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Abstract

Hyperspectral Imaging has a large potential for knowledge representation about

the real world. Providing a pixel classification algorithm to generate maps with

labels has become important in numerous fields since its inception, found use from

military surveillance and natural resource observation to crop turnout estimation.

In this thesis, within the branch of mathematical morphology, Attribute Profiles

(AP) and their extension into the Hyperspectral domain have been used to extract

descriptive vectors from each pixel on two hyperspectral datasets. These newly gen-

erated feature vectors are then supplied to Convolutional Neural Networks (CNNs),

from off-the-shelf AlexNet and GoogLeNet to our proposed networks that would take

into account local connectivity of regions, to extract further, higher level abstract

features. Bearing in mind that the last layers of CNNs are supplied with softmax

classifiers, and using Random Forest (RF) classifiers as a control group for both raw

and deeply learned features, experiments are made. The results showed that not

only there are significant improvements in numerical results on the Pavia University

dataset, but also the classification maps become more robust and more intuitive as

different, insightful and compatible attribute profiles are used along with spectral

signatures with a CNN that is designed for this purpose.



HİPERSPEKTRAL PİKSEL SINIFLANDIRMA İÇİN DERİN ÖĞRENİLMİŞ

ÖZNİTELİK PROFİLLERİ

Murat Can Özdemir

BM, Yüksek Lisans Tezi, 2016

Tez danışmanları: Erchan Aptoula, Berrin Yanıkoğlu

Anahtar Kelimeler: Uzaktan Algılama, Derin Öğrenme, Evrişimsel Sinir Ağları,

Matematiksel Biçimbilim, Hiperspektral Görüntü Sınıflandırma, Öznitelik Profilleri

Özet

Hiperspektral Görüntüleme, Uzaktan Algılama araştırmalarında önemli bir yer

tutmaktadır. Sınıflandırma haritası oluşturmanın faydaları askeri uygulamalarda,

doğal afetlerde ve hatta tarımda uzmanların görsel bilgisine katkı sağlayarak uygu-

lama alanı bulmasını sağlamıştır. Bu tez çalışmasında, sınıflandırma haritası oluştur-

mak amacıyla, hiperspektral veri kümelerinden, Matematiksel Biçimbilim dalına

ait bir yaklaşım olan Öznitelik Profilleri uygulanarak alan ve moment betimleyi-

cileriyle her piksel için öznitelik vektörleri hesaplanmıştır. Veri girdileri, piksele

ait spektrum verisi, farklı betimleyicilerden oluşturulan Öznitelik Profilleri ve bun-

ların birleşimini de kapsayacak şekilde hazırlanmıştır. Bu veri girdileri, AlexNet ve

GoogLeNet gibi bilinen ağlar ve kendi önerdiğimiz, hiperspektral veri kümelerinde

nesnelerin komşuluk bilgisini de göz önüne alan ağlar da dahil olmak üzere beş farklı

Evrişimsel Sinir Ağları'nda denenmiş ve derin öznitelikleri çıkarılmıştır. Rasgele

Orman sınıflandırıcılarıyla kontrollü olarak yapılan deneylerin sonuçlarında sayısal

açıdan Pavia Üniveristesi veri kümesinde büyük ilerlemeler görülmüş ve oluşturulan

sınıflandırma haritalarının daha anlaşılır olması sağlanmıştır. Böylece, alan ve mo-

ment betimleyicilerden elde edilen Öznitelik Profilleri ve spektral bilginin Evrişimsel

Sinir Ağları ile kullanımının önemi gösterilmiştir.
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Chapter 1

Introduction

Since humanity has taken to the skies, there has been an interest in bird’s eye

view imaging with different apparatus. Early balloonists made the first attempt as

early as 1858. Later on, messenger pigeons, kites, rockets and unmanned balloons

were also used to take images. After the start of WWI and WWII, followed by

the Cold War, this discipline had been established with serious grounding, due

to the applications aimed at military surveillance and reconnaissance that proved

immense worth. Modified military airplanes and later on artificial satellites and

unmanned aerial vehicles (UAV) were used to collect information remotely using

infrared, Doppler, conventional photography and synthetic aperture radar. The

development of more complicated signal processing algorithms and sensors that are

capable of extracting more precise spectral signatures finally paved the way for the

current standards of hyperspectral imaging technology [4].

1.1 Scope and Motivation

In various disciplines, expert decision systems are installed to aid in decision

making and automatization. Some of those systems would utilize remote sensing

for generation of a classification map, a bird’s eye view of the area of interest that

is labeled with a finite number of classes. Therefore, this classification task in

contemporary hyperspectral imaging is of high significance. A non-exhaustive list

of the main challenges of this area is as follows [5], [6]:

• Different sensors: Sensors that have different specifications from one another

will inevitably produce different arrays of reflectance values.
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• Different lighting: Due to lighting changes during the day, the spectral signa-

ture of an item of a particular class will change.

• Different meteorological instances: Atmospheric conditions and presence of a

cloud or a different combination of air molecules will produce different spectral

signatures for the same object even when all other conditions are fixed. In some

occasions this may result in removal of some bands altogether since the image

at that band would have become completely useless due to absorption or total

reflectance of a specific wavelength [7].

• Different resolutions: This is linked to the general problem of image resolu-

tions. Different settings of image retrieval can distort the resolution and pin-

pointing of “pure pixels” might prove difficult, which is a desired trait since

it will help with training pixel selection in the classification task. Even if the

image retrieval part is done perfectly, due to relatively low resolution of these

images, there will still be pixels that are “mixed”, containing spectral signa-

tures of more than one class. High resolution is problematic as well: At high

spectral resolution, due to relatively low number of labelled samples for train-

ing and classification, Hughes phenomenon is inevitable, while at high spatial

resolution, too many details on the map increases the burden on computations.

[8].

• Different locations: Same objects in different locations would have the spectral

signature of their background material, which will inevitably be mixed into the

response and make its way to the reflectance values that are collected from

imaging equipment.

This thesis will solely focus on the pixel classification problem, which is burdened

by the problems of this field. In this problem, ground truth pixels are labeled to

certain classes of objects and optionally, a training set is also provided. The aim will

be to classify the remainder of the instances optimally to generate a classification

map for further uses. There are other studies in which these efforts would lead to

generalizations about a particular sensor or a class [9], but this study will consist

of obtaining two preprocessed hyperspectral datasets and from that point, treating

them like machine learning problems while keeping in mind their optical properties.
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1.2 Contributions

This thesis will present a comparative study of attribute profiles with area and

moment attributes as content descriptors that are used for training, and 5 different

Convolutional Neural Networks to extract higher level of features from them, along

with other commonly known approaches for a comparison. Since Extended Attribute

Profiles (EAPs) are capable of extracting spatial information from hyperspectral

images and although CNNs are powerful, they lack their most interesting property

of extracting spatial filters when the input images are not grayscale or three-channel

color images. The two methods should complement each other. Hence, exploiting

spatial information from hyperspectral images while being able to use CNNs for

higher levels of abstract features is made possible. The experiments will be done on

two different datasets that are acquired from the same sensor over the same city to

mitigate with the problems of this field, which would enable a better conclusion of

the proposed techniques.

1.3 Outline

The rest of the thesis is organized as follows:

Chapter 2 introduces Remote Sensing, Hyperspectral Imaging and a class of

Mathematical Morphological tools called Morphological Profiles (MP) and Attribute

Profiles (AP), followed by their extension into the hyperspectral domain. A brief

history of neural networks is also given, followed by the construction of convolutional

neural networks and its benefits. The tool of choice, Caffe will also be presented.

The rest of the chapter will then contain a narrow field literature survey to explore

the strategies that are available to solve this problem.

Chapter 3 covers the proposed modus operandi for this problem. The rationale

will be explained, followed by definitions of different network architectures and input

data preparation stages. At last, working stations will be compared and conclusions

will be drawn from those.

In Chapter 4, different experiments that are devised on two different datasets

will be explained, their results on evaluation metrics will be presented along with

classification maps and conclusions will be drawn.
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Chapter 5 provides a summary of the contributions and the results of this thesis,

and suggests several potential future research directions.
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Chapter 2

Background

This chapter provides the basic concepts of Remote Sensing, Hyperspectral Imag-

ing, Morphological and Attribute Profiles and their extension into the Hyperspectral

domain, and Deep Learning Methods. It also includes a survey of published work

on the usage of deep learning methods on pixel classification.

2.1 Introduction: Remote Sensing

Remote Sensing is the main area of research that deals with data acquisition

through capturing and quantizing force fields or radiation that are reflected from

sceneries, and interpreting this aerial viewpoint data in identifying objects, biodi-

versity, composition of complex bodies and classes of land and water surfaces over

the Earth or other heavenly bodies.

Remote Sensing measures electromagnetic energy emanating from distant ob-

jects made up of various materials. This often provides rich information about

those objects at the tasks of identification, classification and detection. Spatial in-

formation can also be incorporated for the abovementioned tasks, which has proved

to be useful in the greater field of image processing for a long time [10], [11], [12],

[13].

In passive imaging, reflectance data are collected from a range of wavelengths in

the electromagnetic spectrum. These can be called multispectral imaging if there

are at most ten channels with relatively large differences in wavelength, whereas hy-

perspectral imaging occurs when hundreds and more of these channels are recorded

within a (usually narrowly differing) bandwidth [14]. However, this thesis will con-

tain work on hyperspectral images only.
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2.2 Hyperspectral Imaging

Hyperspectral imaging sensors operate on wavelengths from the visible through

the middle infrared ranges and have the technology to capture hundreds of spectral

channels simultaneously. The collected data from these narrowly separated channels

over a bird’s eye view over the Earth are stored in pixels. Each pixel in this imaging

technique is a vector composed of measurements on specific wavelengths. Hence,

the size of each vector is equal to the number of data points, i.e., measurements

from the EM spectrum. Since hyperspectral images represent each pixel on hun-

dreds of spectral responses, the resultant spectral information is a reliable spectral

signature. This can be used to increase the possibility of accurately discriminating

materials of interest with an increased classification accuracy. Recently, this field

of imaging is receiving advances with finer spatial resolution, providing even better

information than ever [15]. With these information in mind, hyperspectral imaging

has a potential for numerous sciences and expertise areas, such as:

• Ecology: Estimation of biomass, carbon and biodiversity are crucial for the

monitoring of natural resources. Studying land cover changes can be par-

ticularly difficult when densely forested or otherwise prohibitive areas are

concerned. Hyperspectral imaging provides rich information to remedy this

through remote sensing [16].

• Geology: Measurements can be made over large areas to determine the gen-

eral composition and abundance of certain minerals, which empowers domain

experts in land type classification tasks and provides further insight. [17]

• Mineralogy: Identification and correspondence of different minerals can be

understood through the rich information that hyperspectral imaging provides,

which comes in handy when looking for a new mineral deposit. A curious

investigation is studying the effect of oil and gas leakages on the changes of

the spectral signature of nearby vegetation. [18]

• Hydrology: Current state of wetlands can be discovered by the information

that hyperspectral imaging provides. Water quality, estuarine environments

and coastal zones can be monitored for expert opinion as well. [19]
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• Agriculture: Hyperspectral data is immensely powerful in the classification

task of agricultural classes. Following that, tracking plant health parameters

for the purpose of agricultural development is also a favorite area. [20]

• Military applications: While the most popular application of hyperspectral

imaging for military applications is target detection, it is useful to obtain a

summary of the terrain to most experts, although care must be given for algo-

rithm design, since most convenient ones that are made for the multispectral

images are not straight up adaptable to the analysis of hyperspectral images.

[21]

Hyperspectral images can be viewed as a stack of images that represents the re-

sponses of different wavelengths (spectral channels) from the same scene. Therefore,

this stack of images constitute a hyperspectral data tensor. Typical hyperspectral

data consists of n1 × n2 × d pixels where n1 × n2 is the number of pixels in each

spectral channel as width and height, with d number of different spectral responses.

Analyzing hyperspectral data therefore will inevitably have two different perspec-

tives [22]:

(a) Pavia Center Dataset

(b) Spectral response of average reflectance

values of the labels of Pavia Center

Figure 2.1: Hyperspectral data

1. Spectral perspective: In this case, each pixel is a vector, containing d values.

Each pixel is represented by its spectral signature, which is produced when

7



total radiance from the object is received and distributed into their respective

narrow bands. This detailed spectral signature can be used to accomplish

great many deals:

In general, similar materials, even when separated spatially, produce similar

spectral signatures. This provides a raw feature vector, readily available for

that specific labelled instance, which can be used to group or classify all pixels

in that image. This had been the earliest approach to handle hyperspectral

data [23].

2. Spatial perspective (or spatial dimension): From this perspective, a hyper-

spectral data cube consists of d grayscale images with a size of n1 × n2.

In the spatial dimension, in particular for Very High Resolution (VHR) data,

the spatial resolution helps to identify different objects of interest on the sur-

face of Earth with greater precision. Bearing in mind that the neighborhood

pixels have a strong correlation, due to the fact that they represent the spectral

signature of neighboring elements that may be related to each other. Pixels

that represent often the same class of object or objects that should belong to-

gether in that scene are up for the taking when the neighborhood information

is taken into account. However, it is not desired to do this spatial analysis on

hundreds of band images, therefore this step is usually coupled with a dimen-

sionality reduction step and a hierarchical representation on the remaining

bands.

Multispectral images, which usually has approximately ten channels, has a few

useful tools that were used on first hyperspectral images. However, as it turned

out, most of the commonly used methods designed for the analysis of grayscale,

color or multispectral images are inappropriate and even useless for hyperspectral

images [24]. The Hughes Phenomenon/Curse of Dimensionality poses another prob-

lem for designing robust statistical estimations. In conclusion, this area of research

needs spatial analysis techniques that are designed for this problem and classifica-

tion problem, due to large feature vectors and not enough training samples, needs

to be tackled by employing different machine learning techniques. In this thesis,

Attribute Profiles as a spatial analysis technique is presented with their extension
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into hyperspectral domain to extract spectral-spatial features, which will be used to

train CNNs to obtain higher level meta-features.

2.3 Morphological and Attribute Profiles

Spatial information is fundamentally important in the analysis of remote sens-

ing images of very high spatial resolution (VHR). This high resolution reveals the

geometrical features of the structures in a scene with such a great perceptual signif-

icance that becomes useful in defining spectral signatures for a specific class, which

helps with classification stage by providing a good feature vector. Therefore this

advantage aids in the discriminability between different thematic classes, improving

the performance in classification tasks. In order to include spectral-spatial features

in the image analysis, Pesaresi and Benediktsson [25] introduced the concept of mor-

phological profiles (MPs), which is achieved by stacking filters of multi-scale opening

and closing by reconstruction on an image.

The MP were efficient at modelling spectral-spatial information, one of the pri-

mary results in their usage can be found in the classification of high-resolution

panchromatic IKONOS images [26]. From the MP, Dalla Mura et al.[27] proposed

attribute profiles (APs), a definition that contains MPs.

Given a grayscale image f : E → Z, E ⊂ Z2, its upper level sets are defined

as {f ≥ t} with t ∈ Z and the lower sets are defined as the complementary of it.

Filtering each of the peak components of the lower and upper level sets according

to a predefined logical predicate Tαλ for an attribute α and a threshold λ is called

Attribute Filtering (AF). If the predicate is defined so that the outcome of this

filtering is extensive, it is called attribute thickening, φT (f), otherwise it is called

attribute thinning, γT (f).

Attribute profiles are defined through attribute thinning and thickening oper-

ations over binary or grayscale images. These thinning and thickening operations

are defined to remove connected components (CCs) from an image based on certain

criteria. At the binary case, it is defined as the complete removal of CCs, while with

grayscale images, the same will happen with peak components. The criteria are

defined by attributes and certain thresholds. Attributes can be purely geometric

(e.g. area, length of the perimeter, image moments, shape factors), or statistical
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(e.g. range, standard deviation, entropy), instead of just structuring elements that

are used for morphological profiles. This flexibility improves the modelling of the

spectral-spatial information in the image. Attribute thinning and thickening thus

will be defined as follows:

γT (f) (x) = max {k : x ∈ Thk (f)} (2.1)

φT (f) (x) = min {k : x ∈ Thk (f)} (2.2)

In the equations above, Thk (f) = ∪{hp (f) , p ≥ k} is union of all of the results

of the level sets at greyscale level k, with k ∈ [0,max (f)], obtained on greyscale

image f. The logical predicate T and CCs of the upper and lower level sets of f,

which are represented by hk (f) are used with the threshold value k for a given

attribute.

Attribute thinning and thickening thus can generate different outcomes for an

image to become profiles, but if the increasingness property is satisfied, which is

f ≤ g → γT (f) ≤ γT (g), i.e, if a greyscale image with larger values will generate a

larger filtered image with same attribute and threshold than the latter, then these

operations can be called attribute opening. Area attribute can be used for this.

In fact, this is how topological maps are produced by cartographers who use the

area attribute on altitude data. On the other hand, standard deviation attribute

may not be available for attribute opening and closing but only for thinning and

thickening. For all the points that are made until now, the opposite reasoning holds

true between thickening and closing as well.

In spite of this, attribute opening and closing does not determine whether a

series of increasing criteria T
′

= {T1, T2, ..., Tλ} could generate attribute profiles

alone, though. If there are correct, increasing thresholds to ensure formal order

within the profile, which is i ≤ j → Ti ⊆ Tj → γTi ≤ γTj , attribute profile can be

constructed. Therefore, attribute profiles Πi can be defined for a series of increasing

criterion T
′
= {T1, T2, ..., Tλ} as follows:

AP (f) = Πi :


Πi = Π

φ
T
′
λ
, with λ = (n− 1 + i) , ∀λ ∈ [1, n] ;

Πi = Π
γ
T
′
λ
, with λ = (i− n− 1) ,∀λ ∈ [n+ 1, 2n+ 1] .

(2.3)

The reader is encouraged to observe that this notation constructs the attribute

profile from a stack of thickening profiles stacked backwards, with the original
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grayscale image in the middle, followed by the thinning profiles. Other extensions

of attribute thinning and thickening to greyscale images are also possible, leading

to different filtering effects (Salembier et al. [28], Urbach et al. [29]). However,

within this thesis’ scope, the focus will be on the definitions given above on the

hyperspectral data, which are composed of greyscale images that represent specific

wavelengths.

2.3.1 Extension into Hyperspectral Domain

Hyperspectral data received its fair share of image processing and statistics based

approaches aiming at reducing the computational workload. There is a comprehen-

sive review of different techniques that are used for hyperspectral image processing

[30]. However, this thesis will focus on how mathematical morphology tools (e.g.

APs) can be applied to hyperspectral data for pixel classification purposes.

The task of extending morphological and attribute profiling to hyperspectral

domain is not straightforward, since any thresholding operation requires an order-

ing relation between the elements, which is not natively defined for pixel vectors

in hyperspectral data. To mitigate this, either different vector comparison strate-

gies must be explored or the length of each pixel vector must be dropped to rea-

sonable levels so that more commonly known vector comparison metrics can be

used. Benediktsson et al. [31] proposed a dimensionality reduction strategy called

principal-component analysis (PCA), then computing MP on each of the principal

components (PCs) to remedy this issue. Palmason et al. [32], on the other hand,

proposed the independent-component analysis (ICA) for dimensionality reduction.

Thus, the stacking of the MPs computed on the principal components gave way to

extended morphological profile (EMP).

EMP = {MP (PC1) ,MP (PC2) , ....,MP (PCc) , } (2.4)

EMP features have already been tried with different classification methods,

Benediktsson et al. used neural networks [31], Chan et al. used random forests

(RF) [33] and Fauvel et al. used support vector machines (SVM) while adding in

spectral information as well [34]. Plaza et al. proposed another approach for ex-

tending the concept of MPs to hyperspectral data [35], which is a reduced-vector
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ordering scheme based on the spectral purity of pixel vectors, following their earlier

work [36].

The extended attribute profile (EAP) and the extended multi-attribute profile

(EMAP) [27] are simple extensions of APs to the principal components (PCs) at

hand by stacking each AP of PCs, and each EAPs of a specific attribute, respectively.

EAP = {AP (PC1) , AP (PC2) , ..., AP (PCc)} (2.5)

EMAP = {EAPa1 , EAPa2 , ...} ,where ai are different attributes (2.6)

(a) 1st threshold:

770

(b) 4th thresh-

old: 3076

(c) 6th thresh-

old: 4615

(d) 11th thresh-

old: 8461

(e) 14th thresh-

old: 10769

Figure 2.2: EAP with area attributes, thickening in successive stages

(a) 1st threshold:

770

(b) 4th thresh-

old: 3076

(c) 6th thresh-

old: 4615

(d) 11th thresh-

old: 8461

(e) 14th thresh-

old: 10769

Figure 2.3: EAP with area attributes, thinning in successive stages
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2.4 Deep Learning

In this section, a very brief deep learning literature will be presented, with the

reasons to use them at the end. For the comprehensive work, one can refer to

Schmidhuber’s review [37].

A neural network (NN) consists of many neurons that are usually in rigid layers,

each being connected to some other neurons, producing a sequence of real-valued

activations based on the weighted activities of other neurons that are on their re-

ceptive fields. Some neurons may influence the environment by triggering responses.

Learning or credit assignment [38] is the determination of weights for NN so that

each input will trigger correct behavior, such as the correct classification of millions

of images that have thousands of different labels. These behaviors can be so com-

plicated that it might require long chain of layers and non-linear thresholds to be

computed, which transforms the activation of all of the network. Deep Learning ap-

plications typically have many such stages that needs to be set with correct weights,

which empower them to handle these challenges.

Neural networks are akin to linear regression models as both try to estimate

parameters for a function that maps the input to the output, which is Gauss’ idea

of linear regression [39]. Inspired by this idea, various early systems had shown that

they can make associations with previous input akin to a neural network starting

from 1940s [40]. Advancements in neuroscience around 1960s showed that the visual

cortex of animals showed a multi-layered architecture with varying connections [41]

[42], which kick-started the beginnings of neural networks [43] [44] and finally, mul-

tilayer perceptrons [45] [46] [47]. Fukushima’s neocognitons [48] were the pinnacle

of that period, before starting “winter of AI” [49] [50].

Deep Learning became a workable idea in 1980s [51] [52] [53] and an active

research area in 90s before its computational cost became apparent. There was a

problem about vanishing gradients as well, which made training procedure prone to

divergences from optimal solutions up to null hypothesis, when the network learns

nothing at all. Complexity measurements and prevalence of other classification

algorithms as well made research in this area falter. Backpropagation algorithms

[54], supervised [55], reinforcement [56] or unsupervised learning [57] strategies were

all thrown into the common knowledge pool in the academia to solve this issue, only
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to be halted by the lack of appropriate hardware to cut the computational load and

other practical problems at the training stage, such as the absence of huge libraries

of well labelled instances.

Finally, in 2006, deep neural networks were shown to be capable of training with-

out any problems [58], with an increased efficiency of parameter update calculations

that enables them to be trained on purpose. A revival in autoencoders [59] and other

unsupervised learning schemes brought this topic back under spotlight, but by far

the most influential results stemmed from AlexNet that is submitted to ILSVRC’s

competition on ImageNet dataset in 2012 [60] and GoogLeNet in 2015 [61], where

Alex used Convolutional Neural Networks with new approaches in training them to

achieve a great level of accuracy and Google introduced Network in Networks and

inception module approaches, which consists of convolutional layers, max pooling

layers, normalization and dropout layers. Those networks can also be used to ex-

tract features, which are more flexible than a standard set of feature description

algorithms such as NWFE, BDFE or SIFT-variants, due to variable window size

and freedom of choice in filtering algorithms that can be implemented on the go

[37].

Figure 2.4: An application of AlexNet architecture on ImageNet dataset [1]

Following many advantages of Deep Learning, many more approaches have also

been proposed, either by drawing inspiration from nature or statistical and visual

models. Interest in CNNs, Recurrent Neural Networks (RNNs) with receptive fields
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from neighboring neurons on the same layer to give more options to learn other

than one-to-one input output relation, Long Short-term Memory Networks (LSTMs)

with memory gates that models memory and neural plasticity, have revived. Re-

cently, ladder networks, which exploit spatio-temporal relationship in the data, are

proposed [62] with many supervised and reinforcement learning strategy methods.

According to many experts [63] [64] [65], Deep Learning has not even reached the

point of losing its effectiveness as “a silver bullet” in many areas of data science.

2.4.1 Convolutional Neural Networks

Convolutional networks are neural networks that have at least one convolutional

layer in the totality of their network architecture. In the context of this thesis, it

refers to LeNet [59], AlexNet [60], GoogLeNet [61] or their variants, which consists

of essentially convolutional, pooling and dropout layers, to count a few. Those three

layers are of utmost importance in this thesis due to their intrinsic properties:

• Convolution are aimed to bring three powerful advantages that can help to

improve a machine learning system: sparse connectivity, parameter sharing

and equivariant representations. Convolution enables working with different

receptive fields. Traditional neural network layers use matrix multiplication

between input and output layers, but each of the neurons are connected to

all of the neurons of the next layer. This would result in large, dense ma-

trix calculations at each layer, which undoubtedly increases computation time

for parameter update calculations. Convolutional networks, however, usually

have sparse connectivity (also referred to as sparse weights), due to the fact

that a convolution operation usually deals with a receptive field that is in the

immediate neighborhood. The reason for using this connectivity stems from

the fact that while processing an image, the input image might have thousands

or millions of pixels, but relevant features detected from the regions of interests

such as edges and blobs occupy only tens or hundreds of pixels. Therefore it is

only intuitive to store fewer parameters, which would make sparse weight ma-

trices that both reduces the memory requirements of the model and improves

its statistical efficiency. It also means that computing the output requires

fewer operations. All three advantages usually add up to immense efficiency.
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Figure 2.5: Connectivity difference between fully connected layers (bottom) and

convolutional layers (top). This difference in architecture enables the network to

learn from a specific neighbourhood, instead of having input from every neuron in

the previous layer. This results in computational, spatial and functional efficiency

[2].

• A pooling function replaces the activation of all neurons at all layers with

a statistic that summarizes the neighboring neurons. For example, the max

pooling [66] operation assigns the weight of each neuron the maximum value

within a rectangular neighborhood. Other pooling functions looks to assign

values that are the average of a rectangular neighborhood, the L2 norm of a

rectangular neighborhood, or the distance weighted average, where the dis-

tances are measured from a central pixel [67]. In all cases, pooling generates

better representations that are invariant to small translations of the input,

i.e. if the input alters a little, the values of the layers after pooling opera-

tion do not change much. This puts precedence on the presence of a feature

rather than its exact location, which is a desired trait for hyperspectral pixel

classification.
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Figure 2.6: Max pooling layer only cares about its immediate neighborhood, there-

fore if the layer starts to operate from a neuron to the left, some results might

change, but most stay intact [2].

• Dropout layers decrease dependence on all neurons in a fully connected net-

work. This is achieved by randomly assigning a fraction of the elements of a

descriptor vector to 0. If there is a large object to be discovered in an image,

output from a convolutional layer, followed by a pooling layer generates a dense

matrix around that object, some of which can be too similar or noisy, leading

to overfitting of the learned features. Since in the field of remote sensing inef-

ficient amount of training samples is usually the problem [68], a dropout layer

can be considered to switch off a portion of the network randomly to reduce

full dependency on all neurons from the previous layer while the full network

continues to learn. This also constitutes a form of ensemble averaging over

the neighboring regions, which leads to better generalizations.

Weight initializations can be done using a statistical model with carefully selected

parameters or these weights can also be learned from another pre-trained model,

with an aim to increase the classification performance of the network. Different

solving strategies also offer different trade-offs between accuracy and computational

time. These topics will be explored further with the tool of choice, Caffe.
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2.4.2 Caffe

Caffe is a deep learning framework made with expression, speed, and modularity

in mind [69]. It is developed by the Berkeley Vision and Learning Center (BVLC)

and by community contributors. It has the main advantage due to the fact that

models and optimization are defined by configuration without hard-coding, which

leads to faster network generation, which are auto-generated by Google protobuffer

compilers from .prototxt files. Through this architecture, many types of layers can

be defined, from convolutional layers to different normalization and regularization

layers. It utilizes cuDNN libraries [70] for fast GPU implementation and Blas li-

braries [71] for fast CPU implementation. Many solver types are also supported as

well, with all parameters that can be manipulated.

With this tool at hand, this section will be followed by a brief literature survey

of the common approaches to solve hyperspectral pixel classification problem:

2.5 Literature Review

Deep learning techniques are prevalent due to the fact that an increase in the

layer count can lead to more abstract and complex features, which leads to better

results. Obtaining this inspiration from the human visual cortex, since it consists

of a dynamic number of neurons that have altering pathways of different depths for

each task, and taking advantage of the recently developed parallelized algorithms

for solving multilayer neural networks, this approach is now applicable to remote

sensing.

Different network architectures are used to achieve the goal of hyperspectral pixel

classification. In Chen’s first paper [3], autoencoders are used in stacks. An autoen-

coder (AE) consists of a single visible layer of inputs, a hidden layer, a reconstruction

layer which becomes the output and activation functions, which provide nonlinear-

ity. All layer transitions can be formulated by matrix multiplications, which are

assumed to be transposes of each other and addition of a bias vector. The authors

implemented 5 stacked autoencoder layers with three hidden layers in the middle.

Logistic regression is used as activator function. Training is done via back propa-

gation and the inputs are given in three different algorithms, in the first one only
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spectral information was used and in the second one the resultant data tensor from

a PCA operation that reduced the spectral dimensions to 4 is used and 11 × 11

patches around each pixel are extracted to be flattened to a 1D vector, while the

third algorithm combined both inputs to a 1D vector as input. Error minimization is

done by optimizing transformation matrix and the bias vectors for the classification

task. Error is calculated from the cross-entropy of input patches while the learning

rate is calculated via stochastic gradient descent algorithm. Fine tuning is done by

successive learning of each autoencoder layers.

Experimental studies with the Kennedy Space Center and the Pavia hyperspec-

tral images are done in four steps: 1) To test the efficiency of autoencoders, with

an initial training phase of 6:2:2 distribution of GT pixels into train, validation and

test samples under cross-validation. The performance measures were overall accu-

racy, average accuracy and kappa statistic. 2) Comparison against state-of-the-art

SVM approach. 3) Classification accuracy of spatial-dominated features and 4) The

results of the third algorithm. The results showed that a single layer AE with 100

hidden neurons can learn to reconstruct the image until 3500 epochs, while the fil-

ters that the model learned showed stark differences across different bands of the

spectrum for both images and deep learning obviously took the lead in training and

especially testing time, at the same time improved the classifications rates consid-

erably in both spectral and joint spectral-spatial case. The authors did not even

finish the pertraining and fine-tuning and claim that if continued on, the accuracy

of SAE-LR model will increase.

In Tao’s work[72], stacked sparse autoencoders (SSAE) are used, which are usu-

ally shallow feature extractors, however now generates sparse representations for the

spectrum and enables for multiscale spatial features to be learned. Extracting fea-

tures through a neural network helps the features to be better as they explain more

and complex patterns and classification through Linear SVM therefore becomes

possible with a complicated representation of the image at hand. In an attempt to

follow the work of Chen [3], they also found out that similar scenes have similar

features that can be directly transferable.

Chen’s second work [73] tries another approach with a probabilistic neural net-

work system called a Deep Belief Network (DBN) that is composed of three Re-
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stricted Boltzmann Machines (RBMs). An RBM in its simplest form consists of one

visible input layer and another hidden layer which are fully connected. A network

of three stacked RBMs followed by a logistic regression (LR) layer will learn from

whether the current layer can reconstruct the information in the previous layer and

aims to do it in small learning rates, while checking on cross-entropy.

Romero’s work [74] focuses on exploiting the rich information inside the multiple

layers of the hyperspectral images. They propose a method for sparse representation

of the spectrum by defining two concepts: Population sparsity and Lifetime sparsity,

to be determined by a Greedy Layerwise Unsupervised Pretraining (GLUP) algo-

rithm. The algorithm goes through all of the spectrum, extracts N sized patches

and comparing it with the previous level of activation within that pact through both

sparsities. Following a hysteresis threshold on activation and inhibition levels, the

patch is either lit and gets features extracted or goes out. This sparse representation

then are used as features to be fed to a Linear SVM to conclude this completely

unsupervised method of classification.

Li’s approach [75] pertains to a different family of approaches with Gabor wavelets.

After a PCA step to extract the first fifty layers of importance, three dimensional

versions of Gabor filters were formulated and calculated for each pixel through all

remaining spectrum. The resulting bulk of the features are then sent to stacked au-

toencoders, while learning rate is kept in check by cross-entropy between the original

and the reconstructed input vectors in the training phase. GLUP is again present in

the training the autoencoder stack, followed by a backpropagation to fine tune with

the addition of output sigmoid layer. Since this approach depends on empirical val-

ues at every stage and the absence of other comparisons with other state-of-the-art

algorithms, it does not add much to the literature.

Convolutional Neural Networks (CNN) are also used in this field for three rea-

sons. In Hu’s work [76], CNN is used to get an input of pixel spectrum vector and

after passing through a convolutional and pooling layer, it produces 20 different

feature maps, which are then fed to fully connected layers (MLP) to classify. This

paper is inspired from speech processing, where the input is also a 1D frequency

vector. Backpropogation and gradient descent are used for the training on a log-

arithmic loss function and input normalization. It reports wild improvements on
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the results. In Makantasis’s paper [77], they introduce multiple convolutional layers

and MLP for the classification purposes and give good comparison of the approach

versus RBF and Linear SVM, other popular algorithms. Although they describe a

method of Random-PCA, which destroys spectral information, they concluded that

same objects have similar spectral response with low variance. In Castellucio’s pa-

per [78], CaffeNet and GoogLeNet are utilized, which are already trained networks

that can either be retrained from scratch, fine tuned for a specific target of outcome

or can be used to extract features directly. Their results show that fine tuning those

networks is both time efficient and gives more accuracy in classification results.
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Chapter 3

Combining Mathematical Morphology with Deep Learning

In this chapter, the approach to classify hyperspectral images will be presented.

This thesis’ contribution is to combine two well known methods, Extended Attribute

Profiles (EAP) and a particular branch of deep learning methods called CNNs,

to see if there is an improvement in the classification accuracy. In the particular

scheme, AlexNet and GoogLeNet are considered as first trials, followed by two other

classifiers, modAlexNet and ConfNet, which modifies and enhances AlexNet with

different approaches. Those networks are used to extract features and make the

classification through their fully connected and softmax layers, respectively.

3.1 Rationale

In the literature, there are approaches for hyperspectral image classification us-

ing CNNs, stacked autoencoders (SAE), Restricted Boltzman Machines (RBM) and

multilayer perceptron (MLP) variants. Those networks have also been used to ex-

tract features to be fed to Support Vector Machine (SVM) or Random Forest (RF)

classifiers. Finally, there are approaches using 2D Gabor Filters to extract features

as well. This thesis defends that combining highly nonlinear, complex features that

are generated by EAPs with CNNs would achieve greater accuracy, because EAP

can handle spatial information and it can be extracted from hyperspectral images

which would have hundreds of channels, where CNNs would fail because most kernel

operations on CNN are defined on grayscale or RGB images, for 1 or 3 channels.

In order to prove this point, this thesis will explore four combinations of linear

(raw data, with patches) vs complex features (computed through EAPs) and almost

linear (CNN) vs complex classifiers (RF).
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Figure 3.1: Rationale

3.1.1 Neural Network Selection

While doing the experiments, 5 different test scenarios are considered:

• Test 1: Spectral data from each pixel. This has been the standard approach

for many years in this field, which results in S × 1 input vectors for hyper-

spectral images of S channels corresponding to every pixel. This approach is

the standard one, explained in Figure 2.1.

• Test 2: 9 × 9 patches of 4 PCs. This approach has been proposed by Chen

et al [3], and it will be tested against the proposed network architectures. Its

inputs will be flattened into vector inputs of size 324× 1.

Figure 3.2: Test 2 approach: 9× 9× 4 patches converted to 1× 324 [3]

• Test 3: EAPs prepared with area as attribute, since area attribute is a widely

used increasing attribute. They are extracted from 4 PCs and with different
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thresholds and N thickening and thinning operations, totalling to 2N + 1

profiles and (8N + 4)× 1 input for each pixel.

Figure 3.3: Test 3 approach: Area attribute is used for EAP, resulting in 1× 116

• Test 4: EMAPs prepared with area and moment as attributes. Original fea-

tures are preserved from Test 3, while moment profiles are added with K

different thresholds for thickening and thinning on 4 PCs. This stage will

add 8K more components to the input vector, totaling to (8N + 8K + 4)× 1

for each pixel. Moment, unlike area, generates non-increasing profiles, which

makes it the second attribute of choice.
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Figure 3.4: Test 4 approach: Area and moment attributes used for EMAP, resulting

in 1× 148 vectors for each pixel.

• Test 5: EMAPs prepared with area and moment as attributes, combined with

spectral data. This stage will have all components from the previous test,

with the addition of S channel spectral information, which would result in

(8N + 8K + 4 + S) × 1 input for each pixel. This test is aimed to explore

whether adding spectral information on top of Test 4 would increase the ac-

curacy.

25



Figure 3.5: Test 5 approach: Addition of spectral profiles to that of Test 4.

These test scenarios is given as input to 7 different classification scenarios to show

their prowess. All network layers with convolution are followed by batch renor-

malization (LRN) for regularization and Rectified Linear Unit (ReLU) layers to

model nonlinearity in perception. All pooling layers are max pooling unless stated

otherwise:

1. AlexNet for vector inputs

This network consists of the following stages:

• conv1 layer: 96 feature maps, produced by 1× 11 receptive fields with a

stride of 4 pixels,

• pool1 layer: 1× 3 kernel with a stride of 2 pixels,

• conv2 layer: 256 feature maps, produced by 1×5 receptive fields, padded

by 2× 2 and grouped by 2,

• pool2 layer: 1× 3 kernel with 2 strides,

• conv3 layer: 384 feature maps, produced by 1×3 receptive fields, padded

by 1× 1,
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• conv4 layer: 384 feature maps, produced by 1×3 receptive fields, padded

by 1× 1 and grouped by 2,

• conv5 layer: 256 feature maps, produced by 1×3 receptive fields, padded

by 1× 1 and grouped by 2,

• pool5 layer: 1× 3 kernel with a stride of 2 pixels,

• fc6 and fc7 layers: 4096 neurons each in two fully connected layers, fol-

lowed by dropout operation of 0.5,

• fc8 layer: Fully connected layer that has a top of 9 classes which will be

used for classification.

(a) First level of AlexNet

(b) Second level of AlexNet

(c) Last level of AlexNet

Figure 3.6: AlexNet architecture

2. GoogLeNet for vector inputs: This network gained attention due to its incep-

tion layers approach. Although the first two layers of convolution and pooling

are mundane:
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• conv1: 64 feature maps, produced by 1 × 7 receptive fields, padded by

0× 3 and a stride of 2 pixels, followed by ReLU

• pool1: 1× 3 kernels with a stride of 2 pixels, followed by batch normal-

ization (LRN)

• conv2/reduce: 64 feature maps, produced by 1× 1 receptive fields

• conv2: 192 feature maps, produced by 1 × 3 receptive fields, padded by

0× 1, followed by ReLU and LRN

This network branches out and recollects at 9 different instances, always fol-

lowing a distinct pattern of receptive fields of 1×1, 1×3, 1×5 and the pooling

layers to be concatenated at the end. By the time the 9th inception would be

done, an average pooling step with 1 × 7 kernel, 0 × 3 padding and a stride

of 1 pixel, followed by a dropout of 0.4 would give way to the last layer of 9

instances which will be used for classification.
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(a) First level of GoogLeNet

(b) Repeating inception layers of GoogLeNet: There are 9 of them

(c) Last level of GoogLeNet

Figure 3.7: GoogLeNet architecture

3. modAlexNet: A modified AlexNet, considering local data connectivity

• conv1 layer: 100 feature maps, produced by 1× 5 receptive fields,

• pool1 layer: 1× 2 kernel with a stride of 1 pixel,

• conv2 layer: 100 feature maps, produced by 1×5 receptive fields, padded

by 2× 2 and grouped by 2,
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• pool2 layer: 1× 2 kernel with a stride of 1 pixel,

• conv3 layer: 100 feature maps, produced by 1×5 receptive fields, padded

by 1× 1,

• conv4 layer: 100 feature maps, produced by 1×5 receptive fields, padded

by 1× 1 and grouped by 2,

• conv5 layer: 100 feature maps, produced by 1×5 receptive fields, padded

by 1× 1 and grouped by 2,

• pool5 layer: 1× 2 kernel with a stride of 1 pixel,

• fc6 and fc7 layers: 4096 neurons each in two fully connected layers, always

followed by dropout operation of 0.7,

• fc8 layer: Fully connected layer that has a top of 9 classes which will be

used for classification.
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(a) First level of modAlexNet

(b) Second level of modAlexNet

(c) Last level of modAlexNet

Figure 3.8: modAlexNet as a whole

4. ConfNet: A recently proposed lightweight modification of AlexNet [79]. This

network has only two convolutional and pooling layers, followed by the usual

fully connected layers. Weight initialization scheme is also moved from Gaus-

sian distribution to Xavier distribution, which is defined as follows:

• conv1 layer: 10 feature maps, produced by 1 × 5 receptive fields with 1

stride. This layer’s weight initialization had the standard deviation of

0.02, instead of the standard 0.01

• pool1 layer: 1× 3 kernel with a stride of 3 pixels,
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• conv2 layer: 20 feature maps, produced by 1× 5 receptive fields,

• pool2 layer: 1× 3 kernel with a stride of 2 pixel,

• fc6 and fc7 layers: 100 neurons each in two fully connected layers, followed

by dropout operation of 0.6,

• fc8 layer: Fully connected layer that has a top of 9 classes which will be

used for classification.

(a) First level of ConfNet

(b) Second level of ConfNet

Figure 3.9: ConfNet as a whole

5. Raw input vectors fed into RF

6. Raw input vectors fed into softmax classifier

7. Deep features extracted from modified AlexNet’s last fully connected layer

(4096× 1 input) fed into RF.
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Figure 3.10: Feature extraction layer of modAlexNet

3.1.2 Ideas for Data Preparation

While supplying 1D vector input for each pixels is the simplest way to proceed

with the pixel classification tasks, this section will elaborate on different approaches

that have been taken during data preparation phase to see their effects on the

classification results:

• Idea 0: Extracting EAP to be fed as 1D vector input for each pixel

• Idea A: 11 × 11 patches that would have all spectrum information, resulting

in 121× S input matrices.

• Idea B: Concatenation of 9×9 patches of EAP images (1D vectors) using area

profiles, resulting in 116× 81 input matrices.

• Idea C: Concatenation of 9× 9 patches of EAP images, resulting in 29x9x9x4-

>261x36 input matrices.

• Idea D: Multidimensional data input into Caffe environment is achieved by

hdf5 data format, thus 9 × 9 patches with many different strategies became

possible, resulting in 9 × 9 × C hdf5 data cubes, where C is the number

of features per pixel. C dimension can represent whole spectrum, resultant

channels after a PCA, EAP/EMAP features or a subset of all.
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Figure 3.11: An overview of the ideas

As it turns out, only test 0, A and D would work with substantial improvement

on accuracy, while test B would overfit and test C would not be learned by any of

the networks that are presented up to now. In the end, 1D pixel vector approach

and hdf5 multidimensional data input approach are used for the overall analysis and

only the results of those two ideas will be presented in the results page.

3.1.3 Parameter and Hyperparameter Optimizations

Different parameters are considered during the training of deep networks, while

using default parameters in some places. Fast learning is aimed, i.e., the learning

rates are set as high as possible so that the loss function starts to decrease for good

around 500-2000 iterations, only fluctuating mildly to produce the best parameters

for the network.

• Parameter optimization for Random Forest classifiers are not done, the state-

of-the-art assumption of 100 trees with square root of number of instances

were used.

• For softmax, logistic regression toolbox of scikit-learn and Weka were utilized

with their default parameters.

• For networks, rule of thumb values of learning rate = 0.01 and momentum

0.9 are used, while weight decay, learning strategies and all else remained the

same for AlexNet and GoogleNet.
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• For modAlexNet, weight decay would be 0.0002 (original value was 0.0005).

• For ConfNet, many observations were made until 10000 iterations each, until

settling with Xavier weight initialization scheme, increasing conv1’s initializa-

tion standard deviation to 0.02, setting weight decay at 0.0002 and solving the

network with Adam solver.

During the training, since the learning strategies for all networks based on

stochastic gradient descent, best model parameters fluctuated considerably during

the training and validation phases. However, it is possible to capture a good model

by snapshotting at 5000 iterations and using those saved models for classification

purposes. Therefore, it is safe to claim that this procedure is applicable for further

studies.

3.1.4 Efficiency

The computations are done on two different machines running on Ubuntu 14.04

LTS. Great care was given to match driver versions to avoid different seeds for ran-

dom number generations.

1. Station 1: Intel Xeon 2 core processor with NVidia Quadro K4000 GPU

2. Station 2: Intel i7 HQ5700 processor with GeForce GTX 980M GPU

Running time for the first machine lasted 5.5 to 6 hours per training of an input

size of 103× 1 for 50000 iterations, classifications lasted 25 minutes for each saved

model; while on the second machine training of the same scenario lasted for 40

minutes and classification for each saved model took only 7.5 minutes. As input

sizes got larger, these numbers grow almost linearly: Reaching to 85 minutes for

classification and 11.5 minutes for each classification on the second machine for

the input size of 251 × 1, while it took more than a day on the other machine for

training. Although both GPUs had DDR5 memory bus architectures, the main

difference here was due to the other specifications of GPUs. Having more CUDA
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GPU type Memory Bandwidth Memory Storage CUDA cores Clock Speed

1 134 GB/s 3 GB 768 400 Mhz

2 160 GB/s 4 GB 1536 1038 Mhz

Table 3.1: A comparison of GPUs: 1) Nvidia Quadro K4000 2) GeForce GTX 980M

cores, with more clock speed and memory bandwidth made the second station eclipse

on timing achievements of station 1:

It should be noted that the second GPU remained utilized around 70-80 percent

during training and testing of these testing scenarios, using a maximum of 2.5 GBs

of memory and 100 Watts of power of its maximum 120 Watts. Should the data be

bigger or bigger batch sizes to be used, these timings would improve even more so.

However, as the size of the computations grows, there should be more investment

in cooling technologies in order to avoid performance loss due to overheating above

75-80 °C, which can be monitored by nvidia-smi.

3.2 Datasets

In this thesis, two hyperspectral data tensors that are used are the scenes ac-

quired by the ROSIS sensor during a flight campaign over Pavia, northern Italy.

Pavia Centre scene has 102 bands, whereas Pavia University has 103. Pavia Centre

is a 1096 × 715 pixels at spatial dimension, and Pavia University is a 610 × 340

pixels image, but some of the samples in both images contain no information and

have to be discarded before the analysis. The geometric resolution is 1.3 meters.

Image ground truths are labelled with 9 different classes each. Pavia scenes were

provided by Prof. Paolo Gamba from the Telecommunications and Remote Sensing

Laboratory, Pavia university (Italy).

3.2.1 Pavia University Scene

In preparation of Pavia University Scene, original data is used with its 103

spectra present, except at the places where 4 PCs are used, which was done through

PCA on the original data to cover at least 99 percent of the original data.
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3.2.2 Pavia Center Scene

In preparation of Pavia Center Scene, only right side of the dataset is used as a

single image, as seen on the Figure 3.1. Therefore, the final dimensions that are used

for this dataset are 1096× 489. PCA is done on the dataset, reducing 102 spectral

dimensions to cover at least 99 percent of the original data, which happened to be

4 PCs.

(a) Ground Truth (b) False color image (c) Training samples

Figure 3.1: Pavia Center dataset

(a) Ground Truth (b) False color image (c) Training samples

Figure 3.2: Pavia University dataset
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Chapter 4

Results

In this chapter, the results of different approaches within this thesis are pre-

sented, along with other state-of the art methods to compare the overall results.

The experiments covers different network architectures that are either used as fea-

ture extractors or direct classification purposes with softmax classifiers combined,

or raw features will be fed to softmax and Random Forest classifiers.

4.1 Methods

Given that hyperspectral image datasets contain information from many bands,

they are a rich source of indicative power over individual pixels. As it is usually

thought in image classification tasks, neighbouring regions are also considered to be

of importance, since a group of pixels that are next to each other are more likely

to form an object that would have similar labels. Another reason for exploiting

neighbourhood is that if this information is never used, a classification algorithm

would have given similar results in which the pixels are randomized, which would

discard all of spatial information.

4.1.1 Spectral Signatures

In this section, the results obtained using spectral signature per pixel are dis-

played. Two different approaches are mainly considered:

• Spectral responses: Results in 103×1 pixel vector for Pavia University dataset,

while Pavia Center would produce 102× 1 pixel vector.
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• Neighbourhood information from 4 PCs: 9 × 9 patches are extracted around

each pixel, using 4 PCs, results in 324× 1 pixel vector for both datasets after

flattening.

The results are given in form of image and table results for comparison.

4.1.2 Extended Attribute Profiles

In this section, the results obtained using area and moment as an attribute are

displayed. 14 thickening and 14 thinning profiles are used on 4 PCs, results in 116×1

input vectors for both datasets, while moment profiles are done with 4 thickening

and 4 thinning profiles, which results in 32× 1 input vectors. The results are given

in the form of labelled image after classification and table results for comparison.

4.1.3 Combination

In this section, the approaches from the previous two are presented here. For

Pavia University dataset, this would produce 251 × 1 vector input per pixel, while

for Pavia Center University dataset, this would produce 250 × 1 vector input per

pixel. The results are given in form of image and table results for comparison.

4.1.4 Multidimensional data approach

In this section, five different scenarios are considered.

• test1: Full spectral information: The resulting input data is 9 × 9 × 103 per

pixel around each original pixel.

• test2: PCA approach: The resulting input data is 9× 9× 4 per pixel around

each original pixel.

• test3: Area attribute approach: The resulting input data is 9× 9× 36, where

the third dimension is prepared using all of the 4 PCs. This attribute profiling

consists of 9 profiles per PC: 4 thinning, 4 thickening and one original data.

• test4: Moment attribute approach: The resulting input data is 9 × 9 × 36,

where the third dimension is prepared using all of the 4 PCs. This attribute
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profiling consists of 9 profiles per PC: 4 thinning, 4 thickening and one original

data.

• test5: Combination approach: The resulting input data is 9 × 9 × 68, where

the third dimension is prepared using the approach from test3 and test4.

4.1.5 Results

Best results for both datasets are presented here.

Pavia Center Results

Test# raw+SM raw+RF AlexNet GoogleNet ModAlexNet CNN+RF ConfNet

1 0.8624 0.9309 0.9501 0.9450 0.9615 0.9511 0.9654

2 0.9335 0.9532 0.9522 0.9421 0.9646 0.9155 0.9510

3 0.9327 0.9833 0.9724 0.9712 0.9887 0.8891 0.9821

4 0.9487 0.9843 0.9801 0.9836 0.9843 0.9080 0.9804

5 0.9511 0.9519 0.9872 0.9792 0.9867 0.9447 0.9871

Table 4.1: Pavia Center, best results with kappa statistic, SM = softmax

Compared to Pavia Center, Pavia University provided a harder challenge in

terms of more noisy samples.

Pavia University Results

Test# raw+SM raw+RF AlexNet GoogleNet ModAlexNet ConfNet CNN+RF

1 0.5635 0.6541 0.8100 0.7802 0.7475 0.7858 0.5761

2 0.6174 0.8081 0.8100 0.8243 0.8063 0.8204 0.6117

3 0.7022 0.8847 0.9315 0.9388 0.9230 0.9303 0.8535

4 0.8209 0.8736 0.9488 0.9523 0.9367 0.9516 0.8514

5 0.8361 0.9024 0.9684 0.9602 0.9734 0.9575 0.7962

Table 4.2: Pavia University, best results with kappa statistics, SM = softmax
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(a) test1 (b) test2 (c) test3 (d) test4 (e) test5

Figure 4.1: Pavia Center classification maps

(a) test1 (b) test2 (c) test3 (d) test4 (e) test5

Figure 4.2: Pavia Center classification maps-RF-vector input

(a) test1 (b) test2 (c) test3 (d) test4 (e) test5

Figure 4.3: Pavia University classification maps-AlexNet-vector input
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(a) test1 (b) test2 (c) test3 (d) test4 (e) test5

Figure 4.4: Pavia University classification maps-GoogLeNet-vector input

(a) test1 (b) test2 (c) test3 (d) test4 (e) test5

Figure 4.5: Pavia University classification maps-modAlexNet-vector input

(a) test1 (b) test2 (c) test3 (d) test4 (e) test5

Figure 4.6: Pavia University classification maps-confNet-vector input
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(a) test1 (b) test2 (c) test3 (d) test4 (e) test5

Figure 4.7: Pavia University classification maps-RF-vector input

Multidimensional input to CNN also improved the results with a certain char-

acteristic, which will be discussed later in this chapter.

Pavia University Multidimensional Input Results

Test# Kappa Description

1 0.8670 Patches prepared with whole spectrum (9× 9× 103)

2 0.8615 Patches prepared with PCAd version (9× 9× 4)

3 0.9261 Patches prepared with EAP with area attribute (9× 9× 36)

4 0.9758 Patches prepared with EAP with moment attribute (9×9×36)

5 0.9694 Patches prepared with EAP with both attributes (9× 9× 68)

Table 4.3: Pavia University, multidimensional approach

(a) test1 (b) test2 (c) test3 (d) test4 (e) test5

Figure 4.8: Pavia University classification maps-multidimensional approach
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4.2 Discussion

In the field of hyperspectral imaging, it has always been a preferred method to

include spatial domain information to the classification task instead of using only

spectral signatures. In this study, it is shown that using neighborhood information

improves the accuracy of the mapping by recognizing regions, where a group of

pixels belong to same class.

Using CNNs, which has adjustable receptive fields and a sparsely connected

network structure to identify regions of interest improved the accuracies versus a

classification by RF, which would generate an ensemble of decision trees built by

selecting random attributes and hence, makes statistical inference about the indi-

vidual pixels. RF learners would therefore have no resilience against a misidentified

or a heavily mixed pixel, which would introduce sizeable amount of noise into the

description of that particular class.

Although the neighborhood information is useful, it is still prone to mislabelled

instances and adds noise to the input data. In Pavia University dataset, dirt, grass

and tree classes are usually confused by the learners and only with the introduction

of EAP and EMAP by combining area and moment attributes helped with better

identification of large areas with a single class label, which is usually traded off with

errors in small sections of the map, i.e. small patch of the woods on another part

of the map would be classified as grass instead.

Using different CNNs enabled a much better in-depth look at how these networks

would work at different receptive fields, pooling and dropout operations. AlexNet

and GoogLeNet turned out to be a good enough classifiers, yet they lacked the

domain knowledge of the modAlexNet, which produced a better generalization of

the classification map even under the noise that are described above. ConfNet,

although it looked promising on the kappa statistics results, is shown to be no

better than AlexNet when it comes to identifying and generalizing large areas with

single class label.
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Chapter 5

Conclusions and Future Work

5.1 Conclusions

This thesis presented a comparative study of attribute profiles with area and

moment attributes, and 5 different Convolutional Neural Networks to classify them,

along with other commonly known approaches for a comparison. Most popular CNN

choices of now, AlexNet and GoogLeNet proved their worth, while newly presented

modAlexNet and recent submission of ConfNet provided with different angles in

hyperspectral image classification by pixels and patches. Overall, CNNs proved to

be better classifiers than off-the-shelf RF and displayed robustness in classification

map generation with more interpretable results.

The experiments that were done on two different datasets from Pavia city pro-

vided different study opportunities on how hyperspectral imaging works, from data

acquisition to dataset and label marking. As contributions despite those difficulties

would finish here, proposals will follow for different strategies to build up the work

from her.

This thesis solely focused on the pixel classification problem, which is burdened

by the problems of this field. In this problem, ground truth pixels were labeled to

certain classes of object and optionally, training set was also provided. The aim has

been to classify the remainder of the instances optimally to generate a classification

map for further uses. This study failed to obtain generalizations about a particular

sensor or a class, but this study has been a broad comparative study on different

CNNs and MM tools.
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5.2 Future work

In this section, future research topics at Deep Learning side of the problem is

presented.

• AlexNet and GoogLeNet used 1x5, 1x3 and 1x1 receptive fields, the proposed

network modAlexNet used 1x5 receptive fields at all layers, so would ConfNet.

Different receptive fields are not covered intensively or local relationship be-

tween adjacent spectral layers are not taken into account. It is recognized

that some objects should have a distinctive pattern for their spectral signa-

ture, which would take other sizes of receptive fields and feature maps.

• Different strategies for pooling and dropout layers can also be explored, since

pooling would generalize a region on that image, which is overly represented

by the same area and moment attribute values and not all pixels of same

label would have the same geometric attributes, i.e. tree class pixels may be

grouped at one part of the map or they can be singular tree pixels, which would

introduce further noise into training procedure, which might have caused for

misclassification of some road pixels and small patches of dirt, trees and even

bitumen. Dropout layers are also a must, but too little dropout would focus

on the extracted features too much and too much dropout would not be able

to learn.

• Neighboring relationships can be further explored by a locally region growing

type of a learner [80]. In the cited work, the training phase is done by starting

from labeled pixels and then classifying their neighboring unlabeled pixels to

grow regions. The authors reportedly have success to model this behavior on

a MLP to classify all of the hyperspectral image.

• Feature extraction phases (until fc8) could be refined to include a ranking

scheme for population and lifetime sparsity to mitigate for excessive zero’d and

same leveled attributes. This will especially come handy at CNN+RF step,

since CNN tends to extract all the features from at the end of convolutional

layers to fully connected layers and dropout layers, where most of the data

would be either too much close to each other or exactly equal to zero due
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to dropout. That might even be the reason why CNN+RF approach did not

work as planned for ConfNet, which is a very small network with high dropout

rate and worked the best for modAlexNet, which is a heavy network with most

number of parameters overall.

• Different methods for fine tuning and data augmentation might also be ex-

plored. In this thesis, data augmentation is tried for the multidimensional

data input phase, but it was only done with training from scratch mode and

on training dataset with mirrors and flips at 45°, but adding noise to the input

data is also a perfectly valid data augmentation method. For fine tuning, 3

PC patch images can be used with a pretrained network with generic aerial

images or color/panchromatic images over the same area and then using this

network to fine tune the network and increase the accuracy.
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