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Abstract

Neuronal morphology and function are highly coupled. In particular, dendritic spine

morphology is strongly governed by the incoming neuronal activity. Previously, volumes

of dendritic spines have been considered as a primary parameter to study spine mor-

phology and gain insight into structure-function coupling. However, this reductionist

approach fails to incorporate the broad spine structure repertoire. First step towards

integrating the rich spine morphology information into functional coupling is to classify

spine shapes into main spine types suggested in the literature. Due to the lack of reli-

able automated analysis tools, classification is currently performed manually, which is

a time-intensive task and prone to subjectivity. Availability of automated spine shape

analysis tools can accelerate this process and help neuroscientists understand underlying

structure and function relationship. Several studies on spine shape classification have

been reported in the literature, however, there is an on-going debate on whether distinct

spine shape classes exist or whether spines should be modeled through a continuum of

shape variations. Another challenge is the subjectivity and bias that is introduced

due to the supervised nature of classification approaches. This thesis focuses on mor-

phological, shape, and appearance features based methods to perform dendritic spine

shape analysis using both clustering and classification approaches. We apply manifold

learning methods for dendritic spine classification and observe that ISOMAP implicitly

computes prominent features suitable for classification purposes. We also apply linear

representation based approach for spine classification and conclude that sparse repre-

sentation provides slightly better classification performance. We propose 2D and 3D
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morphological features based approach for spine shape analysis and demonstrate the

advantage of 3D morphological features. We also use a deep learning based approach

for spine classification and show that mid-level features extracted from Convolutional

Neural Networks (CNNs) perform as well as hand-crafted features. We propose a kernel

density estimation (KDE) based framework for dendritic spine classification. We eval-

uate our proposed approaches by comparing labels assigned by a neuroscience expert.

Our KDE based framework also enables neuroscientists to analyze separability of spine

shape classes in the likelihood ratio space, which leads to further insights about the

nature of the spine shape analysis problem. Furthermore, we also propose a method-

ology for unsupervised learning and clustering of spine shapes. In particular, we use

x-means to perform cluster analysis that selects the number of clusters automatically

using the Bayesian information criterion (BIC). The objective of clustering in this con-

text is two-fold: confirm the hypothesis of some distinct shape classes and discover

new natural groups. We observe that although there are many spines which easily fit

into the definition of standard shape types (confirming the hypothesis), there are also

a significant number of others which do not comply with standard shape types and

demonstrate intermediate properties.

viii



İKI FOTON MIKROSKOBIK GÖRÜNTÜLERI KULLANARAK
DENDRITIK DIKEN ŞEKIL ANALIZI

Muhammad Usman Ghani

CS, Yüksek Lisans Tezi, 2016

Tez Danışmanı: Müjdat Çetin

Anahtar Kelimeler: Dendritik dikenler, sınıflandırma, kümeleme, Ayrık Normal Şekil

Modeli, HOG, şekil analizi, Çekirdek Yoğunluk Tahmini, mikroskop, nörogörüntüleme.

Özet

Sinirsel morfoloji ve fonksiyon birbiriyle oldukça ilintilidir. Özellikle dendritik diken

morfolojisi güçlü bir şekilde gelen sinirsel aktivite ile yönetilir. Önceki çalışmalarda

dendritik dikenlerin hacminin diken morfolojisini incelemek ve yapı-fonksiyon ilişkisini

anlamak için temel parametre olduğu düşünülüyordu. Fakat bu indirgemeci yaklaşım

dikenlerin kapsamlı yapı dağarcığını içermemektedir. Zengin diken morfoloji bilgisini

fonksiyonel eşleşmeyle bütünleştirmenin ilk adımı, diken şekillerinin literatürde öner-

ilen temel şekil sınıflarına göre sınıflandırılmasıdır. Yeterli seviyede güvenilir otomatik

analiz araçlarının olmaması nedeniyle sınıflandırma işlemi elle yapılmaktadır. Bu da

analizin öznel ve zaman isteyen bir işlem olmasına yol açmaktadır. Otomatik diken

şekil analiz araçları bu işlemi hızlandırarak sinirbilimcilerin altta yatan yapı ve fonksiyon

ilişkisini anlamasına yardımcı olacaktır. Literatürde diken şekil sınıflandırması ile il-

gili birçok çalışma yer almaktadır. Fakat diken şekillerinin ayrı sınıflar halinde mi

yoksa bir şekil değişim süreci olarak mı ele alınması gerektiği konusunda bir fikir bir-

liğine varılmamıştır. Bu problemde karşımıza çıkan bir diğer güçlük sınıflandırma yak-

laşımlarının güdümlü yapısının getirdiği öznellik ve yanlılıktır. Bu tez, hem kümeleme

hem de sınıflandırma yaklaşımlarını morfolojik, şekil ve görüntü öznitelikleriyle kulla-

narak dendritik diken şekil analizi gerçekleştirme üzerine kurulmuştur. Dendritik diken

sınıflandırma problemine çok katlı (manifold) öğrenme yöntemlerini uyguladığımızda

ISOMAP’in dolaylı olarak sınıflandırma için önemli öznitelikleri hesapladığını gözlem-

ledik. Sınıflandırma amacıyla doğrusal temsil yaklaşımına başvurduğumuzda seyrek

temsilin kısmen daha iyi bir sınıflandırma performansı sağladığını gördük. 2 boyutlu ve
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3 boyutlu morfolojik özniteliklere dayalı diken şekil analizi yaklaşımında 3 boyutlu

morfolojik özniteliklerin sağladığı avantajları gösterdik. Derin öğrenmeye dayanan

sınıflandırma yaklaşımında Konvolüsyonel Sinir Ağlarından (CNNs) çıkarılan orta se-

viye özniteliklerin özel çıkarılmış öznitelikler kadar iyi performans gösterdiğine şahit

olduk. Dendritik diken sınıflandırması için çekirdek yoğunluk tahminine (KDE) bağlı

bir çerçeve tasarladık. Önerdiğimiz yaklaşımları sinirbilimci bir uzmanın belirlediği

etiketlerle karşılaştırdık. Çekirdek yoğunluk tahminine bağlı çerçeve sinirbilimcilerin

dikenlerin şekil sınıflarının ayrılabilirliğini olabilirlik oranı uzayında incelemelerine olanak

vererek şekil analiz problemine daha derinden bakabilmelerini sağlayabilir. Bunlara ek

olarak diken şekillerini güdümsüz öğrenme ve kümeleme yöntemleri üzerinde çalışmalar

yaptık. Bayes bilgi kıstasını kullanarak küme sayısını veriden otomatik seçen x-ortalama

(x-means) tekniğini kullandık. Bu bağlamda kümelemenin iki farklı amaçla kullanıl-

masından söz edilebilir: ayrı şekil sınıflarının varlığına dair hipotezi doğrulamak ve yeni

gruplar keşfetmek. Elimizdeki veride çok sayıda diken standart şekil sınıfları içinde

değerlendirilebilse de, önemli sayıda dikenin bu sınıflara uymadığını ve ara niteliklere

sahip olduğunu gözlemledik.
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Chapter 1

Introduction

This thesis presents new dendritic spine shape analysis approaches based on proba-

bilistic and machine learning methods. In this chapter, we start with defining the spine

analysis problem and motivation behind this research. Further, we provide an overview

of the contributions of this thesis and then discuss the structure of this thesis.

1.1 Problem Definition and Motivation

Dendritic spines, small protrusions of the dendritic shaft, are one of the most im-

portant structures of neurons. Ramón y Cajal first identified spines in the 19th century

and suggested that changes in neuronal activity modify the spine morphology [2, 3].

This claim has been supported by several studies reporting changes in the morphol-

ogy and density with changes in neuronal activity (such as learning and memory), and

neurodegenerative diseases (e.g., Alzheimer’s and Parkinson) [4, 5, 6, 7]. Therefore, un-

derstanding the structure-function relationships might provide a way to interpret how

our brain learns and stores new information. It might also enhance our understanding

of various neurogenerative and neurodevelopmental disorders. The first step towards

understanding the structure-function relationships is to classify spines into main shape

types reported in the literature.

Recent findings on the structure-function links and availability of modern neuron

imaging technology has attracted many researchers, this has led to the collection of
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vast amount of datasets which are mostly analyzed manually due to unavailability of

automated analysis tools. Manual analysis is a tedious, time-intensive, and most im-

portantly subjective task. Availability of reliable automated analysis tools can expedite

research in this domain and assist neuroscientists decode the underlying relationship

between neuron function and structure.

Most of the studies on spine analysis consider confocal laser scanning microscopy

(CLSM) images which does not allow imaging of living cells and therefore cannot cap-

ture dynamic data. Two-photon laser scanning microscopy (2PLSM) has the capability

to image living cells thus can produce dynamic data, which would capture shape transi-

tions during synaptic process, allowing the analysis of tissues over time[8, 9]. However,

the signal-to-noise ratio (SNR) of data collected using 2PLSM is very low as compared

to CLSM. Additionally, following the Abbe’s law [10], resolution of 2PLSM images is

half of the CLSM images. Additionally, experiments with 2PLSM involve imaging cells

over prolonged periods of time which produces large amounts of data (MxNxZxT), as

illustrated in Figure 1.1. This makes the process of manual analysis even more difficult.

Another challenge is subjectivity introduced due to manual analysis, however, this still

has effects on automated systems as well due to supervised nature of classification sys-

tems. Additionally, there is an on-going discussion in the literature whether to model

the spines as distinct classes or continuum of shape variations. Accordingly this the-

sis attempts to fill this gap presenting new probabilistic and machine learning based

methods for 2PLSM images to perform dendritic spine shape analysis automatically.

1.2 Contributions of this Thesis

The first major contribution of this thesis is the development of a shape and appear-

ance features based classification method. Disjunctive Normal Shape Models (DNSM)

[11] is a recently proposed parametric shape representation. We start with automati-

cally segmenting spine images by applying DNSM and use achieved representation as

shape features. Histogram of oriented gradients (HOG) [12] has been widely used for

object detection and recognition tasks in computer vision, we use HOG to compute

2



(a) t = 1 (b) t = 2 (c) t = T

Figure 1.1: Stacks of dendritic branches (MxNxZ) captured using 2PLSM from time

t = 1 to t = T .

appearance features. We perform non-parametric kernel density estimation (KDE) and

apply likelihood ratio test (LRT) to classify test images [13]. Our KDE based classi-

fication approach provides likelihoods of class membership, it can be used to examine

the question of continuum of shape variations in a principled manner.

The second contribution of this thesis is using morphological features with state-

of-the-art classification techniques and report importance of morphological features for

classification of spines. Many important morphological features of dendritic spines, e.g.,

head diameter, neck length, etc., are estimated and results are reported with complete

and a subset of features.

The third contribution of this thesis is a clustering based approach for spine shape

analysis. We use morphological, shape, and appearance based features to perform

cluster analysis of dendritic spines. The advantages of adopting a clustering approach

are: such an approach would not suffer from subjectivity, analysis time would be reduced

by avoiding manual labeling tasks, and it would help us confirm existing hypothesis

regarding spine shapes as well as discover new patterns.

The fourth contribution of this thesis is to apply manifold learning based approach

for spine classification. Manifold learning techniques uncover the intrinsic dimension-

ality of datasets, we applied different manifold learning approaches on spines dataset

and classified spines from extracted features. We observed that ISOMAP [14] implicitly

3



computes prominent features suitable for classification of dendritic spines.

The fifth contribution of this is the application of linear representation based meth-

ods for spine classification. We apply the `1-norm based approach discussed in [15] and

compare the classification results with the least squares method and `2-norm method

[16].

The sixth contribution of this thesis is the development of an approach for 3D neck

length estimation. Neck length is an important feature of dendritic spines. We have

developed an approach to estimate 3D neck length of spines by estimating geodesic

distance between dendrite surface and spine head. We estimate several other features

important for different applications; neck base point: important for spines tracking;

spine head to dendrite angle: important to study spine motility. Additionally, we

propose a neck-path features based spine classification approach.

The final contribution of this thesis is the application of a deep learning based

approach for spine analysis. We use a pre-trained network trained on natural images

as a feature extractor as well as fine-tune this network on our spines dataset.

Overall, this thesis presents several approaches to perform spine analysis from 2D

and 3D images. Our KDE based framework enables neuroscientists to study the ques-

tion of continuum of shape variations in a principled manner. Our shape and appearance

features based approach is efficient, robust, and accurate feature extraction scheme. Ad-

ditionally, our cluster analysis approach allows neuroscientists to analyze large datasets

without the need of labeling spines and discover possibly new patterns.

1.3 Organization of the Thesis

This thesis is organized as follows. Chapter 2 presents background of dendritic spine

shape analysis. This includes introduction to dendritic spines, relationship between neu-

ronal function and spine structure, spine shape analysis, an overview of related work

reported in the literature, and background of approaches applied for spine analysis in

this thesis. Details of 2D and 3D morphological feature based analysis are presented

in Chapter 3. Feature extraction approaches applied in this thesis, KDE based clas-

4



sification framework, and results for proposed classification techniques are presented

and discussed in Chapter 4. Our clustering approach for unsupervised shape analysis

and the corresponding results achieved with different feature extraction techniques are

discussed in Chapter 5. Chapter 6 provides a summary of the main findings of this

thesis and future work suggestions.
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Chapter 2

Background

In this chapter, we present background of dendritic spine shape analysis. We begin

with introducing dendritic spines and relationship between their structural changes

and neuronal activity changes. Further, we describe the dendritic spine shape analysis

problem and present an overview of some existing spine shape analysis studies.

2.1 Dendritic Spines

Dendritic spines, bulbous protrusions of the dendritic shaft, are important features

of neurons. Spines were first identified by Ramón y Cajal in the 19th century and

reported to change their morphology with variations in neuronal activity [2, 3]. Studies

supported this proposal and reported changes in spine density and morphology with

neuronal activity [4, 5, 6, 7]. Spines from hippocampal neurons are related to short-

term memory, learning, and neuro-degenerative diseases; for instance Parkinson’s and

Alzheimer’s [17, 18]. It is also found that Alzheimer’s disease cause decrease in spines

density and dendrite deformation [18]. Spines act as post-synaptic part of synapses

[19], and are main receivers for synaptic input [3]. Spines make synaptic connections

with neurotransmitters from axon terminals and receive excitatory inputs transmitted

by the central nervous system [17]. Dendritic spines keep storing the synaptic strength

and assist the transmission of electrical signals to the neuron’s cell body. Spacek and

Hartmann [20] identified the correlation between the surface area of a synapse and
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Figure 2.1: A dendritic branch with several spines imaged using a two-photon laser

scanning microscope (2PLSM) is shown, arrows point at some of the spines attached

to the dendritic branch.

spine’s volume, but they did not explicitly study the role of the spine neck and head.

A dendritic branch with several spines captured using 2PLSM is shown in Figure

2.1. Each dendritic spine has a small bulbous head that is connected to the parent

dendritic shaft through a narrow neck [8]. Spine head and neck both have different

functions and collaborate with each other to transfer synapses received from axons to

the dendritic branch. Postsynaptic density (PSD) area is found to be correlated with

spine head diameter and number of postsynaptic receivers [3, 21]. Additionally, the

neck length of a spine is also reported to be proportional to its functional properties

[21], its impedance enables filtering of membrane electrical potentials [3, 21]. Spine

neck diameter and length are also reported to affect the diffusional coupling between

spine and dendrite [22, 23]. Morphological properties of spine neck and head are usually

not proportional to each other, the spine neck diameter and neck length are not related

either [3]. Spines have been known to show extraordinary diversity since their discovery

[24]. They are reported to have different density and size across different brain areas,

cell types, and animal species [3]. Even within a particular cell, spines exhibit a great

variety in spine neck and head dimensions [3].
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(a) Intensity images collected using

2PLSM

(b) Manual annotations

Figure 2.2: Spine Classes: Mushroom, Stubby, Thin, Filopodia (Left to Right). Inten-

sity and corresponding manually annotated images are shown for each shape class.

2.2 Shape Analysis

There is an on-going debate in the literature whether spine shapes represent distinct

classes or should be modeled through a continuum of shape variations. This section

discuss both distinct classes and continuum of shape variations perspectives.

2.2.1 Classification

Dendritic spines have different shape types, and researchers believe these different

morphological variations could be proportional to various functional roles or develop-

mental stages [25]. Traditionally, dendritic spines in the literature are grouped into

four classes: mushroom, stubby, thin, and filopodia [3, 17, 22, 26, 27]. An example of

each look of these classes is given in Figure 2.2. Mushroom spines have large bulbous

head and long neck, thin spines have small head and thin long neck, whereas neck in

stubby spines is either missing or very small, and filopodia are found to have longer

necks and generally do not have clear head [3]. As discussed earlier, the distribution

of different types of spines varies in different parts of brain. It is also dependent upon

age of the animal being imaged. For instance stubby spines are known to be dominant

during early postnatal development but they are found in adult animals as well [3].

Grutzendler et al. [28] observed abundance of filopodia type spines in young animals

and their absence in adults. Dendritic spine plasticity is greatly reduced in adulthood

and long-term memory capability is achieved [29].
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2.2.2 Continuum of Shape Variations

The classification of shapes described in previous subsection has been widely applied

in most of studies, however, there is still an open question whether distinct spine classes

exist or these should be modeled through a continuum of shapes. Peters and Kaiserman-

Abramof [27] also pointed that some spines in their dataset had intermediate shapes

and were difficult to be assigned to one of the standard classes. Parnass et al. [25]

suggested that morphological groups of spines do not depict inherent distinct classes

of spines, instead they represent different variations a spine shape can take at different

times through its lifetime. Morphological changes in dendritic spines are related to

the synaptic function and neuronal activities [17]; Bourne and Harris [30] reported

enlargement of thin spines and their transition to mushroom spines upon synaptic

enhancement.

Whether to view spine analysis as a classification problem or whether to model them

through a continuum of morphological variations is still an open question and being

studied extensively in the literature. Arellano et al. [21] reported that classification into

traditional spine shape types was not possible due to existence of several spines with

intermediate morphological characteristics; they applied morphological features for this

characterization. Spacek and Hartman [20] additionally added two intermediate spine

classes between stubby, and mushroom; and mushroom, and thin spines. Ruszczycki

et. al. [24] suggests that identifying spines in 2 groups (large and small) instead of

classifying into different classes results in better sensitivity. Basu et al. [31] reported

that human expert was not sure while assigning labels for some of the the spines in

their dataset.

Wallace and Bear [32] claimed that morphological measurements of spines acquired

from their data do not support the idea of existence of distinct spine classes. They

studied spine head diameter, and length; and reported to have a continuous distribution.

Mancuso et al. [33] suggested to perform quantitative analysis of spines based on

morphological parameters; divide them into natural groups and count spines in different

groups. Ruszczycki et. al. [24] believes that there is no standard classification rule, and

different researchers may use different criteria. We have also noted similar observations
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in the literature that there is no standard for classification and that each group defines

the classes based on single or multiple expert/experts they work with, which causes

analysis results to suffer from subjectivity.

2.3 Related Work

This section presents a brief summary of some of the studies reported on dendritic

spine classification. Although many different algorithms are proposed to segment the

dendritic spines automatically, there are a few studies in the literature focused on

automated classification of dendritic spines. Rodriguez et al. [22] reported a study on

spine classification based on 3D images acquired by confocal laser scanning microscopy

(CLSM) and computed head to neck ratio, neck length, head diameter, and aspect ratio.

They performed classification using a decision tree and used manual labels assigned by

human expert operators to validate performance of their approach. They reported intra-

operator and inter-operator variability while assigning the labels. Son et al. [17] used

neck diameter, head diameter, shape criteria, area, length, and perimeter with a decision

tree to classify spines. They also used CLSM for imaging and human expert assigned

labels for evaluation. Shi et al. [19] developed a semi-supervised learning approach

based on 3D images acquired using CLSM and used a weighted feature set consisting of

neck diameter, head diameter, volume, and length for classification of spines. A recent

study on spine classification based on CLSM images extracted morphological features

and used a rule-based classification approach [31].

Koh et al. [8] developed a classification approach based on ratio criteria inspired

by Harris et al. [34] using the ratio of spine length to neck diameter, and ratio of head

diameter to neck diameter. They used 2PLSM to acquire images. Erdil et al. [35]

suggests that intensity information in the regions in which a potential neck is likely to

be contained can be used to differentiate spine classes. Erdil et al. [35] applied intensity

based features to perform classification of spines from 2PLSM intensity images.

Most of the studies on spine analysis focus on CLSM images, there are only a few

studies that considered 2PLSM images. Another observation is that most of the stud-
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ies considered morphological features and rule based classifiers. This thesis attempts

to fill this gap and propose new probabilistic and machine learning methods based

classification approaches.

Also it can be noticed from a small subset of studies on classification summarized

here, most of the groups use one or more human experts to assign class labels which

are later used to evaluate the performance of their supervised classification approaches.

Even though using the manually extracted labels as ground truth is a viable approach for

this problem, it introduces subjectivity. We attempt to address this issue by presenting a

clustering approach aiming to discover natural groups of spine shapes in an unsupervised

fashion using various feature representations.

2.4 Manifold Learning

Manifold learning is an important methodology with applications in a wide range

of areas including data compression, pattern recognition, and machine learning [36].

Manifold learning can be seen as a dimensionality reduction problem, with the goal of

producing a compressed representation of high-dimensional data. It can also be viewed

as an algorithm to compute degrees of freedom that would be sufficient to reproduce

most of the variability in data [36]. Mathematically, we can formulate the dimen-

sionality reduction or manifold learning problem as follows: given an N-dimensional

random variable x = (x1, x2, ...., xN)T , compute its low dimensional representation,

y = (y1, y2, ...., yD)T such that D ≤ N , keeping maximum information from original

high-dimensional data according to some criterion [37]. Different algorithms apply dif-

ferent criterion to reduce dimensionality, e.g., principal component analysis (PCA) uses

maximum variance as criteria.

Many dimensionality reduction techniques have been developed with application

in several areas. These techniques are broadly categorized into linear and non-linear

dimensionality reduction techniques. While all of these approaches share a similar

objective: reduce dimensionality, approaches applied are different. The reason behind

their success is the inherent redundancy in most natural images and the fact that natural
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images having high-dimensional data mostly lie near a low-dimensional manifold [36].

PCA is a widely used classical technique that provides a transformed lower dimen-

sional representation attempting to preserve maximum variance, but it is not very ef-

fective in various application due to its global linearity property [38]. Multidimensional

scaling (MDS) provides a lower dimensional representation attempting to preserve the

distance between points, but it suffers from similar problems as PCA [39]. Locally lin-

ear embedding (LLE) is a nonlinear dimensionality reduction approach that finds the

low-dimensional representation striving to keep embedding of high-dimensional data

[40].

ISOMAP is another non-linear dimensionality reduction approach that possesses

the best features of PCA and MDS [14]. It can be viewed as an extension of MDS

by replacing the Euclidean distance metric with geodesic distance. The Laplacian

eigenmaps method constructs a graph by applying the K-nearest neighbors (KNN) and

computes its weights in such a way that the norm of the gradient is minimized in the

least squares sense [41]. Local Tangent Space Alignment (LTSA) also constructs the

graph using KNN and for dimensionality reduction it applies an approximation to local

tangent spaces for each neighborhood [42].

2.5 Linear Representation

Wright et al. [15] presented a sparse representation based classification approach for

face recognition. The approach consists of two ideas, one is to represent incoming test

image as a linear combination of training images, other is to achieve this representation

by imposing `1-norm constraint (sparsity).

2.5.1 The `1-Norm Method

Sparse representation attempts to compute the sparse decomposition of signals in

a dictionary [43]. Sparse representation has proven to be successful in a wide range of

applications; from signal representation to acquisition and compression of high dimen-

sional signals [44]. It has also offered effective solutions to computer vision problems
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such as face recognition [15] and image classification [45]. It has been claimed that

this approach uses the inherent property of most natural images; images from the same

class demonstrate degenerate structure [44].

The assumption behind sparsity based classification is that spine shapes from the

same class lie on a low-dimensional linear subspace. The idea is to represent incoming

test spine image as a linear combination of spines from the training data. The sparse

coefficients produced by this representation can then be used for classification [15].

Sparsity requires these coefficients to be dominant for one class and zero for all other

classes. This can be achieved using `0 minimization but for many applications that is

an NP-hard problem [15]. However, if the `0 solution is fairly sparse, it is equivalent to

solving the `1 minimization problem [15].

We construct the matrix Ai = [si,1, si,2, ...si,ni
] ∈ Rm×ni with ni training samples

from the ith class, where each training sample represents a column of Ai by stacking

columns of each training image. Hence, each column si has m = width× height rows.

Now, assuming sufficient samples are available for training, any new image (t ∈ Rm)

from the ith class can be linearly represented in terms of training images of the same

class using Equation 3.1.

t = ζi,1si,1 + ζi,2si,2 + ...+ ζi,ni
si,ni

(2.1)

where, ζi,j ∈ R is a scalar ∀j. For classifying, as the class membership is initially

unknown, we construct a new matrix A containing complete n training data available

for all k classes, as illustrated in Equation 3.2.

A = [A1, A2, ...Ak] = [s1,1, s1,2, ...sk,nk
] (2.2)

The linear representation would be modified to the form of Equation 2.3.

s = Ax0 ∈ Rm (2.3)

Where, x0 = [0, ..., ζi,1, ζi,2, ..., ζi,ni
, 0, ..., 0]T ∈ Rn is the sparse coefficients vector, ide-

ally with all zero elements except the ones associated with the ith class. Here, class

information is encoded in entries of vector x0, which can be easily exploited to per-

form classification. As discussed earlier, `0 minimization problem is NP-hard and it is
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equivalent to `1 solution assuming that it is sufficiently sparse. The solution for this

problem can be achieved in polynomial time and there are several solutions reported in

the literature.

Minimum residuals based classification (also referred as sparse representation-based

classification algorithm, SRC) has been introduced by Wright et. al. [15] to perform

classification when we represent a test image as a linear combination of training images.

As name suggests, it performs classification based on minimum residuals (as illustrated

in Equation 2.4). Where, δi(x̂i) represent residuals for the ith class. The idea is that

a test image would ideally be represented by its representative class, which is not

practically achievable due to noise and other artifacts in real images. In any case, while

there might be some representation coefficients belonging to wrong class, most of the

coefficients should come from true class.

Class(t) = argmini‖t− Aδi(x̂i)‖2 (2.4)

2.5.2 The Least Squares Method

The idea behind the least squares method is similar to `1 approach, i.e., represent

test image as a linear combination of training images. However, in comparison to the

`1 case, ζ are estimated by applying the least squares method using Equation 2.5 [16].

ζ̂ = argminα∈Rn‖t− Aζ‖2 (2.5)

Solution of Equation 2.5 can be found by re-formulating the psuedo-inverse. We can

perform QR factorization, since our input data is real Q would form an orthonormal

basis, and R an upper triangle matrix. Using this approach we can estimate represen-

tation coefficients ζ̂, as given in Equation 2.6. Once the representation coefficients have

been estimated SRC algorithm can be applied to perform classification.

Compute QR = A

ζ̂ = R−1QT t
(2.6)
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2.5.3 The `2-Norm Method

Using this approach, we represent the test image as a linear combination of training

images, however, we use Tikhonov regularization to achieve this representation. We

estimate the representation coefficients, ζ̂, by applying `2-norm constraint on coeffi-

cients, as illustrated in Equation 2.7. In order to perform classification SRC algorithm

is applied on achieved representation.

minimize ‖Ax− t‖22 + λ2 ‖x‖2 (2.7)

2.6 Disjunctive Normal Shape Models (DNSM)

Disjunctive Normal Shape Models (DNSM) is a recently proposed shape model;

we exploit its parametric nature and use it as a feature extraction approach. DNSM

[11] is an implicit model that represents a shape by union of convex polytopes that

are constructed by intersections of half spaces. Mesadi et al. [1] introduced DNSM-

based shape and appearance priors and tested their potential on various segmentation

problems. This approach has proven successful, it provides better segmentation as

compared to the state-of-the-art approaches.

Shapes can be represented using a characteristic function, and DNSM approximates

shape characteristic function by a union of N convex polytopes. These polytopes are

constructed by intersection of M half-spaces, as illustrated in Figure 2.3(a). These

half-spaces are further relaxed using sigmoid function, a smoothed polytope is shown

in Figure 2.3(b). The resulting DNSM approximation to the characteristic function of

shape is presented in Equation 2.8. In the following equation, x = {x, y, 1}, and D = 2

for 2-dimensional (2D) shapes. wijk are the only free parameters in the DNSM and

they determine the position and orientation of half-spaces (discriminants). For further

details of the DNSM, readers are referred to [11].

f(x) = 1−
N∏
i=1

(
1−

M∏
j=1

1

1 + e
∑D+1

k=1 wijkxk

)
(2.8)
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(a) Sharp Polytopes

(b) Smooth Polytopes

Figure 2.3: Sharp and Smoothed polytopes to illustrate shape representation using

DNSM.

Further, Mesadi et al. [1] introduced DNSM based shape and appearance priors to

improve segmentation. In this paper, we apply this DNSM based approach to segment

dendritic spines. This approach exploits the parametric nature of DNSM, and learns

shape and appearance features from training data to segment test images. DNSM

shape and appearance priors based approach has two stages for segmentation of spines:

training, and testing.

The training stage consists of two steps, first represent the manually segmented

(binary) image using DNSM parameters. During second step, we construct local ap-

pearance and shape priors from training intensity and binary images. This method gen-
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erates an ample amount of shape variations by local combinations of training shapes,

which enables this method to produce good segmentation results even with limited

training data. Additionally, local appearance priors constructed by intensity statistics

around each half-plane equips this method with better expressive capability to represent

training data.

Images are segmented in the testing stage by minimizing the weighted average of

appearance and shape energy terms. Weights wijk are updated in each iteration using

the gradient descent, as illustrated in Equation 2.9, where α, and γ are the levels of

contributions from shape and appearance terms in updating the weights, wijk.

wijk ← wijk − α
∂EShape
∂wijk

− γ ∂EAppr
∂wijk

(2.9)

2.7 Histogram of Oriented Gradients (HOG)

Histogram of oriented gradients (HOG) [12], as the name suggests computes his-

tograms of gradient directions and applies contrast normalization. HOG has been

widely used for object detection and recognition tasks in computer vision. HOG [12]

characterizes the local appearance features by computing 1-D histograms of gradient

orientations. HOG has been studied extensively in the literature and has been successful

in various object detection and recognition tasks.

The HOG representation is achieved in several steps: first step involves dividing

the image into small spatial regions called “cells" and computing gradient orientations

in each cell. Then gradient orientations are divided into smaller regions called “bins".

A 1-D histogram is constructed for each bin by accumulating corresponding gradient

directions. Further, it is suggested by Dalal and Triggs [12] to apply contrast normal-

ization in order to achieve illumination in variance properties for achieved descriptors.

Contrast normalization is applied using relatively large sized regions called “blocks" and

normalizing the cell histograms by block histograms. It is suggested to use overlapping

blocks for sufficient contrast normalization. Final step involves constructing a single

1-D descriptor by combining all histograms.
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2.8 Intensity Profile Based Features

Erdil et al. [35] has proposed a joint classification and segmentation approach for

dendritic spine segmentation in 2PLSM images. That study suggests that intensity

information in the regions in which a potential neck is likely to be contained in can be

used to detect spine classes. Regions where the neck might appear is found using the

assumption that the spine neck lies below the spine head. Once the spine head is found

by minimizing an intensity-based energy function using active contours [46], the pro-

posed approach creates two rectangular regions below the spine head as shown in Figure

2.4. The first region shown in Figure 2.4(a) is constructed such that the bottom point

of the spine head (shown by a red cross) lies at the center of the rectangle. The second

rectangular region shown in Figure 2.4(b) is a narrower one and is drawn such that it

is located just below the spine head. Erdil et al. extract three sets of feature vectors

by exploiting intensities in these rectangular regions. The first set of feature vectors

is obtained by summing up the intensities in the first rectangle horizontally. Similarly,

the second set of feature vectors are obtained by vertical summation of the intensities

in the corresponding rectangle. The final set of feature vectors are the histograms of

intensities in the second rectangular region. Erdil et al. [35] used these feature vectors

for classification of mushroom and stubby spines and report their effectiveness. In this

thesis, we investigate the performance of these feature vectors in clustering of dendritic

spines.

(a) First region (b) Second region

Figure 2.4: Regions in which a potential neck is likely to be contained.
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2.9 Deep Learning

The recent success of convolutional neural network (CNNs) in various image clas-

sification tasks have a tremendous impact on machine learning research. The reasons

behind their success are availability of large datasets and their ability to automatically

extract reliable mid-level features. Conventional methods involve a feature extraction

step before training a classifier to be able to classify new images. This typically involves

designing features specialized for a domain, which is a demanding task and requires

domain knowledge. For instance, most of the studies on spine classification extract

morphological features of dendritic spines. While designing these features is a compre-

hensive task, these hand crafted features become over-specialized to specific datasets. It

becomes worse when these over-specialized features are combined with rule based clas-

sifiers, as it is practiced in most of the spine classification studies [22, 17, 19, 31, 8]. In

contrast, deep learning methods learn mid-level features during the training stage which

are not manually designed. However, deep learning methods require large amount of

dataset during the training process, which is not achievable in many biomedical image

analysis techniques. Therefore, we apply transfer learning with CNNs to cope with

small dataset problem.

Transfer learning efforts to transfer information learned from source task(s) to im-

prove learning of a target task; source and target tasks are mostly related to each

other [47]. With recent success of CNNs in various image classification tasks, transfer

learning has been successfully applied with CNNs to learn a target task which in some

cases is very different from source task. The reason behind applying transfer learning

with CNNs is that CNNs generally require large datasets for training from scratch. In

this context, transfer learning enables researchers to use CNNs as a feature extraction

technique as well as fine-tune a model trained on source task with target task dataset.

However, transferability depends upon the distance between source and target tasks

[48].

AlexNet [49] consists of eight layers, the first 5 layers are convolutional and the last 3

layers are fully-connected. An N -dimensional softmax is followed by the last layer which

19



produces a distribution for each class. AlexNet uses the multinomial logistic regression

as the objective function for classification. AlexNet won the ImageNet Large Scale

Visual Recognition Challenge 2012 (ILSVRC) [50]. ImageNet [51] is a large dataset

consisting of millions of high-resolution images including thousands of object categories

and ILSVRC deals with recognizing objects in this dataset. Success of AlexNet in

ILSVRC 2012 confirms its robustness and reliability of its feature extraction process.

As mentioned earlier, transfer learning can be applied in two ways with CNNs: (i)

use trained CNNs as a feature extractor or (ii) Use trained CNNs as initialization and

fine-tune network weights on target dataset.
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Chapter 3

Morphological Features for Spine

Shape Analysis

We have proposed morphological features based approach for both 2D projections

and 3D data. We describe both of the morphological feature extraction methods in this

chapter.

3.1 Morphological Analysis in 2D (Morph2D)

We have developed procedures to extract features from 2D projections, that are in-

formative about the spine shape classes. Basic image processing techniques are applied

to compute morphological features of dendritic spines. We start by segmenting spines

using DNSM and use segmented images to extract morphological features. The features

used in this study are listed below:

• Head Diameter

• Neck Length

• Area (No. of Pixels in foreground)

• Perimeter

• Height of bounding box
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Figure 3.1: Circle fitting results for some of the spines.

• Width of bounding box

• Neck Length to Head Diameter Ratio

• Circularity

• White to Black Pixels ratio in bounding box

• Shape Factor

In order to compute the head diameter, Hough Circle Transform (HCT) [52] is applied

to fit the biggest circle inside the spine. For some of the spines, HCT fails to fit a circle

in the spine head. In this case, the ellipse fitting algorithm of [53] is applied. Finally

head diameter is computed from the diameter of the circle or the axes of the ellipse

fitted in the spine head. The results of the circle fitting algorithm are presented in

Figure 3.1 for some of the spines. Circularity is computed using perimeter and area as

shown in Equation 3.1.

Circularity =
Perimeter2

4π × Area
(3.1)

Neck length computation is a challenging process. First, dendrite perimeter and

medial axis are extracted from maximum intensity projection image, to be used at

later stage as reference point. First we applied Otsu thresholding [54] get a rough

segmentation of the dendrite (which included spines as well), and skeletonized this

segment using a fast marching distance transform approach [55]. Then in order to

exclude spines from the dendrite we applied erosion with a locally-adaptive sized, disk-

shaped structuring element that runs over the medial axis. To achieve size variation,
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Figure 3.2: If circle fitted on spine head intersects with dendrite ⇒ NeckLength = 0.

at every medial axis location diameter of the structuring element was adapted to the

measured width of the segment.

Based on manual analysis of stubby spines, a heuristic is applied, if the circle fit-

ted on spine head intersects with dendrite, it is concluded that the spine does not

have a neck, as shown in Figure3.2. Otherwise, neck length computation algorithm

is applied. Then the algorithm computes the distance from spine boundary points to

the center of head, and selects top N points with maximum distance, as illustrated

in Figure 3.3(a). Subsequently the distance is calculated between sorted spine points

and dendrite medial axis. A threshold (Tm, maximum allowed distance) is applied to

the distance between these N points and the dendrite medial axis. Tm is computed

as follows: Tm = meanDistance + 2× StandardDeviation, where meanDistance and

StandardDeviation represent mean and standard deviation of distance from each sorted

spine point to dendrite medial axis respectively. Pixels below Tm are selected as can-

didate pixels for base points, as depicted in Figure 3.3(b). Base points are the pixels

where the spine is connected to the dendrite surface. This approach allows us to locate

the pixels closest to the dendrite and furthest from the spine head.

Among the candidate pixels, the two pixels with maximum distance from each other

under the condition distance ≤ 3×headRadius (as shown in Figure 3.4) are selected to

be the base pixels of the spine, here headRadius represent radius of spine head. Finally,

Multistencil Fast Marching (MSFM) method [56] is used to construct a distance map.

This map is used as an input for the Runge-Kutta algorithm [57] to calculate the shortest

path between center point of the spine head and the target point (center point between

base pixels). Shortest path results for neck length computation for a few images are

depicted in Figure 3.5. Neck length is measured by subtracting the radius of the head

from shortest path length (Dist = shortest path length), as described in Equation 3.2.
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(a) N points are selected

with top distance from

boundary points to head

center.

(b) Points with distance ≤

Tm from dendrite are se-

lected.

Figure 3.3: Selecting candidates points for neck base.

Figure 3.4: Neck base points selection.

NeckLength = Dist− headRadius (3.2)

To compute shape factor, which consists of three features, the algorithm fits a circle

inside the bounding box of the spine with radius = (NeckLength+HeadDiameter)/2.

Then white pixels inside the circle, white pixels outside the circle, black pixels inside the

circle are calculated and serve as the three features of the shape factor. Classification

results using this approach has been reported on a small dataset in [58].
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Figure 3.5: Shortest Paths for Neck Length Computation

3.2 Morphological Analysis in 3D (Morph3D)

We present a new approach for analysis of dendritic spine shapes using 3D infor-

mation without the need to segment spine images. We compute 3D neck length, align

neck paths and extract shape and appearance features using neck path information.

We start the process by manually selecting a region of interest (ROI) around the

spine. The ROI is selected in such a way that spine head is located around center of

it. Further, we use water-shed based segmentation approach to segment spine head.

Once the head of spine of interest has been segmented, a fast marching algorithm [56]

computes the spine neck path from the center of the head of the segmented spine to

a number of candidate target locations on the proximal surface of the segmented den-

drite, which results into a neck path for each target location. Further, we apply three

constraints to select the neck path from these candidate paths. These constraints are

neck path length, path complexity (`1-norm of path derivatives), and path smooth-

ness (`1-norm of image intensities along the path). We select the neck path that has

collectively the lowest value for these three constraints.

3.2.1 Spine Neck Path and Length

Neck length computation is a challenging task due to spine shape variations and

neck motility. We begin with partial segmentation of spine head by applying watershed

segmentation using k = 1. This is further used to compute the center of spine head

by finding its center of mass. Further, dendrite skeleton and segmentation is computed

in 2D using techniques described earlier in the paper. In order to map the dendrite

on z -axis, we construct a vector with intensity values for all slices on z -axis at each
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skeleton point and fit a Gaussian. The mean value of fitted Gaussian corresponds to

coordinate of dendrite in z -direction. These observations are noisy due to the fact that

often there are spines on dendrites (along z -direction). To cope with this noise, median

of all z -coordinate values is computed. Although this assumption is not always true

globally (for entire dendritic branch), however, this approximation holds locally (in the

region of interest). Similar approach is used to map center of spine head on z -axis.

Each slice of dendritic branch image is eroded with a disk-structuring element to

reduce the spurious paths. Multi stencil fast marching (MSFM) method [56] is applied

to compute the 3D distance map using spine head center as source point. The Runge-

Kutta algorithm [57] is applied on 3D distance map to compute the shortest paths

(geodesic) from N point on dendrite perimeter to the spine head center. These points

are selected by finding N nearest points from spine head center to dendrite perimeter

(using Euclidean distance as metric).

Finally, selection of the correct neck path is the crucial step. A simple approach

would be to select the path with minimum length (Equation 3.3), but it would fail in this

scenario because of motile nature of spine necks. Therefore, mere path length constraint

is not enough. We introduced two additional constraints to select the path with best

geodesic approximation. The first additional constraint is path complexity (Equation

3.4), i.e. path should be as simple as possible. Other constraint is smoothness of image

intensities on the path (Equation 3.5), i.e. intensity changes on the path should be as

minimal as possible. Equation 3.6 is applied to find the correct neck path. Final neck

paths for some of the spines are shown in Figure 3.6.

LP =

∮
~P

ds (3.3)

CP =

∥∥∥∥∂P∂x
∥∥∥∥
1

+

∥∥∥∥∂P∂y
∥∥∥∥
1

+

∥∥∥∥∂P∂z
∥∥∥∥
1

(3.4)

SP =

∥∥∥∥dV (xP , yP , zP )

dI

∥∥∥∥
1

(3.5)
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(a) (b) (c)

(d) (e) (f)

Figure 3.6: Neck paths for some of the spines.

NeckPath = argminP

(
LP

max(Lp)
+

CP
max(Cp)

+
SP

max(Sp)

)
(3.6)

Equation 3.3 corresponds to the path length from dendrite surface to spine head

center. To compute neck length, we first compute the radius of spine head by fitting

a circle using Hough Circle Transform (as suggested in [58]) on watershed segmented

spine head with k = 5 and then use Equation 3.7.

NeckLength = LP − radius (3.7)

3.2.2 Neck Shape Representation Using Neck Path

The 3D neck paths that our approach finds provide a representation of neck shape,

if we can align all spines and neck paths according to a common reference, these paths

can serve a nice representation of spine neck shape which can further be used for spine

classification. Spines can be aligned as explained below:

• Find angle between neck base and center of the spine head.
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(a) (b) (c) (d)

(e) (f)

Figure 3.7: Aligned neck paths for some of the spines.

• Compute the alignment angle based on position of spine with respect to surface

of dendrite.

• Align path by applying geometric transform to rotate the path according to align-

ment angle.

We apply this approach to align neck paths, results are shown in Figure 3.7, as it can

be seen it produces reasonable results. Spine neck path can be used a representation

of spine neck shape, basic geometric features computed from this path can be used for

classification δx, δy, δz. We construct feature vector for classification consisting of head

diameter, neck length, neck path shape features (δx, δy, δz) and neck path appearance

features (gradient of intensities on the path).
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Chapter 4

Classification

Several feature extraction techniques have been proposed to apply for dendritic spine

shape analysis, this chapter describes these feature extraction techniques, kernel den-

sity estimation (KDE) based classification framework, and concludes with classification

results. We start by explaining the data collection process performed using 2PLSM and

then discuss each feature extraction method applied in this thesis. To perform classifi-

cation, we use KDE, this non-parametric approach intrinsically provides the likelihood

of membership for each spine class compared to other approaches that apply differ-

ent techniques to provide scores which can be interpreted as probabilities. Hence, our

KDE-based approach has the potential to represent complicated shape distributions

well. Additionally, it provides a simplified framework that enables us to examine the

shape distributions, including the question of whether the spine shapes constitute a

continuum across classes.

4.1 Data Acquisition

In order to be imaged under 2PLSM, hippocampal neurons from mouse organotypic

slice cultures postnatal day 7-101 were transfected using biolistic gene transfer with

gold beads (10 mg, 1.6 um diameter, Biorad) coated with Dendra-2 (Evrogen) plasmid

DNA (100µg) or AFP using a Biorad Helios gene gun after 4 or 7 days in vitro.
1All animal experiments are carried out in accordance with European Union regulations on animal

care and use, and with the approval of the Portuguese Veterinary Authority (DGV).
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Imaging experiments were performed 2 to 5 days post-transfection. Slices were per-

fused with artificial cerebrospinal fluid (ACSF) containing 127 mM NaCl, 2.5 mM KCl,

25 mM NaHCO3, 1.25 mM NaH2PO4, 25 mM D-glucose, 2 mM CaCl2 and 1 mM

MgCl2 (equilibrated with O2 95%, CO2 5%) at room temperature at a rate of 1.5

ml/min. Two-photon imaging was performed using a galvanometer-based scanning sys-

tem (Prairie Technologies, acquired by Bruker Inc.) on an Olympus BX61WI equipped

with 60X water immersion objective (0.9 NA), using a Ti:sapphire laser (Coherent Inc.)

controlled by PrairieView software. Z-stacks (0.3µm axial spacing) from secondary or

tertiary dendrites from CA1 neurons were collected every 5 minutes up to 4 hours. Field

of view was 19.8× 19.8µm at 1024× 1024 pixels.

This study is based on 2PLSM images. The reason behind using 2PLSM images is

that it allows imaging living cells. This is possible due to the property of 2PLSM that it

attempts to minimize photo-damage and photobleaching; two of the major limitations

of fluorescence microscopy of living tissues and cells [9].

We acquired 3D stacks of 40 dendritic branches. Further, we project 3D images

to 2D using Maximum Intensity Projection (MIP,also known as Maximum Activity

Projection) [59] and apply median filtering to reduce noise. The ground truth for

segmentation and classification has been prepared by an expert from 2D images. We

selected 456 dendritic spines including: 288 mushroom, 113 stubby, and 55 thin type

spines.

4.2 Feature Selection

DNSM, HOG, 3D neck shape based method, and AlexNet produce high-dimensional

feature vectorss for each spine image. We are considering a 3 class problem here, some

of the features might be redundant or less relevant for classification. This is why it

would be interesting experiment to apply some feature selection techniques and perform

classification on reduced features. We consider two feature selection techniques here: (i)

correlation based feature selection (CFS) [60], and (ii) information gain based feature

selection (IG) [61].
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CFS [60] selects the features based on correlation; prefers the features with high

correlation to a class and low intercorrelation. It ignores (irrelevant) features which

have low correlation with class. The features having high intercorrelation are considered

redundant and ignored. Hence, CFS accepts a feature if it has a high correlation to

class and another feature does not have high correlation in that area of feature space.

IG performs feature selection based on information gain with respect to a class. It

computes information gain for all combinations of classes and features using equation

4.1 [61], here H represents entropy that is used to measure information in a process

[62]. It computes the change in information when we are provided with knowledge of

a particular feature with respect to that class. We select the features with IG score of

0.1 and greater.

InfoGain(Class, Feature) = H(Class)−H(Class|Feature) (4.1)

4.3 Kernel Density Estimation

We estimate non-parametric density using kernel density estimation (KDE) and

apply a likelihood ration (LRT) to perform classification. Our non-parametric density

estimation approach is similar to [63]. Assume we have m-dimensional feature vector:

x1, x2, . . . , xm, sampled from n-dimensional density function p(x). The Parzen density

can be estimated by applying Equation 4.2.

p̂(x) =
1

m

m∑
i=1

k(x− xi,Σ) (4.2)

Where, k(x,Σ) = N (x; 0,ΣTΣ) is an n-dimensional kernel, which can be simplified

using the assumption that kernel is spherical, i.e., Σ = σI. Applying this assumption

Equation 4.2 can be simplified, as given in Equation 4.3.

p̂(x) =
1

m

m∑
i=1

k(d(x, xi), σ) (4.3)

Where d(x, xi) is the `2 distance between x and xi in IRn and k(x, σ) = N (x; 0, σ2)
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is the 1D Gaussian kernel. Kernel size (σ) is estimated by the bracket method (also

known as the bisection method) [64]. First, we compute 1D kernel size from each

feature vector and use thism dimensional kernel size vector to compute minimum (σmin)

and maximum kernel size (σmax). Finally, we apply the bracket method to compute

the optimal kernel size in [σmin, σmax] range by iteratively bisecting the interval and

selecting the subinterval that contains the optimal kernel size.

Once we have estimated the likelihood of an image belonging to Mushroom (lm),

Stubby (ls), and Thin (lt) classes, we can perform classification using the LRT. This is

a 3-class problem and requires multiple likelihood comparisons; we define 2 likelihood

ratios, as depicted in Equation 4.4, where Ls stands for stubby and Lt for thin spines.

Ls =
ls
lm

Lt =
lt
lm

(4.4)

Finally, we can compare these likelihood ratios to perform classification, as illus-

trated in Equation 4.5, Equation 4.6, and Equation 4.7. Here “Not M" means do not

decide Mushroom as classification decision, “Not S" denotes do not decide Stubby, and

“Not T" depicts do not decide Thin as classification decision. In this manner we use

reductionist approach until we are left with only one possible class that is used as the de-

cision. This approach simplifies the classification process by mapping an n-dimensional

classification problem to 2D problem, specifying the problem in terms of likelihood ra-

tios. Figure 4.1 illustrates the decision regions for classification in the 2D likelihood

ratio space.

Ls

Not M

≷

Not S

1 (4.5)
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Mushroom Stubby
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Figure 4.1: Decision regions for classification in 2D likelihood ratio space

Ls

Not T

≷

Not S

Lt (4.6)

Lt

Not M

≷

Not T

1 (4.7)

4.4 Shape and Appearance Features Based Approach

We use DNSM to perform segmentation and shape feature extraction. This method

requires manually segmented (binary) images to train DNSM shape priors. We perform

the following procedure to prepare the aligned dataset. Firstly, we choose a region of

interest (ROI) in the projected 2D image for each spine. The ROI is selected in a way

that spine head center is placed approximately at the center of the ROI. Further, each

spine image is scaled to 250 × 250 pixels. In order to keep the aspect ratio same (so

that scaling does not affect the shape), it is made sure that selected ROI is a square.

Finally, we rotate each spine image such that spine neck is perpendicular to horizontal

axis.

This process currently involves manual procedures. However, the process can be

automated by applying Hough Circle Transform [52] to locate the spine head center
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Figure 4.2: A few images from dataset, without segmentation (above) and segmented

images (below). First 2 spines are labeled as Mushroom, 3rd spine as Stubby, and 4th as

Thin. Spines are segmented using DNSM shape and appearance priors based approach

[1]. Automated segmentation results are not perfect; sometimes suffered from over-

segmentation and in some cases under-segmentation. But these segmentation results

fairly represent the shape types and can be used for classification.

and by computing spine neck path to detect its orientation with respect to the dendrite

surface [58]. We apply this approach to segment the dendritic spines from MIP images

and use its parameters as shape feature.

DNSM shape and appearance priors based approach [1] has two stages for segmen-

tation of spines: training, and testing. For this purpose, we divided our data into

training and testing sets using 10 folds cross validation procedure. This approach uses

local shape and appearance priors, use of local appearance priors is especially impor-

tant for spine segmentation, since it requires to distinguish between dendrite and spine

regions. Since intensity level for spine and dendrite regions are similar in 2PLSM im-

ages, it becomes crucial to use local appearance priors in order to provide good spine

segmentation.

This approach has several parameters which must be tuned for different applications:

number of half spaces M , number of polytopes N ; and level of contribution from shape
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Figure 4.3: A few images from dataset prepared for HOG. First spine is labeled as

Thin, 2nd and 3rd as Mushroom, and 4th as Stubby (from left to right).

priors α, and appearance priors γ. We used: M = 16, N = 8, α = 0.05, and γ = 0.5,

these values were empirically found. Segmentation results for a few spines are given in

Figure 4.2. As a result of segmentation, we have achieved the approximated form of

characteristic function of each spine shape in terms of DNSM parameters. The DNSM

represents each segmented image using M × N × 3 parameters. As discussed earlier,

we exploit DNSM’s parametric nature and use DNSM parameters as feature vectors to

train the classifier to perform spine classification. Classification results using DNSM

features has been reported on a small dataset in [13].

We realized from intensity images dataset analysis that intensity distribution inside

spines also contain some useful information which could be used for classification. How-

ever, we also noticed that intensity level vary with dendritic branch and datasets, that

points towards using gradients rather than absolute intensity information. We observed

in our data that spines have uniform intensities inside the head, however, this is not true

for the neck. A decreasing intensity pattern can be noticed in the neck part of spines.

Hence using this local appearance information would assist us in the spine classification

task. Therefore, we decided to apply HOG to compute appearance features.

In order to compute HOG features, we select a region of interest (ROI) in intensity

images such that the spine is completely inside the ROI, this does not require ROI for

all spines to have same dimensions. Further, we rotate the ROI in the sense that spine

necks are vertically aligned. A few images from this dataset are shown in Figure 4.3.

As discussed earlier, HOG has different components and changing their values affect

the descriptors, these parameters include: cell size, block size, block overlap ratio, and
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number of oriented histogram bins. Choice for value of cell size depends upon if we

are interested on global/large-scale features or local features. If we are interested in

large-scale features, a large cell size value would be desired. Because if we increase

the cell size, it will capture more pixels, as a result we will loose local level or small-

scale changes and will only be able to keep global information. Similar to cell size, a

small block size will allow us to keep track of local illumination changes. If we want

to perform contrast normalization, a block size value greater than cell size would be

required. Contrast normalization is also controlled through block overlap, the number

of overlapping cells in adjacent blocks. If we use unsigned gradient directions, we

cannot differentiate between dark to light, and light to dark intensity transitions. The

number of histogram orientation bins controls the size of feature vector; a large value

increases the feature vector size but enables capturing finer intensity changes. We did

experiment with different values of HOG features and empirically selected the values of

HOG parameters to be, CellSize =
[
height/5, width/5

]
, BlockSize = 2 × CellSize,

BlockOverlap = 1, and Bins = 9.

4.5 Linear Representation Based Approach

The motivation behind applying this method is the success of [15] for face recognition

problem. It presents two ideas, one is to represent incoming test image as a linear

combination of training images, other is to achieve this representation by imposing `1-

norm constraint (sparsity). We perform different experiments to analyze performance

boost is achieved due to the idea of linear representation or sparsity constraint. To best

of the our knowledge, this approach has not been applied previously for spine analysis,

therefore, it is an interesting experiment to find out if the sparsity assumption holds

for dendritic spines.

We applied the DNSM [11] based algorithm to automatically segment the dendritic

spines. Further, we apply the least squares method, the `2-norm method, and the `1-

norm method to represent test images and apply SRC algorithm to classify spines. We

use `1-minimization toolbox proposed in [65] to achieve `1 representation coefficients.
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We use 10-fold cross validation approach to automatically segment the spines using

DNSM. Same training and testing folds are used during classification.

To achieve `1 representation, we use an `1 regularized least squares problem (LSP)

solution proposed by Kim et al.[66], as presented in Equation 4.8.

minimize ‖Ax− t‖2 + λ ‖x‖1 (4.8)

where x ∈ Rn is the variable, λ is the regularization parameter and t ∈ Rm.

Optimizing regularization parameter λ is important to achieve sufficiently sparse

solutions using Equation 4.8. For this purpose, we identify a sparsity measure and

optimize sparsity for both of these techniques. Hurley and Rickard [67] compared

different sparsity measures and declared Gini index (GI) to be performing best based

on several intuitive attributes. GI is widely used as a sparsity measure; have various

advantages over other methods, GI is normalized, an index value of 0 means least sparse

solution and 1 means the sparsest solution. We use bisection method (bracket method)

to optimize the regularization parameter λ. Optimized value of λ for `1-based solution

(computed using Equation 4.8) is found to be 401.45 with average GI value of 0.971.

For an overdetermined case, m > n, the solution of linear system of equations,

x0, is mostly unique. Here, n is the number of training images and m is the size

of image (width × height). Hence, uniqueness of solution depends upon number of

training images and their dimensions. For spine classification problem, m = 456 and

n = 62, 500, therefore it is an overdetermined system.

For `2-norm method, we estimate the representation coefficients, ζ̂, by applying `2-

norm constraint on coefficients, as illustrated in Equation 2.7. We optimized the value

of the regularization parameter,λ, using the L-curve method [68]. L-curve is a plot

of the size of regularized solution versus the residual. Classification results using this

approach has been reported on a small dataset in [69].

For the least squares method, we estimate the representation coefficients, ζ̂, using

Equation 2.5. Representation coefficients for the least squares method, the `2-norm

method, and the `1-norm method have been achieved using mentioned methods and

representation coefficients for one of the spines are presented in Figure 4.4.
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Figure 4.4: Linear representation coefficients using different representation algorithms.

4.6 Manifold Learning Methods Based Approach

In this study, we use several manifold learning techniques for spine classification and

compare their performance. Manifold learning approaches (listed below) applied in this

study to reduce dimensionality of data are being discussed briefly in this section.

• Principal Component Analysis (PCA) [38]

• Multi-Dimensional Scaling (MDS) [39]

• Locally Linear Embedding (LLE) [40]

• Laplacian eigenmap [41]

• Local Tangent Space Alignment [42]

• ISOMAP [14]

We start with automatically segmented data (segmented using DNSM) and con-

struct our feature vector by stacking and concatenating the columns of images. Firstly,

the segmented spine images were used to construct 62, 500 dimensional feature vectors

by concatenating the stacked columns of each spine image. These feature vectors were

further used to construct the feature matrix. Finally, manifold learning algorithms were

applied on this feature matrix to produce 25-dimensional feature vectors. Classification

results using this approach has been reported on a small dataset in [70].
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4.6.1 ISOMAP-Space Analysis

ISOMAP [14] is known to compute distinctive features from a dataset. Samples from

two-dimensional ISOMAP feature space are presented in Figure 4.5. Visual analysis

of feature space results in interesting observation, the head diameter of spines varies

along the vertical axis and the neck length along the horizontal axis. This validates

our claim [58] that head diameter and neck length are the most important features for

the classification of spines. This leads to an important finding that ISOMAP implicitly

computes degrees of freedom of a dataset, in this case it is 2. A similar analysis has

been previously performed on faces and digits dataset [14].

4.7 Deep Learning Based Approach

We use AlexNet [49], which is a well-known CNNs architecture, and apply transfer

learning to use a network trained on natural images as a feature extractor. Further, we

also fine-tune this network on our dendritic spines dataset. We use Caffe [71] library for

feature extraction, training, and testing of CNNs. To the best of our knowledge trans-

fer learning or any of the deep learning methods have not been applied for dendritic

spine classification. Therefore, it is an interesting experiment to apply transfer learn-

ing with deep learning methods and compare their performance with state-of-the-art

morphological feature based methods and other methods proposed in this thesis.

In order to extract spines, we select a region of interest (ROI) in intensity images

such that the spine is completely inside the ROI, this does not require ROI for all

spines to have same dimensions. Further, we rotate the ROI in the sense that spine

necks are vertically aligned. This results in a dataset having arbitrary dimensions,

however, AlexNet [49] (CNNs architecture that we use for this study) requires fixed

size input images. Therefore, we scaled the shorter dimension of the ROI to 256 and

then cropped a 256× 256 patch from center of the ROI. A few samples from this scaled

and center cropped dataset are shown in Figure 4.6.

We apply transfer learning for dendritic spine classification and compare perfor-

mance of feature extraction and fine-tuning approaches. We use AlexNet that has been
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Figure 4.5: ISOMAP 2D features: Spine head diameter varies along y-axis and neck

length changes along x-axis. DNSM segmentation results of some of the spine from our

dataset are shown.

trained on ImageNet dataset with 1, 000 categories. In order to use it as a feature ex-

tractor we cut last one (fc8) or two fully connected layers (fc7 and fc8) and compute

4, 096-dimensional feature vectors on dendritic spines dataset from 7th layer (fc7) or

6th layer (fc6) since CNNs tend to learn generic features in their initial layers and task

specific features in last layers [48].

Other method to apply transfer learning with CNNs is to fine-tune a trained network.

We use AlexNet trained on ImageNet with 1, 000 categories as initialization, modify

fc8 by changing its number of outputs to 3 (since we have a 3 class problem here).

Hence, fc8 would start training from random weights. Since AlexNet is already trained
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Figure 4.6: A few images from scaled and center cropped dataset. First and 2nd spines

are as Mushroom, 3rd as Stubby, and 4th as Thin (from left to right).

on a large dataset, we reduce the overall network learning rate to 0.00001 to let the

network weights change slowly. Another approach is to freeze the weights of initial

layers considering the generic nature of their learned features and only train the fully

connected layers on new task. We use both strategies: fine-tune all layers (FT fc1−fc7

AlexNet) and freeze first 2 convolutional layers (FT fc3− fc7 AlexNet) and train the

network for 3, 000 iterations. After fine-tuning the AlexNet with both configurations,

we extract features from fc7. We also use classification results produced by final layer

of fine-tuned AlexNet. In order to evaluate the performance of proposed approach, we

use 10-fold cross validation approach, i.e. we fine-tuned 10 networks and used those to

extract features and perform classification for corresponding test fold.

4.8 Classification Results and Discussion

We extract features as we discuss in respective sections and perform classification. In

order to evaluate the classification results, we use labels assigned by a human expert. We

compare classification results of our proposed approaches to three morphological feature

based approaches: Koh et al. [8], NeuronStudio [22], and 2dSpAn [31]. NeuronStudio

uses an automated spine detection algorithm; their approach misses 83 of the spines

from our complete dataset. 2dSpAn tool uses a global thresholding based approach

for dendrite and spine segmentation, it fails to segment 197 of the spines from our

complete dataset. For fair comparison, we present results on four datasets; DataA:

complete dataset, DataB: which includes only the spines that are successfully detected

by NeuronStudio spine detection algorithm, DataC: which includes only the spine that
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Table 4.1: Ratio criteria for classification of dendritic spines.

L/dn

dh/dn

[0,1.3) [1.3,3) [3,∞)

[0,2/3) Stubby Mushroom Mushroom

[2/3,2) Stubby Stubby Stubby

[2,3) Stubby Mushroom Mushroom

[3,5) Thin Mushroom Mushroom

[5,∞) Thin Thin Thin

are segmented by 2dSpAn segmentation approach, and DataD: that consists of only

the spines which are correctly segmented by Morph3D approach. DataA consists of 456

spines including 288 mushroom, 113 stubby and 55 thin type spines. DataB consists of

373 spines including 251 mushroom, 96 stubby, and 26 thin type spines. DataC consists

of 259 spines including 182 mushroom, 71 stubby, and 6 thin spines. DataD consists of

428 spines including 290 mushroom, 84 stubby, and 54 thin spines.

We use features proposed by Koh et al. [8] to perform classification using ratio cri-

teria that they used in their paper. Ratio criteria used by Koh et al. [8] was originally

itroduced by Harris et. al. [34], it is given in Table 4.1. Here, L depicts spine length, dn

represents spine neck diameter, and dh represents head diameter. However, these crite-

rion seem to be very specialized for specific data, this is why their performance is very

poor on our dataset. In order to test the potential of their proposed features, we trained

KDE, SVM, and NN, and performed classification using same settings used for other

methods. This performance is closer to other morphological features based approaches,

which means that ratio criterion based classification approach is very specialized to

some datasets and its use must be discouraged.

In order to perform comparison to NeuronStudio [22], we downloaded the latest

version of NeuronStudio2 and computed classification results. After loading and set-

ting dataset parameters, we applied median filtering to reduce noise. We used semi-
2http://research.mssm.edu/cnic/tools-ns.html
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automatic dendrite tracing by providing manual seed. After dendrite tracing, we used

NeuronStudio built-in spine detection and classification tools to compute classification

results on DatasetB.

2dSpAn [31] is a recently developed tool for spine classification. Initially, users

clicks at two points in the image to select ROI. It uses global thresholding to perform

segmentation.Threshold can be manually adjusted, however, due to the challenging

nature of 2PLSM data it is less probable to segment all the spines using global threshold.

Therefore, we select the threshold manually so that the maximum number of spines has

been segmented. Further, spine detection is performed manually; user clicks on each

spine, the tool computes the morphological features and perform classification using

rule based approach.

We compare the performance of our approaches using three classifiers: KDE, support

vector machines (SVM) and Neural Networks (NN). We used the linear kernel for SVM

and 2-layer network with No. of features + No. of Classes
2

nodes in each layer for Neural

Network. We compare feature extraction schemes for all three classifiers using 10 fold

cross validation; results are presented in Table 4.2.

As we can see from Table 4.2, the AlexNet, and shape and appearance features

based method outperform all other approaches considered in this thesis. It is also clear

from the presented results that most of our proposed approaches outperform commonly

used morphological features based methods [8, 22, 31]. It confirms the robustness and

reliability of deep learning methods based features, it performs better than several

hand-crafted features, some of these were even specially designed for dendritic spine

classification (i.e. morphological features). For pre-trained AlexNet, best performance

is achieved with features extracted from fc6 and selected with CFS based method;

it confirms the observation reported in [72, 73] that fc6 features perform better than

fc7 features. For fine-tuned AlexNet, best performance is achieved with AlexNet final

layer classifier when first 2 convolutional layers were frozen during fine-tuning. It is

an interesting observation since generally fine-tuning a network improves classification

performance as compared to pre-trained network [48]. However, it is also important

to note that the distance between ImageNet dataset and dendritic spines is quite high,
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Table 4.2: Classification Results, comparison of feature extraction and classification

approaches.

Classifier Features DataA DataB DataC DataD

KDE

Koh et al. [8] 54.17% 54.16% 52.12% 54.21%

Morph2D 61.18% 61.39% 64.87% 60.51%

Morph3D - - - 77.10%

Morph3D+CFS - - - 80.37%

Morph3D+IG - - - 77.34%

ISOMAP 68.64% 70.51% 74.90% 69.86%

Laplacian 68.86% 73.99% 73.75% 68.46%

LLE 71.05% 73.19% 69.88% 71.26%

LTSA 50.22% 56.84% 57.14% 55.38%

MDS 68.86% 73.19% 74.90% 69.16%

PCA 69.96% 71.58% 76.06% 69.39%

DNSM 75.60% 75.34% 75.29% 73.13%

HOG 83.11% 84.45% 86.87% 81.08%

DNSM+HOG 82.02% 83.65% 84.94% 79.44%

DNSM+HOG+CFS 84.87% 85.26% 87.26% 81.08%

DNSM+HOG+IG 83.33% 85.79% 85.71% 81.78%

Pre-trained AlexNet 83.77% 80.70% 84.94% 82.25%

FT fc1-fc7 AlexNet 85.53% 82.84% 87.65% 82.24%

FT fc3-fc7 AlexNet 84.43% 80.96% 85.33% 82.48%

SVM

Koh et al. [8] 69.52% 72.92% 76.06% 71.03%

Morph2D 69.30% 75.60% 74.13% 72.20%

Morph3D - - - 81.08%

Morph3D+CFS - - - 80.84%

Morph3D+IG - - - 83.88%

ISOMAP 78.29% 80.16% 77.99% 75.70%

Laplacian 76.32% 78.02% 81.08% 75.47%
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Table 4.2 – continued from previous page

Classifier Features DataA DataB DataC DataD

LLE 74.56% 78.28% 78.38% 77.80%

LTSA 63.16% 67.29% 67.95% 67.76%

MDS 78.51% 78.89% 81.47% 78.97%

PCA 75.66% 78.02% 79.54% 77.10%

DNSM 74.12% 78.82% 74.90% 72.90%

HOG 82.46% 82.04% 85.71% 81.08%

DNSM+HOG 81.36% 82.57% 86.10% 80.61%

DNSM+HOG+CFS 80.48% 81.50% 84.94% 78.27%

DNSM+HOG+IG 79.83% 81.77% 85.33% 78.51%

Pre-trained AlexNet 84.87% 83.91% 86.49% 82.25%

FT fc1-fc7 AlexNet 87.50% 86.86% 89.19% 83.65%

FT fc3-fc7 AlexNet 87.06% 83.11% 83.01% 82.01%

NN

Koh et al. [8] 67.54% 70.78% 72.97% 67.76%

Morph2D 69.96% 71.31% 74.90% 68.46%

Morph3D - - - 83.88%

Morph3D+CFS - - - 84.81%

Morph3D+IG - - - 83.88%

ISOMAP 77.63% 80.16% 80.69% 76.64%

Laplacian 76.32% 80.97% 82.24% 76.87%

LLE 77.85% 79.29% 81.08% 76.87%

LTSA 58.11% 63.00% 62.16% 64.95%

MDS 76.75% 79.36% 80.70% 75.23%

PCA 78.95% 79.09% 83.78% 76.40%

DNSM 80.70% 82.04% 84.94% 79.91%

HOG 84.21% 84.72% 87.26% 83.41%

DNSM+HOG 85.53% 84.97% 85.33% 83.18%

DNSM+HOG+CFS 83.55% 86.33% 86.10% 84.35%
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Table 4.2 – continued from previous page

Classifier Features DataA DataB DataC DataD

DNSM+HOG+IG 87.06% 87.13% 86.87% 83.65%

Pre-trained AlexNet 87.72% 85.52% 89.58% 86.22%

FT fc1-fc7 AlexNet 86.84% 85.19% 87.26% 82.94%

FT fc3-fc7 AlexNet 86.40% 83.65% 89.19% 84.11%

SRC

Least-squares method 68.64% 77.21% 78.76% 70.09%

The `2-norm method 69.74% 75.34% 77.99% 70.09%

The `1-norm method 75.44% 80.43% 83.78% 75.23%

Ratio Criteria Koh et al. [8] 25.66% 26.27% 19.04% 27.08%

AlexNet
FT fc1-fc7 AlexNet 87.50% 86.33% 89.58% 86.45%

FT fc3-fc7 AlexNet 87.72% 86.60% 89.58% 86.45%

NeuronStudio [22] - 60.86% - -

2dSpAn [31] - - 39.38% -

also we have a small dataset consisting of only 456 samples.

Among hand-crafted features, our shape and appearance features based method per-

forms best. It is also clear from presented results that HOG based appearance features

perform slightly better than DNSM features. Combining DNSM and HOG performs

slightly better in some cases. Further applying feature selection on DNSM+HOG re-

sults in higher accuracy in some cases. Another conclusion to draw from Table 4.2 is

that, shape and appearance features combined with Neural Network outperforms other

hand-crafted feature based methods. Given the statistical description in terms of the

shape and appearance features, our KDE based approach works using the likelihood

ratios, which is the sufficient statistic for the classification problem.

Among morphological features, our 3D morphological features (Morph3D) based

approach performs best. It outperforms other morphological features based approaches

with a great margin. It is important to note that NeuronStudio [22] exploit 3D infor-
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mation while computing features, whereas Morph2D, Koh et. al. [8], and Basu et. al.

[31] use 2D images to compute morphological features. It concludes not only the added

value of third dimension improves the performance of our Morph3D approach but also

the distinctive nature of Morph3D feature set also improves classification performance.

Among linear representation based methods, the `1-norm based method performs

best. We also visually analyzed the most dominant spines for `1-norm based represen-

tation, they look quite similar. If we perform classification using class label of most

dominant spine, it results in 73.60% classification accuracy on DataA which is slightly

worse than using SRC for classification. For `2-norm based method, we select regular-

ization parameter, λ, using L-curve method. However, we can also select regularization

parameter using GI method, as we used for the `1-norm based method, which aims to

select sparser solution. Although using GI would not be appropriate to use with the

`2-norm method since sparsity is not the objective here, however, if we use GI with `2-

norm based method, it performs slightly better and classifies 72.37% of spines correctly

on DataA.

Another conclusion that can be drawn from results is that SVM, KDE, and NN

outperform rule-based classification approaches considered in [22, 8, 31]. The reason

behind their failure is the over-specialized nature of these approaches. These rules have

been designed on the datasets used in specific studies and are over-specialized for those

datasets. We have shown that these rules perform much worse than advanced machine

learning based classification algorithms.

It is evident from results presented in Table 4.2 that performance of different feature

extraction approaches is dependent upon classifier. It makes sense because different

classifiers use different decision criteria. They make an effort to impose a structure

on the features; the feature representations produce a feature space, if that matches

well with the structure imposed by the classification algorithm it results in good per-

formance. Caruana and Niculescu-Mizil perform an empirical evaluation of different

classification approaches and conclude that even the best classifier sometimes result in

poor performance and vice versa [74]. LeCun et al. [75] also perform comparison of var-

ious classifiers and argue that error rate is a function of the number of training examples
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available and this function is different for each classification algorithm. They also claim

that many algorithms can achieve a reasonable performance if sufficient training data

are available. In this context, we observe different classification performance combining

each feature extraction approach with different classifiers, however, we have a small

dataset (i.e., 456 spines), which makes it difficult to draw any conclusion about which

classifier is best. Our dataset has imbalanced numbers of samples for each class; KDE,

SVM, and NN handle this problem reasonably well, however, SRC algorithm fails to do

so and mis-classifies all the thin spines. Overall, NN performs slightly better than SVM,

which performs slightly better than KDE. However, the difference in performance is not

significant given the small size of our dataset. To summarize, we test the classifiability

of dendritic spine using combination of different feature extraction and classification

algorithms, and conclude that reasonable classification results can be obtained using

these methods.

4.9 Likelihood Ratio Space Analysis

As discussed earlier, whether to view spines as belonging to distinct shape classes or

to model them through a continuum of shape variations is still an open question. Since

our KDE based classification approach gives the likelihood of a spine being member

of Mushroom (lm), Stubby (ls), and Thin (lt) classes, it can be used to examine this

question in a principled manner. We computed the histogram of likelihood ratios (Ls
and Lt), as given in Figure 4.7 and analyzed whether we see three distinct modes or a

continuum of shapes. It is evident from the presented histogram that we see three peaks,

however the samples of three classes can be found all over the grid. One might argue that

there are three classes, mushroom, stubby, and thin, but there is a significant overlap

between their distributions. For analyzing the statistical significance of this framework,

we performed Multi-variate Analysis of Variance (MANOVA) with null hypothesis to

have same mean for all class distributions. Since we have two dependent variables, Ls
and Lt, and three classes, MANOVA is a fair choice for statistical significance analysis.

We applied MANOVA on our data and found that it rejects the null hypothesis at
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Figure 4.7: 2D likelihood ratio space produced using DNSM+HOG+InfoGain on

DataA. We have added transparency in the histogram to make the visualization bet-

ter. We can see three peaks; however, the samples of each shape are distributed all

over. With aid of transparency, we can see different shape samples spread over the grid

produced as a mixture of different colors such as red and yellow, yellow and blue, etc.
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Table 4.3: Two-sample Two-dimensional Kolmogorov-Smirnov Test results for different

class separation problems. we use null hypothesis to have same mean for both dis-

tributions, that is rejected in all cases, which supports the existence of distinct shape

classes.

Test p-value Rejected/Accepted

Mushroom vs. Stubby 1.49× 10−43 Rejected

Mushroom vs. Thin 3.05× 10−19 Rejected

Stubby vs. Thin 1.54× 10−25 Rejected

α = 0.05 significance level. MANOVA rejects the existence of continuum of shape

variations. Further, we apply post-hoc tests to analyze the individual class separability

using two-sample bi-variate Kolmogorov-Smirnov test[76] with null hypothesis being

same mean for both distributions. Here, we perform three tests to analyze mushroom vs.

stubby, mushroom vs. thin, and stubby vs. thin class separations. The test results are

given in Table 4.3. It rejects the null hypothesis in all cases that supports the argument

of existence of distinct classes. It provides us an insight that class distributions have

different mean, meaning that there exist three distinct classes in our dataset. Such low

p-value strongly support the significance of our analysis.

If we treat this problem as a classification task, best performance (assuming equal

priors and the probability of error as the decision criterion) can be achieved by thresh-

olding 2D likelihood ratio space as illustrated in Figure 4.1 to perform classification.

However, classifying the spines lying around these decision boundaries is a difficult de-

cision since values of Ls and Lt are very close in these case. Our KDE based framework

provides a principled approach to handle such spines, if values of Ls and Lt are not

very different, one might use the help of neuroscientists to investigate the spines and

make a decision manually. Further analysis may also include 3D image evaluation of

the spines whose likelihoods for different classes are very close.
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Chapter 5

Cluster Analysis

Manual analysis is a laborious, time-intensive, and most importantly subjective

task. Rodriguez et al. [22] reported inter-operator and intra-operator variations in

the spine type labeling task. One might question why perform clustering rather than

treating this as a classification problem. First of all, classification methods use manually

provided labels as ground truth and extracting those labels is a time-intensive task. It

also introduces subjectivity, which could be reduced by employing several experts and

using a majority vote approach but this would make the labeling effort even more time-

intensive. Inter-operator and intra-operator variability reported by Rodriguez et al. [22]

emphasizes that subjectivity is a major issue in performing classification. Another issue

with supervised classification is that it inherently starts from a pre-defined set of classes

and does not allow exploration of potential intermediate shapes or possible continuous

variation of shapes. Although clustering does not explicitly enable the latter either,

it can be viewed as a step in that direction. Furthermore, some existing techniques

require manual annotation of spines either to directly use them for feature extraction

or for training segmentation algorithms. The objective of clustering in this context

is two-fold: confirm the hypothesis of some distinct shape classes and discover new

natural groups. We discover natural groups in the data using different features and

analyze whether they support the existing hypotheses or add new information to our

understanding of spine shapes.

As suggested by Mancuso et al. [33], we present a clustering-based approach for
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spine shape analysis. We perform cluster analysis using several feature representations

and gain insights by performing analysis of discovered natural groups. We use Disjunc-

tive Normal Shape Models (DNSM) [1], Histogram of Oriented Gradients (HOG) [12],

intensity profiles [35], and morphological features [58].

Jain [77] suggests there are two objectives for clustering: (i) exploratory: when there

is no existing hypothesis or model, the aim is to discover patterns, and (ii) confirmatory:

when a pre-specified model or hypothesis exists, the objective of cluster analysis is to

confirm the model on the dataset being used. For dendritic spine analysis, the literature

provides a pre-specified model as described in the introduction section. The nature of

our analysis is: (i) an attempt to analyze how well a pre-specified model fits our data,

(ii) if such a model does not fit our data, discover and explore natural groups within

the data.

5.1 Feature Selection

Considering the high-dimensionality of feature representations being used (except

morphological features), we apply a feature similarity based unsupervised feature selec-

tion algorithm [78]. Mitra et al. [78] introduced the maximum information compression

index, which attempts to minimize the information loss while selecting a certain number

of features. In this context, correlation coefficient is a well-known parameter to mea-

sure similarity between two random variables. Mitra et al. [78] argues that correlation

coefficient have several nice properties, however, sensitivity with respect to rotation

and invariance with respect to translation and scaling of random variables make it

unsuitable for feature selection. Least square regression error is another important pa-

rameter that measures the amount of linear dependency between two random variables.

However, this measure is not symmetric and is sensitive with respect to rotation [78].

Mitra et al. [78] introduced the maximal information compression index (λ2), which

is a linear dependency measure, however, it possess several advantageous properties

which make it favorable for feature selection problem. Assuming Σ denotes covariance of

two random variables x and y, λ2 represents the smallest eigen value of Σ, as illustrated
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in Equation 5.1. Its value is zero when x and y are linearly dependent and increases

as the dependency between the two decreases. It is important to note that λ2 is eigen

value for the direction perpendicular to principal components direction of x and y and

maximum information is compressed when data is projected along principal components

direction[79]. In this case, information loss or reconstruction error is equivalent to

λ2. Therefore, this algorithm allows maximal information compression or minimum

information loss while selecting a number of features. Here, the aim of feature selection

is to aid the clustering algorithm, we select 100 features for each feature representation

(except morphological features) and use these selected features to perform clustering.

2λ2(x, y) = var(x) + var(y)−
√

(var(x) + var(y))2 − 4var(x)var(y)(1− ρ(x, y)2) (5.1)

5.2 X-means

Jain [77] argues that there is no best clustering algorithm, because every clustering

technique implicitly or explicitly imposes a structure on the data, and it gives good

results if there is a good match. Jain further emphasizes that it is rather crucial to

select the appropriate representation that implicitly or explicitly makes the pattern

discovery an easy process. Considering the clustering analysis problem as a selection

of appropriate representation rather than selection of a clustering method, we have

compared different feature representations in terms of clustering results.

We applied x-means [80], an extended version of k-means, which does not require

the number of clusters to be provided. It uses Bayesian Information Criterion (BIC) to

automatically select the number of clusters in the available data from a given range of

number of clusters, which we set as 2 to 10. It begins with lower bound of given range

for number of clusters and continues computing clusters until upper bound for number

of clusters have been reached; during this process it also computes BIC score for each

cluster assignment. Finally, it selects the number of clusters based on best BIC score.
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5.3 Clustering Results

Our dataset consists of 242 dendritic spines selected from 15 dendritic branches

for this analysis. These are spines that have been labeled as mushroom or stubby by

a human expert. We computed HOG-based appearance, and intensity profile based

features from intensity images; DNSM-based shape, and morphological features from

automatically segmented spine images. In all cases, we applied x-means to perform

cluster analysis that uses BIC to select the number of clusters. Analysis of clusters

formed using different feature representations is presented in this section.

5.3.1 HOG Features Based Analysis

Using HOG based appearance feature representation for x-means clustering resulted

in 4 clusters. The average image for each cluster is computed by averaging manually

segmented binary images in that cluster. The resulting images are shown in Fig. 5.1.

There are 49 spines in cluster 1, 93 spines in cluster 2, 72 spines in cluster 3, and 28

spines in cluster 4. As it is evident from the average images, cluster 2 and cluster 3

represent mushroom spines (long neck and big head). However, clusters 1 and 4 appear

to consist either of spines from both classes or of spines that may possibly lie in between

these two classes in the shape space. When we examine individual samples from these

clusters, illustrated in Fig. 5.2, we observe that they exhibit similar characteristics,

i.e., have small heads and no necks. However, closer analysis of intensity images shows

existence of short necks, i.e., low intensity regions just below the head part. These

observations support the produced clusters in the sense that although there are some

spines which are easy to be classified (grouped in clusters 2 and 3), even a human expert

would have difficult time providing labels for most of the spines in cluster 1 and cluster

4. This analysis also points to what one might call two subclasses (cluster 2 and cluster

3) within the mushroom class.
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Figure 5.1: Average image for each cluster generated using the HOG features.

5.3.2 DNSM Features Based Analysis

We computed shape features using DNSM and performed clustering on this repre-

sentation. The algorithm produced 4 clusters consisting of 32, 48, 50, and 112 spines.

Average images of these clusters are given in Fig. 5.3. It can be observed from the

formed clusters and their average images that the neck length of the spines is increas-

ing in the following order: cluster 1, cluster 3, cluster 4, cluster 2.

Most of the spines in cluster 1 have short or no necks; their head diameter to neck

(a) Cluster 1 (b) Cluster 4

Figure 5.2: Intensity (top) and corresponding manually annotated images (bottom) for

some of the spines grouped in cluster 1 and cluster 4 using the HOG features.
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Figure 5.3: Average image for each cluster generated using the DNSM features.

Figure 5.4: Intensity (top) and corresponding manually annotated images (bottom) for

some of the spines grouped in cluster 1 using the DNSM representation.

diameter ratio is approximately 1. A few spines from cluster 1 are presented in Fig.

5.4. This cluster appears to contain spines that clearly exhibit the characteristics of

stubby spines as well as spines with distinct heads and thick necks. Cluster 2, cluster

3, and cluster 4 are mostly mushroom clusters. Again, cluster 2, cluster 3, and cluster

4 possibly represent different subclasses within mushroom type spines.

5.3.3 Morphological Features Based Analysis

Clustering analysis with morphological features resulted in 4 clusters with sizes:

102, 64, 64, and 12 spines. Average image for each of the produced clusters is given in
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Figure 5.5: Average image for each cluster generated using morphological features.

Fig. 5.5. Examining average images, one can conclude that the neck length of spines is

increasing in the following order: cluster 3, cluster 4, cluster 1, cluster 2.

It is clear from Fig. 5.5 that cluster 1, and 2 are mushroom majority clusters. Most

of these spines can be easily decided to be mushroom based on their morphological

properties, i.e., long necks, and big heads. However, cluster 3 and cluster 4 show a mixed

pattern, most of the spines have short thick neck, small head, and most importantly

their neck diameters and head diameters are similar. A few spines from cluster 3

and cluster 4 along with their manually annotated images are presented in Fig. 5.6.

These cluster appear to contain many stubby spines as well as spines with distinct

heads and thick necks. This pattern has been observed in clusters produced by other

representations as well. It would be interesting to analyze which features are dominant

in the clustering process, which might provide important information to neuroscientists.

In this context, we perform an initial analysis using information gain [61] and conclude

that neck length is the most dominant feature for data used in this study, which confirms

our ISOMAP based analysis.

This provides us an insight that although some spines can easily be classified into

standard shape groups, there are many spines which are either difficult to classify or
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(a) Cluster 3 (b) Cluster 4

Figure 5.6: Intensity (top) and corresponding manually annotated images (bottom) for

some of the spines from cluster 3 and cluster 4 using the morphology based features.

lie somewhere in between these groups.

5.3.4 Intensity Profile Features Based Analysis

Using the intensity profile based features resulted in 4 clusters consisting of 45, 81,

48, and 68 spines. The average image for each of these clusters is presented in Fig.

5.7. It is clear that cluster 1, cluster 2, and cluster 3 are similar and appear to consist

mostly of mushroom-like spines, i.e., they have big heads and long necks. Spines in

cluster 3 have relatively shorter necks as compared to cluster 2, spines in cluster 4 have

big heads and very short or no necks.

Some of the spines clustered in cluster 4 are shown in Fig. 5.8. First observation

is that spines in this cluster have similar morphological characteristics. This cluster

appears to contain many stubby spines as well as spines with distinct heads and thick

necks.

5.3.5 Combined Features Based Analysis

Since, shape and appearance are complementary features, it is intuitive to combine

both types of features and perform cluster analysis. We have already selected 100

features from each group using a feature similarity based approach. We combine these

selected features to perform clustering in this section.
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Figure 5.7: Average image for each cluster generated using the intensity profile based

features.

HOG and DNSM Features

Using a combination of HOG and DNSM based features results in 4 clusters con-

sisting of 30, 78, 22, and 112 spines. The average image for each of these clusters is

presented in Fig. 5.9. It is clear that cluster 2 and cluster 4 are similar and consist

most of the mushroom-like spines, i.e., they have big heads and long necks. Spines in

cluster 1 and cluster 3 are similar to one another in the sense that they have big heads

and very short or no necks, as illustrated in Fig. 5.10. It may be difficult to assign one

Figure 5.8: Intensity (top) and corresponding manually annotated images (bottom) for

some of the spines from cluster 4 generated using the intensity profile based features.
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Figure 5.9: Average image for each cluster generated using HOG+DNSM features.

of the known labels to the spines in these clusters, therefore, we might call these mixed

or intermediate clusters.

DNSM and Intensity Profile Features

Using a combination of DNSM and intensity profile based features results in 4

clusters consisting of 32, 62, 36, and 112 spines. Average image for each cluster is

presented in Fig. 5.11. Cluster 2, cluster 3, and cluster 4 consist of mostly mushroom-

like spines, having big heads and long necks. However, cluster 1 consists of spines

(a) Cluster 1 (b) Cluster 3

Figure 5.10: Intensity (top) and corresponding manually annotated images (bottom)

for some of the spines from cluster 1 and cluster 3 using HOG+DNSM based features.
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Figure 5.11: Average image for each cluster generated using DNSM+IntensityProfile

features.

with intermediate properties: short, thick necks and big heads, as illustrated in Fig.

5.12. These spines have some morphological properties similar to mushroom spines and

some similar to stubby spines, therefore, we may call cluster 1 a mixed or intermediate

cluster.

Figure 5.12: Intensity (top) and corresponding manually annotated images (bottom)

for some of the spines from cluster 1 generated using DNSM+IntensityProfile features.
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Table 5.1: Comparison of clustering results and labels from human expert

Features Acc. Class
Clusters

1 2 3 4

DNSM 79.34%
m 11 48 38 85

s 21 0 12 27

Morphology 81.82%
m 88 64 26 4

s 14 0 38 8

HOG 88.02%
m 15 91 68 8

s 34 2 4 20

IntensityProfile 80.17%
m 39 81 34 28

s 6 0 14 40

HOG+DNSM 79.34%
m 15 76 6 85

s 15 2 16 27

DNSM+IntensityProfile 80.17%
m 10 62 25 85

s 22 0 11 27

5.3.6 Clustering vs. Human Expert

In this section, we compare the clustering results achieved using different represen-

tations to the labels assigned by a neuroscience expert. The idea is that similar data

samples (belonging to same class) should be clustered in the same group.

There are two challenges in spine shape analysis: (i) separating mushroom spines

from stubby spines, and (ii) separating thin spines from filopodia type spines. Because

of the developmental age of the animals we use, we see few filopodia in our data, this is

why we focused on mushroom vs. stubby problem for this study. Stubby vs. mushroom

analysis is a challenging task due to 2PLSM resolution limits. In fact, in stimulated

emission depletion (STED) microscopy images, many reported stubby spines look like

mushroom spines [81].

A human expert manually labeled 242 spine images, 182 spines as mushroom and

60 as stubby. Table 5.1 shows the class membership of the spines in each of the clusters
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formed using each feature type. We observe that some clusters are dominated by shapes

from one class whereas other are mixed. We have already analyzed the similarity within

each of these clusters in the previous sections, and observed the exploratory nature of

our approach pointing to possibly intermediate shapes.

Given the availability of manual labels, let us now carry out an analysis on the

confirmatory aspects of our approach. In particular, to evaluate how strongly each

clustering approach based on a different feature set confirms the manual shape labels,

let us evaluate our clustering results using the manual labels as ground truth. To this

end, let us pretend our clustering methods assign each cluster to the shape class with

the majority of samples in that cluster. Then we can count the number of “correct and

incorrect classifications". Using this approach, we evaluate these feature representa-

tions and find out that HOG features perform best on the available data taking the

human expert’s labels as the ground truth, viewing this it as a classification problem

we can achieve 88.02% classification accuracy. If we treat this problem as a supervise

classification problem, we achieve 88.84% classification accuracy using HOG features

with NN. Therefore, reasonable classification results can be obtained using our proposed

clustering approach.

According to expert’s labels, clusters 2, 3, and 4 formed with the DNSM repre-

sentation correspond to the mushroom class, whereas cluster 1 is the stubby majority

cluster. Sample images shown in Fig. 5.4 suggests that spines in cluster 1 have simi-

lar characteristics, however, the expert has labeled some of these spines as mushroom

and others as stubby. This itself depicts the challenging nature of spine analysis and

subjective nature of the manual labeling task. We have similar observations on clusters

formed through the use of the other features. In particular, we observe both the confir-

matory role of the clustering methods through the formation of clusters dominated by

one of the classes as labeled by the human expert (e.g., HOG clusters 2 and 3), as well

as the exploratory nature of clustering through the generation of clusters with mixed

membership (e.g., HOG clusters 1 and 4). Our experimental analysis suggests that the

possibility of intermediate shape types in addition to the conventional shape classes

should be considered in spine shape analysis. One further step along this direction
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could involve efforts to characterize the distribution of spines in a continuous shape

space.
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Chapter 6

Conclusion and Future Work

6.1 Conclusion

In this thesis, we propose several dendritic spine shape analysis approaches based

on 2PLSM images. Mainly, we focus on classification and clustering approaches to per-

form spine shape analysis. We compare classification performance using KDE, SVM,

and NN classifiers; deep learning approach performs as well as shape and appearance

features based approach. These methods outperform all other spine analysis approaches

considered in this thesis including three commonly used morphological features based

approaches. Among morphological features based methods, our 3D morphological fea-

tures based approach results in the best classification accuracy. Additionally, our KDE

based framework allows to study the question of distinct shape classes vs. continuum

of shape variations in a principled manner. We present histogram of likelihood ratios

which provides an insight into the challenging nature of the spine shape analysis prob-

lem. The likelihood ratio space exhibits three peaks but samples of all classes are spread

all over. Further, we apply MANOVA test to check the statistical significance of our

analysis and it strongly supports the idea of distinct shape classes.

We also proposed a clustering approach in this thesis to perform spine shape analy-

sis. The advantages of adopting a clustering approach for spine shape analysis are: such

an approach would not suffer from subjectivity, and analysis time would be reduced by

avoiding manual labeling tasks. To the best of our knowledge an extensive clustering
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analysis of spine shapes has not been reported in the literature. We use appearance,

shape, and morphological feature based representations to perform clustering and shed

some light on this problem. We perform clustering using x-means that uses BIC to

select the number of clusters automatically; interestingly it produces 4 clusters for all

of the features considered here. Additionally, we have observed that, for the data used

in our analysis, although there are many spines which easily fit into the definition of

standard shape types (confirming the hypothesis), there are also a significant number of

others which do not comply with standard shape types and demonstrate intermediate

properties. Existence of intermediate shape types has been observed using all represen-

tations. To conclude, the clustering perspective we propose in this thesis can both be

used to perform automated spine shape analysis to identify known shape classes as well

as to help neuroscientists discover and explore unknown patterns in the shape space.

6.2 Future Work

This thesis provides a new direction to researchers working on development of au-

tomated spine analysis tools; we investigated the use of a shape feature extraction

technique, DNSM, and an appearance feature extraction technique, HOG. However,

one could propose a new shape representation consisting of shape primitives that can

compactly represent spine parts such as head and neck, which could seamlessly pro-

duce biologically meaningful features such as neck length. Furthermore, we analyzed

the question of continuum of shape variations, which should be further investigated on

more datasets using our framework which could potentially contribute to the resolution

of this on-going debate. On the technical side, tools could be developed to study spine

shapes in an unsupervised fashion, which would reduce subjective biases introduced

due to supervised nature of classification based analysis. Another challenge is that

sometimes human experts are not sure while assigning labels or have a difficult time

during the label assignment process, one could provide a confidence level during the la-

bel assignment process, so if a classification framework makes a mistake for cases when

even a human expert is unsure, it should have less cost. We perform a preliminary level
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analysis of dendritic spines using a deep learning approach, it would be interesting to

perform an in-depth analysis using deep learning approaches to understand the reason

behind their success and biological meaning of learned features.

We provide an initial analysis on clustering that provides clustering perspective

on spine analysis and compare it with expert labels, it would also be interesting to

use proposed approach to perform an analysis tying clusters to different experimental

conditions. It would also be interesting to perform a neuroscientific analysis of produced

clusters and understand biological meaning of each cluster produced. Intermediate

group of spines have been observed among cluster results produced with different feature

representations. The emergence of this phenomenon can be explained in several ways.

It is a known fact that dendritic spines exhibit shape type transitions over time, this

phenomenon happens over the period of hours. If the spines are captured at these

transition periods, for instance a mushroom spine changing to a stubby spine, it might

happen to have a short and thick neck and a head diameter to neck diameter ratio close

to 1. As some spines in our data demonstrate such properties, it would be difficult to

label them as mushroom or stubby. A temporal analysis of several spine shapes would

provide more insight into this phenomenon.

It should also be noted that based on the expert labels, the data we used for cluster

analysis consists of two shape classes: mushroom and stubby. Including other shapes

of spines such as thin and filopodia in the type of analysis we have proposed here might

facilitate an even better understanding of the nature of shape classes and distribution.

It might also be interesting to pose this as unsupervised regression problem and gen-

erate continuous (soft) outputs rather than discrete assignments to study continuous

shape variations. It is important to mention that the distribution of spine shapes are

dependent on various aspects of the data used, including which anatomical region of

the brain the imaged neurons belong to as well as the age of the imaged neurons.

This might also contribute towards different conclusions from different studies on spine

shapes. Another potential issue might be performing the analysis on 2D projections

versus 3D data. Therefore, it would be interesting to perform similar analysis with

different 2D projection methods as well as 3D data.
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