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Abstract

In this thesis, we propose a novel secure key agreement protocol that uses biometrics

with unordered set of features. Our protocol enables the user and the server to agree

on a symmetric key, which is generated by utilizing only the feature points of the user’s

biometrics. It means that our protocol does not generate the key randomly or it does

not use any random data in the key itself. As a proof of concept, we instantiate our

protocol model using fingerprints. In our protocol, we employ a threshold-based quan-

tization mechanism, in order to group the minutiae in a predefined neighborhood. In

this way, we increase the chance of user-server agreement on the same set of minutiae.

Our protocol works in rounds. In each round, depending on the calculated similar-

ity score on the common set of minutiae, the acceptance/rejection decision is made.

Besides, we employ multi-criteria security analyses for our proposed protocol. These

security analyses show that the generated keys possess acceptable randomness accord-

ing to Shannon’s entropy. In addition, the keys, which are generated after each protocol

run, are indistinguishable from each other, as measured by the Hamming distance met-

ric. Our protocol is also robust against brute-force, replay and impersonation attacks,

proven by high attack complexity and low equal error rates. At the end, the complexity

analysis and the memory requirements of the protocol are discussed and it is showed

that they are in acceptable limits. As shown by comparative analyses, this work out-

performs the existing fuzzy vault method in terms of verification performance and the

attack complexity.
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Saf Biyometrik Kullanımıyla Güvenli Anahtar Anlaşması
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Tez Danışmanı: Prof. Dr. Albert Levi

Özet

Bu çalışmada, özellik noktaları sırasız eleman dizilerinden oluşan biyometriklerin kul-

lanımı ile güvenli anahtar mutabakatı protokolü tasarlanmıştır. Önerilen protokol,

servis sağlayıcı ile kullanıcının yalnızca biyometrik özellik noktalarını kullanarak simetrik

bir anahtar oluşturmalarını sağlamaktadır. Diğer bir deyişle, protokol anahtarı rast-

gele oluşturmamakta veya anahtar oluşturma sürecinde hiçbir rastgele veriden yarar-

lanmamaktadır. Önerilen yöntemin kuram ispatı olarak, bu protokol modeli parmak

izi kullanılarak gerçeklenmiştir. Protokolde eşik tabanlı nicemleme kullanılarak be-

lirli bir komşuluk ilişkisi içerisindeki özellik noktaları gruplanmışlardır. Bu sayede,

servis sağlayıcı ile kullanıcı arasında ortak özellik noktaları üzerinde anlaşılması ihtimali

artırılmıştır. Protokol rauntlar halinde çalışmaktadır. Her rauntta ortak bulunan özel-

lik noktası sayısı kullanılarak bir benzerlik skoru hesaplanmakta ve bu skora göre kul-

lanıcının sisteme kabul/ret kararı verilmektedir. Bunun yanı sıra, çoklu değerlendirme

ölçütleri kullanılarak güvenlik analizleri yapılmıştır. Güvenlik analizleri, oluşturulan

anahtarların rastgelelik oranlarının Shannon’un entropisi metriğine göre güvenli seviye-

lerde olduğunu göstermiştir. Ayrıca protokolün sonunda oluşturulan tüm anahtarların

birbirlerine benzer olmadıkları Hamming uzaklık metriği ile gösterilmiştir. Öte yandan

protokolün, kaba kuvvet saldırısı, tekrarlama ve taklit etme ataklarına karşı dayanıklı

olduğu yüksek atak zorluğu ve düşük hata oranları ile kanıtlanmıştır. Protokolün

v



karmaşıklığının ve hafıza gereksinimlerinin sistemin gerçeklenmesine uygun olduğu ra-

porlanmıştır. Son olarak, protokol ile literatürde var olan bir yöntemin karşılaştırılması

ile, protokolün performans ve atak dayanıklılığı açısından daha başarılı olduğu göste-

rilmiştir.
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I would like to thank TÜBİTAK BİDEB 2228-A for financially supporting me.

This thesis has been supported by TÜBİTAK under grant 114E557.
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1 Introduction

In generic cryptographic applications, unique and user-specific secret keys are used.

However, these keys can be stolen, lost or willingly shared. On the other hand, bio-

metric traits are used to identify or verify users, since they are strictly bound to the

user. The reason behind this is that the biometric traits are unique physiological or be-

havioral characteristics of individuals. In order to provide higher security and privacy,

biometrics and cryptography are combined as this combination provides the binding of

user’s personal characteristics to cryptographic keys. The combination of biometrics

and cryptography is referred to as crypto-biometric or bio-cryptographic systems. This

way, the secret keys, which are used for encryption and decryption in cryptographic

applications, are derived from the biometric data with the help of their unique features.

The key used in a cryptographic application must be secure. A secure key must

be random enough, contain sufficient entropy and be distinct from each other. Addi-

tionally, the length of the key must be long enough for not being guessed simply by

trying all possibilities. Due to the invariant nature of the biometrics, satisfying the

requirements of a secure key derived from the biometrics is a challenging task in bio-

cryptographic systems. In addition, the main problem in bio-cryptographic approaches

is that the cryptographic applications require exactly the same keys in encryption and

decryption operations, whereas in biometric applications, such an exact match is not

needed. This difference in their approaches should also be considered while designing

bio-cryptographic systems.

Each biometric data has its own distinctive features. These features can be repre-

sented with either ordered or unordered sets. Ordered sets are typically binary strings.

Iris is an example of a biometric with ordered features, as iris code is a binary string
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retrieved from the unrolled iris texture. On the other hand, unordered sets are gener-

ally a list of points on a coordinate system with insignificant orders. Biometric features

from which independent points can be extracted are examples of unordered feature sets,

such as fingerprints.

1.1 Our Contribution Summary

In this thesis, we propose a novel biometric key agreement protocol that uses un-

ordered set of features. As an example, we implement and evaluate our protocol using

fingerprints, which are represented with unordered set of minutiae points. Our protocol

generates the keys by using only the minutiae points, without any other helper com-

ponent. In this key agreement protocol, hash functions and threshold mechanisms are

employed. Moreover, in order to hide the genuine minutiae points, fake minutiae points

are generated according to a strategy. This strategy is developed to properly manage

the trade-off between information leakage to the attacker and acceptable verification

results. For this reason, a distance threshold and a neighborhood relation are defined

such that there cannot be more than one point (genuine and/or fake) in a pre-defined

distance neighborhood. This process is analogous to quantization. Thus, in the rest of

the thesis, we will call this method as quantization.

Our key agreement protocol runs in a round-manner such that at each round, the

user and the server tries to find a common set of minutiae points. At the end of the

protocol, either the user is rejected, due to the reason that the similarity score is below

the acceptance threshold, or the user and the server agree on a secure symmetric key.

We analysed the security performance of our system from different perspectives.

From biometrics point of view, our model shows high verification performance, proven

by low Equal Error Rates (EER). We also analysed the resistance of our protocol against

some known attacks, such as brute-force, replay and impersonation attacks. Moreover,

the quality of the agreed keys is analysed in terms of randomness and distinctiveness.

These analyses show that our system is quite resistant to these attacks; the generated

keys are random enough to be used as cryptographic keys; and each key is distinct from

the other agreed keys. It is also important to note that this protocol generates different
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keys after each protocol run using a time invariant biometric data. In addition, we

report the complexity and the memory requirements analyses of our protocol and show

that they are suitable for real time applications. Finally, we compare our protocol with

an existing key binding method, called fuzzy vault [1], and show that our protocol out-

performs this method in terms of performance and attack complexity. The preliminary

results of this thesis are presented in [2].

1.2 Outline of Thesis

The rest of this thesis is organized as follows. Section 2 gives background information

and Section 3 summarizes the related work in the literature. In Section 4, we introduce

our proposed secure key agreement protocol. Section 5 evaluates the performance of our

proposed protocol, discusses its security, complexity and memory requirement analyses,

as well as providing comparison results with an existing method. Finally, in Section 6

we conclude the thesis and provide some future works.
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2 Background Work

Firstly, this section briefly discusses biometrics and cryptography. After the security

mechanisms, which are used in this work, are shortly explained, the details of the

combination of biometrics and cryptography are mentioned in this section.

2.1 Biometrics

Identifying or verifying people can be done in different ways. Human brain can

recognize people by looking at their faces or by hearing their voices. However, in an

automatic world, automatic recognition of people by using biometrics is gaining more

and more importance and interest. In [3], biometric systems are defined as automated

methods of identity verification of a person based on their distinctive physiological char-

acteristics, like fingerprint, iris or face, or their distinctive behavioral characteristics,

like signature, voice or keystroke dynamics.

There are two types of biometric systems, namely verification and identification.

If a person claim to have an identity, the verification system checks the correctness of

this claim. In other words, a single match is performed in order to authenticate the

user. Verification systems are needed mostly in credit card and banking transactions,

network logins and cellular phones. On the other hand, in an identification system, the

personal biometric characteristic is presented and the system tries to find this particular

person’s identity in a set of characteristics. Identification systems are mostly used in

criminal investigations and border controls. The biometric verification is a more difficult

task than the biometric identification, since it requires a database search, instead of a

single match. Above all else, in order to run an identification or a verification process,

firstly the person should be enrolled to the system. At the enrollment stage, distinctive
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features of the biometric trait are extracted and stored in the system’s database. After

that, the person can use the application by proving the identity at the verification or

identification stage. In both of these processes, an algorithm or a function is applied to

the existing and the query templates, and their similarity is measured. If they are close

enough, in other words, if their difference is below a threshold, the user is expected to

be identified or verified.

As also mentioned above, biometrics can be physiological or behavioral characteris-

tics of a person. Figure 1 shows some examples of these characteristics. Their usage in

biometric identification and/or verification systems along with their strong and weak

aspects are summarized in [4]. As an example of physiological characteristics, finger-

prints are represented with detail points on the ridges, called minutiae. Fingerprints

are the most commonly employed biometric data, because they have been used by po-

lice to recognize criminals from far in the past. Hence, people are more familiar to it.

Iris is represented using iris code, which is a binary string that shows the patterns on

the iris. Although, iris patterns are more detailed than fingerprints, establishing a per-

fect acquisition environment is a bit harder for iris than fingerprint scanning. Besides,

faces are the mostly used recognition traits of human brains. Digital system recognizes

the faces by the relative positions, sizes and shapes of the features. Therefore, face

recognition is very sensitive to changes, such as head position, expressions and facial

hair. Hand geometry builds a three dimensional template of the hand. But a hand

geometry biometric system can be faked by a fabricated hand and is not very distinc-

tive among people. As an alternative to the physiological characteristics, the behavioral

characteristics are easier to capture. Signature dynamic is an example of the behavioral

characteristic, which is needed mostly in financial applications, in order to automate

the signature verification process. Besides, voice can be recorded using a regular device,

and after that the waveforms of the voice are used in the recognition process. Although

the voice can be imitated, the characteristics of speech involves some physiological as-

pects as well, and they are almost impossible to impersonate. Keystroke dynamics are

very easy to capture from the keyboard. Its verification process does not disturb the

person to be identified, because it is hidden in the regular flow of an application.
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Biometrics

Physiological
characteristics

Behavioral
characteristics

Fingerprint

Iris

Face

Hand

Signature

Voice

Keystroke

Figure 1: Biometric data types

The main difference between physiological and behavioral traits is their persistence.

Physiological characteristics are more stable than the behavioral ones. They stay almost

the same throughout a person’s life, unless getting an injury. On the other hand, be-

havioral characteristics change over time, due to both controllable and uncontrollable

reasons, such as emotions, neurological diseases, hoarseness, etc. Therefore, biomet-

ric systems which use behavioral characteristics update their template after each use.

Hence, behavioral biometric systems work better when they are used frequently [3].

The systems that use physiological characteristics perform better than behavioral ones

in terms of permanence, universality, distinctiveness and performance [5]. On the other

hand, behavioral characteristics are easier to collect and people are more willing to use

them [5]. As a result, while designing a biometric recognition system, the type of the

biometric data to be used and the system requirements should be considered seriously.

Any biometric system should satisfy some requirements as mentioned in [3, 6, 7].

While designing a biometric system, apart from the type of the characteristics, the

privacy of the biometric data should be deliberated. The biometric trait should be kept

secret and used only for the intended purpose. In addition, it should be easy to use and

should not bother people while capturing the biometric data. In terms of accuracy, the

system should accept all authorized people, while rejecting all impostors even in large

databases. Besides, the timing and memory costs should be small. The queries should

be processed quickly without causing delay in real-time applications. The templates

should have acceptable sizes even in very large databases of millions of people.
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2.2 Cryptography

People need privacy, security and trust in all aspects of life. Especially, in digital

world, the number of transactions, interactions and the size of personal data are growing

very fast. At the same time, the need for privacy, security and trust is becoming more

and more important. Not only today, even thousands of years ago, emperors had to

establish secure communication channels between themselves, governmental officials

and commandants for success. Moreover, they had to protect their sensitive, secret

and strategic messages against the enemies. In order to prevent their messages to

be read by adversaries, the cipherment techniques were developed, such that only the

authorized receivers can read those messages [8]. Nearly 4000 years ago, in ancient

Egypt, the recorded history of cryptology was started [9]. Symbol substitutions were

found on the remains of the hieroglyphs. Additionally, Julius Caesar was one of the

emperors who had used a cipher method which has been named after him [10]. While

the national officers were trying to find out the best methods to hide their messages, the

cryptanalysts were trying to break the ciphers. If a code was broken, the officers had

to find a new and stronger cryptographic technique to hide their messages. Although

the communicating entities have changed a little nowadays, this progress is still almost

the same and conduces to the advances in cryptography. It was an art in ancient times;

however, now it is a science [11].

In a general cryptographic model, the building blocks are as follows: plaintext, en-

cryption algorithm, secret key, ciphertext and decryption algorithm [12, 13]. Plaintext

is the original message in clear text. Encryption algorithm is mostly a mathematical

function that transforms plaintext into unintelligible form. Plaintext and the secret key

are the inputs of the encryption algorithm. Secret key is a value, using which the en-

cryption algorithm performs the transformations. Secret key is selected independently

of the plaintext and the encryption algorithm. Ciphertext is the output of the encryp-

tion algorithm. It is a random looking, unintelligible data which is produced depending

on the plaintext and the key. Even two exactly the same plaintexts produce different

ciphertexts with different keys. Besides, two different plaintexts are converted into two

different ciphertexts even with the same keys. Decryption algorithm is the reverse of
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the encryption algorithm. Its task is the regeneration of the original plaintext using the

ciphertext and the key. In Figure 2, the general flow of a secure communication is visu-

alized. In this figure, there are two subjects, Alice and Bob, who want to communicate

with each other. Their personal messages should be protected against unauthorized

accesses. Therefore, Alice uses an encryption algorithm that transforms her plaintext

into the ciphertext. Since the channel is not secure, interceptors and eavesdroppers can

capture the ciphertext, but the content does not make sense to them without the secret

key. At the receiver side, Bob decrypts the ciphertext using the secret key and can read

the original message.

Alice BobEncrypt Decrypt

Key Key

Plaintext Plaintext
Channel

Ciphertext Ciphertext

Figure 2: General flow of a secure communication

Cryptosystems should provide many functionalities, such as confidentiality, authen-

tication, integrity and non-repudiation [12, 13]. Confidentiality means hiding the con-

tent of the message transmitted. It protects the message from unauthorized access.

This functionality is ensured by encrypting the data. Authentication means that the

owner of the message is the correct entity. The authorized entity is the one that is

verified and trusted. In addition, by the integrity, it is provided that the messages

cannot be modified by unauthorized parties. It is for sure that the received message

is as exactly the same as the sent message; no modification, no insertion, no deletion.

Non-repudiation provides that none of the communicating entities can deny any of the

transactions they made.

Cryptographic systems are classified according to three different characteristics:

(i) the transformation method used in the encryption algorithm, (ii) the way in which

the transformation is applied, and (iii) the number of keys [12]. The transformation

method could be substitution and/or transposition. In the substitution method, each

element of the plaintext is mapped into a different element. On the other hand, in the
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transposition method, the position of each element in the plaintext is changed. These

methods can be used individually or together in an encryption algorithm. The impor-

tant issue which must be considered here is that the transformation must be reversible

without any loss of information. Moreover, the plaintext elements can be transformed

into the ciphertext elements either one by one or block by block. If they are processed

one by one, this system is called as a stream cipher. However, if the elements are pro-

cessed as blocks, then the system is a block cipher. In terms of the number of keys,

there are single or two keyed systems. In a single keyed system, the key is known

by both the sender and the receiver, and the keys are identical in both ends of the

communication. This type of systems is named as symmetric key encryptions. In a

two keyed system, encryption and decryption are done using different keys. They are

referred to as asymmetric key encryptions. Since our work provides that the sender and

the receiver agree on a private key, which can further be used in a symmetric key en-

cryption algorithm, only the symmetric key cryptography is explained in the following

subsection. After that, the mechanisms and examples of hash functions are discussed

in the next subsection, since the work proposed in this thesis makes use of the hash

functions.

2.2.1 Symmetric Key Cryptography

All of the classical cryptosystems were symmetric [10]. In symmetric key cryptog-

raphy, encryption and decryption keys are the same and known to both of the commu-

nicating entities. Therefore, symmetric key cryptography is also referred to as private

key, single key or secret key cryptography. It is also named as conventional encryption.

One of the most important hypotheses in cryptography, which is known as Kerckhoffs’s

principle, was stated by Auguste Kerckhoffs in 1883 [10]. He stated that the security of

a cryptosystem is not built upon the secrecy of the encryption methods being used; only

the key is the secret. Due to the fact that the encryption/decryption algorithms are

public and the keys are the same, in a symmetric key cryptography setting, the security

of the system depends only on the strength of the encryption algorithm and the secrecy

of the symmetric keys. The encryption algorithm should be strong enough not to allow
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an attacker to figure out the secret key, even if the attacker has access to many cipher-

texts and their corresponding plaintexts. The possibility of having public algorithms

for the symmetric key cryptography makes it practical to be used commonly [12].

The communication flow which is shown in Figure 2 exemplifies a usage of private

key cryptographic algorithm, because the keys are identical. However, the main problem

in such systems is the randomness (unpredictability) of the utilized keys and the key

management. Actually, the most fundamental problem in cryptography is the secure key

exchange and maintenance, as explained in [14]. The details, weak and strong aspects

of generic key management techniques are explained in the following paragraph.

Key Management in Symmetric Key Cryptography In an automated world,

the communicating entities should agree on the same symmetric keys without physically

being together and without compromising future communication. In addition, the keys

should be updated frequently, in order to limit the compromised information, if a key is

learned by an attacker [13]. Key management refers to the establishment, distribution

or agreement of the secret keys [12, 14]. Key establishment is a process at the end

of which a secret is shared among the communicating entities. A key establishment

process can be a distribution or an agreement. In a key distribution scheme, one of the

entities selects a secret key, and transmits this key to the other entity in a secure way.

If the key is generated at the sender side, it should be sent to the destination through

a secure channel. If this is not the case, a third party can generate and deliver the key

to both of the communicating parties. However, assuming a secure channel between

the parties is not realistic in digital world. On the other hand, key agreement is a

mechanism in which a shared secret is derived by the both ends of the communication

as a result of a function or a sequence of steps taken in a protocol. This kind of a

protocol should be carefully designed not to leak information to the attacker. In a key

agreement process, none of the entities know the key before the process starts. To sum

up, a secure and efficient key management is the most crucial aspect of the symmetric

key cryptography.

10



This thesis proposes a secure key agreement protocol between the server and the

user. In this protocol, the communicating parties agree on the common parts of a

biometric data and generate the secret key using only those shared biometric features.

2.2.2 Hash Functions

A hash function is defined as a function whose input is an arbitrary-length message

and whose output is a fixed length digest [12]. Digest can be referred to as hash code,

hash value or shortly hash. The abbreviation of the hash functions h = H(M) means

that the hash function H is applied to the message M and the output h is produced.

Basically, applying a hash function to a message is like applying a compression function

to it several times.

A hash function has to satisfy some requirements which are listed in [10, 12–14].

Firstly, applying the hash function to a large set of inputs should produce uniformly

distributed random outputs. Secondly, a single bit change in the input should result

in the change of the output completely. Additionally, a cryptographic hash function

which is used in security applications should have some more features. A cryptographic

hash function must have the one-way property. In other words, calculation of a digest

should be easy and quick, whereas it must be computationally infeasible to revert back

from the hash value to the original message. Further, a cryptographic hash function

must be collision-free. In a weak collision resistance, given a message M , it must be

computationally infeasible to find a different message M
′

whose hash values are the

same. In terms of a strong collision resistance, it must be computationally infeasible to

find any two different messages whose hash values are the same. Due to these properties,

hash functions are mostly used in applications in which the data integrity should be

guaranteed. Additionally, hash functions are used for confirmation of knowledge, key

derivation and pseudorandom number generation [14]. In the following paragraphs, two

hash methods which are used in this work will be explained.

11



Secure Hash Algorithm (SHA) SHA was proposed by National Institute of Stan-

dards and Technology (NIST) in 1993 [10]. It is a function of modular arithmetic and

logical binary operations. This version is known as SHA-0. After some weaknesses were

found in this algorithm, a new standard, SHA-1, was proposed in 1995 [15]. However,

this was not the last. NIST produced a new version of the standard which defines three

new versions of SHA [16]. These three versions are known as SHA-2 family of hash

functions. In 2005, NIST requested to terminate approval of SHA-1 until 2010. SHA-2

is a standardized hash algorithm since 2005 [12].

One version of SHA-2 functions is SHA-256, and this version is used in this work as

the specific hash function. SHA-256 is a hash function which produces 256 bit outputs

(hash values). The security of the SHA-2 family functions is proved in [17].

Keyed Hash-based Message Authentication Code (HMAC) Hash-based mes-

sage authentication codes (MAC) were used extensively with the symmetric encryption

techniques. However, cryptographic hash functions run generally faster than the sym-

metric encryption algorithms [12]. Therefore, keyed hash functions were developed to

satisfy the need of a fast hash-based MAC. The mostly known and supported algorithm

of such is the HMAC [18]. It is a keyed hash function which is generally used between

two parties, if they share a secret key and want to ensure the data authentication and

integrity. Any hash function can be embedded to the HMAC algorithm. In this work,

we use SHA-256-based HMAC implementation.

2.3 Combining Biometrics and Cryptography: Bio-cryptography

In order to establish trust in a communication, we need cryptographic primitives.

On the other hand, we need biometrics to link the user with the application for au-

thentication. For these reasons, researchers combine biometrics with cryptography as

this combination provides effective and complementary solutions to data security from

different aspects. The combination of cryptography and biometrics is named as bio-

cryptography or crypto-biometrics.
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Since the world becomes more and more automated and digital, remote and au-

tomatic recognition systems are needed in many areas such as banking, government,

military, healthcare and security agencies. Although smart cards, passwords and PINs

(Personal Identification Number) are used for the aim of automatic recognition and au-

thentication, this kind of a system can be fooled easily. Some passwords are very simple

and can be guessed or broken. Besides, complex passwords are hard to remember, and

in this case people tend to note down their passwords. This situation also creates a

security threat [4, 5]. Biometric recognition systems solve the problem of automated

personal identification; they are more difficult to cheat and they simplify the recogni-

tion process [3–5]. In addition, due to the fact that biometrics cannot be lost, copied

and shared, a biometric recognition system is more reliable than a password-based sys-

tem [6]. In terms of security, the biometric authentication systems are equivalent to

using a long password, whereas it is as simple as a short password system [19].

Bio-cryptographic approaches are mostly related to the key management. In other

words, researchers propose methods to combine biometrics with cryptographic keys. As

it is addressed in [20,21], the main difficulty of using a biometric in a key management

process is the noisy nature of the biometrics. In a general biometric system, a partial

match above a threshold is acceptable. However, in a cryptographic system, the keys

must be identical. Therefore, the researches who are willing to work on this area must

design methods to handle this difficulty. There are many works in the literature which

are related to the key management using irises, fingerprints, keystroke dynamics and

voices. For example, in [22], the authors describe a method to generate a cryptographic

key from the iris biometrics. This system uses the passwords as well, but with the help

of biometrics, the entropy of the keys increases significantly. [23] introduces a fingerprint

based key locking technique. In this technique, the authors locks a random key into

the phase information retrieved from the fingerprint image. In addition, in [24], the

authors propose a method to harden passwords using the keystroke dynamics of each

particular user. A scheme of cryptographic key generation from voice while the user is

speaking a password is presented in [25].
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While designing a bio-cryptographic application, there are number of constraints

that should be taken into consideration. Firstly, the error rates of the system should be

reasonable. Secondly, the system should deal with the irrevocability of the biometrics,

because a compromised biometric cannot be changed. In addition, since the biometrics

is not time varying, template protection and the key diversity should be accomplished.

Finally, the length and the randomness of the keys are also very important issues in a

secure system.
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3 Related Work and Problem Statement

In this section, related work in the literature is discussed and the problem statement

of this work is also mentioned.

3.1 Related Work

Bio-cryptographic systems are threefold: (i) key release, (ii) key generation and

(iii) key binding. In [4, 5] and [26], the authors describe these bio-cryptographic meth-

ods and discuss their problems. In key release mechanism, firstly a biometric authen-

tication process is run. In this process, the input biometric template is compared with

the one in the system database. If the matching is successful, a key is released. How-

ever, the fact that the user authentication and key release are independent processes

is a disadvantage of this mechanism. The key and the user biometric are not strictly

bound to each other. On the other hand, in key generation or key binding mechanisms,

biometrics and cryptography are integrated; a cryptographic key is bound to the bio-

metric data of the user. In these methods, neither the biometric template, nor the

cryptographic key is accessible to the attacker. The correct cryptographic key could

only be generated when a valid biometric template is presented by the user. Biometric

matching is not performed, because when the correct key cannot be generated from the

biometric template, the decryption function fails and the user is rejected automatically.

The reason behind this is that cryptographic encryption/decryption functions require

exactly the same key.

The main issue in biometric key generation or key binding methods is the variance

of biometric template. Due to variations in biometrics, if one bit of the generated key

is different than that of the correct one, the genuine user may be rejected. In order
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to avoid these false rejects, fuzzy key binding methods are proposed, namely fuzzy

commitment and fuzzy vault. The fuzzy commitment scheme was proposed by Juels

and Wattenberg [27]. In this scheme, the user selects a secret word W . The difference

(XOR) between the user’s biometric template X and the codeword W is denoted as d.

The difference vector d and the hash of the secret word y = H(W ) together constitute

the encrypted message. At the verification stage, the user provides a query biometric

Y . The difference between Y and d is W
′
, and y is used to check the correctness of

the extracted W
′
. This scheme is applicable to be used with ordered set of features,

such as iris code. In [28], the authors propose a mechanism to obtain cryptographic

keys from iris codes using fuzzy commitment, which is based on the method described

in [21]. However, [29] and [30] show that the fuzzy commitment methods are vulnerable,

because the attacker can reconstruct not only the key but also the iris code by making

use of the error correction codes and statistical attacks.

The fuzzy vault scheme is proposed by Juels and Sudan [1]. In contrast to the fuzzy

commitment scheme, the fuzzy vault scheme is applied to the unordered set of features,

such as minutiae in fingerprints. In this method, a secret word W is mapped to the

coefficients of a polynomial P (x). This polynomial is evaluated on the feature points of

the biometric template. In addition to the evaluated points (x, P (x)), a large number

of chaff points that do not lie on the polynomial are generated. These genuine and

chaff points are mixed and the total set is named as the vault. In the verification stage,

the user provides a query template, and with the help of this template, genuine points

are determined. Using Lagrange Interpolation, the polynomial P (x) is reconstructed

and its coefficients are mapped to the secret W
′
. With the use of error correction

codes, the correct secret W is obtained. In [31] and [32], fingerprint-based fuzzy vault

methods are presented. However, it is proven that the fuzzy vault is also vulnerable to

some known attacks; such as brute-force [33], stolen-key inversion [34] and correlation

based attacks [35]. Although in [36], the authors improve fuzzy vault for fingerprint

verification, they still leak some information to the attacker by inserting chaff points

into the vault that are close to each other but away from the genuine points. With

this strategy, the attacker can make sure that if there are two points which are close
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enough to each other and if it is known that one of these points is chaff, the other point

is definitely a chaff point.

3.2 Problem Statement

The existing key release, key generation and key binding methods do not address

the issue of key establishment purely from the biometrics without using random data.

In both of the fuzzy commitment and the fuzzy vault mechanisms, the secret word is

selected by the user or it is randomly generated. In other words, the secret word is not

derived directly from the biometric template. On the contrary, the biometric template

is used as a component to hide the secret word. In contrast to all of these methods,

in this thesis, the secret word (key) is directly generated from the feature points of the

biometric template. In addition, from a timely invariant biometric, generating many

different keys is a challenging task which is also achieved in this work.
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4 Proposed Secure Key Agreement Protocol using

Pure Biometrics

In this section we describe our proposed secure key agreement protocol, which uses

fingerprint biometrics without any other type of helper data. The definitions of the

symbols used in the protocol definition are given in Table 1. Our key agreement protocol

can be divided into two phases: (i) enrollment and (ii) verification, each of which is

explained in the following subsections.

4.1 Enrollment Phase

The enrollment is performed only at the server side and the corresponding template

generation algorithm is given in Algorithm 1. At the enrollment stage, the user provides

three fingerprint images, FP1, FP2, FP3, of the same finger. Then, the minutiae of

these fingerprints are extracted. Each minutia is represented with three attributes:

x-coordinate, y-coordinate and type. The type of a minutia can be end or bifurcation.

End type of a minutia indicates a ridge ending. On the other hand, if the ridge branches

into two, the branching point is a bifurcation type of a minutia. The minutiae list of a

fingerprint image constitutes the template of this particular fingerprint image. While

generating the template, we quantize the minutiae by selecting representatives from

the groups that are determined by the predefined distance threshold, Tdist. In this

quantization step, the minutiae which are at most Tdist-away to any other minutia with

the same type are mapped to one minutia by picking the one with the smallest y-

coordinate value. After that, the server puts these fingerprint templates on top of each

other, in order to find out the most reliable minutiae. The minutiae which are present in
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at least two out of three fingerprint templates are considered as reliable minutiae. Only

the reliable minutiae are kept in the final template. For the reason that the minutiae are

close to each other more than Tdist are considered as one minutia, a Tdist-neighborhood

relation is defined as follows: All of the points in the coordinate system which have

x-coordinate in [xj − Tdist, xj + Tdist] and y-coordinate in [yj − Tdist, yj + Tdist] are the

neighbors of the minutia with (xj, yj) in the Tdist-neighborhood. This neighborhood

relation is exemplified in Figure 3, where the original minutia is located at (49, 91) and

Tdist is 2.

47, 89 47, 90 47, 91 47, 92 47, 93

48, 89 48, 90 48, 91 48, 92 48, 93

49, 89 49, 90 49,91 49, 92 49, 93

50, 89 50, 90 50, 91 50, 92 50, 93

51, 89 51, 90 51, 91 51, 92 51, 93

Figure 3: Neighborhood relation when Tdist = 2

Thereafter, x-coordinate, y-coordinate and type of each minutia point and its neigh-

bors in Tdist-neighborhood together with the type of this particular minutia are concate-

nated and hashed one by one as H1(x||y||type). These hashes constitute a particular

user’s template in the server. Note that although double hashes will be needed in

the verification stage, storing single hashes is enough, since the double hashes can be

calculated by re-hashing the stored values once again if necessary.
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Table 1: Symbols used in Protocol Definition

Symbol Description

FP Fingerprint

x x-coordinate of a minutia

y y-coordinate of a minutia

type Type of a minutia

nu Total number of genuine minutiae on the user side

ns Total number of genuine minutiae on the server side

ncom Number of common minutiae found by the server

nkey
com Number of minutiae used in the final key agreement

H i(·) Hash function applied i times (i ≥ 1)

Gs Set of genuine minutiae on the server side

Gu Set of genuine minutiae on the user side

C Set of fake minutiae on the user side

Qu

Set of shuffled (H2(gu) ∪H2(c))

s.t. gu ∈ Gu & c ∈ C

G′s Set of minutiae ∈ {Qu ∩Gs}
G′′s,j Any subset of G

′
s s.t. |G′′

s,j| = |G
′
s| − j (j ≥ 1)

G′u Any subset of Gu s.t. |G′u| = |G
′
s|

G′′u,j Any subset of G′u s.t. |G′′u,j| = |G
′
s| − j (j ≥ 1)

S Similarity score

Tsim Acceptance similarity score threshold

Tdist Distance threshold used in neighborhood definition

Ki
(us,su)

Ki ith key generated (i ≥ 0)

us by the user to communicate with the server

su by the server to communicate with the user

HMAC(·) Keyed Hash-based Message Authentication Code (HMAC) [18]

HMACKus(·) HMAC generated using Kus

HMACKsu(·) HMAC generated using Ksu

HMACKi
su

(·) HMAC generated using Ki
su

attc Attack complexity
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Algorithm 1 Template Generation Algorithm

INPUT: FP1, FP2, FP3

OUTPUT: Gs

1: Ginit
s = ExtractMinutiae(FP1, FP2, FP3)

2: for i = 1 : |Ginit
s | − 1 do

3: m1 = Ginit
s (i)

4: for j = i + 1 : |Ginit
s | do

5: m2 = Ginit
s (j)

6: if m1.x ≥ m2.x− (2 ∗ Tdist) &
7: m1.x ≤ m2.x + (2 ∗ Tdist) &
8: m1.y ≥ m2.y − (2 ∗ Tdist) &
9: m1.y ≤ m2.y + (2 ∗ Tdist) &
10: m1.type == m2.type then
11: m1.visited + +
12: end if
13: end for
14: end for
15: for i = 1 : |Ginit

s | do
16: if Ginit

s (i).visited < 2 then
17: Remove ith minutia from Ginit

s

18: end if
19: end for
20: ind← 1
21: for i = 1 : |Ginit

s | do
22: m1 = Ginit

s (i)
23: for j = (−1) ∗ Tdist : Tdist do
24: for k = (−1) ∗ Tdist : Tdist do
25: Gs(ind) = H1(m1.x + j||m1.y + k||m1.type)
26: ind← ind + 1
27: end for
28: end for
29: end for

4.2 Verification Phase

At the verification stage, three different fingerprint images of the same finger are

used. As in the enrollment phase, the minutiae points are extracted from these finger-

prints. Similarly, at most Tdist-away minutiae are mapped to one minutia by selecting

the one with the smallest y-coordinate value. After that, three fingerprint templates

are put on top of each other and the most reliable minutiae are selected. In order to

mask the genuine minutiae points at the user side, 10 × |Gu| fake minutiae points are
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generated randomly. Fake minutiae point generation is an important process, since the

fake points should not leak any information to the attacker. For this reason, a fake

point must be indistinguishable from a genuine minutia point from an attacker’s point

of view. Since we make sure that all of the genuine minutiae points are at least Tdist-

away from each other, fake minutiae points must be Tdist-away from all the other points

as well. Therefore, the fake minutiae points must also preserve the Tdist-neighborhood

relation.

After the fake minutiae point generation process ends, each minutia point’s (genuine

and fake) x-coordinate, y-coordinate and type are concatenated. Each value is double

hashed as follows: H2(x||y||type). As the key will be generated using single hashed val-

ues of the genuine minutiae, the user keeps H1(x||y||type) only for the genuine minutiae.

Note that in contrast to the enrollment phase, the points in the Tdist-neighborhood are

neither hashed nor sent to the server.

The protocol flow can be seen in Figure 4. Double hashed points’ list together with

the ID of the user is transmitted to the server. In order to extract the genuine points

from the list, the server compares each point with this particular user’s double hashed

template. Since the server has the neighbor minutiae points as well, if a genuine minutia

of the user is in the Tdist-neighborhood with a minutia in the server side, it is counted

as a common genuine minutia. However, it may or may not be a genuine minutia. Our

protocol provides solutions in the following steps for the cases that fake minutiae are

considered as genuine minutiae.

After the comparison is completed, a similarity score is calculated. There are two

well-known methods to calculate the similarity score of two fingerprints as given in

Equation 1 and Equation 2 [37], where ncom is the number of common minutiae, nu is

the number of genuine minutiae on the user side, ns is the number of genuine minutiae

on the server side.

S =
n2
com

nu × ns

× 100 (1)

S =
2× ncom

nu + ns

× 100 (2)
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If the calculated score is above a certain acceptance threshold, Tsim, the user is

accepted and the key agreement process starts. In the key agreement process, the

server concatenates single hashes of all common minutiae, H1(g
′
s,i), and everything is

rehashed to generate Ksu, which is the key to be used while communicating with the

user. In order to make sure that the user will generate the same key, the server computes

the HMAC of a predefined message msg using Ksu and transmits this value together

with the number of common found minutiae, |G′
s|, to the user.

Upon receiving the message, the user generates a key using one of the possible

subsets of the genuine minutiae whose size is the same as the number of found minutiae

on the server side. If the user can verify the HMAC using this generated key, (s)he

sends a positive acknowledgment to the server. Otherwise, the user generates another

key using another subset, until either the HMAC is verified or all possible subsets are

exhausted. In the case that the HMAC is not verified, RETRY message is transmitted

to the server.

If the protocol continues with the RETRY message, the server computes the sim-

ilarity score using |G′
s| − 1 as the number of common minutiae. If the score is above

the acceptance threshold Tsim, the server generates all possible keys using all possible

subsets of the found minutiae, whose size is equal to |G′
s|−1. The server then transmits

all of the HMAC values generated using these keys to the user. If the user can verify

any one of these HMAC values using any one of the keys generated with any possible

subset of the genuine minutiae, whose size is equal to |G′
s|−1, the user transmits a pos-

itive acknowledgment and the index, i, of the verified HMAC to the server. Otherwise,

another RETRY message is transmitted to the server. In this case, the same process

with |G′
s| − 2 is carried out. The protocol stops at the jth step, if either the similarity

score computed using the number |G′
s|− j is less than the acceptance threshold, or any

HMAC value is verified by the user. If any HMAC value is verified at the end of this

protocol, the server and the user can agree on a symmetric cryptographic key without

using any non-biometric or random value. On the other hand, if the protocol stops

without generating a symmetric key, it can start from scratch upon request.
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USER SERVER

H2(gu) ∀gu ∈ Gu

H2(c) ∀c ∈ C

Qu = mix(H2(gu) ∪H2(c))

FOREACH G
′
u ⊂ Gu : |G′

u| = |G
′
s|

Kus = H1(
|G′

s|f

k=1

H1(g
′
u,k)) ∀g

′
u ∈ G

′
u

IF HMACKsu(msg) == HMACKus(msg)→ ACCEPT
and BREAK

IF NOT ACCEPTED → RETRY

FOREACH G
′′
u,1 ⊂ G

′
u : |G′′

u,1| = |G
′
s| − 1

Kus = H1(
|G′

s|−1f

k=1

H1(g
′′
u,k)) ∀g

′′
u ∈ G

′′
u,1

IF HMACKi
su
(msg) == HMACKus(msg) → ACCEPT

and BREAK

IF NOT ACCEPTED → RETRY

FOREACH G
′′
u,j ⊂ G

′
u : |G′′

u,j | = |G
′
s| − j

Kus = H1(
|G′

s|−jf

k=1

H1(g
′′
u,k)) ∀g

′′
u ∈ G

′′
u,j

IF HMACKi
su
(msg) == HMACKus(msg) → ACCEPT

and BREAK

IF NOT ACCEPTED → RETRY

G
′
s = Qu ∩Gs

S = |G′
s|2/(nu × ns)

IF S < Tsim → REJECT

ELSE

Ksu = H1(
|G′

s|f

k=1

H1(g
′
s,k)) ∀g

′
s ∈ G

′
s

S = (|G′
s| − 1)2/(nu × ns)

IF S < Tsim → REJECT

ELSE

FOREACH G
′′
s,1 ⊂ G

′
s : |G

′′
s,1| = |G

′
s| − 1

Ki
su = H1(

|G′
s|−1f

k=1

H1(g
′′
s,k)) ∀g

′′
s ∈ G

′′
s,1

S = (|G′
s| − j)2/(nu × ns)

IF S < Tsim → REJECT

ELSE

FOREACH G
′′
s,j ⊂ G

′
s : |G

′′
s,j | = |G

′
s| − j

Ki
su = H1(

|G′
s|−jf

k=1

H1(g
′′
s,k)) ∀g

′′
s ∈ G

′′
s,j

rrr

userID ||Qu

REJECT

|G′
s| ||HMACKsu(msg)

ACCEPT

RETRY

HMACKi
su
(msg)

REJECT

ACCEPT || i

RETRY

HMACKi
su
(msg)

REJECT

ACCEPT || i

RETRY

Figure 4: Our proposed secure key agreement protocol
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5 Performance Evaluation

Our proposed protocol is tested with two different datasets. First dataset consists of

30 subjects from Verifinger Sample Database [38], which includes fingerprints scanned

using Cross Match Verifier 300 at 500 ppi [39]. In this dataset, each subject has 8

fingerprint images of the same finger. Second dataset includes 292 fingerprints, which

are scanned using Papilon DS22N at 500 ppi [40]. This dataset is constructed by

collecting fingerprints from volunteers in Sabancı University by TÜBİTAK 114E557

project team. In this dataset, we have 10 impressions of each finger. All fingerprint

images in both datasets are aligned using their intensity values in MATLAB R2015a.

The minutiae of each fingerprint is extracted using the Neurotechnology Biometric

SDK 5.0 Verifinger [38]. First 3 fingerprint images are used to generate the template

on the server side. For the first dataset, the remaining 5 fingerprint images are used

as combinations of 3 at the user side. Hence, each subject is tested
(

5

3

)
= 10 times.

On the other hand, in the second dataset, there are 7 fingerprints reserved for user

side operations, which are employed as combinations of 3. Thus, each subject in this

dataset is tested
(

7

3

)
= 35 times. In addition to the genuine tests, impostor tests are

also carried out. In these impostor tests, each subject’s template is tested against all

other subjects’ queries. The hash function used in the protocol is SHA-256 [16] as

mentioned in Section 2.2.2; hence all of the generated keys are 256 bits long.

In the subsections given below, we introduce the performance evaluation metrics,

discuss the verification results of the system and provide security analyses of the proto-

col, as well as representing the randomness and distinctiveness analyses of the generated

keys. After that, we analyse the complexity and memory requirements of the system.

We conclude the section with comparative analysis of our protocol with fuzzy vault.
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5.1 Performance Metrics and Parameters

In biometric authentication systems, the performance is measured using error rates,

namely False Accept Rate (FAR) and False Reject Rate (FRR). FAR is the percentage of

the impostor subjects who are accepted as genuine users; whereas FRR is the percentage

of the genuine subjects who are rejected. In order to evaluate the performance and

minimize both FAR and FRR at the same time, their intersection point is considered.

This point determines the Equal Error Rate (EER). The lower the EER is, the better

is the performance of the biometric authentication.

In terms of randomness, the mostly known and accepted measure is the Shannon’s

Entropy. This metric was proposed by Claude E. Shannon in 1948 [41]. The entropy

metric measures the randomness (unpredictability) of the strings. The entropy value

of a string is between [0, 1]. The maximum value, 1, indicates perfect randomness. In

this analysis, Shannon’s Entropy values of the keys are calculated using Equation 3, in

which Ki represents the ith bit of the key and P (·) is the probability function.

H = −
∑
i

P (Ki)log2P (Ki) (3)

Distinctiveness of the keys are measured with the Hamming distance metric. It

was proposed by Richard Hamming in 1950 [42]. Hamming distance is the number

of elements which are different at the same positions of two equal length strings. An

example of the Hamming distance computation is given in Figure 5. Hamming distance

helps to assess how much different is two keys, since we want to establish different keys

after each protocol run. The larger Hamming distance values are, the more different

are the keys.

Figure 5: Hamming distance of two binary strings

26



5.2 Verification Results

For each test, a similarity score is calculated as given in Equation 1 and Equation 2

in Section 4.2. The minimum score, the maximum score and the average score of the

system are calculated for each subject. These scores are used as acceptance thresholds

of the system one by one. For each different threshold, the corresponding FAR and

FRR values of the system are calculated. As a result of these operations, the best EER

(the point where FAR = FRR), percentages are obtained when the maximum score of

the system is picked as the acceptance threshold.

For the first dataset, Figure 6 shows the FAR and FRR percentages when the

maximum of the similarity scores, which are calculated using Equation 2, is picked as

the acceptance threshold. As can be seen in this figure, our protocol achieves 0.57%

EER when the optimum acceptance threshold is 24.48. If the acceptance threshold is

selected as the average score of the system, the EER lies at 6.66% with 13.57 acceptance

threshold, as can be seen in Figure 8. On the other hand, if the acceptance threshold

is selected as the minimum score of the system as in Figure 10, the EER is 10% and

the acceptance threshold is 8.59.

Besides, for the second dataset, when the maximum of the similarity scores is picked

as the acceptance threshold, the system has 0.48% EER and the optimum acceptance

threshold is 25.49, as can be seen in Figure 7. Figure 9 shows the verification results,

when the average score is selected as the acceptance threshold. In this case, the system

reaches the EER of 2.61% with 15.06 acceptance threshold. Moreover, when the min-

imum score is selected as the acceptance threshold as in Figure 11, the EER is 19.4%

and the acceptance threshold is 6.13.

In Table 2, all of these EER values that are calculated according to the two different

predefined similarity score equations, for both datasets, are listed. The explained results

are summarized in this table as well. The EER values, obtained when the maximum

score of the system is selected, are quite sufficient for a secure biometric authentication

system.
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Figure 6: Max scores picked as threshold
for the 1st dataset

Figure 7: Max scores picked as threshold
for the 2nd dataset

Figure 8: Avg scores picked as threshold
for the 1st dataset

Figure 9: Avg scores picked as threshold
for the 2nd dataset

Figure 10: Min scores picked as threshold
for the 1st dataset

Figure 11: Min scores picked as threshold
for the 2nd dataset
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Table 2: All EER Values

Equation Strategy 1st Dataset EER (%) 2nd Dataset EER (%)

Equation 1

min 10 19.86

max 0.57 0.55

avg 5 2.60

Equation 2

min 10 19.4

max 0.57 0.48

avg 6.66 2.61

5.3 Security Analyses

In this section, firstly our threat model is given. After that, the strength of our pro-

tocol against brute-force, replay and impersonation attacks are analysed. In addition,

the quality of the generated keys are also examined via entropy and Hamming distance

analyses.

5.3.1 Threat Model

The attacker’s main aim is twofold: (i) to impersonate a genuine user, and (ii) to

learn the key between the server and any victim user for eavesdropping purposes. We

do not assume a secure channel. Thus, the attacker can obtain all protocol messages

including the hash values and HMACs exchanged between the user and the server. Con-

sequently, the attacker learns the number of minutiae points used for the key agreement.

The attacker may apply brute-force attack in passive mode by making use of the ex-

changed messages and try to guess the key. Similarly, in order to impersonate a genuine

user, the attacker may apply a replay attack in active mode. However, our protocol

resists these type of attacks to some extent as discussed in the upcoming subsections.
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5.3.2 Resistance Against Brute-Force Attacks

The attacker can always launch a brute-force attack by trying all possible key com-

binations. Since the key is 256 bits long, this attack is infeasible. However, in this

section, we will give a more intelligent brute-force attack by making use of the protocol

messages.

This attack is applied by generating all possible minutiae locations and types. In

the first dataset, one fingerprint can have at most 512 x and y values, because of the

sizes of the fingerprints in this database. A minutia can have two different types: end

or bifurcation. It means that the attacker must generate 512×512×2 = 219 points, and

hash them once and twice. In the second dataset, x and y coordinates of a fingerprint

are at most 850. Similarly, each minutia can be end or bifurcation. Thus, the attacker

must generate 850 × 850 × 2 =̃221 points, and hash them once and twice. Due to the

fact that the user sends the genuine and fake minutiae list, Qu, to the server, attacker’s

search space decreases to |Qu|, regardless of the datasets. However, our analysis shows

that this brute-force attack is still infeasible as discussed below.

The attacker has the list Qu and the number of minutiae with which the key is

generated, nkey
com. In order to find the generated key, the attacker should try all possible

subsets of the set Qu with size nkey
com, yielding the attack complexity attc (Equation 4).

attc =

(|Qu|
nkey
com

)
=

|Qu|!
nkey
com!× (|Qu| − nkey

com)!
(4)

For instance, if the user sends a list of 440 points, i.e. |Qu| = 440, in which 40 of

them are genuine, i.e. |Gu| = 40, and if the key agreement is completed with 16 common

minutiae, i.e. nkey
com = 16, then the attack complexity becomes

(
440

16

)
= 440!

16!×(440−16)!
∼= 296.

In order to calculate the overall attack complexity of the system, the combination

in Equation 4 is calculated after each key agreement. Then, we take the average of

the complexity results. The analysis shows that the average attack complexity of the

system with the first dataset is 94 bits (i.e. it requires 294 hash and HMAC verifica-

tions). On the other hand, for the second dataset, the attack complexity of the system

is 118 bits (i.e. it requires 2118 hash and HMAC verifications) on the average. As dis-
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cussed in [43], even with custom hardware implementation, computation of one block of

HMAC-SHA256 takes approximately 0.8977 microseconds. Thus, the above mentioned

complexities correspond to 5.6×1014 years of attack for the first dataset and 9.46×1021

years of attack for the second dataset. As a result, we can conclude that our protocol

efficiently resists intelligent brute-force attacks.

5.3.3 Resistance Against Replay Attack and Impersonation

The aim of replay attack is to impersonate a genuine user and get the legitimate key.

In order to do this, the attacker replays the previously exchanged messages between

the victim user and the server. The attacker needs to know the genuine minutiae

points to effectively calculate the generated key; otherwise, (s)he must try all possible

combinations out of Qu. Since the attacker does not know the genuine minutiae points,

the complexity of this attack becomes the same as that of the brute-force attack given

in Equation 4.

Moreover, the attacker may use his/her own fingerprint instead of the genuine user’s

fingerprint. The resistance of the protocol against this type of classical impersonation

attack is shown to be very low, since the FAR is 0.57% in the first dataset and 0.48%

in the second dataset. The readers should also note that such counterfeiting attacks

are general problems of all biometrics and related protocols; not specific to ours.

5.3.4 Randomness of the Generated Keys

In the first dataset, we generate 300 keys (30 subjects, 10 keys per subject). The

entropy values of these keys are given in Figure 12. Since each key is analysed one by

one, key ID in this figure indicates which key has which entropy value. The more the

entropy value approaches to 1, the more random the key is. In this case, approximately

84% of the keys have entropy values that are greater than 0.994, and also all of the keys

have entropy values that are greater than 0.98, which implies very good randomness.

It is important to note that these keys are generated by hashing the common minutiae.

It is an expected result to have high entropy for the hash results, because the hash

functions kind of randomize the input string. Therefore, the entropy values of the
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concatenation of common minutiae are calculated as well. The concatenation is as

follows, x||y||type. The entropy values of these concatenations are given in Figure 13.

Although the entropy values decrease a little, 92.30% of the keys have entropy value

above 0.98. Thus, they are still random enough.

In the second dataset, we generate 10220 keys (292 subjects, 35 keys per subject).

Figure 14 shows the entropy values of these keys. In the second dataset case, approx-

imately 99% of the keys have entropy values that are greater than 0.98, and also all

of the keys have entropy values that are greater than 0.94. These values are sufficient

for being a secure and random key. As mentioned before, these keys are generated

by hashing the common minutiae and their randomness can be as expected. For this

reason, the entropy values of the concatenation of common minutiae, x||y||type, are

calculated and given in Figure 15. Despite the fact that the entropy values decreases,

90.23% of the keys have entropy value above 0.96. Although there are some entropy

values around 0.78, it is normal to have such outliers in big datasets like ours. Hence,

their randomness is sufficient.

Figure 12: Entropy values of the generated keys for the 1st dataset
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Figure 13: Entropy values of the minutiae concatenations for the 1st dataset

Figure 14: Entropy values of the generated keys for the 2nd dataset
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Figure 15: Entropy values of the minutiae concatenations for the 2nd dataset

5.3.5 Distinctiveness of the Generated Keys

The fingerprints are time invariant biometrics. However, generating the same key

in each key agreement is undesirable, because compromise of a key should not risk the

confidentiality of the messages in other sessions. Thus, it is important to have a different

key in each key agreement. The minutiae quality and ordering change according to the

fingerprint scanner, pressure of the finger on the scanner, acquisition environment, etc.

This situation has both negative and positive effects on the key generation process. The

negative effect is the difficulty of agreement on the same key in a particular protocol

run. On the other hand, the positive effect is the generation of different keys in each

attempt.

In order to measure the difference of the keys for the same user, we calculate the

Hamming distances of the keys of the same user obtained after different protocol runs.

As can be seen in Figure 16, the average Hamming distances of the keys vary between

approximately 120-130 bits out of 256 bits for each user in the first dataset. Also the
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minimum difference is 97 bits. On the other hand, Figure 17 shows that the average

Hamming distance values of the keys are between 120-130 bits out of 256 bits for each

user in the second dataset. The minimum difference is 93 bits. These results show that

the users have distinct keys after each key agreement phase.

In addition to the same users’ keys comparison, we compare different users’ keys to

show that they are also different from each other. As can be seen in Figure 18, the

average Hamming distances of the keys that are generated for different users of the first

dataset vary between approximately 120-135 bits. Also, as can be seen in Figure 19,

the average Hamming distances of the different users’ keys are between 120-135 bits

for the second dataset. These values are very close to the average Hamming distances

of the same users’ keys. It means that we cannot decide if any two keys belong to the

same user or different users by looking at their similarities or differences.

Figure 16: Average Hamming distances of the same users’ keys for the 1st dataset

35



Figure 17: Average Hamming distances of the same users’ keys for the 2nd dataset

Figure 18: Average Hamming distances of the different users’ keys for the 1st dataset
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Figure 19: Average Hamming distances of the different users’ keys for the 2nd dataset

5.4 Computational Complexity Analysis

Computational complexity of our protocol is calculated by adding up the number

of key generation attempts within the protocol run. This complexity is calculated from

user and server point of views separately.

The server generates only one key in the first round of the protocol. For the second

round of a given protocol run, the amount of key generations is the value of combination

of the number of common found minutiae minus one, ncom − 1, out of the number of

common found minutiae in the first round, ncom; i.e.,
(

ncom

ncom − 1

)
. In the upcoming

rounds, the server makes computations by selecting one less minutia each time out of

ncom. Thus, iterations stop when the correct key is generated, which contains nkey
com

minutiae points. The total server complexity, which is formalised in Equation 5, is the

sum of the number of all key generation attempts.

servercomplexity =

nkey
com∑

i=ncom

(
ncom

i

)
(5)
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The average server complexity, on the other hand, is the average of all attempts

taken against all subjects. This average case complexity analysis gives the server com-

plexity as 217 with the first dataset and 29 with the second dataset. These values are

quite sufficient for a real time application with small response time.

The user complexity for a protocol run is calculated in the following way. Due to

the fact that the server sends the number of common found minutiae, ncom, to the

user in the first round of the protocol, the user tries all possible subsets, whose size

is equal to ncom, of the genuine minutiae. Therefore, while calculating the complexity,

firstly the complexity of generating keys from all possible subsets is analysed. This

particular complexity is determined by the number of combinations of ncom out of the

number of genuine minutiae on the user side, nu; i.e.,
(

nu

ncom

)
. If the key cannot be

generated in the first round, the user continues the protocol by selecting subsets of

genuine minutiae with ncom− 1 elements out of nu. If the key is still not generated, the

user tries subsets of one less minutia points at each round, until the key is generated

or the user is rejected. According to this analysis, the total user complexity is the sum

of all key generation attempts from all subsets until the protocol stops. Equation 6

formalises the user complexity.

usercomplexity =

nkey
com∑

i=ncom

(
nu

i

)
(6)

The user complexity is calculated for all user tests and then they are averaged. The

analysis shows that the average user complexity is 239 in the first dataset and 241 in

the second dataset. Although these values seem to be high, it is the cost of not using

any helper data. If we ever used any helper data, it might be easier to agree on the

common parts of the biometric. However, this would introduce some other problems,

such as the distribution of this helper data, risk of compromise and information leakage

to the attacker.
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5.5 Communication Complexity Analysis

Communication complexity of the protocol is measured according to the number of

bits exchanged between the user and the server. The protocol starts with the message

sent by the user to the server. This message contains the user ID and the genuine

and fake minutiae set, Qu. User ID is a 32-bit integer; whereas Qu consists of 256-

bit hash results. Average number of elements in Qu is 440 for the first dataset, and

550 for the second dataset. Since all of them are 256-bit hash values, 440 points

correspond to 256 × 440 = 112640 bits. Considering the second dataset, this number

becomes 256 × 550 = 140800 bits. As a result, the total communication cost of the

first message is 32 + 112640 = 112672 bits = 13.75 KB for the first dataset. On the

other hand, for the second dataset, the total communication cost of the first message

is 32 + 140800 = 140832 bits = 17.2 KB.

The second message of the protocol is sent by the server. This message is either a

negative acknowledgement which indicates that the user is rejected, or the number of

common found minutiae and an HMAC value. Negative acknowledgment is just 1-bit.

If the user is not rejected, the message contains 32-bit integer which is the number of

common found minutiae, and a 256-bit value which is the HMAC result. Hence, the

total cost of communication for this message is 256 + 32 = 288 bits = 36 bytes.

The protocol continues with the message sent by the user. This message is either

ACCEPT or RETRY. Either one of them can be represented by 1-bit; ACCEPT with

1, RETRY with 0. If the protocol continues with RETRY message, the server sends

either a negative acknowledgment or a list of HMAC values. Negative acknowledgment

is 1-bit. The number of elements in the HMAC values list is equal to
(

ncom

ncom − 1

)
, where

ncom is the total number of common found minutiae. In both datasets, the average

number of common minutiae found by the server, ncom, is 24. Hence, the average cost

of the message which consist of HMAC values is 256×
(

24

23

)
= 6144 bits = 768 bytes.

After that, if the user cannot verify any HMAC value, the user sends a RETRY

message represented by 1-bit. Otherwise, the user sends a positive acknowledgment

with the index of the HMAC value which is verified. Positive acknowledgment is 1-bit,

and the index is a 32-bit integer. Thus, the cost of this message is 1 + 32 = 33 bits.
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In the next steps of the protocol, the total communication cost of the messages sent

by the user does not change. However, the cost of the messages sent by the server

changes as
(
ncom

x

)
, where x = ncom − 2, ncom − 3, ... , nkey

com, and nkey
com is the number

of minutiae used in the correct key generation. Thus, the communication cost changes

at each round until the key is generated. The average number of minutiae with which

the key is generated is 16 for the first dataset. Hence, the maximum cost of an HMAC

list message is 256 ×
(

24

16

)
= 188280576 bits = 22.4 MB. For the second dataset, the

average number of minutiae in the key generation case is 20. Thus, the maximum cost

of a message sent by the server is 256×
(

24

20

)
= 2720256 bits = 332.1 KB.

Total size of the messages sent by the server is approximately 22.4 MB for the first

dataset and 332.8 KB for the second dataset. On the other hand, total communication

cost of the messages sent by the users is approximately 13.75 KB for the first dataset

and 17.2 KB for the second dataset. All of the communication costs given above are

quite reasonable given today’s Internet speeds.

5.6 Memory Requirements Analysis

Considering the first dataset, on the server side, the average minutiae count of the

subjects is 42. In addition to the original minutiae, the points in the Tdist-neighborhood

are also stored in the server. In the tests, we take Tdist as 10. As a result, each original

minutiae is represented with 21 × 21 = 441 points. On the average, 42 × 441 = 18522

points are stored by the server for each subject. These points are hashed values and

each is 256 bits long. In total, each subject’s template is 578.8 KB. For 30 subjects, the

server needs 16.9 MB of storage in total. These values correspond to the case that the

server stores only the single hashes of the points. At the verification stage, the server

may calculate the double hashes or it may store them as well. If the server stores the

double hashes, the storage need is doubled.

On the user side, average minutiae count of the subjects is 40. The user does not

calculate the neighboring points. Therefore, the user needs 1.25 KB of storage for

hash values of the minutiae. Since the user calculates double hashes as well, the needed

storage is 2.5 KB. In addition, the user calculates 10×|Gu| fake points. On the average,
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each user calculates 400 fake points. They cost of 12.5 KB of storage. As a result, the

total needed storage is 12.5 + 2.5 = 15 KB for a user in the first dataset.

If we take the second dataset into account, the average number of minutiae on the

server side is 51. Together with the points in the Tdist-neighborhood, the total number

of points is 51 × 441 = 22491. This number of points corresponds to 702.8 KB of

storage. Total storage needed for 292 subjects is approximately 200 MB. When the

double hashes is calculated at the verification stage, the storage need doubles for a

particular subject.

With regard to the memory requirement of the user, we calculate the average number

of minutiae of the users in the second dataset as 50. Thus, the user needs 1.56 KB of

memory to store hash values of these minutiae. However, the user calculates also the

double hashes and the storage need becomes 3.12 KB. In addition, 10×|Gu| fake points

are generated and these will cost 15.63 KB of storage. As a result, 3.12 + 15.63 = 18.75

KB of storage is needed in total.

All of the memory requirements given above are in acceptable limits. They can

easily fit into the memories of current technology devices.

5.7 Comparative Analysis with the Related Work

Since our protocol works with unordered biometrics, the best method to be com-

pared with our protocol is the fuzzy vault. Fuzzy vault is applied to the unordered set

of biometric features and it is a highly accepted method for key binding. To the best

of our knowledge, almost all fuzzy vault works in the literature do some improvements

on the quality of the biometric features, because fuzzy vault requires exactly the same

feature points when reconstructing the polynomial. Therefore, we analyse the perfor-

mance of fuzzy vault by utilizing our quantization and most reliable minutiae selection

methods. By doing so, we aim to strike a balance between our protocol and the fuzzy

vault.

In Table 3, FAR and FRR percentages of the fuzzy vault method, when it is applied

to our datasets, can be seen. Different polynomial degrees imply different key lengths.

Since we can represent x and y coordinates of the fingerprints with 10 bit values in both
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datasets, we have 20 bit abscissa values when we concatenate them for the fuzzy vault.

As a result, a key of length 160 bits can be hidden into a degree 7 polynomial with 8

(= 160/20) coefficients. Similarly, 180 bits of secret correspond to a polynomial with

degree 8 and 9 (= 180/20) coefficients. Same rule can be applied for degree 9, 10, 11

and 12 polynomials as well. Since our protocol generates 256 bit keys, it is appropriate

to compare our results with a fuzzy vault of degree 11 and degree 12 polynomials.

The fuzzy vault with a polynomial with degree 11 requires at least 12 common

minutiae to reconstruct the polynomial successfully. If a genuine user and the server

agree on less than 12 points, the user is rejected and this is counted as false reject. On

the other hand, if an impostor user and the server can find more than 11 minutiae in

common, the impostor subject is accepted and this is counted as false accept. With

this method of calculation, a fuzzy vault with degree 11 polynomial has 0.06% FAR

and 40.33% FRR for the first dataset. Our method achieves 0.57% EER with the same

dataset. In terms of FAR, the fuzzy vault is better than our protocol; however, FRR

of the fuzzy vault makes it impractical to be used in real world applications. For the

second dataset, a fuzzy vault with a degree 11 polynomial yields 0.80% FAR and 31.33%

FRR. Both of the percentages are worse than our protocol’s 0.48% EER. The results

are similar with degree 12 polynomial as well. Although, the fuzzy vault obtains 0.02%

FAR for the first dataset, its FRR is 46.33%. In other words, almost the half of the

genuine users are rejected with this method. Similarly, the fuzzy vault, applied to the

second dataset, results in 0.38% FAR and 34.53% FRR. Despite the better FAR, our

protocol outperforms fuzzy vault in terms of FRR, because 34.53% FRR is unacceptable

in any application.
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Table 3: FAR and FRR Values of Fuzzy Vault

Dataset Polynomial degree Key length (bits) FAR (%) FRR (%)

1st dataset

7 160 4.55 19.67

8 180 1.83 28.33

9 200 0.65 34.33

10 220 0.19 37.67

11 240 0 .06 40 .33

12 260 0 .02 46 .33

2nd dataset

7 160 10.64 17.31

8 180 5.91 20.81

9 200 3.14 24.60

10 220 1.62 28.20

11 240 0 .8 31 .33

12 260 0 .38 34 .53

We also compare our protocol with the fuzzy vault, in terms of brute-force attack

complexity. We already mentioned how we measure our protocol’s attack complexity.

We follow a similar approach while calculating the attack complexity of the fuzzy vault.

In order to reconstruct the polynomial with degree d, the attacker must try all possible

subsets with size d + 1 of the whole set including genuine and fake minutiae, Qu. It

is known that in the first dataset the average number of minutiae on the user side is

40. Together with the fake minutiae, the total number of points becomes 440. Thus,

the attacker must try to interpolate
(

440

12

)
polynomials, which is yielding a complexity

of 277. Moreover, with a degree 12 polynomial, the attacker must reconstruct
(

440

13

)
polynomials. Hence, in this case, the attack complexity is 282. As we mentioned

before, our protocol has the attack complexity of 294 hash and HMAC verifications for

the first dataset. Our protocol’s attack complexity is larger than both of them. In

addition, the total number of genuine and fake points in the second dataset is 550 and

our protocol’s attack complexity is 2118 hash and HMAC verifications. However, with a

degree 11 polynomial, the attack complexity of the fuzzy vault is
(

550

12

)
= 281 polynomial
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reconstructions for the second dataset. Moreover, with a degree 12 polynomial, the

fuzzy vault attack complexity becomes
(

550

13

)
= 286. None of the fuzzy vault attack

complexities is better than ours. As a result, we can conclude that our protocol’s

resistance against brute-force attacks is stronger than that of the fuzzy vault despite

the user side computational complexity overhead of the proposed protocol.
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6 Conclusions

In this thesis, we proposed a novel secure key agreement protocol using unordered

feature sets of biometric traits. This protocol is exemplified using the fingerprint bio-

metrics. The key is generated by making use of minutiae points in the fingerprint; no

random data is used while generating the key. This way, the user is strictly bound to

the cryptographic key. Moreover, there is no need to store any helper or random data

other than the biometric template of the user at the server side.

Our system uses hash functions and threshold mechanisms while generating the keys.

In addition, we carefully designed a fake minutiae generation strategy such that the fake

minutiae hide the genuine minutiae without being confused with the genuine minutiae.

For this purpose, we defined the concept of neighborhood relation. With the help of the

neighborhood relation, the fake minutiae increases the verification performance of the

system while not leaking any information to the attacker.

We analysed the security performance of our protocol in different aspects and with

two different datasets. Our results showed verification performance of 0.57% EER for

the first dataset and 0.48% EER for the second dataset. The resistance of our protocol

against intelligent brute-force, replay and impersonation attacks was also analysed.

Such attacks require 294 and 2118 trials on the average for first and second datasets,

respectively, which was shown to provide good computational security. In addition,

we employed entropy-based randomness analyses of the agreed keys. Our analyses

showed that approximately 84% of the keys’ entropy values are above 0.994 and all of

the keys’ entropy values are above 0.98 in the first dataset. Similarly, in the second

dataset, 99% of the keys have entropy values that are greater than 0.98, and almost

all of the keys has entropy values that are greater than 0.96. Both of the results
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imply that the keys are random enough to be used as cryptographic keys. Besides, the

distinctiveness of the generated keys was measured using the Hamming distance metric.

Our Hamming distance-based analyses showed that the same users’ and different users’

keys are quite indistinguishable from each other, regardless of the dataset. In terms

of computational complexity, the server side operations took approximately 29 and

217 hash and HMAC calculations, and the user side operations took approximately

239 and 241 hash and HMAC calculations for first and second datasets, respectively.

Although the user side complexity seem to be high, it is actually a trade-off between

using and not using any helper data to ease the agreement on the feature points in the

key generation process. Using a helper data leads to the necessity of new precautions

to avoid compromise of this helper data. Besides, the communication complexity and

the memory requirements of the system are acceptable for implementing the protocol

according to today’s technology.

Apart from the performance and security evaluation of the proposed protocol, a

comparative analysis with an existing work (fuzzy vault) was also performed. Our

analyses showed that our protocol outperforms the fuzzy vault in terms of both verifi-

cation performance and attack complexity point of views. However, the computational

complexity of the user side operations in our protocol is high and this fact should be

considered.

As a future work, template renewal process can be designed on the server side.

In other words, templates can be arranged as cancelable biometrics. Moreover, our

protocol can be adopted to other biometrics with ordered set of features, such as the

iris biometrics.
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