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There has been an enormous interest towards cooperative communication in recent years.

Cooperative communication plays a significant role in providing a reliable communica-

tion in wireless networks. Cooperative communication helps overcome fading and at-

tenuation in wireless networks. Its main purpose is to increase the communication rates

across the network and to increase reliability of time-varying links. It is known that

wireless communication from a source to a destination can benefit from the cooperation

of nodes that overhear the transmission.

In this thesis we consider problem of resource allocation in cooperative network consist-

ing of Primary User (PU) and (N − 1) Secondary Users (SUs), operating in a shared

wireless medium. In our network scenario, PU’s dedicated channel suffers from fading.

PU, in order to overcome fading and attenuation, grants access of its dedicated chan-

nel to other SUs conditioned on their cooperation. Whenever PU’s dedicated channel is

OFF, its packet can be relayed through SU’s. Our ultimate goal is to design a distributed

algorithm to achieve optimal throughput properties.

Maximum Weight Scheduling can achieve throughput optimality by exploiting oppor-

tunistic gain in general network topology with fading channels. Despite the advantage of



vi

opportunistic scheduling, this mechanism requires that the existing central scheduler is

aware of network conditions such as channel state and queue length information of users.

We break this assumption by considering that only individual information is available at

each user. We design a Carrier Sense Multiple Access (CSMA) based algorithm which

only uses individual queue length information. We derive exact capacity region of the

cooperative network for two user scenario thus establishing superiority of the cooper-

ative network over non cooperative network. Then we prove throughput optimality of

our proposed algorithm for two scenarios; first being a cooperative network consisting

of N users with only PU having fading channel and second a two user scenario where

all existing links suffer from fading.
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Chapter 1

Introduction

There has been an enormous interest towards cooperative communication in recent years.

Cooperative communication plays a significant role in providing a reliable communica-

tion in wireless networks. Cooperative communication helps overcome fading and at-

tenuation in wireless networks. Its main purpose is to increase the communication rates

across the network and to increase reliability of time-varying links. It is known that

wireless communication from a source to a destination can benefit from the cooperation

of nodes that overhear the transmission. Early works on cooperation of this type, i.e.,

using a relay as a cooperative element is considered, in [1] which exemplifies this situ-

ation. Most of the early works on cooperation scheme focus on the physical layer and

on information-theoretic considerations (e.g. [2, 3]). In these settings, information bit

streams have been modeled as continuous data flows, while the rate regions have been

defined as Shannon rate regions which can be sometimes characterized when symbol

length and packet delay are allowed to approach infinity.

In this thesis we consider the problem of resource allocation in cooperative networks

consisting of a Primary User (PU) and (N − 1) Secondary Users (SUs) operating in a

shared wireless medium. In our network scenario, PU’s dedicated channel suffers from

fading. PU in order to overcome fading and attenuation, grants access of its dedicated

channel to the SUs conditioned on their cooperation. Whenever PU’s dedicated channel

is OFF, its packets can be relayed through SU’s. Our ultimate goal is to design a

distributed algorithm to achieve optimal throughput properties. The capacity region of

the network should be distinguished from the capacity region of a specific policy. The

latter being the collection of all traffic load matrices that are sustainable by the specific

policy. If a policy achieves capacity region of the network, then the policy is throughput

optimal.

1



Chapter 1. Introduction 2

Similar problem is considered in [4–7] where a SU acts as a relay to a PU while main-

taining its own packets. Stationary policies are developed in those with non throughput

optimal properties, while we develop an optimal throughput algorithm by dynamically

exploiting stochastic process associated with the network.

Optimal throughput algorithm, known as Maximum Weight Scheduling (MWS) for a

general network topology, first proposed in [8]. However, MWS requires the network to

select a max-weight schedule in every time slot (the weight of a schedule is the sum of the

weights of the scheduled links), which corresponds to finding a max-weight independent

set in the interference graph. This is known to be NP-hard for general interference

graphs [9] and [10]. In addition, MWS is not amenable to distributed implementation.

A centralized equalizer needs to gather necessary information at the beginning of the

slot which introduces overhead and as a result degrades efficiency of a time slot and

compromises the throughput [11].

Most of the low-complexity scheduling schemes have been designed for networks with

nonfading channels. Maximal scheduling is a low-complexity alternative to MWS that

is amenable to parallel and distributed implementation [12] and [13]. However, maximal

scheduling may only achieve a small fraction of the capacity region [14–16] while the

complexity is O(logN) [16] and N denotes the number of nodes. Greedy Maximal

Scheduling (GMS), also known as Longest-Queue-First (LQF), is another natural low-

complexity alternative to MWS [17–19] with complexity that grows linearly with the

total number of links L [20]. Its performance has been observed to be close to optimal

in a variety of wireless network simulations [21] and [22]. The Constant-time scheduling

algorithms, instead, can achieve a comparable capacity with O(1) complexity, i.e., the

complexity does not grow with the network size [23]. Another class of scheduling policies

called Pick-and-Compare has been developed in [24–28] with O(L) complexity. A policy

in this class picks a schedule at random, evaluates this and the current schedule by

comparing their queue weighted rate sum, and chooses the one with the larger sum as the

next schedule. One weakness of this approach is that the comparison process often needs

network-wide computations, which incur high complexity. Another class of distributed

scheduling, called Queue-length-based Random Access Scheduling policies, uses local

message exchanges to resolve contention [29–31]. By adjusting each link’s contention

probability from the link’s local queue information, it provides explicit tradeoffs between

efficiency, complexity, and the contention period. Complexity problem in schedulers

has been solved by recently developed Carrier-Sensing-Multiple-Access (CSMA)-based

scheduling policies [32, 33], which simplify the comparison process by exploiting carrier-

sensing. These schedulers also have O(1) complexity.
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1.1 Contributions and the Outline of the Thesis

These results indicate that good throughput performance may be attained for non-

fading environments using algorithms with very low complexity. We attack the problem

of scheduling in a fading environment. Recently, there have been a few other low-

complexity schemes that are provably efficient with fading channels [34, 35]. These

algorithms use only local information which is defined to be information available to

nodes in the same neighborhood. For small networks, where every nodes are assumed

to be in each others neighborhood, theses algorithms can achieve optimal throughput

performance, given availability of queue sizes and channel states. However, we assume

that each user only has access to its individual information (individual queue length

information) without any explicit message passing between the nodes.

In Chapter 2 we start by giving a thorough literature review regarding our network

model. Then general definitions regarding network model and network layer queuing is

described. Then we describe MWS algorithm and how it works in a general network

topology. And finally Q-CSMA as a base for our algorithm is described and intuition

and idea behind it is stated clearly.

In Chapter 3 we derive MWS for our cooperative network. We assume two different

cooperative scenarios. First, we assume that There are N users consisting of a PU and

(N − 1) SUs with only PU having a fading channel. Then we extend our model in to a

network with two users consisting of a PU and a SU in which all possible links suffer from

fading. Exact capacity region of the network for case of two users is derived and superior

performance of cooperative network over non cooperative network is established.

In Chapter 4 we establish why Q-CSMA is not an appropriate choice in our cooperative

model. Then we propose a distributed algorithm which generates time reversible Discrete

Time Markov Chain (DTMC) with product form stationary distribution. Using this

result we show that if some conditions are satisfied, our algorithm leads to a scheduling

policy sufficiently close to MWS, which guarantees the throughput optimality. Then we

extend the algorithm to the case with two users with multiple fading channels and prove

the throughput optimality.

Finally in Chapter 5 we compare our algorithm numerically with Q-CSMA, simple 802.11

and MWS in terms of of average sum of queues in the network and also average queue size

evolution of individual queues. As expected, numerical results are consistent with the

analytical results, suggesting throughput optimality of our algorithm. Also, as expected

numerical results suggest that Q-CSMA is not throughput optimal.



Chapter 2

Fundamentals

2.1 Literature Review

Cooperative communication helps overcome fading and attenuation in wireless networks.

Its main purpose is to increase the communication rates across the network and to

increase reliability of time-varying links. It is known that wireless communication from

a source to a destination can benefit from the cooperation of nodes that overhear the

transmission. Early work on cooperation with means of relaying can be found in [1]

which exemplifies this situation. Further work on the relay channel in [36] and [37] has

enabled substantial performance improvement. Most of the early works on cooperation

scheme focus on the physical layer and on information-theoretic considerations [2, 3, 38–

41]. In these settings, information bit streams have been modeled as continuous data

flows, while the rate regions have been defined as Shannon rate regions which can be

sometimes characterized when symbol length and packet delay are allowed to approach

infinity.

Additional improvements can be achieved through network layer design even without

any physical layer consideration. In [42] cognitive multiple-access strategy in the pres-

ence of a cooperating relay is proposed and its advantages in terms of maximum stable

throughput region and the delay performance, over conventional relaying strategies such

as selection and incremental relaying has been studied. Benefits of user cooperation

again in terms of maximum stable throughput region and the delay performance over

the non-cooperative situation is established in [43].

Delay trade-offs in systems with cooperation has been considered in [44] where a sec-

ondary user acts as a relay for a primary user. In [45] by dynamically and opportunis-

tically exploiting spatial diversity among the source users, a packet is delivered to the

4
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common destination through either a direct link or through cooperative relaying by in-

termediate source nodes that have a statistically better channel to the destination. The

results establish that the stable throughput region strictly contains the stable through-

put region achieved without cooperation.

In [4], benefits of using one user of a two-user random access system to relay traffic of the

other user is evaluated. A measure of capacity region is maximized by optimizing packet

acceptance probability by secondary user. A similar network model is considered in [5]

characterizes the stable-throughput region in a two user cognitive shared channel with

multi-packet reception, where the primary (higher priority) user transmits whenever it

has packets to transmit while the secondary (cognitive) node transmits its packets with

probability p. Therefore, in [4] and [5], the secondary link is allowed to share the channel

along with the primary link, in contrast to the traditional notion of cognitive radio, in

which the secondary user is required to relinquish the channel as soon as the primary is

detected.

In [6] and [7] Markovian game solution is adopted to solve problem of throughput op-

timization in relay networks where all users transmit their packets on a multiple-access

channel . In these works, maximization of the system throughput with minimum trans-

mission delay and power consumption cost is considered.

The capacity region of the network should be distinguished from the capacity region

of a specific policy. The latter being the collection of all traffic load matrices that are

sustainable by the specific policy [46]. A control policy that is optimal in the sense of

having a capacity region that coincides with the network capacity region and is therefore

a super set of the capacity region of any other policy was introduced in [8] and [47]. That

policy, the max weight adaptive back-pressure policy, was generalized later in several

ways [48–51] and it is an essential component of policies that optimize other performance

objectives. The back pressure policy consists in giving priority in forwarding through a

link to traffic classes that have higher backlog differentials.

The stochastic optimal control problem where the objective is the optimization of a

performance functional of the system is considered in [49, 52–56]. The development

of optimal policies for these cases relies on a number of advances including extensions

of Lyapunov techniques to enable simultaneous treatment of stability and performance

optimization, introduction of virtual cost queues to transform performance constraints

into queuing stability problems and introduction of performance state queues to facilitate

optimization of time averages.

As mentioned above, Max Weighted Scheduling (MWS) algorithm is throughput-optimal.

However, MWS requires the network to select a max-weight schedule in every time slot
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(the weight of a schedule is the sum of the weights of the scheduled links), which cor-

responds to finding a max-weight independent set in the interference graph. This is

known to be NP-hard for general interference graphs [9] and [10]. In addition, MWS is

not amenable to distributed implementation. Even in small networks, MWS can require

quite a lot of operations because its complexity is tied to the number of maximal sched-

ules of the network [57]. Therefore, it is of interest to find simple, distributed scheduling

algorithms that can achieve optimal or near-optimal performance.

Most of the low-complexity scheduling schemes have been designed for networks with

nonfading channels. Maximal scheduling is a low-complexity alternative to MWS that

is amenable to parallel and distributed implementation [12] and [13]. However, maxi-

mal scheduling may only achieve a small fraction of the capacity region [14–16] while

the complexity is O(logN) [16] and N denotes the number of nodes. Greedy Maximal

Scheduling (GMS), also known as Longest-Queue-First (LQF), is another natural low-

complexity alternative to MWS [17–19] with complexity that grows linearly with the

total number of links L [20]. Its performance has been observed to be close to optimal

in a variety of wireless network simulations [21] and [22]. New bounds on the throughput

efficiency of GMS is derived in [58]. The Constant-time scheduling algorithms, instead,

can achieve a comparable capacity with O(1) complexity, i.e., the complexity does not

grow with the network size [23]. Another class of scheduling policies called Pick-and-

Compare has been developed in [24–28] with O(L) complexity. A policy in this class

picks a schedule at random, evaluates this and the current schedule by comparing their

queue weighted rate sum, and chooses the one with the larger sum as the next schedule.

One weakness of this approach is that the comparison process often needs network-wide

computations, which incur high complexity. Another class of distributed scheduling,

called Queue-length-based Random Access Scheduling policies, uses local message ex-

changes to resolve contention [29–31]. By adjusting each link’s contention probability

from the link’s local queue information, it provides explicit tradeoffs between efficiency,

complexity, and the contention period. Limitations of randomization on the efficient

scheduling in wireless networks has been studied in [59, 60]. This framework models

many existing schedulers operating under a time-scale separation assumption as special

cases and identifies necessary and sufficient conditions on the network topology and on

the functional forms used in the randomization for throughput-optimality. Complexity

problem in schedulers has been solved by recently developed Carrier-Sensing-Multiple-

Access (CSMA)-based scheduling policies [32, 33], which simplify the comparison process

by exploiting carrier-sensing. These schedulers also have O(1) complexity. Nonetheless,

these results indicate that good throughput performance may be attained for non-fading

environments using algorithms with very low complexity.
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In practice, however, most wireless systems experience some level of channel fading.

When link rates vary across time due to fading, the system throughput can be further

improved by scheduling links when their rate are high. This is known as the opportunistic

gain [61]. For wireless networks, the MaxWeight algorithm can exploit this opportunistic

gain and in fact achieve the optimal throughput even with fading. However, many of

the low- complexity scheduling algorithms described in the previous paragraph cannot

exploit the opportunistic gain, and their performance in fading environments will be

much worse [34, 35, 62].

Recently, there have been a few other low-complexity schemes that are provably effi-

cient with fading channels [34, 35]. These algorithms use only local information which

is defined to be information available to nodes in the same neighborhood. For small

networks, where every nodes are assumed to be in each others neighborhood, theses al-

gorithms can achieve optimal throughput performance, given availability of queue sizes

and channel states.

2.2 Preliminaries and General Definitions

Consider a general network with a set N of nodes and a set L of transmission links. We

denote by N and L respectively the number of nodes and links in the network. Each

link i represents a communication channel for direct transmission from a given node n

to another node m, corresponding ordered node pair (n, m) (where n, m ∈ N). Note

that link (n, m) is distinct from link (m, n). In a wireless network, direct transmission

between two nodes may or may not be possible and this capability, as well as the

transmission rate, may change over time due to weather conditions, mobility or node

interference [63]. Hence in the most general case one can consider that L consists

of all ordered pairs of nodes, where the transmission rate of link i is zero if direct

communication is impossible. However, in cases where direct communication between

some nodes is never possible, it is helpful to consider that L is a strict subset of the set

of all ordered pairs of nodes.

The network is assumed to operate in slotted time with slots normalized to integral

units, so that slot boundaries occur at times t ∈ {0, 1, 2, 3, · · · }. Hence, slot t refers to

the time interval [ t, t+1 ). Let µ(t) = (µl(t)) represent the vector of transmission rates

offered over each link l during slot t. By convention, we define µi(t) = 0 for all time t

whenever a physical link i does not exist in the network. The link transmission rates

are determined by a link transmission rate function R(I, S), so that:
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µ(t) = R(I(t), S(t))

where S(t) represents the network topology state during slot t, and I(t) represents a

link control action taken by the network during slot t.

The topology state process S(t) represents all uncontrollable properties of the network

that influence the set of feasible transmission rates. For example, the network chan-

nel conditions and interference properties might change from time to time due to user

mobility, wireless fading, changing weather locations, or other external environmental

factors. In such cases, the topology state S(t) might represent the current set of node

locations and the current attenuation coefficients between each node pair.

The link control input I(t) takes values in a general state space IS(t), which represents

all of the possible resource allocation options available under a given topology state S(t).

For example, in a wireless network where certain groups of links cannot be activated

simultaneously, the control input I(t) might specify the particular set of links chosen

for activation during slot t, and the set IS(t) could represent the collection of all feasible

link activation sets under topology state S(t).

Every time slot the network controller observes the current topology state S(t) and

chooses a transmission control input I(t) ∈ IS(t), according to some transmission control

policy. This enables a transmission rate vector of µ(t) = R(I(t), S(t)).

2.2.1 Network layer queuing

We assume that, all data that enters the network is associated with a common destina-

tion. Let An(t) represent the amount of data that exogenously arrives to source node n

during slot t (for all n ∈ N). We assume that An(t) takes units of packets. The arrival

vector (An(t)) is i.i.d. over slots, where An(t) take integer units of packets. The arrival

rates are given by λn = E {An(t)}. It is assumed that An(t) ≤ Amax for all n and t.

The second moments E
{
An(t)2

}
and are assumed to be finite.

Let Qn(t) represent the current backlog, stored in a network layer queue at node n.

Consequently, Let Qi(t) = Qn(t) − Qm(t), represent queue size of link i connecting

ordered pair of nodes (n, m). We assume that all network layer queues have infinite

buffer storage space. Primary goal for this layer is to ensure that all queues are stable,
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so that time average backlog is finite. A queue is strongly stable if:

lim sup
t→∞

1

t

τ=0∑
t−1

E {Q(t)} <∞ (2.1)

That is, a queue is strongly stable if it has a bounded time average backlog. So naturally,

A network is strongly stable if all individual queues of the network are strongly stable

[46].

A network layer control algorithm makes decisions about routing, scheduling, and re-

source allocation in reaction to current topology state and queue backlog informa-

tion. The resource allocation decision I(t) ∈ IS(t) determines the transmission rates

µl(t) = Rl(I(t), S(t)) offered over each link i on time slot t. We assume that only

the data currently in node n at the beginning of slot t can be transmitted during that

slot. Hence, the slot-to-slot dynamics of the queue backlog Qn(t) satisfies the following

equality [64]:

Qn(t+ 1) = max

Qn(t)−
N∑

m=1,n6=m
µnm, 0

+
N∑

n=1,n6=m
µmn +An(t) (2.2)

where µnm(t) denotes the actual amount of data transmitted from node n to node m

(i.e., over link (n, m)) on slot t.

2.2.2 Maximum Weight Scheduling (MWS)

Next, we describe below an algorithm for resource allocation and routing which stabilizes

the network whenever the vector of arrival rates lies within the capacity region of the

network. The network layer capacity region Λ is the closure of the set of all arrival

rate vectors (λn) that can be stably supported by the network, considering all possible

strategies for choosing the control variables to affect routing, scheduling, and resource

allocation [8, 64].The notion of controlling the system to maximize its stability region

and the following algorithm that achieves it was introduced in [8, 47] and generalized

further in [48, 49, 51]. MWS algorithm works as follow:

Every time slot t, the network controller observes the queue backlog vector Q(t) =

(Qn(t)) and the topology state variable S(t) and performs the following actions for

routing and resource allocation.
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• Resource Allocation: For each link i, define ωi(t) as the weight:

ωi(t) = max [Qn(t)−Qm(t), 0] i connects n to m (2.3)

Choose the control action I(t) that solves the following optimization:

max
I(t)

∑
i

ωi(t)Ri (I(t), S(t))

Subject to : I(t) ∈ IS(t) (2.4)

• Routing: For each link i offer a transmission rate of µi(t) = Rl(I(t), S(t)).

The weights ωi(t) can be determined at each node provided that nodes are aware of

the backlog sizes of their neighbors. However, the optimization problem 2.4 that must

be solved at the beginning of each time slot requires in general knowledge of the whole

network state.

2.2.3 Queue-Length Based CSMA/CA (Q-CSMA)

In [33], a discrete time distributed randomized algorithm is proposed to achieve the full

capacity region in a single non-fading channel network. The algorithm of [33] is based

on a generalization of Glauber dynamics in statistical physics. In Glauber dynamics,

only one link has a state update within a time slot. In scheduling, a state update can

be interpreted as a transition of a link from “transmitting” to “idle” or from “idle” to

“transmitting”. The incremental state update in every time slot leads to a scheduling

policy sufficiently close to MWS, which guarantees the throughput optimality. In the

following we will briefly describe Q-CSMA as in [33].

2.2.3.1 Assumptions and the idea behind Q-CSMA

We further simplify the network model by assuming that none of the links i account

for fading. This implies that network topology state S(t) only accounts for interference

model. Also, there exists a directed link (n,m) ∈ L if node n can hear the transmission

of node m. We assume that if (n,m) ∈ L, then (m,n) ∈ L. For interference model, let

us denote C(i) as the set of conflicting links (called conflict set) of i for any i ∈ L. This

means, C(i) is the set of links such that if any one of them is active, then link i cannot

be active. Conflict set C(i) includes; node-exclusive constraint and radio interference

constraint, where, the first constraint accounts for nodes sharing a common node with i

(i.e., two links sharing a common node cannot be active simultaneously) and the latter
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accounts for nodes that are close to each other (i.e., links that will cause interference

to link i when transmitting). There is symmetry in the conflict set so that if i ∈ C(j)

then j ∈ C(i). A feasible schedule(Collision free) is a set of links that can be active at

the same time according to the conflict set constraint, i.e., no two links in a feasible

schedule conflict with each other. A schedule is represented by a vector x ∈ {0, 1}L.

The ith element of x is equal to 1 (i.e., xi = 1) if link i is included in the schedule;

xi = 0 otherwise. According to the conflict set constraint a feasible schedule x satisfies

the following condition:

xi + xj ≤ 1, for all i ∈ L and j ∈ C(i)

Let M be the set of all feasible schedules of the network.

For this interference model MWS selects a maximum weight schedule x∗(t) in every time

slot t such that

∑
i∈x∗(t)

ωi(t) = max
x∈M

∑
i∈x(t)

ωi

The key step of the MaxWeight algorithm is to find a feasible schedule which its links

have the maximum weight. In the original MaxWeight algorithm, weight of a link i

is defined to be the queue length Qi of that link, i.e., ωi(t) = Qi(t). This result was

generalized in [65] as follows. For all i ∈ L, let link weight ωi(t) = fi(Qi(t)), where

fi : [0, ∞]→ [0, ∞] are functions that satisfy the following conditions:

1. fi(Qi) is a non decreasing, continuous function with limQi→∞ fi(Qi) =∞.

2. Given any M1 > 0, M2 > 0 and 0 < ε < 1, there exists a Q <∞, such that for all

Qi > Q and ∀i, we have

(1− ε)fi(Qi) ≤ fi(Qi −M1) ≤ fi(Qi +M2) ≤ (1 + ε)fi(Qi). (2.5)

Q-CSMA implements MaxWeight scheduling in a distributed fashion when link weights

change slowly over time, so is throughput optimal. The key idea behind Q-CSMA is to

select feasible schedules according to the following distribution:

π(x) =
1

Z

∏
i∈x

eωi(t) =
e
∑
∈x ωi(t)

Z
(2.6)

where, ωi(t) is the associated weight of link i and

Z =
∑
x∈M

∏
i∈x

eωi(t)
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The reason to choose such a distribution, is that if an algorithm generates schedules

according to (2.6), then the following results can be applied to [65]:

Let ω∗(t) := maxx∈M(t)

∑
i∈x(t) ωi(t), where M(t) is the set of all feasible schedules at

time t. For a scheduling algorithm, if given any 0 < ε, δ < 1, there exists β > 0 such

that: if ω∗(t) > β, the scheduling algorithm chooses a schedule x(t) ∈M(t) that satisfies

Pr

∑
i∈x(t)

ωi(t) ≥ (1− ε)ω∗(t)

 ≥ 1− δ (2.7)

then the scheduling algorithm is throughput optimal.

2.2.3.2 Q-CSMA

Next, we describe a distributed algorithm (i.e., QCSMA) that generates schedules ac-

cording to distribution (2.6). We assume that ωi’s are fixed and do not change with

time. In reality, ωi will change, but if it changes very slowly, for example, if fi(Qi) is

chosen to be slightly smaller than log(1+Qi); one can show that the stability results will

not be affected, in manner that can be precisely described. We will describe a DTMC

whose states are the feasible schedules x, and show that the steady-state distribution of

this DTMC has the desired form. We will then describe a distributed algorithm under

which the MAC layer behaves like the DTMC. Now, we describe the basic scheduling

algorithm.

Let us divide each time slot t into a control slot and a data slot. The purpose of the

control slot is to generate a collision-free transmission schedule x(t) ∈ M used for data

transmission in the data slot. To achieve this, the network first selects a set of links

that do not conflict with each other, denoted by m(t). Note that these links also form

a feasible schedule, but it is not the schedule used for data transmission. We call m(t)

the decision schedule in time slot t.

Let M0 ⊂ M be the set of possible decision schedules. The network selects a decision

schedule according to a randomized procedure, i.e., it selects m(t) ∈ M0 with positive

probability α(m(t)), where
∑

m(t)∈M0
α(m(t)) = 1. Then, the transmission schedule

is determined as follows. For any link i in m(t), if no links in C(i) were active in the

previous data slot, then link i is chosen to be active with an activation probability pi

and inactive with probability p̄i = 1 − pi in the current data slot. If at least one link

in C(i) was active in the previous data slot, then i will be inactive in the current data

slot. Any link not selected by m(t) will maintain its state (active or inactive) from the

previous data slot.
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A necessary and sufficient condition for the DTMC of the transmission schedules to be

irreducible and aperiodic can be found in Proposition 1 of [33]. Also this algorithm

generates a DTMC which is reversible and has the following product form stationary

distribution:

π(x) =
1

Z

∏
l∈x

pi
p̄i
Z =

∑
x∈M

∏
l∈x

pi
p̄i

(2.8)

This suggests that if we choose:

pi =
eωi(t)

1 + eωi(t)
, ∀i ∈ L (2.9)

Then, (2.6) and (2.8) are equivalent. Proof of optimality can be found in Proposition 2

of [33].

To implement Q-CSMA in a distributed manner control slot is further divided into

control mini-slots. Recall that in the control slot, a collision-free transmission schedule

is generated and used for data transmission in the data slot. Note that once a link knows

whether it is included in the decision schedule, it can determine its state in the data slot

based on its carrier sensing information (i.e., whether its conflicting links were active

in the previous data slot) and activation probability. Detailed algorithm is described in

Algorithm 1 [33]:

Algorithm 1 Q-CSMA Algorithm

(at Link i in Time slot t)

1: Link i selects a random (integer) back-off time Ti uniformly in [0,W − 1] and waits
for Ti control mini-slots.

2: IF link i hears an INTENT message from a link in C(i) before the (Ti+1)-th control
mini-slot, i will not be included in m(t) and will not transmit an INTENT message
anymore. Link i will set xi(t) = xi(t− 1).

3: IF link i does not hear an INTENT message from any link in C(i) before the (Ti+1)-
th control mini-slot, it will send (broadcast) an INTENT message to all links in C(i)
at the beginning of the (Ti + 1)-th control mini-slot.

4: if there is a collision then
5: link i will not be included in m(t) and will set xi(t) = xi(t− 1).

6: if there is no collision then
7: link i will be included in m(t) and and decide its state as follows:
8: if no links in C(i) were active in the previous data slot then
9: xi(t) = 1 with probability pi

10: xi(t) = 0 with probability 1− pi
11: else
12: xi(t) = 0

13: IF xi(t) = 1, link i will transmit a packet in the data slot.



Chapter 3

Cooperative Network Model

3.1 Problem Definition

Cooperative communication helps overcome fading and attenuation in wireless networks.

Its main purpose is to increase the communication rates across the network and to

increase reliability of time-varying links. Due to the broadcasting nature of wireless

medium, nodes can overhear each others messages and consequently can benefit from

this characteristic. This message overhearing by other nodes, enables cooperation. We

consider a cooperative network as in Figure 3.1, where a Secondary User (SU) acts as

a relay for a Primary User (PU). PU is the owner of channel and SU can access the

channel conditioned on cooperating with PU by relaying its packets. We assume that

PU channel to destination suffers from fading while SU has a reliable channel. As we

will show, this cooperation will result in a better performance for PU.

)(1 tQ

)(2 tQ)(2 tA

)(1 t

)(12 t
)(2 t

)(1 tA
PU

SU

D

Figure 3.1: System Model.
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3.2 System Model

We consider a time slotted system where a primary user and a secondary user are upload-

ing their packets to a common destination as in Figure 3.1. Primary user, secondary user

and destination are denoted by PU , SU and D respectively. Links have unit capacity

and only one packet can be sent in any slot whenever possible.

The packet arrival process at PU and SU are denoted by A1(t) and A2(t) respectively.

Arrival process is i.i.d. over slots with Poisson distribution. The arrival rates are given

by λ1 = E {A1(t)} and λ2 = E {A2(t)}. It is assumed that Ai(t) ≤ Amax for all i and t.

The second moments E
{
A1(t)2

}
and E

{
A2(t)2

}
are assumed to be finite. To capture

the effect of fading on the link PU −D, we denote ρ1 as the probability that a packet

transmitted by PU is successfully decoded at D. We denote channel state process on

link PU − D by s1(t). We assume channel state process are i.i.d over slots and takes

values on {0, 1} with Pr (s1(t) = 1) = ρ1. We assume that, only PU ’s channel (i.e., link

between PU and D) suffers from fading. At each time slot t, three actions are defined

for the network. The scheduler based on the optimal policy which will be described

later, schedules a packet from PU to D (denoted by µ1(t)), or from PU to SU (denoted

by µ12(t)) to be relayed later, or from SU to D (denoted by denoted by µ2(t)). Only

one packet can be transmitted at any time slot t. A packet from PU can be transmitted

to SU only if the channel is OFF (i.e., s1(t) = 0).

3.3 Centralized Algorithm

This section describes the centralized algorithm to maximize the capacity region. We

assume that there is a centralized scheduler observing the network and scheduling the

actions. The scheduler has the all necessary information to take decisions. The ultimate

goal of the scheduler is to optimize µ1(t), µ12(t) and µ2(t) such that the network capacity

region is maximized. The cooperative network capacity region Λc for our model is the

closure of the set of all arrival rate vectors (λ1, λ2) that can be stably supported by

the network, considering all possible strategies for choosing scheduling variables, µ1(t),

µ12(t) and µ2(t).

It is known that Maximum Weight Scheduling (MWS) [8, 46, 64] can stabilize the

network whenever the arrival vector (λ1, λ2) lies strictly inside the network capacity

region (i.e., (λ1, λ2) ∈ Λc). In other words, MWS is throughput optimal. Next we will

describe how to implement MWS to our network model and specify the constraints.
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Let µ(t) = (µ1(t), µ12(t), µ2(t)) be the transmission decision on slot t taking only integer

values {0, 1}3 with the following constraint:

µ1(t) + µ12(t) + µ2(t) ≤ 1 (3.1)

Constraint 3.1 captures our interference model, where only one node can transmit at

any time slot t. Simultaneous transmission of nodes will result in collision. And also PU

transmits, only to D or SU and not both of them at the same time slot. The queuing

dynamics are given by:

Q1(t+ 1) = max [Q1(t)− µ1(t)− µ12(t), 0] +A1(t) (3.2)

Q2(t+ 1) = max [Q2(t)− µ2(t), 0] +A2(t) + µ12(t) (3.3)

Following Lyapunov drift theorem it can be shown that [64] MWS algorithm achieves

optimal throughput by opportunistically maximizing the following optimization problem

at each time slot t.

max
µ(t)

ω1(t) (µ1(t) + µ12(t)) + ω2(t)µ2(t)

subject to µ1(t) + µ12(t) + µ2(t) ≤ 1 (3.4)

where, ω1(t) and ω2(t) are the weights associated with PU and SU respectively, at time

slot t as follow:

ω1(t) =Q1(t)s1(t) + (1− s1(t)) (Q1(t)−Q2(t))+

ω2(t) =Q2(t) (3.5)

where, (x)+ = max {x, 0}.

For non-cooperative network (µ12(t) = 0 for all t) the network capacity Λnc, can be

written as follow [46]:

Λnc = {(λ1, λ2) |λ1 < ρ1, λ2 < 1, λ1 + λ2 < 1} (3.6)

It can be seen from Λnc that, in a non-cooperative network, SU can limit achievable rate

of PU . Also maximum supportable rate by PU is ρ1 at most, regardless of presence or

absence of SU . As mentioned above, PU is the licensed user of the channel and SU

cannot operate on the channel without PU permission. In the following theorem we

will prove capacity region of the cooperative network Λc and state motivation of PU in

permitting access to SU .
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Theorem 1. The cooperative network capacity region Λc is as follows:

Λc = { λ|λ2 < 1− ρ1, 2λ1 + λ2 < 1 + ρ1,

1− ρ1 ≤ λ2 < ρ2, λ1 + λ2 < 1 (3.7)

Proof. We prove the first segment of the capacity region, {λ2 < 1− ρ1, 2λ1 + λ2 < 1 + ρ1}.
The second segment (i.e., λ1 < ρ1) is the same as the network with no cooperation as

defined in 3.6. We denote µt1 := µ1(t) + µ12(t)

1. Q1(t) < Q2(t)

E
{
µt1(t)|Q(t)

}
= 0 (3.8)

E {µ2(t)|Q(t)} = 1 (3.9)

E {µ12(t)|Q(t)} = 0 (3.10)

2. Q2(t) ≤ Q1(t) ≤ 2Q2

E
{
µt1(t)|Q(t)

}
= ρ1 (3.11)

E {µ2(t)|Q(t)} = 1− ρ1 (3.12)

E {µ12(t)|Q(t)} = 0 (3.13)

3. Q1(t) > 2Q2(t)

E
{
µt1(t)|Q(t)

}
= 1 (3.14)

E {µ2(t)|Q(t)} = 0 (3.15)

E {µ12(t)|Q(t)} = 1− ρ1 (3.16)

As we are concentrating on λ2 < 1−p, 2λ1 +λ2 < 1+ρ1, it can be seen from service rates

that whenever, Q1(t) > 2Q2(t), PU gets an exceeding amount of service rate while SU

gets non. So Q2 starts to grow while Q1 decrease in size. Consequently Network makes

a transition from Q1(t) > 2Q2(t) to Q2(t) ≤ Q1(t) ≤ 2Q2. In this state PU gets a mean

service rate less than its arrival rate and starts to grow while Q2 starts to decrease so

the network returns to Q1(t) > 2Q2(t). So at any slot t, Pr (Q2(t) < Q1(t) ≤ 2Q2(t)) +

Pr (Q1(t) > 2Q2(t)) = 1. We define the Lyapunov function as q(t) = 2Q1(t) + Q2(t)

and show that expected drift has a negative value. For small positive value of ε we have

2λ1 + λ2 + ε = 1 + ρ1.
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• Q2(t) < Q1(t) ≤ 2Q2(t)

E {q(t+ 1)− q(t)|Q(t)} =2λ1 − 2E
{
µt1(t)|Q(t)

}
+ λ2 + E {µ12(t)|Q(t)}−

E {µ2(t)|Q(t)} = 2λ1 + λ2 − ρ1 − 1 = −2ε < 0 (3.17)

• Q1(t) > 2Q2(t)

E {q(t+ 1)− q(t)|Q(t)} =2λ1 − 2E
{
µt1(t)|Q(t)

}
+ λ2 + E {µ12(t)|Q(t)}

− E {µ2(t)|Q(t)} = 2λ1 + λ2 − ρ1 − 1 = −2ε < 0

(3.18)

Using total probability law we have:

E {q(t+ 1)− q(t)|Q(t)}

=E {q(t+ 1)− q(t)|Q2(t) < Q1(t) ≤ 2Q2(t)}Pr (Q2(t) < Q1(t) ≤ 2Q2(t))

+ E {q(t+ 1)− q(t)|Q1(t) > 2Q2(t)}Pr (Q1(t) > 2Q2(t)) = −2ε < 0 (3.19)

The cooperative network capacity region is depicted in Figure 3.2. It can be seen that in

the cooperative network, PU ’s maximum supportable rate is 1+ρ1

2 which strictly greater

than ρ1, ( i.e., PU’s maximum supportable rate when there is no cooperation whenever

ρ1 < 1.

1

2

1

2
1 1

111 

Figure 3.2: Cooperative capacity region Λc.
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3.4 Extension to N users

Consider the same problem with N users consisting of a PU and N − 1 SUs as depicted

in Figure 3.3. All SU ’s acts as a relay for PU . The packet arrival process at users are

denoted by Ai(t) (for i ∈ {1, · · · , N}) with A1(t) being arrival process of PU . Arrival

process is i.i.d. over slots with Poisson distribution. The arrival rates are given by

λi = E {Ai(t)}. It is assumed that Ai(t) ≤ Amax for all i and t. The second moments

E
{
Ai(t)

2
}

are assumed to be finite. Similarly, to capture the effect of fading on the

link PU − D, we denote ρ1 as the probability that a packet transmitted by PU is

successfully decoded at D. We denote channel state process on link PU −D by s1(t).

We assume channel state process are i.i.d over slots and takes values on {0, 1} with

Pr (s1(t) = 1) = ρ1.

)(1 tQ

)(2 tQ

)(1 tA

)(2 tA

)(1 t

)(12 t

)(2 t

PU

SU2

D

)(tQN SUN

)(tN
)(1 tN

)(tAN

Figure 3.3: System model for N users

Next we describe MWS with extension to N users. Let µ(t) = (µi(t), µ1j(t)) for all

i ∈ {1, · · · , N} and j ∈ {2, · · · , N} be the transmission decision on slot t. Where,

µi(t)denotes decision on direct transmission of user i to D at time slot t and µ1j(t)

denotes decision on transmitting a packet from PU to SUj .

µ(t) takes only integer values {0, 1}2N−1 with the following constraint:

N∑
i=1

µi(t) +

N∑
i=2

µ1i(t) ≤ 1 (3.20)

Constraint 3.20 captures our interference model, where only one node can transmit at

any time slot t. Simultaneous transmission of nodes will result in collision. Also it

implies that PU can transmit a packet to only D or one of the SUs at any time slot.
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The queuing dynamics are given by:

Q1(t+ 1) = max

[
Q1(t)− µ1(t)−

N∑
i=2

µ1i(t), 0

]
+A1(t) (3.21)

Qi(t+ 1) = max [Qi(t)− µi(t), 0] +A2(t) + µ1i(t) i ∈ {2, · · · , N} (3.22)

Following Lyapunov drift theorem it can be shown that [64] MWS algorithm achieves

optimal throughput by opportunistically maximizing the following optimization problem

at each time slot t.

max
µ(t)

ω1(t)

(
µ1(t) +

N∑
i=2

µ1i(t)

)
+

N∑
i=2

ωi(t)µi(t)

subject to

N∑
i=1

µi(t) +

N∑
i=2

µ1i(t) ≤ 1 (3.23)

where, ωi(t) is the weight associated with user i, at time slot t as follow:

ω1(t) =Q1(t)s1(t) + (1− s1(t))

[
max
i

(Q1(t)−Qi(t))
]+

ωi(t) =Qi(t) (3.24)

where, (x)+ = max {x, 0}. Note that, if the scheduler decides on relaying a packet, the

packet only goes to SUi with i = arg maxj (Q1(t)−Qj(t)). The exact capacity region

of the MWS when the number of users exceed two in fading channels is unknown. But

MWS as a optimal scheduler can stabilize the network whenever arrival rate vector λ

lies strictly inside the network capacity region.

3.5 Extension to multiple fading channels (when, N=2)

Consider the same cooperative model as in Figure 3.1 with only difference in channel

modeling. In this section we assume all channels PU − D, PU − SU and SU − D

denoted by s1(t), s12(t) and s2(t) respectively, suffer from fading. We capture fading

effect by assuming ON , OFF channels with Pr (s1(t) = 1) = ρ1, Pr (s12(t) = 1) = ρ12

and Pr (s2(t) = 1) = ρ2. Channels state vector is i.i.d. over slots and is denoted by

s(t) = (s1(t), s12(t), s2(t)).
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3.5.1 MWS for multiple fading channels (with N=2)

Let µ(t) = (µ1(t), µ12(t), µ2(t)) be the transmission decision on slot t. Where, µ1(t)

denotes decision on direct transmission of PU to D at time slot t, µ12(t) denotes decision

on transmitting a packet from PU to SU and µ2(t) is the decision on transmission a

packet from SU to D

µ(t) takes only integer values {0, 1}3 with the following constraint:

µ1(t) + µ12(t) + µ2(t) ≤ 1 (3.25)

Constraint 3.25 captures our interference model, where only one node can transmit at

any time slot t. Simultaneous transmission of nodes will result in collision. It also

implies that at any time slot, PU can only transmit to D or SU. The queuing dynamics

are given by:

Q1(t+ 1) = max [Q1(t)− µ1(t)− µ12(t), 0] +A1(t) (3.26)

Qi(t+ 1) = max [Qi(t)− µ2(t), 0] +A2(t) + µ12(t) (3.27)

Following Lyapunov drift theorem it can be shown that [64] MWS algorithm achieves

optimal throughput by opportunistically maximizing the following optimization problem

at each time slot t.

max
µ(t)

ω1(t) (µ1(t) + µ12(t)) + ω2(t)µ2(t)

subject to µ1(t) + µ12(t) + µ2(t) + µ2 ≤ 1 (3.28)

where, ωi(t) is the weight associated with user i, at time slot t as follow:

ω1(t) =Q1(t)s1(t) + (1− s1(t))s12(t) (Q1(t)−Q2(t))+

ω2(t) =Q2(t)s2(t) (3.29)

where, (x)+ = max {x, 0}.

3.5.2 Capacity region for multiple fading channels (when, N=2)

In this section, by calculating exact capacity region of our cooperative network with

multiple fading channels, we will show that even in the case of multiple fading channels

cooperation is possible. We start our analysis by computing the expected service rates
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for each user as follow:

E
{
µt1(t)|Q(t)

}
= E {µ1(t)|Q(t)}+ E {µ12(t)|Q(t)}

= ρ1(1− ρ2) + ρ1ρ21{Q1(t)≥(Q2(t)} + (1− ρ1)ρ12(1− ρ2)1{Q1(t)−Q2(t)>0}

+ (1− ρ1)ρ12ρ21((Q1(t)−Q2(t))+>Q2(t)) (3.30)

E {µ2(t)|Q(t)} = (1− ρ1)(1− ρ12)ρ2 + (1− ρ1)ρ12ρ21{(Q1(t)−Q2(t))+≤Q2(t)}

+ ρ1ρ21{Q1(t)<Q2(t)} (3.31)

E
{
At2(t)|Q(t)

}
= A2(t) + E {µ12(t)|Q(t)}

= A2(t) + (1− ρ1)ρ12(1− ρ2)1{Q1(t)−Q12(t)>0} + (1− ρ1)ρ12ρ21{(Q1(t)−Q2(t))+>Q2(t)}
(3.32)

where, expectation is taken with respect to channel state vector s(t); µt1(t) and At2(t) is

the total service rate of PU and total arrival of SU , respectively. Note that expected

service rates exactly follow from MWS algorithm.

Following theorems establish the capacity region associated with our network model.

Theorem 2. For ρ2 <
ρ12

1+ρ12
, the optimal capacity region is

Λc = {λ|λ2 < ρ2, λ1 + λ2 < ρ1 + ρ2(1− ρ1)} (3.33)

Proof. We will focus on the improved section of capacity region over a non-cooperative

model. It is well known that in a similar network without cooperation the capacity region

is Λnc = {λ|λ1 < ρ1, λ2 < ρ2, λ1 + λ2 < ρ1 + ρ2(1− ρ1)}. So we will provide the proof

for ρ1 ≤ λ1 < ρ1 + (1− ρ1)ρ2. when ρ2 <
ρ12

1+ρ12
, for ρ1 ≤ λ1 < ρ1 + (1− ρ1)ρ2 and any

possible value of λ2 that satisfies (3.33), states where Q1(t) > 2Q2(t), will be transient

and not likely to happen. The reason is that in this state λ1 < E
{
µt1(t)|Q1(t) > 2Q2(t)

}
and λ2 +E {µ12(t)|Q1(t) > 2Q2(t)} > E {µ2(t)|Q1(t) > 2Q2(t)}, meaning that Q1 tends

to decrease in size, while Q2 increases in size. So given that the network is in state

Q1(t) > 2Q2(t), it will have a transition to Q2(t) < Q1(t) ≤ 2Q2 and with a similar

analysis, in state Q2(t) < Q1(t) ≤ 2Q2, Q1 tends to decrease in size, while Q2 increases

in size so the system will have a transition to Q1(t) ≤ Q2(t). The story there is different

and SU has a better service rate. Briefly the system will have a transition from Q1(t) ≤
Q2(t) to Q2(t) < Q1(t) ≤ 2Q2 and the reverse transition will happen. We define

q(t) = Q1(t) + Q2(t) and show that for the defined range of (λ1, λ2) the expected

Lyapunov drift is strictly negative in every possible case leading to the strong stability

of the network. For small positive value of ε we have λ1 + λ2 + ε = ρ1 + (1− ρ1)ρ2
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• Q1(t) < Q2(t)

E {q(t+ 1)− q(t)|Q(t)} =λ1 − E
{
µt1(t)|Q(t)

}
+ λ2 − E {µ2(t)|Q(t)}

= λ1 + λ2 − ρ1(1− ρ2)− ρ2 = −ε < 0 (3.34)

• Q1(t) = Q2(t)

E {q(t+ 1)− q(t)|Q(t)} =λ1 − E
{
µt1(t)|Q(t)

}
+ λ2 − E {µ2(t)|Q(t)}

= λ1 + λ2 − ρ1 − (1− ρ1)ρ2 = −ε < 0 (3.35)

• Q2(t) < Q1(t) ≤ 2Q2(t)

E {q(t+ 1)− q(t)|Q(t)} =λ1 − E
{
µt1(t)|Q(t)

}
+ λ2 + E {µ12(t)|Q(t)}

− E {µ2(t)|Q(t)}

= λ1 + λ2 + (1− ρ1)ρ12(1− ρ2)− ρ1

− (1− ρ1)ρ12(1− ρ2)− ρ2(1− ρ1) = −ε < 0 (3.36)

Using total probability law we have:

E {q(t+ 1)− q(t)|Q(t)}

= E {q(t+ 1)− q(t)|Q1(t) < Q2(t)}Pr (Q1(t) < Q2(t))

+ E {q(t+ 1)− q(t)|Q1(t) = Q2(t)}Pr (Q1(t) = Q2(t))

+ E {q(t+ 1)− q(t)|Q2(t) < Q1(t) ≤ 2Q2(t)}Pr (Q2(t) < Q1(t) ≤ 2Q2(t)) = −ε < 0

(3.37)

Capacity region of the network for ρ2 <
ρ12

1+ρ12
can be seen in Figure 3.4.

Theorem 3. For ρ12

1+ρ12
< ρ2 ≤ ρ12

1−ρ12
, the optimal capacity region is

Λc = { λ|λ2 < (1− ρ1) [ρ2 − ρ12(1− ρ2)] , 2λ1 + λ2 < 2ρ1 + (1− ρ1) [ρ12(1− ρ2) + ρ2] ,

(1− ρ1) [ρ2 − ρ12(1− ρ2)] ≤ λ2 < ρ2, λ1 + λ2 < ρ1 + (1− ρ1)ρ2 }
(3.38)

Proof. For (1 − ρ1) [ρ2 − ρ12(1− ρ2)] ≤ λ2 < ρ2 the analysis is the same as in Theo-

rem 2. and states where Q1 > 2Q2(t) will be transient and unlikely to happen. And

it can be shown that q(t) = Q1(t) + Q2(t) has a negative drift exactly as in Theo-

rem 2. For λ2 < (1 − ρ1) [ρ2 − ρ12(1− ρ2)] and λ1 close to the boundary defined in
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Figure 3.4: Cooperative capacity region for ρ2 <
ρ12

1+ρ12
.

(3.38), given that the network is operating in the states of Q2(t) < Q1(t) ≤ 2Q2(t),

it can be seen that λ1 > E
{
µt1(t)|Q2(t) < Q1(t) ≤ 2Q2(t)

}
and λ2 + E {µ12(t)|Q(t)} <

E {µ2(t)|Q2(t) < Q1(t) ≤ 2Q2(t)} which results in increment of Q1 and decrement of Q2.

Note that, it is unlikely for the network to have a transition into Q1(t) ≤ Q2(t). Then the

network will have transition into Q1(t) > 2Q2(t) where λ1 < E
{
µt1(t)|Q1(t) > 2Q2(t)

}
and λ2 + E {µ12(t)|Q1(t) > 2Q2(t)} > E {µ2(t)|Q1(t) > 2Q2(t)} which results in decre-

ment of Q1 and increment of Q2. Then the network will have a transition back to

Q2(t) < Q1(t) ≤ 2Q2(t). We define the Lyapunov function as q(t) = 2Q1(t) + Q2(t)

and show that expected drift has a negative value. For small positive value of ε we have

2λ1 + λ2 + ε = 2ρ1 + (1− ρ1) [ρ12(1− ρ2) + ρ2]

• Q2(t) < Q1(t) ≤ 2Q2(t)

E {q(t+ 1)− q(t)|Q(t)} =2λ1 − 2E
{
µt1(t)|Q(t)

}
+ λ2 + E {µ12(t)|Q(t)}

− E {µ2(t)|Q(t)}

= 2λ1 + λ2 + (1− ρ1)ρ12(1− ρ2)− 2ρ1

− 2(1− ρ1)ρ12(1− ρ2)− ρ2(1− ρ1) = −2ε < 0 (3.39)
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• Q1(t) > 2Q2(t)

E {q(t+ 1)− q(t)|Q(t)} =2λ1 − 2E
{
µt1(t)|Q(t)

}
+ λ2 + E {µ12(t)|Q(t)}

− E {µ2(t)|Q(t)}

= 2λ1 + λ2 + (1− ρ1)ρ12 − 2ρ1

− 2(1− ρ1)ρ12 − (1− ρ1)(1− ρ12)ρ2 = −2ε < 0

(3.40)

Using total probability law we have:

E {q(t+ 1)− q(t)|Q(t)}

= E {q(t+ 1)− q(t)|Q2(t) < Q1(t) ≤ 2Q2(t)}Pr (Q2(t) < Q1(t) ≤ 2Q2(t))

+ E {q(t+ 1)− q(t)|Q1(t) > 2Q2(t)}Pr (Q1(t) > 2Q2(t)) = −2ε < 0 (3.41)

Capacity region of the network for ρ12

1+ρ12
< ρ2 ≤ ρ12

1−ρ12
can be seen in Figure 3.5.
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Figure 3.5: Cooperative Capacity region for ρ12
1+ρ12

< ρ2 ≤ ρ12
1−ρ12 .
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Theorem 4. For ρ2 >
ρ12

1−ρ12
, the optimal capacity region is

Λc = { λ|λ1 < ρ1 + (1− ρ1)ρ12, λ2 < (1− ρ1) [ρ2(1− ρ12)− ρ2] ;

2λ1 + λ2 < 2ρ1 + (1− ρ1) [ρ12(1− ρ2) + ρ2] ,

(1− ρ1) [ρ2(1− ρ12)− ρ2] ≤ λ2 < (1− ρ1) [ρ2 − ρ12(1− ρ2)] ;

λ1 + λ2 < ρ1 + (1− ρ1)ρ2, (1− ρ1) [ρ2 − ρ12(1− ρ2)] ≤ λ2 < ρ2 } (3.42)

Proof. For λ2 < (1 − ρ1) [ρ2(1− ρ12)− ρ12], we have λ2 + E {µ12(t)|Q1(t) > 2Q2(t)} <
E {µ2(t)|Q1(t) > 2Q2(t)} which means that the Q2, independent of λ1 has a negative

drift and if we choose λ1 + ε = ρ1 + (1 − ρ1)ρ12 for very small positive values of ε, the

network will stay in Q1(t) > 2Q2(t) states and also both queues have expected negative

drift leading to stability of the network. The proof for λ2 ≥ (1 − p1) [ρ2(1− ρ12)− ρ2]

follows exactly as in Theorem 2 and 3.

Capacity region of the network for ρ2 >
ρ12

1−ρ12
can be seen in Figure 3.6.
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Figure 3.6: Cooperative capacity region for ρ2 >
ρ12

1−ρ12 .



Chapter 4

Distributed Algorithm

In chapter 3 we described Maximum Weight Scheduling (MWS) for our cooperative net-

work model. MWS algorithm is throughput optimal in the sense that, it can support all

arrival vectors in the network capacity region. Implementing MWS has two main short-

comings. The first is high computational complexity in solving the optimization problem

and the second one is the cost associated with the collection of network state information

at a central location. Collecting the necessary information, introduces overhead which

degrades efficiency of a time slot and compromises the throughput [11]. Recently, a

class of schedulers based on CSMA is proposed to have optimal throughput properties

[32, 33]. These algorithms only use information available at an individual link and by

doing so, they circumvent problems associated with MWS. These algorithms use queue

lengths to determine channel access probabilities, achieving the full capacity region in

ad hoc wireless networks in a distributed manner. However, throughput optimality of

these algorithms, are limited to non-fading wireless links. There is no guarantee on the

performance of these algorithms, when the links suffer from fading. A simulation based

study in [34, 35] suggests that, these algorithms (e.g., Q-CSMA [33]) are not throughput

optimal.

Q-CSMA, fails to utilize opportunistic gain in fading channels. Recently, in [66] a

modified version of Q-CSMA has been proven to be throughput optimal in a cognitive

set up. Consider a cognitive network where a primary user and N secondary users are

operating on a single channel. Secondary users are not allowed to be active whenever

primary user is transmitting. Primary user’s activity is modeled as a ON-OFF process.

The work of [66], modifies Q-CSMA to account for variability of primary user activity.

Primary user does not participate in the algorithm. Secondary users involved in the

algorithm, have non-fading channels. In this work our aim is to design an algorithm

in a fading environment where primary user is a part of the algorithm. Also, our work

27
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addresses the benefits of cooperation for primary user while the set up in [66] is merely

cognitive and they aim to maximize capacity region of secodary users without interfering

with primary user. We break non interfering operation of SUs by allowing secondary

users in the same algorithm as primary user in order to maximize throughput of all users

including primary users.

4.1 System Model for Distributed Algorithm

Here, we modify our system model as in Figure 4.1 to be suited for a distributed algo-

rithm. We assume SU ’s have a separate queue to store PU packets. This modification

does not change network capacity region [4]. Our motive in separating the SU queues

is for PU to be able to calculate its weight without message passing. We re wright the

weights as follow:

ω1
1(t) =f(Q1(t))

ω0
1(t) =f(max

i
(Q1(t)−Q1i(t)))

ω0
i (t) =ω1

i (t) = f(max (Qi(t), Q1i(t))) (4.1)

where, i ∈ {2, · · · , N}, indicates N − 1 SU indexes, ω1 and ω0 is the weight when the

PU direct channel is ON or OFF respectively. Also f(.) satisfies properties defined in

Theorem 7.

)(1 tQ

)(2 tQ

)(1 tA

)(2 tA

)(1 t

)(12 t

)(2 t)(12 tQ

PU

SU2

D

)(tQN

)(1 tQN SUN

)(tN
)(1 tN

)(tAN

Figure 4.1: System Model
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The neighborhood of a given user i (i ∈ {1, 2, · · · , N}) which is all other users whose

transmission will cause collision on the transmission of user i, is denoted by C(i). Ac-

cording to our interference model, only one user can transmit at any given time slot t,

i.e.e, C(i) =∈ {1, 2, · · · , N} − {i}.

A feasible schedule is denoted by a vector x ∈ {0, 1}N . If user i is scheduled, ith

element of x is equal to 1 (i.e., xi = 1), otherwise xi = 0. Note that we incorporated

PU transmission to D or any other SU into a only single state (i.e., x1) for the sake of

simplicity. According to our model, PU can only transmit to a SU when its channel is

OFF and transmits to D otherwise. So, PU upon transmitting, can decide to transmit

to the desired destination. Similar to [33], with a little bit abuse of notation, we also

treat x as a set and write i ∈ x if xi = 1. According to our interference model, we have:

N∑
i=1

xi ≤ 1 (4.2)

which states that only one user can transmit at any given time slot t. Let M be the set

of all feasible schedules of the network.

Cooperation is performed at the protocol level as follows: whenever a packet is trans-

mitted from PU to SUi, an ACK from SUi is sent to PU informing deliverance of the

packet and then SUi, takes over the responsibility of delivering the packet to D by plac-

ing it in Q1i. Whenever SUi transmits a packet to D, the corresponding ACK from

D also is sent to PU specifying if the packet was sent from Q1i. Based on the ACKs

received from SU ’s and D, PU can calculate Q1i and consequently ω0
1(t). Also, when

the channel is OFF , PU given the right to transmit, by knowing all Q1i can decide

which SUi maximizes ω0
1(t) and based on that knowledge, transmits the packet to the

corresponding SU .

4.2 Q-CSMA Review

As mentioned, throughput optimal CSMA-based distributed scheduling algorithms such

as Q-CSMA [33] have been proposed in the recent past. Performance of Q-CSMA is

limited to non-fading channels. In the following we will present brief review on Q-CSMA

and state why it is not a good choice for our cooperative network model.

A discrete time distributed randomized algorithm is proposed in [33] to achieve the full

capacity region in non-fading wireless ad-hoc networks. The algorithm of [33] is based

on a generalization of Glauber dynamics in statistical physics. In Glauber dynamics,

only one link has a state update within a time slot. In scheduling, a state update can
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be interpreted as a transition of a link from “transmitting” to “idle” or from “idle” to

“transmitting”. The incremental state update in every time slot leads to a scheduling

policy sufficiently close to MWS, which guarantees the throughput optimality.

A more detailed description of the Q-CSMA algorithm is given in section 2.2.3. A brief

review is as follow: Each time slot t is divided into a control slot and a data slot, where

the control slot is much smaller than the data slot. In the control slot, a collision-free

transmission schedule is generated and used for data transmission in the data slot. Let

m(t) be a set of users that do not conflict with each other and selected randomly in the

control slot. M0 ⊆ M denotes the set of all m(t) which is all possible schedules at slot

t and M, is the set of all feasible schedules. The network randomly selects a feasible

schedule m(t), which is called the decision schedule in [33]. m(t) can be regarded as a

candidate schedule. Note that m(t) and m(t− 1) are independent for all t > 0 because

m(t) is chosen independently in the subsequent control slot [33]. Each link within m(t)

will be checked to decide whether it will be included in the transmission schedule x(t).

Link i ∈ m(t) may be included in x(t) if ∀j ∈ C(i), j /∈ x(t− 1); otherwise, Link i is not

included in x(t). Links in m(t) that had no neighbors active in the previous data slot are

allowed to update their states with a certain probability which is a function of their queue

lengths; those outside the decision schedule m(t) maintain their states. By explicitly

taking into account collisions in the control slot, the algorithm generates collision-free

transmission schedules x(t) for the data slot. More importantly, the Discrete Time

Markov Chain (DTMC) with the transmission schedule chosen as the state is shown to

be time-reversible and has product-form stationary distribution, which are used to prove

throughput optimality of this algorithm.

Next, we illustrate why x is a poor choice to represent states in our model. Consider

the network model when there is only one PU and one SU . To treat fading of PU

channel, we further define X = (x; s1(t)) to be system state at time slot t. s1(t) = 1 if

the channel is ON and s1(t) = 0 if the channel is OFF . For example, (0, 1; 1) indicates

that channel is ON and SU is transmitting; (1, 0; 0) means that the channel is OFF

and PU is transmitting to SU and (0, 1; 0) means that channel is OFF and SU is

transmitting. α0 is the probability that neither PU nor SU is selected in the decision

schedule, α1 is the probability that only PU is selected in the decision schedule and α2

is the probability that only SU is selected in the decision schedule (α0 + α1 + α2 = 1).

Note that in Q-CSMA, if user i has a right to transmit, it transmits with probability

pi and does not transmit with probability 1 − pi, where pi is a function of weights

defined in (4.1). We denote psi = eω
s
i

1+eω
s
i

as the activation probability of user i when

s1(t) = s, s ∈ {0, 1}. Note that p1
1 6= p0

1 (because ω1
1 6= ω0

1). DTMC associated with X

is depicted in Figure 4.2.
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Figure 4.2: DTMC associated with X

We now check to see whether the DTMC is time reversible by examining the transitions

of highlighted states in Fig.4.2 clockwise and counter-clockwise. The product of clock-

wise transition probabilities is ρ1α1(1 − ρ1)2p0
1(1 − p1

1)
[
α2(1− p1

2) + α1(1− p0
1 + α0)

]
and the product of counter-clockwise transition probabilities is ρ1α

2
1(1 − ρ1)2p0

1(1 −
p0

1)
[
α2(1− p0

2) + α1(1− p1
1 + α0)

]
. These two are not equal so the DTMC is not time

reversible by Kolmogorov’s criterion. The proof of throughput optimality for Q-CSMA

presented [33] is based on the reversibility of the underlying DTMC. For this reason,

direct application of Q-CSMA for our network model cannot be shown to be throughput

optimal as in [33]

4.3 Distributed Algorithm

In our model, network topology changes whenever PU channel s1(t) changes its state.

For instance, consider the network when there is a PU and SU as depicted in Figure

4.3. Whenever s1(t) = 1, the network consists of two users transmitting to a common

destination D as in Figure 4.3I. When s1(t) = 0, network consists of a PU whose packets

are transmitted through SU , while SU transmits packets to D as in Figure 4.3II. As

we showed, direct application of Q-CSMA resulted in a non-reversible DTMC. To cope

with this problem we want the DTMC’s associated with different network topologies to
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PU

SU

D

(I) Network topology when s1(t) = 1

PU

SU

D

(II) Network topology when s1(t) = 0

Figure 4.3: Different network topologies associated with s1(t)

evolve in different dimensions. For example, when s1(t) = 1, only Figure 4.3I evolves

while DTMC associated with s1(t) = 0, 4.3II, stops evolving.

Let’s define:

ý0(t) = {x(τ) : the largest τ ≤ t with s1(t) = 0} (4.3)

ý1(t) = {x(τ) : the largest τ ≤ t with s1(t) = 1} (4.4)

where ý0(t) is the vector of transmission schedule in the most recent data slot (including

time t) when the channel is OFF and ý1(t) is the vector of transmission schedule in the

most recent data slot when the channel is ON. According to (4.3), ý0(t), associated

with Figure 4.3II, is evolving when s1(t) = 0, while ý1(t), associated with Figure 4.3I,

stops evolving. And similarly, according to (4.4), ý1(t), associated with Figure 4.3I, is

evolving when s1(t) = 1, while ý0(t), associated with Figure 4.3II, stops evolving. With

a little bit abuse of notation, we treat ý0 (ý1) as a set and write i ∈ ý0 (i ∈ ý1) if ý0
i = 1

(ý1
i = 1). Corresponding transmission vector including the channel state is denoted by

y0 =
(
ý0(t); s1(t)

)
and y1 =

(
ý1(t); s1(t)

)
for two chains respectively. For instance, in

Figure 4.4, y0 = (1 0; 0) indicates that the channel is OFF and at time t PU has sent a

packet to SU and y0 = (1 0; 1) means that at current time slot t the channel is ON and

PU in the most recent slot when the channel was OFF had relayed a packet to SU.

It can be shown that y0 and y1 as the states are not time reversible. y0 and y1 are

depicted in Figure 4.4II and 4.4I respectively. By Algorithm 2 it is clear that when

the channel is OFF, outgoing probabilities from
(
ý0(t); 0

)
and

(
ý0(t); 1

)
to
(

´̂y0(t); 0
)

are the same but incoming probabilities from
(

´̂y0(t); s1(t)
)

to
(
ý0(t); 1

)
do not exist if

ý0(t) 6= ´̂y0(t). The same applies when the channel is ON.

Next let us define DTMC0 and DTMC1 as follow:

DTMC0 Ȳ
0

= (ý0(t)) (4.5)

DTMC1 Ȳ
1

= (ý1(t)) (4.6)
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(II) DTMC evolution when s1(t) = 0

Figure 4.4: Different DTMC evolutions associated with s1(t)

Note that Ȳ is aggregate state for each DTMC, which includes only ȳ. The state

evolution from ý0(t) to another state ˆ́y0(t) depends only on the current state ý0(t) and

the current input including the channel state s1(t) and the decision schedule. So both

Ȳ
0

and Ȳ
0

are Markovian. Rectangles in Figure 4.4 are the associated states in Ȳ
1

(Figure 4.4I) and Ȳ
0

(Figure 4.4II). Next we investigate the evolution of queue lengths.

For evolution of queue length we have :

Q1(t+ 1) =
[
Q1(t)− ý1

1(t)s1(t) + (1− s1(t))ý0
1(t)

]
+A1(t) (4.7)

Q1i(t+ 1) =
[
Q1i(t)− ý1

i (t)s1(t)1{Q1i(t)>Qi(t)} + (1− s1(t))ý0
i (t)1{Q1i(t)>Qi(t)}

]
+ (1− s1(t))ý0

1(t)1{i=arg maxj ω0
j (t)} (4.8)

Qi(t+ 1) =
[
Qi(t)− ý1

i (t)s1(t)1{Qi(t)≥Q12(t)} + (1− s1(t))ý0
i (t)1{Qi(t)≥Q1i(t)}

]
+Ai(t)

(4.9)

i ∈ {2, · · · , N}

It can be seen that the service rates only depends on s1(t), ý1(t) and ý0(t) and since

ý1(t) and ý0(t) are Markovian, the queue lengths evolve as a Markov Chain with the

transitions caused by arrivals, departures and channel state in the current time slot.

The candidate decision schedule for users when the channel is ON is denoted by m1(t)

and when the channel is OFF with m0(t). The set of all m1(t) and m0(t) is denoted by

M1
0 and M0

0, respectively. We define α1
(
m1(t)

)
and α0

(
m0(t)

)
as the probability that

m1(t) is chosen in the control slot when the channel is ON , and the probability that

m0(t) is chosen in the control slot when the channel is OFF , respectively.

Next, we describe MQ-CSMA1 in algorithm 2, which generates reversible DTMC’s, Ȳ
1

and Ȳ
0

by characterizing the different network topologies when the channel is ON or
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Algorithm 2 MQ-CSMA1

At each time slot, each node i does the following procedure.

1: if s1(t) = 1 then
2: In the control slot, randomly select a decision schedule m1(t) ∈M1

0 with proba-
bility α1

(
m1(t)

)
3: if i ∈m1(t) and ý1

j (t− 1) = 0 for all j 6= i then

4: xi(t) = 1 with probability p1
i

5: xi(t) = 0 with probability 1− p1
i

6: else if i ∈m1(t) and ý1
j (t− 1) = 1 for some j 6= i then

7: xi(t) = 0
8: else
9: xi(t) = ý1

i (t− 1) (i /∈m1(t))

10: In the Data slot, use x(t) as the transmission schedule
11: else
12: Execute lines 2-10 by replacing all 1 with 0 in the superscript.

OFF. Algorithm 2 summarizes MQ-CSMA1 algorithm. At each slot t, all SU ’s and PU

senses the channel to acquire state of s1(t) as shown in Figure 4.5. Next we elaborate

on different behavior of users associated with channel state. When the channel is ON ,

users treat most recently ON slot as their previous slot ignoring the OFF period, and

schedule packets in a way similar to Q-CSMA (Lines 2-10) where p̄i = 1− pi. When the

channel is OFF, users treat most recently OFF slot as their previous slot ignoring the

ON period, and schedule packets in a way similar to Q-CSMA (Lines 12 in Algorithm

2).

Channel

Sensing
Contention Period Transmission Period

Time Slot

Figure 4.5: Time slot model.

To shed light on how the algorithm works, let us consider Fig.4.4. Rectangles in

Figure 4.4I are states of aggregate Markov chain, Ȳ
1
, defined in (4.6) with ý1 ∈

{(0 0), (0 1), (1 0)} and similarly rectangles Figure 4.4II are states of aggregate Markov

chain, Ȳ
0

defined in (4.5) with ý0 ∈ {(0 0), (0 1), (1 0)}. Ovals in Figure 4.4I are states,

y1 with y1 ∈ {(0 0; 0), (0 0; 1), (0 1; 0), (0 1; 1), (1 0; 0), (1 0; 1)} and also similarly, ovals

in Figure 4.4II are states of y0 with y0 ∈ {(0 0; 0), (0 0; 1), (0 1; 0), (0 1; 1), (1 0; 0), (1 0; 1)}.
For example, y1 = (0 1; 1) indicates that the channel is ON and at time slot t, SU is

transmitting and y1 = (1 0; 0) indicates that the channel is OFF and in the most re-

cent slot when the channel was ON, PU was transmitting. y0 = (1 0; 0) indicates that
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channel is OFF and PU transmits a packet to SU and y0 = (1 0; 1) indicates that in the

most recent data slot when the channel was OFF PU was transmitting a packet to SU.

When the channel is ON, only the chain in Figure 4.4I, associated with s1(t) = 1 evolves

and the chain in Figure 4.4II associated with s1(t) = 0 remains in the previous state

(Lines 2-10 in Algorithm 2). When the channel is OFF, only the chain in Figure 4.4II

associated with s1(t) = 0 evolves and first the chain in Figure 4.4I, associated with

s1(t) = 1 remains in the previous state (Lines 12 in Algorithm 2).

Next, we show how to implement the algorithm in a distributed manner similar to

[33]. We divide the time slot into three periods as shown in Fig. 4.5. In the channel

sensing period, users acquire channel state of primary user, s1(t). Next to choose a

randomize feasible schedule m0(t) or m1(t), (i.e. line 2 in the distributed algorithm)

user i, randomly selects a number Ti uniformly distributed in [1,W ] and waits for Ti

control mini slots, if user i hears a INTENT message from another user before (Ti+ 1)th

control mini-slot, i will not be included in m0(t) or m1(t) and consequently will not

transmit a INTENT message in (Ti + 1)th control mini-slot. If user i does not hear

a INTENT message from any other user before (Ti + 1)th mini slot, it will broadcast

an INTENT message at the beginning of the (Ti + 1)th control mini-slot. If there is

no collision in (Ti + 1)th control mini-slot, i will be included in m0(t) or m1(t) or else

none of the users will transmit. After the end of transmission period, protocol level

cooperation described in Section 4.1, performs.

In the following, we prove throughput optimality of Algorithm 2. Lemma 1 and Lemma

2 presents the transition probability of ý0 and ý1 respectively. Product-form of the

stationary distribution of ý0 and ý1 are given in Theorem 5 and Theorem 6 respectively.

And finally, Theorem 7 proves the throughput optimality of Algorithm 2.

Lemma 1. 1. A state ý0 can make a transition to a state ˆ́y0
(
ý0 6= ˆ́y0

)
iff

ý0 ∪ ˆ́y0 ∈M0
0 (4.10)

and there exists a decision schedule m0 ∈M0
0 s.t.

ý0∆ˆ́y0 := (ý0\ˆ́y0) ∪ (ˆ́y0/ý0) ⊆m0 (4.11)
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2. The transition probability P
(
ý0, ˆ́y0

)
from ý0 to ˆ́y0 is

P
(
ý0, ˆ́y0

)
=

∑
m0∈M0

0:ý0∆ˆ́y0⊆m0

(1− ρ1)α0(m0)

 ∏
l∈ý0\ˆ́y0

p̄0
l

 ∏
k∈ˆ́y0/ý0

p0
k


 ∏
i∈m0∩(ý0∩)ˆ́y0

p0
i

 ∏
j∈m0\(ý0∪ˆ́y0)\C(ý0∪ˆ́y0)

p̄0
j

 (4.12)

where C(ý0 ∪ ˆ́y0) denotes the neighbors of nodes in ý0 ∪ ˆ́y0.

Proof. Part one in can be proven as Lemma 2 in [33]. To prove Part 2. let us denote

P sch
(
ý0, ˆ́y0

)
as P

(
ý, ˆ́y

)
in Lemma 2 of [33] which is the transition probability from ý

to ˆ́y with always OFF channel. we need to show that

P
(

(ý0; 0), ˆ́y0
)

= P
(

(ý0; 1), ˆ́y0
)

= (1− ρ1)P sch
(
ý0, ˆ́y0

)
(4.13)

We have

P
(

(ý0; 0), ˆ́y0
)

=P
(

(ý0; 0), (ˆ́y0; 0)
)

+ P
(

(ý0; 0), (ˆ́y0; 1)
)

(1− ρ1)P sch
(
ý0, ˆ́y0

)
+ 0 (4.14)

P
(

(ý0; 1), ˆ́y0
)

=P
(

(ý0; 1), (ˆ́y0; 0)
)

+ P
(

(ý0; 1), (ˆ́y0; 1)
)

(1− ρ1)P sch
(
ý0, ˆ́y0

)
+ 0 (4.15)

By Lemma 2 in [33] which states the transition probability with the always-available

channel, we can prove Part 2.

State transition probabilities shows that, DTMC0 has product-form stationary distri-

butions. Since there are two chains for two different channel state either one of them

can be treated as the channel state unchanged.

Theorem 5. A necessary and sufficient condition for the DTMC0 to be irreducible and

aperiodic is
⋃

m0∈M0
0
m0 = {1, · · · , N} and in this case the DTMC0 is reversible and



Chapter 4. Distributed Algorithm 37

has the following product-form stationary distribution:

π
(
Ȳ 0
)

=
1

Z0

∏
i∈y0

p0
i

p̄0
i

(4.16)

Z0 =
∑

y0∈M0

∏
i∈y0

p0
i

p̄0
i

(4.17)

Proof. Necessary and sufficient conditions can be proven as Proposition 1 in [33]. We

can check that distribution in 4.16 satisfies the detailed balance equation:

π
(
ý0
)
P
(
ý0, ˆ́y0

)
= π

(
ˆ́y0
)
P
(

ˆ́y0, ý0
)

(4.18)

hence the DTMC0 is reversible and 4.16 is indeed its stationary distribution.

Similarly we need to show that DTMC1 has a product-form stationary distribution.

Lemma 2. 1. A state ý1 can make a transition to a state ˆ́y1
(
ý1 6= ˆ́y1

)
iff

ý1 ∪ ˆ́y1 ∈M1
0 (4.19)

and there exists a decision schedule m1 ∈M1
0 s.t.

ý1∆ˆ́y1 := (ý1\ˆ́y1) ∪ (ˆ́y1/ý1) ⊆m1 (4.20)

2. The transition probability P
(
ý1, ˆ́y1

)
from ý1 to ˆ́y1 is

P
(
ý1, ˆ́y1

)
=

∑
m1∈M1

0:ý1∆ˆ́y1⊆m1

ρ1α
1(m1)

 ∏
l∈ý1\ˆ́y1

p̄1
l

 ∏
k∈ˆ́y1/ý1

p1
k


 ∏
i∈m1∩(ý1∩)ˆ́y1

p1
i

 ∏
j∈m1\(ý1∪ˆ́y1)\C(ý1∪ˆ́y1)

p̄1
j

 (4.21)

where C(ý1 ∪ ˆ́y1) denotes the neighbors of nodes in ý1 ∪ ˆ́y1.

Proof. Part one in can be proven as Lemma 2 in [33]. To prove Part 2. let us denote

P sch
(
ý1, ˆ́y1

)
as P

(
ý, ˆ́y

)
in Lemma 2 of [33] which is the transition probability from ý

to ˆ́y with always ON channel. we need to show that

P
(

(ý1; 0), ˆ́y1
)

= P
(

(ý1; 1), ˆ́y1
)

= ρ1P
sch
(
ý1, ˆ́y1

)
(4.22)

The rest of the proof is the same as in Lemma 1
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Theorem 6. A necessary and sufficient condition for the DTMC1 to be irreducible and

aperiodic is
⋃

m1∈M1
0
m1 = {1, · · · , N} and in this case the DTMC1 is reversible and

has the following product-form stationary distribution:

π
(
Ȳ 1
)

=
1

Z1

∏
i∈ý1

p1
i

p̄1
i

(4.23)

Z1 =
∑

ý1∈M1

∏
i∈y1

p1
i

p̄1
i

(4.24)

Proof. Necessary and sufficient conditions can be proven as Proposition 1 in [33]. We

can check that distribution in 4.23 satisfies the detailed balance equation:

π
(
ý1
)
P
(
ý1, ˆ́y1

)
= π

(
ˆ́y1
)
P
(

ˆ́y1, ý1
)

(4.25)

hence the DTMC1 is reversible and 4.23 is indeed its stationary distribution.

Product-form distribution of Ȳ 0 and Ȳ 1, suggests that we can use results established in

[65] to prove throughput optimality of the algorithm.

Theorem 7. Let ω∗(t) := maxx∈M(t)

∑
i∈x(t) ωi(t), where M(t) is the set of all feasible

schedules at time t. For a scheduling algorithm, if given any 0 < ε, δ < 1, there exists

β > 0 such that: if ω∗(t) > β, the scheduling algorithm chooses a schedule x(t) ∈M(t)

that satisfies

Pr

∑
i∈x(t)

ωi(t) ≥ (1− ε)ω∗(t)

 ≥ 1− δ (4.26)

where, ωi(t) is a function of queue lengths defined in (4.1) with f(.)satisfying the fol-

lowing conditions:

1. fi(w) is a non decreasing, continuous function with limQi→∞ fi(w) =∞;

2. Given any a ∈ <, limw→∞
fi(w+a)
fi(w) = 1

Then the scheduling algorithm is throughput optimal.

Throughput optimality results established in Theorem 7 holds for any network topology

with fading wireless channels as long as conditions are satisfied. We choose pi = eωi(t)

1+eωi(t)

as long as conditions in Theorem 7 is satisfied. By choosing ωi wisely, pi changes slowly

over time and we can assume that DTMC is in steady-state in every time slot (time scale

separation) [33]. In the following we will show that MQ-CSMA1 is throughput optimal
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by showing that in each channel state it is close enough to another throughput optimal

algorithm (i.e., MWS).

Theorem 8. Suppose
⋃
m0∈M0 m0 = {1, · · · , N} and

⋃
m1∈M1 m1 = {1, · · · , N}. Let

p0
i = eω

0
i (t)

1+eω
0
i

(t)
, ∀i ∈ {1, · · · , N} when s(t) = 0 and p1

i = eω
1
i (t)

1+eω
1
i

(t)
, ∀i ∈ {1, · · · , N} when

s(t) = 1. Then the algorithm is throughput-optimal.

Proof. Theorems 5 and 6 states that both DTMC Ȳ 0 and Ȳ 1 have product-form sta-

tionary distributions. Given any 0 < ε, δ < 1, we define ω0∗(t) = maxx0∈M0

∑
i∈x0 ω0

i (t).

Based on this, four sets of states, when channel is OFF are defined as follows:

χ0
0 :=

(ý0; 0)|ý0 ∈M0
0,
∑
i∈ý0

ω0
i (t) < (1− ε)ω0∗(t)

 (4.27)

χ0
1 :=

(ý0; 1)|ý0 ∈M0
0,
∑
i∈ý0

ω0
i (τ) < (1− ε)ω0∗(τ)

 (4.28)

ϕ0 := χ0
0 ∪ χ0

1 (4.29)

ψ0 :=

Ȳ 0 = (ý0)|ý0 ∈M0
0,
∑
i∈ý0

ω0
i (t) < (1− ε)ω0∗(t)

 (4.30)

where χ0
0 includes all states with the channel being OFF and the sum of ω0

i (t) from users

chosen in the schedule is at least a fraction of ε away from ω0∗(t), χ0
1 includes all states

with the channel ON and the sum of ω0
i (τ) from users chosen in the schedule of the most

recently OFF slot is at least a fraction of ε away from ω0∗(τ). As a reminder, here τ is

the most recent time slot where channel was OFF. It can be seen that if (ý0; s(t)) ∈ ϕ0,

then ȳ0 = (ý0) ∈ ψ0. We then calculate the probability of a state in set χ0
0.

π(χ0
0) < π(ϕ0) = π(ψ0) =

∑
ý0∈ψ0

π(Ȳ 0) =
∑

ý0∈ψ0

e
∑
i∈y0 ω0

i (t)

Z0

≤ (N + 1)e(1−ε)ω0∗(t)

Z0
<

N + 1

eεω0∗(t)
(4.31)

where,

Z0 =
∑

ý0∈M0
0

e
∑
i∈ý0 ω0

i (t) > e
max

ý0∈M0
0

∑
i∈ý0 ω0

i (t)
= eω

0∗(t) (4.32)

π(ϕ0) = π(ψ0), because 1{(ý0;0)∪(ý0;1)} = 1{(ý0)}; The last equality is true because∣∣ψ0
∣∣ ≤ ∣∣M0

0

∣∣ = N + 1. Thus, ∃β0 > 0, such that: ω0∗ > β0 implies that π(χ0
0) <
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δmin(ρ1, 1− ρ1) with δ = N+1

min(ρ1,1−ρ1)eεβ0 . Then we have the following result:

Pr

∑
i∈ý0

ω0
i (t) ≥ (1− ε)ω0∗(t)|s(t) = 0

 = 1− Pr

∑
i∈ý0

ω0
i (t) < (1− ε)ω0∗(t)|s(t) = 0


= 1− π(χ0

0)

1− ρ1
> 1− δmin(ρ1, 1− ρ1)

1− ρ1
≥ 1− δ

(4.33)

Similarly for Ȳ 1, let maxý1∈M1
0

∑
i∈ý1 ω1

i (t). Similar to DTMC0 four sets are defined as

follow:

χ1
0 :=

(ý1; 0)|ý1 ∈M1
0,
∑
i∈ý1

ω1
i (t) < (1− ε)ω1∗(t)

 (4.34)

χ1
1 :=

(ý1; 1)|ý1 ∈M1
0,
∑
i∈ý1

ω1
i (t) < (1− ε)ω1∗(t)

 (4.35)

ϕ1 := χ1
0 ∪ χ1

1 (4.36)

ψ1 :=

Ȳ 1 = (ý1)|ý1 ∈M1
0,
∑
i∈ý1

ω1
i (t) < (1− ε)ω1∗(t)

 (4.37)

We then calculate the probability of a state in set χ1
1

π(χ1
1) < π(ϕ1) = π(ψ1) =

∑
ý1∈ψ1

π(Ȳ 1) =
∑

ý1∈ψ1

e
∑
i∈ý1 ω1

i (t)

Z1

≤ (N + 1)e(1−ε)ω1∗(t)

Z1
<

N + 1

eεω1∗(t)
(4.38)

where,

Z1 =
∑

ý1∈M1
0

e
∑
i∈ý1 ω1

i (t) > e
max

ý1∈M1
0

∑
i∈ý1 ω1

i (1)
= eω

1∗(t) (4.39)

π(ϕ1) = π(ψ1), because 1{(ý1;0)∪(ý1;1)} = 1{(ý1)}; The last equality is true because∣∣ψ1
∣∣ ≤ ∣∣M1

0

∣∣ = N + 1. Thus, ∃β1 > 0, such that: ω1∗ > β1 implies that π(χ1
1) <

δmin(ρ1, 1− ρ1) with δ = N+1

min(ρ1,1−ρ1)eεβ1 . Then we have the following result:

Pr

∑
i∈ý1

ω1
i (t) ≥ (1− ε)ω1∗(t)|s(t) = 1

 = 1− Pr

∑
i∈ý1

ω1
i (t) < (1− ε)ω1∗(t)|s(t) = 1


= 1− π(χ0

0)

ρ1
> 1− δmin(ρ1, 1− ρ1)

ρ1
≥ 1− δ

(4.40)
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We use the total probability formula to calculate the unconditional probability:

Pr

∑
i∈x́(t)

ωi(t) ≥ (1− ε)ω∗(t)


=Pr

 ∑
i∈ý0(t)

ω0
i (t) ≥ (1− ε)ω0∗(t)|s(t) = 0

Pr (s(t) = 0)

+Pr

 ∑
i∈ý1(t)

ω1
i (t) ≥ (1− ε)ω1∗(t)|s(t) = 1

Pr (s(t) = 1)

≥(1− δ)ρ1 + (1− δ)(1− ρ1) = 1− δ (4.41)

Note that, x(t) = ý0(t), ω∗(t) = ω0∗(t) when s(t) = 0 and x(t) = ý1(t), ω∗(t) = ω1∗(t)

when s(t) = 1. Hence by Theorem 7, MQ-CSMA1 is throughput optimal.

4.4 Extension to Multiple Fading channels (with N=2)

In section 3.5 we considered cooperative network when all the channels are fading. We

assume separate queues in SU as in Figure 4.1 (with, N = 2, i.e., one PU and one

SU) so that PU can calculate its weight in a distributed manner as discussed in section

3.5. Our ultimate goal is to design a distributed algorithm to solve the scheduling

problem as discussed in section 3.5. As a reminder, channels PU − D, PU − SU and

SU − D are denoted by s1(t), s12(t) and s2(t) respectively, with Pr (s1(t) = 1) = ρ1,

Pr (s12(t) = 1) = ρ12 and Pr (s2(t) = 1) = ρ2. Channels state vector is i.i.d. over slots

and is denoted by s(t) = (s1(t), s12(t), s2(t)).

4.4.1 Distributed Algorithm

Similar to section 4.3 we will associate a separate Markov chain with each channel state.

Each channel state realization changes the topology of the network as depicted in Figure

4.6. Vector of transmission schedule is denoted by x(t).

Let us define the following:
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SU D

(I) Network topology when
s(t) = (0, 0, 1)

PU SU

(II) Network topology when
s(t) = (0, 1, 0)

PU

SU

D

(III) Network topology when s(t) = (0, 1, 1)

PU D

(IV) Network topology when
s(t) ∈ {(1, 0, 0) , (1, 1, 0)}

PU

SU

D

(V) Network topology when s(t) ∈
{(1, 0, 1) , (1, 1, 1)}

Figure 4.6: Different network topologies associated with s(t)

ý1(t) = {x(τ) : the largest τ ≤ t with s(t) = (0, 0, 1)} (4.42)

ý2(t) = {x(τ) : the largest τ ≤ t with s(t) = (0, 1, 0)} (4.43)

ý3(t) = {x(τ) : the largest τ ≤ t with s(t) = (0, 1, 1)} (4.44)

ý46(t) = {x(τ) : the largest τ ≤ t with s(t) ∈ {(1, 0, 0) , (1, 1, 0)}} (4.45)

ý57(t) = {x(τ) : the largest τ ≤ t with s(t) ∈ {(1, 0, 1) , (1, 1, 1)}} (4.46)

where ý1(t) is the vector of transmission schedule in the most recent data slot (in-

cluding time t) when s(t) = (0, 0, 1), ý2(t) is the vector of transmission schedule in

the most recent data slot, when s(t) = (0, 1, 0), ý3(t) is the vector of transmission

schedule in the most recent data slot, when s(t) = (0, 1, 1), ý46(t) is the vector of

transmission schedule in the most recent data slot, when s(t) ∈ {(1, 0, 0) , (1, 1, 0)}
and ý57(t) is the vector of transmission schedule in the most recent data slot, when

s(t) ∈ {(1, 0, 1) , (1, 1, 1)}. Note that, each ý(t) makes a transition into another state

only in their own associated channel state and stop evolving otherwise. For instance,
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ý57(t) only makes transition if the channel state vector, s(t) is (1, 0, 1) or (1, 0, 1), oth-

erwise it does not change its state. With a little abuse of notation, we treat ý as a set and

write i ∈ ý if ýi = 1. Further, we define ys(t) = (ýs(t); s(t)) for all s ∈ {1, 2, 3, 46, 57}
which includes channels state vector s(t). The ovals in Figure 4.7 denote y(t)’s for all

s(t) ∈ {(0, 0, 0) , (0, 0, 1) , (0, 1, 0) , (0, 1, 1) , (1, 0, 1) , (1, 1, 0) , (1, 1, 1)}.

Let us define:

Ȳ
1

= (ý1(t)) (4.47)

Ȳ
2

= (ý2(t)) (4.48)

Ȳ
3

= (ý3(t)) (4.49)

Ȳ
46

= (ý46(t)) (4.50)

Ȳ
57

= (ý57(t)) (4.51)

where, Ȳ’s, are the aggregate state for each DTMC excluding channel state s(t).

Next we describe how the algorithm works. When the channel state vector is s(t) =

(0, 0, 1), candid feasible schedule m1(t) includes only SU transmitting to D. Accord-

ingly α1(m1(t)), probability of choosing m1(t), equals 1 (Lines 1-4 in Algorithm 3) and

SU transmits with probability p1
2. Also, when channel state vector is s(t) = (0, 1, 0),

candid feasible schedule m2(t) includes only PU transmitting to SU . Accordingly

α2(m2(t)), probability of choosing m2(t), equals 1 (Lines 5-8 in Algorithm 3) and PU

transmits to SU with probability p2
1. Similarly, given s(t) ∈ {(1, 0, 0) , (1, 1, 0)},

candid feasible schedule m46(t) includes only PU transmitting to D. Accordingly

α46(m46(t)), probability of choosing m46(t), equals 1 (Lines 18-21 in Algorithm 3) and

PU transmits with probability p46
1 . When s(t) = (0, 1, 1), candid feasible schedule

m3(t) includes transmission of PU to SU , or SU to D or none of them. In the con-

trol mini slot (Line 10 in Algorithm 3), m3(t) is chosen with probability α3(m3(t)).

Then if user i is selected in m3(t), it transmits with probability p3
i . And finally, given

s(t) ∈ {(1, 0, 1) , (1, 1, 0)}, candid feasible schedule m57(t) includes transmission of

PU to D, or SU to D or none of them. In the control mini slot (Line 23 in Algorithm

3), m57(t) is chosen with probability α57(m57(t)). Then if user i is selected in m57(t),

it transmits with probability p57
i .

4.4.2 Optimality

In this section we will formally prove throughput optimality of the Algorithm 3. First

we derive stationary distribution of Ȳ .
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Figure 4.7: Markov chains associated with s(t)
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Algorithm 3 MQ-CSMA2

At each time slot, each node i does the following procedure.

1: if s(t) = (0, 0, 1) then
2: x1(t) = 0
3: x2(t) = 1 with probability p1

2

4: x2(t) = 0 with probability 1− p1
2

5: if s(t) = (0, 1, 0) then
6: x2(t) = 0
7: x1(t) = 1 with probability p2

1

8: x1(t) = 0 with probability 1− p2
1

9: if s(t) = (0, 1, 1) then
10: In the control slot, randomly select a decision schedule m3(t) ∈M3

0 with proba-
bility α3

(
m3(t)

)
11: if i ∈m3(t) and ý3

j (t− 1) = 0 for all j 6= i then

12: xi(t) = 1 with probability p3
i

13: xi(t) = 0 with probability 1− p3
i

14: else if i ∈m3(t) and ý3
j (t− 1) = 1 for some j 6= i then

15: xi(t) = 0
16: else
17: xi(t) = ý3

i (t− 1) (i /∈m1(t))

18: if s(t) ∈ {(1, 0, 0) , (1, 1, 0)} then
19: x2(t) = 0
20: x1(t) = 1 with probability p46

1

21: x1(t) = 0 with probability 1− p46
1

22: if s(t) ∈ {(1, 0, 1) , (1, 1, 0)} then
23: In the control slot, randomly select a decision schedule m57(t) ∈M57

0 with prob-
ability α57

(
m57(t)

)
24: if i ∈m57(t) and ý57

j (t− 1) = 0 for all j 6= i then

25: xi(t) = 1 with probability p57
i

26: xi(t) = 0 with probability 1− p57
i

27: else if i ∈m3(t) and ý3
j (t− 1) = 1 for some j 6= i then

28: xi(t) = 0
29: else
30: xi(t) = ý3

i (t− 1) (i /∈m1(t))

31: if s(t) = (0, 0, 0) then
32: x(t) = (0 0)

33: Use x(t) and s(t) as the scheduling decision at time slot t.
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Note that rectangles in Figure 4.7 are the states of their associated Ȳ .

• Ȳ 1 is depicted in Figure 4.7I. It is easy to verify that:

π(0, 0) = 1− p1
2, π(0, 1) = p1

2 (4.52)

• Ȳ 2 is depicted in Figure 4.7II. We have:

π(0, 0) = 1− p2
1, π(1, 0) = p2

1 (4.53)

• Ȳ 3 is depicted in Figure 4.7III. We have:

π(0, 0) =
1

Z3
, π(1, 0) =

1

Z3

p3
1

1− p3
1

, π(0, 1) =
1

Z3

p3
2

1− p3
2

(4.54)

Z3 = 1 +
p3

1

1− p3
1

+
p3

2

1− p3
2

• Ȳ 46 is depicted in Figure 4.7IV. We have:

π(0, 0) = 1− p46
1 , π(1, 0) = p46

1 (4.55)

• Ȳ 57 is depicted in Figure 4.7V. We have:

π(0, 0) =
1

Z57
, π(1, 0) =

1

Z57

p57
1

1− p57
1

, π(0, 1) =
1

Z57

p57
2

1− p3
2

(4.56)

Z57 = 1 +
p57

1

1− p57
1

+
p57

2

1− p57
2

Optimal weights for our network model are defined in section 3.5. Optimal weights as a

function of their queues are as follow:

ω1(t) =f
(
Q1(t)s1(t) + (1− s1(t))s12(t) (Q1(t)−Q12(t))+)

ω2(t) = max (Q2(t), Q12(t)) s2(t) (4.57)

Next we associate weights to each channel states as follow:

• s(t) = (0, 0, 1)

ω1
1(t) = 0, ω1

2(t) = f (max (Q2(t), Q12(t))) (4.58)
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• s(t) = (0, 1, 0)

ω2
1(t) = f

(
(Q1(t)−Q12(t))+) , ω2

2(t) = 0 (4.59)

• s(t) = (0, 1, 1)

ω3
1(t) = f

(
(Q1(t)−Q12(t))+) , ω3

2(t) = f (max (Q2(t), Q12(t))) (4.60)

• s(t) ∈ {(1, 0, 0) , (1, 1, 0)}

ω46
1 (t) = f (Q1(t)) , ω46

2 (t) = 0 (4.61)

• s(t) ∈ {(1, 0, 1) , (1, 1, 1)}

ω57
1 (t) = f (Q1(t)) , ω57

2 (t) = f (max (Q2(t), Q12(t))) (4.62)

Theorem 9. ∀i ∈ {1, 2}, let p1
i = eω

1
i (t)

1+eω
1
i

(t)
when s(t) = (0, 0, 1), p2

i = eω
2
i (t)

1+eω
2
i

(t)
when

s(t) = (0, 1, 0), p3
i = eω

3
i (t)

1+eω
1
i

(t)
when s(t) = (0, 1, 1), p46

i = eω
46
i (t)

1+eω
46
i

(t)
when s(t) ∈

{(1, 0, 0) , (1, 1, 0)} and p57
i = eω

57
i (t)

1+eω
57
i

(t)
when s(t) ∈ {(1, 0, 1) , (1, 1, 1)}, with ωi’s

defined in (4.58, 4.59, 4.60, 4.61, 4.62). Then MQ-CSMA2 in algorithm 3 is throughput-

optimal.

Proof. • s(t) = (0, 0, 1)

Pr

∑
i∈ý1

ω1
i (t) < (1− ε)ω1∗(t)


=π
(
ý1 = (0 0); (0, 0, 1)

)
= π

(
ý1 = (0 0)

)
(1− ρ1)(1− ρ12)ρ2

=(1− ρ1)(1− ρ12)ρ2
1

1 + ew
1
2(t)

< (1− ρ1)(1− ρ12)ρ2
1

ew
1
2(t)

=(1− ρ1)(1− ρ12)ρ2δ (4.63)

then we have:

Pr

∑
i∈ý1

ω1
i (t) ≥ (1− ε)ω1∗(t)|s(t) = (0, 0, 1)


=1− Pr

∑
i∈ý1

ω1
i (t) < (1− ε)ω1∗(t)|s(t) = (0, 0, 1)


≥ 1− (1− ρ1)(1− ρ12)ρ2δ

(1− ρ1)(1− ρ12)ρ2
= 1− δ (4.64)
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• s(t) = (0, 1, 0)

Pr

∑
i∈ý2

ω2
i (t) < (1− ε)ω2∗(t)


=π
(
ý2 = (0 0); (0, 1, 0)

)
= π

(
ý2 = (0 0)

)
(1− ρ1)ρ12(1− ρ2)

=(1− ρ1)ρ12(1− ρ2)
1

1 + ew
2
1(t)

< (1− ρ1)ρ12(1− ρ2)
1

ew
2
1(t)

=(1− ρ1)ρ12(1− ρ2)δ (4.65)

then we have:

Pr

∑
i∈ý2

ω1
i (t) ≥ (1− ε)ω2∗(t)|s(t) = (0, 1, 0)


=1− Pr

∑
i∈ý2

ω2
i (t) < (1− ε)ω2∗(t)|s(t) = (0, 1, 0)


≥ 1− (1− ρ1)ρ12(1− ρ2)δ

(1− ρ1)ρ12(1− ρ2)
= 1− δ (4.66)

• s(t) = (0, 1, 1)

Pr

∑
i∈ý3

ω3
i (t) < (1− ε)ω3∗(t)


=Pr

(
ω3∗(t) = ω3

1(t)
) [
π
(
ý3 = (0 0); (0, 1, 1)

)
+ π

(
ý3 = (0 1); (0, 1, 1)

)]
+Pr

(
ω3∗(t) = ω3

2(t)
) [
π
(
ý3 = (0 0); (0, 1, 1)

)
+ π

(
ý3 = (1 0); (0, 1, 1)

)]
=Pr

(
ω3∗(t) = ω3

1(t)
)

(1− ρ1)ρ12ρ2

[
π
(
ý3 = (0 0)

)
+ π

(
ý3 = (0 1)

)]
+Pr

(
ω3∗(t) = ω3

2(t)
)

(1− ρ1)ρ12ρ2

[
π
(
ý3 = (0 0)

)
+ π

(
ý3 = (1 0)

)]
=Pr

(
ω3∗(t) = ω3

1(t)
)

(1− ρ1)ρ12ρ2

(
1 + eω

3
2(t)

Z3

)

+Pr
(
ω3∗(t) = ω3

2(t)
)

(1− ρ1)ρ12ρ2

(
1 + eω

3
1(t)

Z3

)
<Pr

(
ω3∗(t) = ω3

1(t)
)

(1− ρ1)ρ12ρ2
2

eεω
3
2(t)

+Pr
(
ω3∗(t) = ω3

2(t)
)

(1− ρ1)ρ12ρ2
2

eεω
3
1(t)

<Pr
(
ω3∗(t) = ω3

1(t)
)

(1− ρ1)ρ12ρ2δ + Pr
(
ω3∗(t) = ω3

2(t)
)

(1− ρ1)ρ12ρ2δ

=(1− ρ1)ρ12ρ2δ (4.67)
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where δ := max
(

2

eεω
3
1(t)

, 2

eεω
3
2(t)

)
.then we have:

Pr

∑
i∈ý3

ω3
i (t) ≥ (1− ε)ω3∗(t)|s(t) = (0, 1, 1)


=1− Pr

∑
i∈ý3

ω3
i (t) < (1− ε)ω3∗(t)|s(t) = (0, 1, 1)


≥ 1− (1− ρ1)ρ12ρ2δ

(1− ρ1)ρ12ρ2
= 1− δ (4.68)

• s(t) ∈ {(1, 0, 0), (1, 1, 0)}

Pr

∑
i∈ý46

ω46
i (t) < (1− ε)ω46∗(t)


=π
(
ý46 = (0 0); (0, 0, 1) or (1, 1, 0)

)
= π

(
ý1 = (0 0)

)
ρ1(1− ρ2)

=ρ1(1− ρ2)
1

1 + ew
46
2 (t)

< ρ1(1− ρ2)
1

ew
46
2 (t)

=ρ1(1− ρ2)δ (4.69)

then we have:

Pr

∑
i∈ý46

ω46
i (t) ≥ (1− ε)ω46∗(t)|s(t) ∈ {(1, 0, 0), (1, 1, 0)}


=1− Pr

∑
i∈ý46

ω46
i (t) < (1− ε)ω46∗(t)|s(t) ∈ {(1, 0, 0), (1, 1, 0)}


≥ 1− ρ1(1− ρ2)δ

ρ1(1− ρ2)
= 1− δ (4.70)
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• s(t) ∈ {(1, 0, 1), (1, 1, 1)}

Pr

∑
i∈ý57

ω57
i (t) < (1− ε)ω57∗(t)


=Pr

(
ω57∗(t) = ω57

1 (t)
)

[ π
(
ý57 = (0 0); (1, 0, 1) or (1, 1, 1)

)
+ π

(
ý57 = (0 1); (1, 0, 1) or (1, 1, 1)

)
]

+Pr
(
ω57∗(t) = ω57

2 (t)
)

[ π
(
ý57 = (0 0); (1, 0, 1) or (1, 1, 1)

)
+ π

(
ý57 = (1 0); (1, 0, 1) or (1, 1, 1)

)
]

=Pr
(
ω57∗(t) = ω57

1 (t)
)
ρ1ρ2

[
π
(
ý57 = (0 0)

)
+ π

(
ý57 = (0 1)

)]
+Pr

(
ω57∗(t) = ω57

2 (t)
)
ρ1ρ2

[
π
(
ý57 = (0 0)

)
+ π

(
ý57 = (1 0)

)]
=Pr

(
ω57∗(t) = ω57

1 (t)
)
ρ1ρ2

(
1 + eω

57
2 (t)

Z57

)

+Pr
(
ω57∗(t) = ω57

2 (t)
)
ρ1ρ2

(
1 + eω

57
1 (t)

Z57

)
<Pr

(
ω57∗(t) = ω57

1 (t)
)
ρ1ρ2

2

eεω
57
2 (t)

+Pr
(
ω57∗(t) = ω57

2 (t)
)
ρ1ρ2

2

eεω
57
1 (t)

<Pr
(
ω57∗(t) = ω57

1 (t)
)
ρ1ρ2δ + Pr

(
ω57∗(t) = ω57

2 (t)
)
ρ1ρ2δ

=ρ1ρ2δ (4.71)

where δ := max
(

2

eεω
57
1 (t)

, 2

eεω
57
2 (t)

)
. Then we have:

Pr

∑
i∈ý57

ω57
i (t) ≥ (1− ε)ω57∗(t)|s(t) ∈ {(1, 0, 1), (1, 1, 1)}


=1− Pr

∑
i∈ý57

ω57
i (t) < (1− ε)ω57∗(t)|s(t) ∈ {(1, 0, 1), (1, 1, 1)}


≥ 1− ρ1ρ2δ

ρ1ρ2
= 1− δ (4.72)

• s(t) = (0, 0, 0). Note that when s(t) = (0, 0, 0), ω∗(t) = ω1(t) = ω2(t) = 0 and

x(t) = (0 0). So we can write:

Pr

{∑
i∈x

ωi(t) ≥ (1− ε)ω∗(t)|s(t) = (0, 0, 0)

}
= 1 (4.73)
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Next we evaluate following term using (4.64, 4.66, 4.68, 4.70, 4.72, 4.73):

Pr

{∑
i∈x

ωi(t) ≥ (1− ε)ω∗(t)

}

= Pr

{∑
i∈x

ωi(t) ≥ (1− ε)ω∗(t)|s(t) = (0, 0, 0)

}
Pr {s(t) = (0, 0, 0)}

+ Pr

∑
i∈ý1

ω1
i (t) ≥ (1− ε)ω1∗(t)|s(t) = (0, 0, 1)

Pr {s(t) = (0, 0, 1)}

+ Pr

∑
i∈ý2

ω1
i (t) ≥ (1− ε)ω2∗(t)|s(t) = (0, 1, 0)

Pr {s(t) = (0, 1, 0)}

+ Pr

∑
i∈ý3

ω3
i (t) ≥ (1− ε)ω3∗(t)|s(t) = (0, 1, 1)

Pr {s(t) = (0, 1, 1)}

+ Pr

∑
i∈ý46

ω46
i (t) ≥ (1− ε)ω46∗(t)|s(t) ∈ {(1, 0, 0), (1, 1, 0)}


× Pr {s(t) ∈ {(1, 0, 0), (1, 1, 0)}}

+ Pr

∑
i∈ý57

ω57
i (t) ≥ (1− ε)ω57∗(t)|s(t) ∈ {(1, 0, 1), (1, 1, 1)}


× Pr {s(t) ∈ {(1, 0, 1), (1, 1, 1)}}

= 1− δ (1− (1− ρ1)(1− ρ12)(1− ρ2)) = 1− δ́ (4.74)

Then by Theorem 7, Algorithm 3 is throughput optimal.
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Numerical Results

In this section we evaluate performance of our algorithm against Q-CSMA, MWS and

simple 802.11 algorithms. Q-CSMA and MWS algorithms were explained in chapter 2 in

detail. For 802.11 algorithm we adapt a simple version of 802.11 defined in [33]. Simple

802.11 is described in Algorithm 4.

Algorithm 4 Simple 802.11

At each time slot, each node i does the following procedure.

1: User i selects a random backoff time Ti = Uniform [1,W ] and waits for Ti control
mini slots.

2: If user i hears an RESV message from a link in C(i) before the (Ti + 1)-th control
mini-slot, it will not be included in the transmission schedule x(t) and will not
transmit an RESV message. User i will set xi(t) = 0

3: If user i does not hear an RESV message from any user in C(i) before the (Ti+1)-th
control mini-slot, it will send an RESV message to all links in C(i) at the beginning
of (Ti + 1)-th control mini-slot.

• If there is a collision, user i will set xi(t) = 0.

• If there is no collision, user i will set xi(t) = 1.

4: If xi(t) = 1, user i will transmit a packet in the data slot. (Links with empty queues
will keep silent in this time slot.)

We compare the algorithms in terms of average sum of queues in the network and also

average queue size evolution of individual queues. Averages are with respect to sample

path and are taken in 10 different sample paths. We divide this section to three. In

section 5.1, we consider the network with one PU and one SU where only PU has fading

channel. In section 5.2, We consider the network with one PU and N − 1 SUs where

only PU has a fading channel. In section 5.3 we consider the network with one PU, one

SU where all three channels are fading.

52
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5.1 One PU with fading channel and one SU

Consider the network with one PU and one SU. PU’s direct channel is fading with

Pr (s1(t) = 1) = 0.4. The capacity region for this network is calculated in Theorem 1.

We pick a point
(
λb1, λ

b
2

)
on the boundary of the capacity region and increase (λ1, λ2)

from ρmin
(
λb1, λ

b
2

)
to ρmax

(
λb1, λ

b
2

)
. Sum of the queue sizes in the network is averaged

over 10 sample paths. Queues are evolved over 105 time slots. In Figure 5.1, we consider(
λb1, λ

b
2

)
= (0.7, 0) and increase (λ1, λ2) from ρmin

(
λb1, λ

b
2

)
to ρmax

(
λb1, λ

b
2

)
for ρmin =

0.2 and ρmax = 1 and plot the average queue size of all queues in the network. In

Figure 5.2, we consider
(
λb1, λ

b
2

)
= (0.6, 0.2) and increase (λ1, λ2) from ρmin

(
λb1, λ

b
2

)
to ρmax

(
λb1, λ

b
2

)
for ρmin = 0.2 and ρmax = 1 and plot the average queue size of all

queues in the network. In Figure 5.3, we consider
(
λb1, λ

b
2

)
= (0.5, 0.4) and increase

(λ1, λ2) from ρmin
(
λb1, λ

b
2

)
to ρmax

(
λb1, λ

b
2

)
for ρmin = 0.2 and ρmax = 1 and plot the

average queue size of all queues in the network. It can be seen that MQ-CSMA1 has a

better performance over Q-CSMA and simple 802.11.

We investigate the comparison further by plotting PU’s queue evolution in time, averaged

over 20 sample paths. In Figure 5.4 expected queue evolution of PU under MQ-CSMA1,

Q-CSMA and 802.11 for (λ1, λ2) = (0.45, 0.35), strictly inside and close to the capacity

region is depicted. It shows that under MQ-CSMA1, average queue size of PU does not

grow with time suggesting that the PU is stable, while under Q-CSMA and 802.11

average queue size of PU increases in time suggesting that PU queue is unstable.
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Figure 5.1: Average sum of queue sizes in the network with
(
λb1, λ

b
2

)
= (0.7, 0)
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Figure 5.2: Average sum of queue sizes in the network with
(
λb1, λ

b
2

)
= (0.6, 0.2)
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Figure 5.3: Average sum of queue sizes in the network with
(
λb1, λ

b
2

)
= (0.5, 0.4)

5.2 One PU with fading channel and N − 1 SUs

In this section we consider our cooperative network model with 5 users (i.e., N = 5),

consisting of a PU and 4 secondary users. We assume that only PU has a fading

channel with Pr (s1(t) = 1) = 0.4. Although, the exact capacity region of the Network

in unknown for this case, it can be seen that λ1 < 0.7, λi = 0, for i ∈ {1, 2, 3, 4} is inside

the capacity region. Because given λi = 0, λ1 < 0.4+0.5(1−0.4) = 0.7. We pick a point

λb on the boundary of the capacity region and increase λ from ρminλ
b to ρmaxλ

b. Sum

of the queue sizes in the network is averaged over 10 sample paths. Queues are evolved

over 105 time slots. In Figure 5.5, we consider λb = (0.7, 0, 0, 0, 0) and increase λ
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Figure 5.4: Average individual queue evolution of PU with (λ1, λ2) = (0.45, 0.35)

from ρminλ
b to ρmaxλ

b for ρmin = 0.5 and ρmax = 1 and plot the average queue size of

all queues in the network.

We investigate the comparison further by plotting PU’s queue evolution in time, averaged

over 20 sample paths. In Figure 5.6 expected queue evolution of PU under MQ-CSMA1

and Q-CSMA for λ = (0.66, 0, 0, 0, 0), strictly inside and close to the capacity region

is depicted. It shows that under MQ-CSMA1, average queue size of PU does not grow

with time suggesting that the PU is stable, while under Q-CSMA average queue size of

PU increases in time suggesting that PU queue is unstable.
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Figure 5.5: Average sum of queue sizes in the network with λb = (0.7, 0, 0, 0, 0)



Chapter 5. Numerical Results 56

0 2 4 6 8 10 12

x 10
4

0

500

1000

1500

2000

2500

3000

3500

4000

4500

t

av
er

ag
e 

in
di

vi
du

al
 q

ue
ue

 s
iz

e 
ev

ol
ut

io
n

 

 

MQ−CSMA1
QCSMA

Figure 5.6: Average individual queue evolution of PU with λ = (0.66, 0, 0, 0, 0)

5.3 One PU, One SU, multiple fading channels

Consider the network with one PU and one SU where all the links PU −D, PU − SU
and SU −D has fading characteristics with Pr (s1(t) = 1) = ρ1, Pr (s12(t) = 1) = ρ12

and Pr (s2(t) = 1) = ρ2. Section 5.3.1, 5.3.2 and 5.3.3 compares performance of MQ-

CSMA2, QCSMA, simple 802.11 and MWS for ρ2 <
ρ12

1+ρ12
, ρ12

1−ρ12
≤ ρ2 <

ρ12

1−ρ12
and

ρ2 ≥ ρ12

1−ρ12
respectively. Capacity of the network when ρ2 <

ρ12

1+ρ12
, ρ12

1−ρ12
≤ ρ2 <

ρ12

1−ρ12

and ρ2 ≥ ρ12

1−ρ12
is calculated in Theorems 2, 3 and 4 respectively.

5.3.1 ρ2 <
ρ12

1+ρ12

We consider ρ1 = 0.4, ρ12 = 0.8 and ρ1 = 0.4. We pick a point
(
λb1, λ

b
2

)
on the boundary

of the capacity region and increase (λ1, λ2) from ρmin
(
λb1, λ

b
2

)
to ρmax

(
λb1, λ

b
2

)
. Sum

of the queue sizes in the network is averaged over 10 sample paths. Queues are evolved

over 105 time slots. In Figure 5.7, we consider
(
λb1, λ

b
2

)
= (0.64, 0) and increase (λ1, λ2)

from ρmin
(
λb1, λ

b
2

)
to ρmax

(
λb1, λ

b
2

)
for ρmin = 0.2 and ρmax = 1 and plot the average

queue size of all queues in the network . In Figure 5.8, we consider
(
λb1, λ

b
2

)
= (0.54, 0.1)

and increase (λ1, λ2) from ρmin
(
λb1, λ

b
2

)
to ρmax

(
λb1, λ

b
2

)
for ρmin = 0.2 and ρmax = 1

and plot the average queue size of all queues in the network. In Figure 5.9, we consider(
λb1, λ

b
2

)
= (0.44, 0.2) and increase (λ1, λ2) from ρmin

(
λb1, λ

b
2

)
to ρmax

(
λb1, λ

b
2

)
for

ρmin = 0.2 and ρmax = 1 and plot the average queue size of all queues in the network.

It can be seen that MQ-CSMA1 has a better performance over Q-CSMA and simple

802.11.
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We investigate the comparison further by plotting PU’s queue evolution in time, averaged

over 20 sample paths. In Figure 5.10 expected queue evolution of PU under MQ-CSMA1,

Q-CSMA and 802.11 for (λ1, λ2) = (0.63, 0), strictly inside and close to the capacity

region is depicted. It shows that under MQ-CSMA1, average queue size of PU does

not grow with time suggesting that the PU is stable, while under Q-CSMA and 802.11

average queue size of PU increases in time suggesting that PU queue is unstable.
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Figure 5.7: Average sum of queue sizes in the network with
(
λb1, λ

b
2

)
= (0.64, 0)
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Figure 5.8: Average sum of queue sizes in the network with
(
λb1, λ

b
2

)
= (0.54, 0.1)
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Figure 5.9: Average sum of queue sizes in the network with
(
λb1, λ

b
2

)
= (0.44, 0.2)
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Figure 5.10: Average individual queue evolution of PU with (λ1, λ2) = (0.63, 0)

5.3.2 ρ12

1−ρ12
≤ ρ2 <

ρ12

1−ρ12

We consider ρ1 = 0.4, ρ12 = 0.5 and ρ1 = 0.8. We pick a point
(
λb1, λ

b
2

)
on the boundary

of the capacity region and increase (λ1, λ2) from ρmin
(
λb1, λ

b
2

)
to ρmax

(
λb1, λ

b
2

)
. Sum

of the queue sizes in the network is averaged over 10 sample paths. Queues are evolved

over 105 time slots. In Figure 5.11, we consider
(
λb1, λ

b
2

)
= (0.67, 0) and increase

(λ1, λ2) from ρmin
(
λb1, λ

b
2

)
to ρmax

(
λb1, λ

b
2

)
for ρmin = 0.2 and ρmax = 1 and plot the

average queue size of all queues in the network . In Figure 5.12, we consider
(
λb1, λ

b
2

)
=

(0.62, 0.1) and increase (λ1, λ2) from ρmin
(
λb1, λ

b
2

)
to ρmax

(
λb1, λ

b
2

)
for ρmin = 0.2
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and ρmax = 1 and plot the average queue size of all queues in the network. In Figure

5.13, we consider
(
λb1, λ

b
2

)
= (0.5, 0.3) and increase (λ1, λ2) from ρmin

(
λb1, λ

b
2

)
to

ρmax
(
λb1, λ

b
2

)
for ρmin = 0.2 and ρmax = 1 and plot the average queue size of all queues

in the network. It can be seen that MQ-CSMA1 has a better performance over Q-CSMA

and simple 802.11.

We investigate the comparison further by plotting PU’s queue evolution in time, averaged

over 20 sample paths. In Figure 5.14 expected queue evolution of PU under MQ-CSMA1,

Q-CSMA and 802.11 for (λ1, λ2) = (0.66, 0), strictly inside and close to the capacity

region is depicted. It shows that under MQ-CSMA1, average queue size of PU does

not grow with time suggesting that the PU is stable, while under Q-CSMA and 802.11

average queue size of PU increases in time suggesting that PU queue is unstable.
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Figure 5.11: Average sum of queue sizes in the network with
(
λb1, λ

b
2

)
= (0.67, 0)

5.3.3 ρ2 ≥ ρ12

1−ρ12

We consider ρ1 = 0.4, ρ12 = 0.5 and ρ1 = 0.8. We pick a point
(
λb1, λ

b
2

)
on the boundary

of the capacity region and increase (λ1, λ2) from ρmin
(
λb1, λ

b
2

)
to ρmax

(
λb1, λ

b
2

)
. Sum

of the queue sizes in the network is averaged over 10 sample paths. Queues are evolved

over 105 time slots. In Figure 5.15, we consider
(
λb1, λ

b
2

)
= (0.64, 0) and increase

(λ1, λ2) from ρmin
(
λb1, λ

b
2

)
to ρmax

(
λb1, λ

b
2

)
for ρmin = 0.2 and ρmax = 1 and plot the

average queue size of all queues in the network . In Figure 5.16, we consider
(
λb1, λ

b
2

)
=

(0.56, 0.2) and increase (λ1, λ2) from ρmin
(
λb1, λ

b
2

)
to ρmax

(
λb1, λ

b
2

)
for ρmin = 0.2

and ρmax = 1 and plot the average queue size of all queues in the network. In Figure

5.17, we consider
(
λb1, λ

b
2

)
= (0.51, 0.3) and increase (λ1, λ2) from ρmin

(
λb1, λ

b
2

)
to

ρmax
(
λb1, λ

b
2

)
for ρmin = 0.2 and ρmax = 1 and plot the average queue size of all queues
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Figure 5.12: Average sum of queue sizes in the network with
(
λb1, λ

b
2

)
= (0.62, 0.1)
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Figure 5.13: Average sum of queue sizes in the network with
(
λb1, λ

b
2

)
= (0.5, 0.3)

in the network. It can be seen that MQ-CSMA1 has a better performance over Q-CSMA

and simple 802.11.

We investigate the comparison further by plotting PU’s queue evolution in time, averaged

over 20 sample paths. In Figure 5.18 expected queue evolution of PU under MQ-CSMA1,

Q-CSMA and 802.11 for (λ1, λ2) = (0.63, 0), strictly inside and close to the capacity

region is depicted. It shows that under MQ-CSMA1, average queue size of PU does

not grow with time suggesting that the PU is stable, while under Q-CSMA and 802.11

average queue size of PU increases in time suggesting that PU queue is unstable.
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Figure 5.14: Average individual queue evolution of PU with (λ1, λ2) = (0.66, 0)
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Figure 5.15: Average sum of queue sizes in the network with
(
λb1, λ

b
2

)
= (0.64, 0)
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Figure 5.16: Average sum of queue sizes in the network with
(
λb1, λ

b
2

)
= (0.56, 0.2)
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Figure 5.17: Average sum of queue sizes in the network with
(
λb1, λ

b
2

)
= (0.51, 0.3)
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Figure 5.18: Average individual queue evolution of PU with (λ1, λ2) = (0.63, 0)



Chapter 6

Conclusions and Future Works

In this thesis we investigated problem of optimal resource allocation in a cooperative

network, where SUs gain access to a licensed channel by cooperating with the channel

owner by relaying its packets. We derived Maximum Weight Scheduling for our network

model for two different scenarios. First scenario includes a PU and (N−1) SUs in which

only PU has a fading channel. We derive the exact capacity region of the network for

N = 2 and establish the superiority of the cooperative network over the non-cooperative

one in terms of capacity region. In the second scenario, we assume the cooperative

network with one PU and one SU in which all the links between PU-D, PU-SU and SU-

D suffer from fading. We also derive the MWS algorithm for this scenario and calculate

the exact capacity region of the network. Capacity region of the network in case of

multiple fading channels also shows that cooperative network is superior in terms of the

capacity region. Our findings shows that SU does not need to have a better channel

statistics in order to be able to improve PU performance. In fact for every possible set

of (ρ1, ρ12, ρ2), it is beneficial for PU to let the SU enter the cooperative network.

Maximum Weight Scheduling can achieve throughput optimality by exploiting oppor-

tunistic gain in general network topology with fading channels. Despite the advantage

of opportunistic scheduling, this mechanism requires that the existing central scheduler

is aware of network conditions such as channel state and queue length information of

users. To solve this problem we propose a distributed algorithm based on CSMA that

only requires individual queue size of each user. Existing throughput optimal algorithms

in non-fading algorithms such as Q-CSMA are not suitable for fading environments, be-

cause they fail to exploit opportunistic gain in fading environments. By taking different

network topologies associated with the fading states into the account, for each scenario

we develop our algorithm and prove throughput optimality of the algorithm.

64
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Numerical results show consistency with our analytical results in terms of stability of

the network in points close to the boundary of the capacity region. Also, numerical

results show that under Q-CSMA, individual queue size, grows in time, which suggests

that Q-CSMA is not throughput optimal.

We conclude the thesis by briefly presenting some ideas which will motivate future studies

on this topic. In chapter 4 we assume that in the case of multiple fading channels, users

have a perfect knowledge of instantaneous channel states. However, in practice, acquiring

channel states costs in terms of power and time slot efficiency. It would be interesting

to design an algorithm which does not require all the channel states. Also in chapter 3

we give performance guarantees for the case of two users. However complete impact of

cooperation for cases of more than two users are not investigated. Hence, investigating

performance guarantees for general case would be of interest.
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