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Abstract

Spray formation occurring at the outlet of short micro/mini-orifices due to the

cavitation phenomenon is of great importance in biomedical and engineering ap-

plications. Recent studies show the destructive effect of the energy released from

the collapse of cavitation bubbles, which are generated in micro domains, on the

targeted surfaces. The cavitation phenomenon occurs at low local pressures within

flow restrictive elements and strongly affects fluid flow regimes inside micro-channels

which results in spray formation. Extended cavitation bubbles toward the outlet of

the micro-channel, droplet evolution, and spray breakup are among crucial mecha-

nisms to be considered in spray structure. In this study, spray formation and atom-

ization, bubble and droplet evolution, break-up, and corresponding cavitating flow

at the outlet of short micro/mini-channels are discussed at different physical and

thermo-dynamical conditions. Cavitation phenomenon inside micro/mini-channel

configurations are numerically investigated in detail. The results of this study show

that the static pressure drops down to a very low magnitude (tensile stress) in micro-

channels while the minimum static pressure in mini-channels is found to be equal to

vapor saturation pressure, and higher velocity magnitudes particularly at the outlet

are visible in the micro-channels. It is shown that for higher upstream pressures,

the cavitating flow extends over the length of the micro/mini-channel thereby in-

creasing the possibility of collapse at the outlet. A detailed study on the effect of

energy associated with turbulence is investigated at high Reynolds numbers for both
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micro/mini-channels and its impact is analyzed using wall shear stress, turbulence

kinetic energy and mean velocity at various locations of the channels. We find that

there is a considerable difference on the flow regime between the emerging sprays at

the outlet of the channels in micro and mini/macro scales. The spray at the outlet

of nozzle has a conical shape with separated droplet/bubbles, however, interestingly

the spray shape entirly differs in macro scale presenting spray jet flow regime at the

same thermo-physical conditions. We showed that with the aid of the hydrodynamic

cavitation in a low-cost and clean system, the spray jet has the capability of heat

generation in contrast to the common use of spray jet in the cooling applications.

The emerging spray is under the effect of the micro scale cavitating flow inside the

micro/mini-channels which is much more intense in comparison to its correspon-

dence at macro scale. The temperature measurements on a black-covered aluminum

plate subjected to the spray interestingly show a considerable increase for a specific

micro-channel. This temperature rise would be potentially utilized as a power source

in miniature electric appliances with a simple energy conversion device. Herein, we

present a complete set of numerical and experimental results on the micro/mini

scale cavitating flow, spray emergence and its interaction with a solid body which

will increase our understanding about the physics of the cavitating flow inside the

micro/mini-channel and its relation with the emerging spray structure.

Keywords: Cavitation; Spray; Micro/Mini-Channel; Turbulence; Energy; Col-

lapse
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Tez Danışmanı: Prof. Ali Koşar

Özet

Kavitasyon olayı nedeniyle kısa mikro / mini deliklerin çıkışında oluşan püskürtme

oluşumu, biyomedikal ve mühendislik uygulamalarında büyük önem taşımaktadr.

Son zamanlarda yapılan çalışmalar, mikro alanlarda oluşturulan kabarcıklarının

çökmesinden ıkan enerjinin hedeflenen yüzeylerde tahrip edici etkisini göstermektedir.

Kavitasyon olayı, akış sınırlayıcı unsurlar içindeki düşük yerel basınçlarda ortaya

çıkar ve mikro kanallardaki sıvı akış rejimlerini sprey oluşumuyla sonuçlanan şiddetle

etkiler. Mikro kanalın çıkışına doğru uzatılmış kavitasyon kabarcıkları, damla gelişimi

ve sprey parçalanması, sprey yapısında dikkate alınması gereken önemli mekaniz-

malardır. Bu çalışmada, kısa mikro / mini kanalların çıkışında sprey oluşumu ve

atomizasyon, kabarcık ve damlacık gelişimi, parçalanma ve bunlara karşılık gelen

kavitasyon akışı, farklı fiziksel ve termodinamik koşullarda tartışılmıştır. Mikro

/ mini kanal konfigürasyonlarındaki kavitasyon olayı sayısal olarak ayrıntılı bir

şekilde incelenmiştir. Bu çalışmanın sonuçları, mikro kanallarda statik basınçın

çok düşük bir gerilime (çekme gerilmesi) düştüğünü, mini kanallardaki minimum

statik basınç, buhar doyum basınçına eşit olduğunu ve özellikle de mikro kanal

çıkışında daha yüksek hız büyüklüklerine sahip olduğunu göstermektedir. Daha

yukarı akış basınçlarında kavitasyon akışı, mikro / mini kanalın uzunluğu boyunca

uzanır ve böylece çıkışta çökme olasılığı artar. Türbülans ile ilişkili enerjinin etkisi

üzerine ayrıntılı bir çalışma, mikro / mini kanallar için yüksek Reynolds sayılarıyla

araştırılmış ve etkileri, kanalların çeşitli yerlerinde, duvar kayması gerilmesi, türbülans
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kinetik enerjisi ve ortalama hız kullanılarak analiz edilmiştir. Mikro ve mini / makro

ölçeklerde kanalların çıkışında ortaya çıkan spreyler arasındaki akış rejimi üzerinde

önemli bir fark olduğunu buluyoruz. Püskürtme ağzı çıkışındaki püskürtme, ayrılmış

damlacık / kabarcıklarla konik bir şekle sahiptir; ancak ilginç bir şekilde, püskürtme

şekli, aynı termo-fiziksel koşullarda püskürtme jeti akış rejimini sunan makro ölçekte

tamamen farklıdır. Düşük maliyetli ve temiz bir sistemdeki hidrodinamik kavita-

syonun yardımıyla püskürtme jetinin, soğutma uygulamalarında püskürtme jetinin

ortak kullanımından farklı olarak ısı üretme kabiliyetine sahip olduğunu gösterdik.

Ortaya çıkan sprey, mikro / mini kanallardaki mikro boyuttaki kavitasyon akışının

etkisindedir ve makro ölçekte yazışmalara kıyasla çok daha şiddetlidir. Sprey uygu-

lanan siyah kaplı bir alüminyum plakadaki sıcaklık ölçümleri ilginç bir şekilde belirli

bir mikro kanal için önemli bir artış göstermektedir. Bu sıcaklık artışı, potansiyel

olarak basit bir enerji dönüştürme cihazı ile minyatür elektrikli cihazlarda bir güç

kaynağı olarak kullanılabilir. Burada, mikro / mini ölçekli kavitasyon akışı, sprey or-

taya çıkışı ve katı cisim ile etkileşimi ile mikro / mini kanaldaki kavitasyon akışının

fiziği ve ortaya çıkan sprey yapıs ile olan şkisi hakkındaki bulgularımızı artıracak

olan sayısal ve deneysel sonuçların eksiksiz bir dizisi sunulmaktadır.
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Chapter 1

Introduction and Motivation

1.1 Cavitation Phenomenon

Cavitation is a direct consequence of static pressure reductions down to a critical

value (vapor pressure), and leads to the formation of inchoate vapor/gas bubbles

(cavitation inception) or large-scale attached cavities (Supercavitation) [1–3]. Cavi-

tation is associated with the explosive growth and subsequent catastrophic collapse

of vapor bubbles. Therefore, it is a dynamic phenomenon and its occurrence is not

restricted to the fluid medium.

Cavitation occurs when a liquid is subjected to high pressure fluctuations. The

pressure drop in ultrasound cavitation is a consequence of acoustic fields with suffi-

cient intensity, while low local pressures as a result of constriction in the liquid flow

direction generate hydrodynamic cavitation. The liquid is compressed in positive

half cycle of the sound in a small region and is expanded during its negative half

cycle. The generated vapor bubbles in the positive cycle collapse in the negative

half cycle, and therefore, lead to a shock wave in the liquid as a result of energy

released from the collapse of ultrasound cavitation bubbles. The additional pres-

sures by the ultrasound cause an augmentation in the acoustic pressure in cavitation

bubbles and make the collapse and hence fragmentation quicker, which is exploited

in the disintegration of stones using ultrasound cavitation. The generated cavita-

tion bubbles can experience low energy fluctuations as a result of the sound effect,

which is called as non-inertial cavitation (stable cavitation). The inertial cavitation

(transient cavitation) starts to form when the bubbles undergo higher energy fluctu-
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ations. There is a threshold depending upon parameters relating to acoustic sound

field and bubble behavior, which determines the incipient of inertial cavitation. The

population of bubbles plays an important role in determination of stable and tran-

sient cavitation. While many applications such as cavitation erosion, cell killing and

ultrasound shock wave exploit inertial cavitation, non-inertial cavitation may also

take place depending on the bubble population and sound effect. In addition, if the

initial bubble size is small, the bubble growth is affected due to high surface tension.

In the case of the large initial bubble size, the bubbles growth would not be able to

control the energy released from the collapse of the bubbles [4].

1.1.1 Cavitation Versus Boiling

Cavitation and boiling are two mechanisms in which the liquid rupture is happened.

The pressure difference in the cavitation phenomenon between the liquid pressure

and vapor saturated pressure at a roughly constant temperatuer is called the ten-

sion and the value at which the process of collision a liquid is considered the tensile

strength (∆pC). On the other hand boiling occurs when temperature increases to

the saturation temperature at constant pressure, so the difference between the afore-

mentioned temperatures is called superheat and the point at which the liquid rupture

takes place is considered as critical superheat (∆TC). Therefore, although the phys-

ical mechanism of these phenomena is similar, but thermodynamic characteristics

are different. The Clausius-Clapeyron relation is used to explain the relevance of

superheat and tensile strength when their values are small:

∆TC = ∆pC ·
T

LH · ρv
(1.1)

where ρv is the saturated vapor density and LH is the latent heat of evaporation.

The cavitation phenomenon has been investigated in many studies with applica-

tions in bioengineering, chemical engineering, micro-pumps, micro-valves and diesel

injection engines [5,6]. Cavitation number is the basic parameter accounting for the

intensity of cavitation:

σ =
pref − pv

1
2
ρV̄ 2

(1.2)
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where pref is the local pressure, ρ is the density, pv is the vapor pressure, and

V̄ is the mean velocity at the flow restrictive element. Additionally, the discharge

coefficient, which is another significant parameter in cavitating flows, is defined as

the ratio of the actual discharge to the theoretical discharge and is computed us-

ing the mass flow rate and pressure drop. A schematic of occurrence of cavitation

phenomenon is displayed in Figure 1.1, where a recirculation zone is generated as a

result of emerging bubbles in a low pressure region. Above and below the recircula-

tion zone, vena contracta is formed and causes a decrease in the cross-sectional area

at the constriction.

Figure 1.1: Schematic of occurrence of cavitation phenomenon in a flow restrictive
element

1.1.2 Nucleation and Growth of Bubbles

The nucleation in any experimental investigations may happen in two types. In the

first type, thermal motion results in the formation of voids in the liquid medium

which is considered as Homogeneous nucleation. The second type is Heterogeneous

nucleation where the nucleation occurs between liquid and small particls and also

at the boundaries of the liquid with the solid interface.

Three sets of equations present the bubble dynamics in the Homogeneous nu-

cleation. The first row of these relations manifests the relevance of surface tension
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with pressure difference of the void as follows:

pB − p =
2S

R
(1.3)

where S is the surface tension, p is the liquid pressure, R is the bubble radius and

pB is the bubble’s interior pressure. To prevent the rupture of bubble, the bubble’s

interior pressure must be less than pv − 2S/R, since raising the pressure would lead

to growth the bubble, R will rise, to maintain the equilibrium condition and hence,

collision may occur. Therefore, there would be a critical bubble radius which shows

the maximum size of the radius prior to collapsing the void. The term included in

Equation 1.3 is considered as tensile strength when the bubble reachs its critical

value:

∆pC =
2S

RC

(1.4)

The second set provides the relations on the energy deposited in the liquid

medium to form the bubbles. In this step, the energy required to be deposited

at the surface of the bubble, 4πR2
CS, is firstly computed and then the work done

by the system to move the liquid in order to constitute the bubble, 4πR3
C∆pC/3,

is substracted. Thus, the net energy to generate the bubbles after eliminating RC

with the aid of Equation 1.4 is expressed as follows:

WC =
16πS3

3 (∆pC)2
(1.5)

The final expression provides the probability of occurance of the energy deposi-

tion at the available time. In this step, the net energy is connected to the kinetic

energy of the molecules and the nucleation rate, J , is expressed with respect to the

Gibbs number, Gb, as follows:

J = JO · e
−Gb (1.6)

where JO is some factor of proportionality.

The relations above is valid when the bubble is free of any contaminant and

dissolved gas which is practically impossible. If nucleation site contains some gas,
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then the pressure stated in Equation 1.3 is changed to the following relation:

p = pv + pG −
2S

R
(1.7)

where pG is the gas pressure and 2S/R− pG is considered as the critical tension.

The importance of the gas pressure is manifested when its value is high enough to

neglect the tensile strength. In this case the bubbles would have the ability to grow

at the pressure higher than the vapor pressure.

As mentioned above, the Heterogenous nucleation occurs at the boundaries and

between the liquid and solid surfaces. Therefore, the pressure variations which is

considered in the Homogeneous nucleation would be affected by the surface con-

tact angles and surface roughness. To sume up, the parameters which should be

controled during the cavitation bubble’s nucleation are Cavitation number, the flow

velocity, liquid temperature, liquid and surface qualities in terms of contaminants

and roughness, respectively. While the cavitation may practically characterized in

term of the flow dynamics, but it is almost impossible to control the cavitation

process in term of the aforementioned parameteres particularly when the cavitation

bubbles start to constitute (incipient cavitation).

1.2 Motivation

Investigation of cavitating flows in micro and mini domains are of great importance

in microfluidc systems. The effect of the caviation bubbles on the fluid flow regime

and its relation with the emerging spray structure are the first step to understand

the role of the cavitation in the microfluidic devices.

The preliminary results revealed that the cavitating flow at the outlet of the

micro-channel depending on the pressure difference has a destructive effect on the

abnormal tissues and stones. This was the first motivation of the project to discover

detail of the cavitating flow inside the micro-channel and the spray at the outelt of

it. Hence, various micro/mini-channels with different inner diameters are modeled

while varying the injection pressure from 10 to 150 bar in the first phase. The vapor

volume fraction is thoroughly taken into account as the crucial parameter, and its

profile along the channels presented at different pressures. The static pressure was

5



displayed for different cases, and pressure recovery was also elaborated in order

to prove the occurrence of the cavitation phenomenon and its presence even at the

outlet of the micro-channel. This is for the first time that the effect of the turbulence

using turbulence kinetic energy, wall shear stress and mean velocity were analyzed

at high Reynolds numbers.

As can be seen in Table 1.1 which briefly summarizes some of the important

experimental and numerical studies on cavitation phenomenon for different appli-

cations, most of these studies do not consider turbulence effect [7], use single phase

models, and target low Reynolds numbers in micro scale conditions. Therefore, the

effect of energy associated with turbulence, orifice size, flow patterns, high Reynolds

number needs to be investigated in detail for the better design of energy efficient

systems and devices for a variety of application in small scale ranging from diesel

engines to microfluidic and energy conversion systems.
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The findings of this study are believed to provide an improved understanding

on cavitating flows in both micro and mini scale thereby helping design and devel-

opment of economical, energy efficient and new generation energy conversion and

microfluidic devices that can be used in lab on a chip systems, micro-injectors and

therapies such as abnormal tissue (e.g., Benign prostate hyperplasia or tumors) ab-

lation and kidney stone treatment [17–20].

Moreover, the first observations on the spray structure at the outlet of the micro-

channel suggest that the created cavitation bubbles may move to the outlet as shown

in Figure 1.2. This visual detection bolsters the possibility of collapse process at

the outlet of the microchannel. Therefore, if it is proven that the cavitation bubbles

travel to the outlet of the micro-channel, then there would be a good possibility to

increase the rate of erosion of the abnormal tissues and stones. It is also observed

that even for lower upstream pressures (10 bar), there are some tiny bubbles in

nano scale at the outlet of the microchannel when the flow was cut off through

the pressure valves Figure 1.3. The experiments for the higher upstream pressures

exibites that more cavitation bubbles exit from the microchannel. These cavitation

bubbles are mostly in bigger scale compared to the low upstream pressure

Figure 1.2: Traveling bubble to the outlet of the micro-channel

To identify these phenomena in a wide extent, spray structure at the outlet of

the micro-channel is observed using high speed visualization system and utilizing

Particle Shadow Sizing (PSS) imaging technique. The significance of the study of

spray characteristics emerging from the micro-channel is to obtain a flow map in the

micro scale and record the droplet breakup, droplet pattern, spray cone angle and

collapse process. Therefore, the spray domain is classified to the segments starting

from the outlet of a short micro-channel/micro-orifice. The visualization performed

in this study helps to visualize the formation of spray in and to capture cavitation

8



Figure 1.3: Bubble detection inside a droplet for different upstream pressures (a) 10
bar (b) 100 bar

droplets in micro scale. The results reported in this study about spray behavior

have great potential in many biomedical and engineering applications.

1.2.1 Objectives of this study

The current study analyzes the flow inside the channel from numerical point of view

from the inlet to the outlet and spray characteristics under the effect of the different

mechanisms occured inside the channel.

The objectives of this study are:

� To design, build and validate an extensive experimental facility;

� To manifest the flow regime difference between micro and macro scale cavitat-

ing flow;

� To provide a detailed information on the turbulence effect on the micro cavi-

tating flow for high Reynolds numbers;

� To recognize the pressure recovery hysteresis along the micro/mini-channels;

� To identify the vapor volume fraction iniside the micro/mini-channels;

� To investigate the bubble number density inisde the channels and the amount

of the bubbles survived from the channels to the outlet;

9



� To manifest the difference between the flow regimes of the sprays in micro and

mini scales;

� To quantitatively analyze the droplet generation and evolution at the lower

segments of the spray;

� To quantitatively characterize the heat generation due to the spray collision

on a solid body;

� To evaluate the utilization feasibility of the proposed system on the fragmen-

tation of the abnormal tissues.

1.2.2 Thesis Structure

This thesis is comprised of seven chapters: Chapter 2 presents a literature review and

intro of available scientific studies relevant to this thesis. It includes the fundamental

studies and significant improvements on the cavitating flow, spray formation and

biomedical aspects of the proposed idea which clarify the rationale and direction of

this study. Chapter 3 presents a depth numerical modelling of the problem with

different user-defined functions for boundary conditions and the obtained results

are illustrated with a detailed discussion. The experimental studies commence in

Chapter 4 with a description of the proposed system and spray structure. The

collapse process and its significance under the effect of the cavitation phenomenon

are elaborated in Chapter 5. Chapter 6 is devoted to an entirely new idea in the

field of cavitation about the heat generation and power production as a result of

the spray collision on a solid body. Concluding remarks are reported in Chapter 7.

Recommendations related to the output of this study with some preliminary results

on the suggestations are provided in Chapter 8.
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Chapter 2

State-of-the-art Literature Review

2.1 Cavitating Flow inisde the Constrictive Ele-

ments

The cavitation phenomenon has been widely used in many industrial applications,

and its significance in energy efficient devices such as diesel injection and rocket en-

gines, microfluidic systems and energy conversion systems has been extensively re-

ported. However, since scaling laws are not applicable to multiphase flows, in-depth

numerical and experimental studies are of great importance to provide better under-

standing on cavitating flows in micro scale. The assessment of size effects is vital for

the design and development of new generation microfluidic devices involving phase

change. Hydrodynamic cavitation (HC), as a major phase change phenomenon,

is considered a crucial parameter affecting the performance of fluidic devices and

occurs when the static pressure of the fluid drops down to the vapor saturation

pressure. As a result, the volume fraction of the vapor phase will increase along the

channel, thereby generating a two-phase flow therein. Keller [21] claimed that the

scaling relations can be extended to various cavitating flow regimes. Therefore, this

study offers an explanation for the scaling effects on cavitation phenomenon.

The difference in flow characteristics between macro and micro scales not only

affects hydrodynamic cavitation but also alters heat transfer and thermal-hydraulic

performances as stated in literature [22]. Moreover, molecular approach is needed

to investigate the fluid dynamic phenomena within the cavitation process. It was
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experimentally shown that not only can the cavitation bubbles be formed inside the

orifice, but also they can be present downstream of it or even move to the exit of

the orifice [10,13].

The classification of flow regime in the macro scale flows is entirely different from

the one in micro scale. The fist parameters come to our mind in diminishing the size

scale are surface and visous effects. Two types of nuclei are frequently addressed in

the literature called as free stream and surface nuclei. While the free stream nuclei

play important role in the characterization of cavitation in conventional scale, surface

nuclei dominate the flow in the micro scale due to their almost constant residence

time despite the size reduction and their independent nature of the system size.

Moreover, the surface forces become crucial in the micro scale cavitation, since the

generated bubbles cannot grow beyond the boundaries and surface forces would not

be neglected.

It is reported that the incipient cavitation number is much more smaller in micro

scale cavitation in comparison to the corresponding macro scale one [16]. Therefore,

there would need larger pressure difference between reference and vapor saturated

pressures to instigate the cavitation. This phenomenon would definitly affect the

later flow regimes including chocked, super-cavitation and hydroulic flip. Moreover,

due to the small magnitude of incipient number, the chocked flow condition arrives

quicker in the micro scale cavitating flow and therefore the range of the cavitation

hysteresis between incipient and desinent cavitation would be dramatically affected.

In addition, the surface effects lead to utilization of various materials in the micro

scale. As it is well-known different materials are utilized in the microfluidic and

MEMS-based applications.

Mala et al. [23] indicated a severe deviation in the flow characteristics of ex-

periments from the conventional theory for the micro-tubes. The deviation was

observed especially when Reynolds number increases, which lead to a significant

increase in pressure gradient. Furthermore, they claimed that an early transition

from laminar to turbulent flow occurred in micro scale. Garstecki et al. [24] reviewed

the formation of gas bubbles in liquids in microfluidic systems using hydrodynamic

techniques. They confirmed that the flow rate influenced the formation of bub-

bles during the transition from break-up controlled type to inertial type. Xiong et
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al. [25] experimentally studied adiabatic two-phase flow patterns and void fraction

in micro-channels. They examined the effect of micro-channel size on void fraction

and recorded bubbly slug flow, slug-ring flow, dispersed-churn flow, and annular flow

as flow patterns. By decreasing the size of micro-channels, the superficial velocity

of the gas phase reached a higher value due to the effect of surface tension. Cubaud

et al. [26] reviewed the micro-bubble formation in the microfluidic systems and ex-

pressed that the domination of the liquid pressure gradient over the vapor pressure

gradient leads to decreased fluid volume fraction.

De Giorgi et al. [11] studied cavitation in conventional scale orifices at very

high Reynolds numbers without considering the effect of turbulence, and the upper

and lower bond of Cavitation and Reynolds numbers. Henry and Collicott [13] per-

formed visualization in different micro and conventional channels at various pressure

drops. They did not provide any information about the effect of turbulence and the

pressure or velocity distribution inside orifices. Mishra and Peles [16] investigated

cavitation and flow hysteresis in micro-channels. Although, they investigated the

hydrodynamic cavitation in a micro-orifice and used the results of this study to make

a comparison between micro and macro scale orifices, but the pressure drops and

Reynolds numbers are rather low. Perpar et al. [12] used a channel with a diameter

of 1 mm and focused on the bubbly flow inside the orifice. Although they presented

some results regarding the pressure and velocity inside the orifice, the velocity of

the flow was low. Rooze et al. [15] also investigated flows with cavitation bubbles

in a small flow restrictive element while, the velocity inside the orifice was also low.

Although high speed flows with high upstream pressures in the diesel injection en-

gines were widely investigated in the literature [8,9], the effect of turbulence at high

Reynolds numbers and cavitating nozzle flows at high upstream pressures were not

extensively investigated in micro scale. Additionally, in micro scale, mostly single

phase flows were considered at high Reynolds numbers [14], therefore, cavitation

phenomenon as an important parameter in the energy efficient product and systems

should be considered in details.

Numerical simulations of the cavitating flows inside channels were considered by

many researchers in recent years [27–29]. In this regard, various modelling methods

were employed to improve the understanding about the cavitating flow behavior
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and emerging spray. There are important parameters affecting the flow simulation

including bubble number density, velocity field and the nozzle geometry. Wang et

al. [30] proposed a two-fluid cavitation model and simulated cavitating flows by de-

veloping the bubble number density model. Their model successfully predicted cav-

itation bubbles existing in the fluid flow inside a nozzle and correlated the discharge

coefficient with cavitation number. Sou et al. [31] numerically simulated transient

cavitating flows and combined Large Eddy Simulation (LES), Eulerian-Lagrangian

Bubble Tracking Method (BTM), and the Rayleigh-Plesset (RP) equations in order

to study cavitation incipience for sheet and cloud cavitation. Their model enabled

to predict the recirculation zone at the inlet of the channel and the vortex shedding

separated from the attachment point. The suggested model was capable of suc-

cessfully simulating cavitating flows inside the channel, while spray formation was

not numerically analyzed. Dietrich et al. [32] investigated the bubble formation of

various liquids in three different shaped (involving cross-shape and two converging

shapes) channels. They studied the size and shape of the bubbles for different flow

rates, physical characteristics and mixer geometries. They found that the size of

the bubble strongly depended on the geometry of the two-phase interface. They

took the effect of the surface tension, liquid viscosity and flow rates on the bubble

formation in account. Ming et al. [33] numerically studied the effect of cavitating

flows inside a conical-spray injector using the mixture model. They concluded that

the cavitation evolution dramatically affected the liquid sheet thickness and velocity

at nozzle exit, which could further significantly change the spray angle and droplet

Sauter mean diameter (SMD). Battistoni et al. [34] investigated unsteady injector

flow and spray characteristics of different fuels. Their results indicated that vapor

pressure had a minor impact on SMD of emerging spray in comparison to the mass

flow rate and outlet liquid volume fraction. Shibata et al. [35] correlated the flow

under the effect of cavitation inside a channel with the atomization of the liquid jet

at the outlet of the jet. They analyzed separation of the cavitation from the main

cavitating flow by Fourier transform and concluded that the separation of cavitation

is an important parameter in the enhancement of jet atomization. Cavitating flows

in nozzles of diesel injection engines were widely studied in the literature [36, 37].

Kanfoudi et al. [38] proposed a mixture model for the steady cavitating flow in-
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side nozzles of diesel injection engines. They used Navier-Stokes equations for the

mixture of the liquid and vapor to study the effect of the numerical and physical

parameters on cavitating flows and used the pressure variation effects to investigate

the change in the evaporation and condensation processes. The bubble dynamics in

the cavitating flow inside nozzles of the diesel injection engines plays an important

role on the progress and collapse of the created cavitation bubbles. In this regard,

Bicer et al. [39] proposed an improved Rayleigh-Plesset equation to study the bub-

ble, growth and collapse, and validated their model using the radius of the generated

bubbles by comparing the numerical results to the experimental ones.

Although spray effects due to the cavitation and their applications have been

studied in the literature to some extent, spray characteristics and cavitating flow

behavior in micro scale have not been taken into account in a wide range of exper-

imental conditions. Furthermore, sprays main properties and significant locations

along the spray were mainly investigated from a numerical point of view [40]. Spray

visualization displaying the spray morphology has not been considered, and instead,

numerical approaches were present for displaying spray formation [41]. Although

there are some studies simultaneously considering the numerical simulation of the

cavitation formation and spray collapse [42], experimental investigations are still nec-

essary to study the structure of the spray and processes affecting the atomization i.e,

collapse in the micro scale. Dollet et al. [43] showed that geometrical parameters had

a significant effect on the bubble formation in rectangular channels. They claimed

that the linear 2D collapse of the bubble was stable in disturbance of the two-phase

interface, while the 3D pinch-off part of the bubble collapse was unstable and led

to bubble polydispersity. Che et al. [44] focused on droplet break-up to measure

the size and number of daughter droplets. They observed that the break-up process

depended upon the interaction between interfacial tension and shear force. They

also found that the break-up process could be controlled by varying the flow rate

of the continuous phase and mother droplets size. Agarwal et al. [45] studied the

cavitating flow from numerical point of view and experimentally investigated the

spray characteristics for different fuels. They used the mixture model to simulate

the flow containing liquid, vapor and non-condensable gases and employed the k-

model for the turbulence. They utilized the Rayleigh-Plesset equation to study the
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evaporation and condensation processes. They also visualized the emerging spray

for different fuels at the outlet of the nozzle and showed that the cavitation phe-

nomenon reduces the mass flow rate of the fuel entering to the combustion chamber.

He et al. [46] studied the effect of the cavitation bubbles on the formed near-nozzle

spray and showed that the collapse process is a significant parameter affecting the

cone angle of the spray. They illustrated that when the collapse of the cavitation

bubbles took place inside the nozzle, the fluid flow inside the nozzle became more

turbulent and the cone angle of the spray decreased. However, the cone angle of

the spray dramatically in-creased when the collapse process occurred outside of the

nozzle.

2.2 Spray Charcteristics under the Effect of the

Cavitation Phenomenon

Spray formation and its structure are of great importance in many engineering and

industrial applications and typically include liquid jet formation, primary and sec-

ondary breakups, droplet evolutions and bubble collapse. One of the most significant

parameters affecting spray characteristics is cavitation bubbles, which are generated

inside a flow restrictive element, may extend to the outlet, and impact the spray

by energy released during the collapse process. Small bubbles and particles as the

contaminant have catastrophic effects on the efficiency of various processes such

as the semiconductor cleaning. Hence, the studies dealing with reducing the size

of these particles and removing the instability of the bubbles using the ultrasound

technology are crucial in such systems.

Schematic of a high-pressure conical spray is shown in Figure 2.1 [47]. This

figure shows the bottom part of an injector with sac hole needle and injection hole.

As it is illustrated, the fluid starts to break inside a conical sprat just after the

tip of the nozzle, which is called primary break-up. The primary break-up leads to

creation of big droplets/bubbles which makes the region close to the nozzle dense

and thick. The next step is secondary break-up where smaller droplets/bubbles are

generated from the big droplets/bubbles. The secondary break-up occurs due to

the aerodynamic forces existed on the relative velocity between droplets/bubbles
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and the surrounding’s gas. Aerodynamic forces decrease the droplets velocity and

droplets at the vertex of the spray tolerate much more drag forces. Therefore, The

droplets at the tip of the nozzle change to new ones consistently and the spray

penetration increases.

Figure 2.1: Schematic of a conical spray with detailed breaks and spray character-
istics (Baumgarten 2006)

A typical classification of the spray at the outlet of a conventional nozzle was

shown in a study by Sou et al. [10]. They classified the nozzle flow as no cavitation,

developing cavitation, super-cavitation and hydraulic flip and, classified spray as

wavy jet, spary and flipping jet as shown in Figure 2.2.

In last decades, hydrodynamic cavitation as an alternative approach to ultra-

sound cavitation was considered by many researchers, and cavitation bubbles and

cavitation patterns were experimentally visualized in transparent nozzles [16]. Payri

et al. [48] visualized cavitation bubbles at the outlet of an orifice using the special

near-nozzle field visualization technique with the aid of a test rig pressurized with

fuel. They attempted to investigate the effect of the nozzle geometry on cavitation

patterns and the spray formation. It was observed that the cavitation inception

and chocked flow conditions were dependent on pressure, and the spray cone an-
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Figure 2.2: Nozzle flow and spray regimes at a channel with width of 4 mm and
liquid temperature of 292 K (Sou et al. 2007)

gle increased with cavitation intensity. The focus of the studies on flow regimes

under cavitating conditions was on how the frequency of cavitation shedding var-

ied in internal nozzles [49] as well as images of periodic cavitation shedding [50].

De Giorgi et al. [11] studied flow regimes using a CCD camera and presented an

analysis based on pressure fluctuation frequency. Their experimental observations

illustrated different flow regimes (from inception to cavitating jets) under various

working conditions. They also compared the frequency obtained from pressure fluc-

tuations with visual observation spectra and captured a dramatic augmentation in

the first peak of the frequency spectra, while the flow regime changed to jet cavita-

tion. Cloud cavitation is regarded as a significant form of cavitation instability and

is formed when a considerable value of cavitation bubbles periodically merge and

form a cloud. This type of cavitation instability was observed in several domains

such as hydrofoil, orifice and venturi [11]. Stanley et al. [51] experimentally focused

on the periodic shedding of cavitation in macro cylindrical nozzles and examined

the existing re-entrant mechanism. Their results obtained from the visualization

of cavity and re-entrant jets revealed that cavity cloud was detached from the wall

by a liquid layer sub. Visualization of cavitation phenomenon inside nozzles and

its effect on spray characteristics [10, 16] along with flow structure were recently

studied in the literature using different measurements techniques such as qualitative

description, pressure point and velocity measurement [52].

Payri et al. [53] visualized internal flow regimes for four different fuels inside a
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nozzle installed into a pressurized rig test and visualized cavitation bubbles with the

aid of differences in refractive indices between vapor and liquid. They demonstrated

that cavitation bubbles were generated prior the mass flow collapse condition. More-

over, they observed that the fully developed cavitation condition lead to mass flow

collapse depending upon the upstream and downstream pressure and fuel viscosity.

Kravtsova et al. [54] used the PIV (Particle-Imaging Velocimetry) technique and

high-speed images visualization in order to observe and analyze cavitating flows

around semi-circular leading edge plates and NACA0015 hydrofoils with different

angles at various Cavitation numbers. For small attack angles, the flow patterns

observed in these geometries were dependent on attack angles. Streak array was

visualized as the initial cavitation occurrence for the plate and traveling bubbles

for the hydrofoil. Increasing the attack angle of the hydrofoil lead to a change in

the cavitation regime type around the hydrofoil (to the steak array) similar to the

plate at lower angles. Gavaises et al. [42] observed the formation of cavitation cloud

in axial symmetric geometries and showed that the cavitation cloud developed in

the radial direction until the collapse, which was deduced from the vortex shedding

analysis. The collapse frequency decreased with Reynolds number due to high den-

sity of the vortex cavities. Naoe et al. [55] studied the behavior of cavitation bubbles

in mercury by visualizing the growth and collapse of generated bubbles in the vicin-

ity of the solid structures. The bubble collapses enforced the acoustic emission.

They also observed annulated mist expansion as a result of the shock wave prop-

agation. Perpar et al. [12] experimentally visualized cavitation bubbles inside slot

orifices and cavitation inception. They conducted two distinct experiments in order

to study a single cavitation bubble and huge amount of bubbles at atmospheric and

saturation pressures, respectively. They classified flow regimes in the slot region into

single bubble and macroscopic bubble cluster, bubble cloud and collapsing bubbles

regimes under different working conditions.

Recent studies [56, 57] relevant to the investigation of bubbly cavitation in mi-

cro scale presented eroded surfaces due to the destructive energy of the collapse of

cavitation bubbles. The domination of surface cavitation in micro domains due to

augmented surface tension effects was exploited using micro patterns with hydropho-

bic and hydrophilic strips in order to control cavitation bubbles [58]. Belova-Magri
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et al. [58] visualized emerging cavitation bubbles from thin micro-patterned surfaces

with a high speed imaging. It was observed that the intensity of cavitation in micro

scale is highly dependent upon the surface energy and the size of the strips.

Spray formation downstream of micro flow restrictive elements strongly depends

on the flow regimes inside them. Although it is possible to simulate the sprays de-

tails including primary and secondary break-ups, spray and break-up visualization

are vital and challenging in micro scale studies, where the dimensions are very small,

and the process occurs within a very short period of time. Recently, high velocity

jets along the spray, bubble evolution, collapse of the bubbles, and droplet segmen-

tation in the spray have become popular due to their exploitation in engineering and

biomedical applications. It is crucial to identify the appearance of the spray and to

concentrate on the whole shape of the spray in such a way that the spray length and

energy released from the collapse of resulting bubbles could be applied on a possible

target at the optimum distance for such applications. For this, rigorous studies are

necessary to assess flow characteristics downstream of the micro flow restrictive el-

ements, and experimental investigations are required to gain insight into cavitating

flow physics with visualization as well as with numerical approaches.

Fluids utilized in turbomachinery are prone to cavitation, where bubbles with

different sizes are generated depending on fluid flow characteristics [2, 59, 60]. The

nature of such bubbles is strongly dependent on the ambient and discharge pres-

sures [61]. Studies in the literature proved that hydrodynamic cavitation in turbo-

machinery is detrimental for the system and badly affects the performance of the

device [3, 62, 63]. Cavitation phenomenon was also observed in micro scale, and

it was reported that micro scale cavitation significantly differs from conventional

scale [16].

Spray formation was studied both numerically and experimentally in conven-

tional orifices within a wide range of operating conditions [27,28,64]. Most of these

studies focused on the applications of nozzles and flows at the outlet of nozzles in

automotive industries [65]. Although some of the studies included experiments on

mini/micro-nozzles [66, 67], there is still a considerable lack of information about

spray characteristics in micro scale and exploitation of potential applications such

as biomedical treatment with cavitation erosion. Im et al. [68] took X-radiography
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measurements to investigate the influence of the internal geometry of a nozzle on

the morphology of a high speed liquid jet immediately downstream of the nozzle.

They found that cavitation inside the nozzle is strongly affected by internal geom-

etry variations in micro scale. There are also some investigations focusing on the

effect of the sprays on small targeted areas [17–20]. Liao et al. [69] used the VOF

(Volume of Fluid) model to simulate the collapse process in order to determine the

optimum stand-off between the targeted point and probe. They showed that this

model was capable of measuring the jet velocity and pressure impulse. Moreover,

they illustrated that the main mechanism in the cavitation erosion concept is high

pressure instead of the jet velocity.

While major properties of the spray and significant locations along the spray

were mainly investigated from a numerical point of view [70,71], spray visualization

displaying the spray morphology has not been considered. Balewski et al. [72] ex-

perimentally studied nozzle flows and resulting spray formation without the effect

of the cross-flow velocity and turbulence in a pressure atomizer. They used a Phase

Doppler System (PDS) to measure droplet sizes in the spray and the velocity dis-

tribution. Hossainpour et al. [73] simulated the spray process in a diesel injection

engine and considered various break-up models to study their effect on the variation

of spray characteristics.

2.3 Lithotripsy and Cavitation in Urinary Stone

Therapy

The propagation of an acoustic wave with the frequency from few tenths of kHz

to several hundreds of MHz refers to the term ”ultrasound”. In liquids, the prop-

agation of longitudinal waves causes local oscillatory motions of particles around

their initial positions, resulting in local changes in liquid pressure. Depending on

the frequency, the level of acoustical energy and/or pressure can be targeted to the

desired area, thereby enabling the use of ultrasound in therapeutic applications. Be-

cause of its ability to exert localized energy from surface of the skin into soft tissues,

ultrasound has attracted much interest as a non-invasive and targeted therapeutic

treatment [74].
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Even though biomedical uses of cavitation phenomena are rapidly increasing, a

recent comprehensive review on its physical and/or biological effects and clinical

applications in biomedical sciences is missing in the literature. Here, we focuses on

recent studies and advances in the use of ultrasound and hydrodynamic cavitation

in biomedical treatment. Physical properties and currently available applications

are reviewed, and exponentially growing new approaches are discussed. Improved

understanding of this field is of vital importance and would open a new area for the

development of novel theurapeutic techniques.

2.3.1 Urinary Stone Therapy Using Lithotripsy and Ultra-

sound Cavitation

Ultrasound cavitation became an important method in disease therapy because

it offers non-invasive and extracorporeal treatment possibilities. In low-intensity

pulsed ultrasound (LIPUS), a major method, mechanical energy is transcutaneously

transmitted as high-frequency acoustical pressure waves into biological tissues [75].

Today, this medical technology is an established, widely applied intervention for

enhancing bone healing in fractures and non-unions [76,77]. Sonoporation is a well-

established ultrasound-based phenomenon for drug delivery, which increases gene

uptake into tumor cells. Collapsing bubbles are believed to change the permeabil-

ity of cell plasma membrane by creating transient holes, allowing efficient delivery.

Although ultrasound cavitation has various applications in biomedical sciences, ma-

jority of the articles published in this field is concentrated on its biomedical effects

in urinary stone treatment. Non-focused ultrasound might result in hyperthermia

in targeted areas and might lead to side-effects, such as nerve and vasculature dam-

age in surrounding normal tissues. The usage of high-intensity focused ultrasound

(HIFU) or histotripsy methods overcomes these limitations to a certain extent, lead-

ing to precise tissue destruction by ultrasound cavitation and utilization in thermal

ablation of tumors. Another ultrasound-based non-invasive method is shock wave

lithotripsy (SWL), which offers important advantages for the treatment of renal and

ureteral stones. The targeted surfaces are successfully destroyed with shock waves

with slow rate resulting to reduced renal injury [78]. Recent studies also demon-

strated successful therapeutic applications of SWL in orthopedic problems and heart
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diseases. In this section, recent studies and advances in SWL and histotripsy will

be presented.

2.3.2 Shock Wave Lithotripsy (SWL)

It is well-known that the shock wave lithotripsy provides effective biomedical treat-

ment particularly for kidney stone fragmentation. Its effects are based on two

fundamental mechanisms, shock wave-related effects and cavitation phenomenon.

Mechanical stresses generated by shock wave lithotripsy (SWL) lead to stone frag-

mentation [79]. Many researchers proposed new methods to enhance the effective-

ness of SWL by intensifying shock waves. Sass et al. [80] used kidney stones and

gallstones, which were exposed to shock waves, and reported a two-step process in

resulting erosion. They showed that first slits formed as a result of the interaction

between shock wave and targets and then the liquid filled small cracks at the first

step. Secondly, the collapse with cavitation caused significant erosion on the surface

of stones, and finally, fragmentation took place. Holmer et al. [81] also showed that

acoustic cavitation and streaming significantly contributed to the disintegration of

stones.

Extracorporeal shock wave lithotripsy (ESWL) is a kind of the shock wave

lithotripsy method, in which the source of the shock waves is outside the body

and the shock profile of the ESWL impulse can be determined using a lithotripter

device. The main structure of an ESW lithotripter device includes a shock wave

generator, a focusing device and a system used for locating the stone. There are

three significant sources in ESWL, namely electrohydraulic, electromagnetic, and

piezoelectric sources. The generation of ultrasound cavitation and collapse of the

bubbles are of great importance to treat the urinary stones with ESWL. Although

effectiveness and safety of this method in urinary treatments were proven by many in-

vestigations [82], investigators have shown that the modern lithotripters were highly

ineffective compared to the original devices and might cause severe injury [83].

While, ESWL typically works best with stones between 0.4 cm and 2 cm in

diameter, which are located in the kidney, Wu et al. [84] in a study on the treatment

of the renal stones with a size of 20 mm or bigger on 376 patients reported 64.4 %

overall stone-free rate and 70.7 % efficiency rate after 3 months. They claimed
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that ESWL is the first choice for the stone with a surface area of 400 mm2 and

for the bigger ones, successive treatments are required. On the other hand, ESWL

has a lower rate of success, when stones are located in the ureter. In regards to

the guidelines on urolithiasis of the European Association of Urology, ESWL is

implementable in minimally invasive endoscopic modalities to treat stones of the

upper urinary tract in humans [85]. Success rate of this method could be increased

by using a ureteral stent, which allows for easier passage of the stone by relieving

obstruction and through passive dilatation of the ureter. In fact, the results of this

method are also dependent on many factors such as shock wave rate, probe to sample

distance and pressure profile. Howle et al. [86] studied shock waves in the kidney

stone treatment under the framework of lithotripsy and presented an expression for

profile of the ESWL impulse:

p(t) =

2pmaxexp
−t/ϕ1 cos

(
t
ϕ2

+ π
3

)
if 0 < t < 7π

6
ϕ2

0 otherwise

(2.1)

where ϕ1 and ϕ2 determine the profile of the extracorporeal SWL impulse.

The repeated use of SWL in the same patient has been shown to be correlated

with an increase in the amount of phosphate in the kidney stone [87]. This is a huge

issue in light of the large increase in the number of patients with phosphate stones.

There are some studies showing a correlation between SWL number and phosphate

content of the resulting kidney stone. Williams et al. [88] attempted to correlate

the stone fragmentation rate with the structure of the internal stone using Brushite

stones imposed to SWL. However, their proposed tomography technology did not

anticipate any correlation between brushite stones break and SWL. Pramanik et

al. [89] used the ground stone powder and utilized a three-step extraction method

to predict the protein content in the kidney stone. They showed that brushite

and apatite stones contain higher amount of protein in comparison to the previous

studies. In this regard, Kacker et al. [90] investigated the effect of the calcium

phosphate stone on the stone-free rate and found that the higher rate of phosphate

contains in the renal stone results in the reduction of the stone-free rate. Moreover,

Evan et al. [91] performed an experiment in pigs showing a rise in urinary pH as a

long term effect of SWL on kidney function as well as changes in renal morphology
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and tubular changes consistent with a dsyfunctioning thick ascending thick limb.

Some important preliminary studies in SWL are presented in Table 2.1.

Table 2.1: Preliminary Significant Reports in SWL

Study Strategy Major Findings References

Gallstones in humans
exposed to shockwave

lithotripsy

An alternative method of
gallstone clearance in adults

Using cholecystectomy impacts
on biliary physiology as an

alternative conservative treatment
for cholesterol gallstones

Sauerbruch et al. [79]

Exposure of kidney stones
and

gallstones to shock waves

Visualization of the distruction
on the targeted surface

Collapse of the cavitation
bubbles as the most significant

mechanism in the erosion-Two-step
process in resulting erosion

Sass et al. [80]

Kidney stone exposure
to SWL

Surrounded target to determine
the destruction rate

Mechanical effects including
acoustic cavitation and streaming

effect on stone fragmentation
Holmer et al. [81]

Urinary stones treatment
using extracorporeal

shock wave lithotripsy

Using focused shock waves
to fracture calculi instead
of surgery (First report)

Reducing the need for
surgery with the aid of
shock wave lithotripsy

Chaussy et al. [82]

Immediate focus on the renal
morphology after extracorporeal

shock wave lithotripsy

Using renography assess renal
function in patients after

shock wave lithotripsy

Signicant acute renal
trauma as a result of

shock wave lithotripsy impose
Kaude et al. [85]

2.3.3 Secondary and Tandem Shock Waves in SWL

Secondary shock waves are of great importance in treatment of urinary stones. The

implementation of tandem shock waves and the time of sending the second shock

wave play a crucial role in SWL. In order to intensify the collapse of the cavitation

bubbles, which were produced as a result of the tensile phase of the shock waves, a

second shock wave is sent within some hundred micro-seconds after the first wave.

Cavitation bubbles are nucleated in the presence of the tensile part of the waves,

and bubble collapse near the stone generates secondary shock wave leading to ero-

sion [92]. Later on, Delacretaz et al. [93] emphasized that in addition to the ordinary

stresses on the stone target, there are always second shock waves induced by cavita-

tion collapse, which are more destructive than the initial stresses during SWL. Sheir

et al. [94] investigated twin-pulse (TP) treatment in eliminating the kidney stone.

They conducted the first prospective clinical study with the twin-pulse lithotripter

on 50 patients, whose renal stones had the diameters less than 2 cm. The capability

of the tandem shock wave was investigated in other studies in the literature [95,96].

Loske et al. [97] evaluated the capability of the dual-pulse SWL (tandem shock
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wave) in controlling and collapsing the cavitation bubbles, which were induced by

second shock waves. They found that this method was efficient in intensifying bub-

ble implosion. The comminution of stones was increased without any tissue damage

in In vitro studies. Loske et al. [98] tried to enhance cavitation damage on kidney

stone during extracorporeal SWL by generating shock waves with time delays of 50

to 950 µs in their earlier studies. The fragmentation ratio was increased at 250 and

400 µs shock wave delays. Alvarez et al. [99] used a modified piezoelectric shock

wave generator to produce single-pulse and dual-pulse shock waves and studied the

effect of shock waves on the viability of bacteria in solutions. They claimed that

tandem shock wave could inactivate the bacteria, while low-pressure single-pulse did

not have any significant effect on the bacteria. They also found that tandem shock

wave could control bubble growth and prevent their collapse by sending the second

shock wave beforehand. Furthermore, tandem shock wave could be used to shorten

the SWL process.

The conclusion of the enhancement with strong micro-jets, which the second

shock wave delivers for tenths of micro-seconds prior to collapsing the bubbles,

was reported in the literature [100, 101]. Fernandez et al. [102] conducted an In

vitro study to reduce the SWL time using tandem shock waves. They did their

experiments with and without fluid-filled expansion chambers and observed few

variations in stone comminution for both single and tandem shock waves in the

presence of the fluid field. However, they recorded a significant decrease in SWL

time for tandem shock waves.

Recent studies confirm the strong effect of the focused shock wave lithotripsy

on the cancer treatment. Lukes et al. [103] developed a focused tandem shockwave

lithotripsy (FTSW) generator in order to provide two successive waves with a time

delay of 10 µs. The waves generated in this study were at peak positive and tensile

pressures of 80 and -80 MPa for first and tandem ones, respectively, while the

time delay was adjusted with parabolic reflector and the electrode structure. They

reported a remarkable enhancement of the antitumor effect of chemotherapeutic

drugs due to generation and collapse of cavitation bubbles during FTSW process.

Tandem shock waves boost attention in pharmaceutical industry recently. Loske et

al. [104] used tandem shock wave (underwater) in order to transfer filamentous fungi
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used in generating antibiotics and proteins. They showed a significant superiority of

tandem shock wave with a delay of 300 µs in genetic transformation of filamentous

fungi compared to standard shock wave. Numerical modeling on the secondary shock

wave was also taken into account, and stress and cavitation effects were determined

as the key parameters in the fragmentation of the targeted surfaces during tandem

shock waves [105]. Some important investigations on the tandem shock wave are

presented in Table 2.2.
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2.3.4 Cavitation Effects on SWL

Cavitation phenomenon and bubble collapse were considered as important param-

eters in SWL [106]. The aim of the studies on this field was to increase the com-

minution of stones while reducing the tissue injury. Williams et al. [107] observed

that gas bubbles existing in the air-fluid interfaces had the potential for serving as

cavitation nuclei and found that even small bubbles had an important impact on

the lysis of red blood cells during the shock wave exposure.

The cavitation phenomenon is in a close association with SWL in the processes

of formation and collapse of cavitation bubbles. While the acoustic aspect of the

lithotripsy induces the cavitation bubbles, cavitation bubbles and clouds dramati-

cally influence the lithotripsy treatment and the pressure distribution in the focal

region of the SWL. The collapse of the cavitation bubbles, distance between the

applied laser and the targeted stone, the topology of the targeted stone sample are

the most significant parameters, which were considered in the literature to control

the cavitation phenomenon. Ikeda et al. [108] investigated cavitation cloud and its

effect on the pressure field. They discovered that the control of cavitation collapse

had a big potential in lithotripsy treatment. They suggested that since the cavi-

tation cloud was the most destructive feature, it had the capability to concentrate

intensive pressure fields in the case of acoustically induced collapse of the bubbles

(Fig. 2.3). It was extensively reported in the literature that the collapse due to

cloud cavitation might generate local pressures having a more dominant effect than

initial waves.

Yoshizawa et al. [109] investigated the effect of the cloud cavitation on high

intensity focused ultrasound (HIFU). The energy released from the cavitation bubble

collapse induced by acoustic field has the capability of focusing very high pressures.

Their method, which included two steps, namely, high frequency ultrasound (1 to

5 MHz ) and then low frequency ultrasound (100 kHz to 1 MHz ) with short pulses,

offered localization of cavitating bubbles on the stone. Both of the frequencies

were applied to the stone surface. However, the second one induced cavitation

cloud collapse by generating an oscillating field in the cavitation bubbles and led to

powerful shock waves interior the cloud. Thus, the bubbles in the vicinity of the

center of the cloud collapsed, and a high pressure field was generated, which resulted
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Figure 2.3: Schematic of the Experimental Set-up (Ikeda et al. 2006). The Set-
up Consists of an Acrylic water Tank, an Ultrasound Generation Unit and a Data
Acquisition Unit

in fragmentation of the stone.

The collapse of the shock-induced cavitation bubbles and their contributions to

SWL were extensively reported [110]. Johnsen et al. [111] found that shock-induced

collapse of air bubbles had a considerable effect on damaging the stone in SWL.

Their numerical results were in a good agreement with experimental observations.

They showed that bubble collapse near the rigid wall raised the wall pressure (wall

pressure determines the damaging power of cavitation bubble collapse), and affected

the stand-off distances in kidney stone erosion. Ultrasound cavitation effects are en-

hanced with delayed second shock waves. Therefore, the importance of intensifying

the effect of cavitation collapse is of great interest in this field. Pishchalnikov et

al. [112] considered cavitation control as an important mechanism in the SWL. The

formation of single bubbles resulted in clusters in proximal locations and sides of

the stones, and the collapse of each cluster led to erosion and also helped the crack

growth.

Another significant issue in the relation between cavitation phenomenon and
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SWL is the distance between the probe and the targeted area. Fuh et al. [113]

studied the effect of the distance of laser fiber to stone on the ultrasound cavitation.

They studied the effect of the laser fiber proximity on the fragmentation of the

stone and examined the distance between the laser fiber and stone target in order to

study cavitation bubble behavior. The diameter of cavitation bubbles was increased

at larger distances between the stone and fiber. The effect of the collapse of reflected

bubbles on rigid bodies was investigated by Calvisi et al. [114]. They developed a

boundary integral method to study the effect of non-spherical collapse of bubbles

influenced by SWL on the near rigid body. They found that the bubble-wall distance

had a dramatic effect on dynamics of bubbles collapse in the case of reflection. The

results were independent of initial radius of the bubbles. Selected studies on the

effect of the cavitation on SWL are gathered in Table 2.3.

Table 2.3: Cavitation Contribution in SWL

Strategy Outcome Cavitation Contribution Reference

Cavitation observation in
the interface

Even small bubbles affect
the lysis of red blood cells Gas bubbles Williams et al. [153] [107]

Degassed water and castor
oil usage in disintegration

of renal calculi in SWL

89% and 22% Fragmentations
in kidney stones after 200 shocks
in degassed water and castor oil,

respectively

Ultrasound cavitation Zhu et al. [137] [106]

Cavitation collapse control
in lithotripsy treatment

The capability of cavitation cloud
to concentrate intensive pressure

fields. Crack growth in the
case of cluster collapse

Cavitation cloud and
cluster collapse Pishchalnikov et al. [112]

Effect of focusing on shock-
induce collapse of air bubbles

on stone damage

Wall pressure increase and variation
in stand-off distances in presence of

near wall collapse
Collapse of air bubbles Johnsen et al. [111]

Cloud cavitation effect on
high intensity focused ultrasound (HIFU)

Very high pressures concentration
due to energy released from

cavitation collapse
Cloud cavitation and collapse Yoshizawa et al. [109]

2.4 An Alternative for Ultrasound Cavitation; Hy-

drodynamic Cavitation

While hydrodynamic cavitation has been extensively studied in applications involv-

ing hydromachinery, potential biomedical applications were recently considered as

an emerging research area particularly in micro scale. Although ultrasound cav-

itation is very popular in disease therapeutics, side effects caused by ultrasound

cavitation motivated researchers to seek for different, local and efficient methods,

such as hydrodynamic cavitation (Table 2.5). In a very early study, Rooney [115,116]
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found that hydrodynamic cavitation had the capability of generating high intensity

jet flows, which could be used in order to fragment stone and damage the tissues.

Then, Palanker et al. [117] used a two-dimensional Rayleigh-type hydrodynamic

simulation in order to study the interaction between a jet containing bubbles and

a soft tissue made of chorioallantoic membrane (CAM). They tried to avoid gener-

ating cavitation bubbles, which might cause considerable damage to tissues using

concave endoprobes. Their results were obtained under the condition of a maxi-

mum velocity of 80 m/s and tissue distance up to 1.4 mm. They indicated that

concave endoprobes could be used to prevent tissue damage by slowing down the

bubble back boundary diffusion. Toytman et al. [118] investigated hydrodynamic

interactions among simultaneous cavitation bubbles originating from multiple laser

foci, which are widely used in ophthalmologic surgery. If multiple cavitation bubbles

were produced at once, with a target tissue trapped between them, cutting efficiency

was enhanced. Focusing problem by a series of pulses could be solved.

Different from previous studies, experimental setup that was used in the study

of Koşar et al. [17] did not include any moving part, and their experiments were car-

ried out at various inlet pressures while visualizing bubbly cavitating flow patterns

(Figure 2.4). The authors studied the impact of released bubbles on kidney chalk

specimens and two different leukemia cells. On chalk specimens, they observed that

the penetration in the chalk medium increased with time. The distance between the

micro-probe and the specimen was an important parameter. The penetration depth

was larger for closer distances due to stronger bubble specimen surface interactions.

The interaction between emerging bubbles (from the micro-probe) and the chalk

surface caused significant erosion and created rough local spots on the surface lead-

ing to augmented roughness on chalk surfaces. The findings implied that the erosion

resulting from the exposure to bubbly cavitation was produced by micrometer-size

bubbles rather than the shear effect of the liquid flow. Moreover, the authors mea-

sured the size of the eroded stone debris and maximum debris size was found to

be 50 µm. On the other hand, the data of Koşar et al. [17] with leukemia cells

showed that after bubbly cavitation exposure cancer cells died as a result of two

different mechanisms: First effect was seen shortly after exposure, in which most

of the cells lost their membrane integrity, Second effect was the late effect on cell
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survival. Although the short-term effects of cavitation caused a form of cell injury

following with premature cell death due to the mechanical forces of cavitation, the

late effects might be controlled by a programmed cell death mechanism.

Figure 2.4: The Hydrodynamic Setup used to Fragment Kidney Stones (Perk et al.
2012)

As an extended study, Perk et al. [18] assessed the capability and applicability

of hydrodynamic cavitation method for kidney stone treatment utilizing 18 kidney

stone samples made of calcium oxalate. The authors used phosphate buffered saline

(PBS) solution as the working fluid. At a cavitation number of 0.017 and a probe

to specimen distance of 1 mm, their experiments resulted in an erosion rate of 0.31

mg/min. By using a similar experimental design in the study of Itah et al. [19], the

authors investigated the destructive effects of hydrodynamic cavitation on prostate

cancer cells and benign prostatic hyperplasia (BPH) tissues as well [19]. Here, the

detailed molecular mechanisms hydrodynamic cavitation effect were also analyzed

using prostate cancer cells. The micro-orifice was a polyether ether ketone (PEEK)

with an inner diameter of 147 µm, while the pressure at the inlet was varied from

50 to 150 psi for cell culture experiments, and the physiological solution was phos-
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phate buffered saline (PBS). The results on prostate cancer cells PC-3 and DU-145

exposed to hydrodynamic cavitation showed the destructive effect of bubbly cavi-

tation in a pressure- and time-dependent manner. There was a further increase in

dead cells after 24 h since the cavitation exposure. There was no evidence of the

activation of apoptotic programmed cell death, shown by the analysis of nuclear

changes, caspase activation, PARP cleavage, sub-G1 fraction cells and DNA ladder-

ing. Additionally, activation of other type of programmed cell death, autophagy,

was also not observed. These results indicated that hydrodynamic cavitation dam-

aged prostate cancer cells instantly and pulverized cells upon exposure. Moreover,

the authors proved significant damage and penetrating effect of hydrodynamic cav-

itation to exposed BPH tissue specimen compared to the non-cavitating conditions,

which suggests that hydrodynamic cavitation could be a viable alternative in BPH

tissue treatment.

Similar experimental set up was used to show the effect of hydrodynamic cavita-

tion on protein structure [20]. In this study, the authors had chosen Hen egg-white

lysozyme as a protein model. Via biochemical and biophysical methods, they found

that hydrodynamic cavitation had no significant effect on lysozyme structure and

function. The authors revealed a reversible change of hydrodynamic diameter and

bioactivity outside the cavitation regime. Their results suggested that side effects

of the application due to local protein damage is expected to be minimal. Studies

on hydrodynamic cavitation in biomedical treatment are summarized in Table 2.4.

2.5 Side Effects and Limitations in Biomedical

Use of Ultrasound and Hydrodynamic Cav-

itation

Ultrasound cavitation treatment of cells or tissues was reported to have several side

effects in various systems. At a cellular level, cell death either resulting in instant cell

lysis or in the induction of programmed cell death is the main outcome of ultrasonic

cavitation treatment. Cell membrane disruption following by induction of apoptotic

cell death was detected after administration of low intensity ultrasound cavitation in
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Table 2.4: Summary Of Studies on Hydrodynamic Cavitation in Biomedical Appli-
cations

Method Target Effect Reference

Rayleigh-type hydrodynamic simulation of
interaction between bubbles and tissue

Soft tissue made of chorioallantoic
membrane (CAM)

Preventation of tissue damage
using concave endoprobes Palanker et al. [117]

Bubbly cavitating flow

effect on cell cultures
Kidney chalk specimens

and cancerous cells Significant reduction in cell livability Kosar et al. [17]

Hydrodynamic cavitation

exposure on target area Kidney stone samples
Considerable erosion rate in an optimum

probe-specimen distance Perk et al. [18]

Hydrodynamic cavitation

exposure on target area
Prostate cells and benign prostatic

hyperplasia (BPH) tissue

Hydrodynamic cavitation as an
alternative to ultrasound cavitation
in treatments involving BPH tissues

Itah et al. [19]

Hydrodynamic cavitation

exposure on target area Lysozyme structure
No irreversible effect

No deactivation Turkoz et al. [20]

leukemic cells [119]. Similarly, In vitro application of high frequency ultrasound has

also been shown to lead to irreversible cellular damage via apoptotic programmed

cell death. Activation of programmed cell death mechanism by ultrasonic cavitation

was revealed in various humanand murine cancer cells.

In addition to cellular damage, the cavitation phenomenon induced by shock

waves caused serious injuries in organs of the body. Brujan [120] reviewed the

effects of cavitation bubbles in the cardiovascular application of ultrasound and

laser surgery as well as the effects of cavitation in mechanical heart valves. He

indicated that the interaction between cavitation bubbles and tissue during pulsed

laser surgery caused damage to surrounding tissues. The author also emphasized

on the effects of bubbles collapse resulting in the generation of shock waves, high-

velocity liquid jets, free radical species, and strong shear forces, which might damage

the nearby tissues during cardiovascular application of ultrasonic cavitation.

Although the most commonly used technique, SWL, has a good success rate for

kidney stone treatment in adults [121], there are many studies reporting the side

effects of SWL. Its destructive effects result in intensification of stone malady due to

several shock wave lithotripsies, tissue injury, nephron and blood vessel injury [122,
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123].

Recker et al. [124] investigated vulnerable parts of the body exposed to the

effects of shock waves and found that critical intra-renal hematomas were one of

the most serious harmful outcomes. Shock waves indirectly stimulated the sciatic

nerves, and its consequences were studied by Schelling et al. [125]. They found

that cavitation caused significant pain during extracorporeal SWL. Induced shear

stress and hydrostatic tension were considered as factors affecting kidney injury in

pre-focal region. Al-Awadi et al. [126] studied the effect of the antioxidation on

renal injury. They performed a clinical study to determine how antioxidants could

decrease short-term damage of SWL treatment. Their experiments focused on three

groups of patients: patients not taking any antioxidants (control group) and the

other two groups taking different amounts of antioxidants capsules, ”Nature Made

R”. Blood and urine samples were gathered during various periods before and after

extracorporeal SWL. The serum albumin amount measured in the group taking an-

tioxidants was higher in comparison to the control group. Their results proved that

free radicals were produced during treatment, and antioxidants reduced renal injury

in blood generated after extracorporeal SWL administration. Aksoy et al. [127] fo-

cused on the effect of SWL on plasma and malondialdehyde (MDA) concentrations

and found that this method led to disruption in the renal capillary, which led to

renal ischemia-reperfusion (I/R) injury. They also claimed that erthrocyte glucose-

6-phosphate dehydrogenase and its catalystic function were considerab. Benyi et

al. [128] proposed a method, in which a randomized investigation was applied to

several patients, and a calcium antagonist (nifedipine) and also a xanthine oxidase

inhibitor (allopurinal) were examined on high energy renal function. They tried

to reduce renal damage induced by SWL and found that calcium antagonist could

affect the urine rate of albumin in patients exposed to SWL.
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Table 2.5: Summary of Studies in Relation with SWL Side Effects

Observation Side Effects Considered Reference

In vitro experiments Hypertension inception Barbosa et al. [129]

Renal function observation under SWL Tissue injury Connors et al. [122]

In vitro functional outcome of
extracorporeal SWL

Hematoma formation Fainas et al. [130]

Renal calculi observation under SWL Scar formation Morris et al. [131]

Renal and proximal ureteral stones
under SWL

Diabetes Krambeck et al. [132]

In vitro observation of
renal calculi under SWL

Nephron and blood
vessel injury

McAteer et al. [123]

In vitro experiments Vascular defects Shao et al. [133]
Vulnerable organs observation under SWL Intrarenal hematomas Recker et al. [124]

Sciatic nerves exposure to SWL Sciatic nerves Schelling et al. [125]

Pre-focal region observation in SWL
Hydrostatic tension

and shear stress
Sturtevant et al. [134]

Plasma and malondialdehyde (MDA)
concentrations observation under SWL

Renal ischemia-reperfusion
(I/R) injury.

Aksoy et al. [127]

Despite the increasing potential of hydrodynamic cavitation, its clinical applica-

tion has also some limitations. In vivo applications might only be possible through

the integration of a cavitation tube system into an endoscopy device. This system

may require a flow tube in order to generate negative pressure, and the treatment

could only be performed in tissues, where the tip of the device can be positioned.

Precise manipulation of the endoscopic probe in the body is another critical point.

The endoscopy device should allow the application of hydrodynamic cavitation in

a localized and targeted manner. Table 2.5 summarizes SWL Side Effects reported

in the literature, while important mechanisms of stone fragmentation in SWL are

gathered in Table 2.6.
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Table 2.6: Mechanisms of Stone Fragmentation in SWL

Mechanism Advantage and Disadvantage Implementation Reference

Tear and shear forces
Restricted to small area target

observation
Occurrence of pressure drop and front
and distal surface pressure variation

Chaussy [135]

Quasi-static Squeezing
Restricted to large area target

observation
Occurrence of pressure gradient in

squeezing of the stone
Eisenmenger [136]

Dynamic Squeezing
High accuracy in numerical

simulation analysis
Squeezing waves effect on the shear
waves generated at the stone corner

Sapozhnikov et al. [137]

Cavitation
Privilege in stone fragmentation

and shock wave exposure

Pressure drop occurrence in low static
pressure and negative pressure wave

generation
Crum [92]

Spallation
Restricted to small area target

observation
High tension level generation at distal

surface of the stone
Zhong et al. [101]
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Chapter 3

Numerical Simulations of

Cavitating Flow Inside Micro and

Mini-Channels

3.1 Introduction

In this chapter, cavitation phenomenon inside micro and mini-channel configura-

tions are numerically investigated. The simulations for each channel are performed

at different upstream pressures varying from 10 to 150 bar. Two micro-channel

configurations with inner diameters of 152 and 254 µm and two mini-channel config-

urations with inner diameters of 504 and 762 µm are simulated. In order to validate

the numerical approach, micro-jet impingement from a micro-channel with an inner

diameter of 152 µm is first simulated at different Reynolds numbers. Then, the mix-

ture model is used to model the multiphase flow inside the channels. The results

of this study present major differences in cavitating flows between the micro and

mini scale channels and show that the pressure profile and vapor phase distribution

exhibit different features. The static pressure drops down to negative values (ten-

sile stress) in micro-channels while the minimum static pressure in mini-channels

is found to be equal to vapor saturation pressure, and higher velocity magnitudes

especially at the outlet are visible in the micro-channels. It is shown that for higher

upstream pressures, the cavitating flow extends over the length of the micro/mini-

channel thereby increasing the possibility of collapse at the outlet. The effect of en-
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ergy associated with turbulence was investigated at high Reynolds numbers for both

micro/mini-channels and its impact was analyzed using wall shear stress, turbulence

kinetic energy and mean velocity in various location of the micro/mini-channels. In

addition, the effects of bubble number density on two-phase flow hydrodynamics

were studied using the numerical approach, where transient model was utilized to

obtain the changes in vapor quality inside the micro-channel and velocity field near

the inlet and outlet of the nozzle.

3.2 Numerical Modelling

A two-phase flow is composed of two distinct phases with different physical and

chemical properties. Generally, the secondary phase is dispersed into the primary

phase. The mixture model as a submodel of the Euler-Euler approach has the

capability of simulating homogeneous multiphase flows whereby the relative velocity

due the secondary phase is neglected [138]. In this study, the mixture model is

used to simulate multiphase flows, and Reynolds Averaged Navier Stokes (RANS)

equations are employed to numerically study turbulence in cavitation formation for

cavitating flows. Continuity and momentum balance equations are solved for the

mixture, the volume fraction equation is solved for the secondary dispersed phase,

and the relative velocities are taken into account using the algebraic expressions

under the scheme of the mixture model.

The study of multiphase flows in small channels requires extensive knowledge

and understanding on the flow characteristics. Therefore, it is essential to focus on

the flow morphology inside the channels and decide on how variations of the physical

and thermodynamical properties affect the flow.

3.2.1 Model Equations

The conservation of mass and momentum for the mixture in the case of steady state

can be respectively written as,

∇ · (ρ~v) = 0 (3.1)

40



∇ · (ρ~v~v) = −∇p+∇ ·
[
µT

(
∇~v + (∇~v)T

)]
+∇ ·

(∑
f=1

αfρf~vdr,f~vdr,f

)
+ ρT~g +~f

(3.2)

where ~v is the mass-averaged velocity defined as ~v =
∑

f=1 αfρf~vf/ρ , ρT is the

mixture density, αf is the volume fraction of phase f , ρf is the density of the phase

f, p is the pressure, ~g is the gravitational acceleration, ~f is the force body, µT is

the mixture viscosity defined as µT =
∑

f=1 αfµf , ~vdr,f is the drift velocity of the

secondary phase defined as ~vdr,f = ~vf − ~v , and the superscript T is the transpose

symbol.

The volume fraction equation for phase f can be introduced as,

∇ · (αfρf~vf ) = −∇ · (αfρf~vdr,f ) +
∑
q=1

(ṁqf − ṁfq) (3.3)

where ṁqf is the mass transfer from phase q to phase f and ṁfq is the mass

transfer from phase f to phase q.

3.2.2 Cavitation modeling in cavitating flow configuration

In order to model turbulence in cavitation, instead of using computationally expen-

sive Direct Numerical Simulation (DNS), RANS, being a more practical model, is

used together with k-ε model with a standard wall function for the near-wall treat-

ment. The turbulence viscosity is neglected in this model unlike the standard k-ε

model. The transport equation for k (turbulent kinetic energy) and ε (turbulent

dissipation rate) are given respectively as,

∇ · (ρk~v) = ∇ ·
[(
µ+

µt
Prk

)
∇k
]

+Gk +Gb − ρε− YM + Sk (3.4)

∇ · (ρε~v) = ∇ ·
[(
µ+

µt
Prε

)
∇ε
]

+ ρC1Sε+ ρC2
ε2

k +
√
νε

+ C1ε
ε

k
C3εGb + Sε (3.5)

where C1 = max [0.43, η/η + 5], η = Sk/ε , and s =
√

2S : S , Here, Sk and

Sε are the user defined source terms, Gk , Gb and YM are the generation of the
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turbulent kinetic energy due to mean velocity gradient, buoyancy, and fluctuations

due to overall dissipation energy, respectively, Prk and Prε are turbulent Prandtl

numbers, µt is the turbulence viscosity, C1 , C1ε , C3ε and C2 are constants and S is

the mean rate of strain tensor.

Modeling of cavitation as an unsteady process is a very challenging simulation

task, and most of CFD softwares use basic caviation models to simulate this phe-

nomenon. The interface-tracking and multiphase approaches relying on the interfa-

cial flow theorem and phase averaging concept are two possible methods that can

be used to simulate cavitation. There are mainly three available cavitation models

within the multiphase flow approach namely, the Singhal et al. model [139], the

Zwart-Gerber-Belamri model [140] and the Schnerr and Sauer model [141]. In this

study, the Schnerr and Sauer model is used since this model is capable of using var-

ious turbulence models, and can also be used with the Eulerian multiphase model.

However, the interface-tracking methods such as explicit volume of fluid (VOF) is

not suitable for all the cavitation models given that the surface tracking schemes in

the VOF model are inconsistent with the fundamental assumptions of the cavitation

models.

To account for mass transfer between liquid and vapor in the process of cavitation

bubble formation, the required vapor transport equation can be formulated as,

∇ · (α~vv) = s (3.6)

where α is vapor volume fraction, v is the vapor phase, ~vv is the velocity of vapor

phase, and s is mass transfer source term. It should be noted that according to the

saturation density of the vapor at a given temperature, the vapor density is constant.

Cavitation models used in numerical simulations are based on the Rayleigh-Plesset

equation given as,

RB ·
D2RB

Dt2
+

3

2

(
DRB

Dt

)2

=
pB − p
ρl

− 4νl
RB

·
DRB

Dt
− 2S

ρlRB

(3.7)

where RB is the bubble radius, pB is the pressure of the bubble surface, p is the

far-field liquid pressure, S is the surface tension of the liquid and νl is kinematic

viscosity of the liquid. Neglecting the surface tension force as well as the second-
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order terms, the above equation simplifies to,

DRB

Dt
=

√
2

3
·
pB − p
ρl

(3.8)

The Schnerr and Sauer model used in this work is based on the simplified

Rayleigh-Plesset equation and assumes that a large number of micro bubbles ex-

ist in the vapor phase of the flow. Considering the vapor volume fraction and the

vapor transport equation presented in Equation 3.6, the net mass source term is

obtained as,

s =
ρvρl
ρ

·
Dα

Dt
(3.9)

The vapor volume fraction is expressed as a function of the number of bubbles

present in a unit volume of liquid as follows [141],

α =
nb4/3πR

3
B

1 + nb4/3πR3
B

(3.10)

Vapor volume fraction is then written as,

Dα

Dt
=

(1− α) 4nbπR
2
B

1 + nb4/3πR3
B

·
DRB

Dt
=

3

RB

α (1− α)
DRB

Dt
(3.11)

Finally, the mass transfer rate can be obtained using Equations 3.6, 3.8 and 3.11

as,

s =
ρvρl
ρ

·
3α (1− α)

RB

·

√
2

3
·
pB − p
ρl

(3.12)

The final form of the model to represent evaporation and condensation processes

is expressed as follows,

Evaporation when pB ≥ p,

s =
ρvρl
ρ

·
3α (1− α)

RB

·

√
2

3
·
pB − p
ρl

(3.13)

Condensation when pB ≤ p,

s =
ρvρl
ρ

·
3α (1− α)

RB

·

√
2

3
·
p− pB
ρl

(3.14)
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3.2.3 Numerical Validation Test Case: Micro-Jet Impinge-

ment

Micro-jet impingement simulations were performed in order to provide a validation

for the numerical approach, which was utilized in the rest of the present work. To

this end, the computational domain in Figure 3.1 is simulated using the FLUENT

16.0 software and user defined subroutines. The results are benchmarked with the

existing data in the literature. The domain has an inlet in the middle of the upper

wall with a velocity boundary condition, while the upper and lower walls are sub-

jected to no-slip boundary condition. The outlets at both sides of the study domain

are treated as non-reflecting boundaries by prescribing convective flux therein [142],

which is implemented writing a user defined function (udf). The validation test

problem at hand is simulated for four different aspect ratios (H/D), namely from

2 to 5 and for different Reynolds numbers ranging from 50 up to 500. The effect

of jet impingement on the stagnation point and wall is investigated referring to the

skin friction factor and pressure coefficient, respectively, which are calculated as

Cp = p−pjet/0.5ρv2jet , and Cf = τw/0.5ρv
2
jet. Here, vjet is the velocity magnitude in

y direction. Moreover, velocity contours of the test cases are also compared among

each other.

A pressure-based solver is chosen for simulations, and the laminar-viscous model

is selected for all the Reynolds numbers in a steady single phase flow. Coupled

scheme is utilized as the pressure-velocity coupling solution method, and the least

squares cell based, standard, second order upwind scheme is used to discretize the

gradients in pressure and, momentum equations, respectively. Continuity and ve-

locity components are selected as the residuals, and the absolute error for the con-

vergence criterion is set to 1e-5. In the transient solutions, adaptive time stepping

is employed with the initial time step of 1e-2 seconds.

3.2.4 Estimation of Uncertainty due to Discretization Error

Using Grid Convergence Index

Grid refinement study is performed to ensure that by reducing the size of grid cells

and increasing the number of cells, the spatial discretization error asymptotically
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Figure 3.1: The computational domain used in modeling micro-jet impingement for
validation (H/D=5)

approaches to zero. Convergence criterion studied by Roache [143] based on the

Richardsons extrapolation presented Convergence Grid Index (GCI ). This index

provides an error band, which involves the convergence of the solution and investi-

gates the asymptotic range of convergence for the obtained solutions. Therefore, the

GCI provides an estimation of how small is the discrepancy between the measured

value and the asymptotic numerical value. The discretization error studied in GCI

does not include the round off error, which is small enough to neglect. The solution

error, which is the difference between exact and measured values, is related to the

order of grid convergence as follows:

E = f (h)− fexact = C ·hr +H.O.T. (3.15)

where h is the grid spacing, r is the order of convergence and C is a constant.

Neglecting higher order terms (H.O.T.) and taking logarithm of both sides, Equa-
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tion 3.15 leads to:

log (E) = log (C) + r log (h) (3.16)

Representative mesh size is obtained from the below formula for two dimensional

calculations:

h =

[
1

N

N∑
i=1

(∆Ai)

]0.5
(3.17)

where ∆Ai is the area of the i-th cell, and N is the total number of cells used

for the computations, and the above equation is used for calculating the integral

quantity, namely skin friction coefficient. Mesh independency tests are performed

for the test case with an aspect ratio of 5 via conducting simulations with coarse,

intermediate and fine grids (Figure 3.2).

Figure 3.2: The skin friction coefficient for different cell numbers for the aspect ratio
of 5

Since three solutions were considered in the grid refinement study, the order of

convergence is obtained using a constant grid refinement ratio u as follows:

r = ln

[
f3 − f2
f2 − f1

]
/ lnu (3.18)

Asymptotic solution is obtained using the Richardson extrapolation generalized

for a r-th order methods and u-value of grid ratio as follows:
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fh=0 = f1 +
f1 − f2
ur − 1

(3.19)

The GCI on the fine grid is defined as follows:

GCIfine =
FS |f2 − f1|

(ur − 1)
(3.20)

where FS is a factor of safety and is recommended to be 1.25 when three or more

grids are compared. Finally, to check whether the solutions are within the range of

the asymptotic convergence, three computed grids were compared using the below

equation:

GCI23 = ur ·GCI12 (3.21)

Table 3.2 illustrates the convergence criteria based on the data presented in Ta-

ble 3.1 for the order of convergence, the asymptotic solution, GCI for the different

solutions and the ratio between the grid convergence indices. Table 3.2 shows that

the solutions are in the asymptotic range and indicates that lower Reynolds number

results have higher convergence order and lower grid convergence index, while higher

Reynolds numbers solutions have a lower convergence order and higher grid conver-

gence index, which is related to the higher velocity field and disturbed flow regime.

Asymptotic solution presented in Table 3.2 exhibits the best approximations based

on the data gathered from different grid sizes.

Table 3.1: Results of skin friction coefficient for different grid spacing sizes

Re Number Mesh h ( mm) Cf

1 0.044 0.013505
50 2 0.022 0.013871

3 0.011 0.013964

3.2.5 Modeling Cavitating Flows in Micro/Mini-Channels

Having validated the numerical approach, cavitating flows inside micro/mini-channels

are simulated using the numerical approach used in the validation step whereby the

effect of upstream pressure and diameter on vapor fraction inside the channel and
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Table 3.2: Grid convergence index (GCI) for different Reynolds numbers

Reynolds Order of Asymptotic a = b =
Number Convergence (r) Solution (fh=0) GCI12 % GCI23 % a/urb

50 2.0199 0.0139 0.0026 0.0107 1.0064
150 2.4993 0.0124 0.0012 0.0068 1.0045
250 1.8828 0.0110 0.0073 0.0274 1.0160
300 1.0435 0.0105 0.0331 0.0702 1.0289
400 1.1129 0.0083 0.0291 0.0648 1.0279
500 1.0426 0.0065 0.0427 0.0914 1.0377

major differences between micro/macro flow morphologies could be substantiated.

The computational domain is a channel with a micro/mini-orifice as shown in Fig-

ure 3.3.

Figure 3.3: The second study domain for modeling the micro-channel (Dm =
762 µm)

The domain considered in this study is chosen considering the experimental setup

utilized in our previous study [18], which is a channel with different inner diameters

connected to a channel with an inner diameter of 3 mm. The lengths, diameters,

aspect ratios, and thermophysical properties in the previous study [18] are used as

the input in numerical simulations. The boundary conditions are inlet pressure for

the channel and constant outlet pressure for the orifice. For the inlet and outlet, dif-

ferent volume factions are assigned to the mixture of primary liquid and secondary
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vapor phases. The computational domain is discretized with quadrilateral mesh

along the channel and orifice. To be able to improve the accuracy of the numeri-

cal solution, finer and uniform mesh is utilized at the orifice given that cavitation

bubbles start forming here. In this study, the multiphase-mixture module using a

pressure-based solver is utilized wherein the gravity is neglected, and steady cav-

itating flow was simulated in the 2-D axisymmetric geometry. The turbulence is

modeled using the two-equation based k− ε model with a standard wall function for

the near-wall treatment as explained in section 3.2.2. The no-slip and symmetric

boundary conditions are imposed for the walls and the left-hand side of the model,

respectively. The numerical procedure utilized for this problem is the same as one

used in micro-jet impingement simulations. Quick scheme is selected for discretiza-

tion of the momentum, volume fraction, and turbulent kinetic energy. Continuity,

velocity, k and epsilon components are selected as the residuals for monitoring the

convergence, and the absolute error for the convergencefigurecriterion is 1e-5. Sim-

ilar to micro-jet impingement simulations, in transient simulations, adaptive time

incrementation is used with the initial time step of 1e-2 seconds.

In this study, four micro and mini-channels/orifices with different inner diame-

ters, Dm, (152, 254, 504 and, 762 µm) are modeled, and flow characteristics inside

the micro and mini-channel/orifice are analyzed in detail on five different lines as

illustrated in Figure 3.3. Three of these lines are located at distances of 0.0006,

0.0008, and 0.0016 mm from the inlet of the channel/orifice, while the other two are

located exactly at the inlet and outlet of the channel/orifice. The second and third

lines are close to the contraction since the significant portion of cavitation bubbles

are formed in these sections, which are rather critical for cavitation inception. Lm is

the length of the micro/mini-channel, which is 3 mm, and the edge at the beginning

of the micro/mini-channel is completely sharp in order to control the separation

and reference single phase flow. The static pressure, vapor volume fraction, velocity

magnitude, and cavitation number are evaluated in these regions and then presented

in detail for different cases.
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3.3 Results and Discussion

The results of numerical and experimental investigations are provided in this section.

The results of the micro-jet impingement modeling study are compared with the

results of literature and are discussed in detail. Subsequently, pressure variations for

cavitating flow conditions are provided along mini and micro-orifice configurations.

Referring to results of numerical studies, one can observe that the vapor phase

extends to the end of the orifice configurations at higher upstream pressures whereby

bubble collapse occurs not only inside the orifice, but also at its outlet.

3.3.1 Micro-Jet Impingement

Figure 3.4 shows the pressure coefficient at four different aspect ratios (namely, 2,

3, 4 and, 5). Reynolds number used in this section is defined as Re = ρvjetD/µ ,

where ρ is the density of the fluid flow, vjet is the velocity of the flow at the inlet,

D is the inlet diameter, and µ is the viscosity of the fluid flow. The variation of the

pressure coefficient as a function of position for the given aspect ratio is dependent

on Reynolds number. It follows a similar trend for all Reynolds numbers except

Re=50. For Re=50, the velocity has a rather low magnitude (0.34 m/s), and the

pressure coefficient has a negative magnitude at the end of the domain at both sides.

However, as the aspect ratio increases, the pressure coefficient for Re=50 becomes

larger and approaches to the other cases. This is because as the aspect ratio becomes

larger, the liquid jet has more space to be distributed along the domain and the jet

pressure becomes lower. At higher aspect ratios, due to severe separation effects

of the liquid jet from the lower wall and lower jet pressure, the pressure coefficient

increases at both sides. For these aspect ratios, as the outlet boundary condition is

convective flux and the liquid jet slightly contacts with the lower and upper wall,

the pressure coefficient distribution retains the same trend. The pressure coefficient

has the highest value exactly at the stagnation point and increases with Reynolds

number for all aspect ratios.

Figure 3.5 illustrates the comparison of simulation results with the available

numerical studies in the literature for different aspect ratios. The pressure coefficient

was calculated at the lower wall for all Reynolds numbers and aspect ratios. This
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Figure 3.4: Pressure coefficient as a function of Reynolds number for different aspect
ratios (a) H/D=2 (b) H/D=3 (c) H/D=4 (d) H/D=5

figure indicates that the results are in a good agreement with the numerical study

of Lee et al. [142]. As can be seen from this figure, the mean pressure coefficient

at the lower wall dramatically increases at Reynolds numbers between 50 to 150 for

all the cases and decreases beyond this point particularly for the aspect ratio of 5,

which matches with the results of Lee et al. [142]. Velocity contours for different

aspect ratios at Re =500 are shown in Figure 3.6. It can be observed that the fluid

flow extends after contacting the stagnation point with the increase in the aspect

ratio. The intensity of the liquid jet is also augmented at higher aspect ratios. The

maximum velocity of the liquid jet is 3.223 m/s corresponding to Re=500 for all

the cases, and the contacting point on the upper wall changes with the aspect ratio.

The fluid flow at the outlet of the domain exits to the outside, while it does not get

back to the domain for all the cases, since the boundary condition for the outlet was

set to the convective flux boundary condition [142].

Figure 3.5 shows that the pressure coefficient for Re=50 is lower than 1 for all the

aspect ratios, since the convective force of the micro-jet at the inlet of the domain

is not enough to change the momentum of the jet to the pressure at the lower wall.

The micro-jet sways more along the center of the domain for aspect ratios of 4 and 5
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Figure 3.5: The comparison of the pressure coefficient with the available numerical
results in the literature

at higher Reynolds numbers and loses the kinetic energy while the small vortices are

being formed. Therefore, high velocities at the higher Reynolds numbers for aspect

ratios of 4 and 5 hinder the micro-jet from stagnating with the lower wall and cause

a reduction in pressure coefficient as shown in Figure 3.5.

3.3.2 The effect of Turbulence on the Fluid Flow Regime

Inside Micro/Mini-Channels

The mean velocity of the flow is obtained on the lines inside the micro/mini-channels.

The velocity inside the micro/mini-channels varies between 29 and 149 m/s. The

Mach number is expressed as Ma = V̄ /a , where a is the speed of sound in the liquid

and V̄ is the mean velocity value on each line, and it varies between 0.019 and 0.1,

which implies an incompressible flow for all the cases. The orifice Reynolds number

is calculated using the definition, Re = ρV̄Dm/µ , where ρ is the density of the flow,

Dm is the diameter of the micro/mini-channel and µ is the fluid viscosity. The vis-

cosity is found on each line. By utilizing the average velocity on the lines, Reynolds

number is found to be between 4,534 and 77,041, which proves turbulent effects on

fluid flow on all the lines and all the micro/mini-channels. Although fluid flows in-

side small channels have been studied under both laminar and turbulent conditions,

the data for turbulent flows is rather scarce for micro scale structures in the litera-
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Figure 3.6: The velocity profile for different aspect ratios at Re=500 (a) H/D=2 (b)
H/D=3 (c) H/D=4 (d) H/D=5

ture such that the highest value of Reynolds number reported was 25,000 [14] and

only single phase flows were considered. In this study, cavitating flow characteristics

in mini/micro-orifices are examined at high Reynolds number while considering the

turbulent effects which is vital for the implementation of hydrodynamic cavitation to

futuristic economical and energy efficient therapies such as abnormal tissue ablation

and kidney stone treatment [18].

Mean velocities on each line for the micro/mini-channels are shown in Figure 3.7

for upstream pressures of 10, 50, 80 and 150 bar. As shown in this figure, an increase

in the upstream pressure leads to an increase in the velocity on all lines and the slope

of each line. For all cases, the mean velocity has the highest value on the line 4,

which is located at the middle of the channel.

The maximum value of the mean velocity on this line necessitates that the local

static pressure should have the lowest value at this location whereby the vapor phase

can extend to this location. The velocity beyond this line decreases due to decline in

the vapor phase fraction and getting closer to the outlet of the micro/mini-channel.
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Figure 3.7: The variation of mean velocity on the lines inside the micro/mini-
channels

Microchannels have higher velocities on the first lines compared to mini-channels,

since many vapor bubbles form in the vicinity of the inlet of micro-channels. In

addition, the local static pressure has lower values at the inlet of micro-channels.

On the other hand, mini-channels have higher velocities toward the outlet, which

suggests that more cavitation bubbles are present near the outlet of mini-channels.

Decreasing trend in the velocity on the lines 2 and 3 in all the cases proves that

vena contracta exists in these regions, which are close to the inlet. This behavior

is somewhat less observed at the upstream pressure of 10 bar indicating that fewer

cavitation bubbles are generated at this pressure.

Figure 3.8 shows the ratio of the turbulence kinetic energy for different upstream

pressures. Turbulence kinetic energy (TKE), which is approximately the summation

of velocity variance, indicates the intensity of the vorticities generated due to the

instabilities and unsteadiness. Cavitation phenomenon is often accompanied by

turbulence and as indicated in Figure 3.7, the existence of high velocities and high

Reynolds numbers intensifies the generation of vorticities. It is well-known that the

collapse of cavitation bubbles inside the nozzle is one of the significant reasons of

turbulence and vorticity generation. The results in this study present large values for

turbulence kinetic energy especially for micro-channels, when the upstream pressure

is high. Turbulence kinetic energy at low pressures shows the same behavior. An

increase in the pressure results in big deviations between micro and mini-channels.
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The turbulence intensity in the whole channel is almost two times bigger for micro-

channels at higher upstream pressures compared to mini-channels. γ presented in

Figure 3.8 is the TKE ratio.

Figure 3.8: The ratio of TKE for different upstream pressures. (a, b, c) the ratio of
TKE of the micro-channel with the diameter of 152 µm to the micro-channels with
diameter of 254 µm, 504 µm, and 762 µm, respectively

In this regard, Figure 3.8 shows the ratio of the TKE of micro-channel with

the diameter of 152 µm to the micro-channel of the diameter of 254 µm (a), to the

mini-channel of the diameter of 504 µm (b), and to the mini-channel of the diameter

762 µm (c), respectively. TKE of the micro-channel with the diameter of 152 µm

is two times bigger than the mini-channels for the most of the upstream pressures

(b and c), while the ratio between the micro-channels of two different sizes is less

than 1.5 for all the cases (a). Since Reynolds number is not very high at the up-

stream pressure of 10 bar, turbulence does not have any significant impact on fluid

flow. Thus, the ratios of TKE in all the cases are low at this pressure. Beyond

this pressure, the ratio of TKE has a sharp increase for all the cases, which sug-

gests the growing effect of turbulence and cavitation inception beyond this pressure.

Meanwhile, wall shear stress values displayed in Table 3.3 show the significance of

this parameter in the channels with small diameters. A decrease in the diameter

of the channel leads to an increase in shear stress, which is one of the indicators

of the effect of turbulence. Furthermore, static pressure along the channel, velocity

and vapor volume fraction are significant parameters that needs to be considered in
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cavitating flows in micro/mini scale for capturing the physics of cavitating flows in

small scale.

Table 3.3: Wall shear stress (Pa) for different channels at low and high upstream
pressures

Upstream Pressure (bar) 152 µm 254 µm 504 µm 762 µm

10 6593 4368 2388 1996
150 7926 6797 3048 2935

Normalized cavitation length, which is defined as the ratio of the length of cavita-

tion region inside the channel to the length of the channel, is presented in Figure 3.9

for different orifice diameters. The results illustrate the same trend as the study

of Henry and Collicott [13]. With an increase in channel diameter, the cavitation

length becomes longer. The cavitation bubbles can extend to the exit of the channel

at lower pressure drops for channels with larger diameters. The results in Figure 3.9

emphasize on the importance of the thickness ratio (L/D) presented in Table 1.1.

While the thickness ratio of the channels in Henry and Collicott [13] was between

1.96 and 10.71, it is between 3.93 and 17.73 in this study. Therefore, the cavita-

tion bubbles fill more space at the same pressure drop. The effect of the thickness

ratio was widely studied in Cioncolini et al. [14] and Chisholm [144]. The cavita-

tion length is affected by this ratio, which controls the multiphase flows inside the

channel. The results exhibit major differences in cavitating flows between micro

and mini-channels. The cavitation inception occurs at lower upstream pressures in

mini-channels, while longer cavitation lengths are observed in mini-channels at the

same upstream pressure compared to micro-channels.

3.3.3 The Pressure Variations Inside Micro-channels with

Different Diameters

In Figure 3.10 to Figure 3.13, the pressure variation for different orifice diameters and

upstream pressures are displayed. The pressure data was extracted from the simula-

tion results for separate horizontal locations (lines) along the micro-channel/orifice

to compare various cases among each other. For the location corresponding to the

line 1, the pressure has the highest value for all cases prior to the inception of cavita-

tion phenomenon and dramatically decreases near the wall of the micro-channel due
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Figure 3.9: Normalized Cavitation length for different channel diameters and pres-
sure drops

to inception of the cavitation. The pressure decreases at the locations correspond-

ing to the lines 2 and 3 due to intensification of generation of cavitation bubbles,

and has the lowest value near the wall for all cases (Figure 3.10 to Figure 3.13).

The pressure recovery is observed between the lines 4 and 5 for all cases, where the

pressure falls below the vapor saturation pressure at the location corresponding to

the line 4 for almost all cases and then it increases to the atmospheric pressure at

the location corresponding to the line 5.

Figure 3.10: Pressure variation for different upstream pressures on different lines
(Dm = 152 µm)(a)pi = 10 bar (b) pi = 30 bar (c) pi = 80 bar (d) pi = 150 bar
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Figure 3.11: Pressure variation for different upstream pressures on different lines
(Dm = 254 µm)(a)pi = 10 bar (b) pi = 30 bar (c) pi = 80 bar (d) pi = 150 bar

One may note from the relevant Figures (refer to Figure 3.10 to Figure 3.13) that

there exists a significant pressure profile difference between micro and mini/macro-

channels. For micro scale channels with the inner diameters of 152 and 254 µm, as

seen from Figure 3.10 and Figure 3.11, the pressure incurs negative values near the

wall on the lines 2 and 3 for all upstream pressures whereby these regions have the

highest possibility of cavitation inception and extensions of the cavitation bubbles.

Except the case given in Figure 3.10 (a), tensile stresses are present on all the points

of line 4 for all the cases, which indicate the presence of cavitation bubbles over the

whole cross section corresponding to this line. The test case with pi = 10 bar and

Dm = 152 µm corresponds to a rather low upstream pressure incapable of generating

a large amount of cavitation bubbles inside the micro-channel, and therefore, the

small amount of cavitation bubbles generated at the inlet of the micro-channel could

not extend over the rest of the channel. On the other hand, the lowest pressure

value obtained for the mini-channel (having an inner diameter of 504 and 762 µm)

is nearly in the range of the vapor saturation pressure at the location corresponding

to the line 4. The findings presented in Figure 3.10 to Figure 3.13 indicate that the

effect and the extension of the cavitation phenomenon in micro-channels, especially

downstream the channel, is more severe in comparison to the mini/macro-channels.

Furthermore, the reduction in the pressure from the line 1 to the lines 2 and 3 is very
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high in the micro-channels especially with the one of Dm = 152 µm in comparison

to the mini-channels, which implies that the cavitation bubbles are generated at a

close distance to the inlet of the micro-channel.

Figure 3.12: Pressure variation for different upstream pressures on different lines
(Dm = 504 µm)(a)pi = 10 bar (b) pi = 30 bar (c) pi = 80 bar (d) pi = 150 bar

The pressure variation for all cases corresponding to the lines 1 and 3 is demon-

strated in Figure 3.14 and Figure 3.15 in order to shed light on the difference in the

pressure distribution between micro and mini/macro-channels. At a given upstream

pressure, the micro-channels have lower pressures for all the cases on the line 1 than

mini-channels (Figure 3.14).
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Figure 3.13: Pressure variation for different upstream pressures on different lines
(Dm = 762 µm)(a)pi = 10 bar (b) pi = 30 bar (c) pi = 80 bar (d) pi = 150 bar

Figure 3.14: Pressure variation for different upstream pressures and inner diameters
on Line-1

The comparison between Figure 3.14 and Figure 3.15 shows that the pressure

difference between the micro/mini-channels is larger on the line 3 than on the line

1 for a given inlet pressure. For all cases of micro-channels, the pressure has nega-

tive values (tensile stress) on the line 1, which clearly suggests that the cavitation

inception occurs near the inlet. However, as the diameter of the channel increases,

60



cavitation inception takes place at a downstream location of the channel.

Figure 3.15: Pressure variation for different upstream pressures and inner diameter
on Line-3

The pressure contours of the channels with different inner diameters are shown

in Figure 3.16 for the upstream pressure of 150 bar. As can be seen, the pressure

has the lowest value near the inlet of the channel for all the cases, and starts to

decrease considerably as the diameter of the channel decreases. The results show

that the cavitation number has a different distribution for different diameters. Re-

ferring to Table 3.4, the cavitation number has a lower value for the upstream of

the micro-channels, illustrating the presence of high density of cavitation bubbles.

The cavitation number-which is considered as an important parameter in the cav-

itating flow- is tabulated in Table 3.4 for the first three lines across the channels.

The cavitation number for the line 1 for the micro-channel with the inner diameter

of 152 µm is 0.71, while it is 0.85 for the mini-channel with the inner diameter of

762 µm. Similarly, the cavitation numbers for the micro-channel and mini-channel

with the inner diameters of 152 and 762 µm for the line 3 are 0.008 and 0.52, respec-

tively, which implies the formation of higher density of cavitation bubbles upstream

the channel in the micro-channel. The increase in the diameter of mini-channels

leads to the rise in the cavitation number, suggesting that as the channel diameter

increases, the density of cavitation bubbles gets lower.
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Figure 3.16: Pressure profile inside the channels at an upstream pressure of 150 bar
for (a) 152 µm (b) 254 µm (c) 504 µm (d) 762 µm

Table 3.4: The cavitation number for the first three lines across different micro/mini-
channels

Line 1 Line 2 Line 3

Dm = 152 µm 0.71 0.078 0.008
Dm = 254 µm 0.78 0.35 0.13
Dm = 504 µm 0.83 0.47 0.39
Dm = 762 µm 0.85 0.57 0.52

3.3.4 The Variation of the Vapor Volume Fraction Inside

Channels with Different Diameters

Figure 3.17 shows vapor volume fractions along Line 1, Line 2, Line 3, Line 4, and

Line 5 across micro-channels and mini-channels. The results demonstrate that the

amount of the vapor phase is the highest on the lines 2 and 3 for all the cases,

where the cavitation bubbles start to form. It should be noted that vapor phase

covers a larger section across the diameter of mini-channels than the micro-channels,

while the vapor phase can reach the outlet of the channel at both low and high

upstream pressures. Under these conditions, fully developed cavitating flows exist

along an important part of the channel. The flow is not able to generate enough

bubbles in order to form cavitating flows along the micro-channel. The micro-

channel with an inner diameter of 254 µm is more suitable for the applications

related to the cavitation generation and collapse of the bubbles, which occurs at
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the outlet of the channel, compared to the micro-channel with an inner diameter

of 152 µm. The bubbles could extend to the outlet of the mini-channels, and the

vapor volume fraction at the locations corresponding to the lines 2 and 3 is about

unity close to the wall, whereas the vapor fraction at the locations corresponding

to the lines 4 and 5 is approximately 0.8 close to the wall. These values are high

in comparison to the micro-channel results. However, the vapor volume fraction

near the symmetry plane of the channel is higher for the micro-channels than mini-

channels. These features prove that the cavitation bubbles occupy larger area in

micro scale. Further examination of the results shows that the velocity magnitude

has the highest value in the micro-channels. Being more pronounced in micro scale,

the velocity of the cavitating jet and the interactions between bubbles and liquid

considerably influence the effectiveness of cavitating flows on the target located

downstream the channel/orifice.

Figure 3.17: Vapor volume fraction for channels with different inner diameters at
upstream pressure of (a) pi = 10 bar (b) pi = 30 bar (c) pi = 80 bar (d) pi = 150
bar

3.3.5 Numerical Analysis of Bubble Number Density (BND)

In this section, after model validation, the effect of bubble number density (BND),

i.e. number of cavitation bubbles per unit volume, on cavitating flows inside a micro-

channel with a diameter of 152 µm was investigated to compare the results with the
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experimental results to see which value of the BND agreed with the experimental

results. Then, further analysis on cavitation characteristics was performed based

on the chosen BND value. It should be noted that the bubble number density

(BND), vapor volume fraction and bubble radius are related to each other with the

expression n = α/ (4πR3
B/3), where α, and RB are vapor volume fraction, bubble

number density (BND), and bubble radius, respectively.

Model Validation

The computational domain is shown in Figure 3.18. The total number of mesh

elements in the computational domain was about 1.5×105, while the normal growth

rate of the mesh refinement towards the wall boundaries in the mesh generation

process was chosen as 1.1.

Figure 3.18: Computational domain of the study

The grid independency of the solution was investigated for the case with pi = 120

bar, by increasing the minimum grid size by the factor of 1.2. The maximum changes

in the velocity and phase fraction profiles at the exit of the micro-channel were less

than 0.7% and 1%, respectively. Furthermore, in order to evaluate the mesh quality,

Zeta (ξ = #ofelements
#ofnodes

) parameter is used and the calculated value is obtained as

3.26. Also, the calculated y-plus value (to capture the boundary layer near wall in
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turbulent flows, y+ = u∗y
v

) was 120. The calculated y-plus and Zeta parameters are

in good agreement with the available data in the literature [47]. In order to validate

the numerical model, calculated results were compared with the available results

[64, 145]. As the first validation (Figure 3.19), the obtained discharge coefficients

for cavitating flows inside a cylindrical nozzle (injector) are presented as a function

of flow Reynolds number (which is a function of upstream pressure as stated in this

reference). The discharge coefficient is the ratio of the effective mass flow rate (the

mass flux over the orifice exit plane) to the theoretical mass flow rate through the

nozzle and is calculated as:

CD =
ṁeffecctive

ṁideal

=
ṁeffecctive

A
√

2ρl (pi − po)
(3.22)

Here, A is the orifice cross section and ρl is fluid velocity. The Cavitation number

considered in this section is eguation 1.1 defined in Chapter 1. Accordingly, a good

agreement between calculated numerical and experimental results is obtained with

a Mean Absolute Error of 2%.

Figure 3.19: Validation of the present numerical model against the results of Payri
et al. 2004

Also, the calculated discharge coefficients of the numerical model were compared

with the experimental results conducted by Nurick [145]. As seen, a very good

agreement is attained for low cavitation numbers, while an acceptable agreement

with a Mean Absolute Error of 8% is achieved for higher values of cavitation number

(Figure 3.20).
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Figure 3.20: Validation of the present numerical model against the results of Nurick
1976

3.3.6 The Effect of Bubble Number Density on Cavitation

In the literature, three different values of bubble number densities (BND) (e.g.

1.0e9, 1.0e12, 1.0e14) were considered for cavitation inside a micro-channel [146].

It is obvious that vapor phase increases with number density of bubbles inside the

two phase domain and the conditions inside the cavitating flow change with bubble

number density. One key parameter that can be considered is the discharge coef-

ficient. The variation of discharge coefficient for three bubble site densities at the

upstream pressure of 100 bar is shown in Figure 3.21. As can be seen, BND has a

considerable effect on discharge coefficient. The variation of the discharge coefficient

with respect to time is more pronounced for larger values of BND. The obtained

discharge coefficients for cavitation model with 1.0e13 BND also matches with the

obtained experimental results.

The total vapor volume fraction inside the domain is more for the higher BND

case. To clarify the role of site density on generated vapor volume fraction, the total

transferred mass inside the numerical domain is divided by the number of the sites.

Figure 3.22 shows the calculated mass transfer rate per bubble site densities for

three BNDs of 1.0e9, 1.0e11 and 1.0e13, at time scales of 1, 10 and 50 µs. Although

BND raises the amount of generated vapor mass, the mass transfer rate per bubble

site density is much lower for cavitating flows with a higher bubble number density.
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Figure 3.21: Discharge coefficient for three bubble number density (BND) values as
a function of time step

Figure 3.22: Transferred mass per bubble number density (BND) for different time
steps

Figure 3.23 shows the vapor volume fraction contours for BND values of 1.0e9,

1.0e11 and 1.0e13 at four time steps at pi = 100 bar. As can be seen, bubble number

density has a considerable effect on phase distribution inside the two-phase domain.

As expected, vapor volume fraction increases with number density, where this effect

67



is more pronounced at lower BND. Comparing the obtained results of 1.0e11 with

those of 1.0e13, it can be concluded that the vapor volume fraction values throughout

the micro-channel are similar with some variation at the middle and outlet of the

micro-channel, which affects the structure of the exiting spray. The obtained results

indicate that generated vapor volume fraction increases with BND.

Figure 3.23: Vapor volume fraction contours for bubble number densities (BNDs)
of 1.0e9, 1.0e11 and 1.0e13 at different time steps

3.3.7 Hydraulic Characteristics of Cavitating Flows with

the Bubble Number Density of 1.0e13

The presence of vortices in the cavitating flow for BND of 1.0e13 at the upstream

pressure of 100 bar, and magnified orifice area are shown in Figure 3.24. Reentrant

68



jet motion is shown in Figure 3.24 (a), which results in local recirculation regions

as shown in Figure 3.24 (b). During the transient cavitation, multiple vortices form

and have interactions within the cavitating flow. The separation and collision of

the cavitation induced vortices are shown in Figure 3.24 (b) and Figure 3.24 (c).

Furthermore, the flow velocity in the vicinity of the cavitating regions strongly

affects the vapor fraction distribution and their expansion, which can be seen in

Figure 3.25.

Figure 3.24: Vortices in the cavitating flow for bubble number density (BND)
=1.0e13 at the upstream pressure of 100 bar

Figure 3.25 shows the vapor volume fraction and velocity contours (m/s) at

the outlet of the micro-channel for 0, 1, 2 and 3 ms time intervals at three inlet

pressures (80, 100 and 120 bar). The obtained results indicate that as the inlet

pressure increases, the exit vapor volume fraction variation with respect to time

increases. Accordingly, at a higher upstream pressure, vapor phase exists in the

micro-channel with higher velocities near the wall boundaries. The time variable
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velocity and vapor phase change the exiting spray shape and affect the collapse.

Figure 3.25: Velocity profiles and vapor phase distributions near the outlet of the
micro-channel
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Chapter 4

Spray at the Outlet of the

Micro-Channel under the Effect of

the Cavitation Phenomenon

4.1 Introduction

Spray formation downstream of micro flow restrictive elements strongly depends on

the flow regimes inside them. Although it is possible to simulate the sprays details

including primary and secondary break-ups, spray and break-up visualization are

vital and challenging in micro scale studies, where the dimensions are very small,

and the process occurs within a very short period of time. Recently, high velocity

jets along the spray, bubble evolution, collapse of the bubbles, and droplet segmen-

tation in the spray have become popular due to their exploitation in engineering and

biomedical applications. It is crucial to identify the appearance of the spray and to

concentrate on the whole shape of the spray in such a way that the spray length and

energy released from the collapse of resulting bubbles could be applied on a possible

target at the optimum distance for such applications. For this, rigorous studies are

necessary to assess flow characteristics downstream of the micro flow restrictive el-

ements, and experimental investigations are required to gain insight into cavitating

flow physics with visualization as well as with numerical approaches.

In this chapter, spray formation and atomization, bubble and droplet evolutions,

break-up, and corresponding cavitating flows at the outlet of a short micro-channel
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with an inner diameter of 152 µm were experimentally studied at different injection

pressures with the use of a high speed visualization system. High speed visualiza-

tion was performed at five different segments to cover a 27.5 mm distance begin-

ning from the micro-channel outlet (Five segments, at distances of 0-5.5, 5.5-11,

11-16.5, 16.5-22 and 22-27.5 mm from the micro-channel outlet) to assess the spray

formation mechanism. It was observed that cavitating bubbly flow was strongly

affected by the injection pressure. High speed visualization revealed that droplet

evolution is initiated from the second segment at low upstream pressures (5-30 bar),

whereas droplets are discretized from the liquid jet in the fourth and fifth segments

at medium and high upstream pressures (40-100 bar). Bigger size droplets formed

at the outlet up to an injection pressure of 40 bar, while cavitation effect of inten-

sified cavitating flows became dominant beyond this injection pressure, leading to

smaller droplet sizes and a more conical spray. Image based analysis of bubbly cavi-

tating flows revealed that the more pressure drop occurred along the micro-channel,

the smaller droplet formation was evident. The droplet/bubble evolution can be

exploited in biomedical and engineering applications, where destructive effects of

bubbly cavitating flows are needed. Furthermore, classification of fluid flow regimes

and morphological characteristics of the spray structure were outlined based on the

Cavitation number.

4.2 Experimental Procedure and Setup

Experiments were conducted by applying different inlet pressures. Inlet pressures

were varied from 5 to 100 bar, while outlet pressure at the micro-channel was fixed

to 1 atm. Volumetric flow rate was increased with the change in the inlet pressure.

At a certain pressure level, cavitation incepted, which was recorded using the high

speed camera. Cavitating flow generated in micro-channel was recorded at different

regions (five segments, at distances of 0-5.5, 5.5-11, 11-16.5, 16.5-22 and 22-27.5 mm

from the micro-channel outlet) downstream the micro-channel outlet. The liquid

jet, break up mechanism, spray cloud, bubble emergence at the exit of the micro-

channel, and spray formation was captured by the camera and images were processed

using the Active Contour Method. The experiments were repeated for several times
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at different pressures to ensure repeatability.

The proposed experimental setup consists of two main sections: 1) Hydrody-

namic cavitation setup, which is used to generate cavitating micro bubbles emerging

from a micro-probe, and 2) high speed imaging setup, which is used to visualize the

bubbles emerging from short micro-channel (micro-probe) at different distances and

to characterize the bubble size, shape and cone angle of the resulting jet.

4.2.1 Hydrodynamic Cavitation

A schematic of the experimental setup is shown in Figure 4.1. The experimental

setup consists of a high pressure pure nitrogen tank (Linde Gas, Gebze, Kocaeli),

a liquid container (Swagelok, Erbusco BS, Italy), pressure sensors (Omega, USA.),

fine control valves (Swagelok) at different locations, a micro-filter (Swagelok), a

turbinemeter (Omega, USA), a Phantom high speed camera (Phantom V320 high

speed camera) with appropriate lenses, a workstation with visualization software

(Phantom PCC 2.0 software), fittings (Swagelok), and a short micro-channel (Small

Parts, USA.), which serves for generation of cavitation and is connected to the setup

with appropriate fittings.

Figure 4.1: Experimental setup with the orifice throat and exit area

The tank was used as a container for de ionized water and high pressure nitrogen

tank was connected to the liquid container in order to maintain high input pressure

and to propel the working fluid to the micro-probe. The micro-filter was employed

to prevent the flow of any particles larger than 0.015 mm to the system. Pressure
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sensors were located at several parts of the experimental setup to measure the pres-

sure. The experimental setup was equipped with several valves to start/stop the

flow. During the experiments, valves were fully opened and cavitation is generated

with sudden pressure drop across a 4.5 mm short micro-channel with an inner diam-

eter of 152 µm. At the outlet, micro-channel at the tip was kept as short as possible

to visualize bubbly cavitating flows downstream the outlet. The experimental setup

was prepared in parallel lines with to the set-up used in the study of [18], with the

addition of piping extensions allowing the adjustment of the probe-to-specimen dis-

tance and integration of a high speed imaging setup and a micro-manipulator. The

uncertainties in experimental parameters are given in Table 4.1. They were provided

by the manufacturer’s specification sheets or were obtained using the propagation

of uncertainty method presented in Kline and McClintock study ( [147]).

Table 4.1: Uncertainties in experimental parameters

Uncertainty parameter Error

Cavitation number, σ ±6.7%
Flow rate ±1.4%

Inner diameter, Di ±0.002mm
Outer diameter, Do ±0.001mm
Pressure drop, ∆p ±0.3%

4.2.2 High Speed Imaging System

The images of cavitating flows were collected by a double shutter CMOS camera

(Phantom v310, a trademark of Vision RESEARCH) which allowed two successive

images to be acquired with a resolution of 1280 by 800 pixel (0.02 mm pixel size)

within a very short time delay. CMOS camera was equipped with a macro camera

lens (type K2 DistaMax with focal length: fl = 50 mm and f-number: f = 1.2)

and was mounted at a distance of 342 mm from the imaging plane, yielding a

magnification of M = 0.137. This optical arrangement ensured that only the central

region of the lens was used where aberration can be neglected. The images were

exposed in a background illumination mode using a pulsed LED array consisting of

551 high performance LEDs with a total area of 160 mm × 100 mm. In front of the

LED array, an opaque plate was installed in order to produce diffuse illumination.
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The typical duration of the light pulses was 0.05 to 0.07 ms, while the time delay

between the two successive images was adjusted to the local flow velocity in a range

from 1 to 3 ms.

4.3 Results and Discussion

4.3.1 Spray Characteristics under the Effect of the Cavita-

tion Phenomenon

The flow rate profile is shown as a function of the inlet pressure in Figure 4.2. The

flow rates in this study match well with those of previous studies under similar

experimental conditions [17–20]. The pressure head loss of the flow is manifested

in terms of turbulent fluctuations, which mitigate bubble growth and collapse. The

flow modeled inside a micro-channel with the diameter of 152 µm in our previous

work, demonstrates that the Reynolds number of the cavitating flow along the micro-

channel is between 4,534 and 77,041 presenting turbulence inside the micro-channel

for all the cases. The bubble/bubble and bubble/flow interactions also contribute

to this phenomenon. Under a certain combination of operating parameters, the

flow may actually flash. At higher upstream pressures, where the intensity of the

cavitation bubbles is considerable, the cavitating flow experiences flashing, which

affect the discharge coefficient especially at upstream pressures higher than 80 bar.

Furthermore, very low Cavitation numbers in these pressures lead to the cavitating

flows to produce bright sparks and increase the discharge coefficient to some extent.

Moreover, in the case of excess of the dissolved gas content, flashing is also expected

to occur. Another important factor is the vapor pressure of the liquid. Transport of

solvent vapor across the bubble interface during the radial motion of bubbles and

its entrapment during collapse also affect the intensity of collapse and the spray

formation.

During the experiments, it was observed that cavitation incepted at a pressure

of 10 bar. This corresponds to a Cavitation number of 1.37, which is lower than

inception Cavitation numbers in the literature for conventional scale. However,

it is in agreement with micro scale cavitation studies [17–20], which suggests a

major difference between conventional scale and micro scale cavitation. Beyond this
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Cavitation number, more distinct bubbles and droplets and spray formation are

present.

Figure 4.2: The variation of the flow rate with respect to the upstream pressure

The spray formation at different injection pressures is recorded during the exper-

iments. As a result of a contraction in micro-channel cross-sectional area, different

flow regimes can be seen at different injection pressures. It was observed that, the

spray does not have a conical shape at the pressure of 5 bar, and the flow looks like

a jet flow with a constant cross-sectional area at the outlet of the micro-channel.

However, the spray starts to become conical at the pressure of 20 bar. The change

in cone angle of the spray visualized from the pressure of 20 to the pressure of 50

bar, and a denser cavitation cloud is apparent with pressure. The spray shape in

these figures shows intensified cavitating jet effects. Accordingly, as the upstream

pressure is increased, the spray shape shows a more cavitating jet profile with in-

creased cone angle, and the impact of the spray on a targeted area would also have a

more destructive effect. The length of the cavitation cloud of the cavitation bubbles

also increases with pressure. More cavitation bubbles could extend to the end of the

micro-channel and the collapse of more bubbles occurs downstream. The variation

in Cavitation number is shown in Figure 4.3, which presents the effect of the up-

stream pressure on the generation of the cavitation bubbles. Cavitation number at

a lower injection pressure starts from 1.37 and decreases down to 0.1108 at pi= 100

bar. The intensity of the cavitating jet increases with decreasing Cavitation number.

The Cavitation number indicated in Figure 4.3 illustrates that there is almost no
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visible cavitation bubbles at the tip of the micro-channel at a very low upstream

pressure, and numerical results in our previous study that the cavitation bubbles do

not extend to the end of the micro-channel. As the upstream pressure increases, the

Cavitation number dramatically decreases up to a very low number at the upstream

pressure of 100 bar. Our results apparently shows that the cavitation bubbles fill

the entire micro-channel and significant space in the micro-channel is filled with the

vapor phase. Therefore, as it is expected, vaporous flow conditions are present at the

end of the micro-channel at higher upstream pressures. Moreover, the experimental

visualization for low and high upstream pressures demonstrates that the fluid flow

regime at low upstream pressures is laminar with a small amount of tiny vapor bub-

bles, however the spray formed at the outlet of the micro-channel at high pressures

is highly vaporous such that the generated bubbles inside the micro-channel due to

the aggregation of the bubbles and also intensity of the fluid flow exit to the outlet

and constitute a mixed vaporous region around the tip of the micro-channel.

Figure 4.3: The variation of the Cavitation number with respect to upstream cavi-
tation

The spray cloud diameter is shown in Figure 4.4 as a function of the upstream

pressure for different segments. As can be seen from this figure, at low pressures,

spray diameter can be measured even 15 mm downstream the micro-channel outlet.

The collapse pressure of the individual bubbles is considered as a significant param-

eter in increasing the cloud diameter. The collapse pressure is more appreciable at

higher upstream pressures, where the cloud diameter is large compared to the lower

injection pressures. The dissolved gas content of the liquid is also another important
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parameter especially at lower upstream pressures affecting the cloud diameter of the

spray. Dissolved gases excite the spray structure due to the cavitation inception and

make the spray cloud diameter larger. Moreover, the interaction among bubbles has

a significant impact on the fluid flow regime inside the micro-channel and thus on

the spray formation at the outlet of the micro-channel, which considerably affects

the spray diameter. It can be observed that the spray diameter increases beyond

a certain pressure value for all the segments and covers a wide distance, which is

much larger than the micro-channel dimensions.

Figure 4.4: Spray cloud diameter at different segments for various upstream pres-
sures
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4.3.2 Structure of the Spray for Various Pressures at Dif-

ferent Segments

The structure of the liquid jet spray in five different segments are visualized and

studied in this section. These five consecutive segments start exactly at the exit of

the jet nozzle and are examined at 11 different inlet imposed pressures, which are

5, 10, 20, 30 up to 100 bar with increments of 10 bar between each two of the rest.

Moholkar et al. [148] and Kumar et al. [149] mathematically modeled a single

bubble to investigate its motion under turbulence and non-turbulence conditions.

They used several parameters to change the turbulence intensity such as the pressure

recovery (which is dependent on the exit pressure), pipe diameter downstream of the

orifice, pipe to orifice diameter ratio and initial bubble diameter. Both studies were

based on the continuum mixture model proposed by Van Wijngaarden [150], where

it was coupled with a diffusion model. In the first study, Rayleigh-Plesset [151]

diffusion model was implemented, while the set of equations proposed by Toegel et

al. [152] were utilized in the second one. In the first study, they concluded that as

the pressure recovery increased, the maximum cavity size before its collapse as well

as the lifetime of the bubble increased. This conclusion was depicted in our results

at higher upstream pressures, where cavitation bubbles extend to the outlet of the

micro-channel and tolerate the atmospheric pressure downstream the micro-channel.

Also, their conclusion, which showed an increase in the maximum cavity radius in

the case of bigger pipe, can also be drawn for a micro-channel with a bigger inlet

diameter. The main reason for such a change was reported to be the increased scale

of the turbulence, which reduces its frequency and therefore allows the cavity to

grow more.

It is observed in our experimental tests that the elongation of the bubble lifetime

dramatically increases when the fluid flow is passed from smaller constrictions, and

Moholkar et al. [148] proved that an increase in the pipe to orifice diameter ratio

results in an elongation of the bubble lifetime. They also reported that as the

initial bubble diameter (Rin) reduces, the R/Rin ratio increases, where R is the

instantaneous radius of the bubble.

Kumar et al. [149] conducted a similar study and discussed the results using four

different categories for the bubble motion, which are flashing, moderately transient,
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strongly transient and oscillatory. They also mentioned that in the case of a Cavita-

tion number equal to unity, as the pressure recovery increased, the droplets motion

intensified. This behavior can also be observed in the cloud diameter variation and

in lower segments of the spray with low upstream pressures presented in Figure 4.5.

The spray cone angle and cloud diameter increase beyond a certain pressure indi-

cating an increase in the intensity of the spray structure particularly in the lower

segments. The discretized bubbles in the segments 3, 4 and 5 have more oscillat-

ing feature at higher upstream pressures (Figure 4.7), and higher pressure recovery

at low Cavitation numbers and high pressures generate fluctuating droplets and

bubbles and hence a wider spray with bigger cone angle and spray cloud diameter.

As can be seen in Figure 4.5 to Figure 4.7, which display the five segments

of each one of the imposed 11 conditions, the flow seems to be fully continuous

in the first segment. However, as the imposed pressure increases, the water jet

splashes more vigorously when exiting the flow restrictive element. This is due to

the higher amount of energy, which appears in terms of higher velocity. The fluid

flow at the outlet of the micro-channel at 5 bar does not have any conical shape,

where the Cavitation number is 1.85. At the first segment, the flow has a constant

velocity of 14.86 m/s. However, droplet evolution is observed at the second segment

at a distance of 8.4 mm from the micro-channel tip. The droplets are separated

from the fluid flow at the third segment, and the smallest droplets have a length

of 0.114 mm at an upstream pressure of 10 bar. The droplets are dispersed for a

wider range at the fourth segment, and the population of the droplets is increased.

Although the spray forms a conical shape between 30 and 50 bar, the generated

cavitation bubbles inside the micro-channel do not dramatically induce intensified

spray formation. The velocity of the spray is increased to 64.84 and 84.44 m/s at 30

and 50 bar, respectively. The droplets become denser at 50 bar, and the minimum

lengths of the droplets are 0.096 and 0.065 mm for 30 and 50 bar, respectively. The

droplets become thinner at higher upstream pressures and surface tension is more

dominant in the formation of the droplets.

In the second segment, first points of discontinuity in the liquid jet can be ob-

served. Even in the first case when the imposed pressure is only 5 bar, it can be

seen that the jet is not continuous anymore. As mentioned before, an increase in
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the inlet pressure beside the nonlinear behavior of the flow in the vicinity of the

evolution change the structure of the exiting fluid flow. Perturbations existed in the

long liquid jet induce the droplets to get minimum surface area and thus surface

tension as an important source of instability plays significant role in the formation of

the droplets. It is clearly observable that the number of splashed droplets increases

when the inlet pressure increases. The third segment continues showing this pattern

more obviously. The number of flow discontinuities increases compared to the pre-

vious section, the jet is more deviated in some instances from its original path. This

pattern continues to flourish even more in the following fourth and fifth segments.

For example, it can be observed that at the imposed pressure of 5 bar, the flow is

completely separated into droplets in the fourth and fifth section. Increasing the

pressure would increase the droplet population in these areas, which become more

and more scattered, while the pressure is increased. Another important observation

is related to the cone angle of the exiting flow jet in this spray structure. It can

be seen that while the pressure is maintained at 5 bar, the emerging jet exits the

channel uniformly. However, as the pressure increases, the jet starts to exit the

nozzle in a way that the both sides of the out coming jet seem to form an angle,

which is regarded as the cone angle.

The cavitation cloud and jet cavitation are presented for upstream pressures of 80

to 100 bar in Figure 4.7. The jet velocities for the first segment are 99.42 and 111.46

m/s for 80 and 100 bar, respectively. More bubbles exit from the micro-channel

as shown in Figure 4.7, and an intensified bubble cloud emerges even at the first

segment at the upstream pressure of 80 bar. The spray cone angle increases from 80

to 100 bar, where more cavitation bubbles exit the outlet of the micro-channel. The

spray has a wider form in the second segments at these pressures, and the bubbles

occupy a larger space with upstream pressure.

The separation of the droplet break-up from the jet capillary was studied in a

broad range in this study. The transition from the liquid jet to the separated droplets

is a very complicated task, and most of the studies in this topic are performed in

the macro scale and are rather numerical and theoretical. The experimental studies

in the micro scale such as the study of Xing et al. [153] on a jet flow with a diameter

of 20 µm reported non-dimensional Ohnesorge number (Oh = µ/
√
ρ, where µ is the
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Figure 4.5: Detection of bubble/droplet contours under low inlet pressures

viscosity, ρ is density and R is the droplet/bubble radius) of 0.24 for the initial

separation and Wave number of 0.64, while the Ohnesorge number is our study is
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Figure 4.6: Detection of bubble/droplet contours under medium inlet pressures

0.013. The Ohnesorge number extracted from a linear analysis [154] for a mini-jet

flow with a radius of 1 mm was reported as approximately 1 where deformation of
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Figure 4.7: Detection of bubble/droplet contours under high inlet pressures
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the separated droplets was presented as the initial condition. Saroka et al. [155]

in a computational nonlinear three-dimensional study showed a slow growth of the

droplets. The maximum Reynolds number was 100 and the reported Ohnesorge

number was 0.1, while the minimum Reynolds number in our work is 4,534. There

are some other studies related to the initiation of the droplet separation in both micro

and macro scales, which illustrate the dominant effect of the surface tension and

viscous force. The study of Suryo et al. [156] suggested a vast range for Ohnesorge

number from 0.01 to 1, where the initial condition of the deformation was determined

from a nonlinear three-dimensional computational investigation. Most of studies in

this field considered the instability behavior of the jet flow from a numerical point of

view, and the detailed characteristics of the discretized droplets such as their shape,

size and eccentricity still need to be addressed experimentally in order to utilize the

droplets/bubbles collapse and collision in an efficient way.

Figure 4.8: Droplet size distribution at different segments of the liquid jet processed
using active contour method for mean major axis length

Elliptical axes lengths of the segmented droplets are shown in Figure 4.8 and

Figure 4.9. It is observed that for each pressure level, the mean of the major axis

lengths decreases from the initial segment to the final segment, whereas the mean of

the minor axis lengths increases. Since splitting from the main jet starts in initial

segments, separated droplets tend to have elongated shapes initially. For example,

when the pressure is 5 bar, the ratio of the mean major and minor axes lengths

is around 8.5 in the second segment, which corresponds to almost a vertical line

segment that can be verified from the mean eccentricity value (0.9) given in the
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Figure 4.9: Droplet size distribution at different segments of the liquid jet processed
using active contour method for mean minor axis length

third column of the Table 4.2. The instability of liquid to breakup into droplets is

associated with the Plateau-Rayleigh instability. The liquid column at the outlet of

the micro-channel breaks to droplets as a result of the perturbations and the effect

of the surface tension, and the separated droplets tend to form a geometry at the

minimal energy condition. As shown in Figure 4.8, the major axis length at the

first segment for different upstream pressure cases has higher value, which indicates

the separation of the mother droplets. These droplets at the second segments have

higher standard deviations since the size of the droplets differs dramatically and

the generation of the daughter droplets from the mother droplets does not occur.

By falling down to the lower segments and creation of the tiny droplets from the

bigger droplets, the major axis length decreases significantly, and moreover, the

standard deviation values decrease since the generated droplets have approximately

the same sizes (Table 4.2). The eccentricity value for different segments presented

at Table 4.2 indicates a more vertical column in most of the cases. This fact reveals

that the variation in the minor axis length would not be very critical. As illustrated

in Figure 4.9, though the minor axis length increases while the liquid jet flows

downstream for all the cases, the variations are not high compared to the major

axis length. Therefore, the standard deviation gathered in Table 4.2 for the minor

axis length only slightly differs for different cases.

Likewise, area and circumference of the segmented droplets are tabulated in Ta-

ble 4.3, where horizontal position and orientation of the segmented droplets are also
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Table 4.2: Standard deviation and eccentricity of the processed droplets using active
contour method at different segments for various upstream pressures

Inlet Pressure
bar

Segment
Standard Deviation
for Major Axis
Length [pixel ]

Standard Deviation
for Minor Axis
Length [pixel ]

Eccentricity [0-1]

Mean Std. Dev.

5 bar

Seg. 1 - - - -
Seg. 2 248.1 10.0 0.9 0.2
Seg. 3 73.0 12.1 0.8 0.2
Seg. 4 24.8 13.9 0.6 0.2
Seg. 5 26.6 16.3 0.7 0.2

10 bar

Seg. 1 - - - -
Seg. 2 316.0 8.2 0.9 0.1
Seg. 3 71.0 12.0 0.8 0.2
Seg. 4 25 12.8 0.7 0.2
Seg. 5 26.8 16.0 0.7 0.2

20 bar

Seg. 1 406.3 15.4 0.7 0.2
Seg. 2 258.9 17.4 0.7 0.2
Seg. 3 126.9 18.0 0.7 0.2
Seg. 4 40.6 16.7 0.7 0.2
Seg. 5 30.8 17.5 0.7 0.2

30 bar

Seg. 1 386.3 14.7 0.8 0.2
Seg. 2 257.1 14.9 0.7 0.2
Seg. 3 161.6 17.3 0.8 0.2
Seg. 4 52.0 14.4 0.8 0.2
Seg. 5 34.9 17.1 0.8 0.1

provided to locate the droplets with respect to the main jet. Mean of the area val-

ues shows that in downward segments, droplets get much smaller, and increasing

pressure level results in more separated droplets. Standard deviations of the hori-

zontal positions of the segmented droplets show that scattering from the main jet

increases with subsequent segments and increasing pressure levels. It should also be

noted that while the orientations of the droplets at lower pressure values are close

to 90 degree (almost vertical), they are more tilted with increasing pressure values.

The discretized droplets/bubbles in the segments 3, 4 and 5 have a more oscillating

feature at higher upstream pressures according to the data presented in Table 4.3,

and higher pressure recovery at low Cavitation numbers and high pressures generate

fluctuating droplets and bubbles and hence a wider spray with bigger cone angle and

spray cloud diameter. The small variations in the orientation values indicate that

the separated droplets from the liquid jet have slight oscillations, and rotation along

the flow direction has only a minimal effect on the dramatic change of the major

axis length.
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Table 4.3: Droplet characteristics processed using active contour method at different
segments for various upstream pressures

Inlet Pressure
bar

Segment Area [pixel ]
Circumference

[pixel ]
Horizontal
Position
[pixel ]

Orientation
[0-180 degree]

Mean St. Dev. Mean St. Dev. Mean St. Dev. Mean St. Dev.

5 bar

Seg. 1 - - - - - - - -
Seg. 2 4406.1 4463.0 454.2 447.4 297.9 4.1 88.3 38.4
Seg. 3 1673.6 1463.8 174.4 138.6 302.0 15.8 89.0 51.7
Seg. 4 1972.8 1136.1 164.1 66.5 314.8 30.2 96.2 51.4
Seg. 5 1933.4 1312.0 180.6 80.8 272.8 26.2 95.0 54.6

10 bar

Seg. 1 - - - - - - - -
Seg. 2 6883.8 5894.4 682.5 572.5 305.2 4.8 92.4 31.7
Seg. 3 1763.7 1451.9 180.1 136.6 309.5 8.3 95.3 51.1
Seg. 4 1716.0 945.7 159.8 65.0 311.9 10.8 93.7 52.8
Seg. 5 1988.4 1254.6 184.8 81.5 284.6 25.3 92.9 54.9

20 bar

Seg. 1 5729.3 9188.5 556.0 869.7 279.3 34.8 93.3 52.1
Seg. 2 2012.2 5159.9 232.1 554.5 278.9 60.5 96.4 60.0
Seg. 3 1270.6 2503.7 153.3 269.8 282.2 74.7 100.7 53.4
Seg. 4 1007.7 3139.2 123.3 156.0 306.3 79.9 101.3 54.8
Seg. 5 1115.4 1180.6 137.6 98.5 270.7 77.5 108.4 56.0

30 bar

Seg. 1 4965.7 8866.0 487.3 844.2 276.0 30.4 89.4 54.1
Seg. 2 1819.2 5165.1 217.6 570.8 258.6 54.3 93.1 62.5
Seg. 3 1229.1 3012.0 165.2 356.3 282.0 68.0 103.4 57.2
Seg. 4 560.4 1198.8 88.3 134.4 246.5 126.1 96.0 53.1
Seg. 5 788.9 2466.8 117.0 137.9 289.1 100.1 103.9 55.9

4.3.3 A Correlation; Pressure Drop in the Presence of Cav-

itation Phenomenon

Pressure drop for single phase flows through a sudden contraction is characterized

by a non-dimensional parameter defined as:

K =
2∆p

ρV̄ 2
(4.1)

Here, V̄ is the average velocity in the micro-channel. The dimensionless pressure

drop (K) for liquid flow is generally a function of orifice geometric characteristics

such as thickness ratio (l/Dm) and diameter ratio (Dm/D), and flow Reynolds num-

ber (Re). It was shown that for low diameter ratios (Dm/D < 0.2), its influence

on non-dimensional pressure drop number vanishes [14], and it can be expressed as

K = K (Re, l/D). Cioncolini et al. [14] proposed the following simple correlation

for the non-dimensional pressure drop (K) for 103 < Re < 2.5× 104 :

K = 3.137Re−0.0737 (4.2)

A comparison between the single-phase experimental results (low Reynolds num-
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ber data) and the correlation is shown in Figure 4.10. As seen, the single-phase

experimental results match well with the predictions of the correlation.

Figure 4.10: Non-dimensional pressure drop with respect to Reynolds number for
single phase flow along with the predictions of the correlation of Cioncolini et al.
2015

In order to adjust the non-dimensional pressure drop parameter for two phase

flows, a modified two-phase pressure drop parameter is utilized. It is well known

that two-phase pressure drop is the sum of three components as accelerational,

gravitational, and frictional pressure drops (∆pTP = ∆pA + ∆pg + ∆pFR) for two-

phase flows. Due to adiabatic conditions, the accelerational pressure drop is not

taken into account, while gravitational pressure drop is negligible due to small scale.

Therefore, frictional pressure drop is only considered in the two-phase pressure drop

prediction.

There are two approaches used to predict two-phase pressure drop, namely ho-

mogeneous (zero slip model) and separate flow models. In the homogeneous model,

it is assumed that both liquid and vapor phases move at the same velocity (slip

ratio = 1), while the separate flow model considers slip between the phases (dif-

ferent velocities for liquid and vapor phases). Since vapor and liquid phases have

different velocities in cavitating flows, the modified separate flow model and most

popular Martinelli parameter [157] are used for the pressure drop prediction in the

short micro-channel. Accordingly, the following two-phase dimensionless pressure

parameter correlation was developed for predicting the experimental data based on
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both the single phase dimensionless parameter K = 3.137Re−0.0737 and Martinelli

parameter corresponding to turbulent flows of both phases for 103 < Re < 2.5×104 :

KTP = 313.75

(
1− x
x

)1.75(
ρg
ρl

)(
µl
µg

)0.25

Re−0.0737 (4.3)

Here, x is the local vapor quality and calculated using the x =
H−Hl,sat

Hlg
. Here, H

is liquids enthalpy, where Hl,sat and Hlg are the saturated liquid enthalpy at a given

temperature (e.g. room temperature), and the enthalpy of vaporization (liquid to

vapor) at the saturated pressure (e.g. 3 kPa), respectively. The comparison between

the experimental data and predictions of the correlation is shown in Figure 4.11. As

can be seen, a very good agreement exists.

Figure 4.11: Non-dimensional pressure drop with respect to Reynolds number for
two phase flow data along with the predictions of the developed correlation

4.3.4 Flow Pattern Classification at the Outlet of The Micro-

Channel

Emerging flow patterns are displayed in Figure 4.12. From these figures, it is obvious

that different inlet pressures result in different flow patterns. At low pressure, liquid

jet can be captured downstream the micro-channel exit, while droplet flow can

be observed far from the exit. At higher pressures, jet cavitation and bubbly flow

profiles appear. With further increase in pressure, high vaporous bubbly flow pattern

is apparent.
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Figure 4.12: Emerging jets from the probe exit at different cavitation intensities

A flow map based on visualized flow pattern is shown in Figure 4.13 and presents

boundaries between flow patterns. Cavitation number defined as K =
pref−pv
0.5ρv2jet

(where

pref is the reference pressure, pv is the vapor pressure, ρ is the fluid density, and vjet

is the flow mean velocity at different segments of the spray) and the dimensionless

position, the ratio X/Dm of the distance from the micro-channel exit to the inner

diameter, are utilized as parameters. Cavitation number at lower injection pressure

starts from 1.37 and decreases down to 0.1108 at pi = 110 bar for segment 1, where

highly vaporous bubbly cavitation patterns exist. As shown in Figure 4.13, highly

vaporous bubbly flow exists for Cavitation numbers below 0.4, which correspond to

upstream pressures more than 80 bar in all segments and in the first segment of

the upstream pressure of 50 bar. Bubbly flow is visualized for Cavitation numbers

between 0.8 and 0.4. Upstream pressures of 50 bar for all the segments and the

first segment of 30 bar result in bubbly flow at the outlet of the micro-orifice. At

these injection pressures, bubbles start to move to the outside of the micro-channel

and fill the tip of the channel which causes a significant increasing effect on the

cone angle of the spray. Jet cavitation is observed below the Cavitation number of

1, which indicates the effect of the generated cavitation bubbles inside the micro-

channel on the structure of the spray. Above this number, the spray contains just

a single phase, which is affected by the throat velocity. Under these conditions,

cavitation bubbles generated inside the micro-channel do not extend to the outside,

and the collapse takes place inside the channel. Above the Cavitation number of 2
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corresponding to non-cavitating flow conditions, the droplets begin to emerge and

continuous flow shifts to discrete droplet flow, which is observed in the third and

fourth segments for upstream pressures below 20 bar.

Figure 4.13: Flow patterns in various locations at different Cavitation numbers
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Chapter 5

Spray Collapse at the Outlet of

the Micro-Channel

5.1 Introduction

Flow regime changes due to the physical and thermodynamical properties inside the

channels. The super-cavitation regime is considered as the most suitable regime

for spray atomization [158–161], while the hydraulic flip is the least desirable flow

regime for spray atomization [10, 162]. Gopalan et al. [163] proved that the main

reason of the vorticity in the closure region was the collapse of the cavitation bubbles

and the variations in the bubbles size lead to an important change in the turbulence

intensity along the study domain.

Kim et al. [164] in their visualization study focused on the oscillation of the

bubbles and illustrated pattern damage due to high acoustic pressure as a result of

the bubble instability. It was proven [165, 166] that the cavitation bubbles collapse

near the wall at the end of a liquid jet in the absence of an ultrasonic source. Kim et

al. [164] tried to introduce a dual-transducer in order to increase the population of

bubbles. The high density of the bubbles prevents the separation of nano particles

and raises the efficiency of the cleaning systems.

Hydrodynamic cavitation was proposed by Arrojo et al. [167] as a considerable

alternative to ultrasound cavitation due to its high efficiency and widespread ap-

plications in large scale domains. They showed that the pressure pulse was totally

different in HC since both flow rate and cavitation phenomenon affected the pres-
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sure field, and the inlet pressure was mostly used in HC. Their results revealed that

upstream history and pressure recovery are two significant parameters affecting the

cavitation collapse. Therefore, pressure recovery and flow distribution along the

channel should be extensively evaluated.

5.2 Methods and Materials

The effect of the cavitation phenomenon on the erosion of the kidney stone was

previously addressed and it was shown that the energy released from the collapse of

the cavitation bubbles and the high velocity of the core liquid jet along the spray

were destructive on the targeted area [18]. The previous studies were concentrated

on the application of the cavitation phenomenon in biomedical engineering. Hence,

the morphology of the spray emerging from the outlet of the micro-channel and

the behavior of the spray at different segments for various injection pressures are

considered in this study. It is observed that the spray shape is very sensitive to the

injection pressure. At lower values of the pressures, the spray does not have a conical

shape, and the flow is not continuous at the end of the spray. On the other hand, the

spray’s conical shape obviously appears at higher injection pressures (Figure 5.1).

Moreover, the dissolved gas contents in the liquids play an important role in

the creation of cavitation bubbles when the upstream pressure changes and the fluid

flow experiences different regimes inside the micro-channel [168]. The dissolved gases

exist in the liquid at the room temperature and pressure and affect the inception of

the cavitation due to rectified diffusion. Therefore, besides the increasing pressure

and pressure drops, dissolved gas contents in the liquid impact the flow pattern

inside the orifice and consequently influence the spray structure. However, when the

oscillation of the pressure gets higher and the cavitation bubbles are generated in a

large portion, the phase change from liquid to vapor occurs within a very short period

of time and the existence of the dissolved gas content is not very possible [63]. Note

that to show the spray cone angle at the outlet of the micro-channel, the exposure

time was adjusted to 45 µs, while the frame rate for the each segment was 6100 fps

with a shutter speed of 10,000 s−1. The maximum resolution of the recorded images

was 608800 pixels for the mentioned frame rate. Two LED lights with a supply
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Figure 5.1: The evidence which shows the sensitivity of the spray cone angle with
respect to the upstream pressure. First segments of the spray at the outlet of micro-
channel were shown at upstream pressure of a) 10 bar, b) 50 bar, c) 80 bar, d) 100
bar and, the end of spray was shown at upstream pressure of e) 10 bar and f) 100
bar.

power of DC 5.5-12 V and power of 13 W were used in the experiments to study

the spray formation including liquid jet, spray cloud and collapse at the outlet of

the micro-channel.

The experimental setup and procedure to record the collapse process is as same

as the one elaborating in section . A schematic of the experimental setup and micro-

orifice configuration, and spray structure are shown in Figure 5.2. Experiments were

conducted by applying different inlet pressures ranging from 10 to 120 bar, while the

outlet pressure at the micro-channel was fixed to 1 atm. Cavitating flow generated

in the micro-channel was recorded at the micro-channel outlet. The liquid jet and

spray cloud were captured at the outlet of the micro-channel for different upstream

pressures. The experiments were repeated for several times at different pressures to

en-sure repeatability.
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Figure 5.2: Schematic of the experimental setup, the micro-channel configuration,
and the spray structure at the outlet

5.3 Results and Discussion

5.3.1 Spray Structure at the Outlet of the Micro-channel at

Different Upstream Pressures

The resulting spray at the outlet of the micro-channel is presented at different up-

stream pressures in Figure 4.12. The liquid jet at the outlet of the micro-channel

has almost a uniform structure at a distance of 4.5 mm from the tip of the micro-

channel until the upstream pressure is increased to higher than 50 bar. The liquid

jet starts to become cloudy at the upstream pressure of 80 bar, and the spray does

not conserve any solid shape cylinder at the outlet of the micro-channel, which is

due to the high velocity of the departed bubbles and existence of the higher bubble

density at the tip of the micro-channel. At this pressure, the extended bubbles are

observed at the outlet, and the spray structure is affected by the bubbles existence

and their collapse. The interactions among bubbles as well as between bubble and

flow increase when the upstream pressure increases. The spray cone angle is shown

in Figure 5.3. The figure illustrates that the spray takes a wider shape beyond an
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upstream pressure of 70 bar, while the change in the cone angle is around 2 degree

up to this pressure. The cone angle dramatically increases beyond this pressure to

approximately 7 degree. The recorded images were processed in a pixel-wise manner.

Therefore, a measurement conversion from pixels to mm was identified to study the

spray cone angle. The discharge coefficient profile presented in Figure 5.4 indicates

that the discharge coefficient is almost constant at higher upstream pressures. Sim-

ilar findings were also reported in previous studies on micro scale cavitation [18].

The discharge coefficient is dramatically affected by the intensity of the generated

cavitation bubbles at higher upstream pressure, and under a special condition of the

operating conditions, the flow may flash leading to a slight increase in the discharge

coefficient.

Figure 5.3: Spray cone angle for different upstream pressures

As disscused in the previous sections, the experiments were carried out in a dif-

ferent way to show the once angle of the spray in a visible manner. Moreover, The

spray structure including droplet break up, extended cavitation bubbles and collapse

process were captured in this way. The position of the camera needs to be changed to

study the segments downstream the micro-channel. Hence, a measurement conver-

sion from pixels to millimeter was identified to study the spray cloud diameter and

spray cone angle. New conversion from pixels to millimeter was measured for each

segment, since the position of the camera was going to be changed. The exposure

time for the second configuration is 45 µs in order to observe the spray deformation

due to the collapse process and extended cavitation bubbles. The other parameters

97



Figure 5.4: Discharge coefficient for different upstream pressures

related to the high speed camera and the experimental setup stay the same and the

visualizations for second experiments were carried out for the first four segments at

upstream pressure of 10 to 120 bar. As it is shown in Figure 5.5 to Figure 5.10, the

spray cone angle, droplet breakup and evolution and spray cloud were shown in the

different segments of the spray for upstream pressures of 10, 30, 50, 80, 100 and 120

bar.

Figure 5.5: Spray at the outlet of the micro-channel for different segments (pi= 10
bar)
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Figure 5.6: Spray at the outlet of the micro-channel for different segments (pi= 30
bar)

Figure 5.7: Spray at the outlet of the micro-channel for different segments (pi= 50
bar)

Figure 5.8: Spray at the outlet of the micro-channel for different segments (pi= 80
bar)

5.3.2 Collapse of the Cavitation Bubbles

The cavitation bubbles form and collapse in millisecond and affect the flow pattern

inside the channel. The flow characteristics at the outlet of the channel determine

the behavior of the spray. It is expected that the shear force becomes more effective

at the exit area of the micro-channel especially at higher pressures, and therefore,

the spray can be influenced dramatically by the sudden change in the state of the
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Figure 5.9: Spray at the outlet of the micro-channel for different segments (pi= 100
bar)

Figure 5.10: Spray at the outlet of the micro-channel for different segments (pi=
120 bar)

fluid flow. Hydrodynamic interaction among bubbles in the liquid-bubble system

creates oscillations in the fluid flow, which is of great importance due to the theory

of viscous suspension. Therefore, besides the high injection pressure, the interaction

among bubbles causes considerable fluctuations in the pressure and velocity of flow

field. It was reported that the effect of the bubble-bubble interactions influences

the natural resonance frequency of the average size bubble, which is appreciable

when the fluctuations of the fluid flow are significant at high upstream pressure. It

is crucial to carefully study the flow at the outlet of the micro-channel and focus

exactly on the outlet of the micro-channel to capture the collapse of the cavitation

bubbles. The fluid flow at the outlet of the micro-channel is visualized starting

from lower upstream pressures. The shape of the spray is strongly influenced by

the occurrence of the collapse, and more bubbles disperse within the spray length.

The spray in the main stage of the collapse process is more conical downstream of

the spray, and at this point, both liquid jet and energy released from the collapse

of the cavitation bubbles are counted as two significant mechanisms in the possible
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erosion of the targeted area addressed in our previous study [18]. The population

of big and small bubbles increases at higher pressures, and therefore, the spray is

considerably affected by the collapse process. It is seen that at such pressures the jet

spray is more conical compared to the previous cases, and the liquid jet intensity is

higher due to the collapse of the bubbles. Also, it can be seen in Figure 5.11 that a

stationary cavity is formed at high pressure, which creates inchoate bubbles. Similar

flow patterns were also recorded in previous studies on micro scale cavitation [18]

and were associated with choked flow conditions. The collapse process of these

bubbles is shown in Figure 5.11 at an upstream pressure of 100 bar.

Figure 5.11: The collapse process along the spray length at the outlet of the micro-
channel (pi=100 bar)

The collapse process of these bubbles occurs within 12.6 and 3 ms and highlighted
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in Figure 5.11 and Figure 5.12, respectively. The collapse of the bubbles is also shown

in Figure 5.12 at an upstream pressure of 120 bar. The results of the collapse process

were visualized at a high exposure time (45 µs) in order to illustrate the structure

of the spray due to the cavitation generation inside the micro-channel and collapse

process inside and outside of the micro-channel.

Figure 5.12: The collapse process along the spray length at the outlet of the micro-
channel (pi=120 bar)

5.3.3 Collapse of Cavitation Bubbles: An Application Case

Study

In this study, we propose a technique to maintain the performance and stability

of nanofluids with the use of cavitating flows through micro-orifices to prevent ag-

glomeration and sedimentation of nanoparticles, which will increase the durability of

the nanofluids. Gamma-alumina nanoparticles with a mean diameter of 20 nm sus-

pended in water were utilized. In the current approach, a flow restrictive element

induces sudden pressure, which leads to cavitation bubbles downstream from the

orifice. The emerging bubbles interact with the agglomerated structure of nanopar-
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ticles and decrease its size through hitting or shock waves generated by their collapse,

thereby increasing the stability and reusability of nanofluids.

The cavitation phenomenon has a significant effect on jet flows in flow restrictive

elements. The cavitation bubbles improve the efficiency of the microfluidic systems,

enhance the combustion process, and increase the fragmentation ratio of the targeted

areas by generating dispersed and discretized spray structures. The pressure reduc-

tion at the element leads to cavitation bubbles with different sizes and distributions

depending on the fluid flow characteristics. Pioneering studies on hydrodynamic

cavitation in micro scale revealed different characteristics of cavitating flow in the

micro scale compared to cavitating flows in the macroscale. The cavitation phe-

nomenon also has a significant effect on the cone angle of the spray, penetration,

and spray breakup. The sudden drop in pressure and subsequent generation of cav-

itation bubbles result in better spray atomization and efficient spray primary and

secondary breakup in the micro flow restrictive elements. The schematic of the pro-

posed technique, which is based on a recent patent application by the authors, is

shown in Figure 5.13. The nanofluid having nanoparticle clusters is guided to a short

micro flow restrictive element such as an orifice or a venturi. This flow restrictive

element induces a sudden drop in pressure due to low pressure; small bubbles from

the flow restrictive element emerge due to cavitation. The emerging bubbles inter-

act with the agglomerated structure of nanoparticles and decrease its size through

hitting and/or shock waves and liquid jets, which are generated by their collapse.

As a result, the resulting average nanoparticle size decreases at the exit of the flow

restrictive element, and the stability of nanofluids is promoted.

Figure 5.13: Schematic of the proposed technique

103



Cavitating flows were generated with a sudden drop in pressure across a 4.5 mm

short micro-channel with an inner diameter of 152 µm. The experimental conditions,

channel geometry, and dimensions were selected based on our previous studies for

ensuring cavitation bubbles at the exit to validate the proposed method. Accord-

ing to the results provided in our previous study, there are few cavitation bubbles

downstream of the channel at an upstream pressure of 10 bar when long channels

are employed. More generated cavitation bubbles can extend to the outlet of the

micro-channel at higher pressures. For a short micro-channel, the possibility of oc-

currence of bubble collapse downstream of the micro-channel is higher compared to

a long micro-channel so that the energy released from the collapse of the cavitation

bubbles can be further exploited in the proposed technique, and erosion due to the

collapse of bubbles inside the channel can be avoided. As a result, the micro-channel

length was kept as short as possible.

In the micro scale, cavitation typically incepts toward the inlet of the flow restric-

tive element due to the potential low pressure zones and more pronounced surface

effects in the small scale. As a result, surface nuclei are the key parameter for the in-

ception of hydrodynamic cavitation. In this study, the length of the micro-orifice was

kept as short as possible so that the emerging bubbles would collapse downstream

of the orifice. Their collapse generates shock waves as well as jet flows, which exert

very high stress on the exposed surfaces/structures [169]. This results in a destruc-

tive effect on the agglomerated structures of nanoparticles and recovers the stability

of nanofluids at the same time. The Cavitation number is the most influential pa-

rameter indicating the intensity of the cavitation. The Cavitation number is highly

dependent on the reference pressure and the reference velocity. An increase in the

inlet pressure results in higher flow velocities and intensifies cavitation. Therefore,

as illustrated in Figure 5.14, a decrease in the Cavitation number (intensifying cav-

itation) results in the increase in the reduction ratio of the nanoparticle size after

exposure to the cavitating flow. When nanoparticles are added to the working fluid,

a triple line of gas-liquid-solid nanoparticles forms, which affects the inception and

growth of the bubbles.

It was reported that the size of the bubbles decreases in the presence of nanoparti-

cles and the population of the generated bubbles increases [170]. Thus, the existence
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Figure 5.14: Reduction ratio of nanoparticles size as a function of the Cavitation
number

of nanoparticles affects the collapse process and more small cavitation bubbles will

emerge with the presence of nanoparticles, which further facilitates the deagglomer-

ation of the nanoparticle clusters. During the collapse process of emerging bubbles,

a liquid jet is generated in addition to the shock wave. On the other hand, a sig-

nificant amount of the energy is transferred with the shock wave to cause erosion

on the surface of the nanoparticles. The impact pressure as a result of the interac-

tion between the shockwave/liquid jet and the solid interface is expressed using the

conservation of mass and momentum as follows:

pimp =
ρlalvjet

1 + (ρlcl) /ρsas
(5.1)

where ρl and ρs are density for liquid and solid, respectively. al and as are the

speed of sound for liquid and solid, respectively, and vjet is the jet velocity.

The Youngs modulus, Es, is very large for the solid phase; therefore, as =√
Es/ρs also becomes very large. As a result, the impact pressure can be simplified

as:

pimp = ρlclvjet (5.2)

Accordingly, the impact pressures at upstream pressures of 10, 60, and 90 bar

105



are found as 45.47, 112.4, and 159.94 MPa, respectively. These values are in the

range of the flexural/compressive strength of Alumina ceramics which proves the

effectiveness of the proposed method.
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Chapter 6

Energy Harvesting in Micro Scale

with Cavitating Flow

6.1 Introduction

Power reclamation from user-friendly energies and affordable devices has been com-

monly exploited during the last decades. With the increasing risk of termination of

the natural energy sources, the renewable and sustainable energies, and new energy

generation receives much attention in the energy sectors and markets. Hydrody-

namic cavitation as a feature of a phase change from liquid to vapor at low static

pressure is a source of short-period heat generation at the phase of the collapse of

the created bubbles. Here, we are showing that with the aid of the hydrodynamic

cavitation in a low-cost and clean system, the spray jet has the capability of heat

generation in contrast to the common use of spray jet in the cooling applications.

The emerged spray is under the effect of the micro scale cavitating flow inside the

micro/min-channels which is much more intense in comparison to its correspon-

dence at macro scale. The temperature measurements on a black-covered aluminum

plate subjected to the spray interestingly present a temperature increase of 5.2 ◦C

for a specific micro-channel configuration. This temperature rise would be poten-

tially utilized as a power source in miniature electric appliances with a simple energy

conversion device. The complementary study for the visualization of the spray struc-

ture is also carried out for all the cases at different conditions. The observation of

the spray at various successive segments illustrates an interesting trend in the flow
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regime change from micro to macro scale cavitating flow.

6.2 Experimental Procedure and Characterization

The cavitation bubbles generator in this study is structured as a hydrodynamic

cavitation generation device with the use of high upstream pressure supplier as

shown in Figure 6.1. The experimental setup consists of simple equipment which

are using in the hydraulic industries. A high pressure pure nitrogen tank (Linde

Gas, Gebze, Kocaeli) supplies the required upstream pressure for the system. This

tank is connected to a 1 Gallon fluid reservoir (Swagelok, Erbusco BS, Italy) which

is filled with de-ionized (DI) water as working fluid. The reservoir is connected

to two tubes (stainless steel and PEEK tubes) and several gaugeable tube and

adaptor fittings. Two pressure sensors (Omega, USA) at the entrance and end of

the tubing system are mounted on the device to measure the pressure and two fine

control valves (Swagelok) are connected to the system to control the flowing fluid

at different locations. A micro Tee-Type filter (Swagelok) with 15 µm nominal pore

size is used to prevent the flow of any particle larger than 15 µm to the system. An

aluminum plate with the surface of 11 cm2 is employed at an optimum distance from

the tip of the micro/mini-channels to act as a surface body in the process of the

collision of the emerged spray. This plate is connected to the system via sustainable

clamps in order to be hold without vibration. A thermal camera (Flir Systems, USA)

and a workstation with post-processing software are utilized to capture the thermal

variation on the surface of the aluminum plate as a results of the spray collision.

Moreover, a Phantom high speed camera (Phantom V320 high speed camera) with

appropriate lenses and a visualization software (Phantom PCC 2.0 software) are

used to record the spray structure at the outlet of the micro/mini-channels. To

illuminate the flow background during the visualization tests, two LED lights are

employed exactly at the same height with the high speed camera.

6.2.1 Device Characterization

The main part of the system is the bubble generation section where the cavitation

bubbles are created. This section has the location where a stainless steel tube with
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Figure 6.1: A schematic of the proposed system for generating the cavitation bubbles
and spray emergence under the effect of the cavitation

the diameter of 3 mm is connected to a PEEK micro/mini-channels with diameters

of 152, 256, 504 and 762 µm. Therefore, the connection point between the tubes are

fitted properly in order to have a sudden reduction in the diameter of the channels

and hence, obtain the appropriate condition for the reduction of the static pressure

leading to the generation of the cavitation bubbles. Furthermore, the length of the

PEEK channels are selected in a way that the created cavitation bubbles can easily

reach to the end of the channel. Thus, the micro/mini-channels are kept as short

as possible (4.5 mm) in order to utilize the energy released from the rupture of the

cavitation bubbles. Using the thermal camera required great attention in terms of

reflection, observation angle effect and also emissivity to record precise temperature

measurement. Therefore, besides the camera calibration, aluminum plate is colored

in black to avoid any reflection and increase the emissivity.

6.2.2 Experimental Procedure

The experiments are carried out in two steps. Firstly, the temperature variations

are measured with the aid of the thermal camera on the black colored aluminum

plate, then the spray structure is visualized utilizing the high speed camera. In

the first section, the aluminum plate is held at a distance of 1.8 cm from the tip

of the channel with appropriate clamps and the temperature is measured with the
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use of thermal camera for different upstream pressures. Upstream pressures are

selected as 10, 40 and 60 bar while the spray discharges to the atmosphere at the

pressure of 1 bar. Four micro/mini-channels with inner diameters of 152, 256, 504

and 762 µm are mounted on the system and the temperature is measured at three

different time steps for each channel and each upstream pressure namely; at the

time of the collision, 30 and 120 seconds after the spray collision on the aluminum

plate.

In the second phase, the spray structure is observed for the aforementioned chan-

nels at different segments and injection pressures. To do so, the spray structure is

divided into six identical segments from the emergence of the spray at the outlet of

the channel up to location where spray interacts with the aluminum plate. Each

segment has a length of 3 mm while the visualization is performed at several up-

stream pressures from 5 to 60 bar. The maximum resolution of the recorded images

is 608× 800 pixels. A power LED is used at 1 µm exposure time to study the spray

structure at the outlet of the micro/mini-channels.

6.2.3 Flow Characterization

The spray is characterized with non-dimensional numbers including cavitation, Mach

and Reynolds numbers and, mass flow rate is obtained from measuring the fluid mass

passing from the outlet cross-sectional area at the given time period. The experi-

ments are carried out at a vast range of upstream pressures and all the temperature

measurements and visualization tests are repeated several times to watch out the

reliability of the obtained results. Using the manufacturers specification sheets and

also the propagation of uncertainty method the important uncertainties including

cavitation number (±6.7%), flow rate (±1.4%), inner diameter (±0.002mm) and

pressure drop (±0.3%) are calculated and presented.

6.3 Results and Discussion

The bubble dynamics is predominantly studied from the simplest point of view in

order to eliminate the sophisticated unknown parameters. Therefore, one can use

momentum equation to make a relation among bubble radius and pressure differ-
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ence between bubble and ambient far from the bubble in the simplest way. The

next step to make the bubble dynamic study more complex is to focus on the dy-

namic boundary condition. In this case, viscous and surface effects are added to the

cluster of parameters and constitute the famous Rayleigh-Plesset equation in the

common form. Up to this point, the only terms which play the role on the behavior

of the bubble radius are pressure difference, surface and viscous effects (inertial ef-

fect) which are arduous themselves to be investigate particularly when size scale is

diminishing.

The problem of the bubble dynamics gets intricate when the bubble content

is taken into account. Under this condition, the bubble pressure includes vapor

pressure and partial pressure of the gas content inside the bubble. Partial pressure

of the gas depends upon the temperature and the bubble size ratios. Therefore, the

temperature effect becomes crucial when the dissolved gas content or contaminant

existed in the bubble are considered. To be fairly general, it is almost impossible to

neglect the bubble contents in the experimental and practical investigations where

it takes long time to reduce the concentration of these contents with the aid of

expensive wind tunnel and other equipment.

The thermal effects become momentous at two stages during the collapse pro-

cess. First, in the early step while the bubble is growing and second, in the last step

of the collapse when the bubble contents are dramatically compressed and affect

the temperature variation. Although it is proven that the pressure and temperature

rise occurs in very short time period, the temperature gradient is still high enough.

Besides, short distance between the center of the bubble-where the highest tempera-

ture is recorded during the collapse-and the boundaries makes the theory strong that

there must be a platform to utilize the temperature gradient from the collapse of

the cavitation bubbles. It was demonstrated before that the cavitation phenomenon

gets more serious when the size scale shrinks to the micro scale. The cavitating flow

regime, cavitation inception, destruction ratio, turbulence effect, cavitation hystere-

sis and surface effects are amongst the parameters which show a different behavior

in micro scale in comparison to macro and conventional scales. After understanding

the cavitating flow physics in the micro domain, we proceed with new idea about

energy harvesting from the collapse of the cavitation bubbles which has not been
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addressed in literature to the best of our knowledge.

6.3.1 Temperature Variation on a Solid Body under the Ef-

fect of Cavitating Flow

The effect of the cavitating flow on the solid surface at a distance of 1.8 cm is

shown in Figures 6.2 and 6.3 for different channels and at various times steps in

terms of pressure and temperature. The temperature contours recorded via thermal

camera in Figure 6.2 are supported with analysis shown in Figure 6.3. Four different

channels used in this study are classified as micro/mini-channels with diameters of

152, 256, 504 and 762 µm. The flow regime at the outlet of the channels is recorded

using high speed visualization system and laser shadow probe to observe the flow

regimes. The recorded images of the emerged spray show that the last channel with

a diameter of 762 µm illustrates totally different behavior with the other channels.

This behavior is also seen in the thermal effect on the solid boundaries and gives an

idea that we are encountering with two distinct thermal energy features related to

two different scales.

Figure 6.2: Thermal counters captured by thermal camera on the solid surface for
(a) without spray apply (152 µm) (b) At the time of first collision (152 µm), (c) 30
seconds after the collision (152 µm), (d) without spray apply (504 µm), (e) At the
time of first collision (504 µm), (f) 30 seconds after the collision (504 µm)

Emerging spray is frequently used as a cooling system in various applications,
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while most of these studies are carrying out in macro scale. Here, we are trying to

show that there is a possibility to provide an adverse effect with the use of same

system. The cavitation is the phenomenon which is responsible for this inversion

with nucleation, bubble growth and collapse process. The idea arises from the

fact that there are considerable generated cavitation bubbles which travel along the

channel and collapse at the end of the channel length or may discharge from the

channel in the special boundary condition. Moreover, our recent studies illustrate

that much more cavitation bubbles are generated in the channels with inner diameter

of 256 and 504 µm. It is indicated that cavitation bubbles are generated in large

magnitude and the cavitating flow is extended to the outlet of the channel at higher

upstream pressure in the micro scale. It is also observed in the previous experimental

investigations that there are plenty of generated cavitation bubbles which move

to the outlet of the micro-channels at higher upstream pressure and increase the

possibility of occurrence of collapse process at the outlet of the microchannel. These

findings make the system reliable to perform further studies on it to utilize the

collapse of created cavitation bubbles in an affordable manner.

The experiments are carried out for several times at different conditions to make

sure of the repeatability and reproducibility of the results. The experiments exhibit

temperature rise for all the cases and it is inevitable that cavitation occurs in all

of them according to the previous findings. Figure 6.2 shows the selected contours

of the temperature variation on the solid surface with a box on the interface to

measure the mean temperature on the area where the cavitating spray is applied.

The box on the solid boundary is drawn according to the spray diameter and the

location where the spray interacts with the surface. The first contour on each row

of the Figure 6.2 shows the temperature at rest when there is no any applied spray

on the solid body and the figure is recorded to make the comparison between the

successive flow conditions. The subsequent contours show the temperature variation

for different conditions when the spray strikes the surface. The detailed analysis on

the temperature rise is displayed in Figure 6.3 where the temperature variation is

shown at three different time periods. The temperature is measured exactly at

the time of collision for all the cases as shown in Figure 6.3(a). The second and

third temperature measurements are recorded 30 and 120 seconds after the spray
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applying as shown in Figure 6.2(b) and (c), respectively. The reason to measure the

temperature at three different times is to follow the stability and steadiness of the

temperature rise in order to harvest the reliable heat transfer magnitude.

The room temperatures for the selected experiment sets are 17.3, 19.3, 19 and

19.6 ◦C for micro-channels of diameters of 152, 256, 762 µm, respectively. Fig-

ure 6.3(a) shows that there is a harmonic temperature rise for all the channels from

upstream pressure of 10 to 60 bar at the time of spray apply. The highest tem-

perature rise is recorded as 2.6 ◦C for the micro-channel with diameter of 152 µm

and at upstream pressure of 40 bar. The micro-channels with diameter of 256 and

504 µm also show a temperature increase of 2.5 ◦C for upstream pressure of 40 bar.

The mini-channel with diameter of 762 µm experiences its highest temperature at

upstream pressure of 40 bar with the temperature rise of 1.7 ◦C. The temperatures

for all the channels at upstream pressure of 60 bar are more and less consistent

and change slightly few tenth of degree relative to the corresponding temperature

rise at the injection pressure of 40 bar. This would be due to the movement of the

cavitation bubbles to the end of the channels at both 40 and 60 bar for all the cases.

Moreover, the collision of the spray with the solid body gets intense at the higher

upstream pressure leading to much more heat dissipation and loss at the outlet of

the channels.

The temperature is measured 30 seconds after the first collision of the emerging

spray on the solid body for all the case as shown in Figure 6.3(b). As expected,

there are increases in the temperature and therefore, enhancements in the heat

transfer. The spray at the outlet of the channels experiences decomposition along the

penetration length leading to an enhancing effect of the created cavitation bubbles

on the disintegrated droplets and bubbles during the primary and secondary break-

ups. The primary break-up leads to creation of big droplets/bubbles which makes

the region close to the nozzle dense and thick. The next stage in the spray structure

is secondary break-up where smaller droplets/bubbles are generated from the big

droplets/bubbles. The secondary break-up occurs due to the aerodynamic forces

existing on the relative velocity between droplets/bubbles and the surrounding’s

gas. Aerodynamic forces decrease the droplets velocity and droplets at the tip of

the spray tolerate much more drag forces. Therefore, the droplets at the tip of the
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nozzle change to new ones consistently and the spray penetration increases. Hence,

more and faster droplets/bubbles interact with the solid body as the time passes. It

is also expected that the temperature rise becomes steady after a certain duration

and gives us the optimum temperature augmentation for the studied cases. It is

shown in Figure 6.3(c) that the temperature does not change sensitively at the

time step of 120 seconds compared to the time step of 30 seconds after the spray

emergence.

Figure 6.3: The temperature variation on the solid surface with respect to the
upstream pressure for (a) just on the time of spray collision on the surface, (b) 30
seconds after the collision, (c) 120 seconds after the collision

The highest temperate rise after 30 seconds of the interaction is recorded as 5.2

◦C for micro-channel with inner diameter of 504 µm at the upstream pressure of 40

bar. It is emphasized that this value is recorded for several times for the mentioned

channel to make the results more reliable. This finding is getting much more inter-

esting when we take a look at the flow regime change for channels with diameters of

504 and 762 µm as illustrated in Figure 6.4. It was already mentioned that the cav-

itation phenomenon shows a different feature when the size scale reduces to micro

scale and the experimental thermal measurements and spray visualization supports

these observations. Therefore, we show here that with the aid of hydrodynamic cav-

itation created inside the micro/min-channels and optimizing the distance between

the tip of the nozzle and the solid surface, there is a possibility to reach a tempera-

ture rise of approximately 5 ◦C. There is an increase in the temperature of the solid

body for the mini-channel with diameter of 762 µm as 3.2 ◦C, but this value is still
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below the temperature rise for the micro-channel with diameter of 152 µm (4.3 ◦C ).

The same trend of temperature rise is recorded for the time step of 120 seconds

where highest temperature rise is recorded for micro-channel with diameters of 504

and 152 µm as approximately 4 ◦C. Overall, the extracted results from Figure 6.3

show a temperature rise between 2 and 5 ◦C for all the channels at different upstream

pressures. The temperature rise is captured in all the cases and also a second

temperature rise is seen 30 seconds after the spray collision with solid body for

all the channels. Furthermore, the temperature shows a consistent trend after 30

seconds of the interaction closing to the time step of 120 seconds for all the cases.

This fact supports the use of thermal energy for a long time period of the cavitation

creation and spray emergence under the effect of the generated cavitation bubbles.

6.3.2 Flow Regimes Hysteresis from Micro to Macro Scale

Cavitating Flow

To study the flow regime, a depth observation with the aid of high speed visualization

system is done for the mentioned channels at the different locations of the spray

length. The visualization of the spray shown in Figure 6.4 is carried out at six

segments in a way that the first one is at the exit of the channels and the last one

is prior to the spray collision on the solid body. The aim is to capture the flow

regime difference between the channels and also to record the primary/secondary

break-ups. The recorded images exhibit an interesting regime evolution along the

channels from smaller to the larger one. Firstly and foremost, the flow pattern in

most of the segments for the channels with inner diagrams of 152, 256 and 504 µm

shows a monotonic trend.

116



Figure 6.4: The spray flow regime at the outlet of the micro/mini-channels for
different upstream pressures and at first and last segments of the spray structure

To be clear, the spray gets a conical shape in almost all of the channels except

762 µm, however the flow regime changes totally when the diameter of the chan-

nel varies from 504 to 762 µm. This variation reminds us the difference between

micro and macro scale cavitation phenomena. Therefore, cavitation number which

indicates an index for the cavitation occurrence is considered among the channels.

Prior to studying this non-dimensional number, the compressibility of the fluid is

taken into account employing Mach number, Ma = V̄ /a, where a is the speed of

sound in the liquid and V̄ is the mean velocity computed with use of volume flow
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rate measurement of the fluid at the outlet of the channels. The Mach number for

all the cases is between 0.019 and 0.1 implying incompressible flow.

The intensity of cavitation along the channel is characterized by cavitation num-

ber, σ = (pref − pv)/0.5ρv
2
ref , where pref is reference pressure which is upstream

pressure in this work, pv is vapor saturation pressure (vapor saturation pressure for

the working fluid is approximately 3500 Pa), and vref is reference velocity which

is selected as the mean velocity. Accordingly, the calculated cavitation number for

the channels with diameters of 152 and 762 µm are obtained as 0.078 and 0.52 for

the upstream pressure of 40 bar, respectively. These numbers imply that the cre-

ated cavitation bubbles are much more intense in the channels with lower diameters.

There is a same trend for the cavitation number in the other injection pressures.

As stated earlier, the spray structure is shown for two most upstream and down-

stream segments here. The spray structure illustrated in Figure 6.4(a) shows almost

the same trend for all of the channels. The presented images in the first row of Fig-

ure 6.4 are the first segments of the channels at the upstream pressure of 10 bar. At

this pressure, the velocity does not change dramatically once the diameter increases,

and also the created cavitation bubbles are not intense for all the channels according

to the previous studies. Therefore, the flow regime at this pressure and segment is

a liquid jet, but different flow regime is seen when we move further to the down-

stream of the spray at the last segment. Droplet separation and large perturbation

are observed in the last segment of the channel with diameters of 152 µm and, 256

and 504 µm, respectively. Surface tension and, large and small perturbations are

observed in the channels with diameters of 256 and 504 µm tends to form the spray

jet in the minimal energy condition.

When it comes to the third and fourth row of Figure 6.4 where the upstream

pressure increases to 60 bar, we see an entirely different flow regime in the channel

with diameter of 762 µm in comparison to other smaller channels for both first and

last segments. The most interesting point at this stage is the dramatic spray cloud

at the channel with diameter of 504 µm. Here, the droplet/bubble separation is

recorded in all the segments exactly from the outlet of the channel to the end of

the spray. This fact is getting more interesting when the temperature increases at

the higher upstream pressures for the considered channel. Moreover, the calculated
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Cavitation numbers for the channels with diameters of 504 and 762 µm are 0.39

and 0.52, respectively for the upstream pressure of 40 bar. Therefore, according

to the observed flow regime at the outlet of the channels and the measured tem-

perature rise, one can conclude that there is a flow regime variation from micro to

mini/macro scale between channels with diameters of 504 and 762 µm. The flow

patterns for all the segments of the channels with diameters of 152, 256 and 504 µm

contains intense break-ups and droplet/bubble separations which suggests a cloudy

spray under the effect of the cavitation, but the entirely different regimes for the

all segments of channel with diameter of 762 µm indicate a liquid jet shown in the

macro/conventional spray in the literature.

6.3.3 Electric Power Output as a Result of the Heat Gen-

eration During the Spray Collision

Once it became evident that the cavitation bubbles creation and collapse heat the

surface of a solid interacted with the spray, the idea is developed to harvest the ther-

mal energy and power reclamation for miniature electric appliances. The electrical

powers are calculated from temperature differences of sort of physical equations.

Firstly, the heat transfer is obtained from the heat energy equation, q = mc∆T

where q is heat transfer, m the mass of the system, c is the heat capacity and T is

the temperature. Then, current is calculated from the Joules Law, I =
√
q/Res.t,

where I is the current, Res is the resistance of the solid body, and t is the time

step. The current is found for different cases at various upstream pressures. Finally,

electric power is acquired from the Ohms Law, P = Res.I2 where P is the electric

power, for the mentioned temperature gradients on the solid body.

Figure 6.5 illustrates the calculated electric power for time steps of 30 seconds.

According to this figure, the maximum reclaimed power is 0.3163 W correspond-

ing to the channel with the diameter of 504 µm at the upstream pressure of 40

bar, while the minimum power output belongs to the channel with the diameter

of 762 µm at the upstream pressure of 10 bar. Overall, the highest output electric

power is achieved with the channel of the diameter of 504 µm for all of the cases at

different conditions. This channel leads to the condition where the severer break-

ups and densest spray cloud are seen. The aforementioned power values are in the
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range of the required power sources for the miniature electric appliances included

in Table 6.1. The reclaimed powers shown in Figure 6.5 are obtained as the prelim-

inary results for the proposed idea and system. It is believed that the outcome of

these experiments would would help in developing suitable injection conditions and

designing an enhanced solid surface according to the predicted research path. The

proposed system at this condition is capable of producing the required electric power

for approximately three Light-Emitting Diodes and a Digital mini thermometer.

Figure 6.5: The output power produced as a result of the thermal energy creation
on a solid surface subjected to the cavitating induced spray

The proposed reclaimed power system offers considerable advantages compared

to the energy-harvesting devices in terms of the cost and its easy implementation.

The system consists of a reservoir, conventional tubes and micro/mini-channels con-

necting to each other with suitable fittings available in the local suppliers. A simple

solid body is also utilized to gather the thermal energy and convert it to the cor-

responding electrical power. Therefore, the low-cost of the system preparation and

easy manipulation make the system efficient in providing the required power for

running the daily-used electric appliances.
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Table 6.1: The electrical characteristics of some miniature daily-used energy-
harvesting devices

Device Name Forward Current Power Dissipation Plain Water

Light-Emitting Diodes (LEDs) 80 mA 176 mW 16 min
Antenna GPS 12 mA 39.6 mW 4 min

Digital mini thermometer 300 mA 450 mW 40 min
Mini GPS receiver 200 mA 280 mW 30 min

Portable charger for cell phones 1000 mA 1000-5000 mW 100-500 min
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Chapter 7

Conclusion

This numerical study emphasizes on significant differences in cavitating flow char-

acteristics between micro-channels and mini-channels. The static pressure drops to

negative values in the micro-channels especially in the micro-channel with the inner

diameter of 254 µm, where tensile stresses are obtained over the whole range of the

upstream pressure and extend to the outlet of the channel, whereas there are fewer

locations of negative pressures in the mini-channels at a specific upstream pressure.

The pressure dramatically decreases near the inlet of the micro-channels implying

that the cavitation bubbles form near the inlet of the channel. The vapor phase fills

more space at the outlet of the mini-channels. However, the vapor volume fraction

has a higher value in the middle of the channel in the micro-channel configura-

tions. The micro-channel with the inner diameter of 254 µm is more appropriate

than the micro-channel with the inner diameter of 152 µm from the point of view of

the use of cavitation bubbles at the outlet of the micro-channel for the biomedical

applications, since vapor phase is present at the outlet across a significant portion

of the cross section in the micro-channel with the inner diameter of 254 µm. The

extensive investigation on the effect of the energy associated with the turbulence

shows that the effects of turbulence are significant, and a decrease in the diameter

of the channel leads to an increase in shear stress. The cavitation length in micro-

channels is different from in mini-channels. Cavitation occurs at lower upstream

pressures in mini-channels, and the cavitation length is also longer in mini-channels

compared to micro-channels. Furthermore, the velocity profile, particularly near

the wall boundaries, affects the vapor phase distribution at the outlet of the micro-
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channel. The numerical results show that more cavitation bubbles extended to the

outlet of the micro-channel and it increased the possibility of the occurrence of the

collapse process.

In this study, spray behavior in cavitating flows downstream of a micro-channel

was investigated at different upstream pressures with the use of high speed visual-

ization. Droplet formation at different upstream pressures was studied. Cavitation

was generated via sudden pressure drop with the use of a micro-channel with an

inner diameter of 152 µm. The performed visualization covered a distance of 27.5

mm from the outlet of the micro-channel. The conical shape of the spray was also

visualized via a high speed camera at different regions (Five segments, at distances

of 0-5.5, 5.5-11, 11-16.5, 16.5-22 and 22-27.5 mm from the micro-channel outlet)

downstream of the micro-channel outlet. The characteristics of resulting droplets

were accurately assessed. The observed droplets downstream of the spray were big-

ger at low upstream pressures. With the increase in the upstream pressure, the

droplet size became smaller implying intensified dispersion of bubbles and high en-

ergy release of the bubbly cavitating flow at higher pressures. For low pressure

values, in the first two segments of the cavitating flows, where the flow has a con-

tinuous tube like structure and droplets were not evident, image segmentation was

not employed. Starting from the third segment of the flow, accurate segmentation

of the droplets was achieved, where droplets had relatively uniform shapes and dis-

tributions. With increasing pressure levels, image segmentation could be utilized

only in the fourth and fifth segments of the flow, where droplets were more evident.

It should be noted that significant oscillations occurred at the start of the first seg-

ments of the flow due to the cavitation phenomena. It was also observed that the

shape and distribution of the droplets generated at high pressure levels were mostly

non-uniform. Cavitation number and flow rate values at various upstream pressures

were presented. The flow rates were in a good agreement with previous studies, and

Cavitation number had an inverse relationship with pressure. A new correlation for

predicting two-phase pressure drop was also developed. Moreover, the fluid flow at

the outlet of the micro-channel was classified as discrete droplet flow, liquid jet, jet

cavitation, bubbly flow and highly vaporous bubbly flow based on the Cavitation

number. The aforementioned flow regimes were observed in different segments for
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various upstream pressures. The detailed visualization and analysis of spray struc-

ture at the outlet of the micro-channel show that even three different regimes may

occur at a constant pressure for some cases.

In this study, the bubble collapse process was captured at high upstream pres-

sures, and this event took place within 12.6 and 3 ms for 100 and 120 bar, respec-

tively. At high pressures, the spray had a more conical form. The bubble collapse

occurred inside the micro-channel at every pressure, but at higher pressures more

collapse processes could be captured at the exit. Spray visualization was carried

out at a distance of 4.5 mm from the tip of the micro-channel using the high speed

visualization system. The experimental results showed that the spray cone angle

increased with upstream pressure, and beyond the upstream pressure of 50 bar, the

liquid jet flow changed to the cloudy spray flow. The bubble collapse was recorded

at upstream pressures of 100 and 120 bar, where the cavitation bubbles extended to

the outlet of the micro-channel, and their collapse took place around the spray.

We have revealed that the cavitation phenomenon has the capability to increase

the temperature on a surface body with the exposure of the emerging spray at

the outlet of the micro/mini-channels. The preliminary results on the collision of

the spray on the surface of an aluminum plate shows a temperature rise range

between 2.3 and 5.7 ◦C for all the cases. These temperature variations generate

thermal energy of maximum 3.3 J and output electric power of 0.3215 W at its

highest magnitude which is enough for operating miniature electrical appliances.

The visual experiments on the spray structure also indicates an interesting trend

for the cavitating flow regime from micro to macro scale for the channels. The

observations show that the spray has a conical shape with ascending cone angle value

for channels with diameter of 152 to 504 µm where the highest temperature increase

is recorded. In addition, the cavitating flow parameters and features such as break-

ups and bubble/droplet separations are visualized at these channels, while the spray

structure at the outlet of the channel with diameter of 762 µm is totally different

and presents a non-conical spray jet for all the segments. The overall consideration

in the flow pattern and temperature increase suggest thermal energy generation and

electrical energy production for all the micro/mini-channels induced by cavitation.

We believe that the enhancement in the design of the surface subjected to the spray
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exposure could be easily achieved with the optimization of the approach. Moreover,

the approach could be converted to a compact micro energy generating device to

fullfill individual energy needs.

125



Chapter 8

Recommendations for Future

Research

The data in the literature emphasize on the importance of cavitation phenomenon

generated by both ultrasonic and hydrodynamic sources and its potential applica-

tions in biomedical sciences. Today, the clinical use and efficacy of ultrasound cavi-

tation are well established, particularly in urinary stones treatment. Alternatively,

hydrodynamic cavitation has been recently considered as an emerging research area

in biomedical applications, and its efficacy on cell disruption, water disinfection and

urinary stones treatment is proven in In vitro studies. However, as discussed above,

In vivo implementation of hydrodynamic cavitation has some limitations, and its

clinical use is still not available. Therefore, further investigations are needed to bet-

ter characterize the physical properties, bubble dynamics and the effects of bubble

collapse on tissue or organ system. More precise definition of optimum surgical con-

ditions in hydrodynamic cavitation procedure is required for preventing undesirable

consequences. On top of all these, hydrodynamic cavitation should also be tested

in other areas such as drug delivery or diagnosis to reveal full potential of this tech-

nique. Overall, it is likely that hydrodynamic cavitation offers a substantial promise

for biomedical applications.

The assessment of size effects is vital for the design and development of new

generation microfluidic devices involving phase change. Additionally, as the length

scale reduces, surface nuclei dominate and dictate cavitation events, more cavitation

bubbles create, and more rupture occur. Furthermore, surface roughness (hydropho-
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bic surfaces) and pressure pulses as a result of nanomechanical oscillations increase

the performance of the micro/nanochannels providing higher cavitation bubbles and

therefore, more energy from the rupture of the bubbles.

Therefore, a challenging issue is raising when the size scale and roughness matter

are taken into account. A complete pack of a recommendation is as follows for

defining a comprehensive research project:

(i) fabricate a micro/nano device providing cavitation patterns for different ge-

ometries/dimensions/roughness

(ii) demonstrate energy utilization from the collapse process

(iii) boiling effect on the cavitation creation and collapse

(iv) nanomechanical vibration effect on droplet separation/bubbles creation.

A preliminary feature of such a system is shown in Figure 8.1:

Figure 8.1: Design and surface behavior of the recommended system. (a) Overall
structure of the cavitating nozzle vibrator (b) The extended channels to study the
collapse and interaction between solid-fluid-bubble (c) Surface roughness indication

Within the scope of this study, novel information about the cavitating flow

regimes and spray at the outlet of the micro/mini-channels were gathered. The

approach proposed in this study for both internal flow characteristics and spray
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behavior could be applied to the field of the interaction between fluid and solid.

One can consider the spray emergence as the fluid phase and focus on the interac-

tion between the emerged spray and the targeted area. Preliminary investigations

on the interaction between the spray and some targeted surface were carried out

during our recent experiments as shown in Figure 8.2. The targeted surface was

chosen among the investigated abnormal stones and tissues such as kidney stone

and prostate tissue. Figure 8.2 illustrates three different images with specific lenses

at different upstream pressures and time steps as indicated in the figure.

Figure 8.2: The interaction between spray and the targeted areas at different con-
ditions for kidney stone and prostate tissue

The interaction between the solid and liquid is considered as a big issue in the

field of fluid dynamics. In addition to the classic problems in conventional scale, two

factor namely; Size reduction and material type (abnormal stone and tissue) make

the problem comlex and worthy to follow it and manifest the complex mechanisms
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behind it.
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