizon capacities. Let represent the vector of arc

costs at and be the generalized node-arc incidence matrix. and

are defined as before. Matrix properties allow us to express the following

3323

12

31

10

10

01

:][
































B

]][[XB

]].[[XB























23

12

31

10

10

01























23

31

12

x

x

x























232331

121223

313112

xx

xx

xx























3

2

1

v

v

v

][V

t
i

t
i vv  

t
iv 0,0  

t
i

t
i vv

].[][
Νt

X
XCMin

ttranst

t

11
1

1
1

1
0][][...][][


  m

T
m

T
mm UXXX

1
111100][])[]([...])[]([])[]([





  n
TT

VVVVVVV

11
0

1
0

1
00][][][][][][][  nnnnnnnmmn 0VΙVΙXB

11
1

1
1

1
11][][][][][][][  nnnnnnnmmn 0VΙVΙXB



11
1

1
1

1
11][][][][][][][










  nn
T

nnn
T

nnm
T

mn
T

0VΙVΙXB

111][][][  m
t

m
t

m UX0 t

11][][  nn
t

0V 11][][  nn
t

0V t

 
ji

t
ij

t x
,

][X  
ji

t
ij

t u
,

][U t

 
ji

T
ij

T u
,

][U  
ji

t
ij

t c
,

][C

t][B  
i

t
i

t v][V

 
iiv][V

36

matrix form as a linear program whose special structure has a great advantage to exploit

efficient algorithms for its solution. let and .

,

+

,

 ,

 ,

 

 ,

.

Our modelling procedure reveals that we can formulate any MCDF problem on a

GMPDNF as a problem which possesses the block diagonal or angular structure. It is

approached conveniently by either the decomposition procedure or a technique referred

to as generalized upper bounding [25] [26] [77] which is available on many commercial

mathematical-programming systems. Block diagonal structure is very desirable because

it can speed up the solution process for our linear programming problem. This structure

may be exploited by splitting the original problem into smaller subproblems (those

which form the diagonal) while having a coupling constraint, master constraint. In this

setting, we call the first set of constraints as master constraint. The structure of the

block-angular system suggests that we try to break the problem down into a set of some

independent smaller parts and then adjust the solution to take into account the

interconnections.

][:][T
XS ][][][0VV  

TT

  



 Νt

VVX
VVX00CMin

transtttt

ttt
.

,,

...
1

1

1

0

0

0


























































































 















1T

1T

1T

n

n

n

n

m

m

n

n

n

n

m

m

n

n

n

n

m

m

V

V

X

I

0

I

0

0

I
...

V

V

X

I

0

I

0

0

I

V

V

X

I

0

I

0

0

I










































V

U

V

V

X

I

0

I

0

0

I)(T

T

T

T

n

n

n

n

m

m

 ][
0

0

0

0
0

V

V

X

IIB 























 nnmn

 ][
1

1

1

1
0

V

V

X

IIB 























 nnmn

 ][0

V

V

X

IIB 

























T

T

T

nn
T

mn













































V

V

U

V

V

X

0

t

t

t

t

][}{Tt 

37

DW decomposition is very well suited for problems with this kind of structure.

Interestingly enough, the master constraint in the matrix form (and subsequently, in the

master problem) has the same matrix for any set of variables . This plus

the sparsity of the matrices are the most essential ingredients of this modelling

approach, which facilitates to reach the optimal/suboptimal by decomposition method.

Of course, it is not necessary for either set of constraints to have special structure, but

when available, improves the efficiency of the procedure, which is the case in our

problem. Thus, we may apply the block diagonal decomposition techniques to solve the

foregoing problem to achieve the desired effect. For further discussion, one is referred

to Chapter 3.

Let’s consider an application of a decomposition algorithm to the problem. For this aim,

define polyhedral sets for each as:

  

Tt

t

t

t

t

t

t

t

nn
t

mn

t

t

t

,...,2,1,0

t][][:χ
















































































































V

V

U

V

V

X

0,0

V

V

X

IIB:

V

V

X

. (2.37)

For the first case, let’s assume that each component of][t
U is finite so that the

polyhedral set for each is definitely bounded (polytop). Considering

Caratheodory Theorem, any can be expressed as a convex combination

of a finite number of extreme points of .

, 1

1




tk

i

t
i , and ,

where are the extreme points of polytop and denote

Lagrange multipliers. Replacing each by its corresponding convex

representation yields the following equivalent formulation, master problem, of

GMPDNF in an utterly different space of variables.

transttt),,( VVX

1T tχ  Tt ,...,1,0

tχ t

ttttt χ),,( VVX

tχ

][)(

1




 

tk

i

t
i

t
i

transttt
xV,V,X  0t

i
tki ,...,1

][][][t

k

t
2

t
1 tx,...,x,x

tχ t

k

tt
t ,...,, 21

transttt),,( VVX

38

]).[.(

1


 Nt

k

i

t
i

tt
i

t

t
i

x,0,0CMin 


,

,

,

, .

Due to having a huge number of extreme points for each polyhedron set, enumerating

all the extreme points, and directly solve this problem seems impossible. Rather, we

should find a reasonable solution approach of the problem without enumerating all the

extreme points. This is where we suggest decomposition techniques, especially due to

the special structure of our problem that affects the memory usage of the decomposition

methods. Let’s go a further ahead and reduce our new problem to a condensed master

problem.

,

 ,

,

, .

Since the vast majority of the t
i variables are valued zero at any given iteration, most

columns are irrelevant (that is, nonbasic) to the master. This leads to the heart of the

decomposition algorithm. Only potentially useful columns are added to a so-called

reduced master problem. For each (sparse) polyhedral, an independent LP is created,

which is easy to solve. Assuming there are T subproblems in a DW implementation, at

any iteration of the algorithm there are up to T potential columns to add to the reduced

master formulation.




















































 



V

U
x

II0

00I
...x

II0

00I
x

II0

00I Tk

i

T
i

T
i

nnm

nnm
k

i

ii
nnm

nnm
k

i

ii
nnm

nnm

T 110

11

11

0

00][][][

1

1




tk

i

t
i }{Tt 

0t
i }{Tt  tki ,...,1

]).[.(

1


 Nt

k

i

t
i

tt
i

t

t
i

x,0,0CMin 



























 
 

V

U
x

II0

00I T

Nt

k

i

t
i

t
i

nnm

nnm

t

1

].[

1

1




tk

i

t
i }{Tt 

0t
i }{Tt  tki ,...,1

39

Note also that the new formulation of the MCDF problem shows a much simpler

constraint structure than the usual matrix form. It possesses only constraints

rather than in the ex-form, and this again adds a point to the efficiency of the

algorithms which may be applied to solve the problem on this new form.

Observation 2.1 Considering the relationship between the extreme points and inner

points stated in Caratheodory mapping, the optimal solution (corresponding to the

optimal basis) obtained for GMPDNF from the master problem determines one set of

original variables of form for each time step conveying a positive flow

 [9] [83].

Remark 2.1 Any optimal basis will detect one arc set for every time step t that

transports a positive amount of flow. Moreover, the values of for each i and t will be

determined at any basis, particularly in the optimal basis.

Remark 2.2 It immediately follows that the optimal arc sets for every time step are

not necessarily the same.

Furthermore, if we eliminate the restriction over components of , we may let the

polyhedrals have some extreme directions and hence, under the Caratheodory mapping

the original problem can be reformulated as the following condensed master problem

where are extreme directions (if any) of polyhedral .

,

,

,

,

.

Tnm 

nTnm 

transttt),,( VVX

t
iv

][t
U

][][][t

k

t
2

t
1 td,...,d,d

tχ

  
 



tt

t
j

t
i

l

j

t
j

t
j

TNt

k

i

t
i

t
i

t

1}{ 1
,

][][),(dx0,0CMin 


 

























  
 

V

U
dx

II0

00I Tl

j

t
j

t
j

TNt

k

i

t
i

t
i

nnm

nnm

tt

1}{ 1

].[].[

1

1




tk

i

t
i }{Tt 

0t
i }{Tt  tki ,...,1

0t
j }{Tt  tlj ,...,1

41

Problems of this structure might be well amenable by many decomposition algorithms

and so the computational advantage of the algorithm arises from the efficiency of the

decomposition methods. We propose DW decomposition or Benders algorithm to obtain

optimal solutions optimizing min-cost flow employing our polyhedral based

approaches. As we proved, the original problem can be reformulated into a series of

structurally similar LP subproblems, which may be solved employing GAMS.

The structural similarity of the subproblems and the sparsity of the associated matrices

allow us to use any decomposition technique to well improve the computational

resources. One of the other interesting features of this approach is that our algorithms

considers the dynamic network problem as a linear programming problem which does

not need the underlying graph to be connected, or does not force the data to be integer.

In contrast with many other network algorithms, this one solves the (dynamic) problem

under any sort of conditions. Our method basically relies on the modelling aspects of

the multiperiod network flows, and then it tries to extract the special structure hidden in

this kind of problems. As the last point regarding the algorithm, it should be mentioned

that the problem in the primitive form could not have been solved efficiently due to the

high dimension of the problem caused by the horizon time and size of the network. It

seems as if the problem has many thousands of rows and unsolvable in a reasonable

amount of time, however, our approach suggests a method to convert the large-scale

(high dimensional problem) into one or more appropriately coordinated smaller

problems of manageable sizes.

2.7 Multiperiod Networks with Storage and Spoilage (SS Networks)

In this Section, we will introduce the most general case of multiperiod networks, i.e.,

MPDNF with storage at nodes and spoilage in arcs. We call these networks as SS

network flows. The SS network flow problem is going to develop the multiperiod

network flow problem by allowing the flow to leak and be stored, at the same time, as it

is sent through the network. Naturally, the min-cost SS network problem in the

continuous time setting will be of the form stated in (2.38)-(2.43)

41

 (2.38)

 , (2.39)

 , (2.40)

 ),(ji , (2.41)

 , (2.42)

 . (2.43)

If we replace (2.31) and (2.32) by (2.44) and (2.45), we get the min-cost SS network

problem in the discrete time setting subject to introducing free variable (

).

 , (2.44)

 , . (2.45)

To develop a polyhedral-based approach, we use again the two-level matrix

transformation introduced in (2.36). It yields the node-arc incidence matrix of SS

network with respect to each time step. Let be the node-arc incidence matrix at

step t . Therefore, having done all the necessary changes, the min-cost SS network

problem can be modeled as that in previous section. The only difference will be the

subproblems’ matrices. It suffices to replace

by

 for any t.

dttxtc

ji

T

ijij
txij

 
),(0

)(
)()(Min dttxttxtc

i

T

j

jijiiji  

0

)]().()([)(

i

j

T

jiji

j

T

ij dttxtdttx v)().()(

00

  Vi

0)().()(

00

 dttxtdttx

j

jiji

j

ij



 [,0[T VSV\i

T
ij

T

ij udttx 
0

)(

)()(0 tutx ijij  ),(ji],0[Tt

0)(txij ),(ji Tt 

t
i

t
i

t
i vvv  :

0,0  
t
i

t
i vv

 
   



Nt Vi

t
i

t
i

t i

t
ii

t
ii

t ji

t
ij

t
ij

vxx
vcxcxc

t
i

t
ii

t
ij V),(

,,
Min

0].[1   t
i

t
ii

j

t
ji

t
ji

j

t
ij

t
ii vxxxx  t Vi

mn
t

][B

 nnnmn IIIA 

 nnn
t

mn IIIB 

42

2.8 Examples, Applications, and Testing

Multiperiod dynamic flow problems arise frequently in Process Systems Engineering

and dynamic generative network flows with essential applications in large production

scheduling, multiperiod production planning, data/energy transmissions, and

information communication technology. Dynamic Flows are widely used in modeling of

control processes from different technical, electrical, economic and informational

systems. Electricity and data transmissions, road or air traffic control, production

systems, evacuation planning, production and distribution, telecommunication,

transportation, communication, and management problems can be formulated and

solved as single-commodity or multi commodity problems on (multiperiod) dynamic

networks [6] [16] [17] [29] [32] [35] [57] [65] [71] [72] [80] [81]. The need for more realistic

network models led to the development of the dynamic network flow theory and

nowadays, they have been applied to a variety of situations including production, crude

oil transportation, inventory, and workforce models. When the above models involve a

parameter of time horizon, they may often be modeled as dynamic or multiperiod flows.

Below, we give a potential application as a representative sampling. Consider a number

of cities with demand for a certain good (that may vary over time or not) over a

specified time period, e.g., demand for electricity -which we have been dealing with in

our case study. We assume that demand is satisfied by shipping electricity in a fixed

number of wires from a number of supply/production sites, where the cost of production

is assumed to be time varying (or fixed for each time period).

We restrict our attention to the case in which each wire/cable/line must unload all of its

goods (electricity) at the demand site upon arriving. The objective is to determine the

production circuit and shipping electricity over the time period, so as to minimize the

daily cost (horizon time was considered a day for our case study). We are going to

consider the case for which capacities and costs change over time during a day. Note

that the transmission times for electricity over wires are negligible, and so can be

estimated as zero, if desired. The mentioned problem may be formulated using the

techniques discussed in this section as a MP network flow if loss is expected, or as that

discussed earlier or storage assumption can/must be applied in sites. The problem can be

formulated as follows: (1) Production site i has a fixed amount of supplies iv over time

43

horizon T (Horizon time = a day); (2) Demand site has a fixed demand iv for

electricity over a day for; (3) The number of wires can be bounded above and below; (4)

Storage can be allowed at the production and demand sites at a cost, or not; (5) Losses

may be expected at wires or not (it is about zero in this case study).Constraints (3) and

(4) are related in that flow is measured in goods traveling over time; if storage is

allowed, then storage will be interpreted as throughput as will a wire traveling.

Simultaneously, allowing both (3) and (4) results in a problem that is NP-complete even

for problems with exactly one wire. The NP-completeness can be proved via a

transformation from the traveling salesman problem.

The static network has node set },...,2,1{ n . For each production site i and demand site j,

there are arcs and),(ij with zero transit times. Thus the static network is a complete

directed bipartite graph. For each arc),(ji there is an additional constraint that the flow

into arc in each time period is bounded above and below. To test the applicability of the

proposed models, we conducted a series of experiments using a set of real data from our

case study on grid networks and on random MP networks. Several parameters must be

specified in order to generate the network topology, arc capacities and costs, losses and

gains, and node storage capacities (if desired). These parameters are random seed, time

horizon , number of supply/demand nodes, indegree and outdegree of each node,

minimum and maximum values of arc capacities, losses, gains, and costs, which all

must be nonnegative. The cost on each arc (for each time period) is randomly chosen

from a uniform distribution between user defined parameter and , and

gain/loss factors for each period are also chosen from a ],0[max uniform distribution

where is given.

The user also sets the number of time periods, supply nodes, and demand nodes. Then,

we may randomly select as many source-sink pairs as desired. The demand for each

time step is to be randomly chosen from a uniform distribution between and a pre-

given parameter , and likewise for supply, storage capacity, spoilage, arc

capacities. The experiments are conducted on random networks with 20, 26, 30, 40, 46,

62, 74, 82, and 100 nodes and time horizon for each case is set to be 10, 13, 15, 20, 23,

31, 37, 41, and 50. For each choice of n nodes, we create networks with different

indegree and outdegree in a range from 2 to 8. We denote by  the density of the

i

),(ji

T

minc maxc

max

minv

maxv

44

network, that is nm / . The minimum and maximum loss/gain is set to 0 and 2,

respectively, the minimum and maximum capacity is set to 50 and 70, respectively, the

minimum and maximum cost is set to 1 and 10. For each specific setting of n and m, we

test a random MP network.

Figure 2.3 Sensitivity to the number of time increments

(a case study problem(dotted line) vs. a random network (solid line))

Figure 2.4 Sensitivity to density

In order to better illustrate the sensitivity of the method to various data parameters

(number of time increments and network density), Figure 2.3 and Figure 2.4 give the

plots of execution time with respect to each of them for increasing larger problem

instances. A plot for each different network parameter,  and T , helps us visualize the

effects of time splitting and density on the growth of the problem or the average CPU

time. Figure 2.4 shows that CPU time increases exponentially in denser networks. In

addition, we have performed several computational tests and analyzed decomposition

45

approach on a variety of MPDNF problem instances. These tests have included the

investigation of different implementation ideas and the testing of the sensitivity of the

method to various data parameters, such as the number of arcs, number of time

increments and the congestion in the multiperiod network. We generated many MPDNF

of various sizes, different number of time periods, and different levels of congestion.

Each generated network has an underlying random-complete form or a grid graph. For

each grid network, the length L (the number of arcs in each horizontal line) and the

height H (the number of arcs in each vertical line) are user defined. Each grid network is

derived from an undirected network, i.e., there are two oppositely directed arcs between

each pair of connected nodes. Our linear programming models, decomposition methods,

were implemented in GAMS/Cplex on a personal computer with a 3GHz processor and

4GB physical RAM. The results of a very small number of runs are summarized in

Table 2.1. We let the storage be zero at any node in any moment of time. Computational

experiences shown in the first four rows correspond to some grid MPDNFs from our

case study having parameters. The remaining rows represent the results for some

multiperiod random networks.

 Table 2.1 Sizes and computational results

Number of

Polyhedrals

Number

of

Variables

Number of

Constraints

Number of

Non-zeros

Work

space

Allocated

(Mb)

Computational

Time (s)

Data set 1 11 2490 410 401 1.4 05.45

Data set 2 14 5226 689 677 1.4 07.31

Data set 3 16 7860 915 901 1.4 08.05

Data set 4 21 17980 1620 1601 1.9 14.98

Data set 5 24 26956 2047 2117 1.9 21.87

Data set 6 32 64356 3875 2853 3.0 20.02

Data set 7 38 108114 5513 5477 4.5 58.04

Data set 8 42 146206 6765 6725 5.6 76.09

Data set 9 51 262450 10050 10001 8.2 68.09

Also observe that, in practice, this approach usually develops a very good

approximation quickly, but then expends considerable effort to refine it (Figure 2.5). In

a practical application, there is often the need to get solutions quickly, within a given

time, even if it means compromising the quality of the solutions. DW method provides

feasible solutions if halted prematurely, and the quality of the solutions improves

monotonically as it progresses.

46

Remark 2.3 It is proved [9] [83] that the DW algorithm provides an upper bound (dual

bound) on the value of the objective function at each iteration, which allows the quality

of the current solution to be assessed, so that the trade of between time and quality can

be quantified. Tebboth [83] proved that given a dual (optimal) solution to the original

problem there is an obvious corresponding dual (optimal) solution to the master

problem (by a simple projection) and vice versa. Applying his argument to our case

yields that if (µ1, v) is dual feasible for the original problem, then (µ1, µ2) is dual feasible

for the master problem, where µ2
(t)=vtbt (b: rhs vector). Conversely, if (µ1, µ2) is dual

feasible for the master problem, then (µ1, v) is dual feasible for the original problem,

where vt is a dual solution to subproblem problem t. Therefore, (µ1, v) is a dual feasible

solution to the original problem, and the corresponding dual objective value z = µ1b0 +

v1b1+...+ vTbT is a dual (upper) bound on the optimal value of the original problem, and

thus also of the master problem. Hence, at each iteration of the algorithm, once the

restricted master problem is feasible, a new dual solution of the restricted master

problem is available and we can calculate a new dual bound. It provides a guarantee on

the quality of the current solution to the restricted master problem [83]. In practice, a

near optimal solution may be acceptable and so the algorithm can be terminated early

once the gap (The difference between the primal value of the restricted master problem

and the least dual bound obtained during the course of the algorithm) falls to within an

acceptable limit.

Remark 2.4 One particularly attractive feature of decomposition, in contrast to the

simplex method, is the relatively straightforward potential for a parallel computational

version. The pricing phase of the algorithm consists of solving a set of mutually

independent LP problems, which can also be accomplished in parallel [76] [83]. The

parallelism is coarse grained, uses distributed memory, and is ideally suited to networks

of serial computers that are in common everyday use. Furthermore, provided that the

work to solve the pricing problems is not trivial, and, in particular, it is not dominated

by the work to solve the master problem, the parallelism is likely to be efficient. To

know more about parallelism and different parallelism strategies of DW, please read the

last section of Chapter 3.

47

Generally, since the convergence of this approach has turned out to be slow in the final

stages, such a termination procedure might be of great importance to employ.

Consequently, when decomposition is applied on a min-cost MPDNF problem, the

objective value usually decreases rapidly and then slowly tails off by approaching the

optimal objective value. Figure 2.5 plots the progress of a random problem for an

application of the decomposition method showing how the objective values and upper

bounds converge as the number of iterations (time) increases.

Figure 2.5 Objective and upper bound progress of decomposition application for a

random problem

The problems are min-cost flow problems, so the objective value descends from above

while the bound ascends from below. The plots show how much more rapid the

convergence is with the set decomposition, and the length of the tail of the time

decomposition. Figure 2.5 also shows the relative gap between the objective value and

dual bound as the algorithm progresses.

2.9 Summary and Concluding Remarks

This chapter addresses discrete-time dynamic min-cost flow problem on multiperiod

network flows under the generalization of node storage or/and arc spoilage. We have

developed some model-based approaches to solve the dynamic min-cost flow problem

employing polyhedral sets hidden in the underlying network structure. By generating

block structures from the index sets of the model, the original problem(s) is

reformulated into a series of structurally similar sparse LP subproblems (polyhedrals),

which are solved by GAMS/CPLEX/DW. The structural similarity of the subproblems

48

allows us to use decomposition techniques to well improve the computational resources.

We propose some algebraic approaches by plotting the non-zero and zero elements in

the constraint matrix of a problem instance to generate the blocks of interest.

What is important to note is that our approach is a two-phase method. The first phase is

the matrix transformation/decomposition, and the second one is an application of DW

method. Needless to say, the performance of our algorithm highly depends on the two-

level matrix transformation we already introduced. A simple analysis reveals that the

running time needed for all transformations is . However, for more general

cases, where the underlying MP network has no loss/gain on its arcs or has fixed

loss/gain during the planning time, the running time can be improved to if a

simple data structure is used to maintain the factors for each time period. As mentioned

before, although the nature of the MP network is time varying, all the node-arc

incidence matrices and matrix transformations can be updated/run off-line and parallel.

Therefore, if the solutions of the first phase are calculated in parallel, we can expect to

obtain the optimal solution for any min-cost MPDNF problem in a reasonable time, as

shown in Table 2.1.

)(2TnmΟ

)(2nmΟ

49

Chapter 3

3 A Decomposition-Based Approach for the Multiple-

Product Distribution Problems over Time

In this chapter, we will attack the most general case of multiperiod multiproduct

network planning problems, where we allow spoilage on arcs and/or storage at nodes. In

our models, all network parameters change over time and products. The minimum-cost

flow problem in the discrete-time model with varying network parameters is

investigated when we allow storage and or spoilage, and some reformulation techniques

employing polyhedrals are developed to obtain optimal solutions for a predefined

horizon. Our methods rely on appropriate definitions of polyhedrals and identification

of block structures that lead to LP problems comprising a set of sparse subproblems

with repeated components.

Little has been written on identifying block structure in practical large LP problems. We

show how block structure can be inferred from the algebraic model description of the

problem, by recognizing that underlying structure in the problem is identified through

index sets in the model. Our method is to consider a plot of the non-zero and zero

elements in the constraint matrix of a problem instance. Matrix decomposition is

utilized to illustrate the transformation from the original problem to the Dantzig-Wolfe

master problem and to establish how solutions are obtained from the decomposition

algorithm correspond to solutions of the original problem.

Solving LP problems is quite memory intensive. When memory is limited,

GAMS/Cplex automatically makes adjustments which may negatively impact

performance. Having properly decomposed constraints into the (sparse) blocks,

computational expenses of solving such large-scale planning problems can be decreased

by using decomposition techniques [9] [11] [15] [83]. On the other hand, modern

computers can also take advantage of the algorithm’s inherent parallelism to efficiently

improve the elapsed time.

51

In a very recent inspiring work, Rios [76] has reported computational results to motivate

use of such parallel solvers, as this implementation outperforms state-of-the-art

commercial solvers (like CPLEX) in terms of wall-clock runtime by an order of

magnitude or more on several problem instances. Applying his approach (in

implementation) and ours (in decomposing) simultaneously will sufficiently

demonstrate the utility of our approach.

The results of this chapter are published in Hosseini et al. [37].

3.1 The Problem of Min-Cost Flow on Multiperiod Multiproduct Networks

The single-commodity multiperiod distribution problem, discussed in previous chapter,

can be extended to the multi-commodity multiperiod distribution network flow problem.

Motivated by time-dependent multi-item distribution planning problems, we study an

extension of multiperiod flow problems as a generalization of Hosseini [36] [41] by

including horizon capacities, time-commodity varying capacities, time-commodity

varying costs, and time-commodity varying loss/gain factors over a finite horizon.

This chapter focuses on the minimum cost dynamic flows (MCDF) on multiperiod

multiproduct networks (MMN), in which spoilage/storage in arcs/nodes is

expected/allowed. In such applications, each arc is assigned a non-negative time-

commodity varying gain/loss factor, two non-negative time and time-commodity

varying capacity functions, a non-negative horizon capacity, and a non-negative time-

commodity varying cost function. In our setting, a positive time-commodity varying

factor represents the fraction of flow that remains when it is sent at a specific time

period. We consider non-simultaneous shipment of commodities from production sites

(sources) to markets (sinks) in a distribution network such that no capacity conditions

are violated and this time-commodity dependent shipment should optimally happen in a

pre-defined horizon. Hence, the problem here is a decision problem aiming to find a

dynamic flow minimizing a pre-defined non-negative distribution cost function.

We assume that the size of the problem prohibits its direct solution; and we develop

algorithmic approaches based on block-angular and block-staircase decomposition

techniques as alternatives to overcome this challenge. Relatively little attention has been

51

devoted to the issue of problem formulation while considerably more attention is given

to improvements in algorithms for a given solution method. Having this in mind, we

show that any MCDF problem on a MMN can be formulated as an LP problem with

special structures that permit efficient computation of its solution and help save storage

requirements.

In the MCDF problem on MMN, given is a set of products that are manufactured in

several multiproduct production sites (sources) and shipped to a set of markets (sinks)

where they are sold, and the objective is to find a routing plan to non-simultaneously

ship the products from source nodes to sink nodes through a distribution network

without exceeding the arc capacities (time-varying, time-commodity varying, and

horizon capacities) at the minimal cost during a finite-length planning horizon. Here,

)K,,(V, TG  denotes a distribution (directed) network where V is the set of production

and demand sites (nodes), A is the set of all possible connections between sites (arcs),

}{1,2,...,K K is the set of products, and T represents the length of the planning horizon.

Then, by describing the dynamic flow decision variable)(txijq as the vector of flow rates

of commodity q entering arc),(ji at time period t , the formulation for the MCDF on

MMN becomes as

MCDFtimeContinuous    
 q ji

T

ijqijq
tx

dttxtc
ijq

),(0
)(

)()(Min , (3.1)

 iq

j

T

jiq

j

T

ijq dttxdttx v)()(

00

 Vi , q , (3.2)

 ij

q

T

ijq udttx 
 0

)(),(ji , (3.3)

)()(tutx ij

q

ijq 


 ),(ji ,],0[Tt , (3.4)

)()(0 tutx ijqijq  ),(ji , q ,],0[Tt , (3.5)

 0)(txijq ),(ji , q , Tt  . (3.6)

52

In this setting,  IRTcijq],0[: is the non-negative cost function with respect to product

q , and iqv denotes the pre-defined supply/demand capacities at node i over the entire

time horizon. Constraint (3.2) involves the flow conservation constraints for each

commodity. We refer to (3.3) as horizon capacity constraints. Horizon capacity of an

arc limits the amount of total flow (of all commodities) on the arc throughout the entire

horizon. Constraint (3.4) represents the maximum possible amount of total flow that can

enter),(ji at time t : it is referred to as the moment/period capacity constraint. Constraint

(3.5) is the time-commodity varying capacity constraint for each commodity at each

moment. The domain of decision variables prescribed in (3.6) also emphasizes that

commodities can flow on the network only until the end of pre-specified time horizon.

The problem formulation in (3.1)-(3.6) represents MCDF in a continuous-time setting.

However, as an approximation to this setting time may be represented in discrete

increments. By using a similar transformation discussed in Section 2.2, a continuous-

time multiproduct flow x can be estimated by a discrete multiproduct flow x and vice

versa. Let)(txijq represent the total amount of flow sent into arc),(ji during time

interval [1,[tt , then

 dxtx

t

t

ijqijq 




1

)(:)(and  dutu

t

t

ijqijq 




1

)(:)(q , and

)(:)(tijqijq ctc  q , (3.7)

where [1,]  ttt , t .

3.2 Multiperiod Multiproduct Network Flows with Spoilage (SMMN)

Any of the models discussed up to now, has a fundamental assumption, namely, flow

has to be conserved on any arc with respect to any commodity. However, some practical

applications do not satisfy such a conservation assumption [3]. In the transmission of a

volatile gas, for example, we may lose some portion of the flow due to evaporation; or,

in the transmission of liquids such as raw petroleum crude, some flow may be lost due

to leakage. In the setting where spoilage on arcs is also considered, each arc),(ji has a

time-commodity varying non-negative gain/loss factor)(tijq with respect to each time

period time t and commodity q . When)(txijq units of flow of commodity q is sent from

53

node i via arc),(ji at time t ,)()(txt ijqijq units of flow arrive at node j at the same time. If

1)(tijq , the arc is lossy; if 1)(tijq the arc is gainy on that time with respect to that

commodity. Therefore, if there is flow spoilage (loss) on an arc during all periods with

respect to all commodities, then the model may be represented as the initial one by

assigning a loss factor to the related arc.

 iq

j

T

jiqjiq

j

T

ijq dttxtdttx v)()()(

00

  Vi , q . (3.8)

Such a production-distribution planning problem in discrete-time setting has an

underlying graph)K,,(V, TG  consisting of three sorts of capacity functions

 IRut
q K: ,  IRut : and  IRu : , pre-defined non-negative cost

function  IRct
q K: , and pre-defined non-negative time-commodity varying

gain/loss function  IRt
q K: . Therefore, a discrete feasible dynamic flow is a

non-negative function  IRxx t
ijq K:}{ satisfying (3.10)-(3.14), and the discrete-

time minimum-cost dynamic flow problem becomes as:

MCDFtimeDiscrete   
  q t ji

t
ijq

t
ijq

x
xc

t
ijq),(

Min , (3.9)

 iq

j

T

t

t
jiq

t
jiq

j

T

t

t
ijq xx v

1

0

1

0










 Vi , q , (3.10)

ij

q t

t
ijq ux 

 

 ),(ji , (3.11)

 t
ij

q

t
ijq ux 

K

 ),(ji , t , (3.12)

 t
ijq

t
ijq ux 0 ),(ji , q , t , (3.13)

 0t
ijqx ),(ji , t , q . (3.14)

The equations stated in (3.10)-(3.14) represent the flow feasibility conditions in a

SMMN. Here, we assume that the arc capacity t
ijqu is an upper bound on the q-flow

(flow of commodity q) sent from node i at time period t , not on the flow that becomes

available at node j . Similarly, t
ijqc should be interpreted as the cost for each unit of flow

54

which is sent from node i . In order to benefit from an efficient decomposition-based

solution method by transforming the formulation structure, we introduce an unrestricted

variable t
iqv , and the formulation becomes

  
  K),(

,
q t ji

t
ijq

t
ijq

vx
xc

t
iq

t
ijq

Min , (3.15)

 0)( t
iq

j

t
jiq

t
jiq

j

t
ijq vxx  Vi , q , t , (3.16)

 iq

t

t
iqv v



 Vi , q , (3.17)

ij

q t

t
ijq ux 

 

 ),(ji , (3.18)

 t
ij

q

t
ijq ux 

K

 ),(ji , t , (3.19)

 t
ijq

t
ijq ux 0 ),(ji , q , t , (3.20)

 0t
ijqx ),(ji , t , q , (3.21)

where t
iqv denotes the difference between the outflow and the inflow of commodity q at

node i at period t. It is easy to check that conditions (3.16) and (3.17) together are

equivalent to condition (3.10). To develop our polyhedral-based approach, we need to

define the node-arc incidence matrix including the time dimension of the problem.

Given an underlying SMM network and pre-defined loss/gain factors, introduce an

auxiliary matrix mn
t
q ][Φ for a time period t and for a product q as

 mm
t
qmnmn

t
q  ][][:][ΣAΦ , (3.22)

where][A is the node-arc incidence matrix of the underlying distribution network

(which remains unchanged during the planning horizon) and][t
qΣ is a mm -diagonal

matrix whose elements are the pre-defined arc factors (at time t with respect to q) in the

same order that arcs appear in m-vector 1][m
t
qX (m is the number of arcs of the

network). For a time period t and a commodity q , we construct mn
t
q ][B as

55








1

][
:][

ij
t
q

ij
t
q

Φ
B

if

if

,0][

,0][





ij
t
q

ij
t
q

Φ

Φ
 (3.23)

where ij
t
q][B and ij

t
q][Φ represent the thji ),(elements of the matrices][t

qB and][t
qΦ ,

respectively. We refer to matrix mn
t
q ][B as the t-q-node-arc incidence matrix of the

SMM network, and it represents the node-arc incidence matrix of SMMN at time t for

commodity q . Due to the changes in arc factors over time and commodity, incident

matrices are not necessarily the same during the complete planning horizon with respect

to each product. However, since the time-commodity varying gain/loss functions are

pre-defined, all matrices can be computed off-line. In order to illustrate, let’s consider

the t-q-incidence matrix of the SMM network presented in Figure 3.1 for a fixed period

and product.

Figure 3.1 A typical SMMN at a fixed period t for a fixed product q

Suppose  
4,3,2,1

v][



i

t
q

t
qV is the vector of supply/demand at time t for commodity q.

Based on the network information and the distribution network’s topology, we get the

vector of flows  t
ijq

t
q x][X and the gain/loss matrix][t

qΣ as following.


t
q

t
q

t
q

t
q

t
q

t
q

x

x

x

x

x

X



























34

24

23

31

12

 and


t
q

t
q

t
q

t
q

t
q

V























4

3

2

1

v

v

v

v

 and

  
t
q

t
q

t
q

t
q

t
q

t
q

Σ

























34

24

23

31

12

0000

0000

0000

0000

0000











.

Considering (4.23), we may construct the ancillary matrix 54][
t
qΦ and the t-q-node-arc

incidence matrix][t
qB for each t and q as

56

:][t
qΦ

















































































t
q

t
q

t
q

t
q

t
q

t
q

t
q

t
q

t
q

t
q

t
q

t
q

t
q

t
q

t
q

3424

342331

242312

3112

34

24

23

31

12

000

00

00

000

0000

0000

0000

0000

0000

11000

10110

01101

00011



















.































t
q

t
q

t
q

t
q

t
q

t
q

3424

23

12

31

000

1010

0110

0001

:][









B .

It is now easy to see that

]][[t
q

t
q XB





























t
q

t
q

t
q

t
q

t
q

3424

23

12

31

000

1010

0110

0001



































t
q

t
q

t
q

t
q

t
q

x

x

x

x

x

34

24

23

31

12

=































t
q

t
q

t
q

t
q

t
q

t
q

t
q

t
q

t
q

t
q

t
q

t
q

t
q

t
q

t
q

xx

xxx

xxx

xx

34342424

23233431

12122423

313112









=























t
q

t
q

t
q

t
q

4

3

2

1

v

v

v

v

=][t
qV .

Substituting t
iq

t
iq vv   for t

iqv (0,0  
t
iq

t
iq vv), considering relations (3.22)-(3.23), and

having defined some appropriate vectors and matrices, the formulation for the problem

becomes:

    
trans

t
K

ttt
K

tt

t
q

t
q

t
q

XXXCCCMin

Νt
VVX

....... 2121
,,




,

 1
11

1
11

1
00

1][])[...]([...])[...]([])[...]([
  m

T
K

T
KK UXXXXXX ,








































1
111100

12
1

2
1

2
1
2

1
2

0
2

0
2

11
1

1
1

1
1
1

1
1

0
1

0
1

][])[]([...])[]([])[]([

][])[]([...])[]([])[]([

][])[]([...])[]([])[]([

nK
T
K

T
KKKKK

n
TT

n
TT

VVVVVVV

VVVVVVV

VVVVVVV



























1
0000

1
0
2

0
2

0
2

0
2

1
0

1
0

1
0
1

0
1

][][][][][][][

][][][][][][][

][][][][][][][

nKnKnKmnK

nnnmn

nnnmn

0VΙVΙXB

0VΙVΙXB

0VΙVΙXB



57

























1
1111

1
1
2

1
2

1
2

1
2

1
1
1

1
1

1
1

1
1

][][][][][][][

][][][][][][][

][][][][][][][

nKnKnKmnK

nnnmn

nnnmn

0VΙVΙXB

0VΙVΙXB

0VΙVΙXB



 























































1
1111

1
1

2
1

2
1

2
1

2

1
1

1
1

1
1

1
1

1

][][][][][][][

][][][][][][][

][][][][][][][

n
T
Kn

T
Kn

T
Kmn

T
K

n
T

n
T

n
T

mn
T

n
T

n
T

n
T

mn
T

0VΙVΙXB

0VΙVΙXB

0VΙVΙXB




























1
111

1

1
111

1

1
000

1

][][...][

][][...][

][][...][

m
TT

K
T

mK

mK

UXX

UXX

UXX



 1][][][11  
m

t
qm

t
qm UX0 t , q ,

 11][][  nn
t
q 0V , 11][][  nn

t
q 0V t , q ,

where][t
qV and][qV are defined as the vector of free variables at time t with respect to

commodity q and the vector of supply/demand numbers with respect to commodity q .

][t
qX and][t

qU are the m-vectors of flow and capacities in t for commodity q.][U is the m-

vector of horizon capacities and][t
U is the m-vector of period capacities with respect to

period t. Let][t
qC represent the vector of arc costs at t for commodity q.

Matrix decomposition allows us to express the following matrix form as a linear

program whose special structure has a great advantage to exploit efficient algorithms for

its solution. If we set][][][0VV  
T
q

T
q and let without loss of generality][][0U T while

][1
T

X ,][2
T

X ,…,][T
KX and][0

S ,][1
S ,…,][T

S denote the slack variables, then the above LP

can be rewritten as:

)SVVV,V,V,V,XX,(X..,0,0,0),0,0,0,0,.CC,(CMin
tt

2
t
1

Νt

tt
2

t
1

VVX

tt
K

t
K

tttt
KKt

q
t
q

t
q

,,,...,...,,..., 2211
,,








58



























































































0

0

0

0
2

0
2

0
1

0
1

0

0
2

0
1

S

V

V

V

V

V

V

X

X

X

0

0

0

0

I

0

0

0

I

...

0

0

0

0

...

...

0

I

0

0

0

I

0

0

0

0

I

0

0

0

I

0

0

0

0

I

...

...

...

...

0

0

0

I

0

0

0

I

K

K

K

nn

nn

nn

mmm





































































































...

1

1

1

1
2

1
2

1
1

1
1

1

1
2

1
1

S

V

V

V

V

V

V

X

X

X

0

0

0

0

I

0

0

0

I

...

0

0

0

0

...

...

0

I

0

0

0

I

0

0

0

0

I

0

0

0

I

0

0

0

0

I

...

...

...

...

0

0

0

I

0

0

0

I

K

K

K

nn

nn

nn

mmm







59











































































































1

1

1

1
2

1
2

1
1

1
1

1

1
2

1
1

T

T
K

T
K

T

T

T

T

T
K

T

T

nn

nn

nn

mmm

S

V

V

V

V

V

V

X

X

X

0

0

0

0

I

0

0

0

I

...

0

0

0

0

...

...

0

I

0

0

0

I

0

0

0

0

I

0

0

0

I

0

0

0

0

I

...

...

...

...

0

0

0

I

0

0

0

I



































































































T

T
K

T
K

T

T

T

T

T
K

T

T

nn

nn

nn

mmm

S

V

V

V

V

V

V

X

X

X

0

0

0

0

I

0

0

0

I

...

0

0

0

0

...

...

0

I

0

0

0

I

0

0

0

0

I

0

0

0

I

0

0

0

0

I

...

...

...

...

0

0

0

I

0

0

0

I







2

2

1

1

2

1





























KV

V

V

V

U



3

2

1

1)(

0

0

0

0

0
2

0
2

0
1

0
1

0

0
2

0
1

0

0
2

0
1









































































































































mnk

n

n

n

n

K

K

K

m

nn

nn

nn

m

K

mm U

0

0

0

0

S

V

V

V

V

V

V

X

X

X

I

0

0

0

0

I

0

0

0

I

...

0

...

...

0

...

0

0

I

0

0

0

I

0

0

0

0

I

0

0

0

I

I

B

0

0

...

...

...

...

I

0

B

0

I

0

0

B









61

1)(

1

1

1

1

1
2

1
2

1
1

1
1

1

1
2

1
1

1

1
2

1
1









































































































































mnk

n

n

n

n

K

K

K

m

nn

nn

nn

m

K

mm U

0

0

0

0

S

V

V

V

V

V

V

X

X

X

I

0

0

0

0

I

0

0

0

I

...

0

...

...

0

...

0

0

I

0

0

0

I

0

0

0

0

I

0

0

0

I

I

B

0

0

...

...

...

...

I

0

B

0

I

0

0

B









 

1)(

2

2

1

1

2

1

2

1









































































































































mnk

T

n

n

n

n

T

T
K

T
K

T

T

T

T

T
K

T

T

m

nn

nn

nn

m

T
K

m

T

m

T

U

0

0

0

0

S

V

V

V

V

V

V

X

X

X

I

0

0

0

0

I

0

0

0

I

...

0

...

...

0

...

0

0

I

0

0

0

I

0

0

0

0

I

0

0

0

I

I

B

0

0

...

...

...

...

I

0

B

0

I

0

0

B







 ,

1)2(

2

2

1

1

2

1

2

2

1

1

2

1

1)2(][

























































































































mnkmk

t

K

K

t
K

t

t

t

t
K

t
K

t

t

t

t

t
K

t

t

mnkmk

U

V

V

V

V

V

V

U

U

U

S

V

V

V

V

V

V

X

X

X

0









 }{Tt  ,

which becomes as the following condensed form:

61

    
trans

t
K

ttt
K

tt

t
q

t
q

t
q

XXXCCCMin

Νt
VVX

....... 2121
,,




,

 11][])[...]([



 m

t

t
K

t
UXX

N

,

 1][])[]([



  nq

t

t
q

t
q VVV

N

 q ,

 1][][][][][][][  n
t
qn

t
qn

t
qmn

t
q 0VΙVΙXB t , q ,

 11][][...][ m
tt

K
t

UXX t ,

 1][][][11  
m

t
qm

t
qm UX0 t , q ,

 11][][  nn
t
q 0V , 11][][  nn

t
q 0V t , q .

Our modeling procedure reveals that we can formulate any MCDF problem on a

SMMN as a problem which possesses the block angular structure. To show this, define

 000...0000C...CCC
t
K

ttt
21:][  Tt ,...,1,0 ,

transtt
K

t
K

ttttt
K

ttt)(:][221121 SVV...VVVVX...XXY   Tt ,...,1,0 ,

 
trans

t
KK

t
K

ttt
UVV...VVVVU...UUW 221121:][  Tt ,...,1,0 ,

transtt)...(:][U0000W   Tt ,...,1,0 ,











































I

0

0

0

0

I

0

0

0

I

...

0

...

...

0

...

0

0

I

0

0

0

I

0

0

0

0

I

0

0

0

I

I

B

0

0

...

...

...

...

I

0

B

0

I

0

0

B

A


t
K

t

t

t

2

1

:][ Tt ,...,1,0 ,































0

0

0

0

I

0

0

0

I

0

0

0

0

0

I

0

0

0

I

0

0

0

0

I

0

0

0

I

0

0

0

0

I

...0

0

0

I

0

0

0

I

M ...

...

...

...

...

...

:][



. (master matrix)

According to the newly introduced representation and applying our notations, the LP

formulation of the problem becomes

62

 
N

YCMin

t

tt]][[

 ]][[0YM ...]][[1 YM  ]][[1T
YM]][[T

YM trans
K)...(1 VVU ,

][]][[000
WYA  ,

][]][[111
WYA  ,

][]][[222
WYA  ,

 

][]][[TTT
WYA  ,

][][][tt
WY0   Tt ,...,1,0 .

Block diagonal structure is desirable to speed up the solution process for a sparse linear

programming problem. We may also conveniently exploit the decomposition

procedures, slice modelling systems, and generalized upper bounding (GUB) techniques

to solve such problems efficiently. However, Dantzig-Wolfe decomposition (delayed

column generation method) is often the best method of choice when dealing with large

scale sparse problems arising from repeated components, especially in terms of storage

requirements and good-quality suboptimal solutions. DW decomposition will not rival

mainstream techniques as an optimization method for all LP problems, but it has some

niche areas of application: certain large scale classes of primal block angular structured

problems, and in particular where the context demands rapid results using parallel

optimization, or near optimal solutions with a guaranteed quality [83].

To better illustrate, let’s assume an MMN problem with T subproblems, each with n

conservation constraints and with a master condition of 0n constraints (all in standard

form). The storage requirement of the revised simplex method for the original problem

will be))((2
0 TnnO  , which is the size of the revised simplex tableau. In contrast, the

storage requirements of the decomposition method for the same problem turns out to be

))((2
0 TnO  for the tableau of the master problem, and)(2nOT  for the revised simplex

tableau of subproblems (that are easy to solve). Moreover, applying decomposition on a

MMN problem maintains only one tableau stored in the main memory at any time. For

instance, let 1000T and Tnn  0 . In this case, the main memory requirement of the

decomposition method will be 000,000,1 times smaller than those of the revised simplex

63

method. Therefore, while the memory is a key bottleneck in handling very large LPs,

like MMN problems, the decomposition approach dramatically enlarges the range of

problems that can be solved practically [9] [15] [83] [86].

Interestingly enough, in our approach, the master constraint has the same matrix for any

set of variables transtt
K

t
K

ttttt
K

tt)(221121 SVV...VVVVX...XX  . In

general, it is not necessary for either set of constraints to have a special structure, but

when available, it helps speed up the solution method. Meanwhile, although the

modeling language used in this study may resemble the slice modelling systems, there

are a couple of important discrepancies between slice modeling and our polyhedral-

based approach in this section (See Section 2).

In order to use the DW decomposition on our problem, the constraint matrix should be

exploited by splitting the original problem into smaller subproblems and a connecting

constraint, master constraint (the one containing the master matrix M). The structure of

the time-varying block-angular system admits a natural decomposition into a set of

1T independent well-structured smaller parts instead of solving the original problem

whose size and complexity are beyond what can be solved within a reasonable amount

of time, and then adjust the solution to take into account the interconnections. Thus, we

may apply the block diagonal decomposition techniques to solve the foregoing problem

to achieve the desired effect. Let us consider an application of a decomposition

algorithm to the problem: define 1T polyhedral sets tχ for each  Tt ,...,1,0 as:

 ][][][][]][[][:χ t tttttt
WY0,WYA:Y  .

Considering Minkowski’s Representation Theorem, any tt χ][Y can be expressed as a

convex combination of a finite number of extreme points of tχ as

)(221121
tt

K
t
K

ttttt
K

tt
SVV...VVVVX...XX 

tχ 

][][][

11






tt l

j

t
j

t
j

k

i

t
i

t
i

t
dyY  ,

1

1




tk

i

t
i , 0t

i for tki ,...,1 , and 0t
j for tlj ,...,1 ,

64

where][][][t

k

t
2

t
1 ty,...,y,y and][][][t

k

t
2

t
1 td,...,d,d are extreme points and extreme directions (if

any) of polyhedral tχ . The original problem can be reformulated as the master problem

under Minkowski’s mapping as follows.

]][[]][[

11
,


  



Nt

l

j

t
j

tt
j

Nt

k

i

t
i

tt
i

tt

t
j

t
i

dCyCMin 


,

 
trans

K

l

j

T
j

T
j

k

i

T
i

T
i

l

j

jj

k

i

ii

tTt

V...VVUdMxM...dMyM 21

111

00

0

00][][][][][][][][

0

 




 1

1




tk

i

t
i }{Tt  ,

 0t
i }{Tt  tki ,...,1 ,

 0t
j }{Tt  tlj ,...,1 .

Due to having a huge number of extreme points for each polyhedron, enumerating all

the extreme points, and solving this problem directly seems impossible. Rather, we

should find a reasonable approach without enumerating all the extreme points [9]. This

is where we suggest the use of decomposition techniques, especially due to the special

structure of our problem that greatly intensifies the efficiency of the decomposition

methods. Next, we develop the most general form of the min-cost flow problem

formulation for a SMMN as

(Condensed Master Problem)

  
 



tt

t
j

t
i

l

j

t
j

t
j

TNt

k

i

t
i

t
i

t

1}{ 1
,

][][][dyCMin 


 ,

    
trans

K

l

j

t
j

t
j

TNt

k

i

t
i

t
i

tt

V...VVUdyM 21

1}{ 1

][][][ 
 

 ,

1

1




tk

i

t
i }{Tt  ,

 0t
i }{Tt  tki ,...,1 ,

 0t
j }{Tt  tlj ,...,1 .

65

The formulation of the SMMN problem shows a much simpler constraint structure than

the usual matrix form. It possesses only 1 TKnm constraints rather than

))(2(KnmT  in the earlier formulation. Problems of this type are well amenable by

many decomposition algorithms and column generation methods. As a result, the

computational advantage of the algorithm depends on the efficiency of the

decomposition methods. We propose DW decomposition (or Benders algorithm for the

dual) and so, the same analysis is applied for this case.

When the problem has many thousands of rows and unsolvable in a reasonable amount

of time, however, our approach suggests a method to convert the large-scale (high

dimensional problem) into one or more appropriately coordinated smaller sparse

problems of manageable sizes. Having the restricted master problem (the latter model

with only a small number of variables), a general Dantzig-Wolfe decomposition

algorithm for a MMNF problem can be summarized as that in the following page.

Remark 3.1 Considering Minkowski mapping and feasibility of the problem the

optimal solution (corresponding to the optimal basis) of SMMNF from the condensed

master problem will determine a set of original variables of form

)(221121
tt

K
t
K

ttttt
K

tt
SVV...VVVVX...XX  for each time step with

respect to each commodity conveying a positive flow. Any obtained optimal basis will

detect one arc set for every time step t and for each commodity q that transports a

positive amount of flow. Moreover, the values of t
iqv for each i, t, and q will be

determined at any basis. Moreover, it immediately follows that the optimal arc sets for

every time step and for any commodity are not necessarily the same.

66

{Initialization}
 Choose initial subsets of variables
 While true do
 {Master problem}
 Solve the restricted master problem
 µ1 := duals of master constraints
 µ2

(t) := duals of the tth convexity constraints
 {Subproblems}
 for t = 0, . . . ,T do
 Plug µ1 and µ2

(t) into subproblem t
 Solve sub-problem t
 if (reduced cost)t = min (ct - µ1 M)Yt - µ2

(t) < 0 then

 Add proposal Yt to the restricted master problem
 end if
 end for
 if no proposals generated then
 Stop: optimality
 end if
 end while

MMNF DANTZIG-WOLFE ALGORITHM

{Initialization}
Choose initial subsets of proposals

set kk(k) 'current proposal';
kk('proposal1') = yes;

loop((q,t),
solve subproblem, check feasibility
 c(i,j) = cost(q,t,i,j);
 u(i,j) = capacity(q,t,i,j);
 u(i,j) = capacity(t,i,j);
 .
 .
 .
 µ1 (i,j) = 0;
 µ2

(t,q) = 0.

while (true) do
 solve restricted master;
 solve subproblems;

 until no more proposals.

67

For the initialization step of DW algorithm, we first solve each subproblem. If any of

the subproblems is infeasible, the original MMN problem is clearly infeasible.

Otherwise, we use the optimal values Yt (or the unbounded rays) to generate an initial

set of proposals/columns. The initial proposals may violate the master constraints. We

formulate a Phase I problem by introducing artificial variables and minimizing those

(e.g. [9]). The reduced costs of a Phase I problem are slightly different from the Phase II

problem.

The Minkowski mapping proves that decomposition solves SMMNF problem by

generating coefficient data as needed. Since the master problem is an LP, the

decomposition algorithm inherits finite convergence from the (revised) simplex method.

Recall that the simplex method solves LP problems in a finite number of steps, provided

that a cycling prevention rule is used. For decomposition, the subproblem calculation

ensures that the vectors introduced into the basis have positive reduced cost.

Consequently, from the linear programming theory, the master problem is solved in a

finite number of steps; the procedure thus determines an optimal solution by solving the

condensed master problem and subproblem alternately a finite number of times [9] [15].

3.3 A Solution Approach for MM Networks with Storage

In certain practical problems, the intermediate storage policy is another important issue

that issue that has to be considered in the models. It may be necessary that the q-flow

(flow of commodity q) waits at some nodes until it can continue on an arc, as it appears

in many applications such as batch process scheduling, traffic routing, evacuation

planning, energy transmission, inventory, and telecommunications [3] [35]. This affects

both the problem’s complexity and optimal solution. When there are no storage

equipments, Non-intermediate Storage (NIS) policy is assumed. It is also common in

the industry for a process to have different storage policies for different intermediates

that is called Mixed Intermediate Storage (MIS) policy.

In our model, we let the q-flow be stored at some (or all) intermediate nodes (or demand

nodes) for only one time period with finite (or infinite) storage capacity depending on a

pre-defined capacity function for each t , q , and i . Note that, the dependency of

capacity functions on time (and commodity) allows us to have different storage policies

68

in different time periods with respect to different products, but the time lag is still one.

In general, the staircase structure may have longer time lags which will be discussed in

the upcoming sections. We can allow flow storage in MMN by introducing loops in

those nodes in which storage is allowed.

Figure 3.2 A typical MMN with flow storage at nodes

This leads to a slightly different notion of flow conservation. If we let the set of vertices

V be divided into three subsets QVS , QVI , QVD comprising of source, intermediate, and

sink nodes with respect to each q, respectively, we can state the flow conservation

constraints as following. In this case,  IRtx :)(is a dynamic feasible flow if it

satisfies constraints (3.2)-(3.6) and (3.24) as well

 0)()(

00

 dttxdttx

j

jiq

j

ijq



 Qi VSV\ , q , [,0] T (3.24)

As flow travels through the distribution network, we may allow limited (or unlimited)

flow storage at nodes, but prohibit any deficit by constraint (3.24). As before, all q-

demands must be met, flow must not remain in the network after time T , and each

source/sink must not exceed its forecasted supply/demand.

The discrete-time model is considered, in which all times are integral and bounded by

an integer horizon. A discrete dynamic flow inG , which satisfies the following

constraints, is said to be feasible. Such a flow is a non-negative function

 IRx K}V{: satisfying (3.25)-(3.30).

69

 iq

j

T

t

jiq

j

T

t

ijq txtx v)()(

1

0

1

0










 Vi , q , (3.25)

 0)()( txtx

j

jiq

j

ijq VSV\i , t , q , (3.26)

ij

q t

ijq utx 
 

)(),(ji , (3.27)

)()(

K

tutx ij

q

ijq 


 ),(ji , t , (3.28)

)()(0 tutx ijqijq  ),(ji , t , q , (3.29)

 0)(txijq ),(ji , t , q . (3.30)

Let)(tciiq be the storage cost in node i at period t with respect to q . Thus, the total cost

of a discrete dynamic flow x is defined by

   
    
















K V NK),(

)()()()()(

q j

ijq

j

jiq

i t

iiq

q t ji

ijqijq txtxtctxtc . (3.31)

Having introduced the unrestricted variables)(tviq , we may reformulate the problem as

  
      



K VK VK),(
)(),(),(

)()()()()()(

q Nt i

iqiq

q t i

iiqiiq

q t ji

ijqijq
tvtxtx

tvtctxtctxtc
iqiiqijq

Min , (3.32)

 0)()]1()([)()( tvtxtxtxtx iqiiqiiq

j

jiq

j

ijq Vi , t , q , (3.33)

 iq

t

iq tv v)(


 Vi , q , (3.34)

 ij

q t

ijq utx 
 K

)(),(ji , (3.35)

)()(

K

tutx ij

q

ijq 


 ),(ji , t , (3.36)

)()(0 tutx iiqiiq  Qi VSV\ , t , q , (3.37)

)()(0 tutx ijqijq  ),(ji , t , q , (3.38)

 0)(txijq ),(ji , t , q , (3.39)

 0)(txiiq Vi , q , 1,1  Tt , (3.40)

71

where)(tviq is a free variable which defines the difference between q-outflow and q-

inflow at node i at time period t. Needless to say,)(tviq differs from storage decision

variables, and they are determined optimally by the algorithm.)(txiiq and)(tciiq are the

amount and cost of stored flow at node i in period t of product q . We set 0)(tciq for

each i, t, and q. Clearly, there is no need to have flow storage in period 1T , and this is

ensured by (3.40). We prove that this model possesses a property which enables us to

reduce the MCDF problem to a problem with special structure. By setting )(tviq

t
iq

t
iq vv   , our problem is reduced to the following matrix form as an LP, whose special

structure enables efficient solution of the model.


  


 KK

][],[],[],[
]][[]][[

q

t
sq

t
sq

q

t
q

t
qt

q
t
q

t
sq

t
q ΝtΝt

VVXX
XCXCMin ,

1
11

1
11

1
00

1][])[...]([...])[...]([])[...]([
  m

T
K

T
KK UXXXXXX








































1
111100

12
1

2
1

2
1
2

1
2

0
2

0
2

11
1

1
1

1
1
1

1
1

0
1

0
1

][])[]([...])[]([])[]([

][])[]([...])[]([])[]([

][])[]([...])[]([])[]([

nK
T
K

T
KKKKK

n
TT

n
TT

VVVVVVV

VVVVVVV

VVVVVVV




































1
00

1
1

1
000

1
0
2

0
21

1
21

0
2

0
2

0
2

1
0

1
0

11
1
11

0
1

0
1

0
1

][])[]([][][][][][][

][])[]([][][][][][][

][])[]([][][][][][][

nKKnsKnnnsKnnKmnK

nnsnnnsnnmn

nnsnnnsnnmn

0VVXIXIXA

0VVXIXIXA

0VVXIXIXA



























1
11

1
0

1
111

1
1
2

1
21

0
21

1
2

1
2

1
2

1
1
1

1
11

0
11

1
1

1
1

1
1

][])[]([][][][][][][

][])[]([][][][][][][

][])[]([][][][][][][

nKKnsKnnnsKnnKmnK

nnsnnnsnnmn

nnsnnnsnnmn

0VVXIXIXA

0VVXIXIXA

0VVXIXIXA



 









































































1
11

1
2

1
111

1
1

2
1

21
2

21
1

2
1

2
1

2

1
1

1
1

11
2

11
1

1
1

1
1

1

][])[]([][][][][][][

][])[]([][][][][][][

][])[]([][][][][][][

n
T
K

T
Kn

T
sKnnn

T
sKnn

T
Kmn

T
K

n
TT

n
T
snnn

T
snn

T
mn

T

n
TT

n
T
snnn

T
snn

T
mn

T

0VVXIXIXA

0VVXIXIXA

0VVXIXIXA



71


























1
111

1

1
111

1

1
000

1

][][...][

][][...][

][][...][

m
TT

K
T

mK

mK

UXX

UXX

UXX



1][][][11  
m

t
qm

t
qm UX0 t , q ,

111][][][  n
t
sqn

t
sqn UX0 t , q ,

11][][  nn
t
q 0V , 11][][  nn

t
q 0V t , q .

Where    t
ijqijq

t
q xtx )(][X and    t

iiqiiq
t
sq xtx )(][X are the vectors of flow and storage at

time period t ,    t
ijijq

t
q utu )(][U and    t

iiqiiq
t
sq utu )(][U are the vectors of flow

capacities and storage at t , respectively,][U ,][t
U ,][t

qC , and][t
qV are defined as

before.    t
iiqiiq

t
sq ctc )(][C is the vector of pre-defined storage costs. mn][A is the node-

arc incidence matrix of the underlying network.

In order to obtain a standard LP problem we decompose][t
qV to non-negative vectors

][t
qV and][t

qV .  iqq v][V is the vector of pre-defined supply/demand numbers of

nodes with respect to commodity q . Let 0][1 
sqX be the vector of initial storage and][S

be the vector of slack variables. Without any loss of generality, let][][:][1 0XS  T
,

][][2 0X T
,…,][][0X T

K ,][][][0VV  
T
q

T
q , and][][0U T (since we do not need any flow in

the last period). Then, we can convert the model into the following form by

manipulating and introducing some matrices.

72

),,,...,,,,,,...,,,...,(),,,...,,,,,,...,,,...,(22111111
tt

K
t
K

ttttt
sK

t
s

t
K

tt
sK

t
s

t
K

t
SVVVVVVXXXX0000000CCCCMin

Νt

























































































































0

0

0

0
2

0
2

0
1

0
1

0

0
2

0
1

0

0
2

0
1

S

V

V

V

V

V

V

X

X

X

X

X

X

0

0

0

0

0

I

0

0

0

I

...

0

...

...

0

...

0

0

0

0

0

0

0

0

0

0

I

0

0

0

I

0

0...000

0...000

0...000

0...00I

...

...

...

...

0

0

0

I

0

0

0

I

K

K

sK

s

s

K









...

1

1

1

1
2

1
2

1
1

1
1

1

1
2

1
1

1

1
2

1
1



















































































































S

V

V

V

V

V

V

X

X

X

X

X

X

0

0

0

0

0

I

0

0

0

I

...

0

...

...

0

...

0

0

0

0

0

0

0

0

0

0

I

0

0

0

I

0

0...000

0...000

0...000

0...00I

...

...

...

...

0

0

0

I

0

0

0

I

K

K

sK

s

s

K









73









































































































































1

1

1

1
2

1
2

1
1

1
1

1

1
2

1
1

1

1
2

1
1

...

T

T
K

T
K

T

T

T

T

T
sK

T
s

T
s

T
K

T

T

S

V

V

V

V

V

V

X

X

X

X

X

X

0

0

0

0

0

I

0

0

0

I

...

0

...

...

0

...

0

0

0

0

0

0

0

0

0

0

I

0

0

0

I

0

0...000

0...000

0...000

0...00I

...

...

...

...

0

0

0

I

0

0

0

I

























































































































































0

V

V

V

V

U

S

V

V

V

V

V

V

X

X

X

X

X

X

0

0

0

0

0

I

0

0

0

I

...

0

...

...

0

...

0

0

0

0

0

0

0

0

0

0

I

0

0

0

I

0

0...000

0...000

0...000

0...00I

...

...

...

...

0

0

0

I

0

0

0

I

K

T

T
K

T
K

T

T

T

T

T
sK

T
s

T
s

T
K

T

T










3

2

1

2

2

1

1

2

1

2

1

74

1)(

0

0

0

0

0
2

0
2

0
1

0
1

0

0
2

0
1

0

0
2

0
1

0

0
2

0
1

...

...

...

...

...

...

...

...

...

...

...























































































































































mnk

n

n

n

n

K

K

sK

s

s

K

m

nn

nn

nn

m

nK

n

n

mm U

0

0

0

0

S

V

V

V

V

V

V

X

X

X

X

X

X

I

0

0

0

0

I

0

0

0

I

0

0

0

0

I

0

0

0

I

0

0

0

0

I

0

0

0

I

000I

I00A

00I00

00I0

I

0

A

0

I

0

0

A





























































































































0

0

0

0
2

0
2

0
1

0
1

0

0
2

0
1

0

0
2

0
1

...

...

...

S

V

V

V

V

V

V

X

X

X

X

X

X

0

0

0

0

0

0

0

0

0

0

...

0

...

...

0

...

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0000

I000

00I00

00I0

...

...

...

...

0

0

0

0

0

0

0

0

K

K

sK

s

s

K

n

n

n









75





















































































































































1

1

1

1

1
2

1
2

1
1

1
1

1

1
2

1
1

1

1
2

1
1

1

1
2

1
1

...

...

...

...

...

...

...

...

...

...

...

U

0

0

0

0

S

V

V

V

V

V

V

X

X

X

X

X

X

I

0

0

0

0

I

0

0

0

I

0

0

0

0

I

0

0

0

I

0

0

0

0

I

0

0

0

I

000I

I00A

00I00

00I0

I

0

A

0

I

0

0

A

n

n

n

n

K

K

sK

s

s

K

m

nn

nn

nn

m

nK

n

n

mm





























































































































1

1

1

1
2

1
2

1
1

1
1

1

1
2

1
1

1

1
2

1
1

...

...

...

S

V

V

V

V

V

V

X

X

X

X

X

X

0

0

0

0

0

0

0

0

0

0

...

0

...

...

0

...

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0000

I000

00I00

00I0

...

...

...

...

0

0

0

0

0

0

0

0

K

K

sK

s

s

K

n

n

n





























































































































































2

2

2

2

1
2

2
2

2
1

2
1

2

2
2

2
1

2

2
2

2
1

2

2
2

2
1

...

...

...

...

...

...

...

...

...

...

...

U

0

0

0

0

S

V

V

V

V

V

V

X

X

X

X

X

X

I

0

0

0

0

I

0

0

0

I

0

0

0

0

I

0

0

0

I

0

0

0

0

I

0

0

0

I

000I

I00A

00I00

00I0

I

0

A

0

I

0

0

A

n

n

n

n

K

K

sK

s

s

K

m

nn

nn

nn

m

nK

n

n

mm











 

76







































































































































1

1

1

1
2

1
2

1
1

1
1

1

1
2

1
1

1

1
2

1
1

...

...

...

T

T
K

T
K

T

T

T

T

T
sK

T
s

T
s

T
K

T

T

n

n

n

S

V

V

V

V

V

V

X

X

X

X

X

X

0

0

0

0

0

0

0

0

0

0

...

0

...

...

0

...

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0000

I000

00I00

00I0

...

...

...

...

0

0

0

0

0

0

0

0





























































































































































T

n

n

n

n

T

T
K

T
K

T

T

T

T

T
sK

T
s

T
s

T
K

T

T

m

nn

nn

nn

m

n
T
K

n

n

m

T

m

T

U

0

0

0

0

S

V

V

V

V

V

V

X

X

X

X

X

X

I

0

0

0

0

I

0

0

0

I

0

0

0

0

I

0

0

0

I

0

0

0

0

I

0

0

0

I

000I

I00A

00I00

00I0

I

0

A

0

I

0

0

A











2

2

1

1

2

1

2

1

2

1

...

...

...

...

...

...

...

...

...

...

...

1)2(

2

2

1

1

2

1

2

1

2

2

1

1

2

1

2

1

1)2(][





















































































































































mnknkmk

t

K

K

t
sK

t
s

t
s

t
K

t

t

t

t
K

t
K

t

t

t

t

t
sK

t
s

t
s

t
K

t

t

mnknkmk

U

V

V

V

V

V

V

U

U

U

U

U

U

S

V

V

V

V

V

V

X

X

X

X

X

X

0













 }{Tt  .

77

The system arisen above emphasizes that the production/usage/storage at one time

period might be affected by production/storage of the previous time step for any

product, and affects the amount of usage/storage of the following time period. The

foregoing reduces to the following matrix form


  


 KK

][],[],[],[
]][[]][[

q

t
sq

t
sq

q

t
q

t
qt

q
t
q

t
sq

t
q ΝtΝt

VVXX
XCXCMin ,

11][])[...]([



 m

t

t
K

t
UXX

N

,

1][])[]([



  nq

t

t
q

t
q VVV

N

 q ,

11
1

1][])[]([][][][][][][


  n
t
q

t
qn

t
sqnnn

t
sqnn

t
qmn

t
q 0VVXIXIXA t , q ,

11][][...][ m
tt

K
t

UXX t ,

1][][][11  
m

t
qm

t
qm UX0 t , q ,

111][][][  n
t
sqn

t
sqn UX0 t , q ,

11][][  nn
t
q 0V , 11][][  nn

t
q 0V t , q .

The matrix form of the problem shows that we can formulate any min-cost problem on a

multiperiod dynamic network (with storage) as a problem which possesses the staircase

structured system. To show this, let’s define

).........(:][22112121
tt

K
t
K

ttttt
sK

t
s

t
s

t
K

tt
SVVVVVVXXXXXXY 

 Tt ,...,1,0 ,

 0000000CCCCCCC:][2121
t
sK

t
s

t
s

t
K

ttt   Tt ,...,1,0 ,

 
trans

t
KK

t
sKs

t
s

t
K

ttt
UVVVVVVUUUUUUW:][2211

2
2121

 Tt ,...,1,0 ,

transt)...(:][U0000W   Tt ,...,1,0 ,

78

:][M





































0

0

0

0

0

I

0

0

0

I

...

0

...

...

0

...

0

0

0

0

0

0

0

0

0

0

I

0

0

0

I

0

0...000

0...000

0...000

0...00I

...

...

...

...

0

0

0

I

0

0

0

I


 (master matrix)

 :][][tAA









































I

0

0

0

0

I

0

0

0

I

0

0

0

0

I

0

0

0

I

0

0

0

0

I

0

0

0

I

000I

I00A

00I00

00I0

I

0

A

0

I

0

0

A

...

...

...

...

...

...

...

...

...

...

...

2

1


t
K

t

t

  Tt ,...,1,0 ,

:][M





































0

0

0

0

0

0

0

0

0

0

...

0

...

...

0

...

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0000

I000

00I00

00I0

...

...

...

...

0

0

0

0

0

0

0

0



...

...

...

.

Now, by considering the constraints structure and using our notations, we obtain

 
N

YCMin

t

tt]][[

 ]][[]][[01
YMYM ...]][[1 YM  ]][[1TYM]][[T

YM trans
K)...(1 0VVU ,

][]][[]][[001
WYAYM 

,

][]][[]][[110
WYAYM  ,

][]][[]][[221
WYAYM  ,

][]][[]][[332
WYAYM  ,

 

][]][[]][[1 TTT
WYAYM  ,

][][][tt
WY0   Tt ,...,1,0 ,

where][][1
0Y  . Note that we assume][][t

AA  for every t , since the underlying

network will remain unchanged over time with respect to any product. Otherwise, we

can use incidence matrix][t
A for time period t in the staircase formulation. Such

structures have enjoyed a wide variety of applications in the form of production

79

planning and/or scheduling, distribution, integrated production-distribution models,

manpower smoothing models, discrete optimal control problems with efficient handling.

However, the most general approach might be the technique of using decomposition

approach. In other word, the original problem is reformulated into a series of

structurally similar LP subproblems with more tractable combinatorial structures. The

structural similarity of the subproblems allows us to use decomposition techniques to

well improve the computational efficiency [83]. In addition to structural similarity, this

modelling technique has converted the MCDF problem to one with many sparse

matrices/subproblems.

3.4 MM Networks with Storage and Spoilage (SSMM Network Flows)

This Section considers the most general case of multiperiod networks, i.e., MMN with

storage at nodes and spoilage in arcs. We call these networks as SSMM network flows.

The SSMM problem develops the MM network flow problem by allowing the q-flow to

leak and be stored, at the same time, as it is sent through the network. Naturally, the

min-cost SSMMN flow problem in the continuous time setting will be of the form stated

in (3.41)-(3.47).

   
 K),(0

)()(

q ji

T

ijqijq dttxtcMin  




K 0

)]()()([)(

q i

T

j

ijqjiqjiqiq dttxtxttc  , (3.41)

 iq

j

T

jiqjiq

j

T

ijq dttxtdttx v)()()(

00

  Vi , q , (3.42)

 0)()()(

00

 dttxtdttx

j

jiqjiq

j

ijq



 [,0[T , Qi VSV\ , q , (3.43)

 ij

q

T

ijq udttx 
K 0

)(),(ji , (3.44)

)()(tutx ij

q

ijq 


 ),(ji ,],0[Tt , (3.45)

)()(0 tutx ijqijq  ),(ji ,],0[Tt , q , (3.46)

 0)(txijq ),(ji , Tt  , q . (3.47)

81

If we replace (3.15) and (3.16) by (3.48) and (3.49), we get the min-cost SSMM

network problem in the discrete time setting subject to introducing free variables

t
iq

t
iq

t
iq vvv  : (0,0  

t
iq

t
iq vv).

  
    



K VK),(
,,

q t i

t
iiq

t
iiq

q t ji

t
ijq

t
ijq

vxx
xcxc

t
i

t
ii

t
ij

Min , (3.48)

 0][1   t
iq

j

t
jiq

t
jiq

j

t
ijq

t
iiq

t
iiq vxxxx  t , Vi , q . (3.49)

To develop a polyhedral-based approach, we again use the t-q-node-arc incidence

matrix introduced in (3.23). It yields the node-arc incidence matrices of SS network

with respect to each time step and commodity. As before, let mn
t
q ][B be the q-t-node-arc

incidence matrix at step t with respect to q. Therefore, having done all the necessary

changes and transformations, the min-cost SSMM network problem can be modeled as

that in previous Section. The only difference will be the polyhedrals’ matrices. It

suffices to make the following change with respect to each time period.









































I

0

0

0

0

I

0

0

0

I

0

0

0

0

I

0

0

0

I

0

0

0

0

I

0

0

0

I

000I

I00A

00I00

00I0

I

0

A

0

I

0

0

A

...

...

...

...

...

...

...

...

...

...

...

2

1


t
K

t

t











































I

0

0

0

0

I

0

0

0

I

0

0

0

0

I

0

0

0

I

0

0

0

0

I

0

0

0

I

000I

I00B

00I00

00I0

I

0

B

0

I

0

0

B

...

...

...

...

...

...

...

...

...

...

...

2

1


t
K

t

t

.

The process of identifying block structures is a key step for our modeling approach. It

might be supposed that it would be easy to identify a block structure from a constraint

matrix of an arbitrary problem instance, but this is not the case. Even with a relatively

small problem instance, it is a hard task to pick out a block structure visually from a plot

81

of the non-zero elements, when the rows and columns are not arranged to expose it. In

other words, the way the model is developed is critical for constructing/identifying the

block structures [13] [53] [85] [86]. One may consult Voelker ‎[85], Borndorfer and

Ferreira [13], Kernighan and Lin [53], and Weil and Kettler ‎[86] to get more

information on this matter.

3.5 An Alternative Approach for MM Networks Having no Period Capacity

If we slightly change the definition of our master matrix and our decision vectors, we

get the following alternatives for the min-cost flow problem on a MM network. In this

setting, we define our parameters so as they look time-commodity varying.

Consequently, we allow several different convex combinations and linear combinations

(think of Minkowski theorem) for each subproblem (the set of constraints for each time

step and product) since, as you will see, we have)1(TK convexity constraints. This

adds more flexibility to our approaches (in a lower dimensional space), but at the same

time, increases the number of polyhedrals (and also, subproblems) from)1(T to)1(TK

3.5.1 Case 1: MM Networks with Spoilage

In this setting, we let our decision vectors][t
qY be time-commodity varying. They will

consist of one set of nonnegative variables t
qX in the q-th place for each t, and t

qV

and

t
q _V in the (K+2q-1)-th and (K+2q)-th places, respectively, and the other entries are set

to zero. Note that, any place in our vector is a group of arc variables.

  

trans

qK

t
q

qK

t
q

q

t
q

t
q

























 000VV0X00Y

)2()12(

......:][q , t .

Analogously, we should change our nod-arc incidence matrices with respect to each t

and q.

  000II0B00A :][t
q

t
q q , t .

We also need to redefine our master matrix as follows.

82































I

0

0

0

I

0

0

0

0

...

...

...

0

I

0

0

0

I

0

0

0

0

I

0

0

0

I

0

0

0

0

I

...

...

...

...

0

0

0

I

0

0

0

I

M



:][.

In this case, also, the modeling procedure reveals that we can extract the block-angular

structure from the problem, but with a bit more flexibility due to having time-commodity

varying subproblems. Hence, the flow conservation conditions turn out to have the

following from.

















































0

0

0

0

V

V

0

0

X

M





0
1

0
1

0
1

][



















































...][

0
2

0
2

0
2

0

0

V

V

0

0

0

X

0

M





















































0

0

0

][

K

K

K

V

V

0

0

0

0

X

0

0

M

















































 



0

0

0

0

V

V

0

0

X

M





1
1

1
1

1
1

][



















































...][

1
2

1
2

1
2

0

0

V

V

0

0

0

X

0

M





















































1

1

1

][

K

K

K

V

V

0

0

0

0

X

0

0

M

















































 



0

0

0

0

V

V

0

0

X

M





T

T

T

1

1

1

][...



















































T
K

T
K

T
K

V

V

0

0

0

0

X

0

0

M





][...





























KV

V

V

V

U



3

2

1

,

][0
1A  

trans

0000VV00X 0
1

0
1

0
1  1][ n0 ,

][0
2A  

trans

00VV0000X0
0
2

0
2

0
2 ...  1][ n0 ,

 

][0
KA  

trans

KKK
000  VV0000X00 1][ n0 ,

 

83

][1
T

A  
trans

TTT
0000VV00X 111  1][ n0 ,

 

][T
KA  

trans
T
K

T
K

T
K  VV0000X00 1][ n0 ,

   000VV0U00000VV0X000 qq
t
q

t
q

t
q

t
q][ 

q , t .

Applying our notations yields the desired structure provided that we define the cost and

capacity vectors as follows.

  000000C00C:][t
q

t  q , t ,

 000VV0U00W qq
t
q

t
q:][ q , t .

Then we conclude the following form for the min-cost MM network problem with

spoilage.


 K

]][[

q t

t
q

t
q

N

YCMin

]][[0
1YM ]][[... 0

KYM ]][[1
1YM ]][[... 1

KYM ]][[... 1
T

YM]][[... T
KYM trans

K]...[1 VVU ,

][]][[0
1

0
1 0YA  ,

 

][]][[00
0YA KK ,

][]][[1
1

1
1 0YA  ,

 

][]][[11
0YA KK ,

 

][]][[11 0YA TT
,

 

][]][[0YA T
K

T
K ,

][][][t
q

t
q WY0  q , t .

84

To proceed, we need to define)1(TK time-commodity varying polyhedrals t
qχ and

Minkowski’s mapping as follows.

 ][][][][]][[][:χ t
q

t
q

t
q

t
q

t
q

t
q WY0,0YA:Y  q , t ,

t
q

t
q χ][Y ][][][

11






t
q

t
q l

j

t
jq

t
jq

k

i

t
iq

t
iq

t
q dyY  q , t ,

1

1




t
qk

i

t
iq , 0t

iq , 0t
jq q , t ,

where][][][t

qk

t
2q

t
1q t

q

y,...,y,y and][][][t

qk

t
2q

t
1q t

q

d,...,d,d are extreme points and extreme

directions (if any) of polyhedrals t
qχ . The same analysis as that in Section 3 then can be

applied.

3.5.2 Case 2: MM Networks with Storage

In this setting, our time-commodity varying decision vectors][t
qY will consist of one set

of nonnegative variables t
qX and t

sqX in the q-th and (q+K)-th places for each t, and t
qV

and t
q _V in the (2K+2q-1)-th and (2K+2q)-th places, respectively, and the other entries

are set to zero.

   

trans

qK

t
q

qK

t
q

qK

t
sq

q

t
q

t
q





























00VV0X00X00Y:][

)22()122()(

 q , t .

Similarly, we change our nod-arc incidence matrices with respect to each t and q.

 00II0I00A00AC:][:][ t
q q , t ,

 00000I00000C:][ q , t .

We should redefine our master matrix as following.

85
























II00000000

0000II0000

000000000I

0

0

I

0

0

I

M

......

......

........

...

...

...

:][


.

Hence, the flow conservation constrains will be of the following from.































































0

0

0

0

V

V

0

0

X

0

0

X

M







0
1

0
1

0
1

0
1

][

s





























































0

0

V

V

0

0

0

X

0

0

X

0

M







0
2

0
2

0
2

0
2

][

s































































0

0

0

0

][...

K

K

sK

K

V

V

0

0

0

X

0

0

0

X

0

0

M







































































0

0

0

0

V

V

0

0

X

0

0

X

M







1
1

1
1

1
1

1
1

][

s





























































0

0

V

V

0

0

0

X

0

0

X

0

M







1
2

1
2

1
2

1
2

][

s































































1

1

1

1

][...

K

K

sK

K

V

V

0

0

0

X

0

0

0

X

0

0

M







































































0

0

0

0

V

V

0

0

X

0

0

X

M







T

T

T
s

T

1

1

1

1

][...































































T
K

T
K

T
sK

T
K

V

V

0

0

0

X

0

0

0

X

0

0

M







][...





























KV

V

V

V

U



3

2

1

,

86

][][

1

1

1

1

0

0

0

0

0

V

V

0

0

X

0

0

X

C 



































































t

t

t
s

t

 ,
][][

2

2

2

2

0

0

0

V

V

0

0

0

X

0

0

X

0

C 



































































t

t

t
s

t

 ,…,
][][0

V

V

0

0

0

X

0

0

0

X

0

0

C 





























































t
K

t
K

t
sK

t
K







 t ,

][][][

1

1

1

1

1
1

1
1

1
1

1
1

0

0

0

0

0

V

V

0

0

X

0

0

X

C

0

0

0

0

V

V

0

0

X

0

0

X

C 













































































































































t

t

t
s

t

t

t

t
s

t

 , t

][][][

2

2

2

2

1
2

1
2

1
2

1
2

0

0

0

V

V

0

0

0

X

0

0

X

0

C

0

0

V

V

0

0

0

X

0

0

X

0

C 













































































































































t

t

t
s

t

t

t

t
s

t

 , … , t

87

][][][

1

1

1

1

0

V

V

0

0

0

X

0

0

0

X

0

0

C

V

V

0

0

0

X

0

0

0

X

0

0

C 

































































































































t
K

t
K

t
sK

t
K

t
K

t
K

t
sK

t
K













. t

    00VV0X00X000][t
q

t
q

t
sq

t
q

  00VV0U00U00 qq
t
sq

t
q

q , t .

Having defined some appropriate vectors, we can formulate any min-cost problem on a

multiperiod dynamic network (with storage) as a problem which possesses the staircase

structured system. To show this, let’s define

 




















00000C00C00C:][

)(qK

t
sq

q

t
q

t
q q , t ,

 00VV0U00U00W:][qq
t
sq

t
q

t
q  q , t .

Now, reconsider the constraints structure and use our notations.

]][[...]][[]][[00
2

0
1 KYMYMYM ]][[...]][[]][[11

2
1
1 KYMYMYM ]][[...]][[... 1

T
K

T
YMYM 

trans
K]...[1 VVU ,


 K N

YCMin

q t

t
q

t
q]][[

88

][]][[0
0YC q q ,

][]][[]][[10
0YCYC  qq q ,

][]][[]][[21
0YCYC  qq q ,

 

][]][[]][[1
0YCYC  T

q
T
q q ,

][][][t
q

t
q WY0  q , t .

Note that we assume][][t
qAC  for every t and q, since our distribution network is

unchanged over time with respect to any product. Otherwise, we can use incidence

matrix][t
qA for time period t (for any q) in the staircase formulation. Still our problem

has a time lag of length one. Namely, the amount of q-flow that should be distributed

depends on the previous step’s distributed flow and stored flow.

3.5.3 Case 3: MM Networks with Storage and Spoilage (SS Networks)

To handle this case, let][t
qB be the q-t-node-arc incidence matrix at step t with respect to

q . Hence, having done all the necessary changes and definitions the same as those in

Case 2, it is enough to do the following replacement with respect to each t and q.

 00II0I00A00 

↓

  00II0I00B00 t
q .

3.6 On Applications and Computational Tuning-Testing

Electricity and data transmissions, road or air traffic control, evacuation planning,

production and distribution, and transportation problems can be viewed as single-

commodity or multi-commodity problems. When the above models involve a parameter

of time, they may often be modeled as dynamic network flows (or multiperiod dynamic

89

networks). This section applies DW to instances of a model of an electricity-distribution

(transportation) network and we present the results of our experiments that demonstrate

the effectiveness of our approach. The topology of this class of network models has

been already described in detail in previous chapters and also in Chapters 1 and 2, so we

give only a brief description here.

We consider a distribution network that is a local, low-voltage part of the electricity

system that connects the customers to the long-distance, high-voltage transmission

system which, in turn, connects to generating plants. The distribution network may be

viewed as connecting to the transmission system, via a substation, at a single point or

source (in reality, it may connect to several points). We consider a number of customers

(cities, factories etc.) with demand for a certain product (that may vary over time) over a

specified time period, e.g., demand for electricity in our case study. We assume that

demand is satisfied by shipping electricity in a fixed number of wires from a number of

supply/production sites, where the cost of production is assumed to be time varying (or

fixed for each time period). We restrict our attention to the case in which each wire must

unload all of its goods (electricity) at the demand site upon arrival. The objective is to

determine the production circuit and shipping electricity within the time period so as to

minimize the daily cost (the planning horizon time is a day). To illustrate the

performance of our approach, we conducted a series of experiments using a set of real

data from our case study on real and random complete-bipartite MMNs. However, our

results should be applicable to other types of problems as well.

Several parameters must be specified in order to generate the MMN topology, arc

capacities and costs, losses and gains, and node storage capacities (if desired). These

parameters are random seed, number of periods T, number of products K , number of

supply/demand nodes, indegree and outdegree of each node, minimum and maximum

values of arc capacities for each q and t, losses, gains, and costs associated with the arcs,

which must be all nonnegative. The cost on each arc (for each time period for each

product) is randomly chosen from a uniform distribution between user defined

parameter minc and maxc , and gain/loss factors for each commodity and period are also

chosen from a ],0[max uniform distribution where max should be given for each q. The

user also sets the number of time periods, supply nodes, and demand nodes. The

91

demand for each time step with respect to each product q is to be randomly chosen

from a uniform distribution between minvq and maxvq , and likewise for supply, storage

capacity, spoilage, arc capacities.

The experiments are conducted on random multiperiod transportation networks with 26,

40, 46, 62, 74, 82, 100 nodes and time horizon 13, 20, 23, 31, 37, 41, 50 for the first two

cases and random networks with 6, 10, 14, 22, 26, 30, 34 nodes and time horizon 3, 5, 7,

11, 13, 15, 17 for the last case. For each value of n (n=n1+n2 is the total number of

generating plants and demand sites), we create distribution networks with different

indegree and outdegree in a range from 1 to max{n1, n2}. We denote by  the density of

the network (nm /). The minimum and maximum loss/gains are set to 0.999 and

1.100, respectively, the minimum and maximum capacities are set to 50 and 70,

respectively, the minimum and maximum costs are set to 10 and 100. For each specific

setting of n and m, we test a random transportation MMN. In addition, we have

performed several computational tests and analyzed decomposition approach’s

sensitivity on a variety of min-cost MMN problem instances. We have investigated

different implementation ideas and sensitivity of the method to various data parameters,

such as the number of arcs, number of time increments and the congestion in the

multiperiod network. We generated many MMN of various sizes, different number of

time periods, and different levels of congestion.

Figure 3.3 Sensitivity to time increments

91

Figure 3.4 Sensitivity to density

A plot for each different network parameter,  and T , helps us visualize the effects of

time splitting and density on the growth of the problem or the average CPU time.

Figure 3.4 shows that execution time increases exponentially in denser networks. In any

problem instances we tested, our solution approach showed an almost linear sensitivity

with respect to time increments as shown in Figure 3.3. The same sensitivity is also

observed with respect to number of products. This behavior is generally related to the

increase in the numbers of subproblems; since any increase in the number of time

periods or products will directly affect the numbers/complexity of subproblems, and

consequently, the algorithm’s running time increases. Our linear programming models,

decomposition methods, were implemented in GAMS in a personal computer with a

2.13GHz processor and 4GB physical RAM. The results of a very small number of runs

are summarized in Tables 3.1-3.4. Computational experiences shown in the first four

rows of Tables 3.1-3.3 correspond to some electricity transmission MMNs from our

case study.

Table 3.1 Sizes and Computational Results for Some MMNs with |K|=1 (T=13, 20,

23, 31, 37, 41, 50)

 # of

Polyhedrals
of

Variables

of

Constraints

of

Non-zeros

Work space

Allocated (Mb)

Computational

Time (s)

Data set 1 14 5070 4758 677 7.7 12.05

Data set 2 21 17600 16840 1601 8.2 17.10

Data set 3 24 26450 25438 2117 8.2 19.80

Data set 4 32 63426 61566 3845 9.3 26.90

Data set 5 38 106782 104118 5477 10.8 32.50

Data set 6 42 144566 141286 6725 11.9 37.10

Data set 7 51 260000 255100 10001 15.0 48.60

92

Table 3.2 Sizes and Computational Results for Some MMNs with |K|=7 (T=13, 20,

23, 31, 37, 41, 50)

 # of

Polyhedrals

of

Variables

of

Constraints

of

Non-zeros

Work space

Allocated (Mb)

Computational

Time (s)

Data set 1 98 35490 19110 677 8.7 70.9

Data set 2 147 123200 67480 1601 10.8 119.2

Data set 3 168 185150 101890 2117 12.9 142.9

Data set 4 224 443982 246450 3845 19.7 225.1

Data set 5 266 747474 416694 5477 27.1 319.9

Data set 6 294 1011962 565390 3362 33.9 764.7

Data set 7 357 1820000 1020700 10001 54.3 2510.2

Table 3.3 Sizes and Computational Results for Some MMNs with |N|=2|K|=2T

(T=3, 5, 7, 11, 13, 15, 17)

 # of

Polyhedrals

of

Variables

of

Constraints

of

Non-zeros

Work space

Allocated (Mb)

Computational

Time (s)

Data set 1 12 270 162 37 7.7 14.7

Data set 2 30 1750 950 101 7.7 37.8

Data set 3 56 6174 3234 197 7.7 68.6

Data set 4 132 34606 17666 485 8.7 134.2

Data set 5 182 65910 33462 677 9.8 114.6

Data set 6 240 114750 58050 901 10.8 145.3

Data set 7 306 186694 94214 1157 12.9 557.3

DW also provides a bound on the value of the objective function at each iteration, which

allows the quality of the current solution to be assessed, so that the trade of between

time and quality can be quantified. As a result, the procedure can be terminated, prior to

finding an exact optimal solution, with a good estimate of how far the current value of

the objective function can be from its optimal value [9] [15] [83].

Figure 3.5 Objective and dual bound progress of two instances

93

Practical experience suggests when decomposition is applied on an MCDF problem on

an MMN, the algorithm makes substantial progress in the beginning, but the cost

improvement becomes very slow later on. However, in spite of possible ill-conditioning

of a decomposed problem, it usually turns out that its optimal solution is close to the

true optimal solution, and so we may terminate it before the end having a very good

suboptimal solution.

Table 3.4 Computational Resources for Some Large Feasible MMNs

An application of our approach and CPLEX for some large random feasible instances with:

Uniform flow requirement U(100, 900), Uniform capacity U(100,000*|K|, 1,000,000*|K|), and Uniform cost

U(1,100).

For all problems, the planning horizon time is 24 hours, but with different discretization.

 Instances

 Data

P.1

P.2

P.3

P.4

P.5

P.6

Problem’s Status

 *** Feasible ***

Node-Commodities

65,110

200,000

79,202

26,026

60,000

52,800

Arc-Commodities

6,155,700

1.00000E+7

7,880,599

1.30260E+7

9,000,000

2.11200E+7

Commodities

170

100

199

13

100

33

Constraints

6,293,230

1.03100E+7

8,039,003

1.50560E+7

 9,240,000

2.24528E+7

Variables

6,155,700

1.0000E+7

7,880,599

1.30260E+7

9,000,000

2.11200E+7

Network Density

94.543

50.000

99.500

500.500

150.00

400.000

Periods

1/24

10/24

1/24

13/24

1/24

33/24

Total Cost

6.65645E+7

1.40419E+8

3.33284E+7

6,589,735.0

1.99913E+7

1.36029E+7

Work Space Allocated

for DW

(reported by GAMS)

321.7 Mb

517.3 Mb

407.2 Mb

916.8 Mb

471.2 Mb

1206.7 Mb

Work Space Allocated

for CPLEX

(reported by GAMS)

> 1,800 Mb

> 2,400 Mb

> 2,000 Mb

> 3,500 Mb

> 2.100 Mb

4,000 Mb

Elapsed Time for DW

(by GAMS)

1,209

SECONDS

9,799

SECONDS

1,756

SECONDS

2,026

SECONDS

3,436

SECONDS

3,928

SECONDS

Elapse Time for

CPLEX (by GAMS)

Failed to

solve after

410.14 SEC

Failed to

solve after

500.28 SEC

Failed to

Solve after

400.00 SEC

Failed to

Solve after

158.52 SEC

Failed to

Solve after

401.89 SEC

Failed to

Solve after

500.00 SEC

Figure 3.5 plots the progress of a pair of randomly generated MMN problems when we

apply the decomposition method. The plots show how the objective values and dual

bounds converge as the number of iterations (time) increases. Since we are dealing with

min-cost flow problems, the objective value descends from above and the dual bound

ascends from below.

94

Figure 3.6 The relative duality gap observed solving the sample problem (density =8.5,

T=17, K=17)

Throughout Chapters 2 and 3, we discussed how to properly decompose MMN

constraints into (sparse) blocks to be amenable to DW in order to save the

computational expenses of solving such large-scale planning problems (see Table 3.4).

On the hand, the decomposition method naturally lends itself to a coarse grained

distributed memory parallelism based on assigning the pricing problems to different

processors and solving them simultaneously. Hence, having decomposed to blocks,

modern computers can take advantage of the algorithm’s inherent parallelism to

efficiently improve the elapsed time for MMN problems. In general, any properly

decomposed problem can be provided to the DW algorithm for solving.

In a very inspiring work, Rios [76] reported computational results to motivate use of

such parallel solvers; as such implementation outperforms state-of-the-art commercial

solver, CPLEX 11.2, in terms of elapsed time. Applying his approach (in

implementation) and ours (in decomposing) simultaneously will sufficiently

demonstrate the utility of our approach in decomposing problems and his approach in

parallelism. Here, we give a brief description on how this parallel implementation works

and at the end we report the work done by Rios for such parallelism.

At the simplest level the master problem and pricing problems reside on separate

processors; when there are more problems than processors, each processor may hold

several problems which may be solved locally in sequence. Mirroring the algorithm,

control is maintained by the process handling the master problem: it sends out prices to

start up the slave processes; the slave processes solve the pricing problems and send the

generated proposals back to the master processes [44] [45] [50] [76] [83].

0

200

400

600

800

1000

0 20 40 60 80 100
The Relative Duality Gap

95

The measure which is widely used to assess the performance of a parallel application in

comparison to a serial application performing the same task is speedup. For this case in

which Cplex is used, it is stated as

Speedup = (Time Cplex) / (Time DW Parallel),

where Time is either a measure of elapsed time or total CPU time. However, in most

cases, the two speedups are similar. This implies that much of the speedup comes from

the effectiveness of the DW algorithm at handling these LPs rather than the

parallelization of the algorithm. The largest discrepancy between the elapsed time and

CPU time speedups occurs with large subproblems. This is due to the fact that the

parallelization in DW is exercised to solve the various subproblems in parallel versus

being stuck in the serial bottleneck of solving-resolving the reduced master problem.

With an understanding of DW, the results follow what might be expected [76] [83].

The first parallel implementation of the decomposition method was the prototype

‘decompar’ by Ho et al. [44] [45] [50] based on the serial decomposition software

‘decomp’ used by Ho and Loute. decomp, and its underlying LP software ‘ lpm1’, were

by now over fifteen years old, and much inferior to other LP software available.

However, it could not be used for practical computational work. Because the maximum

problem size was very restricted, with at most 10 blocks, each with 400 rows, 1000

columns and 10,000 non-zeros; and up to 99 global rows. When implemented in

parallel, a new area of flexibility is opened up in the algorithm: the order in which the

problems are solved on each cycle, and whether all problems are solved on every cycle.

A major implementation issue involves how the subproblems should be solved. This

decision is based on several factors including coding complexity, computing resources,

and problem size. Some problem instances of DW may have only one single

subproblem, and thus do not have to be concerned with the decision of whether to solve

subproblems in parallel or serially. Five strategies may be distinguished by the action

taken in a typical cycle [76]:

96

Basic strategy: Solve all pricing problems, then solve the master problem.

First pricing problem strategy: Start solving all pricing problems, then as soon as one

finishes, solve the master problem.

First proposal strategy: Start solving all pricing problems, then as soon as one proposal

is generated, then solve the master problem.

Instant feedback strategy: All new information is acted on immediately all pricing

problems and master constantly being solved, send out proposal from each pricing

problem after every pivot, and send out prices from master after each pivot.

Accelerated feedback strategy: Whenever a pricing problem finishes, send out

proposals generated, check for new prices, and start solving again as soon as new prices

found. Whenever the master problem finishes, send out new prices, check for new

proposals, and start solving again as soon as any found.

The original implementation by Ho could not be used for practical computational work

and it was also tied to a no-longer available commercial LP solver from IBM. Recently,

Rios described a general, parallel implementation of DW decomposition. By his

approach it is hoped that future researchers in various domains will have access to a

stable platform from which to begin experimentation without the need to implement the

algorithm from scratch. Rios [76] detailed the implementation of the software in terms

of parallelization and synchronization.

 2.3 ≤ Speedup[Rios’s method] ≤ 8.5.

As he has shown, to minimize elapsed runtime, solving all subproblems in parallel is

more efficient in the presence of multicore or cluster computers. All subproblems were

launched simultaneously and each one was solved completely at each iteration of the

DW algorithm as long as the subproblem had a new objective function for that iteration.

All generated columns that might improve the master’s objective function were added to

the reduced master. When all subproblem threads had been serviced exactly once, the

master thread performed additional computations while the subproblem threads block,

awaiting the next iteration.

97

3.7 Summary and Concluding Remarks

This chapter addresses discrete-time dynamic min-cost network flow problem on

multiperiod multiproduct distribution-production networks under the generalization of

node storage or/and arc spoilage. We develop some decomposition-based approaches to

solve the min-cost flow problem employing polyhedral sets hidden in the underlying

distribution network. Having appropriately defined some matrices, the original

problems are re-formulated into a series of structurally similar sparse LP subproblems

(polyhedrals) which are utilized to develop decomposition-based techniques to decrease

storage requirements. At the end, we discussed different issues and strategies on

parallelization of the algorithm to improve the wall-clock time along side with

computational recourses.

Note that our approach should be seen as two-phase method. In the first phase, we get

the t-q-node-arc incidence matrices, and the second phase is an application of DW

method. Evidently, the performance of our algorithm highly depends on the first phase.

A simple analysis reveals that the overall complexity of the first phase is)(2TKnmΟ if a

simple data structure is used to maintain the factors for each time period with respect to

each product. As mentioned, although we consider time-commodity varying network

parameters, all the t-q-incidence matrices/transformations can be updated/run off-line

and in parallel. Therefore, if the solutions of the first phase are calculated in parallel, we

can expect to obtain the optimal solution for any min-cost MMN problem in a

reasonable amount of time.

98

Chapter 4

4 A Penalty-Based Scaling Algorithm for Multiperiod

Multiproduct Distribution Planning Problem

This chapter addresses the minimum cost dynamic flow (MCDF) on multiperiod

multiproduct distribution planning problem in the discrete-time settings with varying

network parameters, and a network-based scaling algorithm is developed to obtain an

optimal solution for a deterministic predefined finite planning horizon. The basis of our

solution approach exploits ideas from penalty function methods in nonlinear

programming and scaling algorithms in network flow theory, simultaneously.

We formulate a mathematical programming problem to find an optimal non-

simultaneous shipment of commodities from production stations (sources) to

consumption sites (sinks) minimizing a deterministic non-negative distribution cost

function such that no capacity conditions are violated. We develop a cost-scaling-based

approach to solve the MCDF problem on a multiperiod multiproduct network. Our

algorithm solves the MCDF problem as a sequence of nonlinear penalty problems, each

of which is constructed by relaxing some constraints and adding a term for their

violation to the objective function. Each penalty problem’s objective function is

improved through some augmentations until reaching a user-defined accuracy using a

network based scaling algorithm. This method keeps iteratively detecting and modifying

time-commodity varying flows around cycles at each scaling phase to improve the

objective function of the nonlinear penalty problem. The algorithm finds a δ-optimal

solution to the penalty problem.

Static network flow problems with multiple commodities can be posed as single

commodity network problem with side constraints. Many applications of such problems

lead to huge LPs that are too large to be handled by a direct application of an LP

software. Hence, researchers have developed specialized adaptations of LP algorithms

that exploit the special structure and the sparsity inherent in this class of problems.

Exact algorithms for such problems are mostly based on DW decomposition and

specializations of the simplex method. There are also a couple of heuristic algorithms to

99

handle side-constrained network problems. They use Lagrangean relaxation techniques

to determine lower bounds, and decomposition to determine upper bounds for the value

of the solution. Some approximation algorithms so far have also been developed for

static network flow problems [3] [11] [15] [20] [24] [48] [51] [54] [75] [78].

4.1 Penalty Function Method - Transformation Approach

The mathematical programming problem (MPP) is to determine a vector

),...,,(**
2

*
1

*
nxxxx  that solves the problem

)(MPP),...,,(21 nxxxfMin

 0),...,,(21 nxxxg

 0),...,,(21 nxxxh

When the problem functions f , g , and h are all linear, the (MPP) is called a linear

programming problem. If any of the functions is nonlinear the problem is called a

nonlinear programming problem. There are other terms, such as convex, concave,

separable, quadratic, and factorable, which may apply to special cases of (MPP).

Usually the functions of (MPP) are required to be continuous. Much of the theory of

nonlinear programming concerns the case when the functions are continuously

differentiable, or twice continuously differentiable. In these instances, it is possible to

prove theorems which characterize solutions to (MPP). These theorems in turn

influence the development of algorithms for solving the mathematical programming

problems. Particular results and algorithms have been obtained for quadratic

programming where)(xf is a positive semi-definite quadratic form, and the constraints

are linear [7] [12] [24] [27] [58] [75].

Special methods have been developed when)(xf is a convex function and the

constraints are concave/linear. The smoothness of the problem functions makes the

problem well behaved, and the convexity-concavity assumptions assure that the feasible

region is convex and, most importantly, that any local solution is also

global [7] [12] [27].

111

Our penalty-scaling method is based on Transformation Approach in Non-Linear

Programming. Transformation Approach is executed by defining an appropriate

auxiliary function, in terms of the problem functions, to define a new objective function

whose minima are unconstrained in some domain of interest. By gradually removing the

effect of the constraints in the auxiliary function, a sequence (or family) of

unconstrained problems with solutions converging to a solution of the original

constrained problem is generated [27]. For the sake of simplicity, we proceed formally

to sketch the basic idea. The problem is to find a solution *x of

)1(MPP),...,,(21 nxxxfMin

 0),...,,(21 ni xxxg , mi ,...,2,1 .

A typical unconstrained auxiliary function may have the form

)),...,,(()(),...,,(:))(,(21

1

21 ni

m

i

in xxxgGtxxxftxMPP  


 ,

where t is a parameter,)(ti are weighting factors,),...,,(21 nxxxx  , and)(yG is

generally a monotonic function of y that behaves in some well-chosen manner at 0y .

Typical choices are either that 0)(yG for 0y and 0)(yG for 0y . The former choice

usually is associated with procedures that are not concerned with constraint satisfaction

except at the solution, and the latter, where constraint satisfaction is enforced

throughout. When successful, the method generally proceeds computationally as

follows. Select a sequence }0;{ kk tt , and kt as k . Compute a minimum n-

vector kx of))(,(txMPP  for ,...2,1k . Under appropriate conditions such an kx always

exists and is an unconstrained minimum of))(,(txMPP  . Usually the most desirable

result is that *xxk  as k , a solution of)1(MPP . A weaker result is that

)()(*xfxf k  a minimum value of the objective function. The result follows that

 0)),...,,(()(21

1




ni

m

i

i xxxgGt as k .

So that we will have

111

)())(,(*xftxMPP k
k  as k .

That is, the modified objective function))(,(txMPP  converges to the same minimal

value, as the original objective function)1(MPP . This means that the influence of the

constraints on the modified objective or auxiliary function is gradually relinquished and

finally removed in the limit.

Penalty function methods solve a constrained optimization problem by a sequence of

optimization problems in which all or some of the constraints are relaxed. A penalty

term for the violation of the relaxed constraints is added to the objective function. We

refer to the resulting problem as the penalty problem. Thus, the penalty problems are

either unconstrained or have a special structure. Detailed descriptions of penalty

methods can be found in Fiacco and McCormick [27] and Luenberger [58]. In most

penalty function algorithms, the optimal solutions to the sequence of penalty problems

approach the optimal solution to the original problem. A penalty problem associated

with)(MPP above may be depicted as

)(MPPPenalty ))(())(()(xhxgxf  Min .

Observe that),...,,(**
2

*
1

*
nxxxx  is the optimal solution of)(MPPPenalty  if and only if it

is the optimal solution of)(MPP (Luenberger [58]). In practice, the optimization of

)(MPPPenalty  is difficult due to the discontinuity of the objective function on the

boundary of the feasible region; this is why we consider some special functions for)(x

and)(x . The parameter  is called the penalty parameter. In order to cope with the

discontinuity curse, we will consider some continuous functions as)(x and)(x

satisfying the following conditions:

0)(

0)(0
))((










xg

xg

if

if

M
xg and

0)(

0)(0
))((










xh

xh

if

if

M
xh ,

where M is a constant positive number. However, in theory and implementations we

often use)(x and)(x of the following forms:

112

axgxgxg])()([
2

1
))(( or axgxg)}](,0[max{))((

 and

b

xhxh)())(( ,

where a, b =1 or 2 usually.

In general, penalty function approaches consist of solving a sequence of penalty

problems, such as)(MPPPenalty  , with an increasing penalty parameter  .

Theorem 4.1 KKT necessary conditions [7] [27]

Consider the following nonlinear program (NLP).

)(NLP)(xfMin ,

 0)(xg i mi ,...,2,1 ,

 0)(xh j lj ,...,2,1 .

Suppose that the objective function)(xf and the constraint functions)(xg i and)(xh j

are continuously differentiable at a point),...,,(**
2

*
1

*
nxxxx  . If *x is a local minimum

that satisfies some regularity conditions, then there exist constants i and j , called

KKT multipliers, such that

0)()()(*

1

*

1

*  


xhxgxf j

l

j

ji

m

i

i 

 0)(* xg i mi ,...,2,1

 0)(* xh j lj ,...,2,1

 0i mi ,...,2,1

0)(* xg ii mi ,...,2,1 .

The KKT conditions (also known as KT conditions) are first order necessary

conditions for a solution in continuous nonlinear programming to be optimal, provided

that some regularity conditions are satisfied [27] [58].

http://en.wikipedia.org/wiki/Necessary_and_sufficient_conditions
http://en.wikipedia.org/wiki/Necessary_and_sufficient_conditions
http://en.wikipedia.org/wiki/Nonlinear_programming
http://en.wikipedia.org/wiki/Optimization_(mathematics)
http://en.wikipedia.org/wiki/Karush%E2%80%93Kuhn%E2%80%93Tucker_conditions#Regularity_conditions_.28or_constraint_qualifications.29

113

Theorem 4.2 KKT conditions for an NLP with non-negativity constraints [58]

Suppose that in the following NLP problem, the objective function)(xf and the

constraint functions)(xg i satisfying certain regularity conditions are differentiable at

),...,,(**
2

*
1

*
nxxxx  .

)(NLPeNonnegativ )(xfMin

 0)(xg i mi ,...,2,1 ,

0jx nj ,...,2,1 .

Then,),...,,(**
2

*
1

*
nxxxx  can be an optimal solution for)(NLPeNonnegativ  only if there

exist numbers i and j such that all the following KKT conditions are satisfied:

0)()(*

1

* 











ji
j

m

i

i
j

xg
x

xf
x

 nj ,...,2,1

0)()(*

1

** 

























xg
x

xf
x

x i
j

m

i

i
j

j  nj ,...,2,1

0)(* xg ii mi ,...,2,1

0)(* xg i mi ,...,2,1

0i mi ,...,2,1

0jx , 0j nj ,...,2,1

In some cases, the necessary conditions are also sufficient for optimality. In general, the

necessary conditions are not sufficient for optimality and additional information is

necessary, such as the Second Order Sufficient Conditions.

Theorem 4.3 Sufficient conditions [7] [12] [27]

The KKT conditions are necessary to find an optimum, but not necessarily sufficient.

However, these necessary conditions are sufficient for optimality if the objective

function)(xf and the inequality constraints)(xg i are continuously differentiable convex

functions and the equality constraints)(xh j are affine functions.

114

Theorem 4.4 Sufficient conditions for convex problem with linear constraints [27]

Suppose the case 0m i.e., when there are no inequality constraints in)(NLP . If

),...,,(21 nxxxf is a convex function and each),...,,(21 nj xxxh are linear function, then any

point),...,,,,...,,(**
2

*
1

**
2

*
1

*
lnxxxx  satisfying the following condition

0),(...),(),(),(...),(),(
2121







































 xLxLxLxL

x
xL

x
xL

x ln

,

will yield an optimal solution),...,,(**
2

*
1

*
nxxxx  to)(NLP .

4.2 Network Flow - Scaling Approach

Scaling is a powerful idea that has produced algorithmic improvements to many

problems in combinatorial optimization like network flow problems (see Dinic [23]). In

our case, we start with the optimality conditions for the network flow problem we are

examining, but instead of enforcing these conditions exactly, we generate an

approximate solution that is permitted to violate one (or more) of the conditions by an

amount  . Initially, by choosing  quite large we are able to find a starting solution that

satisfies the relaxed optimality conditions. We then reset the parameter  to F and re-

optimize so that the approximate solution now violates the optimality conditions by an

amount of at most F . We then repeat the procedure, re-optimizing again until the

approximate solution violates the conditions by an amount of at most FF 1 , and so

on. Scaling algorithms rely on the integrality assumption. Integrality ensures

applicability of the method. It requires the given numbers to be integers. This permits an

easy transition from a current solution to optimum. If the given numbers are rational

they must be scaled up to integers before the method is applicable. So scaling approach

can find a solution with any desired accuracy [3] [23].

 Residual Network

Associated with any network flow A)G(V,:G  with node set V , arc set , and each flow

x , there is another network flow, called residual network, giving the amount

of available capacity. We define the residual network)(xG with respect to a given

feasible flow x as)(V,)(21
rrxG  where

115

 ijij
r xuji  :),(1 and  ij

r xji  0:),(2 .

The residual network)(xG is provided with residual arc capacities as:

ijij
r
ij xuu  for rji 1),( and ij

r
ji xu  for rji 2),( .

 Δ-Residual Network

Given the residual network)(xG with respect to flow x , we define the Δ-residual

network),(xG as a sub graph of)(xG containing arcs whose residual capacity is at least

Δ. Note that)()1,(xGxG  for a network flow with integral capacities.

 Augmenting Path and Cycle

A path constructed by repeatedly finding a path of positive capacity from a source s to a

sink t and then adding it to the flow. Equivalently, an augmenting path is a path

niiii ,...,,, 321 in the residual network, where si 1 , tin  and 0r
iju for any kii  and

1 kij . A cycle W (not necessarily directed) in G is called an augmenting cycle with

respect to the flow x if by augmenting a positive amount of flow)(Wf around the cycle,

the flow remains feasible. The augmentation increases the flow on forward arcs in the

cycle W and decreases the flow on backward arcs in the cycle. In other words, an

augmenting cycle is a directed cycle niiii ,...,,, 321 in the residual network, where si 1 ,

sin  , and 0r
iju for any kii  and 1 kij .

 The Cost and Mean Cost of a Cycle

We next extend the notations of)(Wij and)(Wc for cycles that are not necessarily

directed. We define)(Wij as

 1)(Wij if arc),(ji is a forward arc in the cycle W ,

 1)(Wij if arc),(ji is a backward arc in the cycle W ,

 0)(Wij if arc),(ji is not in the cycle W .

116

Notice that in terms of residual networks, each augmenting cycle W with respect to a

flow x corresponds to a directed cycle W in)(xG and vice versa. We define the cost of

an augmenting cycle W as






Wji

ijij WcWc

),(

)()( .

The cost of an augmenting cycle represents the change in the cost of a feasible solution

if we augment one unit of flow along the cycle. Therefore, the change in flow cost for

augmenting)(Wf units along the cycle W is)()(WfWc . We also define the mean cost of

a cycle as its cost divided by the number of arcs it contains. A minimum mean cycle is a

cycle whose mean cost is as small as possible.

 Reduced Cost of an Arc

In many network flow algorithms, we measure the cost of an arc related to some cost

associated with the nodes. These costs are typical intermediate data of the algorithm.

Suppose that A)G(V, is a directed network flow with some real numbers i associated

with each node Vi as the potential of node i . For a given set of node potentials i , we

define the reduced cost as

jiijij cc  :

),(ji .

These reduced costs are applicable to the residual network as well as the original

network. That is

jiijij cc  :

)(),(21
rrji  .

Remark 4.1 In many minimum cost flow algorithms, the reduced cost replaces the

cost, especially in the residual network. Thus, it is crucial to understand the relationship

between c and c with respect to the minimum flow problem. We define the reduced

costs in the residual network just as we did the costs, but now using 
ijc in place of ijc .

117

Theorem 4.5 Shortest path optimality conditions [3]

Suppose that A)G(V,:G  is a directed network flow. Let us define the reduced arc

length d
ij of an arc A),(ji with respect to the distance label function (.)d as

jiij
d
ij ddc : . And suppose that (.)d is such that for every node i ,)(id denotes the

length of some directed path from the source node to node i . Then the numbers)(id

represent shortest path distances if and only if they satisfy the following shortest path

optimality conditions:

0:  jiij
d
ij ddc ),(ji .

Various uses of the shortest path optimality conditions suggest that similar sets of

conditions might be valuable for designing and analyzing algorithms for the minimum

cost flow problem, and also they yield three different (but equivalent) optimality

conditions for minimum cost flow problem. All these optimality conditions have an

intuitive network interpretation and are rather direct extensions of their shortest path

counterparts. We will consider three optimality conditions: (1) negative cycle optimality

conditions, (2) reduced cost optimality conditions, and (3) complementary slackness

optimality conditions.

Theorem 4.6 Negative cycle optimality conditions [3]

Suppose that A)G(V,:G  is a directed network flow. A feasible solution x is an optimal

solution of the minimum cost flow problem if and only if the residual network)(xG

contains no negative cost directed cycle.

Theorem 4.7 Reduced cost optimality conditions [3]

Suppose that A)G(V,:G  is a directed network flow. A feasible solution x is an optimal

solution of the minimum cost flow problem if and only if some set of node potentials i

satisfy the following reduced cost optimality conditions:

 0:  jiijij cc )(),(21
rrji  .

118

We know that a flow is optimal if there is no negative cost cycle in the residual network

[3]. If there is no negative cost cycle in the residual network, it means that the shortest

path distance is well defined with respect to the cost function. On the contrary, if there

is a negative cost cycle, the shortest path distance is not well-defined. We will express

the ‘well-definedness’ of the shortest path in terms of reduced costs, thanks to the

shortest path optimality conditions. This gives rise to the following theorem.

Theorem 4.8 Complementary slackness optimality conditions [3]

Suppose that A)G(V,:G  is a directed network flow. A feasible solution x is an optimal

solution of the minimum cost flow problem if and only if for some set of node potentials

i , the reduced costs and flow values satisfy the following complementary slackness

optimality conditions:

If 0
ijc , then 0ijx ),(ji ,

If 0
ijc , then ijij ux  ),(ji ,

If ijij ux 0 , then 0
ijc ),(ji .

4.3 Min-Cost Multiperiod Multiproduct Distribution Problem

As mentioned, in the min-cost multiperiod multiproduct distribution networks we aim to

find a routing plan to non-simultaneously ship the products from source nodes to sink

nodes through a distribution network without exceeding the time-varying, time-

commodity varying, and horizon capacities at the minimal cost during the finite

planning horizon. The products may either be differentiated by their physical

characteristics or simply by their origin-destination pairs. However, arc capacities bind

different products together. In fact, the essential issue addressed by the multiperiod

multiproduct network problem is the allocation of the capacities of each arc to the

individual products in a way that minimizes overall flow costs.

Given distribution network)KT,Α,(V,G  where V is the set of sources and sinks, A is

the set of all possible connections between sites (arcs), }{1,2,...,K K is the set of

products, and T is the time horizon, the MCDF on MMN can be expressed as:

119

)(CTMCDF   
 q ji

T

ijqijq
tx

dttxtc
ijq

),(0
)(

)()(Min , (4.1)

 dttdttxdttx iq

j

jiq

j

ijq  













)(v)()(Vi , q ,],0[, T  , (4.2)

 ij

q

T

ijq udttx 
 0

)(),(ji , (4.3)

)()(tutx ij

q

ijq 


 ),(ji ,],0[Tt  , (4.4)

)()()(0 tutxtl ijqijqijq  ),(ji , q ,],0[Tt , (4.5)

 0)(txijq ),(ji , q , Tt  . (4.6)

In this setting,)(txijq describes the dynamic flow decision variable as the vector of flow

amount of commodity q entering arc),(ji at time moment t , and  IRT][0,:ijqc is the

non-negative time-varying cost function with respect to product q , and)(v tiq denotes

the pre-defined supply/demand capacities at node i over time. Constraint (4.2) involves

the flow conservation constraints for each commodity. We refer to (4.3) as horizon

capacity constraints. Horizon capacity of an arc limits the amount of total flow (of all

commodities) on the arc throughout the entire horizon. Constraint (4.4) represents the

maximum possible amount of total flow that can enter),(ji at time t : it is referred to as

the moment capacity constraint. Constraint (4.5) is the time-commodity varying

capacity constraint for each commodity at each moment. The domain of decision

variables prescribed in (4.6) also emphasizes that commodities can flow on the network

only until the end of pre-specified time horizon.

4.3.1 Canceling the Time-Commodity Varying Lower Bounds

The dynamic flow)(tx with time horizon T is a feasible flow of the)(CTMCDF problem if

it satisfies the conditions (4.2)-(4.6). By replacing)()()(tltxtx ijqijqijq  for every ),(ji

, we obtain the following equivalent constraints:

111

 dttdttdttxdttx iqiq

j

jiq

j

ijq  

















)(v)(v)()(Vi , q ,]T0,[,   , (4.7)

)()(tutx ij

q

ijq 


 ),(ji ,]T0,[t , (4.8)

 ij

q

T

ijq udttx 
 0

)(),(ji , (4.9)

)()(0 tutx ijqijq  ),(ji , q ,]T0,[t , (4.10)

Where

  

j

ijq

j

jiqiq tltlt)()()(v , (4.11)

is considered as supplies/demands of node i at time]T0,[t for product q . Observe that

 )(tuijq)()(tltu ijqijq  , (4.12)

 




K 0

)(

q

T

ijqijij dttluu , (4.13)

 




q

ijqijij tltutu)()()(. (4.14)

Therefore, the network problem formulated in (4.1)-(4.6) is equivalent to the problem in

the transformed network with parameters mentioned in (4.11)-(4.14). That is if)(txijq is

a multiperiod multiproduct feasible flow in the transformed network, then

)()()(tltxtx ijqijqijq  is a multiperiod multiproduct feasible solution of the original

network.

Using the discussion above, we can formulate any)(CTMCDF problem on a MMN with

time varying lower bounds as a)(CTMCDF problem without lower bounds. Henceforth,

we only focus on the)(CTMCDF problems without lower bounds. Another approach can

also be used to remove the time-commodity varying upper bounds (Ahuja et al. [3]).

111

4.3.2 Discrete Time Multiperiod Multiproduct Distribution Problem

The problem formulation in (4.1)-(4.6) represents MCDF in a continuous-time setting.

By using the natural discretization transformation mentioned in Sections 2.2 and 3.1,

we can alternatively represent MCDF by discrete time increments.

We also observe that a)(CTMCDF problem with multiple sources and multiple sinks for

each product can be easily transformed to a single-source, single-sink)(CTMCDF

problem. One way of transformation is by adding an artificial source node (super-

source) and an artificial destination node (super-sink) for each product. The artificial

super-source is connected with each origin of that product with a cost of zero (for each

time period), and the artificial super-sink is connected with each source of that product

with cost of zero (for each time period). Any flow in the single-source single-sink

network corresponds to a flow in the multi-source multi-sink network, and vice versa.

Hence, we can only consider single-source single-sink multiproduct multiperiod

network flow problems. To better illustrate this transformation, we provide Figure 4.1.

Figure 4.1 Transformation of a multi-source multi-sink single-product multi-period
network problem into a single-source single-sink single-product multi-period network
problem

Therefore, a discrete multiproduct multiperiod feasible flow is a non-negative function

 IRKΝΑ:}{ t
ijqxx satisfying (4.15)-(4.18), and the discrete-time minimum cost

dynamic flow problem becomes as

112

)(DTMCDF  
  q t ji

t
ijq

t
ijq

x
xc

t
ijq),(

Min ,

t
iq

j

t
jiq

j

t
ijq vxx  Vi , q , t , (4.15)

ij

q t

t
ijq ux 

 

 ),(ji , (4.16)

t
ij

q

t
ijq ux 

K

 ),(ji , t , (4.17)

t
ijqx0 ),(ji , t , q . (4.18)

(4.15)-(4.18) represent the flow feasibility conditions in a MMN in discrete time

settings. For each commodity q there is a required time-varying flow of t
qv units at time

period t from its source node qs to its sink node qt . The cost of a unit q-flow at period t

on arc),(ji is t
ijqc and the amount of flow is denoted as t

ijqx . Let t
iqv be the flow balance

of commodity q at node i at period t. Thus, we conclude that

qq

q

q

t
q

t
q

t
iq

tsi

ti

si

if

if

if

v

v

v

,0 













 .

4.4 The Penalty-Based Scaling Approach for MCDF

We introduce a penalty-based scaling algorithm for the)(DTMCDF problem. The

efficiency of the algorithm is induced by using the scaling approach and by exploiting

the network structure of the problem. The scaling network-based algorithm finds a

optimal solution to the penalty problem as discussed earlier while this solution is

optimal to another problem in which part of the data is modified by at most  . We

develop a penalty problem)MCDF( of)(DTMCDF problem by moving the horizon and

period capacity constraints to the objective function and choosing a quadratic penalty

function for violation. As discussed, a sequence of solutions to the penalty problem

)MCDF( with increasing penalty parameter converges to the optimal solution of

)(DTMCDF . The quadratic penalty problem is formulated as

113

)MCDF(








t ji

t
ijq

t
ijq

q

xcxf

),(K

)(Min  
   































A),(

2

)4/1(

ji

ij

q t

t
ijqij

q t

t
ijq uxux

  
  































Nt ji

t
ij

q

t
ijq

t
ij

q

t
ijq uxux

A),(

2

KK

)4/1( ,

t
iq

j

t
jiq

j

t
ijq vxx  Vi , q , t ,

 t
ijqx0 ),(ji , q , t .

By using the definition of absolute value function |.| , we can modify the objective

function in)MCDF( by defining the following excess functions.














 

 

ij

q t

t
ijqij uxxe

K

,0max)(),(ji ,

(4.19)













 



t
ij

q

t
ijq

t
ij uxxe

K

,0max)(),(ji , t .

In fact,)(xeij and)(xet
ij are the amount by which the total flow on arc),(ji exceeds its

horizon and period capacity (with respect to period t). The resulting penalty problem

)MCDF( is

)MCDF(

  
 



t ji

t
ijq

t
ijq

q

xcxf

A),(K

)(Min













  

  Nt ji

t
ij

ji

ij xexe

A),(

22

A),(

))(())(( , (4.20)

 t
iq

j

t
jiq

j

t
ijq vxx  Vi , q , t , (4.21)

 t
ijqx0 ),(ji , q , t . (4.22)

Generally, any penalty function other than the quadratic may be used. However, we

prefer the quadratic function because (1) it assigns large penalty to a large excess in a

nonlinear fashion, and (2) the penalty objective function becomes convex, and its

derivative is linear. The objective function, however, is non-separable and nonlinear.

114

Hence, we eliminate the complicating constraints and we decomposed)MCDF( into

some single-product flow problems, but introduce convex and non-separable terms into

the objective function. These features simplify the analysis and the derivation of the

theoretical properties.

In order to determine the cycles of interest (negative cost cycles), we build an auxiliary

residual network. A δ-shift for product q at time t is found by detecting a negative cost

cycle on the residual network which corresponds to that product at that time. Here, at

each scaling phase we use an associated δ-residual network),(xG t
q with respect to each

t and q, and flow x. A negative cost cycle on a δ-residual network means that shifting δ

units around this cycle results with a negative net change of the value of the penalty

objective function)(xf . To shift δ units around a cycle t
qW is to increase the flow of

commodity q at period t by δ units on original arcs, which correspond to forward arcs in

),(xG t
q that in the cycle, and to decrease the flow of commodity q at period t by δ units

on original arcs, which correspond to backward arcs in),(xG t
q that in the cycle.

 The Cost of a δ-Flow Around a Cycle

The cost of a δ-flow around cycle t
qW , which is not necessarily directed, is the net

change in the objective function of)MCDF( problem by sending δ units of q-flow

around it at period t. We define the cost of cycle t
qW with respect to product q at time t

and with respect to parameter  as

)(t

qWc)()),((xfWxxf t
q    , (4.23)

where)),(t
qWx represents a δ units of t-q-flow around cycle t

qW .

 δ-Residual Network

For a given flow x and scaling parameter δ, we define δ-residual network

)(V,),(21
rrt

q xG  for each q and t as

 t
ijq

r xjiji  0,),(:),(1 and  t
ijq

r xjiij  ,),(:),(2 .

115

Using the)MCDF( objective function, we define the cost of each arc in the t-q- residual

network as following:

t
ijqC : Cost of each forward arc),(ji in the residual network for time period t and

product q will be equal to the net change in)(xf obtained by increasing the q-flow on

arc),(ji by units at period t.

t
jiqC : Cost of each backward arc),(ij in the residual network for time period t and

product q is defined as the net change in)(xf obtained by decreasing the q-flow on

arc),(ji by units at period t.

Observation 4.1 The original arcs of the network form the forward arcs of the residual

network. Moreover, if),(ji is a forward arc in the associated δ-residual network

),(xG t
q then the cost of arc),(ji in the residual network for time period t and product q

will be obtained by

 )()(2 xexec t
ijij

t
ijq

t
ijq  C ),(ji : 0

K


 

ij

q t

t
ijq ux and t

ij

q

t
ijq ux 

K

 )(2 xec ij
t
ijq

t
ijq  C ),(ji : 0

K


 

ij

q t

t
ijq ux and 



t
ij

q

t
ijq ux

K

 
2

K

)(2













 



t
ij

q

t
ijqij

t
ijq

t
ijq uxxec C

 ),(ji : 0

K


 

ij

q t

t
ijq ux and 0

K

 


t
ij

q

t
ijq ux

 )(2 xec t
ij

t
ijq

t
ijq  C ),(ji : 

 

ij

q t

t
ijq ux

K

 and t
ij

q

t
ijq ux 

K

t
ijq

t
ijq cC ),(ji : 

 

ij

q t

t
ijq ux

K

 and 


t
ij

q

t
ijq ux

K

2

K













 



t
ij

q

t
ijq

t
ijq

t
ijq uxc C ),(ji : 

 

ij

q t

t
ijq ux

K

 and 0

K

 


t
ij

q

t
ijq ux

116

 
2

K

)(2













 

 

ij

q t

t
ijq

t
ij

t
ijq

t
ijq uxxec C

 ),(ji : 0

K

 
 

ij

q t

t
ijq ux and t

ij

q

t
ijq ux 

K

2

K













 

 

ij

q t

t
ijq

t
ijq

t
ijq uxc C

 ),(ji : 0

K

 
 

ij

q t

t
ijq ux and 



t
ij

q

t
ijq ux

K













































 

 

2

K

2

K

t
ij

q

t
ijqij

q t

t
ijq

t
ijq

t
ijq uxuxc C

 ),(ji : 0

K

 
 

ij

q t

t
ijq ux and 0

K

 


t
ij

q

t
ijq ux

Observation 4.2 A backward arc will be included in the δ-residual network of time t

for product q if and only if we can decrease the flow of product q at period t. Therefore,

a backward arc may be used in a negative cost cycle only if the flow of product q on its

corresponding forward arc is at least δ. Moreover, if),(ji is a backward arc in the

associated δ-residual network),(xG t
q , then the cost of arc),(ji in the residual network

for period t and product q will be obtained by

 )()(2 xexec t
ijij

t
ijq

t
jiq  C ),(ji : 

 

ij

q t

t
ijq ux

K

 and 


t
ij

q

t
ijq ux

K

 )(2 xec ij
t
ijq

t
jiq  C ),(ji : 

 

ij

q t

t
ijq ux

K

 and t
ij

q

t
ijq ux 

K

  2)()(2 xexec t
ijij

t
ijq

t
jiq  C

 ),(ji : 
 

ij

q t

t
ijq ux

K

 and 


t
ij

q

t
ijq ux

K

0

 )(2 xec t
ij

t
ijq

t
jiq  C ),(ji : 0

K


 

ij

q t

t
ijq ux and 



t
ij

q

t
ijq ux

K

117

t
ijq

t
jiq cC ),(ji : 0

K


 

ij

q t

t
ijq ux and t

ij

q

t
ijq ux 

K

2)(xec t
ij

t
ijq

t
jiq  C ),(ji : 0

K


 

ij

q t

t
ijq ux and 



t
ij

q

t
ijq ux

K

0

  2)()(2 xexec ij
t
ij

t
ijq

t
jiq  C

 ),(ji : 
 

ij

q t

t
ijq ux

K

0 and 


t
ij

q

t
ijq ux

K

2)(xec ij
t
ijq

t
jiq  C ),(ji : 

 

ij

q t

t
ijq ux

K

0 and t
ij

q

t
ijq ux 

K

 22)()(xexec t
ijij

t
ijq

t
jiq  C ),(ji : 

 

ij

q t

t
ijq ux

K

0 and 


t
ij

q

t
ijq ux

K

0 .

The algorithm starts with an initial value for the scaling parameter δ. At each scaling

phase, δ has a fixed value. Focusing on one product at a time period, we try to improve

the objective function of)MCDF( by modifying some of the flows of this product by

exactly δ units. A flow of that product on an arc may either increase by δ, decrease by δ,

or remain unchanged. We call such a modification a δ-shift. When there is no δ-shift

which leads to an improvement for any product at any time, the value of δ is decreased.

We have chosen to decrease δ by a factor of 2 at the end of each scaling phase (Ahuja et

al. [3]). So, our algorithm, MMNF algorithm, can be outlined as follows.

Algorithm MMNF

begin

 Determine an initial feasible dynamic solution x (satisfying only flow requirements);

 Set values for the parameters R,  , u ;

 Choose initial values for δ and  ;

 while the algorithm’s termination criteria are not met do

 begin

 IMPROVE-APPROXIMATION (x,‎δ, );

 δ‎:=‎δ/2;  uR  ,min: ;

 end

 end

118

Let SEARCH(q, t) be a procedure that searches for a negative cost cycle on),(xG t
q ,

and let AUGMENT(t
qW ,δ) be a procedure which shifts δ units of q-flow around a cycle

t
qW . Then, the procedure IMPROVE-APPROXIMATION may be described as follows.

Procedure IMPROVE-APPROXIMATION

begin
 LIST: = K;

 while LIST ≠ null do

 begin

 select a commodity q from LIST;

 t
qW : = SEARCH(q, t) for any t;

 if t
qW = null then delete q from LIST

 else

 begin

 AUGMENT(t
qW , δ);

 LIST: = K;

 end

 end

end

Our network-based approach for)MCDF( can be viewed as a scaling algorithm in

which the step size at each phase is fixed at a value of δ. The algorithm will be trying to

find a direction of interest such that by modifying the flow by δ units in this direction

the penalty objective function)(xf decreases. When it is unable to find such an

improving direction with step size δ, it decreases the step size to δ/2. The accuracy of

the algorithm highly depends on the value of  and how we want to increase the

penalty cost [75]. Hence, we consider an upper bound for  (say ) and we set a fixed

value for increasing the penalty cost (say R) for use in the termination rule.

For setting the initial flow satisfying (only) the supply/demand constraints one may, for

example, satisfy the requirement of each product by sending each demand on the

shortest path from its origin to its destination with respect to the flow costs. Other initial

solutions which satisfy the supply/demand constraints may be used as well. As a very

common choice in scaling algorithms, we may let the initial value of δ be the size of the

largest demand, i.e., max0 : v where  qtvv t
q ,:maxmax  or  )log(

0
max2:

v
 . The best initial

penalty parameter value and its modification rate, R, may be empirically

119

determined [75] [78]. However, we believe that 9.15.00  and R=1.3-1.9 are some good

choices.

Observe that δ and  are modified simultaneously. For theoretical purposes, which are

already discussed, we need  to decrease in each phase. Eventually we would like

0 . Since δ decreases by a factor of 2 at each phase, we require that R < 2.

Moreover,  is chosen small enough to assure that sufficient number of phases are

performed. Thus, it assures that δ is sufficiently small and  is sufficiently large at the

end of the algorithm [20] [75]. In practice, to help maintain numerical stability, we might

want to preclude large values of the penalty parameter. In addition, the user may want to

control the final value of  in order to help maintain numerical stability or to ensure

faster termination of the algorithm. For these reasons, we bound  from above by a user-

defined value u . The algorithm terminates when  is sufficiently small (or the duality

gap is sufficiently small) for a penalty problem with a sufficiently large penalty

parameter. The value of  indicates how close the solution is to optimality. The user

defined lower bounds on  provides the user the option to compromise a bit on the

quality of the solution in order to have the algorithm run faster [75] [78].

At each step, we need to pick a product q for some t and search for an improving cycle.

To this aim, we calculate the costs of the arcs in the δ-residual network),(xG t
q of

product q for any t. As mentioned in Observations 4.1 and 4.2, the cost of each arc is the

costs of modifying the flow of product q on that arc by δ. Then, determine whether there

is a negative cost cycle in),(xG t
q . If a negative cost cycle for commodity q is detected,

we shift δ units of flow around it. This means: increasing the flow of commodity q by δ

on original arcs which correspond to forward arcs in),(xG t
q and belong to the cycle,

and decreasing the flow of commodity q by δ on original arcs which correspond to

backward arcs in),(xG t
q and belong to the cycle. If all the commodities have been

scanned and no negative cost cycle has been found, we terminate the current scaling

phase and we modify the values of δ and  as δ := δ/2 and  R: (if uR  ).

121

4.4.1 Some Notes on the Theoretical Properties

We present some theoretical properties of our algorithm regarding optimality and

convergence. These properties lead to some bounds on the number of basic operations

which the algorithm performs. Typically, we introduce and prove general properties

first, and then we deduce the properties applied to algorithm. Some background on

computational time bounds and complexity analysis may be found in Ahuja et

al. [3] [20]. The proofs in this section are based on the ideas of (δ,‎ε)-optimality and (0,

ε)-optimality.

 Approximate Optimality or ε-optimality

A flow (or pseudo flow) x is said to be ε-optimal for some ε>0 if for some node

potentials π, the pair (x, π) satisfies the following ε-optimality conditions:

 ijc  0ijx , (4.24)

   ijc  ijij ux 0 , (4.25)

 ijc  ijij ux  . (4.26)

These conditions are relaxations of the (exact) complementary slackness optimality

conditions we already discussed; these conditions reduce to complementary slackness

optimality conditions when ε=0. The exact optimality conditions imply that any

combination of),(
ijij cx lying on the thick lines shown in Figure 4.2 is optimal. The ε-

optimality conditions (4.24)-(4.26) imply that any combination of),(
ijij cx lying on the

thick lines or in the hatched region in Figure 4.3 is ε-optimal [3].

Figure 4.2 Exact optimality for (i, j)

121

Figure 4.3 Approximate optimality for (i, j)

The ε-optimality conditions assume the following simpler form when stated in terms of

the residual network: A flow x or a (pseudo flow) x is said to be ε-optimal for some ε>0

if x, together with some node potential vector π, satisfies the following ε-optimality:

 ijc for every arc),(ji in the residual network. (4.27)

 (δ, ε)-optimal solution

If we define t
jq

t
iq

t
ijij

t
ijq

t
ijq xexecr  )(2)(2 as the reduced cost for each product q

and period t for some node potentials µ, then a flow (or pseudo flow) x is said to be (δ,‎

ε)-optimal solution to the penalty problem for some ε>0 if the pair (x, µ) satisfies the

following (δ,‎ε)-optimality conditions:

t

ijqx    t
ijqr , (4.28)

t

ijqx  t
ijqr . (4.29)

The (δ,‎ε)-optimality conditions show that x is a (δ,‎ε)-optimal solution if by modifying

the flow by at most δ units we get a solution which is optimal to another problem in

which the demands are modified by at most δ and the flow costs are modified by at most

δ. In other words, let x" be a flow in which each flow component is different by at most

δ from its corresponding component in x. We refer to x" as a δ-modified flow. In

addition, let P" be a penalty problem in which the demands are different by at most δ

from the demands in P, and the flow costs are different by at most δ from the flow costs

in P. We also refer to these demands and costs as the δ-modified demands and δ-

122

modified costs, respectively. Thus, x is a (δ,‎ε)-optimal solution to P if x" is an optimal

solution to P". A (δ,‎ ε)-optimal solution is therefore a solution which is optimal to

another problem in which only the flow costs are modified by at most δ.

To improve the theoretical convergence of the algorithm, we can limit our search only

to sufficiently negative cycles. To this aim, we let the mean of a cycle be the average

cost per arc. More formally,

)(t
qWMean 

Aji

t
qij

t
q WWc

).(

)()( .

Thus, we can limit our search to cycles whose mean is at most  . Therefore, in the

algorithm, one can determine whether there is a negative cost cycle on),(xG t
q whose

mean   rather than determining whether a negative cost cycle. As shown in Lemma

4.1, one way to limit the search to cycles with mean less that  is to add  units to the

cost of each arc in the δ-residual network. It is proved that, in this case, detecting

negative cost cycles on the residual network when  units are added to the cost of each

residual arc is equivalent to detecting negative cost cycles whose mean   . For

example, in our algorithm we can add  2 units to the cost of each arc in the δ-residual

network. Thus, we can begin searching for very negative cycles and when such cycles

cannot be found, we search for less negative cycles.

Lemma 4.1 When  units are added to the cost of each arc in the residual network, the

mean of a negative cost cycle is at most  . Moreover, shifting δ units of flow around a

cycle in the δ-residual network whose mean is less than  improves the penalty

objective function value by at least  .

Proof Let t
qW be a negative cost cycle, and let t

ijqC be the costs on the δ-residual

network),(xG t
q . By adding  to the cost of each residual arc),(ji the cost on that arc

becomes t
ijqC . Thus, for each detected negative cycle:

   0

).(


 t

qWji

t
ijq C  0)(

).().(

 
 Aji

t
qij

Wji

t
ijq W

t
q

C  




Aji

t
qij

Wji

t
ijq W

t
q

).().(

)(C ,

123

and therefore,

)(t
qWMean 

Aji

t
qij

t
q WWc

).(

)()(   
 Aji

t
qij

Wji

t
ijq W

t
q

).().(

)(C .

To prove the second part, note that the costs in the δ-residual network are referred to the

change in the objective function value resulting from sending exactly δ units of t-q-flow.

Thus, if we send δ units around a cycle t
qW , the improvement in the objective function is

|)(t
qWc |. When the mean is at most  , we get

)(t
qWc 





Aji

t
qij

Wji

t
ijq W

t
q

).().(

)(C  .

Thus, the improvement resulting from any cycle of mean at most  is at least  . □

We already discussed the optimality conditions for various types of nonlinear

programming problems along with KT conditions. When applied to a)MCDF( problem,

the optimality conditions for each arc),(ji and product q, and period t turn out to be:

  0)(2)(2  t
jq

t
iq

t
ijij

t
ijq

t
ijq xexecx  ,

0)(2)(2  t
jq

t
iq

t
ijij

t
ijq xexec  ,

t
iq , t

jq free variables.

The optimality conditions may now be written as:

0t

ijqx  0)(2)(2  t
jq

t
iq

t
ijij

t
ijq xexec  , (4.30)

0t

ijqx  0)(2)(2  t
jq

t
iq

t
ijij

t
ijq xexec  . (4.31)

Theorem 4.9 The solution at the end of a δ-ρ-phase of the MMNF algorithm is a (δ,‎

δρ)-optimal solution to the penalty problem)MCDF( . Furthermore, a flow x is optimal

for problem)MCDF( if and only if x is (δ,‎ ε)-optimal for all sufficiently small (non-

negative) values of δ.

124

Proof Considering that there is no negative cycle, the shortest path problem from the

source node of each product to any other node in the residual network is well

defined [3]. It is also easy to see that with respect to the following arc costs there will be

no negative cost cycle either.

For each forward arc),(ji in),(xGt
q :  )(2)(2

~
xexec t

ijij
t
ijq

t
ijqC ,

For each backward arc),(ij in),(xGt
q :  )(2)(2

~
xexec t

ijij
t
ijq

t
jiqC .

Let t
iq denote the length of the shortest path from the source node of product q to node i

in),(xGt
q with respect to cost vector C

~
. By the optimality conditions of the shortest

path problem the following conditions be satisfied.

For any forward arc),(ji in the residual network),(xGt
q :

t
iq

t
ijq

t
jq   C

~
    t

iq
t
ijij

t
ijq

t
jq xexec)(2)(2 .

The last inequality can be written as following by rearranging the terms.

t
jq

t
iq

t
ijij

t
ijq xexec  )(2)(2 . (4.38)

For any backward arc),(ij in the residual network),(xGt
q ’

 t
jq

t
jiq

t
iq   C

~
    t

jq
t
iq

t
ijij

t
ijq xexec)(2)(2 . (4.39)

Note that we include a backward arc in the residual network only for a forward arc

whose q-flow at period t is  . Therefore, for each arc),(ji with flow t
ijqx

inequalities (4.38) and (4.39) apply, and therefore,

  t
jq

t
iq

t
ijij

t
ijq xexec)(2)(2),(ji : t

ijqx .

For each arc),(ji with flow t
ijqx only inequality (4.38) applies. Then, we get

t
jq

t
iq

t
ijij

t
ijq xexec  )(2)(2),(ji : t

ijqx .

125

Thus, at the end of a δ-ρ-phase the following conditions are satisfied:

 t
ijqx    t

ijqr ,

t
ijqx  t

ijqr .

Consequently, the (δ,‎ε)-optimality conditions reveal that the solution at the end of a δ-

ρ-phase of our algorithm is (δ,‎ δρ)-optimal solution to the penalty problem)MCDF( .

Now, by letting δ→0 and using the definition of (δ,‎ε)-optimal we will meet the exact

optimality conditions. □

As mentioned before, one way to assure that the algorithm detects only negative cost

cycles whose mean means is at most  is to add  units to the cost of each arc in the

residual network. The following lemma proves that in such a case, our algorithm finds a

),( optimal solution at the end of a δ-ρ-scaling phase.

Lemma 4.2 Assuming that there is no negative cost cycle in the  -added residual

network whose mean is   . Then, the solution is a ),( optimal solution to

the penalty problem)MCDF( .

Proof The proof is similar to the proof of Theorem 4.9, with an amount of  added to

the cost to assure detections of cycles whose mean   . Note that a positive amount 

is added to both forward and backward arcs. Thus, the cost of each forward arc (i, j)

becomes t
ijqC and the flow cost on each backward arc (j, i) becomes t

jiqC .

Therefore, along the same lines as those in Theorem 4.9 we get:

t
ijqx    t

ijqr ,

t
ijqx  t

ijqr  .

Thus, when the search is limited to cycles whose mean is at most  , the algorithm

finds a ),( optimal solution to the penalty problem at the end of a δ-ρ-phase. □

126

In our algorithm, we first determine the step size and then we look for an improving

direction, so it can be referred to as the δ-shift scaling algorithm. However, there are

some other approaches known as optimal-shift scaling algorithm. The algorithm is

motivated by Frank-Wolfe gradient-based algorithm for quadratic

programming [24] [75] [78]. The optimal-shift scaling algorithm, however, is more

similar to conventional nonlinear algorithms. Having determined the direction of

improvement, the optimal step size along this direction is then calculated. There are two

main differences between the optimal shift scaling algorithm and our algorithm. These

differences are in the cost of the arcs of the residual network and the amount of flow

shifted around negative cost cycles. A direction of improvement is found by detecting a

negative cost cycle in the residual network of each product. The cost of an arc in the

residual network),(xGt
q is the derivative cost of the penalty objective function)(xf 

with respect to the flow t-q-flow on that arc. The costs will be calculated as follows:

For each forward arc),(ji in),(xGt
q :)(2)(2 xexec t

ijij
t
ijq

t
ijq  C , (4.32)

For each backward arc),(ij in),(xGt
q :)(2)(2 xexec t

ijij
t
ijq

t
jiq  C . (4.33)

In the optimal-shift scaling algorithms, once a negative cycle is detected, the amount of

flow to be shifted around is calculated. They shift the optimal amount, i.e., the amount

which results in the maximum improvement of the penalty objective function. To

determine the amount of shifted flow they need to solve a one-dimensional search

problem. There are various methods in the literature for solving one-dimensional search

problems for convex functions [7] [12]. The following lemma shows that the optimal

amount is the amount that drives the derivative cost along the cycle to 0.

Lemma 4.3 The optimal amount to shift on a negative cost cycle with respect to

derivative costs is the amount which drives the total cycle cost to 0.

Proof In the residual network),(xG t
q , the costs on the arcs are the derivative cost of

the penalty objective function with respect to the flow on the arc. Therefore, as long as

the total derivative cost of the cycle is negative, shifting an additional infinitesimal

amount improves/decrease the penalty objective function value. Let  be the amount

which derives the cycle cost to zero. Once  is shifted, any additional infinitesimal

127

amount shifted around the cycle increases the penalty objective function. Thus,  leads

to the maximum improvement of the penalty objective function.

Lemma 4.4 Consider the residual network where the arc costs represent the derivative

costs as in (4.32)-(4.33). If there are no negative cost cycles on the residual network, the

current solution is optimal.

Proof Given the fact that there is no negative cycle, the shortest path problem from the

source node of each product to any other node in the network is well defined. The

negative of a dual variable of each node in an optimal solution of a shortest path

problem equals the cost of the shortest path from the origin to that node [3]. Let t
iq

denote the length of the shortest path from the source node of product q to node i in

),(xGt
q . Note that t

iq for each t and q could be different because the arc costs are not

necessarily the same for each product at each time period. By the optimality conditions

of the shortest path problem the following conditions are satisfied.

For any forward arc),(ji in the residual network),(xGt
q :

t
iq

t
ijq

t
jq   C  t

iq
t
ijij

t
ijq

t
jq xexec  )(2)(2

(4.34)

By using the optimality conditions, inequality (4.34) can be written as:

t
jq

t
iq

t
ijij

t
ijq xexec  )(2)(20 . (4.35)

For any backward arc),(ij in the residual network),(xGt
q :

t
jq

t
jiq

t
iq   C  t

jq
t
ijij

t
ijq

t
iq xexec  )(2)(2

(4.36)

By rearranging the terms, inequality (3.36) can be written as:

t
jq

t
iq

t
ijij

t
ijq xexec  )(2)(20 . (4.37)

Therefore, for each arc),(ji with flow 0t
ijqx inequalities (4.35) and (4.37) apply.

t
jq

t
iq

t
ijij

t
ijq xexec  )(2)(20),(ji : 0t

ijqx .

128

For each arc),(ji with flow 0t
ijqx only inequality (4.35) applies.

0)(2)(2  t
jq

t
iq

t
ijij

t
ijq xexec ),(ji : 0t

ijqx .

Thus, in the absence of negative cycles on),(xGt
q the optimality conditions (4.30)-

(4.31) are satisfied, and so, the solution is optimal. □

Remark 4.2 If we set  2 , then the solution at the end of a δ-ρ-phase of the

algorithm, when the search is limited to cycles whose mean is  , is a (δ,‎2δρ)-optimal

solution to the penalty problem)MCDF( .

Remark 4.3 When the search is limited to cycles with mean  2 , the improvement

in the objective function resulting from shifting δ units of flow around a negative cost

cycle is at least  2 . Hence, we can set a lower bound on how much the penalty

objective function improves when one shifts δ‎units of flow around a negative cost cycle

in algorithm.

Remark 4.4 The best implementation of the Label Correcting Algorithm, which

permits arcs with negative cost, performs O(nm) operations [3]. Hence, let O(nm) be the

time bound to detect negative cost cycle. Since we search for a negative cycle on a

residual network of one product at a time, we may search at most T*K times before

detecting a negative cost cycle. Thus, the number of operations performed before a

negative cost cycle is detected is)(nmTΚO .

Remark 4.5 One may prefer to use another approach to detect the cycles. The bound

on the number of negative cycles detected at each δ-ρ-phase is derived by dividing the

maximum possible improvement at this phase by the lower bound on the improvement

per negative cost cycle as given in Lemma 4.1. Klein et al [51] and Schneur [78] present

a detailed analysis of the bounds on the number of algorithmic operations for some

problems with side constraints. By taking their works and feasibility of the problem into

account, the most possible improvement in the objective function will be)(maxvnO  .

129

Since the improvement for sending flow around a negative δ-cycle is at least  2 , the

number of negative cost cycles detected in each phase is)(max nvO .

4.5 Analysis of the Algorithm and Two Specific Implementations

Nowadays, dynamic and multiperiod network flow models are applied to a variety of

situations. Dynamic multiperiod flows are widely used in modeling of control processes

from different technical, electrical, economic and information systems. Electricity and

data transmissions, road or air traffic control, production systems, evacuation planning,

production and distribution, telecommunication, transportation, communication, and

management problems can be formulated and solved as single-commodity or multi-

commodity problems on (multiperiod) dynamic networks. Examples and applications

can be found in the literature such as Aronson [6], Cal [16], Hoppe [34], Lozovanu ‎[57],

Skutella [80], Moret [63] ,Moin [64], Neiro [66], and Stefansson [82].

Figure 4.4 A typical diagram of an AC electricity distribution from generation stations
to consumers.

This section focuses on the computational testing and analysis of our algorithm on

electricity distribution-transmission network mentioned in Chapter 1. The problem is to

determine the production circuit and shipping pattern within a finite planning horizon so

as to minimize the daily cost (the planning horizon is a day). To illustrate the

performance of our approach, we conduct a series of experiments using real data from

our case study. However, our results should be applicable to any other types of

problems as well. We mainly consider an interconnected distribution network that is a

local low-voltage part of a large distribution-transmission electricity system that

131

connects the customers to the long-distance high-voltage transmission system which, in

turn, connects to generating plants. It contains a number of customers (cities, factories,

homes etc.) with demand for certain products (different voltage of electricity) over a

specified time period.

Figure 4.5 A general layout of an electricity network

We assume that demand is satisfied by shipping electricity in a fixed number of

wires/lines from a number of supply/production sites, where the cost of production is

assumed to be varying for different time increments and fro different voltage of

electricity (or fixed for each time period). We concentrate on the case in which each

wire must unload all of its goods (electricity) at the demand site upon arrival.

131

Several parameters must be specified in order to illustrate topology of the grid, namely,

various types of arc capacities (time-varying, time-commodity varying, and horizon),

arc costs, node storage capacities (if desired), production sites, demand sites, the

connections (wiring), number of periods |N|, number of products |K|, indegree and

outdegree of each site, minimum and maximum values of arc capacities for each

product and time period, and finally, the production/consumption capacity of each site

which are, of course, varying over time and commodity.

Chapter 4 mostly discusses the scaling algorithm for minimum cost multiproduct

multiperiod distribution flow problems exploiting an associated penalty problem with

quadratic penalty functions. However, the general framework can be used when

applying other forms of penalty functions. In this part, we investigate the MMN

problems by introducing a linear penalty function into the auxiliary non-linear penalty

problem, which leads to develop a special implementation of the MMNF algorithm.

Moreover, a similar framework may also be used for solving other MMN problems, as

well as MMN problems with side constraints. For example, the multiproduct multiperiod

feasibility problem (MMFP) is similar to the minimum cost multiproduct multiperiod

distribution flow problem. Here, we also discuss feasibility problem and we propose a

specific implementation of MMNF algorithm as a solution approach for MMFP. Although the

general steps of the algorithms are similar, they are quite different when it comes to

constructing the residual networks and defining the residual costs.

4.5.1 The Penalty-Based Scaling Approach with Linear Penalty Function

If we define the excess functions associated with each violated capacity constraints as

(4.19) and consider a linear penalty term for violation, we get the following penalty

problem Linear)MCDF( .

Linear)MCDF(  
 



t ji

t
ijq

t
ijq

q

xcxf

A),(K

)(Min  
 
















A),(

)()(

ji t

t
ijij xexe

N



 t
iq

j

t
jiq

j

t
ijq vxx  Vi , q , t ,

 t
ijqx0 ),(ji , q , t .

132

In fact, we eliminate the complicating constraints and we decompose the problem into

|T||K| single-product flow problems, but introduce non-separable piece-wise linear terms

into the objective function. Termination of the algorithm depends on the values of δ and

 . The algorithm finds a direction of interest such that by modifying the flow by δ units

in this direction the penalty objective function)(xf decreases. When such an

improving direction cannot be found, the step size is decreased to δ/2.

Property 4.1 The original arcs of the network form the forward arcs of the residual

network. Moreover, if),(ji is a forward arc in the associated δ-residual network

),(xG t
q , then the cost of),(ji is the net change in the objective function of model

Linear)MCDF( obtained by increasing the flow on arc),(ji by δ units.

 2 t
ijq

t
ijq cC ),(ji : 0

K


 

ij

q t

t
ijq ux and t

ij

q

t
ijq ux 

K

  t
ijq

t
ijq cC ),(ji : 0

K


 

ij

q t

t
ijq ux and 



t
ij

q

t
ijq ux

K

t
ij

t
ijq

q

t
ijq

t
ijq ucx   



2

K

C ),(ji : 0

K


 

ij

q t

t
ijq ux and 0

K

 


t
ij

q

t
ijq ux

  t
ijq

t
ijq cC ),(ji : 

 

ij

q t

t
ijq ux

K

 and t
ij

q

t
ijq ux 

K

t
ijq

t
ijq cC ),(ji : 

 

ij

q t

t
ijq ux

K

 and 


t
ij

q

t
ijq ux

K

t
ij

t
ijq

q

t
ijq

t
ijq ucx   

K

C ),(ji : 
 

ij

q t

t
ijq ux

K

 and 0

K

 


t
ij

q

t
ijq ux

ij
t
ijq

q t

t
ijq

t
ijq ucx   

 

2

K

C ),(ji : 0

K

 
 

ij

q t

t
ijq ux and t

ij

q

t
ijq ux 

K

ij
t
ijq

q t

t
ijq

t
ijq ucx   

 K

C ),(ji : 0

K

 
 

ij

q t

t
ijq ux and 



t
ij

q

t
ijq ux

K

t
ijij

t
ijq

q

t
ijq

q t

t
ijq

t
ijq uucxx   

 

2)(

KK

C

 ),(ji : 0

K

 
 

ij

q t

t
ijq ux and 0

K

 


t
ij

q

t
ijq ux .

133

Property 4.2 A backward arc is included in the δ-residual network of time t for

product q if and only if we can decrease the flow of product q at period t. Moreover, if

),(ji is a backward arc in the associated δ-residual network),(xG t
q , then the cost of arc

),(ji in the residual network),(ji is the net change in the objective function of model

Linear)MCDF( obtained by decreasing the flow on arc),(ji by δ units.

 2 t
ijq

t
jiq cC ),(ji : 

 

ij

q t

t
ijq ux

K

 and 


t
ij

q

t
ijq ux

K

  t
ijq

t
jiq cC ),(ji : 

 

ij

q t

t
ijq ux

K

 and t
ij

q

t
ijq ux 

K

)(xec t
ij

t
ijq

t
jiq  C ),(ji : 

 

ij

q t

t
ijq ux

K

 and 


t
ij

q

t
ijq ux

K

0

  t
ijq

t
jiq cC ),(ji : 0

K


 

ij

q t

t
ijq ux and 



t
ij

q

t
ijq ux

K

t
ijq

t
jiq cC ),(ji : 0

K


 

ij

q t

t
ijq ux and t

ij

q

t
ijq ux 

K

)(xec t
ij

t
ijq

t
jiq  C ),(ji : 0

K


 

ij

q t

t
ijq ux and 



t
ij

q

t
ijq ux

K

0

)(xec ij
t
ijq

t
jiq  C ),(ji : 

 

ij

q t

t
ijq ux

K

0 and 


t
ij

q

t
ijq ux

K

)(xec ij
t
ijq

t
jiq  C ),(ji : 

 

ij

q t

t
ijq ux

K

0 and t
ij

q

t
ijq ux 

K

)()(xexec t
ijij

t
ijq

t
jiq  C ),(ji : 

 

ij

q t

t
ijq ux

K

0 and 


t
ij

q

t
ijq ux

K

0 .

4.5.2 The Multiperiod Multiproduct Feasibility Problem (MMFP)

In a MMFP, a discrete multiperiod multiproduct feasible flow is a non-negative function

 IRKΝΑ:}{ t
ijqxx satisfying (4.15)-(4.18). Due to the structure of the MMFP, the

penalty terms will be the only components of the objective function in the associated

penalty problem. On the other hand, the penalty parameter has no influence on the

solution of the penalty problem and can be arbitrarily fixed. Thus, only one penalty

problem is solved (through scaling phases) with a decreasing scaling parameter.

134

Therefore, if we define the excess functions associated with each violated capacity

constraints as (4.19), and set the value of the penalty parameter  to 1, we get the

following penalty problem)(MMFP for MMFP :

)(MMFP )(xf Min])()([2

A),(

2 




Nt

t
ij

ji

ij xexe ,

 t
iq

j

t
jiq

j

t
ijq vxx  Vi , q , t ,

 t
ijqx0 ),(ji , q , t .

An optimal solution to the penalty problem is a feasible solution to the MMFP if such a

solution exists. Hence, the optimal value of the penalty objective function in this case is

zero. The algorithm starts with an initial value for the scaling parameter δ. At each

scaling phase, δ is fixed. Focusing on one product at one time period, we try to improve

the objective function of)(MMFP by modifying some of the flows of this product by

exactly δ units. The algorithm can be outlined as follows:

Algorithm MMFP;

begin

 Determine an initial dynamic solution x satisfying (only) flow requirements;

 Set values for the parameter  ;

 Choose initial values for δ;

 while the algorithm’s termination criteria {   or/and ugapgap  } are not met do

 begin

 IMPROVE-APPROXIMATION (x,‎δ);

 δ‎:=‎δ/2;

 end

 end

As already mentioned, the procedure IMPROVE-APPROXIMATION consists of two

subroutines, namely, SEARCH(q, t) and AUGMENT(t
qW , δ). SEARCH(q, t) is a

procedure that searches for a negative cost cycle on),(xG t
q . AUGMENT(t

qW ,‎ δ) is a

procedure which shifts δ units of q-flow around a cycle t
qW . The arc costs on the

residual network should be defined according to the following properties.

135

Property 4.3 If),(ji is a forward arc in the δ-residual network),(xG t
q , then the cost

of arc),(ji in the residual network for time period t and product q is obtained by

)(2)(22 2 xexe t
ijij

t
ijq  C ),(ji : ij

q t

t
ijq ux 

 K

 and t
ij

q

t
ijq ux 

K

)(22 xeij
t
ijq  C ),(ji : ij

q t

t
ijq ux 

 K

 and t
ij

q

t
ijq ux 




K

2

K

2

K

22))((2)(  


t
ijij

q

t
ijq

t
ij

q

t
ijq

t
ijq uxexuxC

 ),(ji : ij

q t

t
ijq ux 

 K

 and 0

K

 


t
ij

q

t
ijq ux

)(22 xe t
ij

t
ijq  C ),(ji : ij

q t

t
ijq ux 

 


K

 and 0

K




t
ij

q

t
ijq ux

0t
ijqC ),(ji : ij

q t

t
ijq ux 

 


K

 and t
ij

q

t
ijq ux 




K

t
ij

t
ij

q

t
ijq

t
ijq uux  



2

K

2)21(C

),(ji : ij

q t

t
ijq ux 

 


K

 and 0

K

 


t
ij

q

t
ijq ux

ijij
t
ij

q t

t
ijq

t
ijq uuxex  

 

 22)(2)21(2

K

C

 ),(ji : 0

K

 
 

ij

q t

t
ijq ux and t

ij

q

t
ijq ux 

K

 ij

q t

t
ijqij

q t

t
ijq

t
ijq uxux 22)(2

K

2

K

 
  

C

 ),(ji : 0

K

 
 

ij

q t

t
ijq ux and t

ij

q

t
ijq ux 




K

 ij
t
ij

q

t
ijq

q t

t
ijq

t
ij

q

t
ijqij

q t

t
ijq

t
ijq uuxxuxux 222)(2)()(2

KK

2

K

2

K

 
  

C

),(ji : 0

K

 
 

ij

q t

t
ijq ux and 0

K

 


t
ij

q

t
ijq ux .

136

Property 4.4 If),(ji is a backward arc in the δ-residual network),(xG t
q , then the cost

of arc),(ji in the residual network for period t and product q is obtained by

)(2)(22 2 xexe t
ijij

t
jiq  C ),(ji : ij

q t

t
ijq ux 

 


K

 and t
ij

q

t
ijq ux 




K

)(22 xeij
t
jiq  C ),(ji : ij

q t

t
ijq ux 

 


K

 and t
ij

q

t
ijq ux 

K

22)()(2 xexe t
ijij

t
jiq  C ),(ji : ij

q t

t
ijq ux 

 


K

 and 


t
ij

q

t
ijq ux

K

0

)(22 xe t
ij

t
jiq  C ),(ji : 0

K


 

ij

q t

t
ijq ux and t

ij

q

t
ijq ux 




K

0t
jiqC ),(ji : 0

K


 

ij

q t

t
ijq ux and t

ij

q

t
ijq ux 

K

2)(xe t
ij

t
jiq C ),(ji : 0

K


 

ij

q t

t
ijq ux and 



t
ij

q

t
ijq ux

K

0

22)()(2 xexe ij
t
ij

t
jiq  C ),(ji : 

 

ij

q t

t
ijq ux

K

0 and t
ij

q

t
ijq ux 




K

2)(xeij
t
jiq C ),(ji : 

 

ij

q t

t
ijq ux

K

0 and t
ij

q

t
ijq ux 

K

22)()(xexe t
ijij

t
jiq C ),(ji : 

 

ij

q t

t
ijq ux

K

0 and 


t
ij

q

t
ijq ux

K

0 .

We have analyzed MMNF algorithm and its special implementations from both

theoretical and practical perspectives. The practical performances seem also support the

theoretical properties we have already derived. The results of a very small number of

runs over the real networks will be summarized later in this section. Computational

experiences and tuning are demonstrated using many actual instances corresponding to

some transmission-distribution networks from our case study having different

parameters. Our networks usually have a density of almost 6/5, 4/5, or 1 and sometimes,

the self-similar patterns of our networks let us exploit parallel computing. The ratio of

transshipment sites to electrical substations (t/e) is usually 1/5 or 1/2.

http://en.wikipedia.org/wiki/Self-similar
http://en.wikipedia.org/wiki/Electrical_substation

137

Figure 4.6 A typical self-similar pattern distribution network

Some experiments are also conducted on some random (but with real topology)

multiperiod distribution networks with various parameters. The cost on each arc (for

each time period for each product) is randomly chosen from a uniform distribution

between user defined parameter minc and maxc . The demand/requirement for each time

step with respect to each product q is to be set such that the problem is feasible and

likewise for arc capacities etc. For each value of n (n=ns+nd is the total number of

production plants and demand sites), we create distribution networks with different

indegree and outdegree in a range from 1 to max{ns, nd}. The minimum and maximum

capacities are set to umin and umax (usually, 100|N| and 10000|N|, respectively), the

minimum and maximum costs are varying from problem to problem (usually, between

100 and 1000). For large values of umax no arc is saturated and therefore, the problem is

easy to solve since it decomposes to K single-product problems. In order to have an

interesting enough problem instances we selected a value of umax for which the problem

is just feasible. To generate less congested problems, one may either use the same

demand and increase the capacity, or decrease the demand and use the same capacity. In

general, we expect that less congested problem instances have fewer saturated arcs at

optimality. In order to generate less congested problem instance, one may solved the

problem with umax replaced by 5umax. This also helps us generate feasible problems. One

may consider large period and/or horizon capacities to guarantee the feasibility.

For the sake of simplicity, for each arc the cost of sending a unit of flow on it is

independent of the product and in addition, each product has one origin and one

destination. In our tests the detected negative cost cycles have sufficiently large absolute

costs relative to δρ. Thus, for practical purposes, there is no need to add an amount of δρ

to each arc of the residual network. For each specific setting of n and m, we tested a

random distribution network with a different topology and density. In addition, we have

performed several computational tests and analyzed our approach’s sensitivity on a

138

variety of problem instances. However, the behaviors are similar across our problem

instances. We have investigated different implementation ideas and parametric

sensitivity of the method to various data parameters, such as the number of arcs, number

of time increments, density (m/n), number of products, and the congestion in the

multiperiod network, penalty parameter etc. Our algorithm and all modellings were

implemented in GAMS (General Algebraic Modelling System) on a personal computer

(Intel(R) Pentium(R) CPU P6200 @ 2.13GHz and 4 GB of RAM).

For feasibility problem (MMFP), we restrict our attention to the case in which each arc

must unload all of its goods at the demand site upon arrival. In the following, we check

the validity of MMFP algorithm on some small instances.

In MMFP, the objective is to determine whether it is possible to have a production

circuit and shipping good within the predetermined time period. And if there is no

feasible flow, the goal is to determine where and when this infeasibility occurs and the

magnitude of the infeasibility. We may be able to handle this infeasibility curse by

providing the necessary budget for creating more capacity. This feature is one of the

most important attributes of our algorithm, which exactly detects where, when, and how

much of infeasibility exists in the problem, rather than just reporting “infeasible”.

Table 4.1 Tuning-Testing for Algorithm MMFP (checking)

P
ro

b
le

m

Problem

Status

Density,

|K|, m, n

ε

Total

Cost by

(MMFP)

Max

Violation

(MMFP)

Execution

Time

(MMFP)

P. 1

feasible

 6/5, 2,

12,10

1 6.571099E-7 0.543 0.004

P. 2 0.9 0.098 0.312 0.002

P. 3 0.1 0.410 0.641 0.002

P. 4

 6/5, 2,

12,10

0.01 1.573935E-7 3.967285E-4 0.003

P. 5 0.001 1.421085E-8 1.192093E-4 0.003

P. 6 0.00001 0.000 0.000 0.005

P. 7

feasible

1, 4,

40,40

0.1 0.006 0.076 0.008

P. 8 0.001 1.455192E-7 3.814697E-4 0.010

P. 9 0.00001 2.22045E-12 1.490116E-6 0.015

P. 10

infeasible

(≈1 unit

infeasibility)

 1, 4,

40,40

0.1 0.502 0.531 0.022

P. 11 0.01 0.500 0.507 0.010

P. 12 0.0001 0.500 0.500 0.013

P. 13

infeasible

(≈1 unit

infeasibility)

 6/5, 2,

12, 10

0.001 0.500 0.500 0.005

P. 14 0.1 0.505 0.502 0.003

P. 15 1 0.781 0.781 0.003

139

 Table 4.2 Some Various Settings for MMFP Algorithm

Representing Some Good and Bad Settings for MMFP Algorithm for a Small Feasible Instance with

Density 1 (m=n=40), and Minimum and Maximum Flow Requirement 100 and 900.

The planning horizon is one day, i.e., T = One day. |K|=4 , Umax =6000 , t/e=1/5.

P
ro

b
lem

δ0

ε

Total Cost by

MMFP Alg.

Excess Cost

Maximum

Violation

 Execution Time

P.1 100000 0.00001 1.45804E-11 1.45804E-11 3.818423E-6 0.015 SECONDS

P. 2 1000 0.00001 3.55271E-11 3.55271E-11 5.960464E-6 0.014 SECONDS

P. 3 10000 0.00001 2.22045E-12 2.22045E-12 1.490116E-6 0.014 SECONDS

P. 4 90000 0.999 0.244 0.244 0.494 0.008 SECONDS

P. 5 1000 0.9 0.153 0.153 0.391 0.006 SECONDS

P. 6 10000 0.9 0.117 0.117 0.342 0.007 SECONDS

P. 7 10 0.1 0.000 0.000 0.000 0.020 SECONDS

P. 8 50 0.01 0.000 0.000 0.000 0.009 SECONDS

P. 9 50 0.0001 0.000 0.000 0.000 0.012 SECONDS

P. 10 100 0.00001 0.000 0.000 0.000 0.011 SECONDS

In any approximation algorithm, there are various ways of evaluating how close a given

solution is to the optimality. Some useful measures in our case are the flow cost (FC),

excess cost (EC), total cost (TC), and maximum excess. Once we know the optimal

solution, we can compare it to the flow cost of the δρ-optimal solution. Note that flow

cost may be smaller than the optimal solution, since we have already relaxed the

capacity constraints (see Tables 4.1-4.5). The excess cost, which is the value of the

penalty term, and its proportion of the total cost (TC=FC+EC), provide us information

about the deviation from feasibility.

Theoretical analysis of penalty methods show that the total cost and the flow cost

increase between penalty phases when ρ increases [27] [75]. This is intuitive since when

ρ increases the penalty is greater. In our algorithm, however, we modify δ and ρ

simultaneously, and δρ decreases. We already proved that the solution at the end of each

δ-ρ-phase is (δ,‎δρ)-optimal, therefore, at each phase we typically have a solution that is

closer to the optimal solution. Therefore, the total cost usually decreases between phases

until it converges to the optimal solution. The excess cost is the difference between the

total cost and the flow cost. When the penalty parameter increases we expect the excess

to decrease. Sometimes this decrease is sufficient to lead to a net decrease in the total

excess cost. The flow cost may go up or down. We observe that the flow cost and total

cost converge to the solution value at the end of the algorithm and thus, the excess cost

converges to zero (see Tables 4.3-4.11).

141

We also observe that the general behavior of the maximum excess is similar across the

different data sets. An interesting observation may be found in following figure which is

drawn for a data set of density 4/5 having 4 commodities (δ =1, ρu=11111, ε =0.00001).

The figure shows that the maximum excess (and so, the excess term) sharply decrease in

the first few phases, although the value of ρ is smaller than its value in later phases. This

is probably due to the linear relationship between δ and the maximum excess, the

somewhat quadratic relationship between δ and the excess term, and the fact that δ

decreases in a faster rate than ρ increases.

Figure 4.7 A typical maximum excess progress at the end of each scaling phase of
some application of MMNF algorithm (setting: δ=1, ρu=11111, ε=0.00001)

As we already proved, during each δ-ρ-phase of the MMNF algorithm the total cost

decreases because flow is sent around negative cost cycles (see the last three sections).

When a phase terminates we increase the penalty parameter and therefore, the total cost

which corresponds to the new penalty parameter increases. The total cost decreases

again during the next δ-ρ-phase. Thus, at the end of a δ-ρ-phase the total cost is not

necessarily smaller than the total cost at the end of the previous phase. Nevertheless, the

total cost typically decreases between phases (or it increases only by a little amount).

141

 Table 4.3 Parameter Settings and Tuning-Testing for Some MMNs

For all feasible problem instances P. 1-11, the running time by GAMS ≤ 2s.

For all feasible problem instances P. 12-16, the running time ≤ 10s.

For all (real) problems, the planning horizon time is one day, i.e., T = One day.

P
ro

b
lem

Density,

|K|, m, n

Optimal

Solution

Parl.

Comp.

R

ρu

ε

Total

Cost by

MMNF Alg.

Excess

Cost

Max

Excess

Execution

Time (s)

P. 1 4/5, 3, 12, 15 117700.0 no 1.7 113 0.001 117699.601 0.399 0.042 < 2

P. 2 6/5, 3, 18, 15 168351.0 no 1.7 213 0.0001 168350.802 0.198 0.031 < 2

P. 3 4/5, 6, 24, 20 199870.0 no 1.5 100 0.001 199869.877 0.122 0.035 < 2

P. 4 4/5, 2, 8, 10 469560.0 no 1.7 777 0.0001 469558.599 1.402 0.042 < 2

P. 5 4/5, 5, 20, 25 225900.0 no 1.3 70 0.01 225900.001 < 0.001 < 0.001 < 2

P. 6 4/5, 6, 24, 30 199870.0 no 1.3 1000 0.0001 199869.988 0.012 0.003 < 2

P. 7 4/5, 4,16, 20 469560.0 no 1.3 777 0.00001 469558.598 1.402 0.042 4.156

P. 8 4/5, 6, 24, 30 199870.0 no 1.3 200 0.0001 199869.939 0.061 0.017 < 2

P. 9

6/5, 7, 42, 35

311950.0

no 1.3 311 0.001 311945.542 4.458 0.078 3.062

P. 10 no 1.3 99 0.001 311935.996 14.003 0.245 < 2

P. 11 no 1.3 111 0.001 311937.510 12.490 0.218 < 2

P. 12

6/5, 70,

420, 350

3119500.0

yes 1.3 100 0.0001 3119478.97 21.03 0.145 11

P. 13 yes 1.7 317 0.00001 3119493.37 6.63 0.046 < 2

P. 14 yes 1.7 1113 0.00001 3119498.11 1.89 0.013 < 2

P. 15

4/5, 40,

160, 200

1914720.0

yes 1.3 10 0.001 1914717.75 2.25 0.150 < 3

P. 16 yes 1.7

11111 0.00001 1914720.00 < 0.0001 <0.0001 < 3

As reported in Tables 4.4 and 4.5, Cplex failed to solve most of our large instances. It

also did not manage to generate a proper model of our instances after allocating a huge

amount of work space. In contrast, MMNF algorithm found the solution of all samples

of ours in a reasonable amount of time by allocating a very small amount of work space.

142

Table 4.4 Computational Results for Some Large Feasible MMNs

An application of MMNF algorithm for some large random feasible instances with:

uniform flow requirement U(100, 900), and uniform cost U(1,100), and

uniform capacity U(100*|T|, 10000*|T|) for sample problems P.1 – P.4 and

uniform capacity U(300, 900) for sample problems P.5 – P.6.

For all problems, the planning horizon time is one day(T=1). |T|=24 (hrs) for P.1 and P.2.

 Instances

 Settings

P.1

P.2

P.3

P.4

P.5

P.6

Problem’s Status

 *** Feasible ***

Node-Commodities

133,056

165240

73,227

245,100

64,800

50,500

Arc-Commodities

1.024531E+7

1.366438E+7

2.080964E+7

6.606000E+7

1.08141E+7

1.300000E+7

Commodities

24

27

77

300

100

50

Constraints

577,731

692,415

613,737

685,500

281,082

570,500

Variables

1.024531E+7

1.366438E+7

2.080964E+7

6.606000E+7

1.081410E+7

1.300000E+7

Network Density

77

82.694

284.180

269.523

166.884

257.426

R

1.700

1.300

1.700

1.700

1.300

1.700

ρu

100

113

110

110

110

110

ε

0.10

0.001

0.010

0.010

0.0010

0.010

MaxExcess

(MMNF)

0.000

0.005

0.096

0.095

1.177

0.290

Average Excess

(MMNF)

0.000

0.001

0.032

0.032

1.275

1.519

Work Space Allocated

for MMNF

(reported by GAMS)

93.1 Mb

135.6 Mb

156.0 Mb

620.6 Mb

18.2 Mb

14.5 Mb

Work Space Allocated

for CPLEX

(reported by GAMS)

> 2,000

 Mb

> 2,300

Mb

> 2,000

 Mb

> 2,200

Mb

> 1,800

Mb

> 1,800

Mb

Running Time for

MMNF (by GAMS)

1,327

SECONDS

1572.247

SECONDS

3,630

SECONDS

21,454

SECONDS

290

SECONDS

249

SECONDS

Running Time for

CPLEX (by GAMS)

Failed to

solve in >>

2,000 Sec.

Failed to

solve in >>

2,900 Sec.

Failed to

solve in >>

4,000 Sec.

Failed to

solve in >>

30,000 Sec.

Failed to

solve in >>

1,800 Sec.

Failed to

solve in >>

1,800 Sec.

143

As discussed earlier, MMNF algorithm not only reports the approximate amount of

violation in the network, but it can also report the approximate cost to resolve this

infeasibility, if desired. It, on the other hand, can detect for which arcs for which

commodities for which time period the network has infeasibility. This reported excess

cost, in this case, can be seen as the approximate necessary budget for the decision

maker to get rid of the curse of infeasibility.

Table 4.5 Computational Results for Some Infeasible MMNs

An application of MMNF algorithm for some random infeasible instances with:

uniform flow requirement U(10000, 20000), uniform capacity U(100*|T|, 10000*|T|), and uniform cost

U(1,100).

For all problems, the planning horizon time is one day (T=1). |T|=13 for P.1 and P.2.

 Instances

 Settings

P.1

P.2

P.3

P.4

P.5

P.6

Problem’s Status

 *** Infeasible ***

Node-Commodities

42,471

28,431

507

12,397

17,745

65,667

Arc-Commodities

1,401,543

767,637

6,591

539,539

968,877

6,610,419

Commodities

33

27

13

77

91

177

Constraints

88209

59049

1521

26411

39039

140361

Variables

1,401,543

767,637

6,591

539,539

968,877

6,610,419

Network Density

33.000

27.000

13.000

43.522

54.600

100.666

R

1.300

1.300

1.300

1.300

1.700

1.300

ρu

99.000

99.000

113.000

113.000

113.000

113.000

ε

0.001

0.001

0.0001

0.010

0.0100

0.0010

Maximum Violation

(reported by MMNF)

315254.004

7771.000

13252.000

15549.001

12836.002

10795.000

Average Violation

(reported by MMNF)

116230.668

5059.131

4417

5183

4278

3598

Work Space Allocated

for MMNF

16.6 Mb

9.8 Mb

1.4 Mb

3.5 Mb

6.6 Mb

28.1 Mb

Running Time for

MMNF (by GAMS)

118

SECONDS

52

SECONDS

0.397

SECONDS

6

SECONDS

22

SECONDS

305

SECONDS

The influence of the number of products and the number of time increments on the

performance of the algorithm is more or less similar. Both the number of cycle searches

and the running time are mainly influenced by the number of products and time periods,

usually as increasing function (but not always). It appears that there is no obvious trend,

and therefore, we cannot deduce anything regarding the influence of products and time

increments on the number of iterations.

144

Table 4.6 Parameter Settings for Algorithms ‘MMNF’ and ‘MMNF-Linear’

P
ro

b
lem

Optimal

Solution

R

ρu

ε

Total

Cost by

(MMNF)

Total

Cost by

MMNF-

Linear

Max

Excess

(MMNF)

Max

Excess

(MMNF

-Linear)

Execution

Time

(MMNF)

Execution

Time

(MMNF-

Linear)

P. 1

296736

1.3 10000 0.0001 296736.784 296736.900 0.008 0.00 11.812 49.963

P. 2 1.3 1000 0.001 296736.462 296736.900 0.028 0.00 1.477 50.118

P. 3 1.3 300 0.001 296735.309 296736.900 0.073 0.00 0.305 49.909

P. 4 1.2 10000 0.0001 296735.559 296736.903 0.077 0.00 6.949 262.331

P. 5 1.2 500 0.001 296734.120 296736.903 0.159 0.00 0.915 264.465

P. 6 1.2 55 0.0001 296728.220 296736.900 0.397 1.3E-6 0.077 262.085

P. 7 1.2 33 0.0001 296722.433 1.3015E+8 0.662 1400.0 0.024 30.291

P. 8

80229

1.3 213 0.0001 80228.144 80229.000 0.063 0.00 0.128 2.600

P.9 1.3 500 0.1 80226.060 80229.001 0.312 0.001 0.014 2.698

P. 10 1.2 377 0.0001 80227.921 80229.002 0.100 0.000 3.535 45.724

P. 11 1.1 300 0.0001 80214.658 3341748.97 1.180 427.00 1.698 148.105

P. 12 1.1 377 0.00001 80213.861 3169451.99 1.246 427.00 19.621 1784.644

P. 13 1.2 777 0.1 80203.272 8506286.33 2.371 700.00 0.027 5.494

P. 14

469560

1.3 1500 0.0001 469559.274 469560.001 0.022 0.00 4.062 17.290

P. 15 1.4 1600 0.00001 469559.319 469560.451 0.021 0.00 1.133 2.644

P. 16 1.5 2000 0.001 469559.456 469971.377 0.016 0.00 2.982 1.863

As it is observed and we expected from penalty function methods [7] [27] [78], in

general, when the value of the penalty upper bound ρu is too small, then the excess on

some arcs at the end of the last phase is not sufficiently small. Thus, more phases will

be required in order to get a good solution. The algorithm also shows the same behavior

when we remove ρ=ρu from termination criteria. In this case, when modification rate R

is too small the final value of ρ is relatively small, and excess on some arcs at the end of

the last phase is not small enough.

For example, when we set R=0.1, even though ρ0 is relatively large, the final value of ρ

is small. When some more phases are performed the amount of violation decreases, but

the total number of iterations increases and therefore, the total time increases as well.

See, for example, Table 4.7 and 4.9 - 4.11.

145

 Table 4.7 MMNF Sensitivity w.r.t. Penalty Parameter Upper Bound (ρu)

For all feasible problem instances, the running time by GAMS ≤ 2s.

P
ro

b
lem

 Density,

|K|, m, n

 4/5, 3,

12, 15

Optimal

Solution

117700.0

R

ρu

δ0

50

ρ0

1.3

ε
0.1

Total

Cost by

MMNF Alg.

Excess

Cost

Max

Excess

Execution

Time (s)

Set1 1.5 7 117693.554 6.542 0.684 < 2

Set2 1.5 10 117695.488 4.533 0.476 < 2

Set 3 1.5 17 117697.346 2.680 0.281 < 2

Set4 1.5 23 117698.038 1.981 0.208 < 2

Set5 1.7 27 117698.329 1.692 0.177 < 2

Set6 1.7 57 117699.208 0.774 0.082 < 2

Set7 1.7 113 117699.601 0.413 0.043 < 2

Set1

Density,

|K|, m, n

6/5, 7,

42, 30

Optimal

Solution

311950.0

1.3 7

δ0=20

ρ0=1.3

ε
0.0001

311751.946 198.053 3.464 < 2

Set2 1.3 17 311868.449 81.551 1.426 < 2

Set 3 1.3 57 311925.678 24.322 0.425 < 2

Set4 1.3 87 311934.065 15.935 0.279 < 2

Set5 1.7 99 311935.996 14.004 0.245 < 2

Set6 1.9 99 311935.996 14.004 0.245 < 2

Set7 1.1 99 311807.332 174.371 2.773 15.547

Not surprisingly, on the other hand, when for some combinations of ρ0 and R the penalty

parameter is too large in the initial phases, large values of excess are not allowed even

in the initial phases, and so the algorithm tries to find a good solution without fully

exploiting the relaxation of the horizon and period capacity constraints. As a result, the

algorithm converges more slowly. Such cases usually occur when ρ0 >1.7 and R >2.

Table 4.8 MMNF-Linear Sensitivity w.r.t. Penalty Parameter Upper Bound (ρu)

The planning horizon time is set to be one day.

P
ro

b
lem

Density,

|K|, m, n

1, 4,

24, 20

Optimal

Solution

469560.0

R

ρu

δ0

100

ρ0 =1.7

ε
0.01

Total
Cost by

MMNF-linear

Excess

Cost

Max

Excess

Execution
Time (s)

Set1 1.3 99 469559.992 1.296576E-6 1.144409E-4 17.699

Set2 1.3 111 469560.002 4.038156E-8 1.907349E-5 17.798

Set 3 1.3 150 469559.999 5.456968E-8 1.907349E-5 17.764

Set4 1.3 270 469560.002 0.000 0.000 17.777

Set5 1.3 390 469560.002 0.000 0.000 17.847

Set6 1.3 500 469560.001 0.000 0.000 17.800

Set7 1.3 1000 469560.001 0.000 0.000 17.651

Set1

Density,

|K|, m, n

4/5, 4,

16, 20

Optimal

Solution

191472.0

1.1 30

δ0=30

ρ0=1.1

ε=0.0001

191472.001 1.30302E-10 3.814697E-6 2.742

Set2 1.1 110 191472.001 1.30302E-10 3.814697E-6 2.807

Set 3 1.1 200 191472.001 1.30302E-10 3.814697E-6 2.774

Set4 1.1 10000 191472.001 1.30302E-10 3.814697E-6 2.795

Set5 1.1 100000

3.814697E-6

1.30302E-10 3.814697E-6 2.777

146

Similarly, when ρ0 = 1.5 and R = 2.9, the initial value of ρ is small enough, but the rate

of modification is too large. This situation also leads to slower convergence, similar to

the case in which ρ0 = 2.2 and R = 1.9 (see Tables 4.7, 4.8, 4.10, 4.11). Table 4.7 and

4.8 show how ρu can improve or worse the progress of the objective function. However,

it should be noted that assigning a large value to ρu cannot guarantee a better progress

for objective function, but some good trade-off between R, ρu, ρ0, and ε‎can.

To examine the influence of the increasing penalty parameter ρ0 and modification rate

R, we tested several real distribution networks of our samples having different densities

and commodities with different parameter settings, and compared the results in the

following Tables. These tables present the maximum excess and execution time as a

function of ρ0 and R for two problems sets.

Table 4.9 MMNF Sensitivity w.r.t. Initial Penalty Parameter Value (ρ0)

For all settings, the running time by GAMS ≤ 10s.

P
ro

b
lem

S
ettin

g
 1

Density,

|K|,

m,

n

6/5,

70,

420,

350

 Optimal

Solution

3119500.0

R
1.9

ρ0

δ0=20

ρu=77

ε

0.01

Total

Cost by

MMNF Alg.

Excess

Cost

Max

Excess

Computational

Time (s)

33 …. … … > 600

23 3119472.69 27.3 0.188 20

10 3119472.69 27.3 0.188 17

1.9 3119319.95 180.05 0.315 8

1.7 3119319.95 180.05 0.315 8

1.5 3119319.95 180.05 0.315 < 8

1.3 3119319.95 180.05 0.315 < 7

P
ro

b
lem

S
ettin

g
 2

R
1.3

27

δ0=20

ρu

100

ε

0.0001

3119478.97 21.03 0.145 30

17 3119478.97 21.03 0.145 16

9 3119478.97 21.03 0.145 11

1.9 3119361.36 138.64 0.243 10

1.7 3119361.36 138.64 0.243 9

1.5 3119361.36 138.64 0.243 9

1.3 3119361.36 138.64 0.243 13

It is observed that when the penalty parameter is fixed, the maximum excess decreases

in the first few phases due to the additional shifting possibilities, which arise when δ‎

decreases. After a few phases, however, the maximum excess converges to a certain

value much (larger than zero), and stays at that value for the remaining phases. When

the penalty increases at each phase, the maximum excess decreases and converges to

zero.

147

Table 4.10 MMNF-Linear Sensitivity w.r.t. Penalty Modification Rate (R)

For all feasible problem instances, the running time by GAMS ≤ 2s.

The planning horizon time is set to be two half days.

P
ro

b
lem

S
ettin

g
 1

Density,

|K|

4/5,

2

 Optimal

Solution

469560.0

R

ρu = 77

ρ0 = 1.3

δ0 = 27

ε = 0.01

Total

Cost by

MMNF Alg.

Excess

Cost

Max

Excess

Computational

Time (s)

5 469545.891 14.144 0.429 2.6

2.3 469545.891 14.144 0.429 2.6

1.9 469545.891 14.144 0.429 2.6

1.7 469545.889 14.139 0.429 2.9

1.3 469545.889 14.139 0.429 1.9

1.2 469516.782 65.261 1.648 1.2

1.1 469342.329 266.853 7.352 1.0

P
ro

b
lem

S
ettin

g
 2

2.9

ρu = 777

ρ0 = 1.3

δ0 = 57

ε = 0.0001

469558.599 1.402 0.042 15.016

2.3 469558.599 1.402 0.042 22.953

1.9 469558.599 1.402 0.042 22.641

1.7 469558.599 1.402 0.042 0.218

1.5 469558.599 1.402 0.042 0.313

1.3 469558.599 1.402 0.042 2.907

1.1 469495.616 78.694 2.168 21.265

O
p

tim
a
l

S
e
ttin

g
s

ρ0 = 1.3, R=1.7,

ρu = 1110, ε = 0.0001.

469559.019

0.981

0.030

0.938

ρ0 = 1.5, R=1.7,

ρu = 2000, ε = 0.0001.

469559.456

0.544

0.016

0.391

ρ0 = 1.3, R=1.7,

ρu = 777, ε = 0.001.

469558.599

1.401

0.042

0.891

ρ0 = 1.3, R=1.7,

ρu = 1110, ε = 0.001.

469559.019

0.981

0.030

0.953

As it is seen, setting R without considering the other parameters does not have any good

influence on the optimal solution value. Therefore, saying that there is unique good

value for R is totally wrong, but a good combination of between R, ρu, ρ0, and ε‎is true.

In one word, we do not recommend linear penalty function model, as it is so very

sensitive to parameters which may cause a very large error in estimation of the objective

function. This error is mostly due to the low cost of the negative cost cycles found in

phases and/or having not enough number of phases. This all can only be resolved by

setting the parameters carefully, which is different problem to problem.

148

Table 4.11 MMNF-Linear Sensitivity w.r.t. Penalty Modification Rate (R)

The planning horizon time is set to be two half days.

P
ro

b
lem

S
ettin

g
 1

Density,

|K|

1, 4

Optimal

Solution

469560.0

R

δ0 = 200

ρ0 = 1.7

ρu = 400

ε = 0.01

Total

Cost by

MMNF-Linear

Excess

Cost

Max

Excess

Computational
Time (s)

1.3 469560.018 0.000 0.000 8.983

1.35 469964.974 0.000 0.000 3.420

1.4 469560.272 0.000 0.000 1.280

1.45 469965.155 0.000 0.000 0.633

1.5 469560.723 0.000 0.000 2.415

1.55 469965.020 0.000 0.000 0.321

1.6 469969.806 0.000 0.000 0.138

1.65 469967.462 0.000 0.000 0.166

1.7 469969.806 0.000 0.000 0.136

1.25

δ0 = 77

ρ0 = 1.5

ρu = 300

ε = 0.0001

469560.059 0.000 0.000 147.469

P
ro

b
lem

S
ettin

g
 2

 1.27 469560.059 0.000 0.000 73.768

1.3 469965.194 0.000 0.000 35.518

1.35 469966.404 0.000 0.000 11.264

1.4 469967.269 0.000 0.000 5.722

1.5 469973.059 0.000 0.000 1.660

1.7 469997.121 0.000 0.000 0.436

S
o

m
e R

a
n

d
o
m

S
ettin

g
s

δ0 =170 ρ0 =1.3

R=1.3 ρu==370

ε=0.001

469560.035

3.28626E-11

2.98023E-7

20.742

δ0 =200 ρ0 =1.7

R=1.5 ρu==370

ε=0.01

469560.723

0.000

0.000

2.521

δ0 =200 ρ0 =1.7

R=1.5 ρu==430

ε=0.01

469560.723

0.000

0.000

2.490

δ0 =200 ρ0 =1.7

R=1.5 ρu==430

ε=0.0001

469560.723

0.000

0.000

2.502

149

4.6 Summary and Concluding Remarks

This chapter addressed the multiperiod multiproduct distribution network problems,

where all network parameters change over time and products. The linear minimum cost

flow problem in the discrete-time settings with varying network parameters was

investigated, and we used scaling and δ-optimality, together with penalty function

methods, to develop the first network-based scaling algorithm for the minimum cost

multiperiod multiproduct distribution planning problems. The feasibility problem of the

distribution networks in the discrete-time settings with varying parameters was also

investigated, and then, a specific implementation of our scaling-based algorithm was

developed.

Moreover, we analyzed the algorithms from both theoretical and practical perspectives.

The practical performances supported the theoretical properties we already derived.

Computational experiences and tuning were demonstrated using many actual instances

corresponding to some real electricity transmission-distribution networks from our case

study and many random instances. However, it should be noted that our comparisons

are all approximate, and they are obtained by applying a set of typical data from our

samples to provide some insight regarding the behavior of our scaling algorithm and the

impact of various parameters on the performance of the algorithm.

There may be many factors that can influence the running time, such as the amount of

available RAM, the compiler and the programming language, network structure and

topology, way of detecting negative cost cycles etc. In addition, some other approaches

may find the optimal solution to our samples, but may spend some additional time to get

from an approximately optimal solution to an optimal one.

It is believed that an approximate solution which is within 0.01%-0.05% from

optimality and from feasibility has the same practical value as an optimal solution.

151

Chapter 5

5 Open Problems and Future Research

Some issues and areas for future directions of research are outlined below:

1. A very challenging, but very interesting and yet open, issue is the study of optimal

routing in the multiperiod multiproduct distribution networks with uncertain costs

and uncertain capacities. The purpose would be to obtain the uncertainty

distribution of the total shipping cost. Uncertainty theory could be one tool to deal

with indeterminacy factors in uncertain multiperiod (multiproduct) systems.

2. In the last chapter, we focused on a penalty-based scaling algorithm for MCDF

problem on an MMN. However, the general scheme, yet, can be used to solve other

types of multiperiod network problems, as well as general network flow problems

with side constraints. Our penalty-based algorithm itself may also be extended to

other linear or nonlinear production-distribution systems in general or quadratic

nonlinear systems in particular. Investigating more special cases of production-

distribution network flow problems with side constraints could be of interest.

3. The feasibility of the uncertain multiperiod multiproduct distribution problems can

be another topic which can be handled by our algorithms by some essential

modifications to cope with indeterminacy factors (e.g., uncertain capacities).

4. Developing and testing a parallel version of the algorithm presented in the last

chapter can be another topic for future research. Multiperiod multiproduct flow

algorithm reveals an inherent parallelism that makes it attractive for parallel

implementations. Such implementations usually require a modification of existing

algorithmic techniques and require different data structures.

5. Testing augmented Lagrangian methods instead of penalty methods to solve the

multiperiod multiproduct flow problems could be one another issue of interest.

151

6 Bibliography

[1] Abdelhay A. Sallam and Om P. Malik, Electric Distribution Systems. IEEE Computer

Society Press (2011)

[2] Abraham, I., Fiat, A., Goldberg, A., Werneck, R., Highway Dimension, Shortest Paths,

and Provably Efficient Algorithms, ACM-SIAM Symposium on Discrete Algorithms,

782-793 (2010)

[3] Ahuja, R.K., Magnanti M., Orlin J., Network Flows. Theory, Algorithms, and

Applications. Prentice-Hall, Englewood Cliffs, New Jersey (1993)

[4] Amanulla, B., Chakrabarti, S., Singh, S., Reconfiguration of power distribution Systems

Considering Reliability and Power loss. IEEE Trans. Power Deliv 27 (2012) 918–926

[5] Andreas D., Alf K., Beyond Manufacturing Resource Planning (MRP II): Advanced

Models and Methods for Production Planning, Springer (1998)

[6] Aronson, J.E., A survey of dynamic network flows. Annals of Operations Research 20, 1–

66 (1989)

[7] Avriel, Mordecai, Nonlinear Programming: Analysis and Methods, Dover, ISBN 0-486-

43227-0 (2003)

[8] Barnett, D., Binkley, J., McCarl, B., The effects of US port capacity constraints on

national and world grain shipment , Techn paper, Purdue University (1982)

[9] Bazaraa, M., Jarvis, J., Sherali, H.: Linear Programming and Network flows, John Wiley

& Sons (2009)

[10] Bartle, R. Sherbert, D., Introduction to Real Analysis. John Wiley & Sons (2011)

[11] Bertsekas, D., Linear Network Optimization, Algorithms and Codes, MIT press (1991)

[12] Boyd, S., Vandenberghe, L., Convex Optimization. Cambridge, Cambridge University

Press (2004)

[13] Borndorfe, R., Ferreira, C., Martin A., Decomposing matrices into blocks, SIAM J. Opt. 9

236-269 (1998)

[14] Binks, B.P., Fletcher, P., Holt, B., Selective Retardation of Perfume Oil Evaporation from

Oil-in-Water Emulsions Stabilized by Either Surfactant or Nanoparticles, Langmuir J.

26(23) 18024–18030 (2010)

[15] Bertsimas, D. and Tsitsiklis, J., Introduction to Linear Optimization. Athena Scientific,

Belmont, Massachusetts, USA (1997)

[16] Cal , X., Sha, D., Wong, C., Time-Varying network Optimization, Springer (2007)

[17] Chen P., Pinto, J., Lagrangean-Based Techniques for the Supply Chain Management of

Flexible Process Networks. Comp. and Chem. Eng. 32 2505–2528 (2008)

http://en.wikipedia.org/wiki/International_Standard_Book_Number
http://en.wikipedia.org/wiki/Special:BookSources/0-486-43227-0
http://en.wikipedia.org/wiki/Special:BookSources/0-486-43227-0
http://en.wikipedia.org/wiki/Cambridge_University_Press
http://en.wikipedia.org/wiki/Cambridge_University_Press

152

[18] Chen, C., M. Engquist, Primal simplex approach to pure processing

networks. Management Science 1582-1598 (1986)

[19] Colebrook, C., Turbulent flow in pipes, with particular reference to the transition region

between smooth and rough pipe laws, J. Ist. Civil Engrs., London (1939)

[20] Cormen, T., Leiserson C., Ronald L., Clifford S., Introduction to Algorithms, Second

Edition. MIT Press and McGraw-Hill ISBN 0-262-03293-7 (2001)

[21] Dantzig, G., Wolfe, P., The Decomposition Algorithm for Linear Programs.

Econometrical 29 767-778 (1961)

[22] Dantzig, G., Wolfe, P., Decomposition Principle for Linear Programs. Opns. Res. 8 101-

111 (1960)

[23] Dinic, E., The Method of Scaling and Transportation Problems. Issledovaniya po

Diskretnoi Matematike, Science, Moscow (1973)

[24] Eugene L., Combinatorial Optimization: Networks and Matroids, Dover. 117–120. ISBN

0-486-41453-1 (2001)

[25] Ferris, M. and Horn, J.D., Partitioning mathematical programs for parallel solution. Math.

Prog. 80 35-61 (1998)

[26] Ferris, M., Voelker, M., Slice models in general purpose modelling systems: An

application to DEA. Opt. Meth. and Soft. 17 1009-1032 (2002)

[27] Fiacco, A., Mccormick, G., Nonlinear programming: Sequential Unconstrained

Minimization Techniques. John-Wiley & Sons, New York (1968)

[28] Flounders, C.A., Lin, X., Continuous-time versus discrete-time approaches for scheduling

of chemical processes: a review. Comp. and Chem. Eng. 28, 2109-2129 (2004)

[29] Fathabadi, H., Hosseini, S. A., Maximum Flow Problem on Dynamic Generative Network

Flows with Time-Varying Bounds, Journal of Applied Mathematical Modelling 34 2136–

2147 (2010)

[30] Fleischer, L., Universally maximum flow with piecewise-constant capacities. Networks

38(3) 115–125 (2001)

[31] Ford, L., Fulkerson, D., Constructing Maximal Dynamic Flows from Static Flows. Oper.

Res. 6 419–433 (1958)

[32] Ford, L., Fulkerson, D., Flows in Networks, Princeton University Press (1962)

[33] Grigsby, L., The Electric Power Engineering Handbook, USA: CRC Press (2001)

[34] Hoppe, B., Efficient dynamic network flow algorithms. PhD Thesis, Cornell University

(1995)

[35] Hosseini, S.A., Dynamic Generative Network Flows, Master Thesis, University of

Tehran, Iran (2009)

http://en.wikipedia.org/wiki/Ronald_L._Rivest
http://en.wikipedia.org/wiki/Clifford_Stein
http://en.wikipedia.org/wiki/Introduction_to_Algorithms
http://en.wikipedia.org/wiki/International_Standard_Book_Number
http://en.wikipedia.org/wiki/Special:BookSources/0-262-03293-7

153

[36] Hosseini, S.A., A Model-Based Approach and Analysis for Multiperiod Networks, J

Optim Theory Appl. 157 486–512 (2013)

[37] Hosseini, S.A., Sahin G, Unluyurt, T., A Decomposition-Based Solution Method for the

Multiperiod Multiproduct Distribution Planning Problem, Journal of Applied

Mathematics, vol. 2014 (2014) (WOS:000343540900001)

[38] Hosseini, S.A., The Minimum Cost Flow Problem in Dynamic Multi Generative Network

Flows. DM 10 Abstracts, The SIAM Conference on Discrete Mathematics. Hyatt Regency

Austin, USA (2010)

[39] Hosseini, S.A., Fathabadi, H., Minimum Cost Flow Problem on Dynamic Multi

Generative Networks, Journal of Algorithmic Operations Research 5 39–48 (2010)

[40] Hosseini, S.A., An Introduction to Dynamic Generative Networks: Minimum Cost Flow,

App. Math. Model. 35 5017-5025 (2011)

[41] Hosseini, S.A., Dashty, F., Determining the Optimal Flows in Zero-Time Dynamic

Networks. J. Math. Model. Algorithms 11(2) 105-117 (2012)

[42] Hartman, J.K., Lasdon, L.S., A generalized upper bounding algorithm for multiproduct

network flow problems, Networks 1(4) 333–354 (1971)

[43] Hall, J.A., McKinnon, K., Hyper-sparsity in the revised simplex method and how to

exploit it. Computational Optimization and Applications 32(3) (2005) 259-283

[44] Ho, J.K., Loute, E., An advanced implementation of the Dantzig-Wolfe decomposition

algorithm for linear programming. Mathematical Programming 20 303–326 (1981)

[45] Ho, J.K., Sundarraj, R.P., DECOMP: An implementation of Dantzig-Wolfe

decomposition for linear programming, Lecture Notes in Economics and Mathematical

Systems 338, Springer-Verlag (1989)

[46] Hughes, Thomas P., Networks of Power: Electrification in Western Society 1880-1930,

The Johns Hopkins University Press, Baltimore (1983)

[47] Jackson, J.R., Grossmann, I. E., Temporal Decomposition Scheme for Nonlinear-

Multisite Production Planning and Distribution Models. Ind. and Eng. Chem. Res. 42(13)

3045 – 3055 (2003)

[48] Jones, K.L., Lustig, I.J., Farvolden, J. M., and Powell, W. B., Multiproduct network

flows: The impact of formulation on decomposition. Mathematical Programming 62 95–

117 (1993)

[49] Jacob O., Energy losses of superconducting power transmission cables in the grid, IEEE

Transactions on Applied Superconductivity 11 2375 (2001)

[50] James K. Ho, Tak C. Lee, and R. P. Sundarraj, Decomposition of linear programs using

parallel computation, Mathematical Programming 42 391-405 (1988)

http://www.informatik.uni-trier.de/~ley/db/journals/jmma/jmma11.html#HosseiniS12
http://link.springer.com/journal/10589
http://en.wikipedia.org/wiki/Thomas_P._Hughes

154

[51] Klein, P., Rao, S., Approximation Through Multicommodity Flow, Proceeding of the 31 st

Annual Symposium on Foundations of Computer Science 726-727 (1990)

[52] Kondili, E., Pantelides, C., Sargent, W., A general algorithm for short-term scheduling of

batch operations-I. MILP formulation. Comp. and Chem. Eng. 2 211-227 (1993)

[53] Kernighan, B.W., Lin, S., An efficient heuristic procedure for partitioning graphs. The

Bell System Technical Journal 291-307 (1970)

[54] K. Holmberg, D. Yuan, A Multi commodity Network Flow Problem with Side Constraints

on Paths Solved by Column Generation, INFORMS Journal of Computing 1542-57

(2003)

[55] Lei Y., Kimmo S., Jukka H., Ou T., Chinese industry from supply chain perspective-A

case study of the major Chinese players, Int. J. Production Economics 115 374 -387

(2008)

[56] Lindeman, R., The trophic-dynamic aspect of ecology, Ecology 23 (4) 399–417 (1942)

[57] Lozovanu, D., Optimization and Multiobjective Control of Time-Discrete Systems:

Dynamic Networks and Multilayered Structures, Springer (2010)

[58] Luenberger, D.G., Linear and Nonlinear Programming. Addison-Wesley, Reading, MA

(1984)

[59] Maravelias, C.T., Grossmann, I.E., New Continuous-Time State Task Network

Formulation for the Scheduling of Multipurpose Batch Plants. Ind. and Eng. Chem. Res.

42 3056-3074 (2003)

[60] Mendoza, J.E., Lopez, M.E., Coello, C.A., Lopez, E.A., Microgenetic multiobjective

reconfiguration algorithm considering power losses and reliability indices for medium

voltage distribution network. IET Gener. Transm. Distrib 3 825–840 (2009)

[61] Merlin, A., Search for a Minimal-Loss Operating Spanning Tree Configuration in an

Urban Power Distribution System, Proceeding of the 1975 Fifth Power Systems Computer

Conference (PSCC), Cambridge 1–18 (1975)

[62] Mokhatab, S., Poe, W., Handbook of Natural Gas Transmission and Processing. Gulf

Professional Publishing (2012)

[63] Mouret, S., Grossmann, I.E., Pestiaux, P., Time Representations and Mathematical

Models for Process Scheduling Problems. Comp. Chem. Eng. 35 1038-1063 (2011)

[64] Moin, N.H., Salhi, S. Aziz, N.A.B., An efficient hybrid genetic algorithm for the

multiproduct multiperiod inventory routing problem, Int. J. Prod. Eco. 133 334–343

(2011)

[65] Nasrabadi, E., Dynamic Flows in Time-varying Networks. PhD thesis, Amirkabir

University of Technology, Tehran, Iran (2009)

155

[66] Neiro S.M.S. and Pinto, J. M., Lagrangean decomposition applied to multiperiod planning

of petroleum refineries under uncertainty. Latin Amer. App. Res. 36 213 – 220 (2006)

[67] Newman, M., Barabasi, A., Watts, D., The Structure and Dynamics of Networks.

Princeton University Press (2006)

[68] N. Hwang, R. Houghtalen, Fundamentals of hydraulic Engineering Systems, Prentice

Hall, Upper Saddle River, NJ (1996)

[69] Odum, E., Barrett, G., Fundamentals of Ecology (5th ed.). Brooks/Cole, a part of Cengage

Learning, ISBN 0-534-42066-4 (2005)

[70] Osiadacz, Andrzej, Simulation and analysis of gas networks, Gas Engineering -

Mathematical models, E. & F.N. Spon Ltd, ISBN 0-419-12480-2 (1987)

[71] Osiadacz, A., Simulation and optimization of large systems, Large scale systems -

Mathematical models, Clarendon press, ISBN 0-19-853617-8 (1988)

[72] Pantelides, C., Unified Frameworks for the Optimal Process Planning and Scheduling.

Proceedings of the second conference on the foundations of computer aided operations

p.253, Cache Publications

[73] Proulx, S., Promislow, D., Phillips, P., Network thinking in ecology and evolution,

Trends in Ecology and Evolution 20 (6) 345–353 (2005)

[74] Royden, H., Fitzpatrick, P., Real Analysis. Prentice Hall (2010)

[75] Rockfellar, R., Network Flows and Monotropic Optimization. John Wiley and Sons, New

York (1984)

[76] Rios, J., A general, parallel implementation of Dantzig–Wolfe decomposition. ACM

Trans. Math. Softw. 39 3 (2013) (DOI: http://dx.doi.org/10.1145/2450153.2450159)

[77] Rutenberg, D.P., Generalized Networks, Generalized Upper Bounding and

Decomposition of the Convex Simplex Method. Management Science 16 (1970) 388-401

[78] Schneur, R., Orlin, J., A Scaling Algorithm for Multicommodity Flow Problems,

Operations Research 46 36–62 (2000)

[79] Schrijver, A., On the history of the transportation and maximum flow problems,

Mathematical Programming 91 (3): 437 445. doi:10.1007/s101070100259 (2002)

[80] Skutella, M., An Introduction to Network Flows Over Time, in Research Trends in

Combinatorial Optimization, W. Cook, L. Lovasz and J. Vygen, Sprmgor, Berlin (2009)

[81] Song, H., A Study on the Dynamic Network Flow Problems: With Applications to the

Dynamic Resource Managment in Logistics Networks. VDM Verlag (2009)

[82] Stefansson, H., Sigmarsdottir, S., Jensson, P., Shah, N., Discrete and continuous time

representations and mathematical models for large production scheduling problems: A

case study from the pharmaceutical industry. Eur. J. Oper. Res 215 383–392 (2011)

http://www.amazon.com/s/ref=ntt_athr_dp_sr_1?_encoding=UTF8&sort=relevancerank&search-alias=books&ie=UTF8&field-author=Haiqing%20Song

156

[83] Tebboth, J. R., A computational study of Dantzig–Wolfe decomposition. Ph.D. thesis,

University of Buckingham (2001)

[84] Terrazas, S., Trotter, P., Grossmann, I.E., Temporal and spatial Lagrangean

decompositions in multi-site, multiperiod production planning problems with sequence-

dependent changeovers. Comp. and Chem. Eng. 35 (2011) 2913-2928

[85] Voelker, M., Optimization of Slice Models. PhD Thesis, University of Wisconsin,

Madison (2002)

[86] Weil, R.L., Kettler, P. C., Rearranging matrices to block-angular form for decomposition

(and other) algorithms. Manag. Sci. 18 (1971) 98-108

[87] Zahorik, A., Thomas, L.J., Trigeiro, W., Network Programming Models for Production

Scheduling in Multi-Stage, Multi-Item Capacitated Systems, Management Science 30

308-325 (1984)

