
A Practical Privacy-Preserving Public Key

Repository

By

RAMIN ARMANFAR

Submitted to the Graduate School of Engineering and Natural Sciences

In partial fulfillment of

the requirements for the degree of

Master of Science

Sabancı University

March, 2017

A Practical Privacy-Preserving Public Key Repository

Approved By:

Prof. Dr. Albert Levi

(Thesis Supervisor)

Assist. Prof. Dr. Cemal Yılmaz

Assist. Prof. Dr. Cengiz Toğay

(Uludağ University)

Date of Approval: 27.03.2017

c© 2017 Ramin Armanfar

All Rights Reserved

Dedication

To my beloved family...

Acknowledgments

First of all, I would like to express my sincere gratitude to Prof. Albert

Levi, for his continuous support and worthwhile guidance throughout my

academic life. Without his support and mentoring, this thesis would not

have been completed. Prof. Levi was always accessible and willing to help

anytime I needed; I feel proud as he placed confidence in me more than I

do. Also I am very thankful to my thesis defense committee members: Prof.

Albert Levi, Assist. Prof. Cemal Yılmaz, Assist. Prof. Cengiz Toğay for

their support and presence.

I appreciate Merve Can Kuş Khalilov for her help during the evaluation

process. I would also like to thank to my friends Mahmoud Al-Ewiwi and

Marco Chiappetta for their help in the curriculum courses. Prof. Kemal Kılıç

deserves special thanks for his precious supports. Last, but not the least, I

am immensely thankful to my family, for being there when I needed them to

be. The project under which this thesis has been produced is supported by

Kuveyt Türk R&D center and Kobil Security Solutions, part of TÜBİTAK

TEYDEB project 3141000.

Abstract

Internet and mobile users have been using financial institutions’ alternative

channels for their financial transactions with an increasing rate. In order

to avoid frauds, the financial institutions make use of second factor authen-

tication tokens such as one-time passwords sent to mobile phones as text.

Another trend of such transaction verification is utilizing fully cryptographic

protocols, in which the transactions are signed by the users. In the implemen-

tation of such an approach, in order to provide end-to-end security between

the financial institution and its client, each client must have a public-private

key pair. In some cases, especially for small-scale institutions, such a trans-

action verification system is fully outsourced as a Cloud service including

clients’ public keys. However, even in this outsourced model, the institutions

need to access their clients’ public keys for end-to-end security. In such a case,

in order to provide privacy of the clients against the outsourced database,

we need a privacy-preserving public key repository. In this thesis, we devel-

oped such a privacy-preserving public key repository based on Path ORAM

mechanism. We have developed adaptation layers for Path ORAM so that

the queries are performed via regular SQL queries and the data is stored in

iv

a regular relational database, rather than Path ORAM’s non-standard data

structure. In this way, the non-standard features are hidden from both the

financial institutions and the Cloud provider. We analyzed the performance

of our system under different database sizes, network connection models and

query types. We conclude that such a Path ORAM based system is feasible

to be used in a practical system since even with a regular computer used as

a server, the computational overhead is at marginal level.

Özet

Internet ve mobil kullanıcıların finansal kurumların alternatif kanallarını kul-

lanımı gittikçe artmaktadır. Dolandırıcılıktan korunmak için finansal kurum-

lar telefonlara kısa mesaj olarak gönderilen tek kullanımlık şifreler gibi iki

faktörlü kimlik doğrulama yöntemlerini kullanmaktadırlar. İşlem doğrulama

için kullanılan diğer bir yönelim ise işlemlerin kullanıcılar tarafından imza-

landığı kriptografik protokollerdir. Bu tip yaklaşımların gerçeklenmesinde

müşteriler ile finansal kurumlar arasındaki uçtan uca güvenliği sağlamak

adına her müşterinin bir açık-gizli anahtar ikilisine sahip olması gerekir.

Özellikle küçük ölçekli kurumlarda, bu tip bir işlem doğrulama sistemi ve

açık anahtarların saklanması Bulut servisi olarak taşeron hizmeti olarak

alınabilmektedir. Ancak bu tip bir taşeron modelinde bile kurumlar uçtan

uca güvenliği sağlamak için kullanıcılarının açık anahtarlarına erişmek isteye-

bilirler. Bu nedenle, kullanıcıların mahremiyetlerini taşeron veritabanı hizmet

sağlayıcısına karşı koruyabilmek için mahremiyeti koruyan açık anahtar de-

posuna ihtiyaç vardır. Bu tezde Path ORAM mekanizmasını kullanan bu tip

bir mahremiyet korumalı açık anahtar deposu geliştirilmiştir. Bu kapsamda

sorguların normal SQL sorguları olduğu ve verilerin de Path ORAM’in stan-

vi

dart dışı ağaç veri yapısı yerine ilişkisel veritabanlarında saklandığı bir du-

rum için Path ORAM bağdaştırma katmanları geliştirdik. Böylece standart

dışı öğeler hem finansal kuruluştan hem de Bulut sağlayıcıdan saklanmış

oldu. Sistemimizin başarımını değişik veritabanı boyları, bağlantı model-

leri ve sorgu tipleri için analiz ettik. Bunun sonucunda da Path ORAM

tabanlı sistemimizin normal bir bilgisayarın sunucu olarak kullanıldığı du-

rumda bile marjinal seviyede ek işlemsel maliyet getirdiğine ve pratik olarak

kullanılabileceğine kanaat getirdik.

Contents

List of algorithms xi

List of Figures xii

List of Tables xiv

1 Introduction 1

2 Motivation and Problem Definition 4

2.1 Two Factor Authentication Protocol 5

2.2 Problem Definition and the Main Working Model 7

2.3 The Contribution of this Thesis 11

3 Background and Literature Overview 12

Contents viii

3.1 Privacy in Database Systems 13

3.1.1 Utilizing Intermediate Application 14

3.1.2 Generating New Database Model 15

3.2 Privacy Protocols Against Untrustworthy Database Servers . . 16

3.3 Private Information Retrieval (PIR) 16

3.3.1 Single-Database, Computationally Bounded PIR 17

3.3.2 Multiple-Database, Information Theoretic PIR 18

3.3.3 Overview of PIR . 19

3.4 Oblivious Transfer Protocol (OT) 20

3.5 Oblivious Random Access Memory (ORAM) 22

3.6 Path Oblivious RAM . 24

3.6.1 Simplicity and practical efficiency 25

3.6.2 Asymptotic efficiency 25

3.6.3 Practical and theoretic impact of Path ORAM 27

3.6.4 Notation and Definition 28

3.6.5 Path ORAM Protocol Description 28

Contents ix

3.6.6 Client Storage and Bandwidth 30

3.6.6.1 Stash Memory 30

3.6.6.2 Position Map 31

3.6.7 Path ORAM Initialization and Data I/O 31

4 Proposed Study: Path Oblivious-RAM Based Public Key

Repository 33

4.1 Parsing SQL Command into a Path ORAM Data Request . . 36

4.2 Mapping Path ORAM data structure into relational database 40

4.2.1 User Data Table . 40

4.2.2 Path ORAM Mapping Table 40

5 Performance Evaluation 42

5.1 Communication Models . 43

5.2 Databases Used in Tests . 44

5.3 Query types tested . 47

5.4 Record Fetch Timing Analyses 48

Contents x

6 Conclusions and Future Work 55

References 57

List of Algorithms

1 Path Oblivious RAM Algorithm 32

2 SQL query to Path ORAM data request parser. 37

List of Figures

2.1 A Generic Two Factor Authentication Protocol. 6

2.2 Transaction operations in an outsourced cloud-based authen-

tication and transaction verification model (Phase 1). 8

2.3 Transaction operations in an outsourced cloud-based model

(Phase 2). 9

3.1 Providing user’ privacy with rational database system using

intermediate application. 13

3.2 Database server with built-in privacy protocol. 14

3.3 TransPIR, an intermediate application proposed by [30] to

convert PIR to rational database. 15

4.1 First Step of our proposed method (Client Request). 34

List of Figures xiii

4.2 Second Step of our proposed method (Server Response). . . . 35

4.3 Sample tree data structure with 7 records. 36

5.1 Record fetch timings of Query 1 (crossover and LAN connec-

tion modes) . 49

5.2 Record fetch timings of Query 2 (crossover and LAN connec-

tion modes) . 49

5.3 Record fetch timings of Query 3 (crossover and LAN connec-

tion modes) . 50

5.4 Record fetch timings of Query 4 (crossover and LAN connec-

tion modes) . 50

5.5 Record fetch timings for in-RAM database model - all queries 51

5.6 Record fetch timings for crossover connection model - all queries 52

5.7 Record fetch timings for LAN connection model - all queries . 52

List of Tables

3.1 Comparison of Emil Stefanov et. al. [35] proposed method

with other known ORAM schemes. 26

3.2 Path ORAM Notations . 28

4.1 Records information stored in the tree. 38

5.1 Fields of database table used in our experiments. 45

5.2 Database sizes used (for network based models). 46

5.3 Database sizes used (for in-RAM database). 47

5.4 Number of fetched records in the on-disk databases. 49

5.5 Effect of tree parameters . 53

Chapter 1

Introduction

Privacy of the Internet users has became one of the most important concerns

as the Internet and mobile usage increase. Privacy in the Internet world is

directly related to data privacy, which is defined as keeping the individuals’

identity, habits, personal information and other critical data immune from

unauthorized disclosure.

User’s shared data such as photos, comments, etc could be considered as

his/her private information. However, there are also some other types of data

that are being used by the users to perform users request which can reveal

some sensitive facts about user’s habits, customs, behavior, or any other

statistical information. Those kind of user data can be abused by malicious

users or even servers. Over the last few years, by developing modern types

of communications as well as faster ever communication equipment, public

database services become more and more widespread. From hotel booking

2

services to stock exchange market, public databases are being used in a wide

variety of areas. Hence, users need to send their requests in the form of SQL

queries to those public database servers in order to fetch their requested data.

In some cases, however, users’ queries could be considered as very sensitive

and private user information since it is possible to infer very crucial and

private information about the user and his/her habits. Thus, it is extremely

important to provide privacy of the users’ queries against malicious database

server administrators or any other authorities, which are suspicious to take

advantages of inferred data for their personal benefits.

Keeping users’ queries private against database administrators is con-

sidered as a complex problem, because without accessing user’s query it is not

straightforward for the database server to perform operations to fetch user’s

requested data from database. Furthermore, cryptographic primitives such

as encryption/decryption operations are not proper to be used as a “privacy-

provider” against malicious database servers, although it can be used to keep

information secure form any third parties. Hence, in order to provide user’s

query privacy, we need to take advantage of cryptographic protocols. In the

literature, there are several such protocols, such as PIR (Private Information

Retrieval) [3–5,11,17,20,27,30], OT (Oblivious Transfer) [1,2,7,8,18,19,22,

29], and ORAM (Oblivious RAM) [6,10,12,13,16,26,28,31,34,35].

Among these cryptographic protocols, Path ORAM [9, 36] is the most

appropriate and suitable to be utilized in practical and real-world applica-

tions thanks to its properties which makes it faster and provides acceptable

level of privacy.

3

In this thesis, we utilized Path ORAM protocol to adapt it as a “privacy-

preserving” tools in an outsourced database systems to keep users’ data pri-

vate from untrusted database managers in a cloud settings. More specifically,

we utilized Path ORAM in order for a banking system to outsource its cus-

tomer database to the cloud. We developed a model for a middleware to

implement Path ORAM in SQL environment so that query operations are

performed in a transparent manner. Eventually, we evaluate efficiency and

effectiveness of our system in such a banking application setting by develop-

ing a practical software systems.

The rest of the thesis is organized as follows. Chapter 2 gives the moti-

vation and the problem definition. Chapter 3 reviews some existing crypto-

graphic privacy protocols in the literature. Chapter 4 presents our proposed

adaptation for Path ORAM in a practical setting; mainly for outsourcing the

customer database of a bank to be queried using SQL in a privacy-preserving

manner. Chapter 5 gives details of our implementation and discovers exper-

imental results. Finally, Chapter 6 concludes the thesis.

Chapter 2

Motivation and Problem

Definition

In recent years, by developing technology, modern types of communications

are being used by most people and enterprises around the world. Nowadays,

by utilizing smart phones and the Internet, we are able to do anything any-

where and faster than ever before. However, those benefits are not without

cost and they bring along several challenges. One of major concerns in any

kind of modern communication methods is privacy and security of users and

their information which are being transferred in the network. These concerns

become more significant in case they are used for more sensitive or critical

purposes such as financial, commercials, military, etc.

Financial and commercial data transactions methods have also being

changed rapidly by appearing cutting-edge communication technologies. De-

Two Factor Authentication Protocol 5

pends on the application, there are wide variety of security and privacy

methods and protocols such as authentication, authorization, confidential-

ity, non-repudiation necessary to be used to ensure that the transactions are

being performed in a safer and reliable way.

For any financial transaction operation in banking system, there are

some security and privacy operations that have to be applied in order to

guarantee users’ security as well as authenticity of that transaction per se.

Utilizing cryptographic protocols can help us to provide security and privacy

which are required to perform those transactions. One of most important

part of any financial transaction is users’ authentication. In other words,

banks need to confirm users’ identity before starting to perform transaction

operations.

In today’s world, financial institutions generally use classical user-

name/password authentication technique with OTP (One-Time-Password)

based second factors. However, this strategy has some disadvantages as will

be discussed in the next subsections. Thus, there is a need for a more securer

and privacy-providing user and transaction authentication and verification

methods, which is our main focus in this thesis.

2.1 Two Factor Authentication Protocol

Two Factor Authentication (TFA) is an authentication protocol, which is

being used in many banking systems as well as other corporations. The

Two Factor Authentication Protocol 6

protocol works based on separate secure communication channel to confirm

sender’s identity. In such protocols, users send their primary authentica-

tion information, such as password, PIN code, along with his/her requested

transaction information, to the bank. Immediately after receiving user’s re-

quest, bank checks for user’s identification information in its database. In

case those information is entered correctly, bank sends a randomly generated

One-Time-Password (OTP) back to the user but this time using separate

communication channel than the first one, such as SMS, email, etc. Subse-

quently, user has a limited amount of time (usually between 1 to 3 minutes)

to resend received OTP back to the bank server using primary communica-

tion channel. If user can successfully send OTP back to the server in the

given period of time, bank will confirm the identity of the user. Finally, in

the next stage bank will perform user’s requested transaction operation. Fig-

ure 2.1 indicates two factor authentication operation steps. Note that OTP

is a randomly generated code and it is allowed to be used just once for any

kind of transaction. Therefore, for each distinct transaction of any user there

should be a unique randomly generated code in order to prevents any abuse

or attack.

Most significant advantage of this OTP based mechanism is that it

prevents possible attacks in the primary communication channel. However,

it still has some vulnerabilities. One of known attacks to this protocol is

message forwarding attack that exists in some platforms and operating sys-

tems such as Android. In message forwarding attack, any received message

to the user is sent to other third party applications (malwares) without user’s

awareness. Therefore, an attacker can use it to get OTP code. Phishing is

Two Factor Authentication Protocol 7

Figure 2.1: A Generic Two Factor Authentication Protocol.

another possible attack. Here, attacker tries to opens its own designed appli-

cation in users device, which is very similar to the bank application in terms

of GUI, to get user’s OTP. Then, attacker asks user to enter his/her received

OTP. As soon as user enters the code, attacker can obtain the OTP then uses

it instead of user. To prevent phishing attack, users must make sure that

he/she is connected to the genuine bank site by verifying the SSL/TLS cer-

tificates before entering their OTP. However, most of the ordinary users have

no technical security knowledge; therefore, it is considered as a big challenge

in this protocol.

Main transactions of all banks are financial operations. Security oper-

ations, specially in small banks could be outsourced. However, outsourced

Problem Definition and the Main Working Model 8

operations can cause vulnerabilities in the financial transaction system. For

instance, users’ information and keys may needs to be stored in the out-

sourced database. Because of this reason, is very important, security and

privacy of this method to be addressed.

2.2 Problem Definition and the Main Work-

ing Model

Instead of using OTP based mechanism, employing cryptographic mecha-

nisms (such as digital signature) for transactions verification would improve

the security level of the system in a more positive way. On the other hand,

small banks and companies may prefer not to employ separate servers for

this purpose and prefer to outsource this as a cloud service. Outsourcing of

services such as identification and signature based transaction confirmation

operations means to delegate cryptographic operations to cloud servers. In

such a setting, cloud servers will also keep necessary keys of the customers

so that cryptographic operation can be outsourced as well.

However, using such a cloud-based outsourcing model has its own chal-

lenges; cloud servers may not be completely trusted; therefore, it is essential

to establish end-to-end encrypted communication between banks and cus-

tomers through the cloud. Figures 2.2 and 2.3 show the steps of operations

in an outsourced cloud-based model.

Problem Definition and the Main Working Model 9

Figure 2.2: Transaction operations in an outsourced cloud-based authentica-

tion and transaction verification model (Phase 1).

In this model of authentication and verification, there are two pairs

of key. First key pair (public/private keys) is utilized for end-to-end en-

cryption and decryption between the bank and customers. Second pair is

used to authenticate customers; each customer of the bank has a private key

which is stored in his/her device, while the public keys of all customers are

stored in the outsourced server database. The reason is that, outsourced

server is responsible to perform verification and authentication operations of

the customers during transaction verification process. As indicated in Fig-

ure 2.2, in the first step, customer sends transaction request to the bank

server. Then, bank encrypts customer’s request in such a way that only cor-

responding customer will be able to decrypt it. Then, the bank server sends

encrypted request of the customer to the cloud server to get the customer’s

Problem Definition and the Main Working Model 10

authorization on the transaction. Afterwards, cloud server passes encrypted

information to the customer and asks him/her to sign it. At this point, the

customer decrypts received message and checks whether the transaction re-

quest belongs to him/her. After that, he/she signs the received message using

his/her private key and sends it back to the cloud server. As shown in Fig-

ure 2.3, immediately after receiving the signature of the transaction request

from customer, cloud server validates customer’s signature using his/her cor-

responding customer public key. However, the idea here is that the cloud

server should not be able to learn customer’s identity because of his/her

privacy against outsourced server, which is considered as an untrustworthy

server. Owing to the fact that, outsourced servers are not trusted, we need

a privacy-preserving mechanism to let cloud server confirm user’s identity

but without leakage any information about his/her identity. Finally, cloud

server sends the authentication result back to the bank server and bank server

can either perform customer’s transaction request or reject it based on the

verification result.

Problem Definition and the Main Working Model 11

Figure 2.3: Transaction operations in an outsourced cloud-based model

(Phase 2).

As it is described above, and shown in Figures 2.2 and 2.3, the bank is

considered as a client for outsourced cloud server. Therefore, the bank sends

its request to the cloud server in order to perform the authentication and

verification process. However, since outsourced server is not trusted, we need

to keep customer information private. This is considered as a challenging

problem and a hot research topic.

One of the subtopics in this challenging privacy problem is that cloud

server may need to keep the customer database of the bank including the

customer’s public key for end-to-end (bank-to-customer) encryption. The

bank needs to query this database to get the customer public key in order to

encrypt the transaction details. Thus, here it is needed to have a system in

The Contribution of this Thesis 12

which both (i) customer data will be kept in a secret way, (ii) bank queries

will not be seen and processed by the cloud in a clear way.

Furthermore, nowadays, almost all database systems are rational database

systems such as MS-SQL Server [21], SQLite [24], mySql [25]. The problem

here is that, however, there is no any built-in mechanism to provide cus-

tomers’ privacy against database server administrator in rational database

systems. Thus, we have to either design an intermediate application to be

placed between rational database server and its users to hide their access

pattern track or devise completely different database system to be deployed

instead of rational database systems.

2.3 The Contribution of this Thesis

In this thesis, we focus on the problem of customer database outsourcing for

a bank to be used in transaction verification model. In this model, the bank

needs to query the customers’ public keys in a secure and privacy preserving

manner. Moreover, due to existing practices of the bank, a rational database

system must be used and the queries must be performed using regular SQL

queries. We adopt on existing privacy preserving data access model, namely

Path ORAM [35,36], for these purposes.

Chapter 3

Background and Literature

Overview

Nowadays, users’ privacy has become a major concern in any aspect of com-

munication networks. In the last few years, by appearing new communication

methods such as cellphones and smart cards, almost all users’ information

are available on the network and opens doors for many types of electronic

crimes. Therefore, it is vital to provide not only security mechanisms but

also privacy. On the other hand, each application or communication model

requires diverse models of privacy-enhancing protocols in order to make sure

that data transactions meet acceptable level of privacy and security. How-

ever, all of those privacy models have a similar goal which is hiding users’

data from untrustworthy access of any third-party except authorized parties.

Privacy in Database Systems 14

3.1 Privacy in Database Systems

There are several studies and researches in academia to provide users’ pri-

vacy in many different communication and networking systems. Thus, hiding

users’ access pattern as well as their requested data from database server is

a specific aspect of users’ privacy which is still a hot topic in academia. Ac-

cordingly, in most of applications, a database system is demanded in server

side to keep users’ or products information in order to perform users’ re-

quested transactions. Since database server is considered as an owner of the

stored data in the database, it can access all data and users access patterns.

However, as we discussed in the previous chapter, in some applications such

as outsourced servers, database administrators are not trusted (considered as

a third-party application). Nevertheless, we need to provide privacy of users’

against untrustworthy database server which is a tough problem in database

systems, as database server needs to access the queries of the users in order to

process them. Furthermore, privacy-providing protocols in database servers

can be categorized into two main categories: (i) utilizing an intermediate

application to provide cryptographic protocol along with existing database

systems, (ii) creation of a new database system with the required crypto-

graphic protocols from scratch and replace it with existing database system.

These two models are shown in Figures 3.1 and 3.2.

Privacy in Database Systems 15

Figure 3.1: Providing user’ privacy with rational database system using in-

termediate application.

Figure 3.2: Database server with built-in privacy protocol.

3.1.1 Utilizing Intermediate Application

Although in the first model which is shown in Figure 3.1, there is no need to

change the database system, it is hard to devise an intermediate application

to interact with both users and database systems since, there are wide variety

of different database systems. Also each specific application has its own com-

munication and data structure policies. Nevertheless, it is very challenging

to design such a generic application which can operate with different kind

of applications. Furthermore, any intermediate application needs to access

database system internal management layers or administrator privilege access

to the data stored in the database, while no database systems allow any third

Privacy in Database Systems 16

party applications to access their internal management layers because of data

integrity, correctness, and security. In addition, benefiting an intermediate

application is costly in term of communication and processing complexities.

Due to the fact that, any data transaction between users and server needs

to be sent and processed in that intermediate application before and after

transaction process in the server side, it will have more processing load as

well as communication cost. Finally, designing and implementation of this

protocol is also challenging, because we need to decide where and how this

intermediate application should be implemented and deployed. Ian Goldberg

et al [30] proposed a method called TransPIR which extends Private Informa-

tion Retrieval (PIR) systems such a way that SQL queries can be privately

evaluated over rational database systems. Figure 3.3 shows functionality of

their proposed method.

Figure 3.3: TransPIR, an intermediate application proposed by [30] to con-

vert PIR to rational database.

In their proposed model an intermediate application (TransPIR) lies

between users and database system. However, as it is shown in the Figure 3.3,

query processor, virtual database, and PIR proxy part of TransPIR protocol

Privacy in Database Systems 17

are located on the client side. As a result, the client side needs to have

powerful communication and computation power in order to perform all those

operations, which is not practically feasible for all applications.

3.1.2 Generating New Database Model

In contrast, second transaction model which is shown in Figure 3.2, needs

to be designed and implemented independently by using cryptographic pro-

tocols. However, this model needs to design all essential functionality of

database system as well. Additionally, abstraction is another important issue

which is very important to be considered in the designation of this protocol.

Abstraction means that, designation, implementation, and deployment of the

database system should be completely separated from each other and should

be hidden from end user of the system. Therefore, end-users of the system

no need to have any detail information of implementation of the system. In

other word, end-users of the system can send their SQL command to the

system and obtain their requested data without any knowledge about the

detail of system implementation.

Privacy Protocols Against Untrustworthy Database Servers 18

3.2 Privacy Protocols Against Untrustworthy

Database Servers

We evaluate three most-addressed cryptographic “privacy-providing” proto-

cols which can be used against untrustworthy database servers. The protocols

are 1) Private Information Retrieval (PIR), 2) Oblivious Transfer (OT), and

3) Oblivious Random Access Memory (ORAM). We have studied most of

previous works and evaluate some of them to evaluate their efficiency in a

real-world application. Hence, following sections are the detailed evaluation

of each aforementioned protocols.

3.3 Private Information Retrieval (PIR)

The goal of PIR is to provide requested data access to the users, without

revealing which data is accessed to the database administrator. Since un-

trustworthy database server can follow user’s queries and infer what data

the user wishing to access. PIR is a one-way cryptographic primitive which

means that it just provides users’ privacy against database server but the

inverse is not provided by this protocol. In other word, user has a privilege

of accessing to all information in the database. In some application which

is being involved with public databases such as hotel and flight booking ser-

vices, it is not considered as a problem if users can access to partial or even

all information in the database since they are stored in public form.

Private Information Retrieval (PIR) 19

Very simple and trivial way to achieve PIR is to download entire con-

tents of database from the server therefore server could not infer which data

has been retrieved by the user. Although this method has a high theoretic

privacy level and also it is considered as the ideal way to achieve PIR, it is

not feasible to utilize it in most of practical applications. Due to the fact

that, most of the databases in an actual applications are very huge in size,

besides it is not applicable to transfer that amount of information to the user

in every transaction. In fact, there are two main mechanisms to address PIR

protocol: first one, is to make database server computationally bounded and

second one, is to use multiple non-cooperating database servers such a way

that each of them have a similar copy of data.

3.3.1 Single-Database, Computationally Bounded PIR

According to Claude Shannon [33] theory, a cryptographic protocol is se-

cure if it cannot be broken by even an unlimited computing power. The

first single-database computationally private information retrieval (CPIR)

scheme has been introduced by Kushilevitz and Ostrovsky [17] in 1997. They

achieved communication complexity of O(nε) for any ε > 0 in their works

where n is the number of stored bits in the database. In their scheme,

database is an n − bit string x, which user can send index i to obtain the

bit xi while hiding the index i from the database server. Their proposed

scheme security is based on the quadratic residuosity problem. Later, in

reference [3] Christian Cachin, et al. presented a new CPIR scheme based

on poly-logarithmic communication complexity with intractability assump-

Private Information Retrieval (PIR) 20

tion called Φ−HidingAssumption (ΦHA). In reference [19] Helger Lipmaa

proposed a new scheme which reduced the communication complexity to

O(l log n+ k log2 n), where l is the length of the strings and k is the security

parameter. This protocol could be used as a CPIR as well due to its lower

communication complexity, although, it is an oblivious transfer protocol. In

reference [11] Craig Gentry, et al. proposed a novel scheme with communi-

cation complexity of O(k + d) where k ≥ log n. n and d are the database

size and the bit-length of the retrieved database block respectively. The sig-

nificance of their work was that, users requested data size was independent

from data retrieving operations. The security of their scheme was based on

simple variant of Φ−HidingAssumption (ΦHA) was introduced by Cachin,

et al. [4]. As indicated by Ostrovsky, et al. [27] the proposed schemes by

Kushilevitz, et al. [17] and Lipmaa [19] use the same ideas based on homo-

morphic encryption. However, the Kushilevitz and Ostrovsky protocols are

based on Goldwasser–Micali cryptosystem while the protocol by Lipmaa is

based on the Damg̊ard–Jurik cryptosystem.

3.3.2 Multiple-Database, Information Theoretic PIR

Information-theoretic PIR protocol, is based on multiple non-cooperating

database servers, each having a similar copy of the same database. Chor et

al [5] introduced the method in the 1995 for the first time. In their scheme

user can access to k databases (k ≥ 2) then he/she can privately retrieve

data stored in the database. In other word each individual database server

which is holding a replicated copy of the same database infer no information

Private Information Retrieval (PIR) 21

related to the identity of the item retrieved by the user. In their works, they

presented two-server scheme and and achieved communication complexity

O(n1/3).

3.3.3 Overview of PIR

There are also many other PIR schemes of both single-server and multiple-

server models have been addressed by other researches. Some of new dis-

covered protocols achieved better communication complexity. For instance,

single-server (Computationally private) PIR can be accomplished with con-

stant communication and k-database (information theoretic) PIR can be

achieved with n
log log k
k log k communication. However, beside all those improve-

ments in communication and computation complexities of PIR protocols

there are still major problems remains. Most of the protocols which have

been proposed in academia are not practically implemented and not proper

to be used in real applications. For instance, we evaluated one of recent

works by Carlos Aguilar-melcho and Philippe Gaborit [20]. Their works was

a single-server lattice-based PIR scheme which uses matrices. We imple-

mented the protocol and evaluated it with various number of data. however

communication complexity in the scheme was not acceptable for practical

applications.

Oblivious Transfer Protocol (OT) 22

3.4 Oblivious Transfer Protocol (OT)

Oblivious Transfer (OT) is an cryptographic primitive which can be consid-

ered as a two-way version of PIR protocol which means that none of the

sender and receiver can infer any information related the data except the

one that they have privilege access them. However, it cannot be considered

as an replacement for PIR because oblivious transfer imposes an additional

privacy requirement for the database, on the other hand, PIR requires com-

munication sub-linear in n, while oblivious transfer has no such necessity. In

this protocol, sender sends more than one encrypted data items to the re-

ceiver and receiver are able to decrypt only authorized data which is belong

to him/her. Therefore, sender could not figure out which data item has been

accessed by the user also receiver could not decrypt other data except the one

belong to him/her. Oblivious transfer protocol can be thought as an stronger

version of PIR because it not only provides users’ privacy against database

but also users cannot access other data except their own data. However,

depends on the application, we can decide whether we need two-way privacy

or not. In this thesis, database privacy is not considered as a crucial prob-

lem because the data stored in the database are public and everybody have

a privilege to access them. However, still it is feasible to use this protocol

instead of PIR protocol.

Oblivious Transfer (OT) Protocol was firstly introduced in 1981 by

Michael O. Rabin [29]. In his proposed model which was based on PSA

public key cryptosystem, the sender sends two messages to the receiver with

probability of 1
2
. Therefore both sender and receiver are remain oblivious

Oblivious Transfer Protocol (OT) 23

to each other. The common and more useful oblivious transfer protocol

called 1-2 Oblivious Transfer or ”one out of two oblivious transfer” (OT 2
1).

It is introduced by S. Evan et al [8] in order to builds protocols for secure

multiparty computation. OT 2
1 protocol can be generalized to one-out-of-n

oblivious transfer protocol (OTN1) such a way that user can only obtain one of

there elements while database server are not able to infer which data element

accessed by the user. Claude Crépeau [7] presented a proof those two (”one-

out-of-two”) notions are computationally equivalent. 1−n oblivious transfer

protocols were propsed by Moni Naor and Benny Pinkas [22], William Aiello

et al [1], Sven Laur and Helger Liomaa [18]. Later, Brassard, Crépeau and

Robert have generalized this notion to k-n oblivious transfer protocol OTNk [2]

which means that k-out-of-n data items in database which have been sent

to the user are accessible by user. The protocol with k-out-of-n scheme

can be defined either non-adaptive or consecutively. Moni Naor and Benny

Pinkas [23] proposed a new method with O(N) computation complexity in

preprocessing stage and fixed computation (independent of k) complexity for

each new value the receiver obtains. Furthermore, OTNk protocol is a specified

version of Generalized oblivious transfer, which firstly was introduced by

Ishai and Kushilevitz [14]. Their works was based on parallel invocations

of OT 2
1 while making use of special model of private protocols. Afterwards,

other protocols have been proposed based on secret sharing. There are some

remarkable OT protocols which are working based on secret sharing were

published by Bhavani Shankar et al [32] and later Tamir Tassa [37] proposed

another scheme of the protocol.

Oblivious Random Access Memory (ORAM) 24

3.5 Oblivious Random Access Memory (ORAM)

Oblivious Random Access Memory (Oblivious RAM or ORAM) is third pro-

tocol of cryptographic primitive series to hide users’ access pattern or re-

quested data from curious database server. The concept introduced by Oded

Goldreich [12] and Rafail Ostrovsky [26], which enables a user, that can store

constant amount of data locally, and store the rest remotely on the server,

so that user can access the data item in the server while hiding the identities

of the items which are being accessed. In fact, ORAM protocol is mostly

devised to be used in a resource-restricted devices such as mobile phones.

However it can be also used for other purposes such as searching data on

encrypted data for preventing cache attacks or protection against any other

kind of privacy violation. Goldreich [12] investigated the ORAM protocol to

utilize it in software protection problem. The goal of his works was to hide

the access pattern of a software to main memory that is because of preventing

reverse engineering of the software. Later, Goldreich and Ostrovsky gener-

ated new model of ORAM for software protection [13] with the best result of

their works. In particular, each ORAM scheme should hide the following in-

formation from the server to provide users’ privacy against eavesdropper who

might be the server itself: (1) the location of the accessed data item in the

memory, (2) the order of data requests, and (3) the number of requests to the

same location. Furthermore, any possible types of access such as get-value,

set value, insert-new-item, delete-item, etc. must also be indistinguishable

to the server. Most of the presented ORAM schemes have provided accept-

able level of privacy for users, However, almost all of them are unfeasible to

Oblivious Random Access Memory (ORAM) 25

implement them in the real-world applications. For instance, the cost of the

best protocol of Goldreich-Ostrovsky [13] efficient but clearly unfeasible for

any reasonable application. Because for storing n data item there should be

O(n log n) memory available; furthermore, each access to a data item was re-

placed by O(log3 n) data requests to the stored data. Nonetheless, due to the

overwhelming overhead of the oblivious RAM protocol, it was often cited as a

theoretical solution which could solve many privacy related problem, however

it is apparently impractical to be used in real-world applications. Therefore,

some new works are there to make the protocol much practical and feasible

in order to make use of them in real-world applications. Benny Pinkas and

Tzachy Reinman [28], re-investigated the Oblivious RAM protocol which is

introduced by Goldreich and Ostrovsky [13]. In their scheme, they improved

previous protocol to make it feasible in practice, also they described a new

construction with a considerably improved overhead therefore it requires the

client to store only O(n) items, and replace each data request with O(log2 n)

access to the data stored in the database. Although Pinkas and Reinman

improved ORAM protocol’s efficiency to make them more practical, still the

ORAM protocol was very costly and highly complicated to implement it in

practice. Nonetheless, there are other subbranches of ORAM protocol have

been introduced by other researchers. One of very appropriate protocols of

ORAM protocol family is Path Oblivious RAM protocol. Due to the impor-

tance of this protocol, we will discuss it thoroughly in the next section.

Path Oblivious RAM 26

3.6 Path Oblivious RAM

Path Oblivious RAM (Path ORAM) is introduced in 2012 by Emil Stefanov

et. al. [35] and it improved by them later in 2013 [36]. The advantages of the

protocol are that is highly simple to implement because, it can be described

by a few lines of pseudo-code also this protocol is very close to the goal

of ORAM protocol which was designed to be used in a resource-restricted

devices such as smart cards or smart phones. Namely, it is very practical to be

used in a devices with a small amount of storage capacity. They proved that

the protocol requires O(log2N/log x) bandwidth overhead for block size B =

x logN . Also Their protocol works better than best known ORAM scheme

for the block sizes bigger than ω(log2N). As we mentioned earlier, we need

a cryptographic scheme in order to use it in outsourced storage application

(in our works we are aiming to outsource identification and authentication

process of customers in the bank). However, in the outsourced storage, due

to the fact that data stored are publicly accessible, clients access can leak a

significant amount of sensitive information about the data through statistical

inference. Islam et. al. [15] proved that an adversary can infer as much as 80%

of the search queries of the users’ accesses to the encrypted email repository.

Stefanov el. al. [36] works proposes a new approach to the ORAM scheme,

which makes the following contributions:

Path Oblivious RAM 27

3.6.1 Simplicity and practical efficiency

Although there is no formal way of measuring its simplicity, it is apparently

obvious that their protocol is very simple with respect to any other previous

proposed ORAM protocols. The reason is that, we can describe the core of

the protocol in just 16 lines of pseudo-code (see Algorithm 1). Furthermore,

there is no need to perform an extra and sophisticated operations such as

oblivious sorting and oblivious cuckoo hash table construction like many

existing ORAM. In fact, each access to the server database in Path ORAM

scheme, can be expressed as simply fetching, shuffling, and storing a single

path in a tree stored remotely on the server. In addition, simple nature of

Path ORAM makes it more practical than any existing ORAM construction

with small local storage which can be constant or poly-logarithmic depends

on the applications being used.

3.6.2 Asymptotic efficiency

They also prove that, their proposed Path ORAM protocol can achieve

asymptotic bandwidth cost ofO(log2N / log x) blocks and consumesO(log2N/ log x)ω(1)

blocks in client-side storage, by taking to account that the size of blocks are

reasonably large (B = x logN bits where N in the total number of blocks)

by using recursion, where recursion is proposed in Shi et. al. [34]. Also they

claim that the above result achieves a failure probability of N−ω(1) which is

negligible with respect to the size of N . Emil Stefanov et. al. [35], compared

Most of well-known ORAM schemes in their work. They compared Asymp-

Path Oblivious RAM 28

totic bandwidth cost of their works with other well-known ORAM schemes

in Table 3.1.

ORAM Scheme

Client Storage Read

& Write Bandwidth

(# blocks of size B)

Read & Write Bandwidth

(# blocks of size B)

Kushilevitz et. al. [16]

B = Ω(logN)
O(1) O(log2N/log logN)

Gentry et. al. [10]

B = Ω(logN)
O(log2N).ω(1) O(log3N/log logN).ω(1)

Chung et. al. [6]

B = Ω(logN)
O(log2+ε(N)) O(log2N . log logN).ω(1)

Recursive Path ORAM

for small blocks. [35]

B = Ω(logN)

O(logN).ω(1) O(log2N)

Recursive Path ORAM

for moderately sized

blocks [36], (block size of

B = Θ(logN))

O(logN).ω(1) O(logN)

Table 3.1: Comparison of Emil Stefanov et. al. [35] proposed method with

other known ORAM schemes.

Path Oblivious RAM 29

3.6.3 Practical and theoretic impact of Path ORAM

As we pointed out earlier, first version of Path ORAM scheme introduced

by E. Stefanov et. al. in 2012, has made both a practical and a theoretic

impact in the users’ privacy and outsourcing topics. Due to the conceptual

simplicity it is more suitable to be implemented in resource-restricted devices

as well as hardware. An example simulation has been built by Ren et al.

[31] for secure processor architecture based on path ORAM algorithm and

the Ascend processor architecture introduced int 2012 by Fletcher [9] as a

primitive. Furthermore, there are several theoretic works adoptd the same

idea of eviction in their ORAM constructions. Gentry et al. [10] and Chung et

al. [6] tried to improve ORAM bounds based on the binary tree construction

by Shi et al. [34]

Path ORAM protocol is based upon the binary-tree ORAM framework

propsed by Shi et al. [34]. the protocol is designed to prevent untrustwor-

thy database server from accessing users’ access pattern or queries and the

data they requests which are very sensitive information. In this protocol,

assumption is that, a client has restricted processing as well as storage re-

sources. Therefore, our assumption is that the server is untrustworthy and

the client is trusted, including the client’s processor, memory, and disk. In

the following, we will explain Path ORAM protocol functionality in detail.

Path Oblivious RAM 30

3.6.4 Notation and Definition

We assume that the client fetches/stores data on the server in atomic units,

referred to blocks, of size B bits each. Also, throughout the document, we

will use N as the number of distinct data blocks that are stored in Path

ORAM. Table 3.2 indicates all notations required in Path ORAM protocol.

Notation Description

N Total number of blocks outsourced to server

L Height of binary tree

B Block size (in bits)

Z Capacity of each bucket (in blocks)

R Capacity of each block (in records)

P (x) Path from leaf node x to the root

P (x, l) The bucket at level l along the path P (x)

S Client’s local stash memory

Position Client’s local position map

x := Position[a]
Block a is currently associated with leaf node x, i.e.,

block a resides somewhere along P (x) or in the stash.

Table 3.2: Path ORAM Notations

3.6.5 Path ORAM Protocol Description

In Path ORAM scheme tree structure has been used to store data in server

side. Although, for the sake of simplicity, we use binary tree in our descrip-

Path Oblivious RAM 31

tion, it can be a tree with more than two children per node. However, our

implementation is fully parametric and it is possible to set the number of

children per node as well as other settings. For binary tree with the height

L there are 2L leaves in the tree. The levels of the tree are numbered 0 to

L where level 0 denotes the root of the tree and level L denotes the leaves.

It is possible to implement tree structure using either array or pointer (fixed

size v.s. dynamic size).

Each node in the tree is called a Bucket. Each bucket has a capacity of

Z real blocks. However, if there are less than Z blocks to store inside block,

it is padded with dummy blocks to always be of size Z. There is no such a

rule for size of bucket z or number of children per node, although it is better

to choose small size for bucket (e.g. Z = 4).

We have developed two separate program: 1) in-RAM and 2) mapped

to database. In the first implementation (in-RAM), each block contains R

number of records and each record contains users’ information fields such

as user ID, name, family, public key, etc. However, atomic access to the

database in both implementations is block which is similar to the proposed

protocol by Stefanov et. al. [36].

According to the authors of the Path ORAM protocol [36], x ∈ {0, 1, ..., 2L−

1} denotes the x-th leaf node in the tree. P (x) is a function which is being

used to denotes the all buckets along the path from leaf x to the root node of

the tree. In addition, P (x, l) is a function which denotes the bucket in P (x)

at level l in the tree. In other word, using function P (x), we can obtain all

buckets starting from leaf node x along the root, while using P (x, l) we refer

Path Oblivious RAM 32

to a certain node (bucket) of tree which is resides in level l and on the path of

leaf node x to the root. Furthermore, the size of the database (tree) depends

on the parameters: 1) tree height, number of children per node, number of

blocks per bucket, and number of records per block. Since there are about

N buckets (nodes) in the tree and each bucket contains Z blocks, also each

block contains R records, the total server storage is about Z.N blocks or

R.Z.N records.

3.6.6 Client Storage and Bandwidth

Client side in Path ORAM protocol consists of two separate data structure, a

stash memory and a position map. Followings sections describe these struc-

tures functionality in detail.

3.6.6.1 Stash Memory

Stash is a local memory of client to keep retrieved blocks from the server

temporarily. Furthermore, it can be used to store some blocks if there will

be no free space in the server (overflow in the buckets of tree). Thus, stash

S is used as a temporary memory space to keep blocks. They proved that

stash has a worst-case size of O(logN).ω(1) blocks with high probability.

Also they showed that the stash is usually empty after each Path ORAM

read/write operation complete.

Path Oblivious RAM 33

3.6.6.2 Position Map

The client uses position map to get leaf node number of the tree in such a way

that it can access to the block a which is stored in a bucket (node) along the

way from leaf node x to the root and we indicate it as x := Position[a] also

if is not in the tree i is stored in the stash memory temporarily. Therefore, it

is recommended to check stash before searching data on the tree or somehow

indicate it in the position map so that user can know whether block is in

stash or tree. In fact, position map is an array which maps block number to

the leaf node number of tree.

3.6.7 Path ORAM Initialization and Data I/O

Initially, database tree has been generated in server side with encrypted

random dummy blocks. Respectively, In client side, Stash is empty and

position map is set with independent random numbers between 0 and 2L −

1. Basically, all data transaction operation such as read, write, update,

and delete is done via single protocol called “Access” which is described in

Algorithm 1. In fact there are to separate operations: Read and Write. to

read block a, client calls data ← Acess(read, a,None) and to write data∗

to block a the client performs Access(write, a,Data∗). Emil Stefanov et.

al. [36] summarized Path ORAM scheme in 4 main steps as follow.

1. Remap Block (Lines 1 to 2): Randomly remap the position of block

a to a new random position. Let x denote the block’s old position.

Path Oblivious RAM 34

2. Read Whole Path (Lines 3 to 5): Read the path P (x) containing

block a.

3. Update Block (Lines 6 to 9): If access is write (new record, edit

record, and delete record), update the data stored for block a.

4. Write Path (Lines 10 to 15): Write the path back and possibly include

some additional blocks from the stash if there is any vacant place in

the database tree.

Algorithm 1: Path Oblivious RAM Algorithm

Function Access (op, a, data∗)

x← position [a]

position [a] ← uniformRandom(0...2L − 1)

for i ← 0, 1, ..., L do

S ← S ∪ ReadBucket(P(x, l))

data ← ReadBlock a from S

if op = write then

S ← (S −{(a, data)}) ∪ {(a, data∗)}

for l ← L downto 0 do

S ′ ← {(a′, data′) ∈ S : P(x, l) = P(position [a′], l)}

S ′ ← Select Min(|S ′|, Z) Blocks from S ′

S ← S − S ′

WriteBucket(P(x, l), S ′)

return data

Chapter 4

Proposed Study: Path

Oblivious-RAM Based Public

Key Repository

We use Path ORAM protocol to achieve the goal of hiding users’ requests

against untrustworthy outsourced database server. However, due to the fact

that information, which is being stored at server side is in relational database

structure, clients should send their requests in a form of SQL command to the

server. Therefore, we should either change request commands at client side

to Path ORAM protocol data request format, or somehow convert users’

requests to path ORAM protocol request. In the first approach, perform-

ing significant modifications at client side software and data structure are

inevitable. Nevertheless, such modifications are costly and require consider-

36

able configuration changes. As a result, it is essential to find another solution

in order to tackle this issue.

In this study, we developed a model in which the client queries are ob-

tained in regular SQL format and then parsed so that it can be processed via

Path ORAM protocol. In our model, a position map is kept for each search

key. After SQL parsing, we decide on which buckets are to be retrieved start-

ing which leave nodes. Moreover, in our model we developed an adaptation

layer between Path ORAM’s tree structure and a relational database so that

the buckets are stored and retrieved from relational database. Now, we are

going to explain our model in more detail.

Figure 4.1: First Step of our proposed method (Client Request).

Client side operations are shown in Figure 4.1. Client first passes SQL

command to the parser. SQL command parser is a function that takes a

SQL command as an input and after analyzing returns a list of records that

client requested. Then this information is sent to the position map to get

37

leaf nodes indices of all requested records. Finally, these leaf nodes indices

are sent to the server with Path ORAM data structure to fetch records form

data server.

A requirement of aforementioned approach is that, each data transfor-

mation between client and server changes the leaf node index of requested

record. Therefore, it is essential to use a flag for fetched records then it is

possible to infer whether the record has already been fetched or not.

Next phase of data fetch operation is being run at the server side. After

receiving requested data from a client, server should operate the request.

However, storing data structure of Path ORAM at the server side has its

own challenges. Owing to the fact that Path ORAM uses tree data structure

to store data records, we need to generate tree structure in the server side.

Although, generation and management of the tree structure using an object

oriented languages is fast and not considered a hard task, enterprises do not

prefer to change their institutional database infrastructures to have extra

security and privacy services. In this respect, Path ORAM’s nonstandard

tree data structure is a disadvantage in its entirety. In our system, we address

this problem by adapting Path ORAM’s tree data structure into a relational

database.

38

Figure 4.2: Second Step of our proposed method (Server Response).

Figure 4.2 gives an overview of our proposed method of storing and

retrieving data by the use of relational database management system. As

represented in Figure 4.2, as soon as server receives the requests from client

side (leaf nodes indexes), it maps the requested data into a corresponding

SQL command. Then, this generated SQL command is sent to the relational

database system in order to fetch requested records. Note that, generated

SQL command at the server side is not the same with the one provided by

the client in the first step of the operation. SQL command of the first step

is what the user aimed to retrieve from the data server; however, the second

one is the SQL command which is generated by the mapper function in order

to fetch those information from Path ORAM tree, which is mapped into a

relational database management system. Finally, all requested data (a path

starting from a leaf node through root node) are sent back to the client as a

result of its request.

Parsing SQL Command into a Path ORAM Data Request 39

4.1 Parsing SQL Command into a Path ORAM

Data Request

In this section, we discuss client side parser process in detail. As we discussed

in the previous section of this chapter, clients uses relational database data

request command (SQL Command) in order to send it to the server. This

SQL command, in turn, needs to be transformed into a Path ORAM data

request. For this purpose, we developed a flexible parser so it can parse any

complex queries.

Figure 4.3: Sample tree data structure with 7 records.

Parsing SQL Command into a Path ORAM Data Request 40

Algorithm 2: SQL query to Path ORAM data request parser.

H Function Parser (SqlExp)

pSqlExp← parenthesize(SqlExp)

Stack ← toPostfix(pSqlExp)

LeaveNodesList← Empty

Condition← pop(Stack)

LeaveNodesList← readPosMapList(Condition)

while Stack 6= Empty do

Condition← pop(Stack)

lst← readPosMapList(Condition)

Operator ← pop(Stack)

if Operator = AND then

LeaveNodesList← LeaveNodesList ∩ lst

if Operator = OR then

LeaveNodesList← LeaveNodesList ∪ lst

Return LeaveNodesList

Parsing SQL Command into a Path ORAM Data Request 41

Table 4.1: Records information stored in the tree.

ID Name Family Leaf

index

ID Name Family Leaf

index

R1 N1 F1 3 R8 N2 F3 1

R2 N2 F3 1 R9 N3 F3 2

R3 N3 F1 1 R10 N1 F1 2

R4 N1 F2 2 R11 N2 F3 3

R5 N2 F2 4 R12 N3 F1 3

R6 N3 F2 3 R13 N1 F2 4

R7 N1 F3 1 R14 N2 F3 4

Algorithm 2 describes steps of operations to parse SQL command into

a leave nodes lists. In the first step of the algorithm, SQL expression is paren-

thesized according to prioritized order of evaluation and then is converted

into postfix notation to be stored in a stack. Note that, priority of the opera-

tions are controlled by postfix expression evaluation using stack. After that,

we made a loop over stack data and in each iteration of the loop, condition

and operator are popped from the stack. For each condition, we retrieve a

list of corresponding leave nodes (lst) by looking up from the position tables.

If the operator is AND, current leave nodes list is the intersection of the

current one and lst. If the operator is OR, then the current leave nodes list

is the union of current one and lst. These steps apply to all elements inside

stack and after loop finishes, the list called LeaveNodesList contains the leave

nodes indices which meets all conditions in the SQL query.

Parsing SQL Command into a Path ORAM Data Request 42

Following is a sample run of a parser method in client side applied on

the tree given in Figure 4.3. The database field values and the leaf node

indices are given in the table 4.1.

We exemplify using two queries given below.

1. SELECT * FROM tbl WHERE ID = R6

2. SELECT * FROM tbl WHERE (Name = N2) AND (Family = F3)

Query 1 is a single query that returns a simple record. For such single queries,

we just need to find it in position map and get leaf node index of that record.

Query 1 resulted in a single record with ID = R6 and the leaf node index

to access this record is 3. On the other hand, query 2 returns more than

one record. According to our parser, we should fetch leave nodes indices

for the first condition Name = N2 which are 1, 3, 4. In the second step of

the algorithm, we obtain the leaf node indices of the second condition of

the query which are 1, 2, 3, 4. Finally, since AND operator is used in this

complex query, we should obtain a list of leave nodes indices by applying

intersection on those two lists, so the resulted list becomes 1, 3, 4.

Mapping Path ORAM data structure into relational database 43

4.2 Mapping Path ORAM data structure into

relational database

In this section, we explain how Path ORAM tree data structure is mapped

into a relational database system. In order to map the data structure of

Path ORAM (tree) into a relational database system, we use some relational

database tables and SQL queries.

4.2.1 User Data Table

This table contains records of users. Maximum number of records that we can

store in this table is the capacity of records in the corresponding Path ORAM

tree. In order to associate the user records to Path ORAM’s structure, we

use BlockID as the primary key of the table. This field is also the foreign

key of the Path ORAM mapping table, which will be explained in the next

subsection.

Other fields of this table are the actual user database’s fields, which

vary application-wise.

4.2.2 Path ORAM Mapping Table

In order to map a tree data structure which is used by Path ORAM protocol

into a relational database system, we need to devise a mechanism using tables

Mapping Path ORAM data structure into relational database 44

and relations between tables. We generated two tables, one for storing user

information, which is explained in the previous subsection, and the other one

to keep tree structure information such as Block ID, bucket ID (tree node

ID) and leaf node index. Theses two tables has a one to one relation us-

ing BlockID as a primary key in the user information table and foreign key

in mapping table. After generating inner-joined table, fetching all records

which belong to a specific leaf node is reduced to a simple SQL query. The

following SQL commands are the inner-join and a sample information fetch

commands, respectively.

- Inner-join SQL command:

SELECT tblMapping.*, tblPathOram.* FROM tblMapping

INNER JOIN tblPathOram

ON tblMapping.BlockID = tblPathOram.BlockID

- Sample SQL command to fetch a path with leaf node index i:

SELECT * FROM tblInnerJoined WHERE LeafNodeIndex = i

Chapter 5

Performance Evaluation

In this chapter, we evaluate efficiency of our work in order to use it as a public

database but preserving users’ privacy. Users send their SQL-Like queries to

the remote database server and server returns corresponding results for each

query of each user. We used Path ORAM protocol in order to provide users’

privacy in the database, but database design and implementation details

are hidden from users. Users just send out normal SQL-like queries. The

queries first parsed into leaf node indices of Path ORAM and they are sent

to the database server. Then, database server fetches them from the mapped

relational database.

Our server specifications and the details of development environment

are as follows.

Communication Models 46

• CPU: Intel R©, CoreTM, i7-2600 @ 3.40 GHz, 64-Bit

• RAM: 8 GB DDR3

• Ethernet: 100 Mbps

• H.D.D.: 700 GB

• OS: MS Windows 10 Professional, 64-Bit

• Programming Language: MS Visual C#.NET 2015

• Database System: MS SQL Server 2014

5.1 Communication Models

In our experiments, we used three different communication models between

clients and server.

• Database in the RAM: In this model, entire database has been

generated and stored locally in the RAM. There is no network since

client and server are running in the same machine. The goal of this

setup is to evaluate performance of our system for the cases where

all overheads are reduced. In other words, this model gives the pure

computational cost of our proposed system. Moreover, in this model

database is stored using native Path ORAM tree structure.

• Crossover Link: In this model, client and server machines are sep-

arated and connected directly via an ethernet cable. In other words,

database is stored in the server and the client is connected to send

Databases Used in Tests 47

queries over this crossover cable. In this model, network delays are

almost zero. This model is useful to apply our proposed adaptation

layers to Path ORAM, but the communication overhead is minimized

to see the real computational performance. In this model, SQL parsing

and relational database adaptation layers are fully integrated.

• LAN Connection: In this communication model, the server and

client machines are separated, as in crossover cable model. Moreover,

all adaptation layers are integrated as well. The only difference be-

tween this setup and the crossover connection setup is that, clients and

server are connected over LAN instead of direct connection in order to

take into account possible network traffic delays.

5.2 Databases Used in Tests

The databases that we use in our performance tests are synthetically gener-

ated. We use a sample database structure with six fields. Table 5.1 shows

the fields and data type of each fields of the database.

Databases Used in Tests 48

Table 5.1: Fields of database table used in our experiments.

Field Name Data Type Primary Key Is Unique

ID String Yes Yes

Public Key BigInteger No Yes

Name String No No

Family String No No

Email String No Yes

City String No No

Because of memory restriction in the RAM, we are enforced to use

relatively less amount of records for ”Database in RAM” communication

model as compared to other communication models, in which database is

stored on disk as a relational database.

We have generated five different databases using the same table format,

but with different number of records by applying different settings to Path

ORAM tree. In all generated databases for the network based models, there

are two children per node and 25 blocks per bucket. However, the height of

tree varies to generate various number of records. Table 5.2 indicates various

tree heights and respective numbers of generated records for network based

communication models. Here, the database is mapped into MS-SQL Server

2014 database system.

Databases Used in Tests 49

Table 5.2: Database sizes used (for network based models).

Tree Height
Total # of Records

Generated

11 102,375

12 204,775

13 409,575

14 819,175

15 1,638,375

We also generate databases to be used in RAM. This one is a pure

Path ORAM tree data structure and not mapped to relational database

model. However, because of the memory restrictions of RAM, the number of

generated records is smaller than the other models. All in-RAM databases

have two children per node and 20 blocks per bucket, but with different tree

heights in order to generate various numbers of records. Table 5.3 shows

different settings of generated in-RAM databases with respective number of

generated records for each tree height.

Query types tested 50

Table 5.3: Database sizes used (for in-RAM database).

Tree Height
Total # of Records

Generated

9 20,460

10 40,940

11 81,900

12 163,820

13 327,660

5.3 Query types tested

For each setup, we executed four different queries as follows:

• Query 1: SELECT * FROM db.tbl WHERE ID = ’12’. This query has

a result of single record, because the ID is unique and is the primary

key of the table. This query is used to evaluate single record fetch

time. Moreover, this is the most common query type in the transaction

signing scenario, which is the main motivation of the project.

• Query 2: SELECT * FROM db.tbl WHERE Email = ’EAAAAB@US.COM’.

This query’s result is also one record, because email address is also

unique for each user among table records.

• Query 3: SELECT * FROM db.tbl WHERE (Name = ’NAAAAB’

AND Family = ’FAAAAC’). This query results in more than one record.

Record Fetch Timing Analyses 51

The number of fetched records depends on the repetitions of field val-

ues in the database. This type of complex query is not a typical one

for transaction signing application; it can only be used for system ad-

ministrations for some advanced offline tests and applications.

• Query 4: SELECT * FROM db.tbl WHERE (Name = ’NAAAAB’

AND City = ’CAAAAB’) OR (Family = ’FAAAAB’ AND City =

’CAAAAC’). This query also returns more than one record and it is

more complicated than Query 3 in term of conditions because there

are combinations of AND & OR operators. As Query 3, this one is

also not typical one, but can be needed for some advanced offline tests.

5.4 Record Fetch Timing Analyses

Figure 5.1 shows Query 1 fetch timings for both crossover and LAN connec-

tion models. As shown in this figure, for a database with 100, 000 records,

end to end latency of sending the query and getting the response takes less

than one second for crossover connection; 1.6 seconds in LAN connection

model. As the number of records increases, latency also increases linearly. It

takes 3.1 and 4.0 seconds for crossover and LAN connection, respectively, in

a database with 1, 600, 000 records.

Record Fetch Timing Analyses 52

1 2 4 8 16

x 10
5

0.5

1

1.5

2

2.5

3

3.5

4

4.5
Query 1 Fetch Time

of records in the database

tim
e

ta
ke

n
(s

ec
on

ds
)

LAN Connection
Crossover Connection

Figure 5.1: Record fetch timings of Query 1 (crossover and LAN connection

modes)

Figure 5.2 depicts Query 2 fetch timings in both crossover and LAN

connection models. As seen in this figure, record fetch timings are almost

similar with the ones of Query 1. The reason for this is that both queries

result in single record. Owing to the fact that, we need to fetch public key

of the users which is also a unique among all stored records in transaction

signing application, this kind of single record fetch queries is of utmost im-

portance regarding the timings.

Record Fetch Timing Analyses 53

1 2 4 8 16

x 10
5

0.5

1

1.5

2

2.5

3

3.5

4

4.5
Query 2 Fetch Time

of records in the database

tim
e

ta
ke

n
(s

ec
on

ds
)

LAN Connection
Crossover Connection

Figure 5.2: Record fetch timings of Query 2 (crossover and LAN connection

modes)

Table 5.4: Number of fetched records in the on-disk databases.

of Records in Database

Query

No.
102,375 204,775 409,575 819,175 1,638,375

3 2 4 8 20 31

4 6 9 27 51 81

Figure 5.3 shows Query 3 fetch timings for both crossover and LAN

connection models. This query is more complex than Queries 1 and 2 and

returns more than one record. Consequently, it takes greater time than the

Record Fetch Timing Analyses 54

previous two queries. As the number of records increases in the database,

the number of fetched records also increases (the numbers of fetched records

for Queries 3 and 4 are shown in Table 5.4). This, in turn, causes several

database accesses for various paths. For instance, record fetch time for the

database with 100, 000 records takes less than 5 seconds in crossover connec-

tion, while it takes 47 seconds in crossover connection and 100 seconds in

LAN connection for a database with 1, 600, 000 records.

1 2 4 8 16

x 10
5

0

20

40

60

80

100

120
Query 3 Fetch Time

of records in the database

tim
e

ta
ke

n
(s

ec
on

ds
)

LAN Connection
Crossover Connection

Figure 5.3: Record fetch timings of Query 3 (crossover and LAN connection

modes)

Record Fetch Timing Analyses 55

1 2 4 8 16

x 10
5

0

100

200

300

400

500

600

700
Query 4 Fetch Time

of records in the database

tim
e

ta
ke

n
(s

ec
on

ds
)

LAN Connection
Crossover Connection

Figure 5.4: Record fetch timings of Query 4 (crossover and LAN connection

modes)

Query 4 timings are shown in Figure 5.4. This query is the most com-

plex one among all other queries; consequently, it returns greatest number

of records as compared to other tested queries. As result, this query takes

higher fetch time than the other queries. Although these timings are high,

since this type of complex queries are not directly used in transaction signing

applications, the total duration of transaction signing is not affected directly.

This type of complex queries would be used for some offline analyses only.

Record Fetch Timing Analyses 56

 20460 40640 81900 163830 327660
0.01

 0.1

 1

 10

 100

1000
All Queries Retrieval Time with Database in the RAM

of records in the database

tim
e

ta
ke

n
(s

ec
on

ds
)

Query 4
Query 3
Query 2
Query 1

Figure 5.5: Record fetch timings for in-RAM database model - all queries

Figure 5.5 shows all queries’ timing result for the model in which the

database is stored in RAM as a tree. Because of the storage capacity re-

striction of main memory, we generated databases up to almost 327, 000

records. The goal of this test is to obtain computational cost for the case

where the costs of communications and relational database/SQL adaptation

are reduced. Queries that return single record take between 10 and 20 mil-

liseconds, while more complex queries take up to 100 seconds. As discussed

earlier, complex queries are not commonly used ones in real world applica-

tions. Since the flow of transaction signing requires single record queries and

the computational cost of these queries, with the costs of communication and

adaptation reduced, is below 100 milliseconds even for a database with one

Record Fetch Timing Analyses 57

million records (due to linear increase in Figure 5.5), we can conclude that

the additional cost of Path ORAM-based privacy enhancing techniques is at

marginal level.

Figure 5.6 and 5.7 give the timings of 4 queries altogether for crossover

and LAN connection models.

We also evaluate response time of the four separate queries with almost

fixed number of records (around 440, 000), but with different Path ORAM

tree database settings such as tree height, number of children per node, and

number of blocks (Record) per bucket (tree node). The results are given in

Table 5.5. As shown in the this table, the time needed to fetch a single record

from a database with almost 440, 000 records is approximately one second

(Queries 1 and 2). However, it is also clear that the height of tree has an

effect on the data fetch time; the greater the tree height, the grater the fetch

time for both Queries 1 and 2.

Record Fetch Timing Analyses 58

1 2 4 8 16

x 10
5

10
−1

10
0

10
1

10
2

10
3

All Queries Retrieval Time using Crossover Connection

of records in the database

tim
e

ta
ke

n
(s

ec
on

ds
)

Query 4
Query 3
Query 2
Query 1

Figure 5.6: Record fetch timings for crossover connection model - all queries

Record Fetch Timing Analyses 59

1 2 4 8 16

x 10
5

10
0

10
1

10
2

10
3

All Queries Retrieval Time using LAN Connection

of records in the database

tim
e

ta
ke

n
(s

ec
on

ds
)

Query 4
Query 3
Query 2
Query 1

Figure 5.7: Record fetch timings for LAN connection model - all queries

Record Fetch Timing Analyses 60

Table 5.5: Effect of tree parameters

Tree

Height

of

Child

Blocks /

Bucket

of

Records

Fetch time (for

all records

returned via

crossover

connection)

(Sec.)

Query

No.

of

records

returned

13 2 25 409600 1.279 1 1

9 3 14 413336 0.889 1 1

8 4 5 436905 0.81 1 1

7 5 5 488282 0.724 1 1

13 2 25 409600 1.395 2 1

9 3 14 413336 0.922 2 1

8 4 5 436905 0.856 2 1

7 5 5 488282 0.881 2 1

13 2 25 409600 7.268 3 8

9 3 14 413336 5.502 3 9

8 4 5 436905 3.067 3 7

7 5 5 488282 3.564 3 8

13 2 25 409600 68.154 4 27

9 3 14 413336 37.796 4 24

8 4 5 436905 18.340 4 21

7 5 5 488282 27.391 4 31

Record Fetch Timing Analyses 61

As seen in Table 5.5, the fetch times of Queries 3 and 4 are relatively

higher than other queries since these queries return several records and each

record fetch needs a separate access to the database in Path ORAM. More-

over, the determining effect at the tree height is also seen for Queries 3 and

4.

Chapter 6

Conclusions and Future Work

In this thesis, we designed and developed a proof of concept solution for the

problem of customer database outsourcing for a bank to be used in trans-

action verification problem. In this model, the bank needs to query the

customers’ public keys in a secure and privacy preserving manner. Our so-

lution is purely based on an existing privacy preserving data access model,

namely Path ORAM [35,36]; however, we developed end user/system adap-

tation layers in order to hide the non-standard features of Path ORAM from

the client (the bank in our use case) and the server (the cloud provider). Such

an abstraction is, actually, a must for a practical system since the enterprises

do not prefer to change their workflows and infrastructures for extra security

and privacy.

In our model, we get regular SQL queries from the client side and all

user data is kept in a relational database model at the server side. The

63

SQL queries are first parsed according to Path ORAM requirements and the

records are fetched from the relational database via its natural language.

Thus, the end systems do not see any details of Path ORAM and its non-

standard features.

We also performed extensive performance analyses in order to under-

stand the feasibility of such an approach. We have seen that the computa-

tional overhead of end-to-end query processing, when used for transaction

verification to return single record, is around 2 seconds per million records in

the database. One should remark that this timing is with a regular computer

used as a server; with high capacity server systems, this latency could easily

be reduced.

Thus, we conclude that the idea of using Path ORAM to keep user data

in outsourced databases in a privacy preserving manner is viable for financial

transaction verification applications.

As future work, the adaptation layers that we developed for SQL and

relational databases can be redeveloped for NoSQL databases.

References

[1] Aiello, W., Ishai, Y., and Reingold, O. Priced oblivious transfer:

How to sell digital goods. In Proceedings of the International Conference

on the Theory and Application of Cryptographic Techniques: Advances

in Cryptology (London, UK, UK, 2001), EUROCRYPT ’01, Springer-

Verlag, pp. 119–135.

[2] Brassard, G., Crépeau, C., and Robert, J.-M. All-or-nothing

disclosure of secrets. In Proceedings on Advances in cryptology—

CRYPTO ’86 (London, UK, 1987), Springer, pp. 234–238.

[3] Cachin, C., Micali, S., and Stadler, M. Computationally Private

Information Retrieval with Polylogarithmic Communication. Springer

Berlin Heidelberg, Berlin, Heidelberg, 1999, pp. 402–414.

[4] Cachin, C., Micali, S., and Stadler, M. Computationally private

information retrieval with polylogarithmic communication. In Proceed-

ings of the 17th International Conference on Theory and Application of

Cryptographic Techniques (Berlin, Heidelberg, 1999), EUROCRYPT’99,

Springer-Verlag, pp. 402–414.

References 65

[5] Chor, B., Kushilevitz, E., Goldreich, O., and Sudan, M. Pri-

vate information retrieval. J. ACM 45, 6 (Nov. 1998), 965–981.

[6] Chung, K., Liu, Z., and Pass, R. Statistically-secure ORAM with

õ(log2 n) overhead. In Advances in Cryptology - ASIACRYPT 2014 -

20th International Conference on the Theory and Application of Cryp-

tology and Information Security, Kaoshiung, Taiwan, R.O.C., December

7-11, 2014, Proceedings, Part II (2014), pp. 62–81.

[7] Crépeau, C. Equivalence Between Two Flavours of Oblivious Trans-

fers. Springer Berlin Heidelberg, Berlin, Heidelberg, 1988, pp. 350–354.

[8] Even, S., Goldreich, O., and Lempel, A. A randomized protocol

for signing contracts. Commun. ACM 28, 6 (June 1985), 637–647.

[9] Fletcher, C. W., Dijk, M. v., and Devadas, S. A secure proces-

sor architecture for encrypted computation on untrusted programs. In

Proceedings of the Seventh ACM Workshop on Scalable Trusted Com-

puting (New York, NY, USA, 2012), STC ’12, ACM, pp. 3–8.

[10] Gentry, C., Goldman, K. A., Halevi, S., Julta, C., Raykova,

M., and Wichs, D. Optimizing ORAM and Using It Efficiently for

Secure Computation. Springer Berlin Heidelberg, Berlin, Heidelberg,

2013, pp. 1–18.

[11] Gentry, C., and Ramzan, Z. Single-Database Private Information

Retrieval with Constant Communication Rate. Springer Berlin Heidel-

berg, Berlin, Heidelberg, 2005, pp. 803–815.

References 66

[12] Goldreich, O. Towards a theory of software protection and simulation

by oblivious rams. In Proceedings of the Nineteenth Annual ACM Sym-

posium on Theory of Computing (New York, NY, USA, 1987), STOC

’87, ACM, pp. 182–194.

[13] Goldreich, O., and Ostrovsky, R. Software protection and simu-

lation on oblivious rams. J. ACM 43, 3 (May 1996), 431–473.

[14] Ishai, Y., and Kushilevitz, E. Private simultaneous messages pro-

tocols with applications. In Fifth Israel Symposium on Theory of Com-

puting and Systems, ISTCS 1997, Ramat-Gan, Israel, June 17-19, 1997,

Proceedings (1997), pp. 174–184.

[15] Islam, M. S., Kuzu, M., and Kantarcioglu, M. Access pattern

disclosure on searchable encryption: Ramification, attack and mitiga-

tion. In in Network and Distributed System Security Symposium (NDSS)

(2012).

[16] Kushilevitz, E., Lu, S., and Ostrovsky, R. On the (in)security

of hash-based oblivious ram and a new balancing scheme. In Proceedings

of the Twenty-third Annual ACM-SIAM Symposium on Discrete Algo-

rithms (Philadelphia, PA, USA, 2012), SODA ’12, Society for Industrial

and Applied Mathematics, pp. 143–156.

[17] Kushilevitz, E., and Ostrovsky, R. Replication is not needed: sin-

gle database, computationally-private information retrieval. In Founda-

tions of Computer Science, 1997. Proceedings., 38th Annual Symposium

on (Oct 1997), pp. 364–373.

References 67

[18] Laur, S., and Lipmaa, H. A New Protocol for Conditional Disclo-

sure of Secrets and Its Applications. Springer Berlin Heidelberg, Berlin,

Heidelberg, 2007, pp. 207–225.

[19] Lipmaa, H. An Oblivious Transfer Protocol with Log-Squared Commu-

nication. Springer Berlin Heidelberg, Berlin, Heidelberg, 2005, pp. 314–

328.

[20] MELCHOR, C. A., and GABORIT, P. A lattice-based

computationally-efficient private information retrieval protocol, 2007.

Short version presented in WEWORC, in July 2007, Bochum, Germany

carlos.aguilar@unilim.fr 13844 received 27 Nov 2007, last revised 27 Nov

2007.

[21] Microsoft Corp. MS SQL Server, 2016. https://www.microsoft.

com/en-us/cloud-platform/sql-server - Last retrived on 2016-09-

14.

[22] Naor, M., and Pinkas, B. Oblivious transfer and polynomial eval-

uation. In Proceedings of the Thirty-first Annual ACM Symposium on

Theory of Computing (New York, NY, USA, 1999), STOC ’99, ACM,

pp. 245–254.

[23] Naor, M., and Pinkas, B. Oblivious Transfer with Adaptive Queries.

Springer Berlin Heidelberg, Berlin, Heidelberg, 1999, pp. 573–590.

[24] Open Source. SQLite, 2016. https://www.sqlite.org/about.html

- Last retrieved on 2016-09-21.

https://www.microsoft.com/en-us/cloud-platform/sql-server
https://www.microsoft.com/en-us/cloud-platform/sql-server
https://www.sqlite.org/about.html

References 68

[25] Oracle Corp. mySql, 2016. https://www.mysql.com/ - Last re-

trieved on 2016-09-23.

[26] Ostrovsky, R. Efficient computation on oblivious rams. In Pro-

ceedings of the Twenty-second Annual ACM Symposium on Theory of

Computing (New York, NY, USA, 1990), STOC ’90, ACM, pp. 514–523.

[27] Ostrovsky, R., and Skeith, W. E. A Survey of Single-Database

Private Information Retrieval: Techniques and Applications. Springer

Berlin Heidelberg, Berlin, Heidelberg, 2007, pp. 393–411.

[28] Pinkas, B., and Reinman, T. Oblivious RAM Revisited. Springer

Berlin Heidelberg, Berlin, Heidelberg, 2010, pp. 502–519.

[29] Rabin, M. O. How to exchange secrets with oblivious transfer, 2005.

Harvard University Technical Report 81 talr@watson.ibm.com 12955 re-

ceived 21 Jun 2005.

[30] Reardon, J., Pound, J., and Goldberg, I. Relational-complete

private information retrieval. Tech. rep., 2007.

[31] Ren, L., Yu, X., Fletcher, C. W., van Dijk, M., and Devadas,

S. Design space exploration and optimization of path oblivious ram in

secure processors. SIGARCH Comput. Archit. News 41, 3 (June 2013),

571–582.

[32] Shankar, B., Srinathan, K., and Rangan, C. P. Alternative

Protocols for Generalized Oblivious Transfer. Springer Berlin Heidel-

berg, Berlin, Heidelberg, 2008, pp. 304–309.

https://www.mysql.com/

References 69

[33] Shannon, C. E. Communication theory of secrecy systems. The Bell

System Technical Journal 28, 4 (Oct 1949), 656–715.

[34] Shi, E., Chan, T. H. H., Stefanov, E., and Li, M. Oblivious

RAM with O((logN)3) Worst-Case Cost. Springer Berlin Heidelberg,

Berlin, Heidelberg, 2011, pp. 197–214.

[35] Stefanov, E., and Shi, E. Path O-RAM: an extremely simple obliv-

ious RAM protocol. CoRR abs/1202.5150 (2012).

[36] Stefanov, E., van Dijk, M., Shi, E., Fletcher, C., Ren, L.,

Yu, X., and Devadas, S. Path oram: An extremely simple oblivious

ram protocol. In Proceedings of the 2013 ACM SIGSAC Conference

on Computer & Communications Security (New York, NY, USA,

2013), CCS ’13, ACM, pp. 299–310.

[37] Tassa, T. Generalized oblivious transfer by secret sharing. Designs,

Codes and Cryptography 58, 1 (2011), 11–21.

	List of algorithms
	List of Figures
	List of Tables
	Introduction
	Motivation and Problem Definition
	Two Factor Authentication Protocol
	Problem Definition and the Main Working Model
	The Contribution of this Thesis

	Background and Literature Overview
	Privacy in Database Systems
	Utilizing Intermediate Application
	Generating New Database Model

	Privacy Protocols Against Untrustworthy Database Servers
	Private Information Retrieval (PIR)
	Single-Database, Computationally Bounded PIR
	Multiple-Database, Information Theoretic PIR
	Overview of PIR

	Oblivious Transfer Protocol (OT)
	Oblivious Random Access Memory (ORAM)
	Path Oblivious RAM
	Simplicity and practical efficiency
	Asymptotic efficiency
	Practical and theoretic impact of Path ORAM
	Notation and Definition
	Path ORAM Protocol Description
	Client Storage and Bandwidth
	Stash Memory
	Position Map

	Path ORAM Initialization and Data I/O

	Proposed Study: Path Oblivious-RAM Based Public Key Repository
	Parsing SQL Command into a Path ORAM Data Request
	Mapping Path ORAM data structure into relational database
	User Data Table
	Path ORAM Mapping Table

	Performance Evaluation
	Communication Models
	Databases Used in Tests
	Query types tested
	Record Fetch Timing Analyses

	Conclusions and Future Work
	References

