THE FRANKEN-FONT

by

Cem Sina Cetin

Submitted to the Graduate School of Arts and Social Sciences
in partial fulfillment of
the requirements for the degree of

Master of Arts

Sabanci University

June 2014

© Cem Sina Cetin 2014
ALL RIGHTS RESERVED

THE FRANKEN-FONT

Cem Sina Cetin
M.A, Visual Arts and Visual Communication Design Thesis, 2014

Thesis Supervisor: Onur Fatih Yazicigil

Keywords: Digital Typography, Generative Arts, Automatic Font Design, Letter

Generation, Hand Writing

ABSTRACT

Today, the digital font system provides a standardized infrastructure for
publishing and utilizing fonts with great versatility; such as simulating ligatures and
specialty fonts for custom uses. Although the current fonts are able to provide solutions
for almost any use case, everything they are capable of depend on the fact that font files
are large prefabricated [1] letterform libraries, governed by a set of complex rules.
Therefore, it is fundamentally impossible to create fonts, which generate the letters on
the go. This would provide a solution for a scenario, where each instance of the same
letter should be almost the same but slightly different, while maintaining an overall
visual consistency, such as the handwriting.

The Franken-font is a two-phase project. The first phase focuses on whether or not the
human visual perception rejects a font with constantly changing letterforms and the
second phase focuses on providing a new kind of font system, which is capable of
generating letters instead of just fetching them from a library. This thesis project covers
the first phase.

The hypothesis of this thesis is that as long as the letterforms are consistent, the human
brain should not marginally reject the font. To test this, a custom application is
developed to interpolate between Helvetica and Syntax, which creates letters carrying
characteristics of both typefaces. An online survey will be executed to see the
preference rate of the Franken font. Consequently, the findings of the survey should
show whether or not the phase two is feasible.

v

THE FRANKEN-FONT

Cem Sina Cetin
Gorsel Sanatlar ve Gorsel iletisim Tasarimi Yiiksek Lisans Programi Tezi, 2014

Tez Danigmani: Onur Fatih Yazicigil

Anahtar Kelimeler: Sayisal Tipografi, Yaratimsal Sanat, Otomatik Font Tasarimi, Harf

Yaratimi, El Yazisi

OZET

Glinlimiizde dijital font sistemi, fontlarin kullanimi ve yaymlanmasinda ligatiir
simiilasyonu ya da 06zel amaglar icin tasarlanmis fontlar gibi bir ¢ok kolaylik
saglamaktadir. Mevcut fontlar neredeyse tiim kullanimlar i¢in ¢6ziim sunabilse dahi,
kabil olduklar1 her sey fontlarin 6nceden tasarlanmig[1] ve harf sekilleri kapsayan,
karmagik kurallar tarafindan kontrol edilen biiyiik birer kitaplik olmalaria
dayanmaktadir. Bu nedenle de, harfleri kullanim aninda iireten bir font tasarlamak
sistemin dogas1 geregi imkansizdir. Boyle bir font olsaydi, her harfin birbiriyle
neredeyse ayni fakat biraz farkli oldugu ve genel gorsel tutarlilifin korunmasim
gerektirecek, el yazisi taklidi gibi amagclar i¢in ¢6ziim sunabilirdi.

Franken-font iki asamali bir projedir. Ilk asamasi, insan beyninin harfleri siirekli
degisen bir fontu kabul edip etmeyecegini arastirmaya odaklanmustir. Ikinci asamasi ise,
harf sekillerini kitapliktan ¢cekmek yerine kullanim aninda tireten bir sistem tasarlamay1
amaclamaktadir. Bu tez projesi, ilk asamay1 kapsamaktadir.

Bu tez projesinin hipotezi, harfler tutarli oldugu siirece insan beyninin fontu marjinal
sekilde reddetmeyecegidir. Bunun test edilmesi i¢in Helvetica ve Syntax fontlarinin
karakterlerinin ortalamasini alarak, iki fontun da 6zelliklerini tagiyan harfler iireten bir
uygulama tasarlanmigstir. Bir internet arastirmasi diizenlenerek, Franken-font'un tercih
edilebilirligi Olcililecektir. Boylece arastirma sonuglari, projenin ikinci agamasinin
uygulanabilir olup olmadigin1 gosterecektir.

ACKNOWLEDGEMENTS

I sincerely thank my thesis advisor, Onur Yazicigil, for his invaluable contributions to

this thesis, for being an erudate mentor as well as a supportive friend.

I would also like to thank Servet Ulas and Doruk Tiirkmen for the unique masters

experience, during which the Franken-font was fostered.

I always was and always will be grateful to Merve Cayli for my mind.

I finally thank my parents, Ayse Sedef Antay and Orhan Cem Cetin, for the diverse set

of talents I was lucky enough to inherit from them, both through nature and nurture.

Vi

TABLE OF CONTENTS

I INEOAUCTION. ...ttt sttt et et be e s e e e as 1
2 Generative Art and TyPOZIaAPNY ...cc.veieiiiiiiiieeiieeee et 4
3 Related WOTK ... 6
4 Choosing Fonts for Interpolation.............cccvveeriieeiiiesiiiecieecee e 8
5 The Role of Typography on Subliminal Perceptioncccceeevvevcveencieenieeennnnn 10
6 The Frankenstein AppPliCAtiON.......c..ceecviiiriiieiiieeiiie et 11
6.1 Glyph Generation from a Font File........c.ccocoiieiiiiiniiiiiiieeeeee e 12
6.2 Interpreting Font Files as Vector Images..........ccceevveevviieeiiieeieeciie e 13
6.3 Generating Unique GLyphScccvieiiiiiiiieeeeeee e 14
6.4 Typing with Generated GlyPhS........ccoeeiuiiiiiiieiiieceeeeeee e 19
6.4.1 Interpolating the Glyph Width..........ccccooiiiiiiiiie e, 20
6.4.2 Spacing and KEerning.........c.cceecveieeiiieiiiieeiiie e et eieeeseeeereeesveeeevee e 21

6.5 EXporting Usable TeXt.......cccouviriiiiiiiiieriie ettt eee e ree e e e eevee s 23

T THE OULPUL ...ttt ettt e et e et e e e taeeetaeessnaeessseeeesseeensseeesseennnees 24
8 THE SUIVEY ..eeiiiieiiie ettt et e e st e e eteeeateeetaeesssaaesssaeessseeensseeensseenn 26
8.1 The SPECIMENSeieiiieeiiieeiiie ettt eiee e see et e e ste e et e e e e e e taeessseeennseeenaseeenns 26
8.2 The TEChNIQUEcceeuviieiiieeiie ettt e e st e e e e e snbeeennbeeenns 27
8.3 The AUGICNCEeeiiiiiiieiie ittt ettt et e an 27
8.4 The SUurvey RESUILSccviiiiiiieiiieceeee et ee e e 28
8.4.1 Result BreakdOWnsooouiiiiiiiiiiiiiiiecee e 29
8.4.1.1 Age-Based ANalySiS......cccceciiiriiiiiiiiieiiie et 29
8.4.1.2 Profession-based analysisccccocereriiiieiiieeniie e 30
8.4.1.3 Medium of reading based analysis.........ccccceeevireerieeeiieeeieeeee e 32
8.4.1.4 JOINt ANALYSIS..cccviieieiieeiiieeiiee ettt e e eerte e e eeeeeeeebeeeseaaeennbeeennaes 33

8.5 FUrther analySiS.......c.ceeiiiiiiiiieiieeeeee e eaee e e saee e 34

O CONCIUSION ..ttt ettt et e b e ettt e st e b e e seeenee 36
0.1 POSSIDIE USES ...ttt ettt et st 37
RETEIENICES ...ttt et 39
A PPEIIAICES. ..eeevieeeiiieeeiie ettt et e et e et e e et e e et e e e taeestaeessaeeesbeeeasaeeeasaeeenreeenraeenns 40
Appendix A — ONlINE SUIVEY....cccociiieiiiieiieeiee et eeeeees 40
Appendix B — SUrvey SPeCIMENSeeeciieeiiieeiiieeiieecee et 41
Appendix C — Franken Font Possible Sets..........cccovvviiieiiiiiiiiiecieecee e 45

vil

LIST OF FIGURES

Figure 1 Bilkent University (2011) Text Invader Workshopcccceeieeniiiiiencnnn. 7
Figure 2: Helvetica & Syntax SPEeCIMENSceevuvieeiueeeeiieeeieeeeieeeeieeeereeeseveeesevee e 9
Figure 3 Helvetica vS. SYNEAXoooiiiiiiiiiiiieieeeeee et 9
Figure 4 vector outline of Helvetica 'a'............ccoooiiiiiiiiiieee, 13
Figure 5 Syntax 'a' vs. Helvetica 'a' in vector form............cooceiiiiniiiiininniiniccene 15
Figure 6 Compensating the miSSIng VETtICESeerueeriieiiieniieiienieeieeeie e 15
Figure 7 The Interpolation Abominationcccoceeiiiiiiiniiiiieiieieeeee e 16
Figure 8 The Franken-a..........coccoooiiiiiiiiiiiiicee e 17
Figure 9 Intermediate steps of the Franken-acoccooiiiiiiiiniiniee 17
Figure 10 The intermediate fOrmscoooiiiiiiiiiiiiiie e 18
Figure 11 Using StatiC SPACING.....c.uvieruiieeriiieeiiieeiieeeieeeeiieeesiaeeesseeesseesssseesssseesssneennns 19
Figure 12 Using static per-1etter SPACINGcccveeerieeeiiieeiieeeieeeiee e eeveeerveeeevee e 19
Figure 13 Width difference between Helvetica and Syntaxccccceeeevieenieniceneenns 20
Figure 14 Metric interpolationccoiuieiiiiiiiiiiiieeieeeee ettt 21
Figure 15 Using bounding boxes fOr SPaCINGeeevvvreeiieeeiiieeeiieeeieeeeiee e 21
Figure 16 Using bounding boxes with extra Spacing...........cecceeeeevveerivreeriveeerreeenveennns 22
Figure 17 Taking bearings into cONSIAETationccccueevueeruieniienieeniienieeniie e 22
Figure 18 Intermediate steps of the Franken-'g'............cccovieeiiiiiiiiinieeeee, 22
Figure 19 The Franken-teXtcocceoiiiiiiiiiiiiieiieeeeee et 24
Figure 20 Age-based result analysiscoocueiiieiiiiiiiiiiiiieeeee e 30
Figure 21 Profession-based result analysis........c.cooveeiiiiiiiniiiiiiiniiiieeeeeeeeee 31
Figure 22 Medium-based result analysiscoccueeriiriiiiiiniiiiiiiieceeeee e 32
Figure 23 Article 18 from "TRIal"coovoviuiieeeeeeeceeeeeeeeeecee e 38

viil

1 Introduction

Ever since the invention of the printing press, one of the premises that typeface
design has been relying on is that every instance of a letter should be represented by the
same glyph'. Even if it is not, the set of glyphs used to represent a letter should be very
close variations of each other with minimal adjustments to support the text’s visual

coherence, such as a longer tail for the "z" letter at the end of a line. (Zapf, 2007, p.127)
(2]

It would be unfair to question a type cutter’s intention for creating only a couple of
glyphs for each character, when the physical limitations and difficulties caused by
manually carving letters from lead are considered. Yet, as the process of type design is
translated to the digital medium, the means of creation and thus the nature of the
product change. The glyphs are no longer defined by their physical properties, but by
mathematical abstractions of the desired shapes, stored as vector image definitions in a

font file.

"The computer is, on the face of it, an ideal device for reviving the old
luxury of random variations in design at the threshold of perception. But
conventional typesetting software focuses instead on the suicidal notion of
absolute control - and has been hamstrung in the past by the idea of a single
glyph per character. The modern computer with its practically limitless
computing power is able to create different variations of a letter at each
keystroke. The creation can be completely random, with controlled
randomness or based on a pattern.” (Bringhurst, 2002, p.185) [3]

In order to mold lead into the desired shape, appropriate conditions should be met such
as correct temperature, enough time and expertise. By contrast, when a shape is

produced from a digital abstraction, the entity of the glyph - through the nature of the

! Through out this paper, the term glyph is used for the visual representations of letters,
independent of the font that is used.

algorithmic bits that unlike their analogue counterparts, the atoms are open to infinite
manipulation - is ready to be reshaped in endless ways without needing more than a
couple of milliseconds. The algorithm replaces the analogue technology, the vertices
replace the physical material of the typeset, the act of printing by ink is replaced by
rasterizing the instances of the letterforms. Consequently, once the user is able to access
the vertices and to transform them, it is no longer impractical to create thousands of
variations of the same glyph in a heartbeat. Why then, should a designer be content with

using only a limited number of glyphs for each letter?

Once we know what a word looks like in its written form, the human brain no longer
reads the letters that create the word but instead, the word is perceived as a whole shape.
Therefore, the process of reading depends on the pattern recognition ability of our brain,

which is highly evolved in our species.

"Once we have learned the pattern of the word "window", we never again
read the individual letters; the larger pattern is immediately matched as a
gestalt.” (Hill, 1999 p. 13) [4]

The process of pattern recognition relies not only upon visual perception, but also the
ability to intellectually understand and interpret features, visual references and concepts.
In order to recognize letters and words, the brain does not run an algorithm to match the
vertices of the shape and determine, which glyph it is. Instead, it refers to the glyph’s
features and our past experiences to understand the meaning. Bill Hill refers to this as a
result of an evolutionary selection: the survival of those, who are better at seeing subtle
differences in texture and form (e.g. determining whether or not a fruit is edible by
looking at its texture or understanding the emotional response of another primate by

reading its facial gestures).

"In a very real sense, the form of the book as we know it today was predetermined by
the decision of developing humans to specialize in visual pattern recognition as a core

survival skill." (Hill, 1999 p. 7) [4]

Since we have an evolutionary advantage in "seeing" things, we are also able to
recognize the letters no matter how distorted or differently designed they are. If this

wasn’t the case, then we wouldn’t be able to read our own handwriting, in which no two

2

letters are the same. In other words, the technique of handwriting would be nonexistent
as we wouldn’t be able to develop it to begin with. Therefore, it is not unimaginable to
expect the human brain to easily interpret a piece of text, when it is written by a system
that is capable of producing glyphs at each occurrence of a letter, which are very similar

but slightly different versions of each other.

Consequently, the project Franken-font proposes a testing procedure to understand
whether or not using slightly different glyphs for each letter whilst reading a long text is
obstructive to the reading experience. The procedure consists of two parts, namely the

typing environment and the survey.

The developed typing environment is responsible of generating letterforms for any
given text and providing a vector image output of the rendered text, while the survey is
tailor-made to use these outputs to gauge the user response to the generated text. The
working principles of the typing environment and the survey will be explained in detail

in the chapters The Frankenstein Application and The Survey, respectively.

2 Generative Art and Typography

Generative art is the practice of using an autonomous system to generate either
the entire artwork or a part of it. Although the definition encourages to imagine the
aforementioned "autonomous system" as a computer algorithm, generative art does not
necessarily have to be digital. A generative artwork can be created by using simple
machines, manual randomization or even biological, chemical and physical processes.
An example for an artwork that utilizes physical events to generate the final spectacle is
the Condensation Cube (1963-1965) by Hans Haacke. This work features a partially
water filled, airtight plexiglass box of size 76 cm at each size. [5] The water inside the
cube evaporates and condenses in an infinite loop, thus reflecting the artist’s focus on
the motion, light and refraction. This work is considered as generative art because it is
created by the autonomous system that is the laws of physics governing the state of

water inside.

The advances in computer science has an obvious impact on generative art, since the
modern computer’s number crunching abilities far exceed the range of manual work and
it is possible to simulate both real and imaginary phenomena to create generative
artworks that are otherwise impossible or very difficult to realize. The exceptional rate
and speed of randomizations the computer can achieve is at the core of this thesis.
Conventional typography, however, does not tolerate randomness. Therefore merging

generative arts and typography is a design challenge more than an algorithmic one.

Even though digital fonts are - by definition - assets prepared for computer use, they
inherit a five-century-old practice of the printing press, which begins with the
production of the Gutenberg Bible in 1455. Even the terminology (e.g. "kerning",

"leading" and "bearing") used for digital fonts is borrowed from its predecessor.

Consequently, digital fonts are not re-inventing type design but merely translating them
into a new medium. By extension, the digital typography’s objective is the same with
that of conventional typography: conveying specific and coherent ideas (Warde, 1955,
p.2) [6]

In the essay The Crystal Goblet, Beatrice Warde explains transparency as a necessary
quality of good type design and the image of a crystal clear goblet acts as a metaphor of
successful typography. Warde argues that typography should stay humble and not
distractive, so that it does not interfere with the ideas it is meant to convey. Just like a

perfect goblet, which doesn’t alter the visual quality of the wine it holds.

"A public speaker is more 'audible' in that sense when he bellows. But a
good speaking voice is one, which is inaudible as a voice. *** Type well
used is invisible as type, just as the perfect talking voice is the unnoticed
vehicle for the transmission of words, ideas. " (Warde, 1955, p.2) [6]

So, is transparent generative typeface an oxymoron? Or is it possible to achieve a sense
of humility and invisibility, while intruding every single building block of each letter at

each occurrence?

"The book typographer has the job of erecting a window between the reader
inside the room and that landscape which is the author's words. He may put
up a stained-glass window of marvellous beauty, but a failure as a window,
that is, he may use some rich superb type like text gothic that is something to
be looked at, not through." (Warde, 1955, p.3) [6]

If good typography is a window to be looked through, then good generative typography
should be a system of building windows to be looked through. Eventually, the aimed
success of the Franken-font does not only lie in its ability to please aesthetically, but
also to do this silently. The mechanism that keeps the letterforms constantly changing
must not distract the readers and they should be able to focus on the written content that

the text is meant to convey.

3 Related Work

Although currently there exists no dynamic font that creates letterforms during
the runtime, there have been several attempts of creating fonts with random glyphs. The
lack of dynamic fonts is due to the modern and standardized operating system
architecture, which uses a font file that works as a look up table to fetch related glyphs
rather than a generator. Consequently, a system that provides a generation algorithm

rather than a shape library cannot currently be incorporated into the general usage.

Among some of the notable examples, the typeface Kosmik (FontShop
1993) by Erik van Blokland and Just van Rossum tries to tackle the
randomization problem by providing three alternative glyphs for every
letter. Not only the system is not truly dynamic (because the forms are still
predefined), but also the algorithm is extremely resource consuming: "the
printer-driver leaps from font to font with each repetition of each letter. This

reduces many systems to a state of nervous collapse after setting a few
lines." (Bringhurst, 2002, p.185) [3]

Another notable example is the font Beowolf (FontShop, 1990), by Erik van Blokland.

"The letterforms are sent to the output device through a subroutine, devised
by Just van Rossum, that provokes distortions of each letter within
predetermined limits in unpredetermined ways. Three degrees of
randomization are available. Within the specified limits, every letter is a
surprise.” (Bringhurst, 2002, p.185) [3]

The problem with the font Beowolf is that the randomizations are all based on a single

seed” and distortions tend to render the letters illegible after a few iterations. In other

* Seed is the initial state of a random generation system. Seed is necessary for digital
randomization and arbitrary seeds result in different, uncorrelated random numbers.

6

words, the manipulations tend to diverge from the starting form and therefore not

feasible as a way of setting constraints for the randomization.

A more modern approach to creating hybrid forms is the font Roboto by Google
Android, designed for mobile platforms. Roboto, ironically called a frankenfont as well,
is a mixture of five different fonts: Helvetica, Myriad, Univers, FF DIN and Ronnia.
Google describes it as having a “dual nature. It has a mechanical skeleton and the
forms are largely geometric. At the same time the font’s sweeping semi-circular curves

give it a cheerful demeanor.” (Coles, 2011) [7]

Roboto is not a dynamic font and available on Google Webfonts. However, the design
decision and naming shows a striking similarity with the Franken-Font, in terms of

trying to merge grotesque sanserif with humanist sanserif.

Last but not least, the project Text Invader by Onur Yazicigil tackles the problem of
whether or not a piece of text can be enhanced by planting visual elements within the
linear flow of the text. [8] To do this, image and word pairings are implanted in an
existing font, which will in turn replace the words with the corresponding images. This
way, unpredicted forms and meanings emerge from the rendered (or invaded) text. The
randomness and generation in this workflow lies in the act of typesetting images within
a body text. Yet, this approach as well does not address the problem of true generative

typography as the pairings are predefined in the font, just like all the letterforms.

i ‘é" A'. ;
v ursn 173 |
Vs R Y s L 4/

U’ 0Jijeor—="== o) | /

Figure 1 Bilkent University (2011), Text Invader Workshop [8]

7

4 Choosing Fonts for Interpolation

Since the aim of the project is to see the effects of using different glyphs for the
same letter at each occurrence, it sets certain constraints for choosing the correct fonts:
The fonts that will be used for interpolation should not be too close, so that there is a
tangible difference between the generated glyphs. Yet, they should not be too different

either, so that even though the resulting glyphs are different, their skeleton is not.

The findings of the paper Humanist vs. Grotesque Sanserif by Onur Yazicigil show that,
when reading habits are considered - due to historical and habitual reasons - it is
observed that people who are used to reading from printed media prefer humanist fonts,
whereas people, who are used to reading from a digital environment such as a computer,
prefer grotesque fonts. This preference however does not imply any correlation to the

preference of serif or sanserif fonts.

"More and more people use the screen for continuous reading. This can be
explained by the high use of sophisticated mobile devices, and the
accessibility of such devices like, Apple’s I Phone and other Internet
connected multimedia devices. Consequently, findings in this paper illustrate
a tendency to prefer grotesque sanserifs, which are highly used as default
screen types. In such cases, habit factor may override the historical factor.

On the other hand, respondents who chose print for often-used medium
tended to prefer humanist sanserifs, which is a descendent of a long tradition
of printed book types. This correlation between often-used medium and type
preference may be a guide for type designers, typographers and graphic
designers when designing for the intended user. " (Yazicigil, 2009 p. 47) [9]

Based on this finding, for the Frankenfont project, it was decided to use a humanist and
a grotesque sanserif fonts for interpolation. The survey results of Yazicigil clearly show

that there is a transition in preference for humanist and grotesque fonts for reading long

texts. [9] Using a font from each family would generate letterforms that bear similarity
to both categories, therefore supplying the missing gap between the two inclinations for

fonts.

Helvetica was selected as the grotesque end of the interpolation, whereas Syntax was
selected as the humanist end of the interpolation. Both bear clear characteristics of their
own families, added to which is that both of these fonts are designed for long texts. The

following two specimens in Figure 2 belong to Helvetica and Syntax, respectively.

ABCDEFGHIJKLM ABCDEFGHIJKLM
NOPQRSTUVWXYZ NOPQRSTUVWXYZ
abcdefghijklm abcdefghijklm
nopqgrstuvwxyz nopqrstuvwxyz
0123456789 0123456789

Figure 2 Helvetica & Syntax Specimens
Figure 3 Helvetica vs. Syntax

5 The Role of Typography on Subliminal Perception

Typography is, by definition, an inseparable part of written communication and
therefore evolves along with the contemporary writing habits of the society. As an
example, with the emergence of the Internet and user created content, there have
appeared Internet-specific writing rules and ethics, such as writing in capital letters on

an online platform being directly considered as an analogy of shouting.

The analogy between capital letters and shouting has become an intrinsic part of the
perception of the reader only within the last couple of decades, whereas typography
existed long before the Internet. If a period as short as a couple of decades can
transform our understanding of capital letters, it is not a farfetched assumption that we
are hard coded with type design and context associations; Certain ways of type design
carries a silent message to the reader, without needing to explicitly tell what the
message is. For instance, a poet does not need to tell us what he writes is a poem; the
format of the body of the text already implies what it is. In other words, even though the
reader does not necessarily have to consciously perceive the design decisions on a piece

text, he or she certainly perceives their effects on the message.

As it 1s stated on paper Humanist vs. Grotesque Sanserif, people with specific reading
habits tend to prefer either grotesque or humanist fonts. [9] In other words, the medium
of the text and the form of the typeface has an implicit association. Therefore, once the
interpolated font is used to render a piece of text, how the brain will respond is
unknown. It might completely distract the reader as different letters might have
different associations. On the other hand, it might not effect at all just like reading a
hand written text, where every letter is a little bit different but they have over all
consistency. The proposal of this project, as stated earlier, is that it won’t have a

negative effect.

10

6 The Frankenstein Application

In order to extract the letterforms from a font file in an editable format and
compile them into a readable chunk of text, a number of programmatic procedures and
manual preparation are necessary. The reason for this is the aforementioned
standardization of font files, which forces them to be read-only vector shape look up

tables. Consequently, a tailor-made platform is necessary.

Existing commercial design systems are not possible to alter. On the other hand, open
source solutions exist but they are prepared to cover a very large range of uses. Hence it
is very inefficient to try to tweak an existing open source project to meet the needs of
this special topic. Therefore, the easiest approach to solve this problem is to develop an

environment from scratch.

An application capable of undertaking the given task, needs to be able to:
* Read vector graphics,
* Decode them into a form of information that can be manipulated,

* Render the manipulated data back into visual information.

Among many vector graphics file formats, SVG format stores the vector data in
readable ASCII format (opposed to binary), which is even possible to mentally visualize
a given shape by simply reading the list of plain text instructions that are stored in the
file. Therefore, using SVG format reduces the "import file" routine into text file
reading, so decoding and rendering this information boils down to string parsing and 2D

graphics generation.

"Processing API" developed by Ben Fry, provides a programming environment for

artists by simplifying the coding process. [10] Although simplified, it still supports

11

advanced JAVA programming, as well as coming bundled with a variety of libraries to
make it easier to visualize data. The applications can effortlessly be compiled via
processing for different operating systems as well. Thus, the Frankenstein Application

is developed on Processing.

6.1 Glyph Generation from a Font File

A font file is a library of vector images that are associated with keystrokes from
a keyboard. As the user presses a key on the keyboard while a text input area is
selected, the operating system:
* Recognizes the keystroke
* Searches for the relevant vector image (the glyph) stored in the font file

e Rasterizes it on the desired location.

Most of the font files provide relevant glyphs for relevant letters, i.e. when the user
presses the ‘g’ key on the keyboard, a representation of the letter ‘g’ appears on the
screen. This is not necessarily the case, because there can be font files for special uses
such as ornaments or musical symbols, where pressing the ‘g’ key may result in
generating the musical notation G-Key, instead of the letter g. In other words, a font file
is only a list of glyphs and it does not necessarily have to contain letters, let alone

recognizing them as letters at all.

The process of fetching a vector image from a font file and creating a visual
representation on the screen is executed on a lower level; It is hidden from the user and
it should be hidden for the user friendliness of any design and/or typing environment.
While this is necessary for the ease of use, it also makes it impossible to easily
manipulate the font file for artistic or experimental purposes - as this project - on a

commercial environment.

12

6.2 Interpreting Font Files as Vector Images

Since a font file is a collection of vector images that are called upon keystrokes,
every text written on a vector graphics application is a collection of vector images. Even
though a font file by itself is not editable, the glyphs that it fetches for letters are
editable, once the text field is discarded and the letters are expanded back to vector

images.

As an example, typing the letter ‘a’ on Adobe Illustrator in a text field fetches
the associated glyph from the selected font. This glyph, along with the parent text field,
can be transformed (i.e. scaled, rotated and translated) but its vertices are hidden. Yet,
after converting it to outline’, the internal pieces of the shape are exposed as shown in

Figure 4.

Figure 4 vector outline of Helvetica 'a’

3 Convert to outlines: Adobe Illustrator feature that extracts the editable vector image
from a text area by destroying its editable text features and exposing the underlying
vector image.

13

The shape is no longer a glyph in a text field; two disjoint paths are exposed along with
the vertices that create the shape. After converting a glyph into a vector image, the
manipulation process no longer relies on understanding the intricate machinery of a font

file, but it is simplified down to understanding arbitrary amount of Bezier curves.

6.3 Generating Unique Glyphs

In order to generate unique glyphs that resemble each other at an enough level
that they can be recognized as different instances of the same letter, the computer

should need a source to create derivations.

Using a single source glyph would be enough to derivate infinite amount of new ones,
but the chance of achieving visual harmony is either too low, or requires too many

interventions on the process of generation, which undermines the effect randomness.

Instead of using a single source, using two source glyphs results in a more desirable
outcome. Choosing two different fonts and interpolating equivalent glyphs in between,
practically yields as many intermediate glyphs as the floating-point accuracy of the
computer (e.g. if the smallest step between two integers a computer can calculate is

0.01, then there are 99 intermediate steps between the two arbitrary numbers).

One problem of interpolating two glyphs is that in order to interpolate, the two shapes
should have matching number of vertices at matching locations on each letter. For
instance, the following two shapes in figure 5 cannot be interpolated because they have

19 and 52 vertices respectively.

14

Figure 5 Syntax 'a' vs. Helvetica 'a' in vector form

The solution for this problem is adding the missing vertices on the shape manually to
prepare the shapes for interpolation. The additional vertices are highlighted in red in

Figure 6.

Figure 6 Compensating the missing vertices

Now that the two shapes are ready for interpolation, the application should be told
which vertices are matching. A vector image in SVG form is defined by the absolute
position of the first vertex and the relative positions of the following vertices. The
starting vertex can be any vertex and if the starting vertices are at matching positions on
both shapes, then the interpolation can take place smoothly. Figure 7 shows the %50

interpolation for the letter a before explicitly defining the starting vertices.

15

Figure 7 The Interpolation Abomination

Notice how the shape is beyond recognition. When matching vertices are interpolated,
the outcome vertex is positioned at the weighted mean of the two source vertices, where
the weight is the ratio of interpolation. When the vertices are not matched correctly, the
two shapes start from unrelated positions and the incorrect mapping between the

vertices propagate through the entire shape as seen in Fig. 7.

After the glyphs’ starting vertices are manually chosen before creating the SVG file,
they become fully compatible for the interpolation. Explicitly declaring the starting
point of a vector shape is a software specific task and therefore not relevant to the

content of this thesis.

16

Figure 8 The Franken-a

Once the vertex shift is fixed, it is possible to generate all the intermediate steps

between the two shapes.

ddddddddddd

Figure 9 Intermediate steps of the Franken-a

The following letters show a hundred random interpolations of each letter. The pure
grotesque and pure humanist ends of the interpolations are represented in red and blue,
respectively, while the intermediate forms are light gray. See Appendix C for 5 possible

sets generated by the Franken-font.

17

L

Figure 10 The intermediate forms

18

6.4 Typing with Generated Glyphs

As the letters are transformed into their vector image forms by creating their
outlines, essential information, such as kerning is lost. Because, these information are
imported from the source font file and what we have is regarded just as an image by the
computer. Consequently, in order to type with the generated letters, the application
should know how much space a letter spans horizontally, so that it can place the letters

with appropriate spacing.

Setting a standard kerning without taking the individual letters’ shapes into

consideration yields a result as the following in figure 11.

Qui ck brown fox junps over the | azy dog.

Figure 11 Using static spacing

Every letter is placed in an equally separated grid, resulting in an uneven spacing
between letters with extreme difference in width. As a solution, the letters are
associated with predefined widths — just like the metric information of a font file — so

that the separations are visually harmonious.

Quick brown fox jumps over the lazy dog.

Figure 12 Using static per-letter spacing

Even though this method produces much pleasing results, there exist other fundamental
problems. By using this approach the left bearing and the right bearing information are
merged into a single variable, the kerning does not exist and the width difference
between the two ends of the interpolation (i.e. the Helvetica end and the Syntax end)

glyphs are not considered.

19

6.4.1 Interpolating the Glyph Width

The equivalent glyphs from different fonts do not necessarily have matching
widths. As an example, the following two ‘s’ letters in Figure 13 are from Syntax and

Helvetica, respectively.

100 units 129 units

Figure 13 Width difference between Helvetica and Syntax

If the former is assumed to have a width of 100 units, then the latter’s width is 129

units. Therefore, the metric should be interpolated along with the glyphs as well.

As a solution, every glyph’s width is measured when the files are loaded, and upon
matching the glyphs, their ratio is calculated and stored with the interpolator object
assigned to that letter. The ratio is calculated in the form of (Helvetica / Syntax). For the

example of the letter °s’, the ratio is 1.29.

Since Syntax and Helvetica are on each end of the interpolation, the multiplier for the
metric of the glyph changes between the range, 1 and 1.29. In other words, while the
interpolation is on the range of 0 percent to 100 percent, the interpolation of the metric
should be mapped to the range 1 — 1.29. As an example, suppose the metric for %40

Syntax - %60 Helvetica has to be generated. So the calculation is as follows:

20

1.29-1=0.29 Subtract the minimum value

0.29x0.4=0.116 Apply the interpolation
0.116 +1=1.116 Add the minimum value back to find the multiplier
100x 1.116 =111.6 Apply the multiplier to the metric of the Syntax ‘s’

111.6 units

Figure 14 Metric interpolation

6.4.2 Spacing and Kerning

The last and the most appeasing approach depends on letter width interpolation,
and thus it does not use predefined spacing between the letters. Therefore, this approach

also introduces the spacing information back to the application.

Without adding an extra spacing between the letters, they perfectly touch consecutive

letter’s bounding box as seen in Figure 15.

Quick brown fox jumps over the lazy dog.

Figure 15 Using bounding boxes for spacing

21

By adding an arbitrary amount of space between the letters, the positioning of the letters

become legible as follows:

Quick brown fox jumps over the lazy dog.

Figure 16 Using bounding boxes with extra spacing

Although the overall positioning works for reading, the kerning information still does
not exist. In order to simulate the left and the right bearing information, each letter
combination is analyzed and these combinations are assigned either a positive or a
negative value of extra spacing. This extra spacing information is added to the default
one to compensate the negative space between the letters, such as the extra spacing that
appears between o and x in Figure 16. Notice how this o-x pair or o-v-¢ letters appear to

fill in the extra negative space in Figure 17.

Quick brown fox jumps over the lazy dog.

Figure 17 Taking bearings into consideration

The last approach produces the most visually pleasing result. All these examples also
demonstrate how the glyphs are generated every time they are typed, as each example
feature a slightly different variations of the same letters, along the intermediate steps of
interpolation between Syntax and Helvetica. Although it produces acceptable results for
most of the letters, punctuations and numbers, the interpolation for the letter ‘g’ yields

very awkward results.

Letter ‘g’ for Helvetica and Syntax are fundamentally different as syntax has a double-
story armature whereas Helvetica’s ‘g’s are single-story. As a result, the following
interpolation in Figure 18 needs too many design decisions and the intermediate steps

are too distracting to be characterized in any category.

99933888885

Figure 18 Intermediate steps of the Franken-'g'

22

Therefore, as an exceptional rule, lowercase g is limited to either purely Helvetica or

Syntax in order to solve this ambiguity.

6.5 Exporting Usable Text

The Frankenstein Application is an experimental environment to generate text
with unique glyphs per each keystroke and not a full-fledged design environment.
Therefore, the generated text should be exportable in a format that a standard design

environment can interpret.

One of Processing API’s pre-included libraries "PGraphicsPDF" is capable of drawing

what’s on the application window into a PDF* file in the form of a vector image.

Using this library, every letterform that is drawn on the screen is also drawn into the
final pdf file. As the interpolation process is completed, the application also generates a

pdf file that contains everything that had been interpolated so far.

Consequently, every piece of text that is written within the application is saved in PDF
format as a vector image, which can be read and imported into all of the vector graphics

applications for artistic