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1. ABSTRACT 

 

Studying Genetic and Enzymatic Constraints Driving Evolution of Antibiotic 

Resistance 

YUSUF TALHA TAMER 

MSc. 2014 

Erdal Toprak (Thesis Supervisor) 

Keywords: Antibiotic Resistance, Bacterial Evolution, Trimethoprim, Morbidostat 

 World is heading towards a post-antibiotic era due to emergence of antibiotic 

resistance. Several fatal infectious diseases caused by antibiotic resistant bacteria cannot 

be treated anymore using the existing antibiotic surplus. Novel antibiotics or novel 

strategies to use antibiotic more efficiently are therefore crucial to combat against 

resistance. However, both of these approaches require a clear understanding of 

antibiotic resistance at molecular and genetic levels. Here in this study, we studied 

evolutionary dynamics of trimethoprim resistance under dynamically sustained drug 

selection. Using a custom made continuous culture device that we call the Morbidostat; 

we evolved drug sensitive Escherichia coli cells against increasing levels of 

trimethoprim adapting strong or mild dilution rates. First, using Illumina whole genome 

sequencing and Sanger sequencing, we identified trimethoprim resistance conferring 

mutations in dihydrofolate reductase (folA) gene and the order that these mutations 

appear in the population. Our results suggest that clonal interference between different 

genotypes is common and longer under strong dilution where trimethoprim stress is 

applied in shorter and steeper pulses. Second, we cloned and purified dihydrofolate 

reductase (DHFR) enzymes with single mutations and carried out biochemical assays to 

quantify mutant enzymes’ enzymatic activities. Our preliminary results showed that 

DHFR mutants have slightly worse substrate affinity (higher km values) but up to ~20 

fold elevated catalysis rate (kcat/km) compared to their wild type ancestor. We conclude 

that trimethoprim-resistance-conferring DHFR mutations decrease affinity to both 

enzyme’s substrate and competing drug molecules, yet enzymatic activity, which is 

essential for folic acid synthesis, is still adequately efficient to maintain bacterial 

fitness. 
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2.  ÖZET (IN TURKISH) 

Antibiyotik Direncinin Evrilmesine Yol Açan Genetik Ve Enzimatik Etkenlerin 

İncelenmesi 

Yusuf Talha TAMER 

Yüksek Lisans Tezi 2014 

Anahtar Kelimeler: Antibiyotik Direnci Kazanılması, Trimetoprim, Folat Sentez Yolağı 

 Günümüz dünyası bakterilerin antimikrobiyal ilaçlara direnç kazanması nedeniyle 

antibiyotiklerin tamamıyla etkisiz hale geleceği güne doğru bir geçiş yaşıyor. Bir çok 

ölümcül bulaşıcı hastalık antibiyotiklere dirençli hale gelmiş bakteriler nedeniyle yakın 

gelecekte tedavisiz kalacak. Yeni antibiyotikler ve yeni tedavi yöntemlerinin 

geliştirilmesi ve bunlarla beraber antibiyotik direnci kazanılmasının önüne geçilmesi 

çok büyük önem taşıyor. Bu problemin çözülmesi adına yapılması gereken bakterilerin 

antibiyotik direnci kazanması işleminin genetik ve moleküler aşamalarını anlamak. Bu 

çalışmada trimetoprim antibiyotiğine karşı direnç kazanılmasının evrimsel temellerini 

farklı seçilim baskıları altında inceledik. Bu amaç doğrultusunda bakterilerin eşit bir 

şekilde seçilim baskılarıyla karşılaşmasına ve bakteri büyümesinin sürekli kontrol 

altında tutulmasına izin verebilen Morbidostat adlı makineyi kullandık. Bakteriler güçlü 

(Uzun süreli antibiyotik enjeksiyonuna) ve zayıf (kısa süreli antibiyotik enjeksiyonu) 

olmak üzere iki farklı seçilim baskısı altında antibiyotik direnci kazandılar. İllumina 

tüm genom sekanslama ve Sanger gen sekanslanması yöntemleriyle öncelikle deneyin 

sonucunda direnç kazanılmasına yol açan mutasyonları belirledik, sonrasında 

dihidrofolat reduktaz enzimi üzerinde görmüş olduğumuz bu mutasyonların, hangi 

sırayla kazanıldığını anlamak için günlük alınmış olan örnekleri sekansladık. 

Sonuçlarımızda güçlü seçilim baskısı altındaki popülasyonlarda genotipik çeşitlilik, 

zayıf seçilim gösteren popülasyonlara göre daha uzun süreli ve yaygın olarak görüldü. 

İkinci olarak gördüğümüz bu mutasyonları birer birer yabanıl protein üzerinde 

değişikliğe uğratıp deneyde gördüğümüz mutasyonların reaksiyonun biyokimyasına 

etkisini çalıştık. Elimizdeki ilk sonuçlar gösterdi ki; mutant proteinler yabanıl olanla 

karşılaştırıldığında, substrat affinitesi (Km) adına biraz kötü olsa da reaksiyonun 

katalizinde (Kcat/Km) 20 kata kadar daha etkili oldular. Sonuç olarak trimethoprim 

direnci kazanılmasında gerekli mutasyonlar, enzimin substratına karşı ilgisini azaltmış 

olsa da bakterinin hayatını devam ettirmesi adına çok önemli olan folat sentez yolunun 

çalışmasında daha etkili oldukları için bakteri popülasyonlarının Darwinsel uyumunu 

sağlamış oldular. 
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4. AIM OF STUDY  

World is heading towards a post-antibiotic era due to emergence of antibiotic resistance. 

Several fatal infectious diseases caused by antibiotic resistant bacteria cannot be treated 

anymore using the existing antibiotic surplus. Novel antibiotics or novel strategies to 

use antibiotic more efficiently are therefore crucial to combat against resistance. 

However, both of these approaches require a clear understanding of antibiotic resistance 

at molecular and genetic levels. Here in this study, we studied evolutionary dynamics of 

trimethoprim resistance under dynamically sustained drug selection. 

 

5.  INTRODUCTION 

 

5.1. Antibiotics 

 Bacterial pathogens cause severe infections and deaths over 17 million people 

annually.[1] Antibiotics are the substances that inhibit the growth of bacteria or kill 

them directly. They can be produced naturally or synthetically. From the time, 

Alexander Fleming first found antibiotic -Penicillin-, there are hundreds of molecules 

are designed as bactericidal or bacteriostatic agents but only a few of them are 

commercialized because of economical and safety issues. 

5.2. Classification of Antibiotics 

 Commercial antibiotics are classified under 5-6 major classes with respect to their 

target mechanism. Some of these major classes are: Cell Wall Synthesis Inhibitors (e.g. 

β-Lactams), Protein Synthesis Inhibitors (e.g. Aminoglycosides, Macrolides), DNA 

Replication and Repair Inhibitors, Folic Acid Pathway Inhibitors. Beta-Lactam 

antibiotics hold the largest share in the antibiotic market of entire world [2]. Major 

targets of the β-Lactams are peptidoglycan layers and syntheses of the cell wall. This 

class of antibiotics has a special Lactam ring on their chemical structure. The other 

class, Protein synthesis inhibitors, is targeting the ribosomal small and large subunits 

with mimicking substances that have roles in the machinery of translation. Main targets 

for DNA replication and repair inhibitors are DNA and RNA synthesis precursors such 
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as DNA Gyrase Family proteins. Quinolones –synthetics antibiotics - and Coumarins 

are belonged to this group.  Also there are some other targets of antibiotics directly or 

indirectly affecting or blocking the polymerization of nucleic acids and division of cell. 

Folic acid synthesis pathway inhibitors are in this group. Folic acid pathway inhibitors 

will be explained deeply at the second chapter of this thesis. But briefly this pathway 

synthesizes the precursors of nucleic acids. 

 
Figure 1: General Classification of Antibiotics by their targets. Figure is taken from 
http://www.orthobullets.com/basic-science/9059/antibiotic-classification-and-mechanism 06/01/2014[3] 

5.3. Adaptation and Genetic Diversity  

 Rivoire et al states that, there are three foundations that justify adaptations under 

the rules of natural selection:  

1. Populations composed of individuals from diverse genetic backgrounds 

2. These diverse characteristics associate with their fitnesses. 

3. These characteristics should pass to the new generations. [4] 

 There are factors that facilitate adaptation process such as sexual reproduction, 

horizontal gene transfer, and mutation. Among these factors, Clune et al defines 

mutation as the ultimate source for diversification of genotypes. Thus to be able to 

understand the rate of evolution, the rate of mutation is an inevitable criterion [5]. 
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Especially for prokaryotic species mutations are the major effectors that change the 

fitness and the surveillance of the organism.  

 

5.4. Antibiotic Resistance 

 

 

Figure 2: Number of Multi Drug Resistant Tuberculosis (TB) cases observed in world. 

  

 One of the fundamental features of living organisms is responding to an 

environmental or an inner signal. Right after the clinical usage of first antibiotics, 

bacteria started to respond this environmental stress and begin adapting this new 

environment. Though the resistance causing factors are differing among different 

species, there are 7 main factors that facilitate the tolerance of antibiotic stress.  

1. Activated Specific/Non-specific efflux pumps that can control the outflow of 

antibiotics  

2. Modifications in cell wall structures that restrict or block the influx of antibiotics. 

For example altered peptidoglycan structure found in Vancomycin resistant 

enterococcus (VRE). 

3. Some species of bacteria have naturally insensitive target enzymes so they 

practically resistant to antibiotics. This case will be explained later in TMP 

resistance part.  
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4. Post-transcriptional or post-translational modifications may take place on target 

enzyme that make bacteria tolerate the antibiotic or decrease the effects of it. 

5. Horizontal gene transfer of resistant protein or resistance cassette makes 

bacterium become resistant 

6. Covering the environment with biofilm is also a big problem that makes 

bacterium get rid of the effects of antibiotics. 

7. Last but the most important cause that makes bacterium resistant is to mutate 

regulatory or coding region of the target protein. 

 Last reason is the most problematic one between them because it makes not just 

one colony of bacteria resistant; this cause makes them have fitness advantage among 

other colonies. Thus, after certain amount of antimicrobial stress mutated bacteria 

become dominant among the ecosystem [6]. 

 

5.5. Folic Acid Pathway and DHFR  

Figure 3: Folic acid pathway and targets of antibiotic found on this pathway 
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 Studies on folic acid synthesis pathway are going back to observations of Woods 

in 1940 [7]. Folic acid pathway is one of the most crucial pathways for synthesizing 

different kinds of cellular components in both eukaryotes and prokaryotes. For example, 

synthesis of purines such as thymine, and synthesis of aminoacids such as methionine, 

glutamic acid, and glycine are dependent to this pathway. What makes this pathway 

important is all the microorganisms and plant synthesize their folate through folate 

biosynthesis pathway but in mammals instead of just having this pathway; they also 

have folate pumps on their membranes. Mammals can bypass the folic acid pathway by 

just importing the folate from extracellular matrix through the specialized pumps.  

Because of its clinical and commercial importance in antibiotic market, most of the 

enzymes in this pathway are crystallized [8]. Folic Acid Biosynthesis Pathway has two 

main checkpoints controlled by two different classes of antibiotics.  

1.  The first reaction is catalyzed by Dihydropteroate Synthase (DHPS) can be 

blocked by Sulfonamides class of antibiotics;  

2.  Trimethoprim can block the last reaction, which is catalyzed by Dihydrofolate 

Reductase (DHFR). This project is focused on the enzyme DHFR because of its 

important role on TMP resistant bacterial evolution. In E. coli DHFR is one 

chained and 159 amino acids-containing enzyme.  

5.6. DHFR Enzyme Activity  

Figure 4: Reaction catalyzed by Dihydrofolate Reductase. From Dihydrofolate to 

Tetrahydrofolate [9] 

 

 As shown in the pathway above, DHFR enzyme takes DHF as an input and gives 

THF as product. When we analyze the reaction in deep, there is a methyl group 
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shuttling occurs on DHF molecule (As shown in the right side of the figure). After this 

reaction THF can be further converted to Nucleic acids such as Thymine and certain 

amino acids like Methionine. In their JBC paper, Appleman et al, shows that on E. coli 

DHFR, 27th residue (Aspartic Acid) has an important role as active site [10]. D27 is 

interacting with DHF and helps catalysis of the reaction.  

  

5.7. Trimethoprim: A Folic Acid Pathway inhibiting Antimicrobial Agent 

 Trimethoprim is a synthetic bacteriostatic antibiotic that targets on Dihydrofolate 

Reductase (DHFR) enzyme. This antibiotic first used successfully in a Proteus genus of 

bacteria in 1964 [11]. From that time to now, Trimethoprim is a commonly prescribed 

antibiotic either alone or combination with sulfamethoxazole (SMX) or co-methoxazole 

especially for the urinary tract infections. Since combination therapies with co-

methoxazole later found that has side effects on bone marrows and lose its efficacy as 

antibiotic, this combination therapy is restricted in 1995 [12]. Unlike co-methoxazole 

trimethoprim (TMP-coMX) combination therapy, TMP-SMX combination therapy 

thought to be a better alternative and claimed that this drug combination via their 

synergistic effect is also decreasing the rate of evolution of resistant bacteria [13].  

 Trimethoprim has very high binding affinity to prokaryotic DHFR when 

compared to its eukaryotic ortholog[14]. When E. coli DHFR gene is blasted in non-

redundant database against mammal proteins, the best alignment has the sequence 

identity as 30%. This affinity and sequence difference also makes trimethoprim, a good 

antibiotic candidate.  
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5.8. Resistance Mechanisms against Folic Acid Biosynthesis Pathway Inhibiting 

Antibiotics  

 

 Figure 5: DHFR enzyme 3D structures taken from different species. Top Line: 

Bacillus anthrasis, Candida albicans, Mycobacterium tuberculosis, Center: Escherichia 

coli, Bottom Line: Gallus gallus, Mus musculus, Homo sapiens 

  

 Although Trimethoprim resistance is a highly studied issue, the problem hasn’t 

been completely solved yet. General pathways that are mentioned for becoming 

resistant to the antibiotics are also applicable for TMP. For example, S. aereus and S. 

pneumoniae have insensitive DHFRs in their metabolisms. Another defense mechanism 

found in P. aeroginosa, these gram-positive bacteria, has cell wall structure that doesn’t 

let TMP enter the cell. The highest level of resistance is acquired by mutating DHFR 

gene and also in literature, E. coli cells which bears mutant folA gene, have resistance 

level up to solubility limit of TMP in media. In their paper, Toprak et al, explains how 

mutations occurring on regulatory and/or coding region of folA gene make insensitive 

E. coli cell against Trimethoprim stress [15]. Their paper is mainly focused on the 

genome. Though, TMP resistance issue has genomics causes, but because of 

competitive inhibition of DHFR, the main reason why cell become resistant is because 
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TMP can’t stop the kinetics of the enzyme. In this project, main aim is to understand the 

resistance issue as protein stability and an enzyme kinetics problem.   

5.9. Morbidostat  

 Morbidostat is a continuous bacterial culturing device to understand the 

evolutionary constraints of different stress conditions [16]. This device automatically 

allows us to monitor the growth of cultured species under different continuously 

changing antibiotic concentration with respect to resistance levels. Thus, besides the 

growth rate and drug concentration at a certain time period, resistance level at certain 

time can also be measured. How morbidostat works is simply illustrated in the figure 

taken from the Nature Protocols paper of Dr. Toprak and his colleagues [15, 16]. 

Bacterial growth is measured with detectors located in tube holders periodically such as 

in every second. If growth curve in a period exceeds the limit OD or slope of the growth 

curve in that period exceeds certain limits given by the user, machine adds stock 

antibiotic solution to the culture tube. Volume of culture is kept under control by taking 

excess amount of culture out of the tube regularly. Thus, by adjusting the type of 

antibiotic added, amount of antibiotic added, and upper-lower limits of growth; 

different stress conditions can be studied in morbidostat easily. There are also other 

potential applications for morbidostat, such as host-pathogen interactions, long-term 

adaptation experiments, or drug resistance in cancer cells.  

Figure 6: Controlling algorithm schema showed in Toprak et al paper. [15, 16] 

5.10. Statistical Coupling Analysis (SCA) 

 Statistical Coupling Analysis (SCA) is a tool for showing the sparsely and 

contiguously spaced and interacted groups of aminoacids found as a blueprint of natural 
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proteins and these groups of residues are called sector [17-20]. This tool provides co-

evolved residues of proteins that are important for function and proper folding of them 

[17-20]. Sector residues are spanning through the 20% of the protein and they are 

physically linked with each other. Recent studies on SCA showed that sector regions 

spanning through the protein makes a communicative network between allosteric and 

active sites of the protein so that mutations on one site of the proteins can be 

compensated with other mutations on the other site of the proteins. Thus folding and 

function can be regained appropriately [18]. McLaughlin et al, in their Nature paper 

explained analysis and the construction of the SCA matrices in detail. As a brief 

explanation of how SCA find evolutionarily driven residues is that SCA needs sufficient 

amount of multiple sequences from different sources of organisms and size of the 

alignment can vary by the question of interest. Then to construct the SCA matrices the 

conservations of each pairs are used with the normalization of randomized shuffling of 

these pairs on their multiple sequence alignment columns. After this normalization 

eigenvectors of each columns are calculated and graphed as color-coded matrix. This 

matrix is n by n and the n is the number of sequences aligned. There are some hotspots 

found on the SCA matrices that highly red areas showing the groups of residues 

coevolved with each other (sector sites). With changing the n and the sources of these n 

sequences, sector regions allow us to see insights of evolutionary architecture of 

proteins. For instance, it can be seen that some functionalities are conserved in some of 

the branches of organisms, also some structural patterns can be seen all the related 

proteins found in literature.  

6.  MATERIALS & METHODS 

6.1. Buffers, Media Solutions and Preparations 

M9 Media  

 M9 defined media is used for morbidostat experiments to decrease the 

artifacts coming from environment. Media is prepared with M9 media salts, 

0.4% Glucose, 0.2% Protein Hydrolysate Amicase, 2mM MgSO4, and 

100uM CaCl2. 

 

TB Media 

  This media is used to grow the cells for protein purification and 
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protein synthesis induction. 900mL of this medium is 12g of Tryptone, 24g 

of Yeast Extract, 4mL of 99% Glycerol is mixed with 100mL of TB salts -

0.17M KH2PO4, and 0.72M K2HPO4- [21].  

 

Ni-NTA Agarose Beads 

 For DHFR protein purification, Ni-NTA Agarose Beads were used 

(purchased from QIAGEN Firm).  

 

Ni-NTA Binding Buffer 

  This buffer is used to bind the His6-tagged DHFR to the Nickel beads 

designed for protein purification. Buffer includes 50mM Tris-HCl, 10mM 

Imidazole, 0.5M NaCl. pH is adjusted to the 8.0. 

 

Ni-NTA Elution Buffer 

  To elute the bound proteins from the Nickel Beads, this buffer is used 

and it composed of 100mM Tris-HCl, 400mM Imidazole, 1M NaCl. pH is 

adjusted to 8.0. 

 

Dialysis Buffers for Kinetics Experiments 

  Dialysis process is important for DHFR enzyme kinetics because 

Imidazole in Binding and Elution buffers absorbs the light at 340nm like 

NADPH does [22]. Thus imidazole in protein solution has to be minimized 

before Kinetics measurements. Buffer designed for Kinetics experiments 

includes 50mM Tris-HCl, 300mM NaCl and 1% Glycerol. pH for this buffer 

is also 8.0. 

 

Dialysis Buffer for Differential Scanning Calorimetry (DSC) Measurements 

  Tris-HCl buffer is very sensitive to the temperature changes. Thus, the 

dialysis buffer used for Kinetics experiments is not suitable for DSC 

experiments. Therefore, another dialysis buffer is used for stability 

measurements that composed of 10mM Potassium-Phosphate Buffer, 
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0.2mM EDTA, and 1mM β-Mercaptoethanol solutions with pH 8.2.  

 

MTEN Buffer 

  For kinetics measurements MTEN buffer is used for Kinetics 

measurements of DHFR such as Km, Kcat, Vmax, KI. Buffer includes 50mM 

MES, 25mM Tris-Base, 25mM Ethanolamine, 100mM NaCl. 5mM fresh 

DTT is added at the beginning of the assays. pH is 7.0. 

 

Dihydrofolic acid (DHF) and NADPH solutions 

  25 mg of DHF is mixed with 10 mL of MTEN buffer (pH 7.0) and 

35µL of β-Mercaptoethanol. Quantitation of DHF is done in A282.  

NADPH solutions are prepared with adding 8mg of NADPH powder into 

1.5mL of pH7.0 MTEN Buffer. Concentrations are measured in NanoDrop© 

machine at 340nm. Both solutions are stored in -80 ℃ for further use.   

 

6.2. Morbidostat Experiment Setup for TMP resistance 

 To be able understand the affects coming from the selection strength; two 

different selection environment is used in this study. First group has 7 different cultures 

and has the dilution rate of 0.6h-1 –a.k.a. strong selection- and the second group has 6 

different cultures and their selection rate 0.3h-1 – a.k.a. mild selection-.  In other words, 

for strong selection ~60% of the culture is changed with whether stock antibiotic 

solution or media and for the mild selection this rate is about 30%. To reach this 

dilution rates, strong selection has 60 seconds of drug or media injection; moreover, in 

mild selection injections last 30 seconds.  

 

6.3. Morbidostat Replay Experiment Setup  

 To verify the results, morbidostat experiment is repeated with a single mutant as 

new parental strain. This regulatory site mutation is commonly popped up at the 

beginning of the first experiment (c-35t).  In literature, this mutation is known to 

increase the expression of DHFR [23]. Setup for the experiment is the same as first one 

i.e. there are two different selection conditions called strong and mild and the 

experiments lengths are 5 days and after experiment single colonies are picked and sent 
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to sanger gene sequencing.  

 

6.4. Sanger Sequencing and SNP analyses 

 Sanger sequencing is done with the help of Genewiz®. For this experiment more 

than a thousand colonies are picked and sequenced for their folA coding and its cis-

regulatory region.  To analyze the results, CLC Biology MainWorkbench and 

MacVector softwares are used. In these programs, one can easily align the query 

sequence to the reference WT folA sequence. After analyzing the alignment with 

respect to reference, SNP positions are determined and included in results section.  

 

6.5. Heterogeneity or Diversity Calculations 

After each day of the morbidostat experiment bacterial cultures are taken for 

further usage and analyzed to reveal the daily changes on the folA gene. These daily 

changes are shown as trajectories and diversity of the daily trajectories are calculated 

with the formula below: 

𝐷𝑖𝑣𝑒𝑟𝑠𝑖𝑡𝑦  𝑆𝑐𝑜𝑟𝑒  (𝐸𝑛𝑡𝑟𝑜𝑝𝑦   𝐻 ) = 𝑓!

!

!!!

ln 𝑓!  

 In this formula n represents the number of different genotypes; p,q,r are the ratios 

of the each genotype found after analyses of multiple sequences for each days. To make 

this more understandable lets make two different examples. 

1. If there is only one mutant found after sequencing: 

𝐻 = 1 ∗ ln 1 = 0 

So there is no diversity in the environment.  

2. There are three different mutants in one day and ratio for one of them is 50% and 

the other two are 25% each: 

𝐻 =
1
2 ∗ ln . 5 +

1
4 ∗ ln . 25 +

1
4 ∗ ln . 25 =   1.03   

Thus the diversity increased from 0 to 1.03.  

6.6. Site Directed Mutagenesis and Colony Screening Protocol  

 To make new single mutant colonies, QuickChange® site directed mutagenesis 

protocol have been used. In this protocol, complete homologous primers are used and 

they just have one nucleotide changed from wild type to be able to make targeted 
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mutation. For this purpose, the mutated primers are designed and ordered from IDT 

DNA Technologies®. In this protocol, plasmids including the target gene are amplified 

with using mutated primers (forward and reverse). Then plasmids, which are already 

methylated, cleaved by an enzyme called Dpn1. What is specific for this enzyme is that 

this enzyme only recognizes a palindromic region that has methylated residues on it. 

Thus, newly synthesized plasmids cannot affect from incubation with enzyme. All the 

end products of this amplification and incubation processes are transformed in a 

plasmid compatible cell line and plated on a selective media plate. This protocol and 

reagents are found as a kit from Agilent Genomics firm but two of the Ranganathan lab 

members optimized the protocol for non-kit users as described above. Detailed 

protocols found in this reference [24]. 

 Although incubation with enzyme cuts out all the WT plasmids, to make sure that 

plasmids have the intended mutation, colonies found on the selective plates are 

screened, and Sanger sequenced.  

 

6.7. Plasmid Isolation Protocols (Boiling Mini Preparation Protocol) 

 To isolate mutant plasmids produced in QuickChange step, traditional phenol-

chloroform plasmid isolation protocol is used. Detailed protocol for this part is found in 

the AddGene webpage. [25] 

 

6.8. Homologous Recombination Protocol 

 Recombineering protocols are used in this step. In recombineering protocols, 

query gene is designed with having homologous arms in two ends so that when bacteria 

started to polymerize the DNA query gene is also amplified and added into the genome 

of interest. Detailed protocols are found in the references [26-30].  

 

6.9. Protein Purification Protocol  

 Purification of the protein is necessary for making biochemical assay and the 

purer the protein, the better the results. To make this happen pet24a plasmid is used. 

This plasmid has T7 promoter, lac operator and his tags on it. Thus when induced with 

IPTG (inducer of lac operator), folA gene found between his tag and T7 promoter is 

expressed in high amount at lower temperatures of incubation. To purify the proteins 
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Ni-NTA Agarose beads are used (Ordered from QIAGEN). These beads have high 

affinity to bind His-tags; hence high purity can be achieved with these steps.  

 

6.10. Enzyme Affinity Assay and Km,  Vmax , Kcat calculations  

 For these measurements GraphPad Prism© software is used. In this software, first 

one-fourth of the A340 vs. Time data coming from Spectrophotometry instrument is 

nonlinearly regressed and slope values are used for Michelis Menten Kinetics 

calculations. This software has the feature for the data needs for nonlinear fitting such 

as Michelis-Menten curves. Kcat values are calculated by following formula: 
𝑉𝑚𝑎𝑥
𝜖!"#$%

= 𝐾𝑐𝑎𝑡 ∗ 𝐸𝑛𝑧𝑦𝑚𝑒  

𝐾𝑐𝑎𝑡 =
𝑉!"#

𝐸𝑛𝑧𝑦𝑚𝑒 ∗ 𝜖!"#$%
 

𝜖!"#$% = 12.300𝑀  𝑐𝑚!! 

6.11. Enzyme Stability Assay 

 For this assay Differential Scanning Calorimetry is used. Main logic in this assay 

is to cover a wide range of temperature interval to monitor the required enthalpy to 

stabilize the temperature of the cell. In this assay no inhibitor used. Stabilities of empty 

proteins (WT and mutant counterparts) are measured.  

 

7.  RESULTS 

 

7.1. Morbidostat Experiment Results  

After 28 days of evolution experiments, all the OD growth graphs are collected and 

linked end to end. To briefly explain the working mechanism of morbidostat, figure 

below added. Every 18 mins, controlling algorithm runs and decides which pump to 

open separately for each culture and adds media, antibiotics or neither. Green circles 

show where media pump opened; red circles show where low concentrations antibiotic 

injection started, and purple circles show where high concentration antibiotic injection 

started. Respectively triangles showing the closing of each pumps. All opening and 

closing are controlled by algorithm explained in deep in Toprak et al. Nature Genetics 

and Protocols papers [15, 16]. Red and Purple Line shows the OD point where 
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respective antibiotic addition starts. After certain amount of time bacteria start to 

become resistant to antibiotic concentration added and growth start not to influence 

from that concentration of antibiotic addition. Continuous average OD increase between 

120th and 130th hours coming from this resistance level increase. But after highly 

concentrated TMP addition –shown as purple pump opening-, population size is highly 

shrunk. Next figure series are showing the whole experiments done for all 7 strong and 

6 mild selection replicates.  

 
Figure 7: An example time interval of working Morbidostat experiment. Circles are 

showing the pump openings and triangles underneath each circle show when respective 

pump is closed.  

 

Figure 8: Whole experiment shown for one culture of Mild Selection 
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Figure 9: Whole experiment shown for one of the strongly selected cultures. 

 

Whole experiment graphs for other 11 cultures are put in Appendix. By analyzing the 

fluctuations in trimethoprim concentrations in the culture tubes, bacterial resistance 

levels are monitored. Graphs below show changes of trimethoprim in time course for 

one mild and one strongly selected culture. 

Figure 10: Mildly selected colonies generally show this stepwise increasing pattern. 
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Figure 11: Clonal interferences revealed in strong selection make stepwise pattern 

disappear. Thus, resistance levels are increasing sharper in strong selections.  

 

Change in TMP concentrations for other colonies are put in Appendix. Also to see the 

general picture for the TMP concentrations next graph is plotted. This graph shows 

change in TMP concentrations by selections. It is clearer to see that in mild selection 

populations have been increased their resistance levels in more than one-step. Unlike 

mild selection, in strong selection conditions daily fluctuations of trimethoprim is 

sharper.  
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Figure 12: Left graph shows the TMP change in mild selection and the right graph 

shows the strongly selected colonies. 

 

Growth rates and changes in drug concentrations are calculated with using adjacent 

pump closings and openings. All figures for growth rate changes shown for both 

selections and error bars show standard deviations between the cultures.  

 

7.2. Growth Rate Measurements of Daily Samples  

Growth rates for daily samples are also measured with TECAN® that is a specialized 

instrument for 96 well plate growth readings. Graphs are plotted with respect to 

selections. Red Circles indicates the growth rate at a certain day for strong selection and 

the blue circles are showing the mild selection. Results show that in both selections 

growth rates of mixed populations daily taken from the experiment is not affected and 

the values are similar for both selection conditions. It is important to note that 

fluctuations seen as error bars in strong selection is bigger than mild selection. Reason 

for these bigger fluctuations is tried to explain further in discussion section.  
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Figure 13: Growth Rates for daily mixed populations measured in 96 well plate reader 

instrument. This experiments are done in TMP free conditions. 

 

7.3. Sequencing Results and Mutation Trajectories 

Figure 14: Mutations found on cultures on final day of experiment. 
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 Throughout the Morbidostat experiment, to avoid biofilm formation at the walls 

of the culture tubes, after each day small amount of culture (~100 µL) taken and diluted 

in fresh media and experiment continued for next day. Also mixed populations are taken 

and stocked in 50% glycerol for further use. After the experiment, these daily mixed 

populations are plated and 4-12 single colony sequenced for each day and each culture. 

Totally ~1500 single colony is Sanger sequenced for their folA promoter and coding 

region in this study. To show all the sequencing results special cylinder graphs are used 

and these trajectories shows the mutations gained in time course. Starting from the left 

first rectangle days are shown on the base part of the graphs. Each big cylinder shows a 

genotype shown on that day. Top of the each cylinder there are circles on the center and 

cylinders at the periphery. Central circle shows the promoter mutations and peripheral 

cylinders shows the coding region mutations. Each radial angle is specific for a 

mutation. Also these peripheral cylinders are shown like pie charts i.e. colored part of 

the pie chart shows the percentage of the single colonies seen as that genotype. Also one 

of the cultures acquired two promoter mutations at the same time and this genotype is 

plotted as diamond on top of the central circle.  

 

 

 
Figure 15: Genotypic Diversity found in first culture in mild selection 

 

When we look at the Figure 13, diversity seen only on day 13 and it lasts just 1 day after 

the day 13, all the colonies seen has the same genotype till the end of the experiment.  

Figure 16: Genotypic Diversity found in second mildly selected culture 

Also for the other mildly selected culture diversified state continues only for three days.  
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Figure 17: Genotypic Diversity seen in of the Strong Culture 

 

 
Figure 18: Clonal Genotypic Interference found in other strongly selected culture 

Cultures of the both selections there are significant difference in diversity of genotypes 

and the duration of these diversities are more common in strongly selected cultures than 

mildly selected cultures. These graphs are plotted in VPython module of Python 

language. Scripts for these plots can be given with request. Genotypic Diversity Graphs 

for all other cultures are found in appendix part.  

 

7.4. Diversity Plots  

To quantitate the diversity found on genotypes of cultures, F statistics are optimized for 

haploidic genotype structure of bacteria. Detailed explanations on Diversity scores can 

be found in Materials & Methods section.  Diversity scores for each culture are plotted 

and added below.  
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Figure 19: Plot shows the Diversity score for each day of the experiment. Arrow shows 

the day of diversity found in mild selection culture. 

 

 
Figure 20: Plot shows the diversity and cylinder graph shows the genotypes found on 

that day.
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 Figure 21: Diversity scores by selection strength 

These two figures show the diversities as groups of selections and the error bars show 

the standard errors of diversity scores in days. Straight line in both figures, show the 

mean diversity score for that selection. This graph apparently shows the score for 

diversity is really high in strong selection. Also diversity continues to day 14 in strong 

selection but in strong selection it lasts one more week to genotypically stabilize the 

population.  

Figure 22: Durations for diversified populations 
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 Lastly, the durations of genotypic diversities found on selections are compared 

and this bar graph is plotted for this purpose. Error bars on these histograms show the 

standard errors in replicates in selections. As a result, cultural diversity in strong 

selection surprisingly more common and lasts longer than mild selection conditions.  

 

7.5. Whole Genome Sequencing (WGS) Results 

 Each culture final days are sent WGS and results revealed that main cause for 

TMP resistance is coming from the mutations on folA gene regulatory or coding site. 

Detailed table for WGS results added as Appendix. 

 

7.6. Biochemical Assays on Single Mutant DHFRs 

 Results of these genomic studies showed that amount of DHFR and whether the 

change of stability or the change on catalysis rate of enzyme is important to become 

TMP resistant. Hence, to understand the biochemical changes found on DHFR enzyme, 

single mutant genes are made and expressed in E. coli cells. After purification of the 

single mutant enzymes, biochemical assays below are done.  
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7.6.1. Binding Affinity Measurements and Enzyme Catalysis Rate Calculations 

 Table 1: Binding affinity and Catalysis Rate values for DHFR enzyme single 

mutants 

 

 Details about measurements are explained in Materials & Methods section. 

Reaction catalyzed by DHFR enzyme occurs really fast and all mutants are analyzed by 

their Km values for substrate of the enzyme (Dihydrofolate-DHF). Figures showing the 

catalysis rates are put in the appendix. Here is the table showing the results of Binding 

affinity and catalysis measurements.  

 

 Binding affinity assays also gives the Vmax for the enzyme. Thus, turn over 

numbers for the enzymes can be calculated. But to assess the differences of catalysis 

Kcat/Km is a better measure used in literature.   

As listed on the table above, catalysis of DHF molecule can be increased up to ~20 

fold. These results reveal that increase in catalysis rates is one of the reasons that help to 

become resistant.  

Mutant 

Name 
Km (nM) Kcat (1/sec) 

Kcat/Km 

(1/sec.mM) 

Fold 

Change 

WT 1.233 0.589 477.697 1.000 

A26T 3.880 2.359 607.990 1.273 

P21L 3.994 3.567 893.090 1.870 

W30R 8.731 10.496 1202.153 2.517 

I94L 2.736 4.870 1779.971 3.726 

W30G 1.986 4.095 2061.934 4.316 

W30C 1.847 5.564 3012.453 6.306 

L28R 0.163 1.415 8702.337 18.217 
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7.6.2. Effects of TMP on Catalysis  

  

Figure 23: This figure shows the fold change in affinities of DHFR single mutants to 

antibiotic TMP.  

  

 Figure above indicates that A26T and L28R mutations decrease the affinity for 

TMP so that these proteins are more insensitive to TMP when compared to wild type 

protein. Interestingly, P21L mutation slightly more sensitive to TMP; although, this 

situation explains why there are no P21L mutations seen at the end of the experiments, 

why this mutation is repeatedly acquired in different cultures and different days of 

experiment is still unknown. 

7.6.3. Protein Stability Results 

As explained before, stability of the proteins are measured in Differential Scanning 

Calorimetry instrument. Tm values of the mutant proteins generally have similar values 

except W30R and W30G. These results give a brief intuition why W30R and W30C 

mutation bearing cultures are eliminated by L28R mutation bearing clones in culture 14 

(See appendix for this result). Also when they compete with the other mutations 

generally they acquire other mutation to make conditions even. Thus they can survive.   
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Figure 24: Stabilities of Mutant Proteins are compared with wild type. Gray area shows 

all standard deviation of database of mutations. Error bars are coming from the 

individual fits. 

 

8.  DISCUSSION 

 

8.1. What have been learned from Morbidostat results? 

 

 Morbidostat result graphs for each culture shows that in mild selection conditions 

there are stepwise increase in resistance levels unlike the sharp increase in strong 

selection conditions. Also when drug concentration changes are analyzed in both 

selections, there is a distinct pattern. For strong selection, drug concentration increase 

occurs immediately after pumps open and population size is shrunk and later injections 

decrease the concentration of drug in culture immediately. On the other hand, in mild 

cultures, drug concentration changes slowly.  When the scope is turned to molecular 

picture, Trimethoprim is specifically affects the regulation of folA gene. When all the 

final genotypes are investigated only three-four folA mutations are enough for 

bacterium to become completely insensitive to antibiotic. To understand the 

mechanisms against the selection strengths further experiments are needed. Since in 

both selection conditions, growth rates are not completely affected (see figure 12). It is 
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hard to completely compare and contrast the big picture with this two dilution factors. 

In fact, to completely understand the affect of short but dense pulses of antibiotic 

injections at least dilution factor’ of 0.8 is needed to be done and analyzed. Also for the 

mild selection conditions to be able to compare and see complete difference of long 

sparse pulses i.e. lower dilution factors such as .2 or .15 have to be done and analyzed.   

 

8.2. Why the mutation trajectories are changing in different selection conditions? 

 Although, final day results are not showing any difference in different selection 

strengths, progression for becoming resistant is highly different between selection 

strengths. As shown with the cylinder graphs, diversities among the strong selection 

cultures are more common than mild selection cultures. These results are kind of 

unexpected because when the dilution factors are thought, in each hour, strongly 

selected populations lose their ~60% of their population size unlike this number is 

~30% in mild selection conditions. Thus, an expected result for this experiment was the 

exactly the opposite; however, drug concentration changes in strong selection 

conditions are highly dynamic that the concentration increases sharply and decreases in 

an instant. Dynamic changes found in strong selection environment doesn’t let the 

different genotypes to compete and stabilize in one genotype. On the contrary, mild 

selection conditions are changing slower and genotypic interference for different 

bacteria are diminished because of the difference in fitness of these different genotypes. 

Also in mild selection conditions, bacteria that have higher fitness have time to 

dominate the environment and sequencing results just shows that one genotype in most 

cases. Moreover, to prove this concept, single DHFR mutants are necessary and their 

growth rates’ had to be measured. This part of the project is work in progress.  

 

8.3. Orders of Mutations on DHFR related to TMP resistance 

 To understand the response of the bacteria chronologically under TMP stress, it is 

needed to generalize the mutations acquired by bacteria. 12 out of 13 cultures first 

mutation acquired is on the promoter mutation. That mutation is required for 

overcoming the affects of TMP. The simplest strategy for overcoming the competitive 

inhibition effect, bacteria increase the number of DHFR protein with promoter 

mutation. There are many both clinical and basic science studies showing the c-35t 

mutations that we also seen is increasing the amount of DHFR expressed in the cell [23, 
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31]. This first mutation doesn’t have a direct effect on protein structure and function. 

Only the amount of mRNA and protein is changing. Since environment is overwhelmed 

with high concentrations of TMP, bacterium has no choice to mutate the coding part of 

the gene. Albeit, these whole processes occurs randomly, fitnesses of these promoter 

mutants are not enough to dominate the environment or the inhibitory effects of high 

concentrations of TMP starting to become enough to kill the whole population. Hence, 

bacteria repeatedly chose to mutate some residues that they are more related to SCA or 

sector positions on DHFR. 4 out of 5 first popped up mutation is on the sector position. 

But after first mutation, it is very hard to predict the location of next mutation. When 

sector regions are extended with the secton positions on the DHFR protein, almost all 

the antibiotic resistance related mutations are occurring on these regions. This 

hypothesis is tested with Two Tailed Fisher’s Exact Test, albeit, p value is slightly 

higher to .05, if we can achieve to increase the database of both sector regions of 

resistance related proteins and the mutations acquired to become resistant this value will 

be lowered and become significant. To further understand the nature of the resistance 

related mutations biochemical properties of these single mutant proteins are examined. 

8.4. What are the effects of single mutations on DHFR activity?  

DHFR is an essential enzyme for E. coli. After examining 7 single mutant by their Km 

and Kcat values, results show that other than L28R mutations, mutant proteins decrease 

their affinity to bind DHF. Despite their increased Km values when compared to wild 

type protein, all mutations have higher catalysis rate (Kcat/Km) than wild type. These 

results explain why these mutations are acquired and stayed. Since their catalysis rates 

are higher than wild type, they can endure the reaction catalyzed by DHFR at higher 

concentrations of TMP. In this part also there are missing experiments, for example, 

biochemical assays for newly found mutations in our Morbidostat experiment has to be 

done. What we have now in our hand is also briefly says that mutations like A26T is not 

good at both protein stability and binding affinity but this mutation decrease the affinity 

of DHFR to TMP up to 8 fold. Thus, this explains why bacteria generally acquire A26T 

mutations through the end of the experiment because desensitization of DHFR is more 

important because TMP concentration is gone really high. This observation is also valid 

and seen in Toprak et al Nature Genetics paper. L28R mutation was a very strong 

mutation found in 9 out of 13 cultures, is also biochemically-desired mutation. Since the 

catalysis rate of L28R mutation is about 20 fold higher than the wild type protein and 
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the affinity of this mutation to TMP is about 5 fold lower than wild type. Thus having 

L28R mutation is highly possible and highly advantageous for bacterium. Also protein 

stability data showed why W30R mutation found in culture 14 is dominated with L28R 

is the stability issue. Though, W30R mutant has higher catalysis rate about 2.5 fold, it 

has lower stability values than the other mutants that are analyzed, thus this mutation is 

replaced with other mutations in mixed populations. When biochemical assays for the 

other single and some interesting double mutants are analyzed our understanding of 

resistance related mutations would be increase.  

 

9.  CONCLUSIONS 

 

9.1. Morbidostat Results and Implications  

 Morbidostat experiment shows us that wild type bacterium is not really far away 

from being completely insensitive to TMP. One promoter and two-three coding region 

mutations on DHFR are making bacterium resistant to trimethoprim up to its solubility 

level. This study is important to understand the effects of environmental changes such 

as dilution rates cause differences in diversity of populations genotypes. Pulse rate, 

length and the concentrations are important in population genetics of the bacterial 

culture. For instance, short but high concentration pulses of antibiotic injections 

preserve diversity more than long and sparse pulses. Main logic behind this observation 

is long and sparse pulses makes high fitness bacteria to dominate the environment and 

stabilize the genotypic diversity. To understand the diversity, an optimization of F 

statistics is used.  

9.2. Orders of Mutation and Further Understandings 

 Other than general Morbidostat results, genomic studies and biochemical studies 

revealed that main cause for TMP resistance is mutations acquired on folA gene 

regulatory and coding region. Generalizations on these mutations and their locations 

showed us that first rule for overcoming the competitive TMP resistance is acquiring 

promoter mutations. Second rule is to mutate the sector regions so that function and the 

folding of the protein can change and makes TMP an undesired mimicking molecule. 

After second rule, epistasis of genes have important role that needs to be understood 

further. Since biochemical observations are preliminary we can only say that bacteria 
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wants to overcome the stress with changing the biochemical parameters of DHFR such 

as Km, Kcat, Stability.  

 

 

10.  FURTHER WORKS 

10.1. Mutant genes and their impacts on cell 

 To understand the fitness effects of each mutation on DHFR, mutations are 

homologous recombined and put into the genome. Thus all the effects of mutant 

proteins can be monitored by the means of fitness and growth rate. Also their resistance 

levels against TMP and cross-resistance levels against other antibiotics would be 

assessed. These allow us to understand whether there are some cross talks between the 

folate pathway and the other antibiotic resistance related pathways. Also is there any 

other missed cause for TMP resistance other than mutations on folA. 

10.2. Single and Double mutant proteins and their activities 

 Single mutant proteins that are novel literature, we couldn’t have time to express 

and measure their activity.  Also some of the double mutant proteins would be 

interesting to study and understand the evolution of antibiotic resistance. For example, 

after characterization of each single mutant we may choose one highly desirable and 

one highly defective mutation and make double mutant protein. These allow us to find 

out the rules of epistasis DHFR have and what makes natural selection to acquire these 

mutations on top of each other.  
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 12. APPENDIX 

12.1. Whole Morbidostat Results for all Cultures 
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12.2. TMP concentration change with respect to time 
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Culture 3: 
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Culture 6: 
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Culture 10: 
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Culture 13: 
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Culture 15: 

 

12.3. Cylinder Graphs 
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Culture 8: 
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12.4. Diversity Scores by Cultures 
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12.5. Km Plots 
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W30R protein 

 
 

 

 

W30G protein 

 
 

0 50 100 150
0.0000

0.0001

0.0002

0.0003

0.0004

[Substrate]

En
zy

m
e 

A
ct

iv
ity

Michaelis-Menten data

0 50 100 150
0.0000

0.0002

0.0004

0.0006

[Substrate]

En
zy

m
e 

A
ct

iv
ity

Michaelis-Menten data



 61 

W30C protein 
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12.6. Ki Plots 
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12.7. Stability Plots 
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