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I 

 

ABSTRACT 

Iron binding mechanisms of proteins are riveting studies because of the great 

importance of iron molecules for the metabolism of humans and other organisms. 

Organisms have developed different mechanisms to catch iron from the environment. 

Although it is known that this mechanism is rapid and efficient, there is lack of kinetic rate 

data under different environmental conditions to explain the details of the mechanism.  

In this dissertation, a microfluidic device was designed and developed to measure 

iron binding constants in ferric binding proteins of humans (Transferrin) and bacteria 

(Haemophilus Influenzae Ferric Binding Protein (FBP)), to assess the effect of different 

environmental conditions on the kinetics of iron – protein association. This study aims to 

contribute the field by providing a cheap and efficient experimental setup that measures 

reaction rates of  iron binding proteins. 

 Firstly, a microfluidic chip housing an effective mixing component was designed 

and fabricated by using PMMA and PDMS as a material. Both designs were tested by using 

bromocresol green – acetic acid reactions, where the color change from blue to green and 

from green to yellow can be observed by lowering the pH. The reaction was monitored 

with high resolution camera. Color changing property of the reaction was used to illustrate 

total mass transfer in the mixing chamber to determine dead time. Using ANSYS Fluent 

software these geometries were modified and improved designs were suggested.  

Secondly, because the bacterial FBP is not commercially available, it was expressed 

and purified by using recombinant DNA technology for monitoring iron binding dynamics 

in the microfluidic device as future work. 
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ÖZET 

Demir moleküllerinin insan ve diğer organizmaların metabolizması için öneminden 

dolayı, proteinlerin demir bağlama mekanizması oldukça merak uyandıran bir çalışma 

konusudur. Organizmalar, bulunduğu çevreden demiri yakalayabilmek için farklı 

mekanizmalar geliştirmiştir. Bu mekanizmaların çok kolay ve hızlı bir şekilde gerçekleştiği 

bilinsede, bu reaksiyonların kinetic ölçümleriyle ilgili fazla bilgi bulunmamaktadır.  

Bu çalışmada, farklı çevresel koşulların demir – protein kinetiği üzerindeki 

etkilerini hesaplamak amacıyla, insanlardaki ve bakterilerdeki demir bağlayan proteinlerin 

(DBP) kinetik sabitlerini ölçebilmek için mikroflüidik bir cihaz tasarlandı ve geliştirildi. 

Çalışma, demir bağlayan proteinlerin reaksiyon hızlarının ölçerek bu alana katkıda 

bulunmayı hedeflemiştir. 

Öncelikle verimli bir karıştırma kompartmanı içeren mikroflüidik çip, PMMA ve 

PDMS malzemeleri kullanılarak üretilmiştir. İki tasarımda yeşil bromokresol – asetik asit 

reaksiyonu ile test edilmiştir. Bu reaksiyon pH değeri düşürüldükçe önce maviden yeşile, 

daha sonra yeşilden sarıya doğru bir renk değişikliği göstermektedir. Reaksiyon yüksek 

çözünürlüklü kamera ile kaydedilmiştir. Reaksiyonun bu renk değiştirme özelliği, 

karıştırma kompartmanında gerçekleşen toplam kütle transferini görüntüleyip, ölü zamanı 

belirlemek amacıyla kullanılmıştır. ANSYS Fluent programı kullanılarak daha geliştirilmiş 

geometriler önerilmiştir.    

Ayrıca, mikroflüidik cihazda demir bağlama dinamiğinin ölçümlerinde kullanılacak 

olan bakteriyal DBP ticari olarak satılmadığı için, bu protein rekombinant DNA teknolojisi 

kullanılarak sentezlenmiş ve saflaştırılmıştır.  
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 CHAPTER I – INTRODUCTION 

Iron is an essential molecule for all the biological systems, functioning in complex 

mechanisms as both an electron donor and an acceptor for metabolism [1]. For instance, its 

ability to carry oxygen makes it crucial for mammalian cells whereas, in Gram-negative 

bacteria ferric ions are responsible of other vital processes [2]. Mammals are capable of 

receiving iron from the nutritional supplements, whereas bacteria have developed their own 

strategy to hijack iron from host organisms [3], [4], [5].  

 In human cells, transferrin is the responsible protein of catching iron ions in the 

blood and delivering them to the cell. It is synthesized in the liver, and then released into 

the plasma. The structure of the protein contains two lobes and a linker in between.   

During the iron binding mechanism, the two lobes bend onto each other and the linker 

behaves like a hinge. Each lobe has two subunits (Figure 1). 

 

 

 In each lobe, an iron (Fe
+3

) can be carried coupled with a carbonate ion (CO3
-2

). 

Carbonate becomes a synergistic anion in this mechanism [6]. On the other hand, there are 

Figure 1: Crystal structure of Transferrin in 2.7 Å resolution at physiological pH.  Two 

lobes are located on the right and left connected with a linker (gray). Each subunit is colored 

in different color. (PDB 1BP5) 
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four highly conserved amino acids in the structure responsible from holding this complex in 

the protein (Figure 2) [7]. Those residues are indicated as an aspartic acid (D63), two 

tyrosine residues (Y95 and Y118) and a histidine residue (H249).  Another arginine residue 

(R124) stabilizes the synergistic anion [8]. Binding of the iron causes a large 

conformational change on the structure by opening the lobes and twisting them. Transferrin 

protein can be found in the apo, mono-ferric or di-ferric conformations depending on the 

number of iron it is carrying. 

 

 The iron transferrin mechanism is derived by pH dependency. Once the iron is kept 

by the protein, it flows through the blood until it finds a receptor specific to transferrin 

(TFR) on the cell surface. The salt bridge formed between D240
 
and R678

 
in the structure 

is thought to be the reason of the transferrin’s selectivity to the transferrin receptor [8]. Iron 

bounded transferrin binds to TFR on the cell surface at pH 7.4 in the endocytic cycle. This 

transferrin – TFR complex is endocytosed. Transferrin releases iron in the endosome, when 

the pH is lowered down to 5.6. Fe
+3

 is reduced to Fe
+2

 in the endosome. Now, the Fe
+2

 can 

be carried out of the cell by the divalent metal transporter. Transferrin turns into apo form 

again and remains as a complex with TFR at pH 5.6. Then, it is recycled back to the cell 

Y95 

D63 

(CO 3 

H249 

Y188 

Y517 

D392 

H585 

Y426 

 

) 
-2 

a) b) 

Figure 2: (a) Transferrin keeps an iron in each lobe. (b) Amino acid coordination to hold iron.  
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surface. Elevated pH causes apo transferrin to be detached from the TFR, thus leading to its 

ability to capture more Fe
+3 

Figure 3
 
[9].  

 

 

 The overall mechanism has been studied experimentally for over 30 years. The 

association constant for iron binding the transferrin protein was measured approximately as 

10
22

 M
-1

 at physiological pH, showing that it is a very probable and fast process with high 

affinity [10]. Moreover, binding of transferrin to transferrin receptor is another significant 

process for the mechanism. The studies showed that the differic transferrin binds to the 

receptor with a greater affinity then the monoferric or apo transferrin. Association constant 

of diferric transferrin is around 10
9 

M
-1

; whereas, association constant of monoferric form 

of transferrin is about 10
6 

M
-1

 [11]. As a result, diferric form of the transferrin is more 

probable to bind to a receptor in order to release its iron into the cell. Given association 

constants can be interpreted as that binding of iron to protein is a reaction overpasses the 

activation energy barrier easily under physiological conditions. Therefore, it can be 

Figure 3: Endocytic cycle of transferrin (adapted from reference [9]) 
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assumed that those reactions happen very fast, despite the lack of reaction rate information 

in the literature.   

 On the other hand, ferric binding protein (FBP) of pathogenic Gram – negative 

bacteria also has high affinity to Fe
+3

 ions, causing iron takeover from human metabolism 

and following iron deficiency related diseases [12]. Similar to iron binding mechanism of 

it, bacterial FBP is also part of the highly developed iron acquisition system from the host.  

 Ferric binding protein from Haemophilus Influenzae has been well-studied in order 

to understand iron hijacking mechanism of the pathogenic bacteria [13]. Iron acquisition 

from transferrin to pathogenic bacterial protein is described in Figure 4. Transferrin of the 

host organism is captured by a receptor called TbpB, located on the bacterial surface. In 

this position, the iron is detached from transferrin and transported to the periplasmic space 

of the Gram-negative bacteria. Here, iron is captured by the ferric binding protein (FbpA). 

With the help of ATP binding protein (FbpC), the iron is transported to the inner membrane 

[14]. 

 

 

Figure 4: Iron acquisition from transferrin to Haemophilus Influenzae ferric binding 

protein (adapted from ref.  [14]) 
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Unlike human transferrin, bacterial FBP can host only one ferric ion. Conserved 

amino acids responsible of holding iron are shown in Figure 5 [15]. The N – terminal 

domain of the protein recognizes the iron and encloses on top of the C – terminal domain. 

Phosphate (H2PO4)
-
 molecule is the synergistic anion in this mechanism. The presence of 

this synergistic anion increases the affinity of the protein from Ka value of 4.3 х 10
2
 M to 

2.4 х 10
18

 M. The iron is coordinated in the protein with Y195, Y196, E57 and H9 residues 

with the help of synergistic anion [14], [15].  

 

If the coordinated amino acid regions of transferrin and FBP holding the iron are 

compared, the resemblance of these conserved regions can be observed. In particular, 

existence of synergetic anions in both human transferrin and bacterial FBP is accepted as 

proof of convergent evolution [16].  

In this thesis, we aim to design a microfluidic device to measure iron 

binding/release constants of ferric binding proteins existing in human (Transferrin) and 

bacteria (Haemophilus Influenzae Ferric Binding Protein), in order to assess the effect of 

different environmental conditions on the kinetics of iron – protein association. Since the 

comparable commercial designs are very expensive, cost efficiency of our design has great 

Y195 

E57 

(H 
2 PO 

4 ) 
- H9 

Y196 

a) b) 

Figure 5: (a) Bacterial FBP holds only one iron. (b) Amino acid coordination to keep iron  
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significance. In addition, because the reaction rate data lack in the literature for iron binding 

to particular proteins, designing such a device to make simple reaction rate measurements 

is also innovative.  

Microfluidic technology is a flourishing innovation in many fields, considering the 

ease of fabrication, low costs and low sample volumes to be consumed. Furthermore, it is a 

leading preference when it comes to monitor fast reactions. The main objective of our 

design is to measure fast biochemical reactions arising on millisecond time scale in 

different environmental conditions at low cost. Miniaturization of such systems down to 

micro scales enables monitoring reactions within small volumes. Therefore, the 

compactness of the design is one of the most important aspects. Efficient mixing is required 

in such designs, because the reaction time can be measured after the reactants are 

thoroughly exposed to each other. Consequently, micromixing technology used in the 

design becomes one of our major focal points. On the other hand, disposability of the 

materials, which are in direct contact with the chemicals or other samples, is another 

significant aspect of our design. Considering the ease of fabrication and inexpensive 

materials, disposability is another of our main purposes to avoid contamination and errors. 

In consideration of all these aspects, we built and tested microfluidic device with 

different designs, aiming a better performance to monitor fast reactions, iron binding 

kinetics in our case. Our work was  inspired by the study of Bleul et al. [17].  

 Our purpose by developing this microfluidic device is to be able to get an 

absorbance curve to follow the kinetics of the reaction. The reference study has tested their 

design by monitoring a first order reaction, reduction of 2,6-dichlorophenolindophenol 

(DICP) by ascorbic acid [17]. Figure 6 shows results for this specific reaction, where the 

dead time of the design was also determined.  
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That the time scales relevant to protein binding kinetics may be accessed by such a 

device was also demonstrated therein, by labeling of histone deacetylase like 

amidohydrolase (HDAH) with fluorescamine. The rate constants for this two-step reaction 

on the order of 100 s
-1

 were correctly determined (Figure 7) [17].   

  

Figure 6: Reduction of 2,6-dichlorophenolindopheno (DICP) by ascorbic acid. Reaction rate 

was calculated for different ascorbic acid concentrations. Second graph is the linearized 

curves with 9 ms of dead time shown with dashed line. (Adopted from ref. [17])  
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Figure 7: Fluorescence intensity was measured for the reaction of HDAH with 

fluorescamine (Adopted from ref. [17]) 
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This thesis mostly focuses on designing a microfluidic system with efficient mixing 

to obtain reduced dead times of the reactions.  The system was evaluated by monitoring the 

reaction between bromocresol green and acetic acid. Because acid and indicator reacts 

much faster than the overall mass transfer, meaning diffusion of two flows in the mixing 

area, we presumed it would serve as a good model to accurately illustrate the mixing time. 

This procedure is clarified in Chapter II. Additionally, Haemophilus Influenzae ferric 

binding protein was expressed in apo form using recombinant techniques. Chapter III is 

devoted to the expression and characterization of the protein. Difficulties, limitaions and 

advantages of the study are discussed in Chapter IV whereas; Conclusions and Future Work 

are described in Chapter V.  
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2. CHAPTER II – DESIGN AND DEVELOPMENT OF A MICROFLUIDIC 

DEVICE TO OBSERVE PROTEIN DYNAMICS BY MONITORING KINETIC 

DATA  

2.1. BACKGROUND 

2.1.1.  Microfluidisc Technology  

Microfluidics is a demanding, developing technology due to its wide range of 

application areas. Field of microfluidics compromises medical and environmental 

application, in addition to chemistry, biochemistry, biology.  Miniaturization of the systems 

down to the micro scale enables observation of the fast reactions in higher resolution on the 

time scale of milliseconds, while reducing the consumption of sample volumes [18]. 

Therefore, with this system it is possible to monitor biochemical reactions such as protein-

ligand interactions. A typical microfluidic system has side-by-side dimensions of 10 – 1000 

µm to manipulate 10
-9

 to 10
-18

 liters of fluid in the area [18]. The advantages of using a 

microfluidic system includes consumption of minimized amounts of sample, toxic or 

explosive chemicals, reduced cost in fabrication, therefore easy disposal, decreased amount 

of risky by-products and reduced of analysis time[19]. 

Designing of a microfluidic system primarily requires a clear perspective of the 

expected components. These systems can be used for mixing, separation, injection, 

detection or treatment [20]. These components then affect the material and fabrication 

preferences. The choice of material is important for the movement of the fluid in the 

channels. Smoothness of the surface, machinability, transparency, bioavailability and 

chemical and mechanical stability of the material are the most important properties of 

material choice. In these terms, Poly (methyl methacrylate) (PMMA; Plexiglas
®

) and 

Polydimethylsiloxane (PDMS) are popular polymers to be used in microfluidic devices.  
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2.1.2. Materials Used in Microfluidic Devices  

Poly (methyl methacrylate) is a transparent thermoplastic with a chemical 

composition of (C5O2H8)n. The transparency and machinability of the material is an 

important reason why it is used in microfluidic systems. The mechanical and chemical 

properties of PMMA are listed in the Table 1.  

Table 1: Chemical and mechanical properties of PMMA and PDMS. [18], [21], [22], [23], [24].   

Property PMMA PDMS 

Optical Optical absorption at 190 nm. Optical absorption at 240 nm. 

Mass density 1.18 kg/m
3 

0.97 kg/m
3
 

Young’s modulus 1800 – 3100 MPa 360 – 870 KPa 

Specific heat 1.46 kJ/kg.K
 

1.46 kJ/kg.K 

Glass transition 

temperature (TG) 

105ºC
 

-123ºC 

Melting point 160ºC -50ºC 

Thermal conductivity 0.15 W/m.K 0.167 – 0.25 W/m.K 

Biocompatibility Bioavailable, nontoxic Mostly bioavailable; toxic by 

time  

Hydrophobicity Hydrophobic; contact angle: 

72º 

Highly hydrophobic; contact 

angle: 90º - 120º 
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 Polydimethylsiloxane (PDMS) is the preferred polymer because of its optical 

transparency, ease of fabrication, bioavailability, nontoxicity and surface chemistry in 

microfluidic devices. It is a silicon based oligomer which becomes a chemically and 

thermally stable polymer after it is cured. The physical and chemical properties of the 

material are listed in Table 1 [18], [21], [22], [23], [24].  

 The stability of the oligomer is provided by polymerization. The chemical formula 

of PDMS is CH3[Si(CH3)2O]nSi(CH3)3 , where n is the number of repeating dimethyl-

silanol monomeric units (Figure 8). Platinum catalyzes the reaction via oxidative addition 

and reductive elimination mechanism, and this causes branching of the oligomers from the 

vinyl ends of ethoxy-dimethyl vinyl-silane groups; yielding cross – linking [25]. By 

additional of heat curing, PDMS fully polymerizes. The chemical reaction is illustrated in 

the Figure 9.  

 

 

 

Figure 8: Chemical structure of PDMS, where n is the number of the repeating monomers. 

Typically, n is accepted as ~60 in PDMS oligomers.. 

Figure 9: A catalyst containing Platinum causes cross-linking between PDMS oligomers and leads to 

polymerization.   



13 

 

 Ease of fabrication of PDMS is the major advantage. It is possible to fabricate a 

PDMS microfluidic chip in 24 hours. The first step is to produce a master for casting of 

PDMS. The prototype device is drawn in a computer aided design (CAD) program, and 

printed on a transparent sheet at high resolution. In the photolithography step, the 

transparency is used to produce photoresist on the silicon wafer. The process master 

fabrication is shown in the Figure 10 [20].  

 

 For the fabrication of the master mold, silicon wafer is homogenously coated with 

an epoxy-based photoresist called SU-8. This material is polymerized under the UV light 

and it composes a rigid body. SU-8 coated wafer and the photomask of the prototype is 

located in the lithography machine and exposed to UV light. Therefore, the light passing 

through the transparency reaches to the SU-8 coated wafer and causes hardening in these 

areas. The regions that are not exposed to UV light remain liquid and can be washed with 

developer. Consequently, a negative master for PDMS casting is generated on the wafer. 

PDMS is easy to remove from the master without any damage, because of its low surface 

Figure 10: Fabrication of the master by photo lithography. (Adopted from ref. [20]) 
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free energy and elasticity. The master mold can be used until it is broken as a result of a 

human error. The process is demonstrated in Figure 11 [18].  

 

 

Micro channels can be sealed by performing air plasma on the surfaces. With this 

method, the methyl ends of the PDMS are introduced with silanol groups (Si-OH). Glass 

can be used to seal PDMS. Glass surface is put into contact with PDMS with open silanol 

groups after the glass surface is also exposed to air plasma. Si-O-Si bonds are made 

between PDMS and glass surface.  

  

Figure 11: Master is used for PDMS casting. This procedure can be completed in 24 hours 

(Adopted from ref. [18])   
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2.1.3. Micromixing 

Micromixing is the most crucial step in microfluidic systems. In particular, 

biochemical applications of the devices require an efficient mixing.  Mechanical properties 

of fluids are important for the design of the mixing compartment. The theory of fluid 

mechanics on the macro scale can be applied to micro environments.  

The characteristic of a fluid flow is determined with its Reynolds Number (Re). 

Low Re number is named as laminar flow, where the motion of the fluid is smooth and 

constant. However, with higher Re number the flow can cause vortices and fluctuations; 

therefore it is called turbulent flow [26]. Generally, microfluidic systems have low Re 

numbers. Therefore, they usually have laminar flow, where the flow goes parallel to each 

other with a constant velocity with respect to time and location. Hence, the mass transfer 

occurs only in one direction and mixing can be obtained through diffusion.  

In order to reach higher Re numbers in microenvironments, micromixers are used to 

change the inertial forces affecting the fluid. Random motion is targeted  in these systems 

to achieve a convective mass transport in all directions [27]. Different channel geometries 

provide an effective mixing in microsystems by increasing the contact surface area and 

decreasing the mixing path [26]. Benefiting from micro pin-fins for maximizing the contact 

surface in order to get better mixing has been very successful [28].  

 In this study, effective mixing was required to determine more accurate iron biding 

kinetic rate data for proteins. Efficiency was evaluated by using the color change of 

bromocresol green and acetic acid reaction as a probe to monitor mixing time. As follows, 

simulations of mixing were done to improve the system designs.  
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2.1.4. Simulations 

The flow can be simulated with different numerical methods in order to estimate 

characteristic of the stream and its mixing properties. Mathematical statement of the flow is 

used to calculate consequences of various parameters such as geometry, flow rate, type of 

the fluids, etc. Numerical methods are inexpensive, handy and flexible analysis of the 

microfluidic systems.  

In the field of computational fluid dynamics, Finite Volume Method (FVM) is one 

of the several powerful discretization methods. FVM is composed of two steps; first is 

where the numerical domain is partitioned into a set of control volumes, while the second 

deals with the integration of the differential form of the governing equations over each 

control volume. Thereafter, interpolation profiles are assumed to describe the variation of 

the corresponding variable to give the discretized or discretization equation. Thus, the 

conservation principle is expressed inside the control volume so that the resulting solution 

meets the conservation of quantities, such as mass or momentum. This holds for each 

control volume along with the full computational domain for any number of control 

volumes.  

The theory behind the analysis relies on numerical equations depending on the 

number of the phases, physical properties of the fluids and geometry of the mixing 

chamber. All the numerical definitions are justified based on fundamentals of physics; 

conservation of the mass and conservation of momentum.  

2.1.4.1. Conservation equations 

The conservation of mass for two phases is described by equation 1. Tracing of the 

interface is achieved by the solution of a continuity equation for the volume fraction of one 

(or more) of the phases.  
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where pqm is the mass transfer  from phase p to phase q, and  qpm  is the mass transfer from 

phase q to phase p. In this equation, qS  is the source term, which, in our case, is equal to 

zero. The primary-phase volume fraction is computed based on the following constant: 

1
1




n

q

q  
(2) 

The properties of materials are involved in the equation by averaging the volume fractions 

of the densities.  

The law of the conservation of momentum is represented in the analysis by 

integrating equation 2, which depends on the volume fractions of all phases through the 

properties  and . 

       Fgp
t







 Tvv.vv.v  

(4) 

The VOF model can also include the effects of surface tension along the interface 

between each pair of phases. The model can be augmented by the additional specification 

of the contact angles between the phases and the walls. One can specify a surface tension 

coefficient as a constant, as a function of temperature, or through a User Defined Function 

(UDF). The solver includes the additional tangential stress terms (causing what is termed as 

Marangoni convection) that arise due to the variation in surface tension coefficient. 

Variable surface tension coefficient effects are usually important only in zero/near-zero 

gravity conditions, which are not operating in our systems.  

Surface tension arises as a result of attractive forces between molecules in a fluid. If 

we consider an air bubble in water, the net force on a molecule due to its neighbors is zero 

within the bubble. At the surface, however, the net force is radially inward, and the 

combined effect of the radial components of force across the entire spherical surface is to 
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make the surface contract, thereby increasing the pressure on the concave side of the 

surface. The surface tension is the force acting only at the surface that is required to 

maintain equilibrium. It acts to balance the radially inward inter-molecular attractive force 

with the radially outward pressure gradient force across the surface. In regions where two 

fluids are separated, but one of them is not in the form of spherical bubbles, the surface 

tension acts to minimize free energy by decreasing the area of the interface. 

The surface tension model in FLUENT is the continuum surface force (CSF) model 

proposed by Brackbill et al. [29]. With this model, the addition of surface tension to the 

VOF calculation results in a source term in the momentum equation. To understand the 

origin of the source term, consider the special case where the surface tension is constant 

along the surface, and where only the forces normal to the interface are considered. It can 

be shown that the pressure drop across the surface depends upon the surface tension 

coefficient, , and the surface curvature as measured by two radii in orthogonal directions, 

1R  and  2R : 











21

21

11

RR
PP   

(5) 

Here, 1P  and 2P  are the pressures in the two fluids on either side of the interface. 

In FLUENT, a formulation of the CSF model is used, where the surface curvature is 

computed from local gradients in the surface normal at the interface. Let n be the surface 

normal, defined as the gradient of q , the volume fraction of the 
thq  phase, qn  . The 

curvature, ĸ, is defined in terms of the divergence of the unit normal, n̂  [29]:  

     ̂ , Where;  ̂   
 

| |
.  
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2.2. MATERIALS AND METHODS  

2.2.1. Materials 

2.2.1.1. Chemicals 

 Chemicals used in the study are listed in the Appendix A.  

2.2.1.2. Equipment 

 Equipment used in the study are listed in the Appendix B.  

2.2.1.3. Software and Programs 

 Solidworks 

 ANSYS Fluent  

2.2.1.4. Material Preference of the Microfluidic Chip  

Material preference was one of the most critical aspects of the design. Considering 

the features such as transparency of the material, durability against high flow rates, surface 

properties, chemical resistance to different pH values, ease of fabrication and 

machinability, disposability and cost of the material, two different materials were decided 

to be used for microchip fabrication.      

 PMMA: Poly (methyl methacrylate), commercially known as Plexiglas.  

 PDMS: Polydimethylsiloxane 

2.2.1.4.1. PMMA – Based Design 

The microchip was designed by using SolidWorks. The dimensions are shown in 

the 2D drawing in Figure 12. The outer dimensions of the design were determined as 43 

mm х 99 mm, based on reference article [17]. At the entrance, micro channels were 

designed with 0.4 mm width and 0.5 mm depth. Mixing chamber was planned to be the first 

place where the reactants were met. 15 diamond shaped fins were placed along the 16 mm 
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long, 2.5 mm wide mixing chamber. The depth of the mixing channel was planned to be 0.5 

mm.  

 

2.2.1.4.2. PDMS – Based Design 

The dimensions of the design were adjusted for the fabrication of the PDMS 

microfluidic chip. Because of the limitations of the fabrication process, micro channels and 

mixing chamber were modified so that the minimum distance between the two walls is 125 

µm. The final design is displayed in Figure 13. 

  

Figure 12: Technical drawing of PMMA microfluidic chip for microfabrication.  
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2.2.2. Methods 

2.2.2.1. Experimental Set Up 

The general flow of the process was explained in the diagram below. Experimental 

set up was designed with inlets, transferring tools, micro channels and micro mixing 

compartment and outlet.   

Inputs were given to the system by using a syringe pump. The solutions were loaded 

into 10 ml sterile syringes, which were placed on the programmable syringe pump. In order 

to transfer the reactants from the syringe to the microfluidic chip, proper size of tubing was 

used depending on the dimensions of the microchip. To avoid leakage from the entrance of 

the micro channels, suitable size of fittings were used in inlets of the microchannels.  

The microfluidic chip was designed to be able to have an efficient and quick 

mixing, after the solutions meet. The chip consists of two inlets, a mixing chamber, a 

Figure 13: Adjusted dimensions of microfluidic devices for PDMS fabrication. 



22 

 

detection cell, which contains the mixing chamber and micro channel that elongates until 

the end of the channel, and one outlet. Transparent materials were used for the fabrication 

of the microfluidic chip, to be able to monitor the mixing and the reaction properly.  

The solutions mixed in the chamber were discharged from the outlet of the chip by 

using tubing and a proper fitting.  

The entire process was recorded with a high resolution microscopic camera to be 

able to record mixing and reaction data. Therefore, the camera was set to be focused on the 

mixing chamber.  

Eventually, the system was washed with distilled water to clean micro channels.  

2.2.2.2. PMMA Microfabrication  

The channels were processed on the PMMA chip by CNC micro-machining. Three 

different sizes of needles were used in different radius and depth. 0.2 mm radius needle was 

used to process entrance and exit microchannels, whereas, 0.3 mm was used to process 

inlets and outlets. 0.1 mm radius needles were used to process the area in between the fins 

in the mixing chamber.    

Polyolefin sealing foil is used to bond microchannels. In order to avoid leakage, 

sealed microchip was compressed in between 2 layers of 3mm PMMA. Compression was 

supported by screws surrounding the channel. Maximum compression averted leakage. Top 

layer of PMMA was drilled in the size of fittings.  

2.2.2.3. PDMS Microfabrication   

2.2.2.3.1. Acetate mask design and fabrication  

Acetate mask design was a 2D drawing of the micro channels that were to be used 

as a mask for SU-8. The ability of UV light exposure to harden the material was used to 

create the channels. Therefore, the channels were designed to be transparent for light to 

pass through; in contrast, the convex regions were left in black to prevent the light from 
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penetrating. With the design shown in figure 14, negative master of microfluidic design 

was obtained.  

 

 

The design was drawn in AutoCat and printed on 10000 dpi printer on A4 size 

acetate paper.  

2.2.2.3.2. SU-8 Photoresist  

SU-8 is an epoxy-based photoresist polymer, which is sensitive to light. SU-8 

absorbs in the UV region, because of this reason the light less than 400 nm wavelength 

initiates molecular binding of SU-8 particles, and causes the material to become rigid. This 

polymerization process is temperature dependent. SU-8 developer is used to wash the parts 

that are not exposed to UV light and remains fluidic. SU-8 used in the microfluidic chip 

fabrication process was ordered from MicroChem. The procedure suggested by the 

company was followed. The transparency photo mask was designed to have concave 

regions to be translucent, whereas convex regions to prevent light passage. Because 

hardening could not be provided in the black regions, those regions were washed out to get 

rid of the liquid SU-8.  

Figure 14: Photomask design to print on to transparency with high 

resolution.   
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2.2.2.3.3. Photoresist Coating of Si-Wafer  

SU-8 was used to cover silicon wafer as a photoresist material. The wafer was 

cleaned with nitrogen gas to get rid of the dust. Because the viscosity of the photoresist 

material is high, the covering process was performed on the spinner. The wafer was located 

at the center of the spinner and vacuumed to achieve stabilization. Locating the wafer at the 

center was a crucial step to have a uniform propagation of SU-8. After placement, 

approximately 3 ml of SU-8 was poured in the middle of the silicon wafer. For the 

propagation of SU-8, the wafer was spinned at 500 rpm for 10 seconds followed by 1800 

rpm spinning for 30 seconds.  80-90 µm thickness was targeted (Figure 15). Because this 

design is on the microscale, it is accepted to be a very particle sensitive process. Therefore, 

the fabrication process took place in the clean room.  

 

 

To provide good attachment between the wafer and SU-8, the wafer was baked on 

the hot plate at 95ºC for 25 minutes, following the spinning. The soft bake duration varying 

on the thickness was acquired from the SU-8 data sheet. 
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Figure 15: The speed of the rotation and spinning time was determined by 

MicroChem Company.  
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Table 2: All the process details are given by the MicroChem Company depending on the thickness.  

Thickness 

(µm) 

Soft Bake 

Time (min) 

Exposure 

Energy 

(MJ/cm
2
) 

PEB Time  

(65°C) 

(min) 

PEB Time  

(95°C) 

(min) 

Development 

Time 

(min) 

4-10 2-3 100-200 1 1-2 1-3 

8-15 5-10 125-200 1 2-4 4-6 

20-50 10-15 150-250 1 3-5 5-8 

30-80 10-30 150-250 1 3-5 6-12 

40-100 15-45 150-250 1 3-5 7-15 

2.2.2.3.4. Soft Lithography 

After soft baking process, the SU-8 coated Si-wafer was placed in the lithography 

machine to be exposed to UV light. The previously prepared acetate mask was placed on 

the mask aligner. The wafer was exposed to UV light for 14 seconds. The energy provided 

in 14 seconds was 250 MJ/cm
2
 (Table 2). After UV exposure, the mask was removed from 

the wafer and the wafer was subjected to two steps of heating process as post exposure 

baking (PEB).  

PEB process was performed by baking the wafer first at 65ºC for 1 minute, then at 

95ºC for 5 minutes on the hot plate. The durations were determined by MicroChem as 

provided in the Table 2. This process allows the part, which were not exposed to UV light 

to dissolve.  
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After PEB, the wafer was left in the SU-8 developer and vibrated on the ultrasonic 

vibration plate for 15 minute (Table 2.) SU-8 developer allowed the non-solidified material 

to be cleaned from the wafer. The wafer was washed with distilled water and isopropanol, 

and then dried with nitrogen gas.  

After the wafer was rinsed and dried, it is baked at 150ºC for 2 hours. This step is 

called hard baking. The last baking step provided a chemically and physically stable 

material to be used as a master for the desired microfluidic chip.  

2.2.2.3.5. Characterization of SU-8 master 

The SU-8 master was examined under the microscope to see if there were errors in 

the channels. The depth of the channels was measured by Profilometer.  

2.2.2.3.6. PDMS casting of the SU-8 master 

For PDMS casting, a petri dish plate was prepared by coating with aluminum foil. 

The SU-8 master was placed on the plate by sticking on the foil. Double sided tapes were 

used to avoid leakage. PDMS solution was prepared by mixing liquid PDMS with 1:10 of 

PDMS curing agent. The mixture was whipped well. A homogenous solution was poured 

on top of the SU-8 master in the petri dish by avoiding bubble production. The air bubbles 

were removed by placing the petri dish in the degassing oven for 45 minutes. Afterwards, 

the PDMS was heated in the oven at 75ºC overnight (12 hours).  

Solid PDMS was gently removed from SU-8 master mold by using a scalpel. The 

channel profile was cut in the proper size. The master is reusable unless it gets damaged. 

Therefore, it was preserved in a petri dish covered with aluminum foil to avoid light. The 

inlets and outlet of the micro channel was drilled with a puncher.       

2.2.2.3.7. O2 plasma bonding 

The PDMS micro channels were bonded to glass micro slides. Both the micro slides 

and PDMS microchip were rinsed with isopropyl alcohol and distilled water, and then dried 

with nitrogen gas. After cleaning, the PDMS channel was located in the plasma device, the 
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channels facing up. The device was vacuumed for 10 seconds, and the channels were 

exposed to O2 plasma for 60 seconds.  

Finally, PDMS micro channels were pasted on the glass micro slide and left on the 

hot plate at 75ºC for 15 minutes.  

2.2.2.4. Mixing Analysis Method 

The evaluation of mixing mechanism of the system was performed by monitoring 

fast and color changing reactions using a pH indicator called bromocresol green. The 

chemical properties of bromocresol green allow it to remain green between pH values of 

3.8 – 5.4. When the pH value is lowered down to 3.8, the color turns into yellow whereas, 

when the pH is increased over 5.4, it turns into blue. In this study, 7х10
-4 

M of bromocresol 

green solution and 4х10
-3

 M of acetic acid is used to test mixing efficiency. The kd value of 

this reaction is indicated as 5х10
10 

M
-1

sec
-1

 in the literature [30]. 

 We assumed that bromocresol green and acetic acid reacts faster that the mass 

transfer in the mixing chamber. Thus, the color change was directly used to probe the mass 

transfer kinetics of the flows. Reaction time was neglected. The mixing time was accepted 

as the dead time for this design. Later, for the following protein systems, we assumed that 

the protein- ligand interaction is slower than the mass transfer, and in this case color change 

will reflect the iron biding to protein (Figure 16). The mixing time of the chamber could be 

evaluated and optimized by following the color change. 
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 The mixing time was calculated by the ratio of volume of fluid travels per mm to 

flow rate. The volume of the mixing chamber was accepted as 0.2 ml and the pin-fin 

volumes in the chamber were neglected. The relationship between mixing time and distance 

is optimized for different flow rates.   

2.3. RESULTS 

2.3.1. PMMA 

PMMA design was tested in different volumetric flow rates, Q. The device was 

calibrated for each flow rate as shown in Figure 17. Same volumetric amount of acetic acid 

and bromocresol green was pumped to the mixing chamber by syringe pump and the 

distance of the complete mixing was measured.  

Figure 16: At constant flow rate, the distance of the fluid traveled is proportional to time.  
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The microfluidic chip was monitored at the flow rate of 5 ml/min, 10 ml/min and 13 

ml/min. Figure 18 shows the flow at Q=5 ml/min. At this flow rate no mixing in the mixing 

chamber was observed. The only mixing of two reactants was monitored at the interface. 
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Figure 17: The time is calculated by calibration of the mixing chamber by distance and flow rate.  

Figure 18: The flow was recorded at Q = 5 ml/min.   
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 When the flow rate was increased to 10 ml/min, the fluid inside the mixing chamber 

turned into yellow at 4 mm distance (Figure 19). Therefore, after 4 mm, the fluids were 

completely mixed. The mixing time was calculated as 0.3 seconds by using the equation in 

Figure 17. 

 

 

 

 

 The system’s limitations were also tested by increasing the flow rate. The maximum 

flow rate that the microchannels were endured was 13 ml/min (Figure 20). The mixing was 

observed at 3
 
mm. Therefore the mixing time was calculated as 0.225 seconds. 

Figure 19: The flow was recorded at Q = 10 ml/min.  

Figure 20: The flow was recorded at Q = 13 ml/min.  
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2.3.2. PDMS 

The PDMS microfluidic chip was tested. The mixing chamber was calibrated 

according to the volume of the design and flow rate. The fabrication of the PDMS chip was 

performed by lithography and the depth was reached to 87 µm. Accordingly, the 

dimensions of the mixing chamber was accepted as 1.75 х 16 х 0.087 mm. Since, the 

volume of the pin-fins are negligible, total volume of the mixing chamber was accepted as 

2.4 х 10
-3

 ml. The time was calculated as a function of distance and flow rate shown in the 

Figure 21.  

 

 

The limitations of the PDMS design were higher than PMMA design. First 

of all, because of the lower Young’s module value of the material, the channels 

were resistant to high flow rates. The tests were completed at flow rate values 

between 500 µl/min and 2 mg/ml (Figure 22).  
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Figure 21: Time was calculated as a function of distance.   
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2.3.3. Simulations 

The experimental results were not found convincing. Because of time and cost 

limitations, numerical simulations were run in order to optimize the micromixing channel 

of the design. Commercial tool based on finite volume, ANSYS Fluent 14.0 was used to 

numerically investigate the hydrodynamic characteristics of mixing flow in a pin finned 

micro channel. To set up the system, the Volume of Fluid (VOF) model is utilized to solve 

the equations of mass and momentum conservation, which enabled modeling of multiple 

separate, yet interacting phases. 

The computational domain comprised of a micro channel with a width of 2.5 mm 

and length of 16 mm, where diamond-shaped pin-fins decussate inside the channel with a 

length of 500 μm, as shown in Figure 23. With a total element number of 40000, FVM was 

used to discretize the governing equations as described above. For pressure-velocity 

coupling and the approximation of convection terms, coupled algorithm and second order 

schemes were used, respectively. For both phases, uniform inlet mass velocity was 

considered as the boundary condition of the hydrodynamic inlet. Physical properties of the 

fluid concerned were kept constant and atmospheric pressure was ensured at the outlet. No-

slip condition was enforced for the velocity at wall boundaries. Physical properties of fluids 

concerned are shown in Table 3. The viscosity of bromocresol green was accepted the same 

Figure 22: The flow caption at Q=500 µl/min in PDMS design. 
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as viscosity of water, since the solution was prepared in distilled water. It was noted that 

both fluids enter the channel with flow rate of 5 ml/min. 

Table 3: Physical properties of bromocresol green and acetic acid at room temperature   

Characteristics Bromocresol Green Acetic Acid  

Viscosity 0.9 mPa.s  1.131 mPa.s 

Density 0.79 g/ml  1.05 g/ml 

 

 

 The ANSYS Fluent results for the designs were supportive with the experimental 

results. The pin-fin conformation was not as effective as predicted (Figure 24). In order to 

get a good mixing, the flow rate has to be increased to a value where the consumption of 

Figure 23: The schematic computational domain identified to program: (a) shows the microchannels 

in microfluidic chip, (b) shows only the mixing chamber.  
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sample volume is intolerable. Hence, other channel geometries were also analyzed for 

optimization.     

 

 

2.3.3.1. Effect of channel size on mixing effect 

Effect of channel size on mixing is shown in Figure 25. Mixing was more 

pronounced in a smaller channel, mainly due to higher velocity of fluids in the channel.  

Figure 24: Numerical analysis of micromixing channel geometry with pin-fins at 

flow rate Q=10 ml/min.   
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Figure 25: Effect of channel size on mixing phenomena. The scale on the right represents the channel 

size. (a) displays a channel with a width of 2 mm whereas, (b) displays a channel double the size of a.   

2.3.3.2. Effect of pin fin distribution on mixing 

Pin-fin distribution had negligible effect on mixing phenomena. Comparing 

obtained results of Figure 25 and Figure 26, it can be concluded that the channel size was 

much more effective in mixing than the shape of the fins.  

 

 

2.3.3.3. Future potential design 

The numerical analysis suggested that pin-fin conformation and the width of the 

channels were primary effects on the micromixing in the lower flow rates. Creating a 

Figure 26: Effect of pin-fin distribution on mixing.  
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higher surface area for the fluids to meet is essential for a successful design. Creating a 

strait on the pathway would provide the highest mixing efficiency at lower flow rates, 

meaning lower sample consumption.  Figure 27 is the numerical representation of such a 

design, where the flow rate is between 0.1 – 1 ml/min. This region is compatible with other 

microfluidic devices.   

 

 

  

Figure 27: Potential future design at Q=0.3 ml/min 
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3.  CHAPTER III – EXPRESSION AND PURIFICATION OF HAEMOPHILUS 

INFLUENZAE FERRIC BINDING PROTEIN IN APO-FORM  

3.1. BACKGROUND  

 The importance of iron for both human and bacteria is explained in details in 

Chapter I. The specific mechanism developed by bacteria to hijack iron from host 

organisms is emphasized in recent studies. In most cases, proteins are commercially 

available for researchers. However, because proteins vary depending on the originated 

organism, rare proteins are needed to be synthesized in vitro. Advanced molecular 

techniques are found beneficial to such studies. Genetic modification of the organisms 

expedites research studies on these subjects.   

 In this study, Haemophilus Influenzae Ferric Binding Protein has been expressed 

and characterized in the laboratory. The characteristics of iron uptake mechanism by the 

bacterial FBP remain the same in the protein obtained by recombination techniques in vitro. 

Since the study on Haemophilus Influenzae as a pathogenic Gram – Negative bacteria is 

threatening and risky process, most of the applications on this topic is performed by using 

another Gram – Negative bacteria, Escherichia coli.  

 Recombination technology is a promising engineering study that eliminates many 

limitations in the laboratories [31]. With this technology, it is possible to construct the 

DNA of E. coli by transforming a circular piece of DNA fragment. It is a very popular 

technique in protein engineering.  The practice of recombination techniques in this study 

can be explained as; the insertion of a particular engineered DNA sequence into a circular 

piece of DNA from specific sites [32]. This specific sites are called restriction sites, which 

are digestive by site specific enzymes, restriction enzymes. Restriction enzymes are 

nucleases which recognize specific DNA sequence to bind and cleave from that location 

[33]. In the construction of a DNA segment, restriction sites matching with multiple 

cloning site of the plasmid is synthetically built. Therefore, cleaved DNA fragment can be 

placed with the particular DNA sequence. Once it is inserted into the plasmid, plasmid is 
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transferred into E. coli and multiplied there. That allows the augmentation of the desired 

DNA sequence [34].  

 Cloning vectors are piece of circular DNA containing an antibiotic resistance gene, 

promoter, multiple cloning site and ribosomal binding site. When the vector is transformed 

into bacteria, the antibiotic resistance gene allows it to survive in presence of that specific 

antibiotic [35]. This characteristic is profitable for eliminating non-desired organisms in the 

working medium. On the other hand, multiple cloning sites accommodate several 

restriction sites. Thus, they are serving as an insertion site for synthetic DNA fragments in 

recombination technology. Furthermore, promoter and ribosomal binding site are 

responsible of expression. All these compartments are required in a cloning vector for 

molecular techniques.  

 Metal affinity separation is an acknowledged method in protein expression. 

Presence of multiple histidine residues in the amino acid sequence makes it easier to 

separate, because of the high affinity of histidine residues to metals [36]. Thus, when the 

DNA fragment is designed, six histidine residues are put at the beginning of the desired 

amino acid sequence or the DNA fragment is inverted into a vector that contains these 

residues. After the protein synthesized, his-tag can be cleaved. Another charming method is 

being used to remove histidine tag from the genetically engineered fusion protein. TEV 

cleavage site is a specific amino acid sequence, discovered from tobacco etch virus [37]. 

This site is recognized by a protease enzyme and cut. Therefore, its specific sequence is 

inserted in between desired amino acid coding sequence and histidine tag, in order to obtain 

the protein by itself.  

 Previously mentioned molecular techniques formed our path to express 

Haemophilus Influenzae FBP in laboratory conditions.   
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3.2. MATERIALS AND METHODS 

3.2.1. Materials 

3.2.1.1. Chemicals 

 Chemicals used in the study are listed in Appendix A.  

3.2.1.2. Equipment 

 Equipment used in the study are listed in the Appendix B.  

3.2.1.3. Software and Programs 

 CLC Main Workbench 7 

3.2.2. Methods 

3.2.2.1. Preparation of LB Growth Media  

In order to prepare liquid media, 10 g of Tryptone, 5 g of NaCl and 5 g of yeast 

extract was dissolved in 1 L of distilled water and autoclaved at 121ºC. For the selective 

medium, the final concentration of 50 µg/ml kanamycin (KAN) was added and stirred.  

For the solid LB medium, 15 g of Agar was dissolved in 1 L of liquid LB medium. 

For selective medium, the final concentration of 50 µg/ml KAN was added and stirred. The 

liquid medium was immediately poured into sterile plates and autoclaved at 121ºC.  

3.2.2.2. Preparation Buffers and Solutions 

All the buffers and solutions were prepared based on the equation 6 and equation 7.  

               
    

                         
                                                (6) 

                       
 

      
 

 Initial Concentration X Initial Volme = Final Concentration X final Volme 
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                       C1  V1 = C2  V2                                                                                                                                       (7) 

The following steps were completed accordingly.  

A. CaCl2 solution 1: 80 mM CaCl2 and 50 mM MgCl2 was dissolved in 500 ml of 

distilled water and autoclaved at 121ºC.  

B. CaCl2 solution 2: 0.1 M CaCl2 was dissolved in 500 ml of distilled water and 

autoclaved at 121ºC.  

C. TAE (Tris-Acetate-EDTA) buffer: For 50X stock solution; 242 g Tris base was 

dissolved in 100 ml 0.5M sodium EDTA. 57.1 ml 100% acetic acid was added. 

Distilled water was added up to 1L. The stock solution was diluted to 1M for gel 

electrophoresis.  

D. HEPES buffer: 500 ml of HEPES buffer at pH 7.5 was prepared for the 

BugBuster protocol. 200 mM NaCl and 20 mM HEPES was dissolved in 500 ml 

of distilled water. pH was adjusted to 7.5 by adding NaOH.  

E. Purification buffer: 100 ml of 10X purification buffer was prepared for the 

purification of the proteins. 500 mM Tris.HCl, 3M NaCl, 200 mM imidazole, 50 

mM MgCl2, 300 µM Al2(SO4)3 and 100 mM NaF was filled with 100 ml 

distilled water. pH was adjusted to 8 by adding NaOH.  

F. Washing buffer: 150 ml of washing buffer was prepared to be used in the 

protein purification protocol. 1X purification buffer, 10 mM BME and 0.2 mM 

PMSF was mixed and filled up to 150 ml with distilled water.  

G. Elusion buffer: 50 ml of elusion buffer was prepared by adding 280 mM 

imidazole into 50 ml of washing buffer.  

H. Dialysis Buffer: 4 L of dialysis buffer was prepared to be used to remove 

imidazole after purification. 50 mM Tris.HCl, 100 mM NaCl and 1 mM EDTA 

was filled up to 4 L of distilled water. The pH of the solution was adjusted to 8 

by adding HCl.  

I. Sodium citrate washing buffer: 100 ml of washing buffer was prepared to be 

used in the process of removing iron from FBP. 1 mM EDTA and 4000-fold 
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Sodium Citrate was dissolved in the 100 ml of distilled water. pH of the solution 

was adjusted to 7.5. 

J. PO4 solution: 10 ml PO4 solution was prepared by dissolving 5 mM Na2HPO4 in 

distilled water to be used in the process of removing iron from FBP.  

K. Exchange buffer: 100 ml of exchange buffer was prepared to change the EDTA 

buffer to Tris buffer after removing the iron from the protein. 10 mM Tris was 

dissolved in the 100 ml distilled water. pH was adjusted to 8 by adding HCl.  

3.2.2.3. Construction of pET-28a (+) containing Ferric Binding Protein encoding 

gene  

The sequence of the gene, expressing Ferric Binding Protein (FBP) in Haemophilus 

Influenza, was taken from the NCBI. The exact DNA sequence was optimized for 

expressing the protein in Escherichia coli by the Genscript Company. Optimized sequence 

was cloned into commonly used vector called pET-28a (+) with some additional sites in 

order to make the protein easy to purify. One of these sites was called His-Tag that exists in 

the vector. For the ease of purification step, a nucleotide sequence encoding a bunch of 

histidine residues were added to the vector after the first restriction site. In this protein five 

histidine residues were added as CAT codons. His-Tag site has high affinity to the metal 

chelates such as Cu
+2

, Ni
+2

, Zn
+2

, Co
+2

. Having a histidine tag concedes the desired protein 

to be separated by using a metal chelate affinity column up to 95% purity [38]. Another site 

which was inserted to the original sequence was tobacco etch virus (TEV) protease 

cleavage site. This site is usually added to the N- terminal of the protein, following the 

histidine tags as a very selective amino acid sequence [39]. This specific sequence was 

given in the literature as ENLYFQ followed by S or G at the end, where the cut has been 

done after Q in optimum conditions [40]. The nucleotide sequence encoding the given 

amino acid sequence, which is known to be very selective to the TEV protease enzyme, 

was inserted to the beginning of the FBP encoding sequence, just after the string that 

encoded five histidine residues. GAAAACCTGTATTTTCAGAGC was the optimized 

nucleotide sequence determined by the Genscript Company. Finally a stop codon was 

added to the end of the sequence encoding FBP. The engineered gene, accommodating His-
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Tag, TEV site and stop codon at the end, was cloned into pET-28a(+) by NdeI and XhoI. 

Therefore, they were located between NdeI and XhoI restrictions sites of the vector.  

The plasmid was received in solid state as 4 µg. The vial containing the plasmid 

was first centrifuged at 6000 х g for 1 minute at 4ºC. 10 µl of sterilized water added and the 

vial was shacked on vortex machine to dissolve the sample. A concentration of 0.4 µg/µl 

was obtained at the end. The gene was multiplied by expressing in the E. coli by following 

the steps below;  

3.2.2.4. Preparation of component cells: 

TOP10 and BL21, which are two different genotypes of E. coli, were used in this 

study for expressing FBP. Solid and liquid cultures containing these types of bacteria were 

prepared.  

BL21 and TOP10 stocks, which were kept in the -80ºC freezer, were streaked on the 

non-selective LB plates and incubated at 37ºC overnight (12-16 hours). The growth of 

bacterial colonies was observed on the solid medium.    

To prepare the small liquid culture, one colony was picked from each TOP10 and 

BL21 plates, inoculated into 5 ml of liquid LB without kanamycin.  The cultures were 

incubated at 37 ºC under shaking at 270 rpm overnight. The growth of bacteria caused 

turbidity in the liquid LB medium.   

To prepared the big liquid culture, 2 ml of starter culture from each types of E. coli 

was added to 200 ml liquid LB medium and left to grow in 37ºC shaking incubator. The 

OD600 was measured until it reached 0.94. In most cases, OD600 value of 0.94-0.95 was 

determined as the most effective value to obtain the highest amount of potential competent 

cells in the E. coli growth cycle [41]. Since the population growth of the bacteria increases 

exponentially, the OD600 values were measured every half an hour at the beginning. After 2 

hours the values were measured more frequently. When OD600 value had reached 0.94, 

cultures were put on ice and left for cooling. Therefore, the growth of the populations was 

decelerated and paused.   
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After 20 minutes of incubation on ice, the competent cells were extracted for 

storage. 200 ml cultures of BL21 and TOP10 was transferred into previously cooled 

centrifuge bottles. The cells were harvested at 3000 х g (~4000rpm in the Beckman JA-10 

rotor) for 15 minutes at 4ºC. The supernatant were decanted, whereas the pellet was 

resuspended mildly in 4 ml of cold CaCl2 solution 1. The vials were kept on ice for 10 

minutes. Similar to the previous step, the cells were harvested by centrifuging at 2000 х g 

(~3000 rpm in the Beckman JA-10 rotor) for 15 minutes at 4ºC. The supernatant was 

discarded and the pellet was resuspended again in the CaCl2 solution 1. The cells were 

harvested one more time at 2000xg (~3000 rpm in the Beckman JA-10 rotor) for 15 

minutes at 4 ºC. The supernatant was decanted, and the pellet was resuspended in 1 ml of 

cold CaCl2 solution 2. 15% of glycerol was then added. Aliquot of 90 µl was put into 

previously cooled 1.5 ml microfuge tubes and snapped frozen with liquid nitrogen. The 

final frozen cells were stored in the -80ºC freezer to be used as necessary.  

3.2.2.5. Transformation of the engineered pET-28a (+) into TOP10 and BL21:  

The recombinant pET-28a(+) plasmid with the FBP gene, ordered from Genscript 

Company, was transferred into both TOP10 and BL21 for multiplication and expression of 

the protein by following the procedure in “Molecular Cloning: A laboratory manual” by 

Sambrook et al., 2001.  

 Transformation was done in both types of E. coli cells, whereas, the expression was 

only performed in BL21. The construct was transformed into TOP10 for the purpose of 

multiplication. Therefore, more plasmids were obtained and transformed into BL21 for 

more expression of the FBP protein.  

Transformed E. coli cells were strained on the LB plates. Kanamycin was used as a 

selective antibiotic for the construct cells. The plates were located inverted in the 37ºC 

incubator overnight.  

Small liquid culture was grown in the presence of kanamycin.  
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3.2.2.6.  Isolation of plasmid DNA 

Plasmid isolation was performed by following the Qiaprep Spin Miniprep Kit 

procedure. By following this procedure, the bacterial cell membrane was lysed under 

alkaline conditions. Bacterial chromosomes sticking to the membrane was removed and 

plasmids that are free in the cytoplasm were obtained.  The plasmids were kept on silica 

filter in the presence of high salt concentration, whereas bacterial DNA was eliminated by 

removing the supernatant. Lastly, the column was eluted with water in order to get 

plasmids.  

The plasmids isolated from TOP10 cells were transformed into BL21 cells for the 

expression of the protein by following the procedure in part 2.2.2.5., then isolated for 

confirmation. Concentration of the plasmids was determined by NanoDrop 

spectrophotometer at 260 nm.   

Table 4: Concentrations of TOP10 and BL21 cells after transformation  

Name Concentration  Name Concentration 

TOP10 – I  70 ng/µl BL21 – I  202.5 ng/µl 

TOP10 – II  148.9 ng/µl BL21 – II  169.9 ng/µl  

 Glycerol stocks were prepared by adding 15% glycerol into the 2 ml tubes and 

frozen in the liquid nitrogen tank. Later, stocks were placed in the -80ºC freezer.  

3.2.2.7. Digestion of the plasmid with restriction enzymes NdeI and XhoI  

Constructed DNA sequence was cut from isolated plasmid by NdeI and XhoI 

restriction enzymes for confirmation. Double Digestion Calculator provided by Thermo 

Scientific was used to determine the conditions. 2X Tango Buffer, 2 fold excess NdeI and 
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XhoI was recommended. 1 µg of TOP10 and 1.5 µg of BL21 plasmids were digested.  

Tubes were incubated at 37ºC for 1 hour.  

Table 5: Digestion of the plasmid from the restriction sites to cut the gene  

 Top 10 – I Top 10 – II BL21 – I BL21 – II 

Plasmid 14.3 µl 6.7 µl 7.4 µl 8.8 µl 

2X Tango 

Buffer 

6 µl 4 µl 6 µl 6 µl 

XhoI 2 µl 2 µl 2 µl 2 µl 

NdeI 4 µl 4 µl 4 µl 4 µl 

dd-H2O 3.7 µl 13.3 µl 10.6 µl 9.2 µl 

Final Volume 30 µl 30 µl 30 µl 30 µl 

 

3.2.2.8. Confirmation with agarose gel electrophoresis  

Cut DNA was run on the agarose gel for confirmation. The size of the gene was 

determined.  

Agarose gel in concentration of 1 % was prepared. 1 g of agarose was liquefied in 

100 ml of 1X TAE buffer by heating for 3 minutes in a microwavable flask. TAE buffer 

helps the agarose to be polymerized. Then, final concentration of 0.2 µg/ml ethidium 

bromide was added into the solution. Ethidium bromide binds to DNA and makes it visible 
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under UV light. The solution was poured into gel tray and suitable sizes of well combs 

were placed. The gel was left for solidification for 30 minutes at room temperature.  

1 % agarose gel was placed in the gel box filled with 1X TAE buffer. Uncut 

plasmids and cut DNA were sampled. Samples were mixed with 6X loading dye and loaded 

into the wells. Molecular weight marker was loaded as a reference. The samples were run 

on the gel at 110 Volts for 40 minutes.  

3.2.2.9. Expression of FBP in BL21 cells  

The expression of the ferric binding protein was only performed in BL21 cells, 

because of their high efficiency of expressing proteins. Before starting, the small culture 

containing constructed BL21 cells was carried out and left for growing overnight at 37ºC 

under shaking.  

2 ml of starter culture was added to 200 ml of liquid LB medium in the presence of 

kanamycin. Cells were grown in the 37ºC incubator under shaking until the OD600 value 

was measured as 0.6.  

The cells were induced by decreasing the temperature of the incubator down to 

26ºC and adding final concentration of 0.7 mM IPTG (isopropyl-beta-D-

thiogalactopyranoside). After 5 hours of incubation, cells were transferred into 

centrifugation tubes and centrifuged at 7000 rpm for 30 minutes at 4ºC. Supernatant was 

discarded whereas the pellet was kept in the -80ºC freezer.  

3.2.2.10. Purification of Ferric Binding Protein 

All buffers were prepared as mentioned in section 2.2.2.2. and kept in 4ºC.  

3.2.2.10.1. Lysis of the cells by BugBuster protocol  

 The cells were lysed in order to get the expressed protein out of the cell by 

following the BugBuster protocol by NOVAGEN. The pellets were weighted and 

resuspended in 5 fold of BugBuster, filled up to 25 ml of HEPES buffer. 1 tablet of EDTA 
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free protease inhibitor was dissolved in the solution. Resuspension was done by pipetting. 1 

µl of benzonaze was added per ml of BugBuster for resuspension. Everything was 

transferred into falcon tubes and left on the shaker for 20 minutes at room temperature. 

Solution was transferred back to centrifugation flasks and centrifuged at 16000 g for 20 

minutes at 4ºC. Beckman JA-10 rotor was used. Finally, supernatant was kept in the falcon 

tube at 4ºC.  

3.2.2.10.2. Ni-affinity column purification of FBP 

The ability of histidine residues to bind Ni beads allows the protein to be separated. 

Six histidine residues were constructed into the FBP via the vector containing encoding 

gene [42]. Columns that contain slurry Ni-NTA agarose were used for purification. All the 

procedure was performed at 4ºC. 

Ni columns were equilibrated with purification buffer at the beginning. The FBP 

containing supernatant obtained after the lysis of the cells were mixed with resin and let 

shaking in the 4ºC cold room to bind Ni. After 1 hour, the flow through was collected.  

In the washing step, the columns were washed three times with washing buffer. 

Each time, they were incubated in the buffer for 5 minutes. Afterwards, the proteins were 

eluted by adding elusion buffer. The columns were incubated again for 5 minutes. The FBP 

accommodating flow through was collected. Elution step was repeated three times in order 

to get highly pure protein. The final protein solution contains imidazole for stabilization.  

3.2.2.11. SDS-Page check 

 Proteins were analyzed by 12% sodium dodecyl sulfate polyacrylamide gel 

electrophoresis (SDS–PAGE) [43]. Gels were stained with Coomassie colloidal brilliant 

blue according to the protocol described by Dyballa and Metzger [44]. The mixture of 

molecular weight markers were provided by Page Ruler TM unstained protein ladder 

Thermo Scientific.  

http://www.ncbi.nlm.nih.gov/pubmed/?term=Dyballa%20N%5Bauth%5D
http://www.ncbi.nlm.nih.gov/pubmed/?term=Metzger%20S%5Bauth%5D
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3.2.2.12. Dialysis of the FBP to remove imidazole 

As a final purification step, dialysis was performed in order to remove the imidazole 

from the protein sample. Free imidazole causes denaturation of the protein. Therefore, it 

should have been removed before going into further steps [42].  

The dialysis buffer was prepared as it is described in the section 2.2.2.2. 15 ml of 

protein sample was put into dialysis against 2 L dialysis buffer. The sample was left in 4ºC 

cold room. Dialysis buffer was changed after 6 hours and left in the cold room for another 6 

hours.  Eventually, FBP bonded to Fe
+3

 ions were acquired in dialysis buffer.  

3.2.2.13. Removing Fe
+3

 ions from holo-FBP  

To remove the iron from the protein, the suggested protocol in “High resolution 

structure of an alternate form of the ferric ion binding protein from Haemophilus 

Influenzae” by Stephen R. et al. was followed [45].  

15 ml of protein solution was transferred into Centricon 10. The sample was 

centrifuged until the volume was aggregated to 5 ml. 10 ml of sodium citrate washing 

buffer (Buffer I in section 2.2.2.2.) was added to the sample. Then, it was centrifuged again 

until the volume reached 5 ml. This step was repeated six times. The Centricon containing 

5 ml of sample was incubated on ice for 20 minutes. The buffer of the sample was 

exchanged with 10 mM Tris.HCl solution at pH 8 (Exchange buffer in section 2.2.2.2.). In 

order to change the buffer of the protein, the sample was washed with 10 ml of buffer and 

centrifuged until 5 ml of the sample was left. This step was repeated five times. 5 mM of 

Na2HPO4 solution was added and the sample was incubated on ice for another 20 minutes 

(Phosphate solution in section 2.2.2.2.). Lastly, the sample was washed with 10 mM 

Tris.HCl buffer five times. The remaining 5 ml of protein sample was accepted to be iron 

free. The concentration was measured with NanoDrop by measuring the absorbance at 280 

nm.  
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3.2.2.14. Concentration of the apo-FBP 

Apo-FBP in micro tubes was transferred into small Centricon YM-3. Centricon 

tubes were centrifuged until the volume went down to 1000 µl. The concentration of the 

protein was measured at 280 nm.  

3.2.2.15. Preparation of FeCl3 solutions 

FeCl3 solutions were prepared at different concentrations to measure the absorption 

spectra, in order to be able to compare the Fe
+3

 effect on the holo-FBP. Considering the fact 

that FeCl3 is not soluble between pH 5-8, the solutions were prepared in water instead of 

dialysis buffer and the pH was measured as 2.5. 150 ml of 5 mM stock solution was 

prepared to be diluted later.   

10 ml of FeCl3 solutions were prepared by diluting the stock solutions. The volume 

of the 5mM stock solution used in the dilution was calculated according to the equation 7.  

Table 6: Stock FeCl3 solution was diluted into various concentrations 

Concentration Volume of stock FeCl3  

Filled up to 10 ml 

with milli-q water. 
0.01 mM 0.02 ml 

0.05 mM 0.1 ml 

0.1 mM 0.2 ml 

0.5 mM 1 ml 
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3.2.2.16. Bradford assays 

 Protein concentration was determined according to the method of Bradford, using 

bovine serum albumin as the standard [46]. 

 

3.3. RESULTS:  

3.3.1. Construction of pET-28a (+) containing FBP encoding gene  

The amino acid sequence of the protein was received from Protein Data Base, (PDB 

ID: 1D9V) and is as follows:  

DITVYNGQHKEAATAVAKAFEQETGIKVTLNSGKSEQLAGQLKEEGDKTPADVFY

TEQTATFADLSEAGLLAPISEQTIQQTAQKGVPLAPKKDWIALSGRSRVVVYDHTK

LSEKDMEKSVLDYATPKWKGKIGYVSTSGAFLEQVVALSKMKGDKVALNWLKG

LKENGKLYAKNSVALQAVENGEVPAALINNYYWYNLAKEKGVENLKSRLYFVRH

QDPGALVSYSGAAVLKASKNQAEAQKFVDFLASKKGQEALVAARAEYPLRADVV

SPFNLEPYEKLEAPVVSATTAQDKEHAIKLIEEAGLK 

 The gene coding Ferric Binding Protein was optimized for E. coli and inserted into 

pET-28a (+), which has a kanamycin resistance region, with additional His-tag and TEV 

site for cleavage of the his-tag from synthesized protein after purification.   
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Figure 28: pET-28a(+) vector with T7 promoter, kanamycin resistance 

gene, NdeI and XhoI restriction sites  

Figure 29: FBP coding gene sequence with His-tag and TEV site at the 

beginning and a stop codon at the end.  
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3.3.2.  Transformation of the engineered pET-28a (+) into TOP10 and BL21  

 pET-28a + FBP construct was transformed into TOP10 and BL21 cells to be 

multiplied and expressed. The colonies were grown in the presence of kanamycin.  

3.3.3. Confirmation with agarose gel electrophoresis  

After transformation, the plasmid isolated from kanamycin resistant colonies was 

double digested to confirm presence of the gene by agarose gel electrophoresis. The size of 

the constructed plasmid and the gene inserted was known from the construction map. We 

expected to get a band about 7000 base pairs for the plasmid and another band at 990 base 

pairs.  

 The construct was transformed into TOP10 cells for multiplication purposes and 

into BL21 cells for protein expression. Then, plasmids were isolated and FBP coding gene 

was cut for confirmation. The band at 990 bp confirmed the constructed gene’s existence 

(Figure 31). These results were consistent with the construction map (Figure 31).  

Figure 30: Constructed FBP coding gene was inserted in between 

restriction sites NdeI and XhoI.  
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3.3.4. Control of protein expression in E. coli with SDS-page analysis  

 The results were analyzed by running SDS – Page, after expression and purification 

of the recombinant FBP in BL21 cells. In the Ni- affinity purification step, the substantial 

protein was transferred into the elution solutions, containing imidazole from the column. 

Therefore, the bands at about 40 kDa appeared on the SDS – gel.  These results were 

promising. Because most of the proteins was attached to Ni – resin in the washing steps, 

there were not any bands shown for the washing solutions. The presence of bands at 40 kDa 

proved that we were successfully purified desired protein Figure 32.  

 

(a) (b) 

Figure 31: (a) Agarose gel confirmation of TOP10 cells. (b) Agarose gel confirmation of BL21 

cells.  
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3.3.5.  Concentration of the protein solution 

 To measure the concentration of the protein, dialysis was performed to get rid of 

imidazole in the protein solution. The reason of removing imidazole before measuring the 

concentration was because of its interference in absorption. Imidazole gives a peak on the 

same wavelength as the proteins, which would cause an error on determining the 

concentration. Thus, protein concentrations were measured after the dialysis with 

NanoDrop by measuring the absorbance value at the UV-Visible wavelength. The 

concentration of the holo – protein was measured as 1.047 mg/ml. A peak at around 280 

nm was obtained (Figure 33). 

 

Figure 32: SDS-Page control of the protein. PL: pellet, S: supernatant, FT: flow through, 

W: washing, E: elution 
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 The molecular weight of FBP was acquired as 37144 g/mol according to the amino 

acid sequence from ExPASy. After the iron separation from the holo – protein, the 

concentration was measured as 1.616 mg/ml and a peak at around 280 nm was obtained 

(Figure 34). From these results, the molarity of the protein was calculated as 0.044 mM.  

 

 The protein solution was divided into two tubes and both were concentrated into ¼ 

by centrifuging in Centricon. Then, the concentration of the protein was measure again and 
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Figure 33: Protein consantration after dialysis 

Figure 34: Protein concentration after the separation of iron 
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expected to be four times more concentrated (Figure 35). The concentrations of the protein 

solution in both tubes were increased up to 4.2 mg/ml. A peak at the 280 nm was obtained. 

An additional peak at 230 nm appeared. The molarity was calculated as 0.113 mM.  
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Figure 35: Increased concentration 
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4. CHAPTER IV – DISCUSSION  

4.1. Design and Development of the Microfluidic Device 

 The pin-fin configuration in the microchannels was expected to increase efficiency 

of micromixing. With the higher velocities of the flow, the mixing of the two chemicals 

was provided. However, because of the limitations in high cost of sample volumes, the 

micromixing channel was needed to be optimized.  

 Bonding of the PMMA chip was a challenge in this study. Because of the non-

homogeneity of the rigid surface material, high flow rates caused the samples to leak in 

between the layers of PMMA. To avoid leakage, the PMMA plaques were compressed by 

screws. In such instance, the monitoring regions of the channels were affected by their 

shadows, and caused limitations in camera recording.  

 The formidable part of the PDMS design was due to human errors in the fabrication 

step. Since this process was highly human controlled, it was impossible to do a 

standardized fabrication of the microchips. The thickness of the chip and the quality of the 

channels were not standard. This error can be prevented in future designs by practicing 

more fabrications of such channels.  

 The cost and time limitations of micromixing chamber optimization became a 

motivation for running numerical analysis. Simulations provided a quick view and 

perspective of how to improve the microfluidic design for better mixing efficiency. That 

the numerical predictions for the current chip correctly identified the observed mixing 

behavior, we are confident in using the current numerical integration schemes for other 

designs. From the simulations, we find that the location of the pin-fins in the chamber 

should be varied. The configuration of the current design was not found as effective as it 

was originally predicted. Therefore, in the future work different configuration and shape of 

the pin-fins was targeted to be tested (Figure 27).         
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 On the other hand, generally, protein kinetic studies are done by using stopped flow 

designs, which give rise to lots of practical considerations. However, our design can be 

considered as rare because of its continuous flow system. Hence, we avoided all the 

stopped flow accessories such as complicated optical detection equipment, and problems 

relating to sudden pressure drop. Also we were able to obtain flow data as a function of 

distance from the mixing zone by photographing the flow path from side, which allowed us 

to gather thousands of time data points per photograph as opposed to one or two.      

4.2. Expression and Purification of the FBP  

 After the expression of the FBP, the cells were lysed to get the protein. In this step, 

protein solution was observed to have pinkish color, which would suggest that the FBP was 

expressed in holo form. The flow through sample of the washing step in column 

purification was transparent as histidine tagged proteins were expected to be attached nickel 

resin in the column and not to be washed with washing buffer. However, imidazole in 

elution buffer was accepted as a competitive molecule and detached the proteins from 

nickel and transferred them into the solution [47]. Therefore, the pinkish color was again 

observed in the elution. This situation required additional step for removing Fe
+3

 ions.  

 To confirm the proteins’ functioning, they were recombined with Fe
+3

 ions, via 

FeCl3 titration. For this purpose, FeCl3 was prepared in Tris.HCl buffer at pH 8, which was 

identical to the solution where the proteins were present. Nevertheless, FeCl3 happened to 

be insoluble at the indicated pH. Thus, the FeCl3 were prepared in water where the solution 

became acidic. 
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5. CHAPTER V – CONCLUSION AND FUTURE WORK  

5.1. Conclusions  

 In this thesis, a microfluidic based automated system was manufactured. The system 

was designed and developed to have the following features: (I) compact and cost-efficient; 

(II) easy to fabricate microfluidic chip; (III) bioavailable and non-toxic materials used in 

the microfluidic chip, so that they cause no limitation for protein studies; (IV) small sample 

volumes; (V) minimized design was proper monitoring of fast reactions; (VI) disposable 

microfluidic chip to eliminate risk of contamination. 

 We have fabricated microfluidic chips from two different materials. Therefore, we 

have collected comparable data by using PMMA and PDMS microfluidic chips and fin-pin 

mixing geometries. For the purposes of monitoring iron binding dynamics of bacterial FBP, 

we have successfully expressed and purified Haemophilus Influenza FBP by using 

recombinant DNA technology.  

 There were also some difficulties we have met. First of all, sealing of the PMMA 

microfluidic chip was an adversity. Avoiding the fluid to leak in between the layers was a 

challenge for this study. Similarly, bonding of the PDMS microfluidic chip required testing 

several materials until an optimal one was determined. Different procedures were followed 

from the literature to optimize air plasma step in order to provide bonding of the chip 

surface by a glass slide.  

 The advantage of our system, besides the listed features, is the simple monitoring. 

Because the flow is recorded in the microchannels, the captions can be analyzed digitally. 

Besides a high definition camera, there is no other complicated measurement device 

required. This is because of the color change from transparent to pink in the iron binding 

reaction. For systems with no such abrupt color change inherent to the reaction being 

monitored, attachment of an optical sensor to the design would be required. 
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 Our design is also unique in terms of color inclusion into the analysis. Hence, the 

idea of using this design can be extended to 1000s of different systems. 

5.2. Future Work 

 Characterization of the Haemophilus Influenzae FBP will be completed by 

structural analysis. CD (Circular Dichroism) spectra will be measured to find the 

conformational features of the protein. As future work, the design described in Figure 27 

will be fabricated using PDMS material. After the optimization of mixing chamber, 

recombinant FBP will be analyzed by combining with Fe
+3

 solution and will be monitored. 

We expect a color gradient from red (the color of iron solution) to be pink (the color of 

FBP bound to Fe
+3

) (Figure 35). The reaction will be recorded with a high-resolution 

camera and analyzed by a program plotting color intensities at certain points. We aim to 

relate color change to absorbance value to be able to plot the calibration curve, which will 

later be used to determine iron binding constant of the FBP. The color change is expected 

to show the same trend line; exponential decay as the color spectrum from red to pink. 

Therefore, the range will stay between 740 to 630 nm [48].   

 

 

 Future work also contains development of an optical detection compartment, which 

can detect the absorbance values at certain points along the reaction pathway. For this 

purpose, the system described in the reference article will be integrated into our design 

(Figure 36) [17].  

 

Figure 36: Expected color gradient 
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 Kinetic rate data for iron binding protein will be collected from improved 

microfluidic design in future research. As a result, the unavailability of information in the 

field will be fulfilled.  

  

Figure 37: Optical detection compartment (adapted from ref. [17])  
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APPENDIX A 

MATERIALS 

Name of the Material     Supplier 

Plexiglas®      Arkema, France 

SU-8 3000      MicroChem, USA 

SU-8 Developer     MicroChem, USA 

PDMS       Dow Corning, USA 

Si-Wafer      Sigma-Aldrich, Germany 

Bromocresol Green     Sigma-Aldrich, Germany 

Acetic Acid      Merk, Germany 

Tyriptone       AppliChem, Germany 

NaCl       Sigma-Aldrich, Germany 

Yeast Extract       Sigma-Aldrich, Germany 

Kanamycin      ThermoFisher Scientific, USA 

Agar       AppliChem, Germany 

CaCl2       Merk, Germany 

MgCl2       Sigma-Aldrich, Germany 

EDTA       Merk, Germany 
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Tris base      Fluka, Switzerland 

HEPES      AppliChem, Germany 

NaOH       Sigma-Aldrich 

Imidazole       AppliChem, Germany 

HCL       Merk, Germany 

pET-28a(+)      GenScript, China 

Benzonase      Novagen, USA 

EDTA-free protease Inhibitor    Roche, Switzerland 

BugBuster       Novagen, USA 

 Ni-NTA Agarose      QUIGEN, Germany 

Glycine       Molekula, USA 

6X Loading Dye      Fermantas, Germany 

Bradford Reagent      Sigma, Germany 

Distilled Water     Milipore, France 

Ethidium Bromide     Merk, Germany 

Liquid Nitrogen     Karbogaz, Turkey 

MgCl2       Sigma-Aldrich, Germany 

Na2HPO4      Merk, Germany 

NdeI Digestion Enzyme    Fermantas, Germany 
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XhoI Digestion Enzyme    Fermantas, Germany 

Miniprep Kit      Quiagen, Germany 

Autoclave      Certoclav, Austria 

Mass Ruler DNA Ladder    Fermantas, Germany 

Gene Ruler      Fermantas, Germany 
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APPENDIX B 

EQUIPMENTS 

Name of the Equipment     Supplier 

Syringe Pump       KD Scientific, USA 

Tubing       Festo, Germany 

Tygon Tubing      St. Gobain, USA 

Fitting       IDEX, Germany 

Elbow Connector     EATON, USA 

HD Microscope Camera    Vitiny, Poland 

Polyolefin Sealing Foil     HJ-BIOANALYTIK, Germany 

Micro-Machining Needles    Duratek, Turkey 

Harrick Plasma     SciAutomation, Singapure 

Vacuum Oven      Shellab, USA 

Microliter Pipette     Eppendorf, Germany 

Centrifuge      Eppendorf, Germany 

Centrifuge      Beckman Coulter, USA 

Cuvettes      Cole Palmer, USA 

Incubator      Memmert, Germany 
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Spectrophotometer     Schimadzu, Japan  

Vortex       Velp Scientifica, Italy 

 


