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ABSTRACT

COMPUTATIONAL MODELING OF OVERHAUSER DYNAMIC NUCLEAR

POLARIZATION IN LIQUIDS

Sami Emre Küçük

PhD Thesis, July 2014

Supervisor Deniz Sezer

Keywords: NMR, DNP, MD Simulations, ab initio

Since its discovery, nuclear magnetic resonance (NMR) spectroscopy has been a vital
tool for molecular structure and function determination. Inherently, NMR signals suffer
from lack of sensitivity, however Overhauser Dynamic Nuclear Polarization (ODNP) of-
fers a substantial enhancement in the NMR signals exploiting the stochastic modulation
of hyperfine interaction between electron and nuclear spins. The origin of the hyperfine
interaction is known to comprise of dipolar and scalar couplings whose magnitudes can
change depending on the nuclear spin. For instance, 1H ODNP is dominated by dipolar
interaction while 13C may be influenced by both interactions. Therefore, prediction of the
enhancement necessitates the knowledge of separate contributions. Although the dipolar
contribution can be predicted via analytical models which exploit its geometric nature,
the contribution of scalar interaction is impossible to predict using such analytical mod-
els since its magnitude depends on the electron spin density on the nucleus. Recently,
a methodology based on molecular dynamics simulations was developed for predicting
ODNP enhancements influenced by dipolar interaction. In this work, the strategy is suc-
cessfully applied for proton ODNP of acetone and DMSO liquids doped with nitroxide
TEMPOL. Due to its high sensitivity on ODNP enhancements, the fidelity of the rota-
tional motion of the simulated molecules is also assessed by dielectric relaxation analysis.
The scope of methodology is extended to take scalar interaction into account by perform-
ing DFT calculations. The functional and basis set dependency of the DFT calculations is
investigated and quantitative agreement with the experiment is achieved for the carbons
of acetone and chloroform.
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ÖZET

SIVILARDA OVERHAUSER DİNAMİK NÜKLEER POLARİZASYONUNUN
HESAPLAMALI MODELLEMESİ

Sami Emre Küçük
PhD Tezi, Temmuz 2014
Süpervizör Deniz Sezer

Keywords: NMR, DNP, MD Simülasyonları, ab initio

Keşfedildiğinden bu yana, Nükleer Manyetik Rezonans (NMR) spektroskopisi molekül
yapısı ve fonksiyonu belirlemede hayati bir araç haline gelmiştir. Doğası gereği, NMR
sinyalleri düşük duyarlılıktan muzdariptir, ancak Overhauser Dinamik Nükleer Polar-
izasyonu (ODNP), elektron ve nükleer spinleri arasındaki hyperfine etkileşiminin rast-
sal değişiminden yararlanarak önemli ölçüde sinyal artışı sağlamaktadır. Etkileşimin
kaynağının dipolar ve skaler eşleşmeler olduğu ve bunların katkılarının nükleer spinin
tipine göre değiştiği bilinmektedir. Mesela, 1H ODNP büyük ölçüde dipolar etkileşimin
etkisindeyken, 13C ODNP her iki etkileşimden de etkilenebilir. Bu yüzden, sinyal artışının
büyüklüğünün öngörüsü bu etkileşimlerin başlıbaşına katkılarını bilmeyi gerektirir. Dipo-
lar etkileşimin katkısı, bu etkileşimin tamamen geometrik olan doğasından istifade eden
analitik modeller vasıtasıyla öngörülebilse de, nükleer spin üzerindeki elektron spininin
yoğunluğuna bağlı olan skaler etkileşimin katkısı analitik modellemeyle mümkün değildir.
Yakın zamanda, ODNP sinyal artışını sadece dipolar etkileşimin etkisi altında olan pro-
ton için, moleküler dinamik (MD) simülasyonlarını kullanarak öngörmeyi amaçlayan bir
metodoloji geliştirilmiştir. Nitroksit TEMPOL ile katkılanmış aseton ve DMSO sıvılarında
proton ODNP artışlarını öngörmek için, bahsedilen metodoloji başarıyla uygulanmıştır.
ODNP artışına olan yüksek hassasiyetinden dolayı, simülasyonu gerçekleştirilen moleküllerin
dönme hareketlerinin uygunluk derecesi, dielektrik sönümlenme analiziyle incelenmiştir.
Daha sonra metodolojinin ölçeği genişletilerek DFT hesaplamaları gerçekleştirilerek skaler
etkileşimin de hesaba katılması sağlanmıştır. DFT hesaplamalarının fonksiyonal ve baz
seti bağımlılığı araştırılmış ve aseton ve kloroform sıvıları için nicel olarak deneylerle
uyuşan karbon ODNP sinyal artışları hesaplanmıştır.
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Chapter 1

INTRODUCTION

1.1. Motivation

Nuclear magnetic resonance (NMR) spectroscopy has been a valuable tool for obtaining
structural and dynamical information about the various substances and biomolecules and
it has attracted tremendous interest in many fields such as physics, structural biology,
chemistry and medicine. Magnetic Resonance Imaging (MRI) which is based on the
same principles of NMR, became a routine application in medicinal areas due to its non-
invasive method.

Unfortunately, NMR suffers from the lack of sensitivity. The technique is based on
exploiting the spin polarization of the nuclei in conjunction with the application of a
strong magnetic field. However, the spin polarization for nuclei is in minuscule amounts.
Even the largest one, 1H, has polarization on the order of 10−5 in room temperature. The
low spin polarization issues the NMR signals to be weak thereby making the duration of
detection undesirably long. This handicap gets even worse when the natural abundance
of the employed nuclei is very small as in the case of 13C.

Many hyperpolarization techniques were developed to overcome the lack of sensitivity
of NMR. A simple way to increase the signal intensity is to strengthen the applied mag-
netic field. However, even the largest superconducting magnets in this day (over 20 T) are
unable to produce appreciable polarization. Another obvious method is to decrease the
temperature but for experiments in the room temperature or for the medicinal purposes
which necessitates the temperature to be body temperature, unfortunately this method is
of no use. On the other hand, since the beginning of NMR, scientists developed elegant
methods such as chemically induced dynamic nuclear polarization (CIDNP), parahydro-
gen induced polarization (PHIP), Overhauser dynamic nuclear polarization (ODNP) and
many others.

Albert Overhauser predicted that the free electrons in the conducting metals transfer
their polarization to the nearby nuclear spins [6] and soon after it was experimentally
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proved [7]. The main concept behind the Overhauser effect is the relaxation mechanism
governed by the hyperfine structure interaction between nuclear and electron spins. Al-
though the theory was proposed that this event is applicable only in conducting metals,
later it is shown that the effect can also be activated in liquids by free radicals which have
an unpaired electron [8, 9]. Theoretically, this mechanism offers an enhancement up the
order of∼660 for 1H and∼2600 for 13C, therefore its use is highly desirable for the NMR
applications.

Although, the mechanism is discovered more than seventy years ago, together with
the technical and instrumental developments, liquid-state Overhauser DNP has renewed
attention. Numerous DNP experiments have been performed at high magnetic fields (3−
9 T) for a variety of solvents and nuclei in the last decade. For instance, water protons
at 3.4 T [10, 11, 12] and at 9.2 T [13], ethanol protons at 3.4 T [14] toluene protons at
3.4 T [15, 16] and at 9.2 T [3]. In addition experiments have been performed for other
nuclei such as 13C [17, 18, 5], 15N at 0.35 T [19] and 19F [20, 21]. Despite the fact that
the hydrodynamic models suggest the high-field DNP enhancements are negligibly small,
these studies reported appreciable enhancements. Therefore, a quantitative prediction of
DNP enhancements due to a specific free radical and solvent is desirable for a knowledge-
based experiment.

Force-Field based Molecular dynamics (MD) simulations and also quantum mechan-
ical ab initio calculations become a substantial tool to obtain both structural and dynamic
information on the molecular level. The use of the simulations to connect to the exper-
imental observables is indisputable nowadays. Accordingly, in the last couple of years,
a methodology for prediction of the Overhauser DNP enhancements quantitatively that
uses computer simulations has been developed [22, 23, 24]. In essence, hyperfine interac-
tion between spins involves a dipolar part which depends on the spatial parameters of the
inter-spin vector. In MD simulations, particles do not possess any spin information but
the point-dipole approximation is proved by ab initio calculations to be a good approach
[1]. The developed methodology puts use of simulated molecular motions and extract
information about the dipolar interaction between the nuclear spin bearing molecules and
electrons of the free radicals. The accuracy of this procedure is quantitatively shown to
be in very good agreement with experiments [23, 24].

For 1H DNP, the dipolar interaction is dominant. However, if the scalar interaction has
also influence on hyperfine interaction, which is true for some species such as 13C [9, 25]
or 19F [20], then the use of quantum mechanical calculations is necessary. Therefore, the
extension of the methodology to the ab initio is inevitable for the prediction of ODNP
enhancements with the nuclei that is known to have the scalar coupling.

In this thesis, the methodology was applied to the 1H DNP for the acetone and DMSO
cases. To validate the fidelity of the molecular motions in MD simulations, complex fre-
quency response analysis was performed. The use of ab initio calculations was introduced
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thereby the spectrum of the applicability to the variety of nuclear spins was broaden. The
three-spin effect to the Overhauser DNP which is due to the case where multiple nuclear
spins are present along with electron spin was also analyzed. Quantitative predictions for
1H and 13C have been made and compared with the experiments.

1.2. Scope of the thesis

The 2nd chapter elucidates the theoretical background of magnetic resonance and DNP.
A formal derivation of relaxation equations and spectral density functions using Redfield
relaxation theory is given. Then briefly, basic concepts of the molecular dynamics simu-
lations are explained and the methodology to calculate the spectral density functions from
simulations are given.

In the 3rd chapter the methodology of calculating SDFs was applied for the case of
1H Overhauser DNP in liquids of acetone and DMSO. Various technical details about the
MD simulations and then the validation of the simulations are expressed. Afterwards, by
calculating the dipolar SDFs, various experimental parameters, such as coupling factor
and relaxation rates are calculated. This chapter contains materials published in the Ref.
[2].

In the 4th chapter, scalar interaction was incorporated to the methodology was applied
for 13C DNP for the carbons of acetone. Along with the technical details about the MD
and ab initio simulations, calculation of scalar SDFs are explained. The coupling factors
are calculated from both dipolar and scalar SDFs and compared with experimental pa-
rameters. The three-spin contribution to the enhancement is calculated. The contents of
this chapter is published in Ref. [4].

In the 5th chapter, the accuracy of the computation of the scalar coupling is improved
by comparatively testing various functional and basis sets of ab initio methods. ODNP
of chloroform and water-acetone solvents doped with TEMPOL is studied and calculated
coupling factors are compared with experiments therefore most convenient choice of ab

initio method is assessed. This chapter contains material from the publication of Ref. [1].
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Chapter 2

THEORETICAL BACKGROUND

In this chapter, background to the dynamic nuclear polarization is summarized. First part
introduces the basic principles of the magnetic resonance. In the second chapter relax-
ation phenomenon and the characteristic keywords for DNP are given. The third chapter
gives a summary of the Redfield theory of relaxation. In the last chapter the methodol-
ogy to obtain the experimental parameters from simulations and necessary procedure for
validation of simulations are explained.

2.1. Magnetic Resonance and
Dynamic Nuclear Polarization

All magnetic resonance experiments are based on the same concept, “spin”. Both Nuclear
Magnetic Resonance (NMR) and Electron Spin Resonance (ESR) experiments exploit the
properties of nuclear and electronic spins, respectively. Underlying mechanism can be
understood from classical and quantum mechanical perspectives and in this section, I will
describe the mechanism using both points of views.

Classically, potential energy associated with interaction between the magnetic mo-
ment of a charged particle and the applied magnetic field is given as:

H = −µ ·B, (2.1)

and magnetic moment is related to the angular momentum of the particle L:

µ = γL, (2.2)

where γ is the gyromagnetic ratio. If the magnetic moment of the particle is originated
from its angular momentum, for instance a particle with a rotational motion, then the par-
ticle executes a precessional motion around the magnetic field direction. The frequency
associated with this precession, called Larmor frequency (ω) is related to the applied
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magnetic field and the gyromagnetic ratio. For instance, if the magnetic field is uniform
constant and in the z-direction1, B = B0ẑ , then the precession frequency is:

ω = −γB0, (2.3)

where the negative frequency represents the opposite directions of precessional motion
with respect to the right hand rule [26].

If we move to the quantum description, we see that the definition of the Hamiltonian
remains same except the observables are the quantum counterparts. The magnetic moment
(operator) is related to orbital angular momentum operator:

µ = γLz = γmh̄lz, (2.4)

where m and lz are the eigenvalues and eigenfunctions of the operator Lz, respectively
and h̄ is the reduced Planck constant. Analogous to the orbital angular momentum, we
define the magnetic moment associated with the spin as:

µ = γI, (2.5)

where I is the spin operator and γ is the gyromagnetic ratio between spin angular mo-
mentum and the spin magnetic moment. Gyromagnetic ratio is an intrinsic property of all
spins and defined for nuclear (I) and electron spins (S) as:

γI =
gµN
h̄
,

γS =
gµB
h̄
,

(2.6)

where µN and µB are nuclear and Bohr magnetons and g is the corresponding g-factor.
When a uniform magnetic field, whose strength B0, the Hamiltonian operator will be as
in the equation (2.1), and energy eigenvalues will be proportional to the eigenvalues of
the spin operator m:

Em = mγh̄B0. (2.7)

The application of a magnetic field towards spins results in a phenomenon called Zee-
man splitting. When there is no magnetic field, the spins remain in the same (degenerate)
energy level. However, under the magnetic field the energy levels split into the quan-
tized energy levels corresponding to the m values. These energy levels are called Zeeman
levels.

The spin quantum numbers (m) are restricted by the orbital angular momentum eigen-
values (l) in a way that they can be between −l and l with increasing in integer numbers.

1It is a convention to choose the direction of the magnetic field in laboratory to be positive z-axis and in
this thesis this choice is valid in all calculations unless it is mentioned otherwise.
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For instance, for proton and electron, the orbital quantum number is 1/2 therefore m can
be −1/2 or 1/2 and corresponding energy of the values can be E± = ±1/2γh̄B0.

As in the classical description, the energy can be written in terms of the Larmor fre-
quencies, using the definition ω0 = −γIB0. The energy difference between the states will
be:

∆E = −γIh̄B0 = h̄ω0. (2.8)

Note that there is a linear relationship between the applied magnetic field and the fre-
quency of the energy difference between states.

If we return to the classical picture, we can think of the spins as arrows pointing in
all directions. When the magnetic field applied, the magnetic field forces spins to align
with itself. Some of the spins will align parallel to the magnetic field and some will align
anti-parallel. In the quantum counterpart of this picture, this event becomes as the some
spins will be on the lower energy level (parallel) and some on the higher energy level
(anti-parallel).

In equilibrium, the populations of the spins on each energy level are distributed ac-
cording to Boltzmann statistics. Therefore number of the spins in the (+) or (−) states
are related by the Boltzmann factors:

n+ = n−e−
E+−E−
kBT , (2.9)

where kB is the Boltzmann constant and T is the temperature.
The sample under the experimental interest, involves immense number of spins, i.e.,

on the order of Avogadro number. Since some of the spins will be in the up direction and
some down direction, total bulk magnetization will be proportional to the difference of up
and down populations. Here we define a quantity for this difference, called polarization:

P =
n+ − n−
n+ + n−

= tanh
(E+ − E−

kBT

)
. (2.10)

The direction of the net magnetization due to the choice of magnetic field in z-axis, is
in the z-direction and this magnetization is called longitudinal magnetization. The time
that the longitudinal magnetization returns to its equilibrium position is denoted with T1.
In NMR experiment, a secondary oscillating field in the radio-frequency band (RF) trans-
mitted into the sample in the horizontal direction. This field has same or in the vicinity
of the frequency as the Larmor frequency of the corresponding magnetic field and the
gyromagnetic ratio of the nuclear spin. When RF pulse is transmitted, the magnetization
vector can be tilted away from the z-axis and ensure that it makes a precessional motion
about applied the z-axis. For this reason, these experiment are called magnetic resonance
experiments, because the precessional motion is achieved by a resonant irradiation. The
process of a secondary electromagnetic field is similarly performed on the ESR experi-
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ment, however, the frequency of the transmitted pulse for electron is on the microwave
frequency region and the Larmor frequency corresponding to the electron spin is much
larger than the nuclear spin ωS � ωI .

Thus, the polarization is the main factor that determines the intensity of the magne-
tization and in this respect, the intensity of the NMR signals. The polarization given in
the equation (2.10), depends on the energy difference between the (+) and (-) states and
also inversely proportional to the temperature. Hence, one expects that the intensity of
the signal decreases with the increasing temperature. And since the energy difference,
∆E = γIh̄B0, depends on the magnetic field intensity, as the field is elevated, the polar-
ization increases. On the other hand, gyromagnetic ratio, which is not an experimental
input, directly affects the polarization.

In order to gain an insight about the degree of the polarizations that NMR and ESR can
provide, polarization for a variety of nuclei and electron spins are given in the Table 2.1.
An average magnetic field intensity of the current technological devices (3 T) and the
room temperature (300 K) are assumed.

Table 2.1: Polarizations of various nuclear spins and electron spin are listed.
Spin Natural Abundance γ γ/γelectron P (%)
1H 99.8 42.58 658 0.0010
13C 1.07 10.71 2616 0.0002
14 N 99.63 3.077 9108 0.0001
17 O 0.038 −5.77 4857 0.0001
31 P 100 17.24 1625 0.0004

electron −28024.95 1 0.6700

The polarizations of nuclear spins, together with their low gyromagnetic ratios, seem
to be minuscule compared to the polarization of the electron. In addition, the carbon nu-
clei suffers from the low natural abundance, that is only the 1% of the carbons posses spin
1/2. Therefore, we expect the outcome of the NMR experiments will be much smaller
compared to that of the ESR experiments. In the NMR, small amount of magnetization is
generally suppressed by the contribution of the other random motions in the sample mak-
ing it undetectable. For this reason, the experiment should be performed several times to
decrease the signal to noise ratio and isolate the targeted magnetization. The ESR experi-
ment, on the other hand, produces much better results due to its much larger polarization.
From the gyromagnetic ratios, it is seen that the electron polarization is∼660 times larger
than 1H and ∼2600 times than 13C polarization.

Now if we somehow alter these equilibrium polarizations, we can increase the NMR
signal intensity [8]:

P =
n+ − n−
n+ + n−

=
〈Iz〉
Ieqz

tanh
(E+ − E−

kBT

)
, (2.11)
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where Ieqz is the equilibrium polarization. The techniques that achieve this elevation
are called hyperpolarization tecniques. In liquids, Overhauser Dynamic Nuclear Polar-
ization, which is the main focus of this thesis, offer an enhancement as much as the ratio
between the gyromagnetic ratios of electron and nuclear spins. This phenomenon is ef-
fective when both nuclear and electron spins exist in the sample and by manipulating
the electron spins via tertiary MW irradiation, the enhancement of the NMR signals can
be achieved. The interaction between the electron and nuclear spins is governed by a
relaxation mechanism. In the next chapter this phenomenon will be summarized.

2.2. Relaxation

2.2..1 Phenomenological equations of relaxation

Relaxation mechanisms are fundamental in all magnetic resonance experiments. As defi-
nition, it refers to the process of the returning to the equilibrium position. Since in NMR
experiments, the applied uniform magnetic field cause the magnetization vector of the
nuclear spins (Iz) to align with its direction, relaxation refers to the time evolution of the
magnetization vector returning to its equilibrium position. The process for a single type
nuclear spin is represented by the differential equation:

dIz
dt

= − 1

T 0
1

(Iz − Ieqz ), (2.12)

where T 0
1 characterizes the time that Iz returns to the equilibrium.

If the sample also contains electron spins, then the relaxation equation involves an
additional relaxation time:

dIz
dt

= −
( 1

T 0
1

+
1

T II1

)
(Iz − Ieqz ), (2.13)

where T II1 comes from the electron-spin interactions. If the electrons are also taken out of
the equilibrium by irradiating with a microwave field, then an additional term T IS1 comes
into the picture:

dIz
dt

= −
( 1

T 0
1

+
1

T II1

)
(Iz − Ieqz )− 1

T IS1
(Sz − Seq

z ), (2.14)

where T IS1 arises from the out-of-equilibrium state of the electron spins.

2.2..2 Enhancement due to Overhauser Effect

Magnitude of the effect by ODNP process is related to the these additional relaxation
terms. In this section, I will carry the calculations to obtain the enhancement due to
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Figure 2.1: Energy levels representing nuclear and electron coupled spin system. α and β
represent lower and higher energy levels,respectively.

Overhauser effect.
The system containing both 1/2 nuclear spin and electron spin can be described by

the energy level diagram shown in the Fig. 2.1. The transitions between the energy levels
are designated with w. While w1 and w′1 denote single excitations for nuclear and elec-
tron spins, respectively, w0 and w2 denote zero and double excitations. The evolution of
the spin-state populations can be described in terms of the transition probabilities by the
following differential equations [27]:

dnββ
dt

= −(w1 + w′1 + w2)nββ + w1nαβ + w′1nβα + w2nαα + cst.,

dnβα
dt

= −(w1 + w′1 + w0)nβα + w1nαα + w′1nββ + w0nαβ + cst.,

dnαβ
dt

= −(w1 + w′1 + w0)nαβ + w1nββ + w′1nαα + w0nβα + cst.,

dnαα
dt

= −(w1 + w′1 + w2)nαα + w1nβα + w′1nαβ + w2nββ + cst..

(2.15)

Since the macroscopic magnetization is proportional to the vector sum of the magnetiza-
tion, we have the relations:

Iz ∝ nββ + nβα − nαβ − nαα,

Sz ∝ nββ + nαβ − nβα − nαα.
(2.16)

If we differentiate the equation (2.16), together with the equation (2.15), we obtain:

dIz
dt

= 2{(w1 + w2)(nββ − nαα) + (w0 + w1)(nβα − nαβ)},

dSz
dt

= 2{(w′1 + w2)(nββ − nαα) + (w0 + w′1)(nαβ − nβα)}.
(2.17)
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Applying addition or subtraction of the equations in (2.16), finally we get the differential
equations for Iz and Sz:

dIz
dt

= −(w0 + 2w1 + w2)(Iz − Ieqz )− (w2 − w0)(Sz − Seq
z ),

dSz
dt

= −(w0 + 2w′1 + w2)(Sz − Seq
z )− (w2 − w0)(Iz − Ieqz ),

(2.18)

where the Ieq and Seq terms represent the equilibrium values of nuclear and electron
magnetizations and can be correspondent of the constants in the equation (2.15). Since
electron spin has a much stronger relaxation mechanism than the relaxation due to cou-
pling with nuclear spin, relaxation times in differential equation of Sz is negligible. Here
the self- and cross-relaxation times for Iz given in equation (2.14) can be written in terms
of these transition probabilities. We define the relaxation rates ρSI and σSI , which are the
inverse of the corresponding relaxation times:

1

T II1
= ρSI = w0 + 2w1 + w2, (2.19)

and
1

T IS1
= σSI = w2 − w0. (2.20)

If we include the relaxation rate in the absence of the electronic spin wt = 1/T 0
1 then we

revise the relaxation equation for Iz in (2.18) as:

dIz
dt

= −(w0 + 2w1 + w2 + wt)(Iz − Ieqz )− (w2 − w0)(Sz − Seq
z ). (2.21)

At the steady state this equation becomes:

0 = −(w0 + 2w1 + w2 + wt)(Iz − Ieqz )− (w2 − w0)(Sz − Seq
z ) (2.22)

Since we are interested in the deviation of magnetization vector from its static value (equa-
tion (2.11)), the enhancement factor is defined as:

e =
Iz − Ieqz
Ieqz

. (2.23)

The equation (2.22) can be arranged as:

e =
(Iz − Ieqz )

Ieqz
=

w2 − w0

(w0 + 2w1 + w2 + wt)

(Sz − Seq
z )

Ieqz
. (2.24)

We rewrite this equation in the following form:

e =
w2 − w0

(w0 + 2w1 + w2)

(w0 + 2w1 + w2)

(w0 + 2w1 + w2 + wt)

(Sz − Seq
z )

Seq
z

Seq
z

Ieqz
. (2.25)
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The first term in the right hand side:

c =
w2 − w0

(w0 + 2w1 + w2)
, (2.26)

represents the coupling factor. The reason to separate these transition probabilities is to
define a quantity that comes from only electron-nuclear spin interactions by excluding
the intrinsic relaxation rate wt. Using the definitions in (2.19) and (2.20), we obtain this
form:

c =
σSI
ρSI
. (2.27)

The second term in equation (2.25) represents the leakage factor and it is the ratio between
the relaxation rates in the absence and presence of the electron spin:

f =
ρSI

ρSI + wt
= 1− T II1

T1
. (2.28)

As the value of the T II1 becomes negligible compared to T1, this quantity becomes unity.
The third term is defined as the electronic spin saturation factor:

s =
(Sz − Seq

z )

Seq
z

, (2.29)

and it quantifies the difference of the electron spin populations. When the value 〈Sz〉
becomes zero, namely, the spin populations are distributed along the energy levels equally,
the saturation factor becomes unity. The last term is the ratio of the magnetizations of
electron and nuclear spins in the equilibrium. As the magnetizations are directly related
to the gyromagnetic ratios, we obtain:

Seq
z

Ieqz
=
γS
γI
. (2.30)

Combining all these equations we define the enhancement factor in terms of these
parameters:

e = cfs
γS
γI
. (2.31)

2.2..3 Three-spin Effect

This derivation can be applied to all types of the nuclei individually. However, when the
sample consist of two types of nuclear spins simultaneously, in addition to the electron
spin, the relaxation equation includes the contribution from the interaction between those
nuclear spins as well. When such interaction is present between different nuclear spin
species denoted by I and K, the relaxation of the longitudinal spin polarization of I can
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be expressed as in [8]:

dIz
dt

= −(ρSI + ρKI + wt)(Iz − I0z )− σSI (Sz − S0
z )− σKI (Kz −K0

z ) (2.32)

where the self- and cross-relaxation rates ρKI and σKI which are due to the coupling be-
tween I and K are introduced.

As in the case of two spins, we seek the steady state solutions. Assuming the po-
larization of I does not affect polarization of K, using the steady state of (2.32), the
enhancement of the I signal, eI = (I − I0)/I0, becomes:

eI =
σSI − σKI cSKfSK
ρSI + ρKI + wt

s
γS
γI
, (2.33)

where cSK is the coupling factor of interaction between K and S, fSK is the leakage factor
of for nuclear spin K. In terms of coupling factor for I , cSI = σSI /ρ

S
I and leakage factor

for I , fSI = ρSI /(ρ
S
I + ρKI + wI), equation (2.33) reads:

eI = (mcSI )fSI s
γS
γI
, (2.34)

where

m = 1− σKI
σSI

(cSKf
S
K), (2.35)

is a multiplicative correction to the coupling factor of I that accounts for the additional
interaction between I and K.

2.3. Review to the Bloch-Wangness-Redfield Relaxation
Theory

The relaxation rates are evaluated as the combinations of the transition probabilities in
the previous section. However, these rates can also be obtained in terms of the spectral
density functions (SDFs), through an analysis of a second-order time-dependent perturba-
tion theory. The formal derivation for this can be found in numerous references in detail
[28, 29, 30]. In this section, I will carry the formalism in these textbooks, by first deriv-
ing a general formulation for the time evolution of a spin system under time-independent
and time-dependent interactions and then proceed to the specific cases of the interactions
involved in Overhauser effect.

2.3..1 General Formalism

The formalism for a relaxing spin system weakly coupled to a lattice can be derived
through time-dependent perturbation theory. The treatment starts with the assumption that
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Hamiltonian of the spin system can be decomposed into time-independent and weak time-
dependent parts. The time-independent part may involve any stationary non-fluctuating
interactions such as Zeeman interaction which spins couple to the applied strong uniform
magnetic field or chemical shift which arises from the electronic configuration of the
atoms in the molecules etc. The time-independent part may involve weaker stochastic
interactions such as dipolar, scalar or quadrupolar couplings in which spins are coupled
with each other or chemical shift anisotropy which can be attributed to the anisotropic
orientation tendency of the chemical shift.

Let the time-independent and stochastically fluctuating Hamiltonians beH0 andH1(t),
respectively. Then Hamiltonian of the system becomes:

Hsys = H0 +H1(t). (2.36)

By definition ensemble average (or time average assuming the ergodic hypothesis) of the
time-dependent part is zero:

H1(t) = 0. (2.37)

The quantum mechanical description for the ensemble of spins is characterized by the
density operator ρ. The evolution of the density operator is given by Liouville/von Neu-
mann equation:

dρ

dt
= −i[Hsys, ρ], (2.38)

where Hamiltonian is divided by h̄ and from now on we stick with this convention. Since
the time-independent part of the Hamiltonian does not involve in the relaxation mecha-
nism, working on the so-called rotating frame (or interaction frame) is convenient. Ro-
tating frame does not correspond to physical rotation but the action of transforming into
interaction picture resembles the action of rotation. The transformation to the interaction
picture is performed by the unitary operator:

U = e−iH0t. (2.39)

The unitary operator is acted upon all the observables and therefore the time-dependent
part of the interactions will be isolated from other effects:

ρ̂ =U−1ρU,

Ĥsys =U−1HsysU,
(2.40)

where the hat above the operators denotes interaction picture. The equation of motion is
moved to the interaction representation as well:

d[Uρ̂U−1]

dt
= −i[UĤsysU

−1, Uρ̂U−1, (2.41)
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which can be written as:

d[Uρ̂U−1]

dt
= −iU [Ĥ0 + Ĥ1(t), ρ̂]U−1. (2.42)

Using the Baker-Campbell-Handsdorff formula:

UĤ0U
−1 = e−iH0tĤ0eiĤ0t = Ĥ0 + i[Ĥ0, Ĥ0]− [Ĥ0, [Ĥ0, Ĥ0]] + ... = Ĥ0, (2.43)

so that the time-independent Hamiltonian remains same in the interaction picture and
therefore,H0 commutes withU . The left hand side of the equation (2.42) can be evaluated
as:

d[Uρ̂U−1]

dt
=

d[U ]

dt
ρ̂U−1 + U

dρ̂

dt
U−1 + Uρ̂

d[U−1]

dt
,

= −iH0Uρ̂U
−1 + U

dρ̂

dt
U−1 + iUρ̂H0U

−1,

= iU [ρ̂,H0]U
−1 + U

dρ̂

dt
U−1,

(2.44)

and the right hand side of (2.42) is:

= −iU [Ĥ0, ρ̂]U−1 − iU [Ĥ1(t), ρ̂]U−1. (2.45)

First terms on both sides cancel each other. Removing the outer U operators, the equation
of motion becomes:

dρ̂

dt
= −i[Ĥ(t), ρ̂]. (2.46)

The solution to this equation is carried on by an iterative method. Starting with the inte-
gral:

ρ̂(t) = ρ̂(0)− i
∫ t

0

dt′[Ĥ(t′), ρ̂(t′)], (2.47)

where we invoke the zeroth order approximation ρ̂(t) ≈ ρ̂(0). Putting this on the inside
the integral in (2.47), we get:

ρ̂(t) = ρ̂(0)− i
∫ t

0

dt′[Ĥ(t′), ρ̂(0)], (2.48)

and reinstering the equation (2.48) to the inside of integral in (2.47), we get:

ρ̂(t) = ρ̂(0)− i
∫ t

0

dt′[Ĥ(t′), ρ̂(0)−
∫ t′

0

dt′′[Ĥ(t′′), ρ̂(0)]]. (2.49)

Differentiating this equation:

dρ̂(t)

dt
= −i[Ĥ(t′), ρ̂(0)]−

∫ t

0

dt′[Ĥ(t), [Ĥ(t′), ρ̂(0)]]. (2.50)
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We stop the iteration at the second order. Since the interactions occur between an ensem-
ble of the spins, we take an ensemble average of the spin density operator.

dρ̂(t)

dt
= −i[Ĥ(t′), ρ̂(0)]−

∫ t

0

dt′[Ĥ(t), [Ĥ(t′), ρ̂(0)]]. (2.51)

Here we subject a change of variable τ = t− t′.

dρ̂(t)

dt
= −i[Ĥ(t− τ), ρ̂(0)]−

∫ t

0

dτ [Ĥ(t), [Ĥ(t− τ), ρ̂(0)]]. (2.52)

If the characteristic time of Ĥ1(t) is τc, then the average of Ĥ1(t) and ρ̂ can be taken
independently. This is valid when the quantity of the macroscopic variable has a much
slower decay than the scale of τc. Therefore, we can drop the first term along with the
condition given in (2.37). Consequence of having t� τc is that we can extend the upper
integral to the infinity since it will not affect the value of the integral and the term inside
of the integral ρ̂0 can be replaced with ρ̂(t):

dρ̂(t)

dt
= −

∫ ∞
0

dτ [Ĥ(t), [Ĥ(t− τ), ρ̂(t)]], (2.53)

where we omitted the bar over ρ̂(t) for convenience. Taking the lattice temperature into
account we will introduce the equilibrium state density operator ρ0 relying on the com-
mutivity of ρ0 withH0, then the expression in (2.53) becomes:

dρ̂(t)

dt
= −

∫ ∞
0

dτ [Ĥ(t), [Ĥ(t− τ), ρ̂(t)− ρ̂0]]. (2.54)

Since we are concerned with the Overhauser effect, our Hamiltonian will consist of

H0 = HI +HS +Hdip +Hscalar, (2.55)

where the first two terms are Zeeman interactions for nuclear and electron spins and they
will be treated for time-independent interactions:

H0 = HI +HS = ωIIz + ωSSz, (2.56)

where ωI = −γIB0 and ωS = −γSB0. The last two terms are stochastically varying
dipolar and scalar interactions.
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2.3..2 Dipolar Interaction

Classically, the dipolar interaction between two magnetic dipole is:

Hdip =
µ0

4π

[
µ1 · µ2 − 3(µ1 · r̂)(µ2 · r̂)

r3

]
, (2.57)

where r is the distance vector between two magnetic dipoles and µ0 is the permittivity of
free space. Quantum mechanical counterpart for dipolar interaction between the spins I
and S is similarly:

Hdip =
µ0

4π
γIγSh̄

[
I · S − 3(I · r̂)(S · r̂)

r3

]
= I ·D · S, (2.58)

where D is the dipolar interaction tensor and we divided Hamiltonian by h̄. Dipolar
tensor is a second rank traceless tensor operator and can be decomposed into the linear
combinations of orthonormal functions:

Hdip =
∑
α

FαAα =
∑
α

F ∗αA
†
α, (2.59)

where Fα denotes the stochastic random functions corresponding to the rotational depen-
dence in the (2.58) and Aα denotes the spin operators. Hermiticity of the Hamiltonian
gives rise to equality of the latter, where star (*) denotes complex conjugate and dagger
(†) denotes Hermitian conjugate. The functions that constitute the dipolar tensor are given
in the Table 2.2.

Table 2.2: Random functions Fα and F ∗α , spin operators Aβα and their hermitian conju-
gates and their corresponding frequencies in the interaction picture. The prefactor δIS is
µ0
4π
γIγSh̄.

Fα F ∗α Aβα Aβ†α (Aβ−α) ω√
3
2
δIS

r2−z2
r5

√
3
2
δIS

r2−z2
r5

√
2
3
IzSz

√
2
3
IzSz 0

−
√

1
24
I+S− −

√
1
24
I−S+ ωI − ωS

−
√

1
24
I−S+ −

√
1
24
I+S− −ωI + ωS

3δIS
z(x−iy)
r5

3δIS
z(x+iy)
r5

−1
2
I+Sz −1

2
I−Sz ωI

−1
2
IzS+ −1

2
IzS− ωS

3
2
δIS

(x−iy)2
r5

3
2
δIS

(x+iy)2

r5
−1

2
I+S+ −1

2
I−S− ωI + ωS

Note that the spin operators also decomposed into the smaller parts:

Aα =
∑
β

Aβα. (2.60)

Consequently, the spin operators can be transformed to the interaction picture using [H0, A
β
α] =

16



ωβαA
β
α. In the interaction picture, the operators become:

Âβi = Aβαe−iω
β
αt, (2.61)

where the values of ωβα is given in Table 2.2. Therefore the dipolar Hamiltonian in the
interaction picture becomes:

Ĥdip(t) =
∑
α,β

Fα(r(t))Âβαe−iω
β
αt. (2.62)

We impose these functions to the equation (2.54) we get:

dρ̂(t)

dt
= −

∫ ∞
0

dτ
∑
α,β

∑
α′,β′

[Fα(t)Âβαe−iω
β
αt, [F ∗α′(t− τ)Âβ

′†

α′ e−iω
β′
α′ (t−τ), ρ̂(t)− ρ̂0]].

(2.63)
If we assume the spatial part Fα and the spin operators are stochastically independent,
then they can be averaged independently and the equation becomes:

dρ̂(t)

dt
= −

∑
α,β

∑
α′,β′

∫ ∞
0

dτFα(t)F ∗α′(t− τ)e−iω
β
αte−iω

β′
α′ (t−τ)[Âβα, [Â

β′†

α′ , ρ̂(t)− ρ̂0]],

(2.64)
where we define the correlation function:

Cdip
α,α′(τ) = Fα(t)F ∗α′(t− τ). (2.65)

Therefore we can rewrite the equation (2.64) as:

dρ̂(t)

dt
= −

∑
α,β

∑
β′

∫ ∞
0

dτCdip
α (τ)e−iω

β
αte−iω

β′
α (t+τ)[Âβα, [Â

β′†

α , ρ̂(t)− ρ̂0]], (2.66)

where we assumed that the the order of stochastic functions are independent, therefore
we can invoke Cdip

α,α′(τ) = Cdip
α (τ)δα,α′ and also we applied the time reversibility of the

correlation functions that is Cdip
α (t − τ) = Cdip

α (t + τ). Now we can define the spectral
density functions for dipolar interaction by:

Jβ,dipα (ωβα) =

∫ ∞
0

dτCdip
α (τ)e−iω

β
ατ , (2.67)

which is the Laplace-Fourier transform of the correlation function.
Expectation value of an observable can be found by 〈Q〉 = Tr{Qρ̂}. Thus using

the equation (2.66) and (2.67), we obtain the differential equation for the nuclear spin
magnetization in z-direction, Iz:
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d
〈
Îz
〉

dt
= −Tr

{∑
α,β

∑
β′

Jβ,dipα (ωβα)e−i(ω
β
α+ω

β′
α )t)[Âβα, [Â

β′†

α′ , ρ̂(t)− ρ̂0]]Iz
}
. (2.68)

We can rearrange this equation using the property of trace Tr [A,B] = Tr [B,A]:

d
〈
Îz
〉

dt
= −Tr

{
(ρ̂(t)− ρ̂0)

∑
α,β

∑
β′

Jβ,dipα (ωβα)e−i(ω
β
α+ω

β′
α )t)[Âβα, [Â

β′†

α′ , Iz]]
}
. (2.69)

The term e−i(ω
β
α+ω

β′
α )t is rapidly oscillating when compared to the characteristic time of

relaxation, thus the exponent average to zero. Therefore equation (2.69) gives:

d
〈
Iz
〉

dt
= −

∑
α,β

∑
β′

Tr

{
(ρ̂(t)− ρ̂0)Jdip

α (ωβα)[Aβα, [A
β′

α , Iz]]

}
. (2.70)

If we proceed to the spin operator part, the calculations of the commutator relations
is necessary. However, in the calculations, we see that only non-vanishing terms are for
α 6= 0 and β′ = −β; and for α = 0, β = 1, β′ = 2 and β = 2, β′ = 1. Calculation of
commutator relations yields the following results:

[A1
0, [A

2
0, Iz]] =

1

12
(IzS+S− − I+I−Sz),

[A1
1, [A

1
−1, Iz]] =

1

2
IzS

2
z ,

[A1
2, [A

1
−2, Iz]] =

1

2
(IzS−S+ + SzI+I−),

(2.71)

and their hermitian conjugates. We can convert the ladder operators into Cartesian coor-
dinates:

[A1
0, [A

2
0, Iz]] =

1

12
(Iz(S

2
x + S2

y)− (I2x + I2y )Sz,

[A1
1, [A

1
−1, Iz]] =

1

2
IzS

2
z ,

[A1
2, [A

1
−2, Iz]] =

1

2
(Iz(S

2
x + S2

y − Sz) + (I2x + I2y − Iz)Sz).

(2.72)

To calculate the expectation values of these values we need to assume the high temperature
approximation which produces the relation [30]:

ρ̂ ≈ ρ ≈ a+ b(Iz + Sz), (2.73)
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where a and b are constants. Thus we find:

Tr{ρIzSz} ≈Tr{(a+ b(Iz + Sz))IzSz} ≈ 0,

Tr{ρIzS2
i } ≈Tr{(a+ b(IzSz)IzS

2
i )} ≈

〈
Iz
〉S(S + 1)

3
.

(2.74)

Then the summation part of the differential equation becomes for α = 0:

Jdip
0 (ωI − ωS)

(
− 1

9
I(I + 1)(〈Iz〉 − 〈Iz〉0)−

1

9
S(S + 1)(〈Sz〉 − 〈Sz〉0)

)
, (2.75)

for α = 1:
Jdip
1 (ωI)

(
− 1

3

)
I(I + 1)(〈Iz〉 − 〈Iz〉0), (2.76)

and for α = 2:

Jdip
2 (ωI + ωS)

(
− 2

3
I(I + 1)〈Iz〉 − 〈Iz〉0 +

2

3
S(S + 1)〈Sz〉 − 〈Sz〉0

)
. (2.77)

Therefore the characteristic times of relaxation due to addition of electronic spin T II1 and
T IS1 are related by:

1

T II1
= ρSI =I(I + 1)

(1

9
Jdip
0 (ωI − ωS) +

1

3
Jdip
1 (ωI) +

2

3
Jdip
2 (ωI + ωS)

)
,

1

T IS1
= σSI =S(S + 1)

(2

3
Jdip
2 (ωI + ωS)− 1

9
Jdip
0 (ωI − ωS)

)
.

(2.78)

Considering I and S corresponds to the nuclear and electron spins, and the nuclear spins
that are in the focus of this thesis have the spin quantum number 1/2, we evaluate the
equation (2.78):

ρSI =
1

12
Jdip
0 (ωI − ωS) +

1

4
Jdip
1 (ωI) +

1

2
Jdip
2 (ωI + ωS),

σSI =
1

2
Jdip
2 (ωI + ωS)− 1

12
Jdip
0 (ωI − ωS).

(2.79)

Therefore acknowledging Jα(ω) = Jα(−ω) and ωS � ωI and assuming the isotropicity
of the molecular motions which makes all Jα equal in average, the equations in (2.79) can
be approximated as:

ρSI ≈
1

12
(7J(ωS) + 3J(ωI))

σSI ≈
1

12
(5J(ωS)).

(2.80)

Related to the relaxation rate, a quantity NMR experiments measure called relaxivity rSI
and it removes the concentration dependence of the self-relaxation rate. Therefore the
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relaxivity due to dipolar coupling is found division of the self-relaxation rates by the
concentration of electron spins (NS):

rSI =
ρSI
NS

. (2.81)

Lastly, the coupling factor influenced by only dipolar coupling can be written in terms of
the spectral density functions:

c ≈ 5(JωS)

7J(ωS) + 3J(ωI)
(2.82)

2.3..3 Scalar Interaction

Different from the dipolar interaction, the scalar interaction does not depend on the direc-
tion of the inter-spin vector. Scalar interaction arises from the Fermi contact interaction
and it is directly proportional to the electron spin density at the location of the nuclear
spin and only the magnitude of the de-localization is related the interaction. This mag-
nitude is called hyperfine contact coupling constant or Fermi contact and because of its
independence of direction it is denoted as Aiso. The Hamiltonian for scalar interaction is:

Hscalar = AisoI · S. (2.83)

Applying the same treatment, we expand I ·S into corresponding ladder operators and Iz:

Hscalar = Aiso(IzSz +
1

2
I+S− +

1

2
I−S+), (2.84)

which becomes in the interaction picture:

Ĥscalar = Aiso(t)(IzSz +
1

2
I+S−e−i(ωI−ωS)t +

1

2
I−S+e−i(−ωI+ωS)t). (2.85)

Rewriting the equation (2.85) as a summation:

Ĥscalar = Aiso(t)
∑
γ

Aγe−iωγt = Aiso(t)
∑
γ

A†γeiωγt (2.86)

Here we also assume the stochasticity of the hyperfine coupling constant that is Aiso = 0.
Similar to the dipolar case, we obtain the differential equation:

dρ̂(t)

dt
= −

∫ ∞
0

dτ
∑
γ,γ′

[Aiso(t)Aγe−iωγt, [Aiso(t− τ)Aγ′e−iωγ(t−τ), ρ̂(t)− ρ̂0]]. (2.87)
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Using same assumption that the hyperfine coupling constant and the spin operators are
stochastically independent, we rewrite:

dρ̂(t)

dt
= −

∫ t

0

dτ
∑
γ,γ′

Aiso(t)Aiso(t− τ)e−iω
γte−iω

γ′ (t−τ)[Aγ, [Aγ
′
, ρ̂(t)− ρ̂0]]. (2.88)

Then we define the correlation function for scalar interaction:

C iso(τ) = Aiso(t)Aiso(t− τ), (2.89)

and the scalar spectral density function:

K iso(ωγ) =

∫ ∞
0

C iso(τ)e−iω
γ

dτ, (2.90)

Then the differential equation in (2.88) becomes:

dρ̂(t)

dt
= −

∑
γ,γ′

K iso(ωγ)e−i(ω
γ+ωγ

′
)t[Aγ, [Aγ

′
, ρ̂(t)− ρ̂0]]. (2.91)

Again we assume, because of the rapid oscillations exponential terms become unity. Thus
the expectation value for Iz becomes:

dIz(t)

dt
= −Tr

{
(ρ̂(t)− ρ̂0)

∑
γ,γ′

K iso(ωγ)[Aγ, [Aγ
′
, Iz]]

}
. (2.92)

If we do the commutator calculations, we see that only non-vanishing terms are:

[A1, [A−1, Iz]] = Iz(S
2
x + S2

y) + Sz(I
2
x + I2y ) (2.93)

and its complex conjugate. Then the traces produce:

d〈Iz〉
dt

= −8

3
I(I + 1)K(ωI − ωS)

(
〈Iz〉 − 〈Iz〉0

)
+

8

3
S(S + 1)K(ωI)− ωS)

(
〈Sz〉 − 〈Sz〉0

) (2.94)

and relaxation rates T II1 and T IS1 for scalar interaction becomes:

1

T II1
=

8

3
I(I + 1)K(ωI − ωS)

1

T IS1
=− 8

3
S(S + 1)K(ωI − ωS)

(2.95)
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As in dipolar case, we can use approximation of ωS � ωI and using I = 1/2 and S = 1/2

we get:

ρSI ≈
1

2
K(ωS), σSI ≈ −

1

2
K(ωS) (2.96)

Combining the relaxation rates for scalar and dipolar interactions we get:

ρSI ≈
1

12

(
7J(ωS) + 3J(ωI) + 6K(ωS)

)
, (2.97)

and

σSI ≈
1

12

(
5J(ωS)− 6K(ωS)

)
. (2.98)

The coupling factor influenced by both scalar and dipolar relaxations becomes:

c ≈ 5J(ωS)− 6K(ωS)

7J(ωS) + 3J(ωI) + 6K(ωS)
. (2.99)

2.4. Spectral density functions
from simulations

The time correlation functions of the inter-spin vectors between spins can be obtained
using the molecular dynamics (MD) simulations which follow the trajectory of the atoms
in time. In this section, I will briefly explain basic principles of MD simulations and the
methodology to extract the spectral density functions from simulations.

2.4..1 MD Simulations

MD simulations follow purely classical Newtonian equations of motion for a system ofN
atoms. For instance, simulations that were carried out in this thesis have approximately
∼ 25 000 atoms. The equation of motion for each atom is:

mir̈i = Fi, (2.100)

where mi is the atomic mass, ri is the position vector and Fi is the force acting upon the
atom. Force is the space derivative of the interatomic potential energy:

Fi = −∇Vi, (2.101)

where Vi(r1, r2, ..., rN, ) is called the Force Field and it is a function of positions of N
atoms. The Force Field consists of bonded interactions where two, three or four atoms
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are connected by harmonic springs and non-bonded interactions which involve the van
der Waals and electrostatic interactions.

The trajectory of the atoms is obtained by calculating the force and thus acceleration
in each time step. Velocity and position of the atoms can be calculated by integration of
acceleration once and twice, respectively. Since analytical integration is impossible for an
ensemble of system, numerical integration is necessary to solve the equation of motion.
Commonly used integration algorithm in MD simulations is Verlet algorithm. It is based
on the Taylor expansion of r(t) at times t+ δt and t− δt up to the 3rd order:

r(t+ δt) = r(t) + ṙ(t)δt+
1

2
r̈(t)δt2 +

1

6

...
r (t)δt3 +O(δt4),

r(t− δt) = r(t)− ṙ(t)δt+
1

2
r̈(t)δt2 − 1

6

...
r (t)δt3 +O(δt4).

(2.102)

using these two equations, we obtain the Verlet integrator:

r(t+ δt) = 2r(t)− r(t− δt) + r̈(t)δt2 +O(δt4). (2.103)

By default, MD simulations represent microcanonical ensemble, thus number, vol-
ume, and energy (NVE) of the system are kept constant. However, for realistic simula-
tions the temperature and pressure of the system should be also constant or in equilibrium.
For this purpose, thermostat and barostat algorithms are developed. Most thermostat al-
gorithms do this task by scaling the velocities of the atoms. In effect, they apply small
kicks onto the atoms to reduce the average kinetic energy of the system therefore the tem-
perature. For example, the Langevin thermostat uses the Langevin equation of motion
instead of Newton equation:

r̈i =
Fi
mi

− γṙi + ξi, (2.104)

where γ denotes the Langevin damping coefficient which scales the velocity and ξi ran-
dom force that maintains the temperature constant. Advantage of this algorithm is that
the diffusion coefficient of the atoms can be adjusted by choosing a convenient damping
coefficient. Since the diffusional properties of the molecules are especially sensitive for
ODNP, this is of major importance for our work. In this thesis, the diffusion coefficient
of the molecules in MD simulations are adjusted with this method.

2.4..2 Frequency-dependent Dielectric Response

Complex frequency-dependent dielectric response can be performed to asses the fidelity
of the rotational motion of the molecules in the simulation. The analysis is based on the
linear response theory[31, 32, 33] which describes the reaction of a system under applied
electric field. In linear response theory, the expectation value of frequency component
of polarization is proportional to the frequency component of the electric field with a

23



generalized susceptibility function. This function is obtained through the time correla-
tion functions (TCF) of the electric dipole moment. These TCFs are calculated from the
simulated system as follows:

Φ(t) =
〈
M(τ)M(t+ τ)

〉
τ
, (2.105)

where,

M(t) =
N∑
a=1

µa. (2.106)

M(t) represents the collective electric dipole moment of the entire simulation box with
N molecules at time t, and pointed brackets in (2.105) indicate averaging over the time
τ . Assuming rotationally isotropic motion, cross terms between Cartesian coordinates are
zero, thus average over these coordinates can be also taken.

Then the frequency-dependent dielectric function can be written as [31]:

ε(ω) = ε(∞)− 1

V kBTε0

∫ ∞
0

dtΦ̇(t)e−iωt, (2.107)

where V is volume of the simulation box, kB is Boltzmann s constant, T is temperature,
ε0 is the permittivity of free space, and the dot above Φ indicates a derivative with respect
to time. We can fit the TCFs obtained from the MD simulations to a sum of decaying
exponential functions:

Φ(t) =
∑
i

aie−t/τi . (2.108)

We use these functions to find the real and imaginary parts of the dielectric function
through:

ε(ω) = ε′ + iε′′

=

[
1 +

1

V kBTε0

∑
i

ai
1 + (τiω)2

]
+ i

[
ω

1

V kBTε0

∑
i

aiτi
1 + (τiω)2

]
,

(2.109)

where square bracketed expressions denote ε′ and ε′′, respectively. The static dielectric
constant can be evaluated through this function by equating the angular frequency ω to
zero. Namely, it can be obtained by:

ε′(0) = 1 +
1

V kBTε0

∑
i

ai. (2.110)
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2.4..3 Dipolar Spectral Density Functions

The methodology to calculate the dipolar Spectral Density Functions (SDFs) proceeds as
follows. The dipolar interactions to nuclei on solvent molecules that are close in space to
the free radical are calculated from the positions in the MD simulations. Dipolar inter-
actions to more distant nuclei, all the way to infinity, are accounted analytically. For this
purpose, an imaginary sphere with radius d around the free radical is constructed during
the analysis of the MD trajectories. Defining the inside of the sphere as near region (N)
and outside as far region (F), four different time correlation functions (TCFs) are possible
according to the region at some time, and time t later (Fig. 2.2). The total dipolar TCF is
the sum of these four contributions:

Cdip(t) = CNN(t) + 2CNF(t) + CFF(t), (2.111)

where forCFN = CNF time reversibility is invoked. OnlyCNN(t) andCNF(t) are obtained
from the MD simulations. The correlation function CFF(t) is calculated analytically [23]
within the assumptions of the model of diffusing hard spherical molecules with centered
spins (HSCS model) [34, 35].

The TCFs CNN(t) and CNF(t) are calculated from the recorded MD coordinates from:

Cm
dip(t) =

1

12
〈Fm

dip(τ)Fm
dip(t+ τ)〉τ , (2.112)

where Fm
dip(t) = Fm

dip(r(t) are rank-2 spherical harmonics but includes the δ prefactor
given in the Table 2.2. This prefactor differs for the different nuclear spin species. For
1H its value is 4.968 × 10−4 nm3/ ns and for 13C it is 1.249 × 10−4 nm3/ ns. The
pointed brackets indicate averaging over the ensemble of molecules and over the time τ .
For isotropic liquids the TCFs for m = 0, 1 and 2 are all equal, thus the superscript can
be dropped. The SDFs corresponding to CNN(t) and CNF(t) are obtained by taking the
Laplace-Fourier transform of the TCFs:

JXX
dip (ω) = L[CXX

dip (t)] =

∫ ∞
0

CXX
dip (t)e−iωtdt, (2.113)

where XX is NN or FF. To perform the Fourier transformation, the near-near (NN) dipolar
TCF is first fitted to a sum of exponential decays:

CNN(t) =
∑
i

aie−t/τi , (2.114)

and subsequently Fourier-transformed as

JNN(t) =
∑
i

aiτi
1 + (ωτi)

. (2.115)
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Figure 2.2: Partitioning of the space around the polarizing agent (dark circle) into near
(r < d) and far (r > d) regions on the basis of the distance r between the free radical
and the solvent molecule. Trajectories of solvent molecules that are in N at two instances
separated by time t (blue path) contribute to CNN(t). Solvent molecules starting in N
and moving to F in time t (red path) contribute to CNF(t). Molecules that are in F at the
beginning and end of a time interval of duration t (green path) contribute to CFF(t). This
figure is taken from Ref. [1]

Due to the limited size of the MD simulation box, only molecules within a distance
less than the simulation box will contribute to the MD estimate of CNF(t). Formally, how-
ever, CNF(t) should include the contribution of molecular trajectories reaching beyond the
MD box, in principle going all the way to infinity. We, therefore, realize that CNF(t) can-
not be estimated directly from MD simulations. To overcome this problem, we introduce
another auxiliary sphere centered at the free radical and having a radius r = a (Fig. 2.3).
When calculating TCFs from the MD trajectories we pretend that molecules crossing the
surface of this outer sphere disappear. This amounts to an absorbing boundary condition
at r = a. We refer to the region between the boundary at r = d and the outer boundary at
r = a as the intermediate (mid) region (M).

The correlation function CNM(t) obeying the absorbing boundary condition can be
accurately determined from MD simulations that are finite in spatial extent. On the other
hand, the corresponding dipolar SDF JNM(ω) can be obtained analytically within the clas-
sical HSCS model but subjected to an absorbing boundary condition at r = a (denoted as
HSCSa) [23]. The resulting analytical expression is parametrized by a diffusion constant
D, and a distance of closest approach b. The desired SDFs JNM(ω), which correspond to
an infinite region F, are obtained by letting a → ∞ in the analytical expressions of the
fitted JNM(ω). Thus, in a sense, we use the analytical expression of the HSCSa model to
unfold the finite-extent JNM(ω) to an infinite-extent JNF(ω).

The same unfolding to infinite space should be applied even to the MD-estimated
JNN(ω) since, in principle, molecular trajectories that contribute to CNN(t) can cross into
the F region and come back. (Fig. 2.2, blue path). However, because the analytical HSCSa
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Figure 2.3: Partitioning of the space around the polarizing agent (dark circle) into near
(r < d) and mid (d < r < a) regions, where the boundary r = a is absorbing. This figure
is taken from Ref. [1]

model assumes that the spins are at the centers of the (spherical) molecules, to perform
this unfolding we calculate auxiliary CNN(t) from the MD trajectories by pretending that
the spins are at the centers of mass of the solvent and TEMPOL molecules. However,
the actual spin locations on the molecules become immaterial once the spins are at a
sufficiently large separation. After appropriately unfolding the MD-based JNN(ω) and
JNF(ω), and calculating JFF (ω) using the HSCS model, the final dipolar SDF is obtained
by adding all these contributions:

J(ω) = JNN(ω) + 2JNF(ω) + JFF(ω). (2.116)

2.4..4 Scalar Spectral Density Functions

Unlike the dipolar interaction, the scalar interaction is short-ranged. Therefore, for the
scalar interaction, any reasonably-sized MD simulation box should automatically be suf-
ficiently large such that applying the two-region unfolding procedure described above
becomes unnecessary. Thus, it should be possible to base the estimate of the scalar TCF
on the MD trajectories as such without any finite-size correction. The Fermi contact de-
pends on the electron spin density at the positions of the nuclei of interest. While the
nuclear positions can be obtained from the MD snapshots, the determination of the elec-
tron spin density requires genuinely quantum mechanical calculations. For the treatment
of the scalar interaction, therefore, we introduced a quantum region in which the free rad-
ical and a few solvent molecules around it are modeled in greater (quantal) detail than
available from the (classical) MD simulations (Fig. 2.4).

Differently from the near and mid regions introduced previously for the analysis of
the dipolar interaction, the quantum region was not defined by a fixed distance from the
center of mass of the free radical. Instead, a fixed number of solvent molecules whose
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Figure 2.4: A schematic depiction of the quantum region (red) containing only a few
solvent molecules closest to the oxygen atom of the nitroxide free radical. The scalar
interaction is computed with ab initio calculations of the molecules in the quantum region
as extracted from the MD snapshots. Thus, scalar SDF is obtained by combining the MD
simulations with quantum mechanical calculations (MD + QM). The other two regions
are necessary for the calculation of the dipolar SDF. This figure is taken from Ref. [1]

centers of mass were closest to the nitroxide oxygen atom, as well as the free radical
itself, were included in the quantum region. With the so-defined quantum region, the
scalar interaction between a given nucleus and the electron spin is either taken from the
quantum mechanical (DFT) calculation if the nucleus is in the quantum region, or is
automatically assigned as zero if the nucleus is outside the quantum region.

The time series of the Fermi contacts along the molecular trajectories, obtained either
from DFT calculations or assigned as zero, are used to calculate the scalar TCFs as

Ciso(t) =
2π

NI

〈Aiso(τ)Aiso(τ + t)〉τ . (2.117)

Here, Aiso(t) denotes the Fermi contact at time t in units of MHz, the pre-factor (2π)
converts the units from Hz to rad/sec, the angular brackets denote averaging over the
ensemble of molecules and over the time τ , and NI is the number density of the nuclear
spins. The resulting TCF is fitted to a sum of decaying exponential functions, as in the
dipolar case. The scalar SDFs are obtained from the scalar TCFs via one-sided Fourier
transform:

Kω(t) =

∫ ∞
0

Cisoe−iωtdt. (2.118)
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Chapter 3

1H DNP OF ACETONE AND
DMSO: DIPOLAR INTERACTION

In this chapter, computational modeling for 1H dynamic nuclear polarization was studied
extensively by calibrating, validating and analyzing the MD simulations for the systems
of acetone and DMSO solvents doped with polarizing agent TEMPOL. In the first section
methodological details are given. In the next section, examination of the structures and
then the validation of the partial charge distribution was carried out by analyzing the di-
electric spectra for the solvents. Then the dipolar spectral density functions are calculated.
Lastly, from these SDFs, relaxivities and coupling factors are reported.

3.1. Methods

The simulation parameters for acetone and DMSO are from the CHARMM General Force
Field [36]. The atomic partial charges of the modified DMSO model, which we called
DMSO*, are taken from Ref. [37] and TEMPOL parameters are taken from Ref. [38].
All MD simulations were performed with NAMD [39] accounting for electrostatic inter-
actions with the particle-mesh Ewald method [40]. In all simulations the temperature was
kept at 35 ◦ C with a Langevin thermostat. Cubic boxes with periodic boundary conditions
were used. An integration time step of 2 fs was employed in conjunction with SETTLE
[41]. First, cubic boxes containing 2744 solvent molecules were created. For each sol-
vent, the size of the simulation box, L, was selected to match the experimental densities
of acetone and DMSO at 35◦C (Table 3.1). By carefully choosing the friction coeffi-
cients of the Langevin thermostat that maintains the temperature of the MD simulations,
we ensured that the diffusion constants of the simulated solutions match the experimental
values at 35 ◦ C [42, 43]. To this end, several constant volume (NVT) simulations were
performed for 7 ns with different values of the friction coefficient, γ. The first 1 ns was
not analyzed. Diffusion coefficients were estimated from the slope of the mean square
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displacement in the time interval 400 − 500 ps. Displacements in the three Cartesian
directions were analyzed separately and used to calculate an average and standard devia-
tion. The values of γ for which the average diffusion coefficient was within one standard
deviation of the experimental target was selected for the subsequent simulations.

Table 3.1: Information about the MD simulations of pure solvents or liquids containing
1 TEMPOL.

ρ/kg m−3 L/nm Tpure/ns Tlow/ns
acetone 778 6.8964 1+6 1+10
DMSO/DMSO* 1085 6.9811 1+6 1+20

For simulations with TEMPOL at infinite dilution, 1 TEMPOL molecule was placed
into the pure solvent boxes. Four acetone and three DMSO molecules that overlapped
with the TEMPOL were removed from the boxes. Constant volume simulations were
performed for 11 ns for acetone and 21 ns for DMSO. The first 1 ns was not analyzed.
Atomic coordinates were saved every 0.2 ps, which is several times less than the electron
Larmor frequency at 260 GHz. For the simulations with high (1 M) TEMPOL concentra-
tion, 176 TEMPOL molecules were placed into the pure acetone box and 177 TEMPOL
molecules were placed into the pure DMSO box. After removing the overlapping solvent
molecules, 2048 acetone and 2040 DMSO molecules remained since experimental den-
sity information about the 1 M TEMPOL solutions was not available, constant pressure
(NPT) simulations were performed for 10 ns to estimate the volume. The average volume
of the simulation box over this period was calculated. The box sizes were then fixed by
keeping the side lengths at the values given in the third column of Table 3.2, which imply
the densities reported in the fourth column of the same table. After that, constant volume
(NVT) simulations were performed for a duration of Thigh ns.

Table 3.2: Information about the MD simulations with 1 M TEMPOL.
# TEMPOL+solvent L/nm ρ/kg m−3 Thigh/ns

acetone 176+2048 6.6737 801 5
DMSO 177+2040 6.6689 1063 10
DMSO* 177+2040 6.7127 1042 10

3.2. Liquid structure and dynamics

The structures of acetone and DMSO are similar (Fig. 3.1), they contain the hydrogens
on the polarized on methyl groups. However, while the heavy atoms of acetone constitute
a plane, in DMSO heavy atoms form a pyramid due to the lone pair of electrons on the
sulfur. According to the MD simulations of the pure solvents, the local structure of the
two pure liquids is also similar shown in the Fig. 3.2.
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Figure 3.1: Molecular structures of acetone (left), DMSO (middle), and TEMPOL (right).
This figure is taken from Ref. [2]

Figure 3.2: RDFs between the centers of mass of the solvent molecules from the pure-
solvent simulations at 35◦C. This figure is taken from Ref. [2]

The translational diffusion coefficients in the simulations are constructed to match the
experimental values by adjusting the friction of the Langevin thermostat (Table 3.3). In
addition to translation, the rotational diffusion of the solvent molecules is also expected to
be important for high-field O-DNP, especially since it falls in the ps time window. Orien-
tational motion in liquids can be assessed through analysis of dielectric relaxation spec-
troscopy [31, 33]. Therefore, to examine the degree to which the simulated molecular dy-
namics of the pure solvents correspond to reality, we examined the frequency-dependent
electric susceptibility of acetone and DMSO. The calculated ε′′ (i.e., imaginary part of
the relative permittivity) is compared with experiments in Fig. 3.3. The Debye (acetone)
and Davidson-Cole (DMSO) fits to the experimental data [44, 45] are shown with black

Table 3.3: Liquid properties calculated from MD simulations at 35◦C with the given
choice of thermostat damping (γ): coefficients of translational diffusion (D) and static
dielectric constants (ε). (One standard deviation in parenthesis.)

γ/ps−1 D/nm2ns−1 ε
Acetone 0.015 5.09 (0.37) 21.4(0.7)
DMSO 0.072 0.94 (0.20) 68.1 (0.5)
DMSO* 0.050 0.92 (0.03) 54.3 (3.6)
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dashed lines and MD calculations with colored solid lines. Although the measurements
for acetone extend up to 24 GHz, the analytical fit and our prediction are drawn till 100
GHz for better visualization of the amplitude and position of the peak. The dielectric
response experiments for acetone are reported at temperature 20◦C [44] while our sim-
ulations are performed at 35◦C. However, the fact that the static dielectric constant of
acetone drops only by 3 units when going from 25◦C to 53◦C, the peak of ε′′ at 35◦ is
expected to be about only one unit lower than what we reported in Fig. 3.3 for 20◦C. The
position of the peak is also expected to be slightly shifted towards higher frequencies. The
experimental data for DMSO are at 35◦C and extend up to 26 GHz [45].

Figure 3.3: Imaginary part of the dielectric response function. Experimental data are valid
up to∼ 25 GHz. For acetone, the analytical fit to experiment at 20◦C(dashed line) and our
computational prediction for 35◦C (red solid line) are extended to 100 GHz to show the
peak of the response. MD calculations for the original DMSO model (blue solid line) and
the model DMSO* with modified charges (cyan −·−) are shown for frequencies probed
by experiment (all at 35◦C). This figure is taken from Ref. [2]

The red solid line in Fig. 3.3 and the static dielectric constant calculated from simula-
tions given in Table 3.3, we can safely conclude that the MD simulations of acetone are in
good agreement with the experiments. The overestimation of the magnitude of ε is at most
10% and maximum of the ε′′ is very well captured. Thus, the time scales of orientation of
the electric dipole moments of the acetone molecules in the simulated solution are realis-
tic. The situation for DMSO of CHARMM DMSO parameters [46] is drastically different
than the experiments. The static dielectric constant is larger by almost 50% than the ex-
perimental value (Table 3.3). Similarly, the peak of ε′′ in Fig. 3.3 (blue solid line) does
not agree with experiment in magnitude, i.e it is larger than experiment by about 60%.
Furthermore, its position on the frequency axis is shifted to the left, indicating somewhat
slower reorientation of the electric dipoles of DMSO in the simulated solution compared
to reality.
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In order to address this discrepancy the partial charges of the heavy atoms of DMSO
were changed retaining all the Force-Field parameters. The choice we consider and refer
to as DMSO* is from Ref. [37]. The partial charges of the simulated solvents are given
in Table 3.4. The last column of the table demonstrates that the electric dipole moment
of the modified model, DMSO*, is smaller than DMSO closer to the experiment. For
the pure liquid, this leads to a lower static dielectric constant (Table 3.3) and ε′′ closer to
experiment (Fig. 3.3, -·- cyan line). In the case of the latter, not only the amplitude of
the peak but its position on the frequency axis as well have improved. From the point of
view of dielectric response, the overall deviation of DMSO* from experiment is seen to
be about 20-25%, which is half of the deviation of DMSO.

Table 3.4: Partial charges (atomic units) of the specified atoms and the resulting molecular
dipole moments (Debye). In the gas phase: µ = 2.9 D (acetone), µ = 4.0 D (DMSO).

O C/S C H µ
Acetone −0.480 0.400 −0.230 0.09 3.6
DMSO −0.556 0.312 −0.148 0.09 5.2
DMSO* −0.437 0.117 −0.110 0.09 4.8

3.3. Liquid properties
in the presence of TEMPOL

We have performed two different sets of simulations for each solvent: containing one
TEMPOL molecule in the simulation box, and containing 1M TEMPOL where the details
of the simulations are given in the Section 3.1.. The simulations with one TEMPOL reveal
that the solvent structure around the “impurity” is also very similar for the two solvents
(Fig. 3.4a). The maxima and minima in solvent densities for all solvents, are found to be at
identical distances from the polarizing agent, however DMSO exhibits somewhat larger
amplitude of oscillations compared to acetone. Both DMSO models produced almost
identical RDFs. The RDFs are seen to flatten only beyond about 2 nm from TEMPOL.

In Sec. 3.4., where dipole-dipole SDF is calculated by dividing the space around
TEMPOL into near and far regions, couplings to solvent spins beyond d = 2.5 nm are
accounted for analytically using the model of hard spheres with centered spins (HSCS)
[34, 35]. Although the contribution of distant dipoles to the SDF is not very sensitive
to the model parameter referred to as the “distance of closest approach,” we choose the
values of b to be the distance at which the RDFs are equal to 0.5 (first three rows of Table
3.6).

It was reported the simulations of 1M TEMPOL in water induced a tendency to form
nanoclusters, thereby causing the solvent to be substantially excluded [24]. Therefore
determination of whether the polarizing agent is well accessed by acetone and DMSO is
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Figure 3.4: RDFs between the centers of mass of TEMPOL and the specified solvent
molecules from simulations with (a) one TEMPOL molecule and (b) 1M TEMPOL. This
figure is taken from Ref. [2]
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Table 3.5: Diffusion coefficients (nm2/ns) calculated from the simulations with one TEM-
POL (1), or 1M TEMPOL (1M). (One standard deviation in parenthesis.) The viscosities
of acetone, water and DMSO at 35◦C are 0.283 mPa s, 0.719 mPa s and 1.655 mPa s,
respectively.

solvent TEMPOL
1 1M 1 1M

Acetone 4.93 (0.22) 4.54 (0.37) 3.18 (0.42) 2.66 (0.34)
DMSO 0.88 (0.01) 0.73 (0.03) 0.60 (0.02) 0.41 (0.01)
DMSO* 0.98 (0.01) 1.08 (0.08) 0.61 (0.09) 0.67 (0.04)

crucial in the case of high concentrations. The TEMPOL-solvent RDFs calculated from
the MD simulations with 1M TEMPOL (Fig. 3.4b) are very similar to those shown in
Fig. 3.4a, therefore access of the radical to solvent molecules is similar in the dilute case.
Constant TEMPOL density is seen to be established in acetone and DMSO* beyond about
2 nm from any given TEMPOL molecule. Surprisingly, in DMSO (but not DMSO*) the
free radicals show a slight tendency to stay closer together but do not form nanoclusters.
This absence of cluster formation is especially important for the procedure summarized
in Section 2.4..3 essential for the applicability of the analysis in the following sections.

The coefficients of translational diffusion of the solvent and the polarizing agent de-
termined from the two sets of MD simulations are compiled in Table 3.5. When only one
TEMPOL molecule is introduced in the simulation box the solvent diffusion (first column
of Table 3.5) remains practically unchanged from its bulk value (Table 3.3). As expected,
the diffusion of the single TEMPOL in acetone is faster than its diffusion in DMSO (third
column of Table 3.5). In fact, the ratio of the MD diffusion coefficients is close to the
ratio of the solvent viscosities. However, scaling the diffusion coefficient of TEMPOL in
water (0.5 nm2/ns at 35◦C [24]) by the viscosities of the solvents predicts slower transla-
tional diffusion in both acetone and DMSO (1.27 nm2/ns and 0.22 nm2/ns) compared to
the MD values in Table 3.5, indicating that the diffusion of TEMPOL in water is different
in nature than its diffusion in acetone and DMSO.

The 1M TEMPOL simulations of acetone and DMSO demonstrate that both the sol-
vent and TEMPOL molecules are slower at the elevated solute concentration (1M columns
of Table 3.5). Surprisingly, the opposite trend is observed for the simulation with DMSO*.
Here, both the solvent and TEMPOL molecules appear to be faster at the elevated TEM-
POL concentration. This qualitative difference between the two DMSO parameter sets
can be traced back to differences in the predicted density of the 1M mixture, for which
experimental data are not available.

By adding the solvent and TEMPOL diffusion coefficients from Table 3.5, an esti-
mate of the translational coefficient for relative solvent-TEMPOL motion can be obtained.
These values, given in the first three rows of Table 3.6, are used in the calculation of the
dipolar SDF in Sec. 3.4.. In Sec. 3.5. it is found that the relaxivities and O-DNP coupling
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Figure 3.5: Dielectric response calculated from the simulations of 1M TEMPOL in (a)
acetone and (b) DMSO. This figure is taken from Ref. [2]

factors calculated for low and high radical concentrations reflect the differences in the
translational dynamics of the molecules observed in the MD simulations.

How about the rotational dynamics of the molecules? The solvent dielectric re-
sponse from the simulations with one TEMPOL is essentially identical to that of pure
solutions (data not shown). In the case of a mixture the absorption can be written as
ε′′ = ε′′SS+ε′′ST+ε′′TT, where the subscripts denote solvent-solvent (SS), solvent-TEMPOL
(ST), and TEMPOL-TEMPOL (TT) contributions. The dielectric response spectra calcu-
lated from the simulations of acetone and DMSO with 1M TEMPOL are shown in Fig.
3.5. Comparing the profiles of ε′′ with those for pure solvents (Fig. 3.3) we see that in all
cases the magnitude of the peak has decreased by about 30%. For acetone and DMSO,
the position of the peak on the frequency axis remains practically unchanged. In other
words, the time scales of rotational diffusion of the solvent molecules do not seem to be
affected by the presence of 1M TEMPOL. In contrast, the peak of DMSO* in Fig. 3.5b
(−·− cyan line) has shifted to higher frequencies compared to the pure solvent (Fig. 3.3).
In Sec. 3.5. we find that this shift to faster time scales at elevated TEMPOL concentration
leads to predicted DNP coupling factors which are larger than the dilute case.
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3.4. Dipolar spectral densities

Magnetic dipole-dipole time correlation functions (TCFs) are calculated from the MD
simulations and Fourier transformed to obtain the corresponding SDFs. In the calculation,
the space around a given TEMPOL radical is imagined to be composed of a near region
(N) and a far region (F), as depicted schematically in Fig. 2.2. In the analysis of the MD
simulations solvent molecules farther than a distance a from TEMPOL are assumed to
disappear as explained in the Section 2.4..3. The value of this cut-off distance is dictated
by the size of the simulation box.

The CNN and CNF contributions to the TCFs calculated from the MD simulations with
1 TEMPOL are given in Figs. 3.6a and 3.6b, respectively. The solid lines are calculated
by taking the nuclear spin to be at the position of a proton, and the electron spin to be
divided equally between the TEMPOL nitrogen and oxygen atoms. The dashed lines, on
the other hand, are calculated from the same MD trajectories but pretending that the spins
are located at the centers of mass (COM) of the molecules. Clearly, the exact position
of the spins is inconsequential once their separation is larger than our choice of d = 2.5

nm (Fig. 3.6b). In contrast, for shorter separations, the locations of the spins on the
molecules influence CNN (Fig. 3.6a). The difference is dramatic at shorter times, which
are of particular importance for O-DNP at high magnetic fields.

In the MD simulations the far region extends up to the edge of the simulation box,
which typically is a few nanometers. To correct for its finite size, the far-far contribu-
tion to the SDF, JFF(ω), is calculated using the HSCS model [47]. Analytical finite-size
corrections to JNF(ω) and JNN(ω) are obtained by calculating the difference between the
HSCS model and its finite-size version with absorbing outer boundary [23, 24]. All these
corrections, however, assume that the approximations of hard spherical molecules with
spins at their centers hold for sufficiently large inter-spin separations.

To validate these approximations, SDFs obtained by Fourier transforming the COM
TCFs from Fig. 3.6 are fitted by the finite-size HSCS model. The best fits, shown in Fig.
3.7, demonstrate that the analytical model reproduces the SDFs from the MD simulations
rather well. In light of Fig. 3.6b, the fit in Fig. 3.7b implies that for solvent molecules
starting in the near region and reaching the far region the HSCS model is able to repro-
duce JNF with reasonable values of the model parameters b and D (middle of Table 3.6).
However, as with toluene [23] and water [24], we find that the best-fit parameter D is
smaller than the sum of the coefficients of translational diffusion of the TEMPOL and
solvent molecules (first three rows of Table 3.6). In the case of JNN, the agreement in Fig.
3.7a is with the calculations where the spins are taken to be at the COM of the molecules,
which is one of the approximations of the HSCS model. In this case the best fitting D is
even smaller (last three rows of Table 3.6), as observed previously [23, 24].

The same analysis was performed for the simulations with 1M TEMPOL. The TCFs
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Figure 3.6: (a) Near-near and (b) near-far dipolar time correlation functions for acetone
(red) and DMSO (blue). Taking the spins to be at the centers of mass (COM) of the
molecules (dashed lines) makes a difference in (a) but not in (b). The inset of (b) compares
DMSO and DMSO*. This figure is taken from Ref. [2]

Table 3.6: Values of b (nm) andD (nm2/ns) determined from the fits to the MD SDFs with
the finite-size HSCS model. Numbers before and after the slash are for the simulations
with 1 TEMPOL and 1M TEMPOL, respectively.

solvent b D
Acetone 0.51/0.55 8.11/7.20

JFF DMSO 0.51/0.55 1.48/1.14
DMSO* 0.51/0.51 1.59/1.75
Acetone 0.40/0.45 6.16/5.20

JNF DMSO 0.45/0.47 1.16/0.93
DMSO* 0.45/0.45 1.15/1.25
Acetone 0.45/0.45 5.22/4.10

JNN DMSO 0.45/0.43 0.96/0.81
DMSO* 0.45/0.43 0.88/1.07

38



Figure 3.7: (a) Near-near and (b) near-far dipolar spectral density functions for acetone
(red) and DMSO (blue). Analytical fits with the parameters given in Table 3.6 (solid
lines) agree with MD results for spins assumed to be at molecular COM (dashed lines).
The inset of (b) compares DMSO and DMSO*. This figure is taken from Ref. [2]
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are shown in Fig. 3.8. As expected from the faster dynamics in DMSO* compared to
DMSO, substantial differences are visible between the two parameter sets (inset of Fig.
3.8b). Fits to the Fourier transforms of the TCFs are given in Fig. 3.9 and their parameters
are compiled in Table 3.6.

Figure 3.8: (a) Near-near and (b) near-far dipolar time correlation functions from the
simulations with 1M TEMPOL. This figure is taken from Ref. [2]

The analytical fits to the SDFs calculated from the MD simulations are used to calcu-
late finite-size corrections, as described in Section 2.4..3. Putting everything together, the
dipolar SDF is calculated as in (2.116). The three additive contributions and their total
are plotted as a function of frequency in Fig. 3.10 for the dilute and in Fig. 3.9 for 1 M
TEMPOL solutions. Because of the relatively large size of the near region (d = 2.5 nm)
most of the contribution to the SDF comes from the near-near (NN) correlation function.
With the further choice of absorbing boundary at a = 3.4 nm, the near-far (NF) and far-far
(FF) contributions end up being comparable in magnitude.

As evident from (2.80), in an experiment at a given magnetic field the relaxivity (2.81)
and the DNP coupling factor (2.82) probe only two values of the dipolar SDF, J(ωI) and
J(ωS). These are indicated with symbols in Fig. 3.10 and Fig. 3.11 for two different
choices of the magnetic field, 0.33 T (blue) and 9.2 T (red). At the electron Larmor
frequency the NN contribution completely dominates the SDF for both magnetic fields
(triangles). At the proton Larmor frequency, however, the finite-size corrections to MD
become important for the quantitative determination of the SDF (circles), especially at the
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Figure 3.9: (a) Near-near and (b) near-far dipolar spectral density functions from the
simulations with 1M TEMPOL. This figure is taken from Ref. [2]

lower field of 0.33 T.

3.5. Relaxivity and coupling factors

Armed with the dipolar SDFs we proceed to calculate the relaxivity according to (2.80)
and (2.81). To this end, one copy of the SDF is multiplied by 3, while another copy is
multiplied by 7 and shifted to the left along the frequency axis until the same-colored
symbols in Fig. 3.10 are aligned. Finally these two contributions are added together and
scaled appropriately. Figure 3.12 shows the two added parts (dashed lines) and their
sum (solid line) for the dilute TEMPOL solutions of acetone and DMSO. At 0.33 T
(15 MHz/9.7 GHz) 3J(ωI) and 7J(ωS) contribute equally to the relaxivity in acetone
(Fig. 3.12a, blue symbols). In the case of DMSO, 7J(ωS) is about one fourth of 3J(ωI)

(Fig. 3.12b, blue symbols). The relaxivity measurement at this field, therefore, encodes
information about the dipolar SDF at both the nuclear and electron Larmor frequencies.
In contrast, the the relaxivity at 9.2 T (400 MHz/260 GHz) is dominated by the contri-
bution of 3J(ωI) for both acetone and DMSO (Fig. 3.12, red symbols). There is little
hope, therefore, of accessing 7J(ωS) on the background of 3J(ωI) from measurements
of the relaxivity at high magnetic fields. The ability to separate these two contributions is
essential for predicting DNP coupling factors from NMRD relaxivity measurements.
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Figure 3.10: Dipolar SDF and its additive contributions from the simulations with 1 TEM-
POL in acetone (a) and DMSO (b). Symbols indicate SDF values at proton (circle) and
electron (triangle) Larmor frequencies at 0.33 T (blue) and 9.2 T (red). The inset of (b)
compares the SDFs of DMSO and DMSO*. This figure is taken from Ref. [2]
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Figure 3.11: Dipolar SDF and its additive contributions from the simulations with 1 M
TEMPOL in acetone (a) and DMSO (b). Symbols indicate SDF values at proton (circle)
and electron (triangle) Larmor frequencies at 0.33 T (blue) and 9.2 T (red). The inset of
(b) compares the SDFs of DMSO and DMSO*. This figure is taken from Ref. [2]

Our predictions of the relaxivity in Fig. 3.12 (solid lines) are compared with published
[3] NMRD values (diamonds). The agreement at 260 GHz is very good. At and around
10 GHz, our predicted values for acetone are smaller than the NMRD measurements (Fig.
3.12a). The agreement is better for DMSO, where our values are somewhat larger (Fig.
3.12b). The same analysis was performed for the MD simulations with 1M TEMPOL
(plots not shown).

The NMRD measurements that we compare with were performed with 40 mM TEM-
POL solutions [3]. To assess the extent of variation of the relaxivity due to the experi-
mental uncertainty in the concentration of the polarizing agent, in Fig. 3.13 we report the
relaxivities deduced from nuclear T1 measurements of solutions with different TEMPOL
concentrations and at different temperatures. For acetone (Fig. 3.13a), the temperature
variation of the relaxivity is seen to be smaller than the variation due to the TEMPOL
concentration. The NMRD value at 35◦C (black diamond) agrees very well with the
other measurements. Similarly, the relaxivities computed from the MD simulations with
1 TEMPOL (black star at 2 mM) and 1M TEMPOL (black star at 1000 mM) are in very
good agreement with the experimental data.

The situation is different for DMSO (Fig. 3.13b). Here, the variation of the relaxivity
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Figure 3.12: TEMPOL relaxivities in (a) acetone and (b) DMSO. The relaxivity (solid
line) is the sum of two parts proportional to 3J(ωI) and 7J(ωS) (dashed lines). Colored
circle and triangle symbols are same as in Fig. 3.10. Solid diamonds are NMDR values
from Ref. [3]. This figure is taken from Ref. [2]
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Figure 3.13: Relaxivity in (a) acetone and (b) DMSO. Comparison of estimates from
T1 measurements at several temperatures and TEMPOL concentrations with values from
Ref. [3] and computational predictions. This figure is taken from Ref. [2]
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Table 3.7: Coupling factors (%) at the specified ESR(NMR) frequencies (GHz/MHz)
computed from the simulations with 1 TEMPOL (before the slash) and 1 M TEMPOL
(after the slash).

9.7(15) 34(50) 94(140) 260(400) 460(700)
Acetone 36.3/33.6 20.0/16.9 9.41/7.70 3.50/2.90 2.05/1.75
DMSO 13.4/10.3 4.88/3.60 1.53/1.15 0.69/0.56 0.44/0.38
DMSO* 13.1/13.9 4.79/5.28 1.50/1.71 0.65/0.74 0.43/0.48

with the concentration of TEMPOL is smaller than its change due to temperature. A
small decrease of the relaxivity is measured at the largest two TEMPOL concentrations
of 500 mM and 1 M. The NMRD value at 35◦C (diamond) is closer to the experimental
values at 39◦C, whereas the relaxivities calculated from the MD simulations of DMSO
(star) and DMSO* (asterisk) containing 1 TEMPOL are somewhat larger than the values
at 39◦C, in perfect agreement with what should be expected at 35◦C. The MD calculations
for 1M TEMPOL differ between DMSO and DMSO*. The former model predicts larger
relaxivity, comparable with the experimental values for lower TEMPOL concentrations
at 22◦C. This increase in the relaxivity with increase in the TEMPOL concentration is
due to the decreasing coefficient of relative translational diffusion in the MD simulations
(Table 3.6). The relaxivity calculated from the DMSO* simulations, on the other hand,
agrees with what is expected from the low concentration measurements at 39◦C. None of
the models, however, captures the decrease of the relaxivity at TEMPOL concentrations
above 0.5 M that is seen in the experiment.

Having tested the ability of the calculated SDFs to predict relaxivity, we now use them
to compute DNP coupling factors for several different magnetic fields spanning the range
of experimental interest (Table 3.7). As expected on the basis of the viscosities of the two
solvents, the coupling factors of acetone are larger than DMSO. From a methodological
point of view, it is encouraging that the coupling factors for the dilute DMSO solutions
(before the slash) predicted by the two models—DMSO and DMSO*—are very similar.
In line with the reduction of the diffusion coefficients (Table 3.5), smaller coupling factors
are predicted for acetone and DMSO at the higher TEMPOL concentration. In contrast,
again as expected from the diffusion coefficients, the simulations with DMSO* predict
larger coupling factors at 1M TEMPOL. In Fig. 3.14 the 1M TEMPOL values at 260 GHz
are compared with experiment [3]. While both DMSO and DMSO* agree well with the
measurements (Fig. 3.14b), the latter is seen to perform better. In contrast, the coupling
factor of acetone in our simulations is almost 50% larger than experiment (Fig. 3.14a).
This is in spite of the excellent agreement of the computed relaxivity with measurements
(Fig. 3.13a), demonstrating that very similar values of the relaxivity can correspond to
drastically different coupling factors, in line with the observations of Ref. [3].

¡
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Figure 3.14: Coupling factors at 260 GHz for (a) acetone and (b) DMSO. Both experi-
mental (blue squares) and calculated (black stars) values are with 1M TEMPOL. DMSO*
is indicated by asterisk. This figure is taken from Ref. [2]
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Chapter 4

13C DNP OF ACETONE FROM MD
AND AB INITIO CALCULATIONS

In this chapter, analysis of 13C ODNP has been performed. Beside the dipolar interaction,
carbons are known to be influenced by scalar coupling. Thus the scalar coupling analysis
is also performed. In the first part, technical details are given. Afterwards calculation
of dipolar and scalar SDFs are explained and the resulted coupling factors are discussed.
Lastly, the three spin effect is examined for proton-carbon interaction.

4.1. Methods

The MD simulations of the 1 TEMPOL molecule in a cubic box containing 2740 acetone
molecules are used in this study. Ab initio calculations were carried out on the molecular
geometries from these MD snapshots. The packages Gaussian 09 [48] and ORCA [49]
were used at the B3LYP level of theory and the EPR-II basis set. This combination is
known to produce reasonably good hyperfine coupling constants [50]. In order to assess
the uncertainty of the calculations, two separate fragments of the MD trajectory (located
at the second and fifth nanosecond) were subjected to this analysis. Each fragment con-
tained 1 ns of dynamics comprising 5 000 successive snapshots, making 10 000 ab initio

calculations in total. An example of a fragment of the time series for hyperfine coupling
constants are given in Fig. 4.3

The spatial distribution of the spin density due to the unpaired electron of TEMPOL
is expected to be sensitive to the immediate surroundings of the free radical. For a real-
istic representation of the environment, the ab initio calculations should include as many
acetone molecules near TEMPOL as possible. However, considering the steep increase
of the computational cost in ab initio calculations with the number of atoms, a reasonable
number of solvent molecules had to be chosen. To this end, for one MD snapshot, the
coordinates of the TEMPOL molecule and an increasing number of acetone molecules
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were provided as input to the ab initio calculation. The variation of the calculated Fermi
contact of the methyl carbon closest to the TEMPOL oxygen is shown in Fig. 4.1 for dif-
ferent numbers of acetone molecules (from 1 to 7) present in the calculation (red squares).
The value of Aiso is seen to increase monotonically. The increase appears to slow down
once six acetone molecules closest to TEMPOL are explicitly included in the ab initio

calculation.

Figure 4.1: Hyperfine coupling constants of a selected methyl carbon. The closest ace-
tone molecules to the radical TEMPOL was increased from 1 to 7 with and without po-
larization continuum model. This figure is taken from Ref. [4]

We further examined whether the dielectric properties of the acetone solution influ-
ence the calculated value of Aiso . The same molecular geometries were analyzed using
the polarization continuum model (PCM) [51] implemented in Gaussian (Fig. 4.1, black
squares). Systematically higher Fermi contact values were obtained in the calculations
using the PCM. More importantly, by using the PCM the Aiso values calculated with three
and more explicit acetone molecules were practically identical, showing convergence of
the Fermi contact with the number of molecules in the ab initio calculation. In the light
of these observations, TEMPOL and the six acetone molecules closest to its oxygen atom
were retained in all the other MD snapshots and subjected to an ab initio calculation using
the PCM with the dielectric constant of acetone (ε = 20.5).

For the geometries that yielded the largest Aiso values among the 10 000 calculations
we further evaluated the effect of the basis set on the calculated Fermi contacts. The
numerical values produced using the packages Gaussian and ORCA with the basis sets
EPR-II, EPR-III and TZVP are compared in Fig. 4.4. In spite of small numerical differ-
ences, which do not exceed 4%, all the basis sets are in good overall agreement. The
electron spin densities for these snapshots are also depicted in the insets (generated with
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UCSF Chimera [52]).

4.2. Dipolar interaction

In the previous chapter, the report for proton ODNP was based on the assumption that
the coupling between protons of acetone and TEMPOL was purely in dipolar nature and
MD simulations were performed for this purpose. Using the same snapshots from these
reported MD simulations, same analysis was applied for the carbon nuclear spins of the
acetone solvent molecule treating only the effect of dipolar coupling. Calculated SDFS,
JNN and JNF, for both methyl and carbonyl carbons are given in Fig. 4.2.
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Figure 4.2: (a) NN and (b) NM dipolar SDFs between the electron spin and the indicated
carbon nuclei of acetone. SDFs of CH3 (green) and CO (blue) are calculated from the
actual positions of the nuclear spins. COM SDFs (black) are calculated pretending that
the electron and nuclear spins are at the centers of mass of the TEMPOL and acetone
molecules. Best fits to the latter with the HSCSa model are shown with dashed lines. This
figure is taken from Ref. [4]

The procedure for calculating the coupling factor is repeated for the methyl carbon
(CH3) and carbonyl carbon (CO) of acetone and obtained DNP coupling factors are given
in Table 4.1. For purpose of comparison proton coupling factors are also given in the
table.

The dipolar coupling factor is known to be influenced by the translational diffusion
of the spins and their distance of the closest approach, as made clear by the analytically-
tractable model of hard spherical molecules with centered spins [34, 35]. Being on the
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Table 4.1: DNP coupling factors (%) for 1H and 13C calculated at different electron Lar-
mour frequencies (GHz) using only the dipolar interaction of electronic and nuclear spins.

9.7 34 94 200 260 330 460
CH3 35.4 17.8 6.54 2.58 1.84 1.33 0.81
CO 34.4 15.3 4.37 1.48 1.00 0.70 0.41
H 36.2 20.0 9.38 4.51 3.48 2.78 2.04

same molecule, we expect the translational diffusion of the carbon atoms of acetone to be
the same as that for the acetone protons. However, because both the methyl and carbonyl
carbon atoms are closer to the center of the acetone molecule than the protons, the cou-
pling factors of the former are expected to be somewhat smaller. This trend is confirmed
by the calculated values in Table 4.1.

4.3. Scalar interaction
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Figure 4.3: Fermi contact values of the CH3 nucleus as a function of time. The selected
time window includes the point with observed maximum positive Aiso value. This figure
is taken from Ref. [4]

The values of the Fermi contacts from the ab initio calculations are shown in Fig.
4.5, where they are plotted against the distance between the TEMPOL oxygen and the
respective acetone atom. Both positive and negative values occur for the three types
of nuclei. While the largest positive values are larger in magnitude than the smallest
negative values for the carbon atoms, positive and negative Fermi contacts of a similar
absolute value are observed for the protons. Notably, the Fermi contacts do not change
monotonically with the distance of the nucleus from the position of the oxygen atom of
TEMPOL.

For the geometries leading to largest positive Fermi contacts (indicated by asterisk in
Fig. 4.5) the positive part of the spin density is shown in the insets of Fig. 4.4. Methyl
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Figure 4.4: Observed maximal Fermi contacts of (a) 13CH3 , (b) 13CO, and (c) 1H. Differ-
ent symbols show calculations with various basis sets. Colored and grey symbols repre-
sent the same kind of nuclei on, respectively, the closest (shown in inset) and more distant
acetone molecules present in the same snapshot. Insets show electron spin densities for
the corresponding configurations. CH3 and CO attain their maximum Fermi contacts in
the same snapshot. This figure is taken from Ref. [4]

and carbonyl carbon atoms attain their maximum (positive) Fermi contacts in the same
MD snapshot, as seen in Fig. 4.4a and b, whereas the maximum for protons is reached
in a different MD snapshot (Fig. 4.4c). The molecular geometries and spin densities
demonstrate how, for the acetone molecule closest to the unpaired electron of TEMPOL,
the value of the spin density at the atomic nucleus does not scale with its distance from
the TEMPOL oxygen. In Fig. 4.4c, for example, all the three protons of the methyl group
closer to TEMPOL have positive Fermi contacts. However, the spin density at the proton
farther from the TEMPOL oxygen is larger than the spin density at the closer proton,
which is reflected in the magnitude of their Fermi contacts.

The scalar TCFs calculated from the Aiso values are given in Fig. 4.6. A comparison
across the three atom types reveals that Ciso of 13CH3 (Fig. 4.6a) is an order of magnitude
larger than 13CO (Fig. 4.6b) and 1H (Fig. 4.6c). The TCF of 13CH3 also exhibits a
slow decaying component of a relatively larger amplitude than the other two. In order to
calculate SDFs from the TCFs the latter were fit to a multiexponential decay. The best
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Figure 4.5: Fermi contacts of (a) 13CH3 (b) 13CO and (c) 1H nuclei of acetone against their
distances to the TEMPOL oxygen. This figure is taken from Ref. [4]

fits, shown with dashed lines in Fig. 4.6, are found to be in very good agreement with the
raw data.

Fig. 4.7 shows the scalar SDFs calculated as the Fourier transform of the multiexpo-
nential fits to the TCFs. As anticipated, K(ω) for 13CH3 is larger than that of the other two
nuclei. Because the SDF is affected by both the magnitude and the decay rate of the TCF,
the longer tail of the Ciso of 13CH3 leads to a larger difference in the SDFs, especially at
the lower frequencies.

4.4. Coupling factors

The DNP coupling factor reflects the competition of the dipolar and scalar interactions
between the electron and nuclear spins. At high magnetic fields J(ωI) � J(ωS). If in
addition J(ωI)� K(ωS), then coupling factor becomes

cSI ≈ [5JIS(ωS)− 6KIS(ωS)]/3JIS(ωI), (4.1)

where the approximation follows from (2.97), (2.98) and (2.99) if J(ωI) � J(ωS) and
J(ωI) � K(ωS). Note that while the scalar SDF contributes only at the Larmor fre-
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Figure 4.6: Scalar TCFs calculated from the average of two trajectory fragments (solid)
and multiexponential fits (dashed) for (a) CH3 , (b) CO and (c) H. This figure is taken from
Ref. [4]
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Figure 4.7: Scalar SDFs for CH3 (green), CO (blue) and H (red). Dashed lines are
calculated from each of the two trajectory fragments. Solid lines show their average,
which is our best estimate for scalar SDFs. This figure is taken from Ref. [4]

quency of the electron, the dipolar SDF is probed at both the electron and nuclear Larmor
frequencies. However, being in the denominator of (2.99), a larger J(ωI) always de-
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Figure 4.8: Dipolar and scalar SDFs for (a) CH3 , (b) CO and (c) H. Symbols indicate the
five electron (circle) an nuclear (triangle) Larmor frequencies reported in Table 4.2. This
figure is taken from Ref. [4]

creases the magnitude of the coupling factor, independently of the competition between
J(ωS) and K(ωS) in the numerator.

The dipolar and scalar SDFs, J(ω) and K(ω), are compared in Fig. 4.8 for the three
atom types of interest. At the electronic Larmor frequencies (indicated with circles)the
different nuclei exemplify different possibilities. In the case of 1H, J(ωS) completely
dominates overK(ωS) over the entire frequency range (Fig. 4.8c), thus the DNP coupling
factor is expected to be insensitive to the proton-electron Fermi contact. The situation is
similar for 13CO, however, the difference between the dipolar and scalar SDFs is smaller.
In contrast, for 13CH3 K(ωS) is almost equal to J(ωS) at ∼ 94 GHz (∼ 140 MHz) and
exceeds it at larger frequencies. Because in (2.99) K(ωS) is multiplied by 6 while J(ωS)

is multiplied by 5, we expect the two to balance exactly, and thus lead to vanishing DNP
coupling factor, at frequencies of interest to medical MRI (50-70 GHz).

Quantitative calculation of the DNP coupling factors according to (2.99), (2.98) and
(2.97) confirms these expectations (Table 4.2). Comparison with the purely dipolar cou-
pling factors in Table 4.1 makes clear that the scalar contribution to 1H ODNP is negligible
over the entire frequency range of experimental interest. In the case of 13CO scalar cou-
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Table 4.2: DNP coupling factors (%) for various electron/proton Larmour frequencies
(GHz/MHz) calculated by accounting for both dipolar and scalar interactions.

9.7/15 34/50 94/140 260/400 460/700
CH3 21.7 7.0 0.2 −1.7 −1.6
CO 34.1 15.1 4.2 0.8 0.3
H 36.2 19.9 9.36 3.47 2.02

pling can be safely ignored at the lower frequencies of interest, however, its effect starts
being detrimental at the higher frequencies in Table 4.2. The opposite is true for 13CH3:
Scalar coupling is detrimental at the lower frequencies, entirely canceling the dipolar con-
tribution at ∼ 94 GHz. It becomes sufficiently large to produce comparable (but opposite
in sign) enhancement at 260 GHz. At 460 GHz the coupling factor in the presence of both
scalar and dipolar coupling is two times larger in magnitude than what would be possible
with dipolar coupling only.

4.5. Three-spin effect

When both the 13C and 1H nuclei experience ODNP, the polarization of the latter has
the potential to influence the polarization of the former. The extent to which the 13C
coupling coefficient will change due to this additional three-spin effect is determined by
the multiplicative correction factor m defined in (2.35).

Fig. 4.9 shows the frequency dependence of the cross-relaxation σH
C (black) and σS

C

(colored) calculated for, respectively, [H] = 80 M and [S] = 1 mM. At frequencies where
the dipolar and scalar SDFs (shown in Fig. 4.8) become comparable in magnitude, σS

C is
vanishingly small. The values of σS

C at 9.7 GHz, 94 GHz and 260 GHz are indicated with
circles in Fig. 4.9. This cross-relaxation rate decreases sharply when going from 9.7 GHz
to 94 GHz for both CH3 (Fig. 8a) and CO (Fig. 4.9b). In the case of the former, σS

C is
negative at 260 GHz. Thus, the correction factor m is expected to be larger than 1 at 260
GHz.

The carbon−proton dipolar SDF was calculated in exactly the same way as the carbonelectron
SDFs. The cross-relaxation rates σH

C obtained by appropriately normalizing the dipolar
SDFs and multiplying by the proton density [H] = 80 M are shown in Fig. 4.9 with black
lines. The magnitude of σH

C is found to be very similar for the magnetic fields of 0.34 T,
3.3 T and 9.2 T (indicated by triangles in the figure).

In order to see the effect of the raidcal concentration, the multiplicative three-spin
correction factors at these three magnetic fields are plotted in Fig. 4.10 for CH3 (left) and
CO (right) by keeping the proton concentratio at [H] = 80 M and changing the TEMPOL
contration varying from 1 mM to 20 mM. The plotted ratio is between σH

C and σS
C. In

addition, we used the 1H coupling factor σS
H from Table 4.2.
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Figure 4.9: Cross-relaxation rates of (a) CH3 and (b) CO. σH
C (black) is calculated for [H]

= 80 M and σS
C (green/blue) is calculated for [S] = 1 mM. Symbols indicate the electron

(◦) and proton (∆) Larmor frequencies 9.7 GHz/15 MHz, 94 GHz/140 MHz and 260
GHz/400 MHz. This figure is taken from Ref. [4]
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Figure 4.10: Three-spin multiplicative correction factors, m, of CH3 (left) and CO (right)
calculated at 9.7 GHz (a and d), 94 GHz (b and e), and 260 GHz (c and f). The examined
proton leakage factors are fS

H= 1 (black), 0.7 (dashed) and 0.4 (colored). Plausible leakage
factors for the specified TEMPOL concentrations are indicated with black points. This
figure is taken from Ref. [4]

In Fig. 4.10, m is calculated for three different values of the proton leakage factor:
f S
H

=1 (black), f S
H

=0.7 (dashed) and f S
H

=0.4 (colored). Because f S
H

is proportional to the
concentration of the polarizing agent, we can (arbitrarily) imagine these values to corre-
spond to TEMPOL concentrations of, respectively, 20 mM, 5 mM and 1 mM.

In all cases, at a TEMPOL concentration of 20 mM the 13C coupling factor is essen-
tially unaffected by the three-spin effect (m ≈ 1). The influence is strongest at the lowest
concentration of 1 mM, on which we focus now. For CO (Fig. 4.10, right), the three-spin
effect is predicted to reduce the coupling factor at all magnetic fields examined in the
figure. The decrease can be as small as ∼ 5 % at 9.7 GHz (Fig. 9d) and as large as∼ 50%
at 260 GHz (Fig. 4.10f). In the case of CH3 (Fig. 4.10, left), the three-spin effect leads
to a smaller (by ∼ 5%) coupling factor at 9.7 GHz (Fig. 4.10a) and to a larger coupling
factor (by ∼ 20%) at 260 GHz (Fig. 4.10c). At 94 GHz (Fig. 4.10b), the three-spin effect
flips the sign of the coupling factor and increases its magnitude by a factor of ∼ 300%.
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This huge three-spin effect is caused by the vanish- ingly small value of σS
C , by which

σH
C is to be divided. However, because cSC is itself proportional to σS

C , the direct coupling
factor of CH3 is already rather small at 94 GHz (Table 4.2). Thus, its significant increase
caused by the three-spin effect is not expected to be very helpful in practice.
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Chapter 5

13C DNP OF THE ACETONE IN
WATER AND CHLOROFORM

In this chapter, developed methodology for calculation of enhancements due to both dipo-
lar and scalar interactions are subjected to cases carbons of acetone solvent mixed with
water and carbons of chloroform liquids. First part gives the methodological details em-
ployed in this study and accuracy of the point-dipole approximation is examined by com-
parison with the DFT calculations. In the second part, report for experimental enhance-
ments for methyl and carbonyl carbons in the mixture of water-acetone is revised. The
last part reports for calculated SDFs and coupling factors are reported.

5.1. Methods

5.1..1 Simulations for acetone in water

Simulation of the box containing 1 TEMPOL, 1029 acetone and 7433 water molecules
were carried out with NAMD [39]. Acetone and water (TIP3P) parameters were taken
from CHARMM36 molecular Force Field [36]. Parameters of TEMPOL were from the
Ref. [53].

Temperature of 25 ◦C and pressure of 1 atm were maintained with Langevin thermo-
stat and barostat. The average box size was 6.98 nm, leading to acetone concentration
of 5 M. The friction of the thermostat was chosen as 4.35 ps−1 in order to reproduce
the reported translational diffusion constant of acetone in water (D = 1.10 nm2/ns) [5].
Duration of the simulations was 10 ns and coordinates were recorded every 0.2 ps.

DFT calculations were performed using the package Gaussian 09 [48]. Fermi contacts
were obtained with the EPR-II basis set [50] and functionals were B3LYP and BLYP.
5000 consecutive MD snapshots, amounting to a total duration of 1 ns, were analyzed
with B3LYP and 10000 consecutive snapshots were analyzed with the BLYP functional.
In the BLYP case, DNP coupling factors were also obtained using only the first 5000 or
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only the second 5000 snapshots in order to asses the uncertainty in the estimates due to
the finite number of calculated Fermi contacts. 2 acetone and 15 water molecules closest
to the TEMPOL oxygen were present explicitly in each DFT calculation. A continuum
polarization model (PCM [51]) with ε = 62.5, corresponding to a 1:3 acetone-water
mixture, was employed to account for the dielectric properties of the solution.

5.1..2 Simulations for chloroform

MD simulations of 1 TEMPOL and 2741 chloroform molecules in a box of average size
7.17 nm were carried out with NAMD employing the barostat and thermostat to keep the
temperature at 25 ◦C and pressure at 1 atm. The parameters of chloroform were from
Ref. [54] The thermostat friction was chosen 0.014 ps−1 which matches the experimental
diffusion coefficient of chloroform (D = 2.8 nm2 ns−1) [55]. The total duration of simu-
lations was 10 ns. Snapshots were saved every 0.1 ps. TZVP [56] was chosen as the basis
set in the DFT simulations. The continuum polarization model SMD [57] with ε = 4.7,
was employed to account for the dielectric properties of the pure chloroform solution.
The difference between SMD and PCM was negligible(See Fig. 5.1)
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Figure 5.1: Fermi contact of carbon at the nearest chloroform calculated with increasing
number of chloroform molecules around TEMPOL explicitly present in the DFT calcu-
lation. The level of theory is either B3LYP/TZVP or BLYP/TZVP, as indicated. The
dielectric properties of the environment are accounted for with the continuum dielectric
models PCM or SMD. This figure is taken from Ref. [1]

5.2. Background

DNP measurements at 0.35 T were reported for 5 M acetone in water doped with 20 mM
TEMPOL [5]. The enhancements and leakage factors of the methyl (CH3) and carbonyl
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(CO) carbons of acetone are compiled in Table 5.1, with e calculated from the enhance-
ments in the absence of three-spin effects [5]. The saturation factor was estimated to be
s ≈ 0.6, with uncertainty ≈ 15 % [5]. Although the experimental coupling factors de-
duced from (2.31) depend on the value of s, their ratio is independent of it (Table 5.1, last
row).

Table 5.1: Experimental parameters at 0.35 T [5]. The coupling factors (%) deduced from
experiment, cexp, are compared with the computational predictions of the present study,
ccalc.

e f
cexp ccalc

(s = 0.6) (s = 0.68) (BLYP)
CO −232 0.86 17.2 15.2 15.3
CH3 −59.3 0.85 4.44 3.92 3.9
CO

CH3
3.91 1.01 3.87 3.87 3.92

5.3. Spectral density functions
and coupling factors

Overhauser DNP coupling factors can be calculated from the values of the dipolar and
scalar spectral density functions (SDFs) at the Larmor frequencies of the electron (ωS)
and nuclear (ωI) spins at the desired magnetic field from the equation given in (2.99). The
dipolar SDF J(ω) can be calculated by seamlessly matching molecular dynamics (MD)
simulations [22] and the hard sphere centered spin model [23, 24, 2]. MD simulations are
employed to realistically model the short-distance molecular motions (Fig. 5.2b), and the
analytical expression is used to account for the large-distance dipolar couplings (Fig. 5.2a)
[23]. For the scalar SDF K(ω) in (2.99), we introduced a third, quantum mechanical re-
gion at even shorter inter-spin distances (Fig. 5.2c). Here, Fermi contacts for nuclear spin
bearing molecules are calculated by subjecting the molecular geometries obtained from
the MD simulations to density functional theory (DFT) calculations [4]. Since the scalar
interaction is short-ranged, a few solvent molecules around the polarizing agent are suffi-
cient to be explicitly present at this region thereby making the procedure computationally
feasible.

MD simulations of an aqueous 5 M acetone solution, containing 1 TEMPOL in the
simulation volume were used to calculate dipolar SDFs. Scalar SDFs were obtained from
Fermi contacts calculated for 10000 consecutive MD snapshots (= 2 ns). The positive
and negative contributions to the coupling factor in (2.99) were calculated from J(ω) and
K(ω) with ωS/2π = 9.8 GHz and ωI/2π = 3.74 MHz. The results for the carbonyl and
methyl carbons of acetone are shown in Fig. 5.3.
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Figure 5.2: Multiscale approach used to calculate the scalar and dipolar SDFs. (b) The
dynamics of the polarizing agent TEMPOL (balls) and thousands of (acetone and water)
solvent molecules are followed through MD simulations. (a) The dipolar interaction be-
tween TEMPOL and solvent nuclei beyond a certain distance (dashed circle) is treated
analytically. 18 (c) The scalar SDF is obtained by calculating the spin densities (magenta)
for thousands of successive MD snapshots, with only a few (2 acetone and 15 water)
solvent molecules closest to TEMPOL retained explicitly in the DFT calculations. This
figure is taken from Ref. [1]
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Figure 5.3: Calculated coupling factors (magenta line) of CO and CH3 of acetone at 0.35
T result from the competition of the positive (dipolar) contribution shown in blue and the
negative (scalar) contribution in red. The latter is underestimated by the density functional
B3LYP but is accurately reflected by BLYP. This figure is taken from Ref. [1]

When DFT calculations are performed with B3LYP/EPR-II [58], the ratio of the cal-
culated coupling factors of CO and CH3 became 1.43 (Fig. 5.3, top), which is 2.7 times less
than the experimental value (Table 5.1). The coupling factor of CO (15.6 %) is entirely
due to the dipolar interaction and is in overall agreement with experiment (Table 5.1, top
row). In the case of CH3 , the scalar contribution to the coupling factor is found to be im-
portant. However, the calculated coupling factor (10.9 %) is substantially larger than the
experimental value, indicating that the DFT calculations underestimate the scalar contri-
bution.

Using the same snapshots with DFT calculations with BLYP/EPR-II, i.e., replacing
the popular hybrid functional B3LYP with the pure functional BLYP, leads to much larger
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scalar contribution to the coupling factor of CH3 (Fig. 5.3, bottom). In this case, the
ratio of the coupling factors of the two carbons is 3.92, in quantitative agreement with
the experiment (Table 5.1). Furthermore, with only assumption of the saturation factor
s = 0.68 absolute values of the coupling factors (Table 5.1, last column) match exactly
the experimental values. (Reported experimental error is reported as ±15% [5])

The dipolar and scalar SDFs J(ω) and K(ω) obtained from the analysis of 5 M ace-
tone in water are shown in Figs. 5.4a and 5.4b for CO and CH3 , respectively. While J(ω)

is in very similar magnitudes for the carbonyl and methyl carbons of acetone, K(ω) of
methyl carbon is comparable to it and carbonyl carbon SDF is negligibly small. For both
carbons, BLYP leads to larger K(ω) than B3LYP across the entire frequency range. The
coupling factors calculated according to (2.99) are given for five different magnetic fields
in Table 5.2.

Table 5.2: DNP coupling factors (%) at several magnetic fields calculated for 5 M acetone
in water at 25 ◦C. Fermi contacts were computed using the specified density functional.

Field (Tesla) 0.35 1.2 3.4 9.2 16.4

BLYP
CO 15.3 2.91 0.66 0.13 0.02
CH3 3.9 −2.7 −2.2 −1.1 −0.9

B3LYP
CO 15.6 3.05 0.73 0.16 0.05
CH3 10.9 0.8 −0.6 −0.4 −0.4

The same methodology was applied to TEMPOL in pure chloroform. As in the
case of acetone in water, B3LYP produces substantially smaller scalar SDFs than BLYP
(Fig. 5.4c). Independently of whether the scalar SDF is smaller (CO), comparable (CH3),
or larger (C of chloroform) than the dipolar SDF, its decay with frequency is slower than
that of J(ω) (Fig. 5.4). To rationalize this observation we examine the magnitudes of
the scalar and dipolar (Fdip) interactions between the unpaired electron and 13C on one
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Figure 5.4: Calculated dipolar (black) and scalar (magenta) SDFs for (a) carbonyl carbon
and (b) methyl carbon of acetone in water, and (c) carbon of chloroform. Symbols indicate
values at the electron (circle) and 13C (triangle) Larmor frequencies at the magnetic fields
in Tables 5.2 and 5.3. (Carbon is cyan, chlorine green, hydrogen white, oxygen red, and
carbon whose SDFs are shown is magenta.) This figure is taken from Ref. [1]
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Figure 5.5: Temporal variation of the (a) dipolar and (b) scalar interactions with 13C
on one chloroform molecule. In (a), the real (solid lines) and imaginary (dashed lines)
parts of the solid harmonics F 0

2 (blue), F 1
2 (green), and F 2

2 (red) describing the dipolar
interaction are obtained directly from the DFT calculations. The insets in (b) show the de-
localization of the spin density (magenta) over TEMPOL and the closest three chloroform
molecules. This figure is taken from Ref. [1]

chloroform molecule (Fig. 5.5). While a small change in the relative geometry of the
polarizing agent and the solvent molecule has a similarly small effect on their dipolar
interaction (Fig. 5.5a), it has a large effect on the Fermi contact. Evidently, the value of
the Fermi contact depends on the complex distribution of the spin density (Fig. 5.5b). Be-
cause this rapid modulation affects the K(ω) at high frequencies, DNP enhancements for
the high-field becomes still substantial for scalar-dominated 13C. Since dipolar SDF drops
significantly at high frequencies, proton DNP produces less enhancements compared to
13C.

Our predicted 13C and 1H coupling factors for five different magnetic fields are given
in Table 5.3. Whereas at the higher fields the proton coupling factor drops to≈ 1 % that of
carbon is≈ −25 %. For the carbon of chloroform an enhancement of 2200±330 has been
reported at 0.33 T [59]. Assuming that the leakage and saturation factors are close to one,
this corresponds to c = 84 ± 13%. The coupling factor at 0.35 T calculated with BLYP
(78%) is in very good agreement with this experimental value, while the B3LYP value
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Table 5.3: Predicted 13C and 1H DNP coupling factors (%) for TEMPOL in pure chloro-
form at 25 ◦C.

Field (Tesla) 0.35 1.2 3.4 9.2 16.4

C
BLYP −78 −64 −43 −26 −22
B3LYP −33 −27 −16 −9.1 −7.5

H BLYP/B3LYP 34.3 15.1 5.01 1.64 0.84

(33%) is unrealistically low. Recently, the group of Marina Bennati has performed 13C
DNP measurements on pure chloroform at 3.4 T. Their experimentally deduced coupling
factor of 37±9% (private communication) is in perfect agreement with our predicted value
of 43% calculated using BLYP. Again, BYLP stands out as the functional that needs to be
employed to calculate Fermi contacts as part of our computational methodology.

0

2

4

6

8

10

12

14

16

F
e
rm

i 
c
o

n
ta

c
ts

 [
M

H
z
] T

Z
V

P

6
−

3
1
1
G

*

T
Z

V
P

6
−

3
1
1
G

*

T
Z

V
P

6
−

3
1
1
G

*

T
Z

V
P

6
−

3
1
1
G

*

BLYP PBE B3LYP PBE0

Figure 5.6: Dependence of the Fermi contact on the density functional and basis set. The
configuration that gives largest Fermi contact with BLYP/TZVP was analyzed 6-311G*
with other hybrid (B3LYP, PBE0) or pure (BLYP,PBE) functionals. This figure is taken
from Ref. [1]

The outcomes of the functionals were further examined. The configuration that chlo-
roform produces the largest Fermi contact with BLYP/TZVP which is shown in the inset
of Fig. 5.5b, was subjected to DFT calculations with other functionals and another basis
set (Fig. 5.6). The pure functionals BLYP and PBE consistently produced larger Fermi
contacts than the hybrid functionals B3LYP and PBE0. In comparison, the effect of basis
set is negligibly small. The majority of studies using B3LYP to calculate Fermi contacts
for nitroxide free radicals focus on intra-molecular hyperfine interactions that are typi-
cally calculated on the optimized molecular geometries, unless the effect of molecular
distortions is explicitly assessed [58]. In our case, inter-molecular Fermi contacts are cal-
culated on molecular structures that are not optimal, since they come directly from the
MD snapshots. Whether there is a fundamental reason for pure functionals to be more
accurate than hybrid functionals in this case remains to be explored.
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5.4. Validation of the point-dipole approximation

In addition to Fermi contacts (i.e., isotropic scalar couplings) DFT calculations also pro-
vide anisotropic hyperfine (i.e., dipolar) couplings. This allows us to investigate the accu-
racy of the point dipole approximation. When calculating dipolar TCFs from the atomic
coordinates in the MD trajectories, we treat the electron spin as localized at the oxygen
(50%) and nitrogen (50%) atoms of TEMPOL. However, the DFT calculations clearly
show the spin density is delocalized in space. Such delocalization is the reason for large
Fermi contacts. As a result, the point-dipole approximation of the electron spin is ex-
pected to fail to describe the dipolar interaction with nearby nuclear spins.
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Figure 5.7: The dipolar and scalar couplings to a carbon of chloroform. In (a), the dipolar
constants are calculated using the point-dipole approximation. Their difference from the
coupling constant taken directly from the DFT calculations (i.e., without the point-dipole
approximation) are given in (b). The Fermi contacts of the same atom are given in (c).
Using the functional BLYP in the DFT calculations leads to systematically larger Fermi
contacts compared to B3LYP. This figure is taken from Ref. [1]

Figure 5.7c shows the temporal variation of the Fermi contacts carbon nucleus on one
chloroform molecule obtained from the DFT calculations. The solid harmonics describing
the dipolar interaction between the electron spin and the nuclear spin of the same carbon
atom over the same time period are given in Fig. 5.7a. These, however, were calculated
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Table 5.4: DNP coupling factors (%) of chloroform calculated from 1 ns fraction of the
MD simulations. Dipolar contributions for the molecules in the quantum region are calcu-
lated by either point-dipole approximation or DFT calculations. BLYP functional is used
in all DFT calculations.

Field (Tesla) 9.8 34 94 260 460
point dipole −78.2 −64.8 −43.4 −26.9 −22.6
DFT + p.d. −77.8 −64.4 −43.1 −26.6 −22.4

∆ 0.3 0.3 0.2 0.2 0.14

from the distance vector between the atomic positions namely relying on the point-dipole
approximation. The same solid harmonics is also obtained with DFT calculations and
their differences are plotted in 5.7b. As expected, the point-dipole approximation fails at
the instances exhibiting substantial Fermi contacts. On the other hand, the performance
of the approximation is seen to be acceptable for the instances of small Fermi contacts.
This implies that it can be safely used for molecules outside the quantum region, where
the scalar couplings are vanishingly small anyway.

Although we have demonstrated the limitations of the point-dipole approximation,
what matters from a practical point of view is the impact of the approximate treatment on
the calculated DNP coupling factors. The calculated coupling factors are given in Table
5.4 The differences between the coupling factors are seen to be small and less than the
statistical uncertainties of the 10 ns simulations [1].
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Chapter 6

CONCLUSION AND OUTLOOK

In this thesis, a multiscale computational modeling that quantitatively predicts the magni-
tude of Overhauser DNP enhancements in simple liquids is presented. First, the methodol-
ogy was applied for proton DNP of liquids, acetone and DMSO. Only dipolar interaction
was taken into account and for protons dipolar coupling is almost always true. Transla-
tional and rotational motion of the simulated molecules were validated due to the high
sensitivity of the ODNP on the molecular motions. These tasks were achieved by cali-
brating the Langevin damping coefficient of the simulations for translational diffusion and
dielectric response analysis for the rotational diffusion. This validation procedure pushed
us to seek for different Force Field models for DMSO, therefore two different Force Field
were used for DMSO.

The dipolar spectral densities were calculated for diluted and concentrated solutions
of acetone, DMSO and modified DMSO simulations. From the spectral density functions,
we were able to calculate various experimental parameters such as coupling factors and
relaxivities which were reported for a broad range of magnetic fields. They were directly
compared with the experimental results. Our calculations of relaxivities were in perfect
agreement with the experiments performed at high magnetic fields (9.2 T). Coupling fac-
tors calculated from DMSO and modified DMSO models also gave similar values and
good agreement with experiment at 9.2 T was achieved. For acetone, on the other hand,
our prediction at 9.2 T was larger than the experiment by almost %50 despite the good
agreement of the relaxivities. This discrepancy can be originated from the flawed Force
Field models which may not reflect the reality although the orientational motion of the
model was better agreement with the experiments.

Secondly, the scope of the methodology was extended by introducing the scalar cou-
pling contribution. Addition of the scalar coupling makes possible to calculate the ODNP
enhancements of nuclear spin species where larger enhancements than proton is possi-
ble. The methodology was applied to the 13C DNP for carbonyl and methyl carbons of
acetone. The calculated coupling factors due to only dipolar interaction produced were
similar to coupling factors of the proton DNP. This was expected since the magnitude of
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the dipolar coupling, in principle, varies with the diffusion coefficient of molecules and
the distance of closest approach between the nuclear and electron spins. Since the latter
depends on the shape of the molecule, proximity of the spins are dictated by the position
of the nuclear spin in the molecule. Since the distance from the center of mass of acetone
is similar for carbons and protons, dipolar contribution was expected to be similar.

The scalar interaction contribution was quantified by computation of Fermi contacts
from coordinates taken from a fragment of the MD simulations. The Fermi contact values
were changed from negative to positive values very quickly throughout the motion of the
molecules. Therefore a fast decay of the TCFs were observed for all nuclei types. While
the magnitude of this TCFs were substantially small and close to each other for proton
and carbonyl carbon, magnitude of the methyl carbon demonstrated a much larger inten-
sity. Therefore, the scalar contribution from proton and carbonyl carbon was observed
to be negligible, agreeing with the common knowledge of the dominance of the dipolar
interaction in the proton DNP. The magnitude of the scalar and dipolar SDFs for methyl
carbon was similar therefore produced smaller enhancement factor since they run against
each other.

The calculated coupling factors were compared with the experimental values. Al-
though there was a qualitative agreement, the numbers were substantially different. The
reason for this was speculated as the simulated system was not exactly matching with
the experimental conditions. For instance, experimental system was a mixture and sim-
ulations contain pure acetone. And the temperature of the experiment was 25◦C while
simulations were executed under 35◦.

Three spin effect which corresponds to the effect of the enhancement due to secondary
nucleus on the polarization of a nucleus was also analyzed. This analysis was performed
on the acetone liquid which simultaneously has the carbon and proton nuclei. Calculated
results, suggested a negligible effect.

In the third part, the density functional method which we used in our Fermi contact
calculations was examined. In the previous study, applied functional/basis set combina-
tion was B3LYP/EPR-II which is a highly popular functional and basis set for calculation
of the Fermi contact couplings. In the analysis, we have performed several functional
dependency tests. For a configuration, the computations were performed with hybrid
functionals such as B3LYP and PBE0 and also with pure functionals such s BLYP and
PBE. The pure functionals produced much larger contact values than the hybrid func-
tionals. The calculated enhancements for 13C of acetone in the acetone-water mixture
and carbon of chloroform are compared with experiments. The results suggested that the
DNP calculations with popular hybrid functionals are unable to match the experimental
values while the pure functionals produced enhancements that perfectly agrees with ex-
periments. Therefore, our calculations suggest that the pure functionals produce better
results for inter-molecular hyperfine coupling constants calculations despite the fact that
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intra-molecular coupling constants are better computed by hybrid functionals.
In conclusion, the presented methodology quantitatively predicts the magnitude of

Overhauser DNP enhancements with a multiple scale offering applicability to systems
under any magnetic field. Therefore the methodology provides a broad spectrum of pre-
dictions that can be utilized for the knowledge-based experiments.

However, current version of the methodology assumes that the media of the simula-
tions are isotropic which limits the applicability to only simple liquids and fairly small
radicals. Since most of the biological systems contain biomolecules such as proteins,
lipids and micelles which give rise to anisotropic motions. Therefore one extension of the
methodology may be the incorporation of anisotropic motions into the model.

Since, the methodology depends on the MD simulations, the predictions is affected
from the choice of Force Fields. For this reason, validation of the Force Fields especially
for the respect of translational and rotational motion is crucial. The translational motion
can be taken care by adjusting the friction coefficient of the thermostat in MD simula-
tions, but the rotational motion depends on the given parameters for the partial charge
distribution. However, Force Fields assume partial charges to be static, whereas Polariz-
able Force Fields are developed for a time dependent charge distribution which can reflect
better representation of the rotational motion.

The experimental procedure of DNP involves the MW irradiation of the sample which
results with undesired heating of the sample. Therefore, this leads to alteration of the
relaxation time T1 and thus coupling factor. The contribution of the MW irradiation is
discussed in the Ref. [60]. The influence of the irradiation can be theoretically estimated
and incorporate to the methodology.
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