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Abstract

Glitches are sudden changes in rotation frequency and spin-down rate, observed from pul-

sars of all ages. Standard glitches are characterized by a positive step in angular velocity

(∆Ω > 0) and a negative step in the spin-down rate (∆Ω̇ < 0) of the pulsar.

There are no glitch-associated changes in the electromagnetic signature of rotation-

powered pulsars most cases. For the first time, in the last glitch of PSR J1119-6127, there

is clear evidence for changing emission properties coincident with the glitch. This glitch

is also unusual in its signature. Further, the absolute value of the spin-down rate actually

decreases in the long term. This is in contrast to usual glitch behaviour. In the first Chapter

the vortex creep model is extended in order to take into account these peculiarities. It is

proposed that a starquake with crustal plate movement towards the rotational poles of

the star induces inward vortex motion which causes the unusual glitch signature. The

component of the magnetic field perpendicular to the rotation axis will decrease, giving

rise to a permanent change in the pulsar external torque.

The vortex creep model explains the postglitch behaviour of Vela pulsar well, while

it has the difficulties to estimate the interglitch time intervals. In the second Chapter it is

hypothesized that for each Vela glitch there might be a persistent shift, which will not relax

back, in the post-glitch “triangle” fashion of ∆Ω̇. This step would not be distinguished

observationally at the time of the glitch. The modified expression for the time between

glitches by using this consideration is applied for 14 Vela glitches by minimizing rms

deviations between the model and observed glitch times. The estimates are in better

agreement with the observed values with the persistent shift of ∆Ω̇p/Ω̇ = 1.6 × 10−3

for all Vela glitches. Different ∆Ω̇p values for each Vela glitch are also calculated by

inserting the observed interglitch times in the modified expression.

Glitches are triggered by an initial crust breaking event. The size of the crust breaking

is determined by the critical strain angle, θcr. The broken crust plate size in turn deter-

mines the number of vortices involved in the unpinning avalanche that effects the size of
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the amplified glitch. The event of minimum glitch size of the Crab pulsar observed by Es-

pinoza et al. (2014) is investigated in the third Chapter. Modelling the “pure” crustquake

as a trigger mechanism with some breaking geometries, some physical quantities in neu-

tron star crust, like the size of the broken plate, the critical strain angle at which fracture

occurs, and the number of triggered vortices involved in larger glitches are estimated.

In the final Chapter the critical strain angle in the Coulomb crystal in the neutron star

crust is estimated on the assumption that this dimensionless number is of the order of the

ratio of the Coulomb potential energy to the kinetic energy of the relativistic electrons,

θcr ∼ |EC |/EK . This estimate scales with the fine structure constant, the charge Z, and

microscopic length scales. The scaling also depends on the dimensionality according to

the shapes of the nuclear clusters in various “pasta” geometries (i.e. spherical, rod, slab)

in the inner crust. It is found that θcr ∼ 10−1 in the outer crust, in agreement with the

numerical results of Horowitz & Kadau (2009), while it reduces to 10−2 − 10−3 in the

inner crust where the lower dimensional rod and slab configurations prevail. Screening

which is very weak does not change the results appreciably.
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NÖTRON YILDIZI KABUĞUNUN FİZİĞİ VE SIÇRAMA OLGUSU
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Özet

Pulsar sıçramaları, yıldızın açısal dönme hızında ani bir artış olarak gözlenir. Bu artış

sıçrama öncesi periyoda göre ∆Ω/Ω = 10−9 − 10−6’lık kesirsel bir azalmaya karşılık

gelir. Dönme hızındaki bu sıçramaya ek olarak yıldızın yavaşlama oranının mutlak değeri

de sıçrama öncesindeki değerine göre bir artış gösterir. Bu artış kesirsel olarak ∆Ω̇/Ω̇ =

10−4 − 10−1 mertebesindedir.

Tezin ilk bölümünde yüksek manyetik alanlı bir pulsar olan PSR J1119-6127 kay-

nağının standart sıçrama parametrelerine (yıldızın dönme oranındaki artışı, yavaşlama

oranının büyüklüğündeki artış ve sıçrama sırasında pulsarın emisyon özelliklerinde bir

farklılık gözlenmemesi gibi) aykırı özellikler içeren 2007 yılı sıçramasını vorteks sızma

modeli çerçevesinde incelendi. Gözlemsel anlamda bu aykırı özellikler iki maddede

toplanabilir: (i) Yıldız, sıçrama sonrasında sıçrama öncesine göre daha düşük bir yavaşlama

oranı ile yavaşlamaktadır, (ii) bu sıçrama ile birlikte, yıldızın dış tork değişimine işaret

eden emisyon özelliklerinde geçici farklılıklar ortaya çıkmıştır. Vorteks sızma modeli bu

ki acayip davranışı hesaba katılacak şekilde geliştirildi. Sıçrama ile birlikte dış torkta da

bir değişimin meydana gelmesi ve yavaşlama oranında da kalıcı bir değişiklik oluşması

yıldızın kabuğunda meydana gelen olası bir deprem ile açıklanmaya çalışıldı. Buna göre

deprem sırasında kabuk parçası yıldızın manyetik kutbuna doğru hareket eder kabuğa

bağlı manyetik alan çizgilerinin elastiki yapıları yıldız emisyon özelliğinde belli bir süre

değişiklik meydana getirir.

Vorteks sızma modeli, Vela pulsarının sızma sonrası davranışlarını başarılı bir şekilde

açıklayabilse de, iki sıçrama arasındaki zaman tahmini konusunda zorlukları vardır. Bu

tezin ikinci bölümünde Vela pulsarının sıçramaları ele alınarak sızma modelinin öngördüğü

sıçramalar arası geçen zaman ifadesinde iyileştirmeler yapılmış ve gözlemler ile teorik

sonucun uyumluluğu araştırılmıştır. Gözlemler çoğunlukla Vela kaynağının iki sıçrama

arasındaki zamanının, modelin tahmin ettiğinden daha kısa olduğunu gösteriyor. Modele

değişiklik getirirken önerilen senaryo şudur: Vela pulsarı da Yengeç pulsarı gibi deprem

tarafından tetiklenen bir sıçrama meydana getiriyor ise yıldızın yavaşlama oranında kalıcı
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bir azalma olacaktır. Sızma teorisine göre bu kalıcı azalma depremin tetiklediği yeni vor-

tex boşalma bölgelerinden kaynaklanmaktadır. Bu yeni bölgeler sıçramadan önce vorteks

sızmasına katkıda bulunuyorken, olay sonrası spin yavaşlama oranına katkı sağlamaya-

caktır. Vela pulsarında yavaşlama oranındaki bu kalıcı değişim sıçrama büyüklüğü içinde

gözlemlerden kaçmış olabilir. Buna göre bir sonraki sıçrama zamanının doğrusal olarak

daha kısa bir sürede olması gerekmektedir. Analizler sonucu Vela sıçramaları için bul-

duğumuz, gözlem değerlerine en çok yaklaştıran yıldızın yavaşlama oranındaki kalıcı

değişikliğin kesirsel değeri ∆Ω̇p/Ω̇ = 1.6× 10−3’tür.

Pulsar sıçramaları yıldız depremleri ile tetiklenen olaylardır. Yıldız kabuğunun kırıl-

ması, kritik kırılma açısı ile belirlenir. Bu da sıçrama ile etkilenen daha büyük sıçramalara

yol açan toplam vorteks sayısı ile ilişkilidir. Üçüncü bölümde Crab pulsarında gözlemle-

nen en üçük sıçrama olayı yıldız depremi modeli ile incelenmiştir.

Tezin son bölümünde yıldız kabuğunun farklı tabakalarında deprem koşullarının oluşumu

için gerekli kritik gerilme açısının eğeri elde edilmiştir. Nükleer pasta yapıları da ele

alınarak bir Wigner-Seitz hücresi içersindeki toplam elektriksel Coulomb potensiyel en-

erjisinin, çekirdek etrafındaki elektronların hareketinden meydana gelen toplam kinetik

enerji oranı bulundu. Bu boyutsuz değerin kritik gerilme açısı ile doğrudan ilişkili olma

yorumundan yola çıkarak kabuğun farklı katmanlarınlaki /thetakr değerleri elde edildi.

Buna göre yıldızın kabuğunda meydana gelecek bir deprem iç tabakalarda daha olası iken,

dış tabakaya doğru zorlaşır.
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Chapter 1

INTRODUCTION
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Neutron star is a celestial body which is one of the expected outcomes of stellar evo-

lution, with the white dwarfs and black holes, after supernova explosions. A star without

the fuel cannot manufacture its own energy to maintain the pressure against its own grav-

ity at the end of its life, leading a sort of subsequent collapse. In the stars with low mass

(like our sun), the pressure of degenerate electrons can balance gravity, leaving behind a

“white dwarf”, while the collapse proceeds for heavier stars. As the matter in the central

region becomes so intense, the atomic nuclei dissolves into a mixture of electrons protons

and mostly degenerate neutrons which can provide an effective pressure against gravity,

leave another type of remnant, neutron star. It is also thought that if the pressure in the

neutron star is not sufficient, the collapse then cannot be stopped and the “black hole” is

created.

Pulsars (Pulsating Radio Stars) rotate extremely fast. They are observed with the

rotational periods varying between 1.4 ms < P < 12 sec 1. Such high velocities in

neutron stars are due to angular momentum conservation as a result of the collapse of the

progenitor. Their periods also increase in time with a very slow rate, typically Ṗ ∼ 10−15

Hz s−1, due to the loss of rotational energy.

In 1967 Jocelyn Bell Burnell, who discovered PSR B1919+21 (Hewish et al., 1968),

firstly observationally confirmed the presence of neutron stars. Gold (1968) firstly pro-

posed the idea that there must be a link between the pulsars and neutron stars and mod-

elled a rotating magnetised neutron star. This was also confirmed by the discoveries of

the pulsed emission from the Vela pulsar (Large, Vaughan & Mills, 1968) and the Crab

pulsar (Staelin & Reifenstein, 1968) in supernova remnants.

1.1 The Structure and Formation of Isolated Neutron Stars

Neutron stars, the densest and very strongly magnetized bodies known, are convenient

laboratories to research the nature in such extraordinary conditions. They have a mass

above that of the Sun, squeezed into a radius of approximately 10 km so that the density

inside is greater than the nuclear saturation density (ρ0 = 2.8×1014 g cm−3) which cannot

be examined in terrestrial materials. The description of the equation of state still remains

unknown at such high densities, but there are some possible suggestions. Oppenheimer

& Volkoff (1939) firstly tried to calculate the equation of state and predicted that the

neutron stars have a maximum mass of 0.7 M�, assuming that a star is only formed by

noninterracting neutrons. The recent works by Demorest et al. (2010); Antoniadis et al.

(2013) though observed the maximum mass of the neutron star around (2− 3) M�.

1The Australia Telescope National Facility Pulsar Catalogue (Manchester et al., 2005)
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Figure 1.1: Schematic view of a neutron star structure, in the ground state, throughout the
density. Figure credit: The review paper of Chamel & Haensel (2008)

1.1.1 Layered Structure of the Crust

Though the temperature inside the neutron stars is & 107 K, they are indeed thought to

be as cold objects due to the fact that the Fermi energy is larger than the thermal energy

in such high densities. It is assumed that the matter inside is already in thermodynamical

equilibrium at zero temperature and in its ground state with the lowest energy. Figure 1.2

visualizes the layered structure of the crust in the ground state. The neutron drip density,

ρdrip = 4×1011 g cm−3, separates the crust into two regions: the outer crust and the inner

crust.

The outer region of crust, constituted by electrons and nuclei, is formed of a body

centred cubic lattice (bcc) with mostly 56Fe atom (Chamel & Haensel, 2008). The atoms

are already ionized at the surface where ρ ∼ 104 g cm−3. Due to electron captures, the

nuclei turns into neutron-rich composition at densities above 106 − 107 g cm−3. The

degenerate electrons are uniformly distributed and relativistic everywhere but in the most

outer layer with a few meters thick. Screening effect in the Coulomb interactions can be

negligible as the Thomas-Fermi screening length is larger than the lattice spacing Pethick

& Ravenhall (1995).
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The inner crust, extending from the neutron drip density to ρ ∼ 3 × 1014 g cm−3,

is composed of the neutron-rich nuclei together with the electron gas and free neutrons,

containing a BCS superfluid by pinning as a result of neutron-neutron interactions2. The

ratio of free neutrons increases towards the bottom layers and finally the nuclei entirely

dissolve. At the deepest region (ρ ∼ 3×1014 g cm−3), there is a series of phase transitions

to the core with nuclei that are arranged in rod and slab, instead of spherical forms, the so

called “pasta” phases Ravenhall, Pethick & Wilson (1983); Hashimoto, Seki & Yamada

(1984).

1.1.2 The Outer Core

The region of the outer core where the density reaches to ρ ∼ 5×1014 g cm−3 is expected

to be composed of a few percentage of protons, electrons, muons, and mostly neutrons.

While the electrons and muons are thought to be as an ideal fermionic gas, the neutrons

and protons are in the formation of superfluid state as a result of a strong interaction. The

protons in this region are expected to be in a formation of a type II superconductor with

the magnetic flux concentrated in flux-tubes Baym et al. (1969). There is also a strong

interaction between the vortices of superfluid neutron and flux tubes, leading to pinning

in the core.

1.1.3 Superfluidity

The explanation of superconductivity for the terrestrial materials with low resistivity was

firstly given by Bardeen, Cooper & Schrieffer (1957). According to this BCS theory, it is

energetically favourable for the fermions in a system (for instance electrons in metals) to

produce boson-like states by a condensation of cooper pairs at sufficiently low tempera-

ture. Superfluids with almost zero viscosity are neutral, while superconducting currents

are charged.

Migdal (1959) firstly proposed the idea of the existence of superfluidity and supercon-

ductivity inside neutron stars with the analogy of electrons in superconductor. Nucleons

in neutron star, with high density and low temperature, can also create cooper pairs as

a result of attractive nuclear forces (Bohr, Mottelson & Pines, 1958; Cooper, Mills &

Sessler, 1959). Superfluid inside neutron star is classified as three types: neutron super-

fluid with the form of 1S0 in the inner crust, neutron superfluid ( with 3P2 pairing) and
1S0 superconducting proton inside the core (Figure 1.3). The outermost crust lacks of

superfluid as the nucleon density is not high enough there. As density increases to neu-

2see the following section for more details about the superfluidity in the inner crust
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Figure 1.2: The typical interior structure of a neutron star and types of superfluids along the
density. Figure credit:http://slideplayer.com/slide/4522702/

tron drip density more and more free neutrons produce continuum states of fermi sea and

configure cooper pairs by the long range attractive interaction. In these densities protons

cannot form superfluid since they still remain locked inside nucleus. In the core region

the density is high enough so that all neutrons and protons are free of bound states and

can form in superfluid and superconductor respectively. The prediction of the existence

of superfluidity has been recently verified by monitoring the cooling of the young NS in

the supernova remnant Cassiopeia A (Shternin et al., 2011; Page et al., 2011).

It is energetically favourable for the superfluid inside the rapidly rotating crust (con-

tainer) to follow the rotation. This is obtained by the weak interactions between the nor-

mal component and vortices carrying the quantized circulation κ = h/2mn, where h is the

Planck constant and 2mn is the mass of a neutron pair. The rotational rate of superfluid

component is found by the vortex density, so there is a connection between vortex motion

inside neutron star and the superfluid velocity. It is well established from the experiments

of Helium II that superfluid can rotate by the quantized vortices carrying the circulation.

The details about the superfluid dynamics and its relation with the crustal lattice are given

in the next chapters.
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Figure 1.3: Schematic picture of the rotating magnetic dipole model. As illustrated here, the
rotational axis is misaligned with the magnetic field axis which is almost aligned with the
radiation beam. Figure credit: The Phd thesis of Danai Antonopoulou

1.2 Spinning down of Pulsars and The Braking Index

The rotating magnetic dipole model, which is not a full picture though, attempts to explain

the spinning down and pulsation of neutron star. This model (Figure 1.4) involves the

magnetic field axis which is aligned with the radio emission beam, but misaligned with

respect to the rotational axis (Ruderman & Sutherland, 1975). The accelerated particles

on the surface, induced by the magnetic field and rotation with the pair creation process,

form a rigid magnetosphere that rotates with the pulsar (Goldreich & Julian, 1969). These

charged particles in the magnetosphere produce a narrow beam emission, also aligned

with the magnetic axis. This is observed as a radiation pulse with a frequency which

equals to the rotational frequency of pulsar (Eastlund, 1968; Ginzburg & Zaitsev, 1969).

In the model the magnitude of the magnetic moment is given by

|m| = B⊥R
3

2
(1.1)
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where R is the radius of neutron star and B⊥ is the perpendicular component of the mag-

netic field with respect to the rotational axis. The nonalignment of the magnetic moment

with respect to the rotational axis makes the magnetic moment changing with time. This,

just as an accelerated charge, causes the rate of energy loss that is given by

Ėdip = − 2

3c3
|m̈|2 = −B

2
⊥R

6Ω4sin2α

6c3
(1.2)

where α is the angle rotational axis and magnetic moment. This energy comes from the

rotational kinetic energy of a pulsar, giving the radio luminosity as

Ėrot = IΩΩ̇. (1.3)

Here I ∼ 1045 gm cm2 is the inertial moment of star. The pulsar spins down as a result

of the torque exerted by the radiation. The magnetic braking rate is found equating these

two relations:

Ω̇ = −2B2
⊥R

6Ω3

3Ic3
(1.4)

which gives an estimate for B⊥ from the observations of P and Ṗ . From Equation (1.3)

the spindown rate can be generally related with the angular velocity as Ω̇ = −KΩn. Here

the exponent n is the braking index and K is a factor that generally depends on inertial

moment and magnetic moment. On the assumption that K and n are constant during a

lifetime of a pulsar, differentiation of the spindown power gives

n =
ΩΩ̈

(Ω̇)2
(1.5)

which can be obtained by the measurement of Ω̈. The spindown (characteristic) age of

pulsar can also be roughly estimated by

τ =
−Ω

(n− 1)Ω̇
(1.6)

with the assumption that pulsar had a very high angular velocity in initial stage. To date

all braking indices have been measured as less than 3 (see Archibald et al. (2016) for

an exception), suggesting that the rotating magnetic dipole model is not sufficient to ex-

plain the pulsar long term spindown (Lyne, Pritchard & Graham-Smith, 1993; Livingstone
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et al., 2007; Roy, Gupta & Lewandowski, 2012) and other alternatives must be included

(Blandford & Romani, 1988; Chen & Li, 2006; Ho & Andersson, 2012; Antonopoulou

et al., 2015)

The measurement of n can be possible for very few pulsars like Crab, PSR B0540-69,

PSR B1509-58, PSR J1119-6127 which are young. Such a measurement can be difficult

for older pulsars due to high levels of timing irregularities (i.e. timing noise, glitches)

which create a sort of contamination in steady spindown.

1.3 Pulsar Timing and the Irregularities: Glitches and

Timing Noise

Pulsar timing3 is the process of the regular monitoring of the neutron star rotation over

long periods. Tracking (highly precisely) the times of arrival of the radio pulses, as-

tronomers obtain some physical information including the magnetosphere and interior of

neutron stars, such as their age and magnetic field.

After extracting some astronomical effects, like the pulsar’s proper motion and the

Earth’s orbital motion, and determining the time of arrival (TOA) of each pulse, the spin

frequency is evaluated using Taylor expansion around the epoch t0:

ν(t) = ν0 + ν̇0(t− t0) +
1

2
ν̈0(t− t0)2 (1.7)

where subindex 0 denotes the parameters at time t = t0. The rotational parameters of a

pulsar are found by timing residuals between observation and the above model. Pulsars

in general show the rotational stability, which makes them the most precise clocks in the

universe. But there are also two remarkable irregularities from this trend: (i) random

and slow deviation from Equation (1.6), called “timing noise”, and (ii) abrupt changes in

rotational frequency and its derivative, glitches.

1.3.1 Timing Noise

Timing noise represents as a slow deviation in phase, frequency, or frequency derivative

in various pulsars (Cordes & Downs, 1985; D’Alessandro, 1996; Hobbs, Lyne & Kramer,

2006). Fits by a simple spindown model show that the rms residuals are in a range of 7

orders of magnitude for various pulsars. A surplus of timing noise is observed in mag-

3The details for pulsar timing and other observing techniques can be found in Handbook of Pulsar
Astronomy by Wright (2005)
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Figure 1.4: The glitch candidates of the Crab pulsar along the times. Horizontal lines show
the limit of glitch detection. Figure Credit: Paper by Espinoza et al. (2014)

netars, whereas they are undetectable for most of milisecond pulsars. It is also suggested

that there might be a correlation between the strength of timing noise and the magnitude

of the spindown rate (Hobbs, Lyne & Kramer, 2010).

Although there is not a common explanation for this phenomena, there has been some

attempts to clarify by different mechanisms, such as superfluid turbulence (Melatos &

Link, 2014), changes in magnetospheric activity (Shemar & Lyne, 1996; Hobbs, Lyne &

Kramer, 2010), and precession (D’Alessandro et al., 1993). The measurements of Lyne

et al. (2010) for six pulsars point out that it can be also associated with pulse shape.

There has been also some suggestions that timing noise might be caused by the glitches

which are below the observational limits (Cheng et al., 1989, 1988). However the work of

Espinoza et al. (2014) explored the group of small events (Figure 1.5) that are uncovered

from timing noise and fitted as glitches. This gap between the measurements of timing

noise and small glitch events suggest that there should be different mechanisms for these

two phenomena4.

4see chapter 3 for the details and some proposals for this distinction
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1.3.2 Glitches

Glitches are sudden increases in the rotation rate of pulsars followed by relaxation towards

the pre-glitch state. The fractional change of the angular velocity, ∆Ω/Ω, in a glitch is in

the range ∼ 10−11 − 10−5. Glitches are usually accompanied by jumps in the spin-down

rate, ∆Ω̇/Ω̇, in the range ∼ 10−4− 10−2. To date, about 400 glitches have been observed

in more than a hundred pulsars (Espinoza et al., 2011; Yu et al., 2013). It was showed

by (Melatos, Peralta & Wyithe, 2008) that the size distributions of glitch events are fit

with power laws with various indices from pulsar to pulsar, suggesting that they could be

originated by self-organized critical processing, like quakes or vortex avalanches. Middle-

aged pulsars, like Vela, exhibit glitch event the greatest in amount, while its activity and

size decrease with age (Shemar & Lyne, 1996).

Glitch recoveries can distinguish in terms of their timescales (Figure 1.6). The char-

acterized glitch parameters of ∆ν and ∆ν̇ can involve the permanent and/or decaying

components. They have both the short-term relaxation, with characteristic time of hours

to days, and the long-term relaxation, which is not sometimes observed due to being dom-

inated by subsequent glitch. The abnormal glitch recoveries, usually correlated with the

magnetospheric changes, have been also observed in the radio pulsars with high magnetic

field such as PSR J1846-0258 (Livingstone, Kaspi & Gavriil, 2010), PSR J1718- 3718

(Manchester & Hobbs, 2011), PSR J1819-1458 (Lyne et al., 2009), and PSR J1119-61275

(Weltevrede, Johnston & Espinoza, 2011; Antonopoulou et al., 2015), and in magnetars,

coexisting with some radiative changes like bursts (Kaspi & Gavriil, 2003; Kaspi et al.,

2003; Dib, Kaspi & Gavriil, 2009).

Several models have been proposed to explain glitches and post-glitch relaxation. In

the early starquake model (Ruderman, 1969), the solid crust of the neutron star occasion-

ally cracks under stresses induced by the ongoing spin-down of the star, thereby readjust-

ing to a less oblate shape closer to the equilibrium shape that a fluid star would follow

while spinning down. By conservation of angular momentum, the reduction in moment

of inertia of the crust is accompanied by an increase in its angular velocity. Glitches in

the Crab pulsar (Wong, Backer & Lyne, 2001) and PSR J0537-6910 (Middleditch et al.,

2006a) can be explained by this model. However, starquakes cannot explain large glitches

that repeat every few years, as exhibited by the Vela pulsar (Baym & Pines, 1971). The

required rate of dissipation of elastic energy stored in the solid crust would produce an

X-ray luminosity enhancement which is not observed (Gürkan et al., 2000).

A second model is based on the relaxation towards the pre-glitch values on timescales

5see Chapter 1 for more details for this source
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Figure 1.5: Schematic illustration of some typical glitch recoveries. Figure Credit: The Phd
thesis of Danai Antonopoulou
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of days to years, which is interpreted as a signature of superfluid interior components of

the neutron star (Baym et al., 1969), as a star composed of normal matter would relax

much faster. Anderson & Itoh (1975) proposed that interactions between quantized vor-

tices, carrying the circulation of superfluid, and ions in the crustal lattice can regulate the

outward motion of vortices. As the vortices are pinned by these interactions and the super-

fluid cannot spin down, storing angular momentum exhibits as glitches quasi-periodically.

The vortex creep model6 (Alpar et al., 1984) is the most successful scenario in terms

of explaining the large and frequent glitches, also the post-glitch behaviour of Vela and

some other pulsars with structural parameters of neutron star (such as the inertial moment,

temperature).

6see Chapter 1 for the details and formulation
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Chapter 2

PECULIAR GLITCH OF PSR J1119-6127 AND

EXTENSION OF THE VORTEX CREEP MODEL

This chapter was published in Monthly Notices of the Royal Astronomical Society, 2015,

Volume 449, Issue 1, pp. 933-941

Onur Akbal, Erbil Gügercinoğlu, Sinem Şaşmaz Muş, and Mehmet Ali Alpar
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2.1 Introduction

The 2007 glitch of PSR J1119-6127 is unusual and interesting as the first case with clear

indications of changing pulsar emission properties coincident with the glitch. The event

is also unusual in its long term signature of decreased spin-down rate. These signatures

require an extension of the vortex creep model which has become the standard model

for evaluating glitches and post-glitch response. The extension of the model must also

make allowance for changes in the pulsar torque suggested by the glitch related changes

in emission properties.

The standard model for the pulsar glitches is the vortex pinning−unpinning (vortex

creep) model based on the dynamics of the neutron star’s superfluid interior (Anderson &

Itoh, 1975; Alpar et al., 1984). This model invokes the minimal storage and dissipation

of energy for a star with angular momentum. The expected energy dissipation in a large

glitch, at the expense of the rotational kinetic energies of the two components, does not

violate any observational upper bounds. Models based on pinned superfluid components

can explain the various modes of glitch and post-glitch behaviour (Haskell, Pizzochero &

Sidery, 2012; Haskell & Antonopoulou, 2014).

Radio pulsar glitches observed up to the 2007 glitch of PSR J1119-6127 (Weltevrede,

Johnston & Espinoza, 2011) showed no glitch correlated changes in the electromagnetic

signatures, like pulse shape, emission pattern, spectrum and polarization. Previous ap-

plications of the vortex creep and starquake models assumed that there were no changes

in the pulsar torque at the time of the glitch. Glitches and post-glitch response were ex-

plained entirely in terms of the internal structure and dynamics of the neutron star. The

2007 glitch of PSR J1119-6127 shows clear evidence for changing emission properties

induced by the glitch, switching on intermittent pulses (see, e.g., Kramer et al., 2006) and

also showing rotating radio transient (RRAT) behaviour (see, e.g., Keane & McLaughlin,

2011). Interestingly, this glitch also displayed ∆Ω̇ > 0 after transients have decayed,

in contrast to the signatures of “standard” glitches which are characterized by a negative

step in spin-down rate (∆Ω̇ < 0). The high magnetic field radio pulsar PSR J1846-0258

had comparable glitch-induced emission changes (Livingstone, Kaspi & Gavriil, 2010).

The radio pulsar PSR J0742-2822 showed a suggestive connection between changing ra-

dio emission and pulse shape features and glitch activity, however there is currently little

direct evidence to establish a robust link between them due to absence of enough data fol-

lowing the glitch date (Keith, Shannon & Johnston, 2013). The RRAT J1819-1458 was

also reported to have an increase in its activity associated with a glitch (Lyne et al., 2009).

In this paper we analyze the 2007 glitch of PSR J1119-6127 and extend the vortex
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creep model to include the possibility of a sudden change in the pulsar torque associated

with the glitch, as suggested by the changing emission properties, and to address the

atypical glitch signature. In §2.2 we summarize the unique properties of the 2007 glitch

of PSR J1119-6127. In §2.3 we review the vortex creep model, while in §2.4 we develop

the model to include the unusual signatures in the spin frequency and spin-down rate, and

allow for glitch associated changes in the pulsar torque. We apply our extended model to

the peculiar glitch of PSR J1119-6127 in §2.5. We discuss our results in §2.6.

2.2 The Peculiar Glitch of PSR J1119-6127

PSR J1119-6127 is a young pulsar with a period P = 0.41 s and a period derivative

Ṗ = 4 × 10−12 Hz s−1 discovered by Camilo et al. (2000). It has a characteristic age

τc ≡ P/(2Ṗ ) ∼= 1625 years, and a high surface dipole magnetic field B ∼ 8.2 × 1013 G

(at the poles). This pulsar has exhibited three glitches (Camilo et al., 2000; Weltevrede,

Johnston & Espinoza, 2011). The third glitch, which occurred in 2007, was quite unusual

in a number of ways (Weltevrede, Johnston & Espinoza, 2011):

1. For a while after the initial exponential relaxation is completed, the pulsar is found

to be rotating with a smaller angular velocity as compared to the pre-glitch value,

∆Ω(t) < 0. In the latest data ∆Ω(t) > 0, and may be settling at a positive value

(Antonopoulou et al., 2015).

2. In the long term, the pulsar slows down at a lower rate; the absolute value of the

spin-down rate is less (the frequency derivative is greater) than its pre-glitch value,

∆Ω̇ > 0.

3. While the fractional changes in angular velocity are small, of the order of 10−9,

for the glitches of the Crab pulsar, Vela and older pulsars undergo large glitches

of size ∆Ω/Ω ∼10−6 as well as smaller “Crab-like” events. The 2007 glitch of

PSR J1119-6127 is a “Vela-like” giant glitch from a young pulsar comparable to

the Crab pulsar in characteristic age.

4. The radio emission properties of PSR J1119-6127 displayed changes associated

with the glitch. The pulsar switched on intermittent pulses and also showed RRAT

behaviour which seems to have emerged with the glitch. This anomalous emission

behaviour of PSR J1119-6127 was observed for about three months following the

2007 glitch.
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The much smaller second glitch which occurred in 2004 may have had similar signa-

tures in the long term post-glitch frequency and frequency derivative remnants (Antonopoulou

et al., 2015). The data is sparse, and post-glitch evolution may have been interrupted by

the arrival of the 2007 glitch. Furthermore, no glitch associated changes in emission

properties were observed for the 2004 glitch. Here we address only the 2007 glitch.

2.3 Overview of the Vortex Creep Model

The vortex creep model (Alpar et al., 1984; Alpar, Cheng & Pines, 1989) attempts to ex-

plain the processes which cause both the glitches and the post-glitch relaxation in terms

of a number of distinct superfluid regions in the inner crust. The superfluid core of the

neutron star is coupled to the external torque on very short timescales, via electron scatter-

ing off magnetized vortices (Alpar, Langer & Sauls, 1984). The core superfluid therefore

behaves as part of the effective normal matter crust. Hence the superfluid component rel-

evant for glitch and postglitch dynamics is the crust superfluid. A description of the core

superfluid blue as well as the crustal superfluid in terms of mutual friction forces acting

upon vortex lines is given by Andersson, Sidery & Comer (2006).

The dynamics of the crust superfluid is constrained by the pinning of the quantized

vortex lines to nuclei, interstitial positions and possibly other structures in the crust lattice

(Alpar, 1977; Link & Epstein, 1991; Mochizuki, Izuyama & Tanihata, 1999; Avogadro

et al., 2008; Pizzochero, 2011; Haskell, Pizzochero & Sidery, 2012; Seveso et al., 2014).

When vortices pin to nuclei, they move with the crust’s velocity. A lag ω = Ωs−Ωc builds

up between the superfluid and the crustal angular velocities Ωs and Ωc as the crust spins

down under the external pulsar torque. This lag is sustained by the pinning forces acting

upon the vortex line. In the case of rotational (cylindrical) symmetry, the magnitude of

the required pinning force (per unit length) is f = rρsκω = rρsκ(Ωs − Ωc), where r

is the distance from rotation axis, ρs is superfluid density, κ is the quantum of vorticity.

The critical (maximum) lag, ωcr, determined by the maximum available pinning force, is

given by ωcr = Ep/rbρsκξ. Here Ep is pinning energy, ξ is the vortex core radius and b is

the distance between successive pinning sites along the vortex line. If local fluctuations in

vortex density and superfluid velocity raise ω above ωcr, there will be sudden unpinning

and outward motion which can lead to an avalanche of vortex discharge (Anderson &

Itoh, 1975). By conservation of angular momentum this leads to speeding up of the crust,

∆Ωc > 0, observed as a glitch. The possibility of such vortex unpinning avalanches taking

place spontaneously was confirmed by computer simulations (Melatos & Warszawski,

2009; Warszawski & Melatos, 2011; Warszawski, Melatos & Berloff, 2012).
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Apart from the discontinuous angular momentum imparted to the crust by sudden

vortex unpinning at glitches, the superfluid also spins down continuously between glitches

by outward flow of vortices. The crustal neutron superfluid follows the spin-down of the

crust by means of thermally activated outward creep of vortex lines against the pinning

energy barriers (Alpar et al., 1984; Alpar, Cheng & Pines, 1989).

In terms of a simple two component model, involving the crust and the superfluid

component, the observed spin-down of a neutron star’s crust satisfies the equation,

IcΩ̇c = Next +Nint = Next − IsΩ̇s, (2.1)

where Next = IΩ̇∞ is the external torque on the neutron star which tries to slow down

the crust, and Nint is the internal torque arising from the coupling of the superfluid to

the crust by vortex creep and tends to speed up the crust. Ic is the moment of inertia of

the effective crust (including the superfluid core of the neutron star), Is is the moment of

inertia of the pinned superfluid, while their spin-down rates are Ω̇c and Ω̇s, respectively.

The spin-down rate Ω̇s of the superfluid is determined by vortex creep (Alpar et al., 1984).

The system reaches a steady state when both the superfluid and the crust spin-down at the

same rate Ω̇∞ ≡ Next/(Is + Ic), sustained at the steady state lag ω∞.

Glitches set the system off from steady state. Post-glitch relaxation is due to the re-

covery of vortex creep, as the lag ω inevitably builds back towards steady state due to

the ongoing spin-down of the crust under the external pulsar torque. The internal torque

is so sensitively dependent on the pinning energy Ep and the crustal temperature T that

we expect vortex lines in the different regions of the superfluid to respond differently.

Depending on the temperature and the local pinning parameters in relation to the external

torque, vortex creep can have a linear or nonlinear dependence on the lag (Alpar, Cheng

& Pines, 1989)1. In the linear regime, the response is linear in the glitch-induced per-

turbation to the lag ω and gives simple exponential relaxation. The relaxation time τl
is very sensitively dependent on Ep/kT , with τl ∝ exp(Ep/kT ). The steady state lag

ω∞ = |Ω̇|∞τl is always much less than ωcr in this regime. From glitch observations, up

to four exponential relaxation terms are seen from a particular pulsar (Dodson, Lewis &

McCulloch, 2007).

In the opposite regime we have a very nonlinear response to perturbations. The re-

1The claim that the linear regime of vortex creep is never realized for realistic pinning parameters (Link,
2014) depends on the velocity of unpinned vortices, relying on the assumption that they move with the
global averaged superfluid velocity with drag forces, and are not affected by the contributions of interactions
with the adjacent pinning sites to the local superfluid velocity. This issue will be addressed in a separate
work.
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sponse of a nonlinear creep region k to the glitch will be (Alpar et al., 1984),

∆Ω̇c,k = −Ik
I
|Ω̇|∞

[
1− 1

1 + (et0,k/τnl − 1)e−t/τnl

]
. (2.2)

At the time of glitch, creep in those regions which show nonlinear response can stop

temporarily. These regions decouple from rest of the star, so that external torque acts

on less moment of inertia. Creep restarts after a waiting time of t0 = δω/|Ω̇|∞, since the

external torque restores the glitch induced decrease in angular velocity lag. The relaxation

time is

τnl =
kT

Ep

ωcr

|Ω̇|∞
.

In those superfluid regions through which the avalanche of vortices unpinned at the

glitch pass, moving rapidly in the radially outward direction, the ensuing reduction δΩs

in the superfluid rotation rate determines the offset δω = δΩs + ∆Ωc in the lag, as δΩs �
∆Ωc. This results in the response given in Equation (2.2), characterized by the waiting

time t0 ∼= δΩs/|Ω̇|∞ > τnl. There can also be nonlinear creep regions through which no

unpinned vortices pass at the glitch, so that δω = ∆Ωc. In this case t0 = ∆Ωc/|Ω̇|∞ can

be much shorter than τnl, and the contribution of such a nonlinear creep region reduces to

simple exponential relaxation (Gügercinoğlu & Alpar, 2014),

∆Ω̇c,k
∼= −

Ik
I

∆Ωc

τnl
e−t/τnl (2.3)

like in the case of linear creep regions, but with the nonlinear creep relaxation time τnl.

If we integrate Equation (2.2) with the assumption that the post-glitch superfluid an-

gular velocity decreases linearly in r over the region, corresponding to uniform density of

unpinning vortices, one obtains (Alpar et al., 1984)

∆Ω̇c(t)

Ω̇c

=
IA
I

1−
1− (τnl/t0) ln

[
1 + (et0/τnl − 1)e

− t
τnl

]
1− e−

t
τnl

 . (2.4)

In the limit t0 � τnl this reduces to recovery with a constant Ω̈c

∆Ω̇c(t)

Ω̇c

=
IA
I

(
1− t

t0

)
, (2.5)

as observed in the Vela pulsar (Alpar et al., 1993) and in most Vela-like giant glitches in

older pulsars (Yu et al., 2013). In the above equations t0 is the maximum waiting time,

IA is the moment of inertia of the vortex creep region A where unpinning of the vortices
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has taken place during the glitch. Vortices unpinned in regions A pass through regions

B with moment of inertia IB before repinning in another creep region A. Regions B do

not participate in spin-down by creep, as they do not sustain pinned vortices. Regions

B contribute to the angular momentum transfer only at glitches, when an avalanche of

unpinned vortices moves through them. These regions A and B determine the glitch,

interglitch and long term behaviour of pulsars (Alpar et al., 1993, 1996).

After the exponential transients are removed, observable variables associated with

glitches are related to the model parameters by the following simple three equations (Al-

par & Baykal, 2006):

Ic∆Ωc = (IA/2 + IB)δΩs. (2.6)

∆Ω̇c

Ω̇c

=
IA
I
. (2.7)

Ω̈c =
IA
I

Ω̇2
∞

δΩs

. (2.8)

Equation (2.6) simply states angular momentum conservation and gives the glitch magni-

tude. This is proportional to the number of vortices which participated in the glitch event.

For a uniform array of vortices the number of unpinned vortices moving outward through

radius r is related to the change in angular velocity of the superfluid at r,

δN = 2πr2δΩs/κ ∼= 2πR2δΩs/κ, (2.9)

since r ∼= R, the radius of the star, in the crust superfluid. The angular momentum transfer

depends on δΩs and the moment of inertia of the regions that vortices pass through, IA and

IB. Equation (2.7) is about the torques acting on the pulsar. Before the glitch, in steady

state, the crust superfluid and the rest of the star spin down at the same rate. When a glitch

occurs, some part of the crustal superfluid decouples from the external torque leading to a

jump in spin-down rate. Solving these equations for the three unknowns, IA, IB, and δΩs,

one can obtain model parameters uniquely without making any further assumptions.

2.4 Extension of the Vortex Creep Model

In the standard vortex unpinning-creep model only the outward motion of vortices is

considered. This gives a negative post-glitch offset (an increase in the absolute value)
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of the spin-down rate from its pre-glitch value, ∆Ω̇ < 0. The spin-down rate relaxes back

to the pre-glitch value (∆Ω̇→ 0) for all modes of vortex creep which supply the internal

torques from the superfluid acting on the normal matter crust. Thus, (i) glitches with the

“wrong” sign in frequency and spin-down rate require inward vortex motion at the glitch;

and (ii) long term (persistent) shifts in the spin-down rate require either a structural change

in the neutron star crust, as proposed for the Crab pulsar (Alpar et al., 1996), or a glitch

associated shift in the external torque (Link, Epstein & Baym, 1992).

Occasional inward fluctuations of vortices, facing an extra potential barrier, is a low

probability component of the creep process. Therefore, bulk spontaneous inward motion

of an avalanche of unpinned vortices is thermodynamically impossible in an isolated su-

perfluid. Large numbers of vortices could be transported inward only if the glitch were

induced by an agent external to the superfluid, like a starquake.

Inward vortex motion will increase the superfluid velocity by some δΩ′s in regions of

superfluid through which vortices have moved inward. Its effect can be investigated by

changing t0 with −t′0, where t′0 ∼= δΩ′s/|Ω̇|∞. With this we obtain:

∆Ω̇c = −IA
′

I
|Ω̇|∞

[
1− 1

1 + (e−t
′
0/τ

′
nl − 1)e−t/τ

′
nl

]
, (2.10)

where the primes indicate parameters associated with inward vortex motion. This equa-

tion describes the response to inward motion of unpinned vortices. When vortices travel

inward, superfluid rotates faster. The lag ω thereby increases from its steady state value,

and creep will be more efficient than in steady state, with an enhanced vortex current in

the radially outward direction. If we integrate Equation (2.10) over a nonlinear creep re-

gion throughout which a uniform average density of vortex lines unpinned, or repinned,

we obtain:

∆Ω̇c(t)

Ω̇c

=
IA′

I

1−
1 + (τ ′nl/t

′
0) ln

[
1 + (e−t

′
0/τ

′
nl − 1)e

− t
τ ′
nl

]
1− e

− t
τ ′
nl

 . (2.11)

The internal torque contribution given in Equations (2.10) and (2.11) leads to an initial

positive contribution to ∆Ω̇c, which asymptotically decays to zero. Unlike the nonlinear

creep response to glitch associated outward vortex motion, as given in Equation (2.2),

the nonlinear creep response to inward vortex motion, does not have a waiting time. In-

stead Equations (2.10) and (2.11) display quasi-exponential relaxation. A constant second

derivative Ω̈c is not obtained from Equation (2.11) when t′0 � τ ′nl or in any other limit.

As the integrated response in Equation (2.11) is very similar, Equation (2.10) is adequate

to describe the spindown rate when vortices have moved inward.
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Allowing for the starquake induced inward vortex motion at the glitch, in addition

to the natural outward motion of many unpinned vortices, we get the following equation

instead of Equation (2.6),

Ic∆Ωc(0) = (IAf + IB)δΩs − (IA′f + IB′)δΩ′s. (2.12)

where f = 1/2 is for the integrated response, Equations (2.4), (2.5) and (2.11), and f = 1

for the simpler response, Equations (2.2) and (2.10). The first term on the right hand side

is the angular momentum transfer due to outward moving vortices, while the second term

is the contribution of inward moving vortices. The physical meanings of IA′ and IB′ are

similar to their non-primed counterparts. A plate of the crustal solid that moves inward

in a quake could carry vortices with it, in the inward, −r, direction. Nonlinear creep

regions with moment of inertia IA′ , and vortex free regions with moment of inertia IB′ are

at radial positions between the original and the new positions of the plate, and therefore

experience a sudden increase δΩ′s > 0. As creep relaxes back to steady state, the net

angular momentum transfer from the regions A and A′ is zero, while the regions B and

B′ transport angular momentum only at glitches and will contribute a remnant frequency

offset ∆Ωp:

Ic∆Ωp = IBδΩs − IB′δΩ′s. (2.13)

Extending Equation (2.7) to describe the net glitch in the spin-down rate with the

terms of opposite signs describing the response of creep to outward and inward vortex

motion, we obtain

∆Ω̇c

Ω̇c

=
IA
I
− IA′

I
. (2.14)

For PSR J1119-6127 the post-glitch ∆Ω̇ > 0 persists for ∼ 2500 days, as far as the

pulsar has been observed since the glitch (Antonopoulou et al., 2015). Here we pursue the

assumption that ∆Ω̇c > 0 is permanent; that it will not decay on long timescales in the

future. This is a viable assumption with the present data, as discussed in the next section.

With this assumption the permanent shift ∆Ω̇p could be due to a structural change in

the star, as postulated for the persistent shifts in spin-down rate observed to accompany

the Crab pulsar glitches (Alpar et al., 1996), or, alternatively, due to a glitch associated

permanent change in the external torque. Unlike the Crab pulsar, the 2007 glitch of PSR

J1119-6127 has strong indications that actually the external torque has changed, since the

pulsar has switched to intermittent and RRAT behaviour with the glitch. It is likely that

structural changes experienced by PSR J1119-6127 lead to a permanent change in the
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external torque.

2.5 Model Fits

We apply a model which is an extension of earlier applications of the vortex creep model

to the Vela (Alpar et al., 1993) and Crab (Alpar et al., 1996) pulsars’ glitches. We take one

nonlinear creep region with relaxation time τ2 corresponding to the outward motion of the

glitches. The new component in the extended model is the inclusion of inward moving

vortices in the glitch, which move through a nonlinear creep region with relaxation time τ1

(cf. Equation (2.10)). We also employ a region in which relaxation occurs exponentially

with a timescale τ3, discussed below. Finally, we include a possible external torque change

as a constant offset to the spin-down. We tried model fits with the integrated response,

Equations (2.4) and (2.11) and with the simple response Equations (2.2) and (2.10). As

the residuals are comparable, we choose to employ the simple model.

The expression used for the fit including our extended formula is:

∆Ω̇c(t) =− a1

[
1− 1

1 + α1e−(t+∆)/τ1

]
− a2

[
1− 1

1 + α2e−(t+∆)/τ2

]
− a3e

−(t+∆)/τ3 + b. (2.15)

The various parameters are defined by: a1 =
IA′
I
|Ω̇|∞, a2 = IA

I
|Ω̇|∞, α1 = (e−t

′
0/τ1 − 1),

α2 = (et0/τ2 − 1), a3 = I3
I
δω
τ3

, and b = (∆Next/N)Ω̇∞, and t is the time since the

first post-glitch observation, with the time lag ∆ between the actual glitch date and the

first post-glitch observation. We have 9 free parameters. Parameters with the subscript

“1” denote the contribution from the response of vortex creep to glitch associated inward

vortex motion, while those with subscript “2” and “3” are associated with creep response

to glitch associated outward vortex motion.

The exponential relaxation term with amplitude a3 might describe the response of

either an intrinsically linear creep region, or a nonlinear creep region where there was

no vortex motion at the glitch, so that the angular velocity of the superfluid remains un-

changed and the glitch induced perturbation to the angular velocity lag is simply δω =

∆Ωc (Gügercinoğlu & Alpar, 2014). We adopt the latter interpretation. This assumption

is consistent with the results obtained from the fits.

The moments of inertia of nonlinear creep regions contributing to the long term re-

sponse are obtained from the fit parameters a1 and a2. The terms α1 and α2 yield the

numbers of vortices moving inwards and outwards, respectively, during the glitch. b is

the long term offset of ∆Ω̇c after all the contributions from creep regions relax back to
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zero. We interpret this as the contribution of the change in the external torque. The

terms with subscripts “2” and “3” contribute ∆Ω̇c(t) < 0 while the parameter b (external

torque change) and the term with subscript “1” (inward motion of vortices) contribute

∆Ω̇c(t) > 0 (see Figure 2.1). This term has the longest time constant, τ1 � τ2 > τ3. The

data could also be fitted by assuming no change in the external torque, b = 0 and choosing

long enough τ1 so that in the long run ∆Ω̇c relaxes back to zero while accommodating

the ∆Ω̇c(t) > 0 values for the latest present observations. We have explored models with

0 ≤ b ≤ 1.1× 10−13 rad s−2, corresponding to −7.2× 10−4 ≤ Next/N ≤ 0. The values

of b between 0.8 × 10−13 rad s−2 and 1.1 × 10−13 rad s−2 yield reasonable fit results.

Here we choose to explore the possibility of a permanent change in the external torque as

reflected by b = 1 × 10−13 rad s−2. However, at present we cannot rule out b = 0, a full

decay. Parameters of the best fits with b = 0 and b = 1×10−13 rad s−2 are shown in Table

2.1. The long term data display quasi-periodic residuals with a period of ∼ 400 days

(Antonopoulou et al., 2015); we find a best fitting sinusoidal period P = 394 d by fitting

the data from the last∼1500 days with a model involving only the terms that are dominant

in the long term: the contributions from inward moving vortices, the long-term offset with

b = 1 × 10−13 rad s−2 and the sinusoidal term. In our further investigations comprising

all the data we fixed this period for the sinusoid. The residuals of the b = 1 × 10−13 rad

s−2 model also show initial fluctuations, which may be due to transient emission patterns

in the magnetosphere. Future timing data will distinguish between these alternatives.

To apply our extended creep model to the peculiar glitch of PSR J1119-6127, we use

the spin-down rate data for the 2007 glitch, a total of 85 data points. The arrival time

data from MJD 54268 indicate that a glitch has taken place since the previous data set

on MJD 54220. The first post-glitch data fit to produce frequency derivative values is

dated MJD 54300 (Weltevrede, Johnston & Espinoza, 2011). The presently available

spin-down rate and frequency data extending to MJD 56751 was kindly shared with us by

Patrick Weltevrede (P. Weltevrede private communication, Antonopoulou et al. (2015)).

The time interval ∆ between the actual glitch date and the first post-glitch frequency

derivative values thus lies between ∆ = 32 days and ∆ = 80 days. The coefficient I3/I

of the exponentially relaxing term is sensitive to the choice of ∆. We arbitrarily take

∆ = 60 days, which gives I3/I ∼= 1.74× 10−1.

We use the Levendberg-Marquardt method to find the best fit values of the parameters,

starting from initial guesses with MPFITFUN procedure (Markwardt, 2009)2. The best

fit is displayed in Figure 2.1 and its parameters are listed in Table 2.1. Inferred model

parameter values corresponding to Equation (2.15) are shown in Table 2.2.

2http://purl.com/net/mpfit
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Figure 2.1: Top panel: Fit to the post-glitch spin-down rate data with the model of Equation
(2.15), with ∆ = 60 days and b = 1.0 × 10−13 rad s−2. Middle panel: Zoomed version of
top panel with model components representing contribution of exponential relaxation term
(purple solid line), inward moving vortices (gray dashed line) and outward moving vortices
(blue dash dotted line) are shown separately. Sinusoidal component and long-term offset b
are not shown in the figure for clarity. Bottom panel: Difference between data and model.
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Table 2.1: Parameters of the best fits to the postglitch frequency derivative data following
the 2007 glitch of PSR J1119-6127, with ∆ = 60 days, and b = 1.0 × 10−13rad s−2 (first
column) and b = 0 (second column)

Parameter Value (Error) Value (Error)
(a1)−13(rad s−2) 1.68 (0.77) 0.34 (0.29)
(a2)−13(rad s−2) 10.16 (1.43) 5.93 (0.39)
(a3)−12(rad s−2) 9.92 (0.55) 8.01 (0.38)
α1 -0.68 (0.15) -0.90 (0.07)
α2 6.34 (1.48) 20.65 (3.82)
τ1(days) 1796 (211) 20475 (14413)
τ2(days) 159 (7) 129 (4)
τ3(days) 48 (2) 58 (2)
(b)−13(rad s−2) 1.0 0.0

Table 2.2: Inferred Parameters with b = 1.0× 10−13rad s−2.

Parameter Value(
IA′
I

)
−3

1.11(
IA
I

)
−3

6.70(
I3
I

)
−1

1.74
t′0(days) 2046
t0(days) 317
(δΩ′)−2 (rad s−1) 2.69
(δΩ)−3 (rad s−1) 4.16(

∆Next
N

)
−4

-6.58
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The long term remnant ∆Ωp of the glitch in frequency can be found by comparing the

indefinite integral of the model for spin-down rate with the observed frequency residual

at the latest available data points. Using the frequency residual data on MJD 56688,

∆Ωp
∼= 9.4 × 10−5 rad s−1 is obtained. We find ∆Ωp > 0, unlike the earlier result of

Weltevrede et al. (2011), who found a negative long term frequency residual based on the

latest post-glitch data then available, but in agreement with their current estimate (Model

A in Antonopoulou et al. (2015)).

2.6 Discussion and Conclusions

We have examined the peculiar 2007 glitch of PSR J1119-6127 by extending the vortex

creep model to take into account (i) the possibility of a glitch associated change in the

pulsar external torque, and (ii) inward motion of vortices. Both of these effects can be

induced by a starquake that triggered the glitch. We model the peculiar glitch of PSR

J1119-6127 as follows: a crustquake occurs, causing the crustal plates to move towards

the rotation axis, together with some pinned vortices. At the same time, some vortices

affected by the crustquake are unpinned and move outward. The glitch is due to the an-

gular momentum transfer associated with the sudden outward and inward vortex motions.

Magnetic field lines, which move with the conducting crustal plate, change the external

torque and give rise to the abnormal emission properties.

In contrast to the changes in other pulsars’ glitches, the long-term change in spin-

down rate, after transients are over, is (possibly) positive for PSR J1119-6127. In the

creep process under the action of an external spin-down torque, the inward motion of

vortices is thermodynamically unlikely, unless induced by a driving force such as arising

from crustquake induced motion of crustal plates that carrying pinned vortices inwards.

Inward vortex motion increases the lag between local superfluid and normal matter ro-

tation rates from the steady state value, thereby accelerating rather than cutting off the

creep process. This in turn increases the rate of angular momentum transfer to the crust

and thereby decreases the spin-down rate of the crust, producing a positive change in the

observed crust spin-down rate. By contrast, in standard glitches vortices move outward,

decreasing the lag and turning off or suppressing the creep process which transfers angu-

lar momentum from superfluid to the crust; this leads to a negative step in the spin-down

rate of the crust. Glitch induced steps of either sign arising from the offset in the vor-

tex creep process always relax back to the pre-glitch spin-down rate as the creep process

heals back to the steady state. The model we have fitted to the spin-down rate data after

the 2007 glitch of PSR J1119-6127 includes the creep response to outward and inward
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vortex motion as well as a glitch associated change in the external (pulsar) torque.

Antonopoulou et al. (2015) fit their data set with two models, model A with a long

term exponential relaxation, and model B with a negative frequency second derivative

(∆ν̈p < 0 in their notation). The positive ∆Ω̇c decays towards zero in both models,

asymptotically in the case of Model A. The two models leave comparable residuals. Our

investigation of crust breaking, giving a permanent change in the external torque and spin-

down rate and causing inward vortex motion, is complementary to their work. Future

timing observations will decide if the offset in the spin-down rate is really permanent or

relaxing; and searches for thermal signals accompanying future glitches of PSR J1119-

6127 will distinguish between the different models.

We must use the long term remnant of the frequency glitch in Equation (2.13) to

constrain IB and IB′ , the moments of inertia of superfluid regions which transfer angular

momentum only at glitches, due to the outward and inward motion of unpinned vortices,

respectively. Using the values of δΩs and δΩ′s from Table 2.2 leads to the constraint

9.4× 10−5I = 4.2× 10−3IB − 2.7× 10−2IB′ . This gives IB/I > 2.2× 10−2. Then the

superfluid creep regions with a total moment of inertia Is > IA + IB + IA′ + IB′ + I3 >

IA + IB + IA′ + I3 & 20.4 × 10−2I is effected by the glitch event. The region with

moment of inertia I3 = 1.74× 10−1I comprises most of the moment of inertia in pinned

superfluid.

Recent calculations (Chamel, 2013; Andersson et al., 2012) show that Bragg scattering

of conduction neutrons from nuclei in the neutron star crust induces a neutron effective

mass that is larger than the bare mass. This “entrainment” of superfluid neutrons in the

crust by the crystal lattice requires that the actual moment of inertia associated with the

superfluid response is larger by a factor m∗n/mn > 1 where m∗n and mn are effective and

bare neutron masses in the lattice. The moment of inertia Is & (m∗n/mn) 20.4 × 10−2I

associated with creep cannot be accommodated by the crust superfluid alone for most

neutron star models, even without the effective mass correction. In addition to the crust

superfluid, other locations are required to sustain vortex creep. Contribution from vortex

line-toroidal flux line pinning and creep at the outer-core of the neutron star (Sidery &

Alpar, 2009), which has a comparable or larger moment of inertia than that of the crust

superfluid, could provide the required extra moment of inertia (Gügercinoğlu & Alpar,

2014). The moment of inertia of the creep region where vortex motion is controlled by

the toroidal arrangement of flux lines can amount to Itor/I ∼ 2 × 10−1 depending on

the radial extension of the toroidal field in the outer core. Creep here is in the non-linear

regime. As no glitch associated vortex motion is expected, the response to a glitch is

exponential relaxation (Gügercinoğlu & Alpar, 2014). The relaxation time τtor
∼= 50 days
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for PSR J1119-6117 parameters is in line with our estimate of τ3
∼= 48 days (and with

τnl ∼= 33 days for the application to the Vela pulsar, which has parameters similar to those

of PSR J1119-6117; Gügercinoğlu & Alpar (2014)). So, we argue that I3/I = 1.74×10−1

reflects the moment of inertia associated with the toroidal flux line region of the outer

core. The moment of inertia of the crustal superfluid participating in the glitch, when

the crustal entrainment correction is included, is Is,crust > (m∗n/mn)(IA + IB + IA′) &

(m∗n/mn) 2.98 × 10−2I . This total moment of inertia fraction can be accommodated

in the crust in neutron star models with hard equations of state, if the mean value of

m∗n/mn to represent the crust superfluid is not much larger than 1. The recent work of

Piekarewicz, Fattoyev & Horowitz (2014) shows that the neutron star crust may maintain

larger moment of inertia so that the above constraint is easier to be satisfied.

The total numbers of vortices displaced in this glitch are determined by the superfluid

angular velocity changes δΩs and δΩ′s using Equation (2.9). The number of vortices that

have moved outward is found to be is δNout ∼ 1.3×1013, while the corresponding number

for inward moving vortices is δNin ∼ 8.4× 1013. These numbers are typical of all small

or large glitches, from Crab, Vela and other pulsars analyzed so far in terms of vortex

unpinning, indicating a particular scale of the glitch trigger.

The glitch associated change in the external torque contributes a constant offset from

the pre-glitch behaviour that remains in the spin-down rate after all post-glitch relaxation

is over. This term, denoted b in Equation (2.15), indicates a change in the external torque,

which leads to a change in the spin-down rate through ∆Next/Next = ∆Ω̇/Ω̇+∆I/I . The

actual fractional change in the moment of inertia associated with a possible quake must

be less than the observed glitch magnitude, so |∆I/I| < ∆Ω/Ω ∼ 10−5 << |∆Ω̇/Ω̇| ∼
10−4. The measured permanent term b in ∆Ω̇/Ω̇ therefore gives the fractional change

in the external torque. Taking the external torque to be essentially the dipole radiation

torque, we have:

∆Next

Next

= 3
∆Ωc

Ωc

+ 2
∆B⊥
B⊥

∼= 2
∆B⊥
B⊥

, (2.16)

as the term 3∆Ωc/Ωc ∼ 10−5 is again negligible. We assume that the magnetic field

change is associated with crust breaking, involving broken plates of size D distributed

in a ring of the crust of width D and radius R cosα from the rotation axis, with each

plate moving a distance D at the quake. The field moves with each broken piece of the

conducting crust, without any change in the local field magnitude, and orientation, which

we take to be normal to the crust plate. The local field strength varies azimuthally in the

broken ring. We further assume that the broken ring is in the polar regions of the magnetic

field, so that the crust breaking has a strong effect on the external torque. This assumption
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is plausible if magnetic stresses play a role in crust breaking (Franco, Link & Epstein,

2000; Lander et al., 2015). A schematic view of our model for external torque variation

via change of magnetic field’s perpendicular component is depicted in Figure 2.2. The

external torque variation is related to the change ∆α in the angle between the rotation and

magnetic axes:

∆B⊥
B⊥

=
∆α

tanα
. (2.17)

From our estimate of the change in external torque, ∆Next/Next
∼= −6.58 × 10−4 given

in Table 2.2, we obtain:

∆α =
1

2

∆Next

Next

tanα ∼= (−3.3× 10−4) tanα (2.18)

which is between (−1.0 × 10−4) and (−2.8 × 10−4). To obtain this, we have used the

range of α considered by Weltevrede, Johnston & Espinoza (2011), α ∼ 17 ◦ − 30 ◦

corresponding to an emission height ∼ 500 km and α ∼ 30 ◦ − 40 ◦ corresponding to an

emission height ∼ 1800 km. The tiny change ∆α in inclination angle cannot be resolved

as an observable glitch associated pulse shape change in the present radio timing data.

Motion of crustal plates towards the pole (∆α < 0) results in a reduction in the moment

of inertia of the solid, and therefore an increase in the spin-down rate. This is the signature

of a crust quake in a spinning down pulsar, tending to make the shape more spherical. The

reason for the external torque change is likely to be a starquake, inducing motion of crustal

plates, and reducing B⊥, as the surface magnetic field moves with the conducting plates

towards the rotation axis.

The fractional change in moment of inertia due to the motion of the crustal plates is

∆I/I ∼ (m/M)∆α ≪ ∆α ∼ 10−4, where m is the total mass of the moving plates and

M is the mass of the entire star. Observing the direct effect of this actual change in the

crustal moment of inertia as a glitch is impossible. The glitch magnitude ∆Ω is due to

amplification by the vortex motion triggered by crust-breaking and the resulting angular

momentum transfer from superfluid to normal matter. We have assumed that some of the

vortices pinned to the moving plates are initially carried inward with the plates. This is

possible when the increase δΩ′ in superfluid rotation rate, due to the inward motion of

the pinned vortices on the time scale of crust breaking is not sufficient for the local lag

to increase from the steady state value to the critical value, δΩ′ < ωcr − ω∞, for typical

values of ω∞ (Alpar, Cheng & Pines, 1989). These vortices will bend and are likely to

be strongly perturbed by the sudden inward motion and become unpinned. The unpinned

vortices will then move downstream azimuthally with the superfluid flow, causing more
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vortices to unpin and scatter outward until they reach a new radial position where they join

the background vortex flow and creep. The avalanche of unpinning takes place rapidly

on the glitch “rise” timescale. Some number δNin of vortices associated with the moving

plates end up in radial positions inward of their original position while a number δNout

of vortices end up in radial positions further out compared to their original position. The

moment of inertia of the superfluid creep regions affected by the inward motion of the

plates and net inward vortex motion is of order

IA′/I ∼=
4πρsR

4D sinα cos2 α

(2/5)MR2
' 15/2 sinα cos2 α (D/R)

∼ (2D/R), (2.19)

assuming a uniform density neutron star, and adopting sinα cos2 α ∼= 0.3 for the range of

α ∼= 17◦ − 40◦ indicated by Weltevrede, Johnston & Espinoza (2011). Using the value of

IA′/I from fits, we obtain the ring width D ∼ 6R6 m, where R6 is the neutron star radius

in units of 106 cm. The number of vortices pinned to each plate is

δNplate ∼ D2 2Ω

κ
∼ 3× 108ΩR2

6 ∼ 5.5R2
6 × 109. (2.20)

The total number of vortices associated with broken plates with a net inward motion

during the glitch, is δNin ∼ 8.4 × 1013 vortices, as we estimated above from the results

of our fits for t′0, a parameter independent from IA′/I which we used to estimate the plate

size D. The number of plates involved should be ∼ δNin/δNplate ∼ 104, in agreement

with the number of plates in the broken ring, ∼ 2πR/D ∼ 104. A comparable number

of vortices δNout ∼ 1.3 × 1013 end up moving outward through a superfluid region of

comparable moment of inertia, IA. We find here an indication that the common scale,

∼ 1013, of the number of vortices unpinned in all pulsar glitches may be associated with

the number of vortices in the typical plate size D involved in a triggering crust quake,

multiplied by the number of plates involved, ∼ 2πR/D ∼ 104. These scales rest on

the single parameter, the plate size D which must be related to the physics of the crustal

solid. This plate size D is of the same order of magnitude as the ‘mountain’ height ∼ 1

m estimated for the Crab pulsar (Chamel & Haensel, 2008). Note that the critical strain

angle θcr at which the crust lattice breaks is θcr ∼ D/h where h is the radial thickness of

the broken crustal plates. Thus,

θcr ∼ 10−2

(
D

1 m

)(
h

100 m

)−1

,

compatible with the results of Horowitz & Kadau (2009) for the critical strain angle.

It is interesting to compare the moment of inertia fractions in crust superfluid regions
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through which the unpinned vortices moved during the peculiar glitch of PSR J1119-6127,

given in Table 2.2, with the corresponding Crab (Alpar et al., 1996) and Vela (Alpar

et al., 1993) values, (0.01 − 1.87) × 10−3 and (2.3 − 3.4) × 10−2 respectively, as this

gives a lower limit on the moment of inertia fraction in the crust, leading to constraints

on the neutron star equation of state (Datta & Alpar, 1993; Link, Epstein & Lattimer,

1999). With its characteristic age of ∼ 1625 years, PSR J1119-6127 is between the

Crab and Vela pulsars in age, but its implied crustal superfluid moment of inertia fraction

2.98 × 10−2 is comparable to the values inferred for the Vela pulsar. The qualitative

evolution of glitching behaviour from Crab-like to Vela-like was proposed to be due to

the development of connections in a network of vortex creep regions, so that the moment

of inertia involved increases with age (Pines & Alpar, 1985). PSR J1119-6127 should

already have a sufficiently well connected vortex creep network. Presumably the high

magnetic field and associated stresses in the crust of this pulsar lead to high crust breaking

activity. While similar moments of inertia in vortex creep regions IA are inferred, and the

long term fractional offsets in the spin-down rate are similar in absolute value, for the

Crab case no change in electromagnetic signature is observed.

Magnetic stresses will play a role comparable to that of rotation induced stresses in

conventional starquake models if, roughly,

B2
0 −B2

8π
∼ 1

2
ρR2

(
Ω2

0 − Ω2
)
∼ 1

2
ρR2Ω | Ω̇ | tg,

where B0 and Ω0 denote reference values of B and Ω frozen into the crust. Using the

glitch interval tg ∼ 3 yrs, typical for young pulsars, we find that magnetic stresses can

play a role where B & 1013 G in the crust. The magnetic field can have poloidal and

toroidal components whose geometry will determine where in the crust the local stresses

reach the critical values for crust breaking (Lander et al., 2015). The higher multiple

components of the magnetic field and the geometry of the stress tensor when both mag-

netic and rotational effects are included further complicate the situation. In addition,

the changes in electromagnetic signature, as seen only in PSR J1119-6127, are likely to

occur if the broken plate extends to the surface and leads to reconfiguration of the magne-

tosphere. This may explain why the behaviour exhibited by PSR J1119-6127 is rare. As

a rough guideline, such behaviour may be exhibited by young pulsars with high magnetic

field in young pulsars with high magnetic field.

We should note the different responses of the crust and the superfluid to a starquake.

After the crust breaks and plates move towards the rotation axis in order to relieve their

stresses, those broken pieces of the crust are stuck to new metastable positions, and do

not come back to their pre-glitch sites. Thus, crust breaking and crustal motion are irre-
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versible. Starquake induced inward motion of vortices leads to a local excess of vortex

lines and thereby to faster rotation of the superfluid. Creep becomes more efficient, evolv-

ing back towards steady state with an enhanced vortex current, as described by the vortex

creep response employed in our fits. In the end, the superfluid relaxes back to the pre-

glitch dynamical steady state, and all the parts of crustal superfluid and the rest of the

star spin-down at the same rate. Indeed, without structural changes, the response of all

internal torques will always relax back to ∆Ω̇c = 0.

The main reason of the switch in emission patterns to intermittent and RRAT be-

haviour lasting for about a hundred days after the event in 2007 is likely to be the effect

of the quake on magnetic field lines which are anchored to the crust. If the magneto-

spheric field pattern could move rigidly, without distortion, together with the motion of

the crustal plate, as a consequence of the shift by ∆α ∼ 10−4, there would be no signifi-

cant change in the emission pattern. However, when a crustal plate moves in a quake, the

elastic response of the field lines, which twist and reconnect, can amplify a small shift in

the crustal position into a complex and drastic change in the emission pattern, helped by

rotation which results in twisting of magnetic field lines anchored to the highly conduct-

ing crust (Beloborodov, 2009). The distorted magnetospheric geometry will subsequently

relax towards a quasi-stable configuration for the new position of the plate. The changes

in the emission pattern are observed for about a hundred days following the glitch, after

which the pulsar returns to its pre-glitch pulse shape and emission pattern. Twisting of

field lines and their subsequent relaxation will also introduce temporary fluctuations in

arrival times. Our timing model fits indeed leave relatively large residuals for about a

hundred days in the post-glitch data given in the bottom panel of Figure 2.1.

Although the recently discovered magnetar anti-glich from 1E 2259+586 by Archibald

et al. (2013) has also shown a negative spin jump and changing emission features, the

situation is very different from that of PSR J1119-6127. In the case of 1E 2259+586, the

magnitude of the change in spin-down rate, |∆Ω̇| ∼ 2.8|Ω̇| is too large to be associated

with the superfluid regions in the star. It is likely that only a large change in the external

torque is involved, as suggested by the violent change in emission, so that this magnetar

‘antiglitch’ must be external/magnetospheric in origin (Lyutikov, 2013; Tong, 2014).

In summary, the peculiar glitch of PSR J1119-6127 offers an invaluable opportunity

for the reexamination and extension of glitch models to account for anomalous glitch

signatures and transient emission phenomena initiated by a quake leading to a change in

the external torque and triggering the response of the superfluid regions of the neutron star.

Our model predicts that the change in the external torque is permanent. The coincidence

of the numbers of vortices involved in the glitch with the numbers inferred in Crab and
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Figure 2.2: Starquake Model in cross section. The dotted area represents new position of
crustal plates (broken ring) after the starquake.
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Vela pulsar glitches is highly suggestive, supporting the explanation in terms of a crust

breaking event with a typical plate size, which may be a common, even universal, trigger

for glitches. If future timing observations rule out a permanent change in the external

torque, this coincidence would turn out to be spurious. The explanation of the post-glitch

evolution of ∆Ω̇c(t) in terms of internal torques responding to glitch associated inward

and outward vortex motion, and relaxing to ∆Ω̇c = 0 is viable when there are no observed

changes in the external torque.
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Chapter 3

INTERGLITCH TIME INTERVALS OF THE VELA PULSAR
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3.1 Introduction

The Vela pulsar, PSR 0833-45, is the most productive and engrossing source in terms

of the glitch events, having provided us with 16 large glitches with mostly ∆Ω/Ω ∼
10−6 and ∆Ω̇/Ω̇ ∼ 10−2 since its first discovery (Radhakrishnan & Manchester, 1969;

Reichley & Downs, 1969). Beside these large glitches, it has also exhibited two extra

small glitches. In 1994 it experienced double large glitches (∆Ω/Ω = 8.61 × 10−7 and

∆Ω/Ω = 1.99 × 10−7) sequentially being separated by 32 days only. Unlike the early

Vela glitch observations, which were detected with an uncertainty of weeks in the actual

date, recently a continuous monitoring (almost daily since 1985) effort by observers has

resulted in uncertainties of less than a day. All of the glitches after the eighth occurred

during the observing season and the postglitch relaxation was observed immediately 1.

Postglitch behaviours of the Vela pulsar generally display both exponential relaxation and

non-linear response with a constant Ω̈ . While the exponential decays are specified with

smaller time scales, in the long run the postglitch relaxation is dominantly characterized

by the linear recovery of Ω̇. This is superposed on the short-term exponential decays and

persists until the next glitch. The slopes of the long-term linear relaxation, the observed

values of Ω̈, are relatively large for the Vela pulsar. The upper limit of the glitch rise time,

which is difficult to be resolved for other sources, is less than 40 s for the Vela pulsar

(Dodson, McCulloch & Lewis, 2002).

The vortex creep model (Alpar et al., 1984; Alpar, Cheng & Pines, 1989), attempts to

expound the processes causing glitches and postglitch behaviour in terms of the distinct

superfluid regions in the inner crust. The theory provides some information on the struc-

ture and temperature of neutron star, as well as on the physical properties of the pinned

crustal neutron superfluid (Pines & Alpar, 1985). In the superfluid the rotation is carried

by quantized vortices which pin to nuclei. The vortex-lattice interaction occurs by ther-

mally activated vortex motion over discrete pinning configuration. Since the crust spins

down under the external torque, a lag ω = Ωs − Ωc stores between the angular velocities

of superfluid and crust. This lag is sustained by the pinning forces acting upon the vortex

line until it reaches a maximum value, ωcr, above which the avalanche of vortices takes

place in that region (Anderson & Itoh, 1975). In the cylindrical symmetry, this critical

lag determined by the maximum pinning force is given by ωcr = Ep/rbρsκξ, where Ep
is the pinning energy, b is the distance between successive pinning sites along the vortex

line, κ is quantum of vorticity, ξ is the radius of vortex core, ρs is the superfluid density,

and r is the distance from the rotation axis. By conservation of angular momentum, this

1http://www.jb.man.ac.uk/pulsar/glitches/gTable.html
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instantaneous unpinning and outward motion of vortices leads to speeding up of the crust,

∆Ωc > 0, called glitch event.

It is an appealing feature for this model that both types of postglitch observation be-

haviours can be obtained as two regimes of the same physical process. Depending on the

pinning energy Ep, the temperature, and the steady state spin-down rate Ω̇∞ dictated by

the pulsar torque, the postglitch response of a given region can be either linear or non-

linear in the glitch induced perturbation. In the linear regime the steady state lag, ω∞, is

much smaller than the critical value, ωcr for unpinning. The response of perturbation to

the lag, δω = δΩs+∆Ωc, is linear and gives simple exponential relaxation. In the nonlin-

ear regime, ω∞ is very close to ωcr and the response to perturbations is highly non-linear.

In the long term, after all exponential transients are extracted, the theory can be reduced

into three simple equations, including the observable variables associated with glitches

(Alpar & Baykal, 2006):

Ic∆Ω = (IA/2 + IB)δΩ. (3.1)

∆Ω̇

Ω̇
=
IA
I
. (3.2)

Ω̈ =
IA
I

Ω̇2
∞
δΩ

. (3.3)

Expressing the angular momentum balance, the first equation gives the glitch magnitude,

∆Ω. It depends on the change in angular velocity of the superfluid component, δΩ, that

is related with the number of vortices participating in the glitch event, and the moment

of inertia of the regions that vortices pass through, IA and IB. Equation (3.2) is about

the torques acting on the pulsar. As a glitch occurs, the huge number of vortices move

outward as an avalanche. The crust spins up, the lag decreases, and some part of the

crustal superfluid decouples from the normal component. Thereby the external torque

acts on smaller moment of inertia, which leads to a jump in the spin-down rate. IB,

the moment of inertia of the vortex depletion regions around the creep/vortex vortex trap

regions of moment of inertia IA is not included in this equation. In the traps there is a

very high density of vortices around which the local superfluid velocity is too large to

permit pinned vortices. Pinning forces are extremely strong within the trap but not in the

depletion region. Vortices move very rapidly within this region. This region contributes to
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the angular momentum transfer at glitches, while it does not contribute to the spin-down

rate (the vortex current) either during or between the time of glitches. Equation (3.3)

means that the long term postglitch relaxation is linear in time, ∆Ω̇ ∝ t, so that we have a

constant second derivative, the slope of the behaviour, for crustal angular velocity. Such

behaviour is also seen in most Vela like giant glitches in older pulsars (Yu et al., 2013).

Having three equations and three unknowns, IA, IB, and δΩ, one can solve this set of

equations and obtain model parameters.

Alpar et al. (1984) initially analysed the postglitch behaviour of the Vela pulsar for its

first four glitches within the vortex creep model. This work used data with major uncer-

tainties in the actual dates of the glitches. After more accurate Vela pulsar glitch observa-

tions caught within less than a day, Alpar et al. (1993) focused on the short term response

of the pinned crustal superfluid to a glitch as well as exploring the long term angular mo-

mentum balance. This work comprehensively evaluates the postglitch relaxation data of

the first eight glitches of the Vela pulsar in a self-consistent framework. It describes all

eight postglitch data sets in terms of three distinct components which are exponentially

relaxed with time scales of 10 hr, 3.2 days and 32 days, followed by a long term recovery

of the spindown rate that is linear in time, ∆Ω̇ ∝ t. Whereas this long term response

describes the nonlinear region through which the sudden motion of vortices takes place at

the time of a glitch, the exponentially relaxation terms reflects the linear response of the

creep in regions of the crust through which no sudden vortex motion occurred at the time

of the glitch.

According to the model, until the whole region A relaxes back to steady state creep,

more and more parts of this region reproduces the observed recovery of the change in

spin-down rate as a linear function in time:

∆Ω̇(t)

Ω̇
=
IA
I

(
1− t

tg

)
. (3.4)

It is assumed that at time tg, when this recovery complete, the star is back to initial pre-

glitch conditions, then the parameter tg, obtained from the data can be used as an estimate

of the time of occurrence of the next glitch. tg, characterizing the time between glitches,

is the time taken by the external torque to refill the maximum glitch induced offset in ω:

tg =
δΩ

|Ω̇|∞
. (3.5)

In the slowing-down neutron stars, glitch conditions will be reached due to enhanced
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vortex density in some regions (Chau & Cheng, 1993; Mochizuki & Izuyama, 1995). As

the repulsive forces between vortices in these regions are so large, the vortex unpinning

happens. The interglitch time interval is interpreted as the time required to re-build up

enough vortex density in the unpinning regions. Alpar et al. (1993) estimated the time

interval to the next glitch as the time when the nonlinear response, in the form of a constant

Ω̈ has returned to its pre-glitch value. The estimated tg’s were larger than the observed

times, tobs, to the glitch for most interglitch intervals. Among the first 8 glitches studied

by Alpar et al. (1993), for only the 1971 and 1985 glitches the estimator tg was shorter

than tobs. As a measure of the estimate:

M =

√√√√1

8

8∑
i=1

(
tg,i(∆Ω̇p)− tobs,i

tobs,i

)2

, (3.6)

we find the rms deviation from the observations as 58.7% for the first 8 glitches.

For the Crab pulsar, assuming that the glitches are pure unpinning events, tg’s are

estimated as the order of a few months in disagreement with the observed glitch times

(Alpar et al., 1996). This is interpreted as evidence that the glitches in Crab pulsar are not

due to vortex unpinning alone. Alpar et al. (1996) proposed that the comparatively small

(∆Ω/Ω ∼ 10−8) and infrequent (∼ 6 yr interglitch time intervals) events in Crab are

triggered by starquakes induced by spin-down (Baym & Pines, 1971; Ruderman, 1976).

The crust cracking in conjunction with the vortex creep theory also explains well the

abnormal postglitch behaviour (the persistent offset in the spindown rate (Ω̇) in the long

run) in the Crab pulsar. According to this, the persistent change in angular acceleration

is due to the newly created vortex depletion region by the starquake event at the time of

glitch. While this region was sustaining the vortex current before the glitch, there is no

longer any contribution to Ω̇ after it. The permanent shift in the spindown rate is given by

∆Ω̇p

Ω̇
=
Ib
I

(3.7)

where ∆Ω̇p is the observed permanent change in Ω̇ and Ib is the moment of inertia of the

newly created capacitor regions. The crust quake event is capable to form these regions

with the following way: In the crustal lattice quake can release the energy to create lattice

deformity. With this new configuration, the newly created pinning centers with a surplus

of the local vortex density are generated (Chau & Cheng, 1993). These shifts in Ω̇ are

seen to be permanent in the Crab pulsar. In other words, the steady state Ω̇ value for

subsequent glitches is permanently reset, to a new value that is less by ∆Ω̇p. The next
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glitch would then occur roughly when Ω̇ has returned to ∆Ω̇p less than its steady state

value Ω̇n,− before the previous nth glitch:

Ω̇n+1,− = Ω̇n,− −∆Ω̇p. (3.8)

If such persistent shifts also occur in the Vela pulsar, they would be unresolved in the

observed total ∆Ω̇ in a glitch. However, the post-glitch non-linear recovery at constant

Ω̈ would be completed earlier, as shown in Figure 3.2. In this chapter we re-examine

the interglitch time estimator, with the hypothesis that every Vela glitch has a small “per-

sistent shift” as observed in the Crab pulsar. In Section 2 we apply the initial model,

without the “persistent shift” scenario to the 1996, 2000, 2004, 2006, and 2010 glitches

to obtain the estimate of the times, tg, between them, and the moment of inertia of the

associated non-linear creep regions. In Section 3 we introduce the extended model, incor-

porating persistent shifts, to derive new estimator t′g, which are in better agreement with

the observed intervals. We discuss our results in Section 4.

3.2 Model Fitting

Alpar et al. (1993) and Chau et al. (1993) examine the post-glitch recovery of the first

nine glitches of Vela pulsar. They use the phenomenological vortex creep model in which

the post-glitch relaxation is described by the equation:

∆Ω̇c(t)

|Ω̇|∞
= −

2∑
i=1

Ii
I

∆Ωc(0)

|Ω̇|∞τi
e−t/τi − I3

I

δω(0)

|Ω̇|∞τ3

e−t/τ3 − IA
I

+
IA
Itg

t. (3.9)

The first three terms express the short-term exponential relaxation response to a glitch.

The remaining two terms are relevant for the long time scale and describe the nonlinear

response. Alpar et al. (1993) find that τ1 = 10 hr, τ2 = 3.2 days, and τ3 = 33 days, are

essentially unaltered for all Vela glitches. A quick look at the data later interglitch data

(1996-2010) shows that by 100 days after each all exponential relaxation components are

fully relaxed (Yu et al., 2013). We therefore conservatively choose to use data starting

from 100 days after each glitch on our long term fits, with the last two terms in Equation

(3.9).

In this work we follow the fitting procedure of the earlier applications to analyze

the long term relaxation of 1996, 2000, 2004, 2006, and 2010 glitches of Vela pulsar.

We use the Levendberg-Marquardt method to find the best fit values with MPFITFUN
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Table 3.1: The inferred and observed parameters for the long term response of the Vela
glitches. The entries for the first eight glitches and the ninth glitch are taken from Alpar et al.
(1993) and Chau & Cheng (1993) respectively. Errors for the last five parameters are also
given in parenthesis.

Year tobs (days) tg (days) (IA/I)−3 (IB/I)−3

1969 912 1624 7.1 8.4
1971 1491 1375 7.2 8.8
1975 1009 1036 7.2 12.4
1978 1227 1371 6.6 15.2
1981 272 616 6.3 12.2
1982 1067 1485 6.0 8.4
1985 1261 972 6.5 7.9
1988 907 1422 4.7 8.2
1991 1102 1151 7.4 16.2
1996 1190 1086 (3) 6.4 (0.018) 12.9
2000 1634 1719 (2) 6.9 (0.022) 11.5
2004 767 911 (4) 6.7 (0.013) 15.8
2006 1445 1454 (3) 5.2 (0.047) 12.4
2010 1147 985 (8) 5.7 (0.016) 13.5

procedure (Markwardt, 2009)2. We only analyze the long term response which reflects the

recoupling of the nonlinear creep regions. The relaxation has the behaviour of ∆Ω̇c ∝ t

at this long time scale. The inferred parameters from the fit (IA/I , and tg) and observed

times (in days) for 14 glitches of Vela are tabulated in Table 3.1. These results quote the

results of Alpar et al. (1993), for the first 8 glitches, of Chau & Cheng (1993) for the 9th

glitch, and our results for 5 later glitches. Also included in the Table 3.1 are the associated

estimates of IB/I , the fractional moments of inertia of vortex free regions according to

the model (Equation (3.1)) (Alpar et al., 1984). We find that for 10 out of the 14 glitches

tabulated, the estimator gives tg > tobs. The root-mean square fractional deviation of the

estimator given in Equation (3.11) is now 44.9% for the 14 glitches, compared to 58.7%

for the first 8 glitches alone. The fit graphs are shown in Figure 3.1.

3.3 The Modified Interglitch Times of the Vela Pulsar

In the standard vortex creep model (Alpar et al., 1993) it is argued that the influence

of crust cracking, which might be significant for young hot pulsars like Crab, becomes

unimportant as they evolve to the “Vela-like” pulsars’ age: In the young pulsars like Crab

the vortex depletion regions (capacitor regions plus vortex traps) are in the formation

stage, while this phase is already completed in Vela. It is likely for the glitches of Crab

2http://purl.com/net/mpfit
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(a) 1996 (b) 2000

(c) 2004 (d) 2006

(e) 2010

Figure 3.1: The inferred model fits with the observations of the post-glitch spindown rate of
the 1996, 2000, 2004, 2006, 2010 Vela glitches. In the bottom panels the discrepancy between
data and model is showed.
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Figure 3.2: The schematic view of the long term behaviour of ∆Ω̇/Ω̇

pulsar to be triggered by crust cracking. The permanent step in the spindown rate, ∆Ω̇p,

which indicates the formation of a new network of vortex depletion regions, has been

observed after each glitch in Crab. In this work we propose that Vela is still in the phase

of creation of these regions: Exhibiting two distinct extra small glitches, Vela pulsar

might also have persistent shifts in spindown rate in all glitches. The part of the ∆Ω̇

associated with the permanent shift cannot be discerned at the time of the glitch. Being a

persistent shift, it will not relax back totally. The part of the step down in Ω̇ that restores

with a constant second derivative of Ω will continue the recovery until new steady state

conditions, including the persistent shift, are reaches. A schematic view of the long term

behaviour of Ω̇(t) is depicted in Figure 3.2. In this new model, with persistent shift, the

triangle has less depth, so the estimated time of the next glitch is a bit shorter. This will

make the predicted glitch times closer to the observed values. By using simple geometry,

Equations (3.3) and (3.5) to describe the “new” estimated glitch time in terms of the

timing parameters of the pulsar, we obtain

t′g = tg −
|∆Ω̇p|

Ω̈
=

(
∆Ω̇

Ω̇
− ∆Ω̇p

Ω̇

)
Ω̇

Ω̈
(3.10)

where ∆Ω̇ and ∆Ω̇p is the total and permanent step in spindown rate respectively.

The new calculated time intervals, t′g, between the glitches are indeed generally closer

to the observed values. The value of ∆Ω̇p/Ω̇ is at the order of ∼ 10−4 for Crab pulsar

glitches, it may be different in Vela due to evolutionary reasons. We first assume that

all Vela glitches involve the same persistent shift ∆Ω̇p,0, and choose this to minimize the
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Table 3.2: Modified interglitch time estimates with the observation times and fit parameters
of Vela glitches with the persistent shift in spindown rate of ∆Ω̇p/Ω̇ = 1.6× 10−3 rad s−2

Year t′g (days) tobs (days) (IA/I)−3 (IB/I)−3

1969 1258 912 5.5 12.7
1971 1169 1491 5.6 11.8
1975 936 1009 5.6 14.9
1978 1239 1227 5.0 18.0
1981 460 272 4.7 18.3
1982 1089 1067 4.4 13.5
1985 833 1261 4.9 13.5
1988 938 907 3.1 14.4
1991 1004 1102 5.8 19.6
1996 964 1190 4.8 15.8
2000 1541 1634 5.3 14.0
2004 693 767 5.1 22.6
2006 1207 1445 3.6 16.2
2010 909 1147 4.1 15.7

root-mean square fractional deviation

M =

√√√√ 1

14

14∑
i=1

(
t′g,i(∆Ω̇p)− tobs,i

tobs,i

)2

, (3.11)

where t′g is given by Equation (3.10) for the interglitch fits following glitch i. Fits were

performed for full sets of data including N=14 glitches of Vela pulsar. We found ∆Ω̇p,0 =

1.6 × 10−3 minimizes the rms fractional deviation, M. The rms deviation is then 25.6%,

compared to 44.9% for the model without persistent shifts. The observed values of inter-

glitch times and the new estimations for ∆Ω̇p/Ω̇ = 1.6×10−3 are listed in Table 3.2. The

estimate t′g is now generally a better estimate of the observed times to the next glitch. For

5 out of the 14 interglitch intervals, the estimated time t′g is still longer than the observed

time to the next glitch tobs,i. Table 3.2 also gives the model parameters IA/I and IB/I ,

the fractional moments of inertia of non-linear creep and vortex free regions respectively.

In reality the persistent shift in each glitch is going to be somewhat different. We next

calculate the values of ∆Ω̇p/Ω̇ in each glitch that will make t′g,i = tobs,i. In Table 3.3 we

give these different ∆Ω̇p/Ω̇ values which are found via inserting the observed interglitch

times in Equation (3.10), t′g,i = tobs,i, together with the parameters from the fits. For

the ten glitches this persistent shift is bounded by 10−5 < ∆Ω̇p/Ω̇ < 10−3. We cannot

calculate it for the glitches in 1971, 1985, 1996, and 2010 as tobs > tg for these events.

The implied IA/I and IB/I values are also given in Table 3.3.
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Table 3.3: The persistent steps in spindown rate and associated fit parameters of Vela glitches,
needed to give t′g = tobs

Year (∆Ω̇p/Ω̇)−3 (IA/I)−3 (IB/I)−3

1969 3.11 3.99 19.4
1971 - - -
1975 0.18 7.02 12.9
1978 0.61 5.99 17.7
1981 3.2 3.11 33.4
1982 1.7 4.32 13.8
1985 - - -
1988 1.6 3.12 15.0
1991 0.32 7.08 16.9
1996 - - -
2000 0.34 6.56 12.4
2004 1.1 5.63 19.9
2006 0.032 5.17 12.5
2010 - - -

3.4 The Braking Index of the Vela Pulsar

We also re-calculate the true braking index for the Vela pulsar using our results above. Es-

timating the braking index requires modelling and subtracting all contributions of glitches

and interglitch recovery. Lyne et al. (1996) did this by arbitrarily assuming that Ω̇ values

150 days after each glitch are clean of interglitch response and estimated a breaking index

n ∼= 1.4. This approach clearly uses a post-glitch epoch when all short term exponential

relaxation components with τ1 = 10 hr, τ2 = 3.2 days and τ3 = 32 days are over, but

the interglitch recovery is far from complete. One needs to take account of the constant Ω̈

response, which extends to the next glitch, the subject of this work. Thus the appropriate

epochs when inter-glitch neutron star response is completely recovered should be at tg,

t′g, or tobs (see Table 3.1 and 3.2), just prior to subsequent glitch.

In this work we obtain the Ω̇ values at these epochs extrapolating from our fits in the

model with the Equation (3.3). We then separately produce the very long term (between

the years 1969-2013) Ω̈PSR values for the vela pulsar by the best linear fit to the Ω̇(t′g,i),

Ω̇(tobs,i), and Ω̇(tg,i) data sets given in Figure 3.3. These give the estimates of Ω̈
t′g
PSR =

(3.62± 0.12)× 10−22 rad s−3, Ω̈tobs
PSR = (3.83± 0.15)× 10−22 rad s−3, Ω̈

tg
PSR = (4.14±

0.38)× 10−22 rad s−3 and that of braking indices nt′g = 2.68± 0.09, ntobs = 2.81± 0.11,
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Figure 3.3: The spin-down rate values obtained by the local fits at the epochs t′g (black
points), tobs (red points), and tg (green points) between the years of 1969 and 2013. The best
straight line fits is also showed.

and ntg = 2.99± 0.28 respectively, for Vela pulsar with

n =
ΩΩ̈PSR(

Ω̇
)2 , (3.12)

where Ω = 70.4 rad s−1 and Ω̇ = 9.8 × 10−11 rad s−2 are the average values over the 44

year data span.

3.5 Conclusions

In this work we have investigated the interglitch time estimates between 14 glitches of

Vela pulsar using the vortex creep model. We propose that for each glitch there might be

a persistent shift in spindown rate that does not relax back entirely. This step which is

observed also in the Crab pulsar, would not be distinguished observationally as a part of

the glitch in the spindown rate. We remodel the Vela glitches by introducing a crustquake

that induces the new vortex traps. After each event these regions no longer contribute to
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spindown and cause a persistent shift in spindown rate. The triangle postglitch behaviour

in spindown, which restores with a constant second derivative of Ω, is completed a bit

earlier, restoring conditions for a new glitch. Deriving the modified estimator for the time

between glitches by using this consideration, we apply this model for 14 Vela glitches

spanning 44 years of observation, via the minimizing procedure from which we obtain

the common persistent shift (∆Ω̇p/Ω̇ = 1.6 × 10−3) for all glitches, with the rms devia-

tion of 25.6%, compared to 44.9% for the model without persistent shifts. Hence our new

estimates for the interglitch times for Vela agree better with the observed interglitch times.

We also close the “optimal conditions” for each glitch by equating the observational in-

terglitch time with t′g, and obtain different persistent shifts in spindown rate bounded by

3.14× 10−3 < ∆Ω̇p/Ω̇ < 3.2× 10−5 for each 10 glitch.

We also examine the long term spindown evolution of Vela by re-estimating its braking

index. We propose that all glitch contributions are clean of, as the linear recovery with Ω̈

is fully completed at the time of just before the subsequent glitch which might be tg, t′g,

or tobs. Unlike the previous work of Lyne et al. (1996) who found n ≈ 1.4, we obtain the

braking index between 2.66− 3.03 for Vela.
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Chapter 4

MINIMUM GLITCH SIZE OF THE CRAB PULSAR AND THE

CRUSTQUAKE AS A TRIGGER MECHANISM
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4.1 Introduction

Pulsars, which are thought to be the most exact clocks in the universe (Hobbs et al.,

2012), have highly stable spin rates. They are mostly observed to spin-down by elec-

tromagnetic emission. Nevertheless they also commonly show timing irregularities in

two ways: (i) continuous stochastic deviations from the simple slowdown model (“timing

noise”), (ii) abrupt changes in their rotation rates together with increase in the spindown

rate (“glitches”). The timing noise is thought be caused by different processes including

superfluid turbulence (Melatos & Link, 2014), changes in magnetospheric activity (She-

mar & Lyne, 1996; Hobbs, Lyne & Kramer, 2010), and precession (D’Alessandro et al.,

1993).

Glitch sizes vary by some orders of magnitude ( 10−12 < ∆Ω/Ω < 10−5 ) (Espinoza

et al., 2011) with power law distributions (Melatos, Peralta & Wyithe, 2008). At the lower

end, it is hard to resolve the smallest glitches from the “timing noise” events at the lower

end of the distributions. A few theoretical models have been produced to explain the large

glitches. Models for possible triggers and smallest glitch size have not been detailed and

remained untested, because of observational limitations. The smallest observed glitches

were barely resolved above the timing noise. Until recently it was not known whether a

minimum glitch size existed.

The recent investigation of Espinoza et al. (2014) obtained a level of detection sen-

sitivity that exposed the small events of Crab pulsar which can be identified as glitches.

Before this work the smallest glitches, which are thought to be possibly below the detec-

tion limits, could not be distinguished from the timing noise. Espinoza et al. (2014) built

an “automated glitch detector” to uncover the full distribution of glitch sizes of the Crab

pulsar and determined its smallest glitch size as ∆Ω/Ω ∼ 1.7 × 10−9, by distinguish-

ing a resolved glitch from timing noise as an abrupt positive step in rotational frequency

(∆Ω > 0) together with a discrete negative (or null) step in spindown rate. Using X-ray

data work by Vivekanand (2016) also reported that Crab might have exhibited a compa-

rable smallest glitch event (∆Ω/Ω ∼ 1.3× 10−9).

These minimum size glitches in Crab point out that the size of glitch events is distinct

from that of timing noise. Glitches are thought to be caused by an abrupt angular momen-

tum transfer from the pinned superfluid component which rotates slightly faster than the

solid crust (Anderson & Itoh, 1975). The quantized vortices in the superfluid component

interact with the nuclei in the lattice over distinct pinning regions. While the pinned su-

perfluid without outwards vortex motion cannot slow down, the crust slows down by the

external torque. A lag between superfluid and crust’s angular velocity builds and finally
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reaches a critical threshold at which the vortices are abruptly unpinned and move outward

freely, leading to speeding up of the crust (the glitch).

A crustquake might also play a significant role as a trigger mechanism for vortex

unpinning. Spinning down of the star (Ruderman, 1969; Baym & Pines, 1971), internal

electromagnetic strains (Lander et al., 2015), or the vortex-lattice interaction (Ruderman,

1976; Chamel & Carter, 2006; Chau & Cheng, 1993) will cause stresses on the crust.

Since it is an elastic medium, the crust has a maximum strain beyond which it can no

longer sustain elastic deformations. This leads to seismic activities, i.e. quakes. Some

vortices are also affected by the quake leading to unpinning. As these unpinned vortices

can induce the others in the radially outer region, the larger glitches can be produced by

the outward motion of vortices as an avalanche. This scenario is expected in the “middle

aged” (older than 104 years), “Vela-like” pulsars in which the development of connections

in the network of creep regions have sufficiently ended up. Nevertheless the “Crab-like”

pulsars with young age cannot produce larger glitch events due to lacking of these creep

regions. The glitch model induced by the crustquake is especially favourable for the

glitches of Crab as it can clarify the persistent steps in spindown rate in the long run, as

the evidence of the newly-connected network of vortex creep regions (Alpar et al., 1996).

In the spinning down of the star, the fluid core can modify its shape from an oblate

spheroid to more spherical form, while the solid crust is strained and has to break to

readjust its shape as the strain angle reaches a critical value in the end. By the angular

momentum conservation throughout the crustquake, the decrease of the inertial moment

produces an increase in the angular velocity:

∆Ω

Ω
=

∆I

I
=

∆Ω̇

Ω̇
. (4.1)

For a pure crustquake (without any associated vortex motion) the first equality reflects the

conservation of angular momentum, and the second reflects the constancy of the external

torque. The change in the inertial moment of the region affected by the event can be

obtained using the first equality and the minimum glitch size. In this work we investigate

some crustal properties related with the glitch event by introducing the pure crustquake

as a trigger with a few yielding geometries.

4.2 Geometry of the Crustquake and Some Estimates

We propose that the minimum glitch size of Crab is related with a pure crustquake without

the amplification due to vortex motion. Modeling the geometry of breaking (or yielding)
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(a)	 (b)	

(c)	

Figure 4.1: Geometries of crust breaking in spindown of the neutron star: (a) a crustal cu-
bic plate, (b) a cylindrical plate moving towards the rotational axis, and (c) a crustal ring,
including many plates, moving inward in cylindrical symmetry

in the crust we relate the change in the moment of inertia with the crustal plate(s)’s size,

the critical strain angle, and the number of vortices carried by the plate(s) in larger events.

We put forth three different geometries that might be associated with this event: (a) a

crustal cubic plate (Figure 4.1a), (b) a crustal cylindrical plate which move towards the

rotational axis (Figure 4.1b), and (c) a crustal ring which includes many plates and moves

inward in the cylindrical symmetry (Figure 4.1c).

Some vortices perturbed by the quake move outward as an avalanche and get un-

pinned. If these vortices move downstream in the azimuthal direction and induce other

vortices to unpin in the slightly outer region, the larger glitches can be created by the

amplification of vortex motion. Nevertheless the smallest glitch is caused by only a pure

crustquake event during which there is a change in the inertial moment by the crustal

plate(s) movement. While the breaking and movement of crust are rigid and irreversible

processes, the superfluid component’s spindown by vortex flow (creep) can relax back to

the pre-glitch states in time.
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4.2.1 Size of the Broken Plate(s)

The size of the broken plate can be found by relating it with the change in the moment

of inertia of the region where the crustquake takes place. We study this introducing three

different geometrical models.

In the first model a cubic crustal plate with the volume of V = D3 moves towards

higher latitude by a distance of D′ (Figure 4.1a). This crustal movement results in a

decrease in the fractional inertial moment of the solid as:

∆I

I
=
m[R2 − (R−D′)2]

2
5
MR2

(4.2)

where R is the radius, M is the mass of the entire star, m is the mass of the moving

plate, and D′ is the distance along which the plate flits during the crustquake. m can be

related with the volume of plate as m = ρcD
3 where D is the broken plate size and ρc is

the mass density of the crustal layer where the quake origins. D and D′ are related by a

proportionality factor f , (D′ = fD), which determines the comparison between the plate

size and the distance the plate flits. Using Equation (4.1) with these assumptions and the

minimum glitch size, ∆Ω/Ω = 1.7× 10−9 measured by Espinoza et al. (2014) we find

∆Ωmin

Ω
= 1.7× 10−9 ∼= 2.5× 10−10D4

4

(
M�ρc,13f

MR6

)
(4.3)

Here ρc,13 is the crustal mass density in units of 1013 g cm−3, M� = 2×1033 g is the solar

mass, and R6 is the neutron star radius in units of 106 cm. From this we obtain the size of

broken cubic plate as D ∼= 160[(MR6)/(M�ρc,13f)]1/4 meters.

Another geometrical model with the cylindrical plate (Figure 4.1b) only differs by its

volume as V = πD2h/4 where D is the diameter and h is the radial thickness of the

broken plate. Here the relation between the size of the minimum glitch and the broken

plate becomes:

∆Ωmin

Ω
= 1.7× 10−9 ∼= 1.96× 10−9D3

4

(
M�ρc,13fh5

MR6

)
(4.4)

which gives the plate’s diameter as D ∼= 95[(MR6)/(M�ρc,13fh5)]1/3 meters. In this

case since the crustquake takes place locally, we take the radial thickness h5 (in units of

105 cm) as the entire of crust in this geometrical configuration.

The third model is based on the idea that the crust might fail as a whole, not along
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the faults, as a result of large strain. This model involves many broken plates of size D

within a crustal ring, which is close to the equatorial region, of radius R, with each plate

moving a distance D′ = fD (Figure 4.1c), so that the volume is taken a V = 2πRDh.

The fractional change in the inertial moment then becomes

∆I

I
∼=
ρc(2πRDh)(2fDR)

(2/5)MR2
. (4.5)

Taking the radial thickness, h, as the outer crust (in units of 104 cm) due to the fact that

the quake occurs in globally geometrical configuration , we estimate the size of the plate

as D ∼= 11[M/(M�ρc,13fh4)](1/2) meters in this case.

4.2.2 The Critical Strain Angle

We also examine the crustquake model in terms of the critical strain angle, θcr, at which

the yielding takes place in the crustal lattice. We assume that a plate of size D and

thickness h is involved in the quake event. Hence the critical strain angle can be simply

approximated as

θcr ∼
D

h
. (4.6)

The estimates of critical strain angle for various geometries using the above estimates of

D:

θcubecr ∼ 1.6× 10−1 1

h5

(
(M/M�)R6

ρc,13f

)1/4

, (4.7)

θcylindercr ∼ 9.5× 10−2 1

h5

(
(M/M�)R6

ρc,13fh5

)1/3

, (4.8)

θringcr ∼ 1.1× 10−1 1

h4

(
(M/M�)

ρc,13h4f

)1/2

. (4.9)

These very rough estimates for θcr are in agreement with both the results of the molecular

dynamical simulations by Horowitz & Kadau (2009) and the estimates we obtain in the

next chapter.
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4.2.3 Number of Vortices Involved in a Larger Glitch

After being affected by the crustquake and flowing downstream in the azimuthal direction,

the vortices can induce other vortices to unpin if they can find the connection of vortex

creep network in the outer layer. In older pulsars which exhibit larger glitches connected

vortex creep regions are already established. The vortices perturb the other vortices in

slightly outer region and stay flowing downstream in that layer, then the induced vortices

affect the more outer vortices, and so on. This subsequent vortex avalanche does not occur

efficiently in the younger pulsars exhibiting smaller glitches.

Assuming that some vortices are firstly affected or carried by the broken plate, we can

also estimate the number of vortices, δN , triggered by the crustquake using the relation

of

δN = A

(
2Ω

κ

)
. (4.10)

Here A is the area of each plate (Acube = D2, Acylinder = πD2/4, Aring = D2), Ω is the

angular velocity of star, and κ is the quantum vorticity. These give the estimates for the

number of vortices depending on the fracture geometry as:

δNcube = 4.9× 1013

(
(M/M�)R6

ρc,13f

)1/2

, (4.11)

δNcylinder = πD2 2Ω

κ
∼ 3.2× 1013

(
(M/M�)R6

ρc,13fh5

) 2
3

, (4.12)

δNring = D2 2Ω

κ
∼ 2.3× 1011

(
(M/M�)

ρc,13h4f

)
. (4.13)

In the final case the number of vortices we obtain is 2 order smaller than in the other

geometries, since it must include many (∼ 102 − 103) plates that induce more vortices

around the ring.

Angular momentum conservation states that (see previous two chapters for more de-

tails):

∆Ω

Ω
=

(
IA
2I

+
IB
I

)
δΩ

Ω
(4.14)
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where IA/I and IB/I are the fractional moments of inertia of superfluid regions through

which the unpinned vortices move rapidly during the glitch, and δΩ is the change in the

superfluid rotation rate due to this sudden motion of δN vortices as:

δN =
2πR2δΩ

κ
. (4.15)

Separate analysis of angular momentum balance in both Vela (Alpar et al., 1993) and

Crab (Alpar et al., 1996) pulsars’ (also in PSR J1119-6127-see the first chapter) glitches

typically yields the same δN ∼ 1013. It is interesting that the δN estimates we obtain

here; as the number of vortices giving the avalanche with crust breaking indicated by the

minimum glitch is in agreement with this general earlier results. The reason of this very

common number in pulsar glitches, irregardless of the pulsar age, the glitch size or the

creep regions, has not been well known. Now we propose that this common scale of δN is

related with the crustquake as a trigger and some crustal properties including the broken

plate size and the geometry of breaking.

4.3 Conclusions

The minimum glitch size of Crab observed by Espinoza et al. (2014), which is exactly

uncovered from the timing noise, give the opportunity to take this event into account in

terms of the crustquake as a trigger. We propose that the change in the inertial moment is

directly related with this minimum glitch size by the pure crustquake model. Introducing

some breaking geometries we drive the fractional change of inertial moment due to the

plate movement during the crustquake as a function of the broken plate size (Equations

(4.2)-(4.5)), D, with some scaling factors, which also determines the estimates of critical

strain angle, θcr and the number of vortices, δN taking part in the larger glitches. These

estimates for the Crab pulsar areD ∼ 11−160 m, depending on geometrical assumptions

for the plate size, and give the orders of θcr ∼ 10−1 and δN ∼ 1013 which are in a good

agreement with the previous works.

The qualitative difference of glitch behaviour of Vela and Crab is due to evolutionary

reasons. The moment of inertia involved in a glitch increases with age (Pines & Alpar,

1985). While Vela should already have well connected the creep network so that the

large glitches can be created, Crab is still in the stage of creation the creep regions. The

common number of vortices taking part in glitch is only about the trigger process.

There are some uncertainties in our estimations: the distance that the broken plate

moves during the crustquake, D′, and the radial thickness, h, of the plate. D′ corresponds
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to a change of the inclination angle, ∆α, between the rotation and magnetic axes as the

crustquake takes place. This change can be observed in some events (see the first chapter

for an attractive example) by a change in the external electromagnetic torque during an

extraordinary glitch event. In the pulsars (like PSR 1119-6127), with large magnetic field

(∼ 1013 G), which produce the crustquake at a location very close to the magnetic axis

and/or to the surface of the star, the crustal movement amplified by the elastic response of

the field lines can easily affect the magnetospheric activities. This glitch (or crustquake)

associated change in the external torque is not observed in Crab, so we cannot determine

the shift in the inclination angle, ∆α, and also D′. Instead we associate it with the plate

size by a proportional factor as D′ = fD. Scaling ∆α ∼ 10−4 (from the result of the

first chapter for PSR 1119-6127) and using the relation of D′ = R∆α = fD with the our

estimates of D we find

f ∼ 10−2

(
R6∆α−4

D4

)
. (4.16)

Hence we expect that the broken plate moves towards the rotational axis, with a distance

smaller than its size, by a proportional factor of ∼ 10−2, during the crustquake.

Recently the two orders of magnitude smaller glitch size (∆Ω/Ω = 2.5 × 10−12)

has been observed in the millisecond pulsar, J06130200 by McKee et al. (2016). The

crustquake model we propose here gives the estimates of its broken plate size as Dcube
∼=

38 m, Dcylinder
∼= 13.6 m, Dring

∼= 0.4 m for the geometries of cubical plate, cylindrical

plate, and ring involving many plates respectively, and also the orders of the critical strain

angle and the vortices number as θcr ∼ 10−2 and δN ∼ 1011 − 1012. We assume that

these different estimates for a millisecond pulsar are due to their very old age. They have

experienced many glitches and crustquakes, as well as accreting for a long time so that

their crusts may have been distorted many times. Hence their critical strain angle has been

reduced (annealed) to maybe θcr ∼ 10−2, reducing the plate size D and the number of

unpinned vortices proportionately to give δN ∼ 1011 − 1012.
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Chapter 5

THE CRITICAL STRAIN ANGLE IN THE NEUTRON

STAR CRUST
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5.1 Introduction

The neutron star interior is a magnificent cosmic laboratory offering extreme conditions

far from the properties of terrestrial matter. The nuclei are arrayed in a (probably bcc)

crystalline lattice immersed in a gas of strongly degenerate electrons, which are relativis-

tic at densities above ρrel ∼= 106 g cm−3. In the inner crust, at densities higher than

the neutron drip density, ρdrip = 4 × 1011 g cm−3, matter becomes very neutron rich

and some neutrons are in continuum (Bloch) states of the crystal, comprising a BCS su-

perfluid by pinning in the attractive channel of neutron-neutron interactions. Screening

of the Coulomb interactions by electrons is negligible, as the Thomas-Fermi screening

length is larger than the lattice spacing (Pethick & Ravenhall, 1995). Thus the neutron

star crust lattice is expected to be a Coulomb lattice due to the relativistic energies of the

degenerate electrons. At the highest densities where the ”nuclei” are very close to each

other, spherical nuclei are distorted into elongated shapes. Two-dimensional order takes

over with spaghetti-like rod ”nuclei” containing the bound protons and neutrons. At the

highest densities of the inner crust, ρ . 1014 g cm−3, one dimensional order is reached,

with alternative slabs containing protons and neutrons, and neutrons only. These tran-

sitions to spaghetti-like rods and lasagna-like slabs, called ”nuclear pasta“ arise where

the Coulomb energy is comparable in magnitude with the surface energy of the nuclei

(Ravenhall, Pethick & Wilson, 1983; Hashimoto, Seki & Yamada, 1984).

Structure of neutron stars is probed by observations of pulsar glitches. Glitches are

sudden changes in rotation frequencies and spindown rates of pulsars. When the first

glitches were observed, a ”crustquake” scenario was proposed (Baym et al., 1969; Rud-

erman, 1969). In this early model, the crust occasionally fractures due to stresses induced

by spinning down of the star, hence readjusting to a more spherical form which a fluid

star would follow while spinning down. In each glitch the reduction in moment of in-

ertia of the crust leads to an increase in the angular velocity by conservation of angular

momentum. While the model explains the small glitches like in the Crab pulsar (Wong,

Backer & Lyne, 2001) and PSR J0537-6910 (Middleditch et al., 2006b), it is inadequate

for larger glitches which occur frequently (2-3 years), as exhibited by the Vela pulsar

(Baym & Pines, 1971). Superfluid vortex pinning, unpinning and creep can explain these

glitches (Alpar et al., 1993), while crust breaking can play a role as a trigger mechanism

(Ruderman, 1976, 1991a,c,b; Akbal et al., 2015)(see also Haskell & Melatos (2015) for a

review of glitch models).

A crustquake occurs when the strains in the crust reach a critical strain angle, θcr,

characteristic of the lattice. The corresponding maximum stresses are given by tm = µθcr,
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where the shear modulus, µ ≈ 1030 g cm−1 s−2 for typical equations of state and crusts

compositions. The critical strain angle is the parameter that regulates the occurrence of

glitches by crust breaking. Elastic properties of the crust are also relevant for other neutron

star phenomena, like oscillation modes, gravitational wave emission, magnetar giant flares

(Haskell & Melatos, 2015). Smoluchowski (1970) estimated the breaking strain as 10−5 <

θcr < 10−3 by analogy with terrestrial crystals. However, the analogy with terrestrial

matters is not justified, as the very large kinetic energies of the relativistic electrons in the

neutron star crust implies that screening is negligible, in contrast to the case in terrestrial

crystals. The neutron star crust should be an almost perfect Coulomb lattice. The long

range Coulomb coupling should allow plastic deformations, without fracture or formation

and motion of dislocations up to much larger strains than observed in terrestrial materials

with efficient screening. Alpar & Pines (1985) suggested that θcr ∼ 10−2−10−1, based on

the fine-structure constant as the dimensionless number characterizing Coulomb coupling

with the relativistic kinetic energy. Large values of θcr, corresponding to lack of screening,

mean that the crystal is long-range coupled, not able to sustain local dislocations easily.

The crystal behaves elastically until critical strains are reached, and then fails collectively.

With a molecular dynamics simulation, Horowitz & Kadau (2009) found that θcr = 0.08−
0.14 at a particular layer of the neutron star crust, with ρ = 1013 g cm−3, Z = 29.4 for bcc,

fcc and polycrystalline ordering. This work concludes that the crust is very strong and it

can support “mountains” so that their gravitational wave radiation might be detectable in

large-scale interferometers.

In this paper we hypothesize that the dimensionless value of the ratio of the Coulomb

energy to the kinetic energy of the relativistic electrons gives an estimate of the critical

strain angle, θcr ∼ |EC |/EK , in all densities of the crust including the layers with rod

and slab nuclear forms. This is justified as the relativistic electron kinetic energy is the

dominant term in the total energy, and much greater than the ions’ thermal enegry. The

estimation agrees with the numerical calculation of Horowitz & Kadau (2009) at the par-

ticular density. We propose generic formulas for estimating the critical strain angle of

Coulomb lattices with relativistic electrons, in different dimensionalities in the neutron

star crust. In Section 2 we calculate the stored Coulomb potential energy and the ki-

netic energy of relativistic electrons in one Wigner-Seitz cell for spherical, rod, and slab

structures. We estimate the critical strain angle, θcr, for different densities in the crust in

Section 3. We also investigate the weak effect of screening on θcr. We discuss our results

in Section 4.
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5.2 The Coulomb Potential Energy and the Kinetic En-

ergy in a Unit Cell

In spherical geometry, the Wigner-Seitz cell has a radius rc, and the nucleus at the center

of the cell has radius R. In cylindrical geometry, the Wigner-Seitz cell is taken to be a

cylinder of radius rc, around a ”nucleus“ rod of R. In plane (slab) geometry, nuclear slabs

of thickness R and slabs containing electrons only, of thickness (rc −R) alternate.

We calculate the absolute value of the total Coulomb energy, |EC | =
∫
cell

(E2/8π)dV

where the total electric field, E, is found using Gauss’ law. We obtain the Coulomb

energies for sphere, rod, and slab forms in terms of the cell size, rc, and the nuclear size,

R:

|Esph
C | =

3Z2e2

10

(
2

R
− 3

rc
+
R2

r3
c

)
, (5.1)

|Erod
C | =

Z2e2

L

(
ln
(rc
R

)
− 1

2
+
R2

2r2
c

)
, (5.2)

|Eslab
C | =

πZ2e2

6A

(
rc −

11R

8
+
R2

2rc

)
, (5.3)

where L is the length of the rod ”nucleus“ and A is the area of the slab ”nucleus“.

The total kinetic energy of relativistic electrons in the cell isEK = Z(3/4)~ckF . Here

kF = (3π2Z/V )1/3 is the fermi wave number where V is the Wigner-Seitz cell volume.

The expressions for the kinetic energy for the different configurations are:

Esph
K =

3

4

(
9π

4

)1/3

~cZ4/3r−1
c , (5.4)

Erod
K
∼=

3

4
(3π)1/3 ~cZ4/3r−1

c , (5.5)

Eslab
K
∼=

3

4

(
3π2
)1/3 ~cZ4/3r−1

c . (5.6)

In the spherical case, Z is the number of protons bound in the nucleus, related to the
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number density of electrons through:

Z = neVcell = nbχVcell (5.7)

where nb is the number density of baryons and χ is the proton (or electron) fraction. In

the rod and slab geometries, because the ”nuclei” are extended, the cell volumes depend

on chosen scales. We chose L ≈ rc for the rod geometry andA ≈ r2
c in the slab geometry,

leading to:

Zrod ≡ neVrod ≈ neπr
3
c , (5.8)

Zslab ≡ neVslab ≈ ner
3
c . (5.9)

5.3 Estimation of the Critical Strain Angle in the Crust

To estimate the critical strain angle θcr for each nuclear configuration, we take the ratio

of the total Coulomb potential energy to the kinetic energy of relativistic electrons. Using

Equations (5.1)-(5.6), we obtain:

θsphcr
∼=

2

5

(
4

9π

)1/3

Z2/3α

(
2rc
R
− 3 +

R2

r2
c

)
, (5.10)

θrodcr
∼=

4

3(3π)1/3
λ2/3r2/3

c α

(
ln
(rc
R

)
− 1

2
+
R2

2r2
c

)
, (5.11)

θslabcr
∼=

2

9

(π
3

)1/3

σ2/3r1/3
c α

(
rc −

11R

8
+
R2

2rc

)
. (5.12)

Here λ = Z/rc and σ = Z/r2
c are the charge per unit length for rod geometries and charge

per unit area for slab geometries, and α is the fine structure constant.

To obtain the numerical results of the critical strain angle in each density through

the crust, we have used the range of R and rc values obtained by Iida, Watanabe &

Sato (2001), who investigated the formation of “pasta” layers by zero temperature sta-

bility analysis with respect to perturbations inducing fission and proton clustering, and
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Figure 5.1: Critical strain angle values vs density in the outer crust where the nuclei are
spherical Plus signs denote the values of θcr calculated with the bare Coulomb interaction,
bold dots are the values of θcr calculated with the screened Coulomb interaction. The values
of proton number, Z, and the Wigner-Seitz cell size, rc, are taken from Chamel and Haensel.
Square dots at nb = 0.006 fm−3 indicate the numerical results of Horowitz & Kadau (2009)
for different crystalline structures and strain orientations (see their Figure 1).

Maruyama et al. (2005) who numerically studied the nucleon matter structures at subnu-

clear densities using density functional theory with relativistic mean fields coupled with

the electric field. For the outer part of the crust we take the Z and rc values presented by

Chamel & Haensel (2008). The variation of the critical strain angle values for each layer

through the crust is displayed in Figure 5.1 for the outer crust where nuclei are spherical,

and in Figure 5.2 and 5.3 for the inner crust, based on values presented by Maruyama

et al. (2005), and Iida, Watanabe & Sato (2001). We find θcr ∼ 10−2 − 10−3 in the inner

crust where the rod and the slab configurations are present.

Horowitz & Kadau (2009) have published the first numerical simulation of θcr in

outer crust layer with density nb = 0.006 fm−3. They find θcr values ranging from∼ 0.08

for a polycrystalline bcc structure, ∼ 0.11 for bcc strain orientations with defects, and

∼ 0.12−0.14 for several strain orientations in bcc and fcc structures. This range is shown

in Figure 5.1, along with our results for the outer crust. Our estimation gives θcr = 0.15

(and θcr = 0.13 with weak screening) in that layer of the crust. Our estimates for the outer

crust are also in agreement with another numerical simulation work by Hoffman & Heyl
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Figure 5.2: Critical strain angle values vs density in the inner crust comprising the ’pasta’
layers. Plus signs denote the values of θcr calculated with the bare Coulomb interaction, bold
dots are the values of θcr calculated with the screened Coulomb interaction. The values of
nucleus size, R, and the Wigner-Seitz cell size, rc, are taken from Maruyama et al. (2005).
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Figure 5.3: Critical strain angle values vs density in the inner crust comprising the ’pasta’
layers. Plus signs denote the values of θcr calculated with the bare Coulomb interaction, bold
dots are the values of θcr calculated with the screened Coulomb interaction. The values of
nucleus size, R, and the Wigner-Seitz cell size, rc, are taken from Iida, Watanabe & Sato
(2001).
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(2012).

We note that the slabs in the 1-D geometry can easily slide against each other along

the plane surfaces between them, behaving like a “liquid crystal” (Ravenhall, Bennett &

Pethick, 1972). The 1-D lattice cannot sustain strains and stresses, unless the slab surfaces

have rigid long-lived perturbations that break the 1-D symmetry. The critical strain angle,

θcr, may not have a meaning in a 1-D geometry, and the estimate of |EC |/EK does not

have a bearing on the rigidity of the 1-D lattice.

5.3.1 The Screening Effect

We include the screening effect using the Thomas-Fermi method. In a spherical geometry,

the electrostatic potential φ is given by the Thomas-Fermi equation:

(
∇2 − κ2

)
φ(r) = −4πnZe (5.13)

where κ = (4α/π)1/2(3π2ne)
1/3 is the inverse of the screening length of the relativistic

electrons, and n is the proton number density. This yields the Yukawa potential, φr =

(Z2e2/r)exp(−κr) for a point-like nucleus. We apply the Thomas-Fermi model to a

finite spherical nucleus with radius R and also rod and slab geometries.

Solving this differential equation in spherical coordinates, polar coordinates and carte-

sian coordinates for the spherical, rod, and slab crystal structures respectively and us-

ing the relation
−→
E =

−→
∇φ, we obtain the screened electric fields in one cell. By using

|EC | =
∫
cell

(E2/8π)dV and θcr ∼ |EC |/EK with screened electric fields we find the

estimate of the critical strain angle for the spherical geometry:

θsph,scrcr
∼=

4

3

(
4

9π

)1/3

Z2/3αrc

[
1

Z2e2

(
Esph,in
C + Esph,out

C

)]
(5.14)

where Esph,in
C and Esph,out

C are the Coulomb potential energies of the spherical nucleus

and the rest of the Wigner-Seitz cell respectively, which are expressed as:

Esph,in
C =

Z2e2

10

(
1

R
+
R5

r6
c

− 2R2

r3
c

)
(5.15)
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Esph,out
C =

9Z2e2

2R6κ4

(
Rcosh(κR)− 1

κ
sinh(κR)

)2 {[(κ
2

+
1

R

)
exp(−2κR)−

(
κ

2
+

1

rc

)
exp(−2κrc)

]
+
exp(−2κrc)

3r2
c

(
κ+

1

rc

)2 (
r3
c −R3

)
− 2exp(−κrc)

rc

(
κ+

1

rc

)[(
R +

2

κ

)
exp(−κR)−

(
rc +

2

κ

)
exp(−κrc)

]}
.

(5.16)

For the rod geometry:

θrod,scrcr
∼=

4

3

(
1

3π

)1/3

αλ2/3r2/3
c

[ rc
Z2e2

(Ein + Eout)
]
. (5.17)

where Erod,in
C and Erod,out

C are the Coulomb potential energies of the cylindrical nucleus

and the rest of the Wigner-Seitz cell respectively, which are expressed as:

Erod,in
C =

Z2e2

4rc

(
1− 2R2

r2
c

+
R4

r4
c

)
(5.18)

Erod,out
C =

Z2e2

rc

{[
ln
(rc
R

)
+
exp(−2κrc)

2r2
c

(
r2
c −R2

)]
−
[

2exp(−κrc)
κrc

(exp(−κR)− exp(−κrc))
]}
.

(5.19)

For the slab form:

θslab,scrcr
∼=

4

3

(
1

3π2

)1/3

σ2/3r1/3
c α

[
r2
c

Z2e2

(
Eslab,in
C + Eslab,out

C

)]
(5.20)

where Eslab,in
C and Eslab,out

C are the Coulomb potential energies of inner and outer regions

of the slab nucleus respectively and expressed as:

Eslab,in
C =

πZ2e2

48

R

r2
c

(
1− 2R

rc
+
R2

r2
c

)
(5.21)

Eslab,in
C =

2πZ2e2

r2
cR

2κ2
sinh2

(
κR

2

)[ 1

2κ
(exp(−κR)− exp(−2κrc))

− 2

κ
exp(−κrc) (exp(−κR/2)− exp(−κrc)) + exp(−2κrc)

(
rc −

R

2

)]
.

(5.22)

66



Here our assumption is that the ”naked“ Coulomb interaction can be taken inside the

”nuclear” regions for all configurations since κr � 1 here. We also take into account

the charge neutrality in the cell and continuity of the potential at the nuclear boundary R.

Figure 5.1, 5.2, and 5.3 also contain the numerical results of the screening impact to the

critical strain angle which does not differ appreciably as expected.

5.4 Discussion and Conclusions

We have estimated the critical strain angle, θcr in the neutron star crust by associating it

with the ratio between the Coulomb potential energy and the kinetic energy of the rela-

tivistic electrons in a cell: θcr ∼ |EC |/EK . Our estimates cover crust layers at densities

between 6 × 10−4 fm−3 < nB < 0.12 fm−3, and crystal structures with spherical nuclei

(3-D), as well as rod (2-D) and slab (1-D) phases. The estimate scales with the fine struc-

ture constant and the charge or charge density on the ”nuclei“, and on the microscopic

length scales of the ”nuclei“ and the lattice, R and rc, in different fashions depending

on the geometry. Obtaining estimates of θcr for all layers of the crust, we conclude that

the crust is stronger in the outer region. Our results are compatible with the θcr value

computed with the molecular dynamics simulation, to date, performed by Horowitz &

Kadau (2009). This supports our suggestion that θcr can be estimated easily throughout

the different density layers and crystalline phases of the neutron star crust, based on the

hypothesis that θcr ∼ |EC |/EK . The simplicity is based on the extreme Coulomb crystal

situation in the neutron star crust. In actual terrestrial crystals, the effect of screening,

defects and anisotropies will dominate in determining the elastic properties, precluding

such simple estimations.

We find that θcr decreases with increasing density and is lower in the 2-D and 1-D

phases at densities where the phase transition occurs. The crust is more inclined to break

in the inner regions. The crust is strained in consequence of the spinning down of the star

or internal electromagnetic effects. The evolution of crustal deformations and occurrence

of crustquakes depends on the values of the critical strain angles throughout the crust. We

expect that the crust breaking will originate at the innermost regions and may propagate

toward the surface. This is consistent with the idea that crustquakes may be triggering

glitches amplified by vortex unpinning, allowing unpinned vortices to avalanche outwards

through the entire crust.

The 1-D geometry may actually have no role in crust breaking, as slabs in 1-D cannot

sustain shear strains and stresses. So the inner crust layers with 2-D rod nuclei is the

likely initial site of crust breaking events.

67



Our finding, in accordance with the results of Horowitz & Kadau (2009), that the outer

crust has θcr ∼ 10−1 is encouraging for prospects of detecting gravitational radiation

due to ”mountains” in neutron stars. We find θcr ∼= 0.39 at the lowest density we have

investigated, nb = 6 × 10−5 fm−3 (ρ ∼= 1011 g cm−3). To extrapolate to lower densities

we write Equation (5.10) in the form

θcr ∼=
4αZ

5R(3π2nbχ)1/3
. (5.23)

Employing the values listed in Chamel & Haensel (2008), taking R = 7 fm, and χ = 0.5

in the outermost crust we obtain θcr ∼= 1.7 at ρ = 2.71 × 108 g cm−3, and θcr ∼= 5.2 at

ρ = 8.02× 106 g cm−3, where electrons are still relativistic. In view of the limited range

of Z dictated by nuclear physics and weak dependence on the density, we find rather large

estimates for θcr ∼ |EC |/EK in the outer crust at 106 g cm−3 < ρ < 108 g cm−3. It should

be noted that these very large estimates of θcr do not have a meaning in the assumed linear

regime of the stress-strain relation. Our approach is not consistent at these densities. In

any case, the thickness δr of the outer crust between 106 g cm−3 < ρ < 108 g cm−3 is

estimated as only a few meters, so these upper layers of the crust will not be important.

We shall use our estimate upto θcr ∼= 0.39 at the density of nb = 6× 10−5 fm−3.

The strain amplitude of gravitational wave that is the direct impact of a deformation

(i.e. mountain) on the neutron star surface is given by (Ushomirsky, Cutler & Bildsten,

2000):

h =
16

5

(π
3

)1/3 GQ22Ω2

dc4
. (5.24)

Here d is the distance to the neutron star, Ω is the angular frequency, and Q22 is the

quadrupole moment which is the outcome of the asymmetric orientation of a deformation

(mountain) with respect to the rotational axis and directly related with the critical strain

angle (Ushomirsky, Cutler & Bildsten, 2000). The maximum quadrupole moment is given

by

Q22 = γ

∫
θcr(r)µ(r)r5dr

GM(r)
(5.25)

where µ is the shear modulus, M(r) is the enclosed mass within radius r, G is the grav-

itational constant, and γ is a numerical factor depending weakly on the mass and radius

of star, and the crust-core boundary location. We will take into account only the limits
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of the crust with spherical nuclear clusters, as the rod and slab layers sustain much lower

strains. The molecular dynamics simulations of Hoffman & Heyl (2012) for spherical

nuclei give a critical strain angle, θcr that is independent of position in the crust, while

our estimates depend on the properties of the lattice at each layer of the crust. The shear

modulus µ = (Z2e2/a4)µ∗, where µ∗ is the dimensionless shear modulus, is also found

to be a constant throughout the crust (Hoffman & Heyl, 2012). Taking our variable θcr(r)

and µ = [Z2(r)/a4(r)]e2µ∗, which are dependent on the position in the crust we find

Q22 =
γµ∗R

5e2

GM

θcr(rout)Z
2(rout)

a4(rout)

∫ rout

rin

f(r)dr. (5.26)

Here rin and rout are the boundaries of the crust layers with the spherical nuclei. Also we

have made the approximation M(r) = M and r = R throughout the crust, where M(r)

is the mass enclosed within radius r and M and R the mass and radius of the neutron star

respectively. The function f(r) is defined as

f(r) =

(
a4(rout)

θcr(rout)Z2(rout)

)(
θcr(r)Z

2(r)

a4(r)

)
. (5.27)

We obtain:

Q22
∼=
γµ∗R

5e2∆R

GM

∫ 1

0

f(x)dx (5.28)

where x = (r − rin)/∆R) and ∆R = rout − rin is the thickness of the crust. This gives

Q22
∼= 2.8× 1039 g cm2 and h = 6.7× 10−10(Ω2/d) by Equation (5.24).

For the millisecond pulsars due to their old age and accretion history, the crust, which

have been broken and distorted many times, must be weaker than the younger pulsars’,

so θcr ∼= 10−2 is likely. Assuming that the maximum θcr value can still be relevant to the

current triaxiality, the expected gravitational wave amplitude h can only be applied for

the fast spinning nearby young pulsars and millisecond pulsars.
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Summary

This thesis involves the studies of characteristics of the neutron star crust related to the

rotational dynamics of isolated neutron stars, especially their remarkable events known

as glitches. Rotating neutron stars are observed as spinning down very slowly and in

steady state over time by loosing rotational energy. However they (mostly young pulsars)

sometimes spin up abruptly. These events, referred as rotational glitches, are thought to be

due to the angular momentum transfer from the neutron superfluid component in the inner

crust to all other components which are strongly coupled each other by electromagnetic

interactions. The superfluid neutrons cannot slow down and rotate with a different rate,

since the vortices in superfluid can pin to the crustal lattice, creating the traps with high

vortex density. Hence some parts of the superfluid components in the neutron star crust

can rotate faster than the observed rotational frequency. As the vortices are released from

these pinning sites as an avalanche to arrange all components to co-rotate, spinning up of

the crust is observed as the rotational glitches. The glitch size is related with the number

of vortices and the inertial moment of superfluid region involved in this event. Glitches are

likely triggered by crust breaking, for which the critical strain angle, θcr, is an important

quantity.

Glitches generally are not correlated with the changes in the electromagnetic signature

of pulsars. However, in 2007, the glitch of PSR J1119-6127, coexisting with the change

in emission pulse profile by displaying RRAT behaviour and switching on intermittent

pulses, is firstly observed. This glitch is also unconventional with its anomalous sign

signatures: The pulsar is observed rotating with a smaller rotational rate compared with

the pre-glitch value, ∆Ω(t) < 0. It also slows down with a lower rate in the long run,

∆Ω̇ > 0. Chapter 2 presents the investigation of this abnormal glitch behaviour by ex-

tending the vortex creep model with the starquake scenario. We propose that with a quake

the crustal broken plate moving towards the rotational poles of the star induces inward

vortex motion, causing such abnormal glitch signature, and also decreases the perpendic-

ular component of the magnetic field, giving rise to anomalous emission properties. Our

model involves the contribution of vortex creep response to glitch, associated with inward

and outward vortex motion, as well as that of permanent change in the external torque.

With the model fitting we obtain some structural properties of the crust, such as the total

moment of inertia of the superfluid creep regions, the size of broken plate, the number of

vortices participating in this glitch.

The vortex creep model describes well the post-glitch behaviour in terms of different

superfluid regions in the inner crust. It explains the large and frequent glitches of Vela

and other pulsars in terms of some structural parameters, as well as the anomalous post-
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glitch behaviour of Crab in which there is a persistent offset in Ω̇. However it has the

difficulties to estimate the times between glitches in the Vela pulsar. In Chapter 3 we

derive a modified estimator of interglitch times, proposing that Vela is still in the stage of

creating vortex depletion regions as a result of the crustquake at the time of glitch. These

regions, no longer contributing to Ω̇, cause the persistent shifts in spindown rate, like in

Crab, which might not be resolved observationally in the part of the large glitch size of

Vela. The new estimates for the interglitch times are in better agreement with the ob-

served values. We also estimate the true braking index of Vela, considering that all glitch

contributions must be clean of at these epochs, and find it as between n = 2.66− 3.03.

The minimum glitch size of Crab uncovered from the timing noise gives the clue to de-

scribe this event in terms of trigger mechanism. In Chapter 4 we model the crustquake as

a trigger and obtain the estimates for some crustal quantities by introducing three breaking

geometries: (i) a crustal cubic plate, (ii) a cylindrical plate moving towards the rotational

axis, and (iii) a crustal ring with many plates moving inward in cylindrical symmetry. We

find that the plate size is bounded by 160 m < D < 11 m, while the critical strain angle

at which a crustquake occurs and the number of vortices in larger glitches are at the order

of θcr ∼ 10−1 and δN ∼ 1013 respectively. This gives an understanding of why δN is

always found to be of order 1013 in model fits to glitches which differ in magnitude by

103.

The most important parameter in the crustquake event is the critical strain angle, θcr.

In Chapter 5 we estimate θcr for the neutron star by taking into account the microphysical

structures of the crust in various densities. We associate θcr with the ratio between the

Coulomb potential energy and the kinetic energy of the relativistic electrons in a Wigner-

Seitz cell and find that it generally scales with the fine structure constant, the charge Z, and

some microscopic length scales. We find that θcr ∼ 10−1 in the outer crust, in agreement

with the previous numerical results, where the nuclear shape is spherical, while it reduces

to ∼ 10−3 − 10−2 in the inner crust with the rod and slab nuclear configurations. Hence

we conclude that the crust is stronger in the outer crust. Our results give an estimate for

maximum gravitational wave signatures expected from pulsars.
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