
Checking Sequence Construction Using Multiple Adaptive
Distinguishing Sequences

by

Canan Güniçen

Submitted to the Graduate School of Engineering and Natural Sciences

in partial fulfillment of the requirements for the degree of

Master of Science

Sabancı University

January, 2015

© Canan Güniçen 2015

All Rights Reserved

Acknowledgments

I would like to state my gratitude to my supervisor, Hüsnü Yenigün for everything

he has done for me, especially for his invaluable guidance, limitless support and

understanding.

I would like to thank Hasan Ural and Guy-Vincent Jourdan for supporting this work

with precious ideas and comments.

I would like to thank my family for never leaving me alone.

The financial support of Sabanci University is gratefully acknowledged.

I would like to thank TUBITAK for the financial support provided.

iv

Çoklu Durum Belirleme Dizileriyle Kontrol Dizisi Üretimi

Canan Güniçen

EECS, Yüksek Lisans Tezi, 2015

Tez Danışmanı: Hüsnü Yenigün

Tez Eşdanışmanı: Guy Vincent Jourdan

Anahtar Kelimeler: Biçimsel Sınama Yöntemleri, Kontrol Dizisi, Çoklu Durum

Belirleme Dizileri

Özet

Bu çalışmada Sonlu Durum Makinaları (SDM) bazlı sınamada yeni bir

kontrol dizisi üretim yöntemi verilmektedir. Tek bir durum tanıma dizisi

kullanmakta olan literatürdeki mevcut yöntemlerin aksine, birden fazla

durum tanıma dizisinin kullanılması önerilmektedir. Birden fazla durum

tanıma dizisinin kullanımı ile kontrol dizisi üretimi sırasında daha kısa

durum belirleme dizileriyle kontrol dizisinin uzunluğunun azaltılacağı ön-

görülmektedir. Önerilen yöntem iki safhadan oluşmaktadır. Ilk safhada,

birden fazla durum tanıma dizisi kullanılarak bir sınama dizisi ! oluştu-

rulmaktadır. Ikinci safhada ise ! tekrar ele alınıp yapılan eklentilerle bir

kontrol dizisi haline getirilmektedir. Bu çalışmada yeni yöntemin mevcut

yöntemlere göre daha kısa kontrol dizileri ürettiğini gösteren deneysel

çalışmalar da sunulmaktadır.

v

Checking Sequence Construction Using Multiple Adaptive

Distinguishing Sequences

Canan Güniçen

EECS, Master’s Thesis, 2015

Thesis Supervisor: Hüsnü Yenigün

Thesis Co–Supervisor: Guy Vincent Jourdan

Keywords: Formal Testing Methods, Checking Sequences, Adaptive Distinguishing

Sequences

Abstract

A new method for constructing a checking sequence for finite state ma-

chine (FSM) based testing is introduced. Unlike its predecessors, which

are based on state recognition using a single state identification sequence,

our approach makes use of multiple state identification sequences. Using

multiple state identification sequences provides an opportunity to con-

struct shorter checking sequences, based on a greedy approach of choos-

ing a state identification sequence that best suits our goal at di↵erent

points during the construction of the checking sequence. Our approach

has two phases. In the first phase, a test sequence ! is constructed using

multiple state identification sequences. The sequence ! is not guaranteed

to be a checking sequence, however it is further extended to a checking

a sequence by the second phase of our method. We present the results

of an experimental study showing that our two phase approach produces

shorter checking sequences than the previously published methods.

vi

Contents

1 Introduction 1

2 Preliminaries 6

2.1 FSM Fundamentals . 6

2.1.1 Extending Next State and Output Functions 7

2.1.2 Some Properties of FSMs . 7

2.2 Representing an FSM by a Directed Graph 8

2.2.1 Paths of Input Sequences . 9

2.3 Distinguishing Sequences . 9

2.3.1 Preset Distinguishing Sequence 9

2.3.2 Adaptive Distinguishing Sequence 10

2.3.3 Multiple Adaptive Distinguishing Sequence 11

2.4 Checking Sequences based on Distinguishing Sequences 12

3 State Recognition using Multiple ADS Trees 14

3.1 Cross Verification . 15

3.2 Extended State Recognition Definition 19

3.3 Checking Sequences: Su�cient Condition 21

3.4 Generation of Recognition Automaton 23

3.5 State Recognition on Recognition Automaton 24

3.6 Merging Nodes on Recognition Automaton 27

vii

4 Checking Sequence Generation Algorithm 33

4.1 Mutual Dependency Between ADS Trees 34

4.2 Phase 1: Sequence Generation . 36

4.2.1 Sequence Extension Options 36

4.3 Phase 2: Checking if a sequence is a checking sequence 48

5 Construction and Selection of ADS Trees 54

5.1 ASP Formulation of ADS . 55

5.1.1 Optimization . 58

5.2 ADS Tree Generation Using an ADS 58

5.3 ADS Tree Selection Algorithm . 62

6 Experimental Results 64

6.1 Comparison with Simao et al.s Method 64

6.2 Contribution of Pair ADS Tree Selection Algorithm 68

6.3 The Negative E↵ect Of Cross Verification 70

6.4 Contributions of Phase 1 and Phase 2 71

7 Conclusion and Future Work 72

viii

List of Figures

2.1 The FSM M0 . 6

2.2 A Path P
M,x̃

, constructed by using input sequence x̃ and the FSM M0 9

2.3 An ADS Tree A1 . 11

2.4 An ADS Tree A2 . 11

2.5 An ADS Tree A3 . 11

3.1 The FSM M1 with two ADS trees: a and b. 16

3.2 A subgraph of the FSM M0: aasaaa is a CS 17

3.3 A subgraph of the FSM M0: bbtbbb is a CS 17

3.4 Spanning tree of the FSM M1 . 18

3.5 This FSM is not isomorphic to the M1 but produces the same output

response to aasaaabbtbbb . 18

3.6 Two subpaths of P
N,!

. 20

3.7 A Path P
N,!

. 24

3.8 A Path P
M,!

. 24

3.9 Showing ADS tree A2 is legal . 26

3.10 Valid observations based on A2 . 26

3.11 An Application of Rule 1 and 2 on R 27

3.12 An Application of Rule 3 and 4 on R 28

3.13 Merging nodes n4, n5 and n6 on R 28

3.14 Merging nodes n4 and n12 on R . 29

ix

3.15 Merging nodes n4 and n13 on R . 29

3.16 Showing ADS tree A3 is legal . 30

3.17 Valid observations on R based on the ADS Tree A3 30

3.18 Merging nodes n7, n8 and n14 on R 31

3.19 Showing ADS Tree A1 is legal . 31

3.20 Merging nodes n1, n2 and n10 on R 32

3.21 A Collapsed Recognition Automaton R 32

4.1 Two subpaths of P
N,!

. 35

4.2 Backtracking Example . 37

4.3 The Tree T constructed for backtracking 38

4.4 Updated Recognition Automaton R after sequence extension 39

4.5 Recognition Automaton R after merging operations 39

4.6 Transition verification example . 41

4.7 Sequence extension on R . 42

4.8 Updated Recognition Automaton R after transition verification . . . 43

4.9 Missing Transition Verification Example 44

4.10 Recognition Automaton R after sequence extension 45

4.11 Recognition Automaton R after merging operations 45

4.12 A Recognition Automaton R . 46

4.13 Valid Observation of ADSs on the Path P
N,!

. 49

4.14 Sequence Extension on the Path P
N,!

0 51

4.15 A Path P
N,!

0 after merging nodes n7, n8, n9, n14 and n15 51

4.16 A Path P
N,!

0 after merging nodes n1, n2, n3, n10, n11, n16, n17 52

4.17 Resulting Recognition Automaton R 53

5.1 A Partial ADS Tree . 60

5.2 Initial Partial ADS Tree . 61

x

5.3 A Partial ADS Tree Step 1 . 61

5.4 A Complete ADS Tree . 62

xi

List of Tables

3.1 ADS Table . 25

6.1 Improvement in CS Lengths . 65

6.2 Improvement in CS Lengths with 4 additional input symbols 66

6.3 Improvement in CS Lengths with 8 additional input symbols 66

6.4 Experimental results for FSMs without an improvement 67

6.5 Improvement in CS Lengths (Single ADS Tree Selection Algorithm) . 68

6.6 Improvement in CS Lengths with 4 additional input symbols (Single

ADS Tree Selection Algorithm) . 69

6.7 Improvement in CS Lengths with 8 additional input symbols (Single

ADS Tree Selection Algorithm) . 69

6.8 Percentage of single ADS tree included in multiple ADS trees 70

6.9 Improvement in CS Lengths without Cross Verification 70

6.10 Contribution of Phase 2 to CS Length 71

xii

Chapter 1

Introduction

A Finite State Machine (FSM) is an abstract structure with a finite set of states

where the application of an input symbol results in a state transition along with

the production of a respective output symbol. FSMs have been used to model

many types of systems in diverse areas including sequential circuits [14], software

design [10], communication protocols [7, 10, 11, 22, 25], object-oriented systems

[5], and web services [4, 18]. Many systems are implemented using FSM-based

models. FSM-based modelling techniques are also often employed in defining the

control structure of a system specified by using languages such as SDL [3], Estelle

[8], and the State Charts [17]. With the advanced computer technology, as the

systems constructed using FSM-based modelling became more complex, distributed

and large to fulfill complicated tasks, it becomes harder to create systems, get the

functionality of systems right and test them since they are becoming less reliable.

As an inevitable result, testing becomes an indispensable part of the system design

and implementation. Considerable amount of the cost of software development

is spent on software testing. Thus, the research that perceives testing FSM-based

models as an optimization problem and ensures the reliability of these models gained

importance. This motivates the study of FSM-based testing to ensure the correct

functioning of systems and to discover the aspects of their behaviours. Therefore,

FSM-based testing is a research area that is motivated to answer these reliability

demands.

Testing is a fundamental step in any software development process. It consists

in applying a set of experiments to a system, with multiple aims, for obtaining

1

some piece of unknown information to check the correctness or to measure the

performance of the system. These di↵erent aims give rise to the di↵erent classes

of testing problems. Some classes of the testing problems, pioneered in the paper

of Moore [13]. Here we will consider two types of testing problem. In the first

type, we are given a finite state machine with a known state-transition diagram but

with an unknown current state. We are asked to perform an experiment in order to

find the unknown current state. In other words, the specification of the finite state

machine is available, but we do lack information about in which state it is currently.

The information about its current state is found by applying an input sequence to

the finite state machine so that information desired about its current state can be

deduced from its input/output (I/O) behavior. State identification problem can be

given as a specific example for this type of testing problem. In the state identification

problem, the initial state of the machine is identified by applying a test sequence

which is a UIO(Unique Input/Output) sequence [29] and by observing the output

response of the machine, we are able to tell which state the machine was because

each di↵erent state of an FSM gives a di↵erent output response to the UIOs.

The second type of testing problem we consider is conformance testing. In con-

formance testing, we have an implementation which we want to test whether it

conforms to its specification or not. In other words, conformance testing tries to

determine if an implementation, that is intended to implement some specification, is

a correct implementation of its specification or not. In general, we lack information

about the implementation and we would like to deduce this information by providing

a sequence of input symbols to the implementation and observing the sequence of

output symbols produced. Let FSM M be the specification of a system and N be

an implementation. Conformance testing tries to answer the question whether N is

equivalent to M . The notion of equivalence of FSMs is that for any I/O pair that

is defined for the specification M , the implementation N should produce the same

sequence of output symbols O like M as a response to the input sequence I. An

Implementation Under Test (IUT) is considered to be an FSM N given as a black

box. IUT is an FSM N which we lack information about its transitions we assume

that it has at most as many states as M and to have the same input alphabet as

M . Thus the approach that is used to test an FSM-based system is to apply an

input sequence and observe the output symbols produced by the IUT. Conformance

testing uses this sequence of output symbols obtained by observing the response of

the input sequence and tries to deduce the correct functioning of IUT by comparing

2

the output symbols produced by the IUT against the expected output symbols pro-

duced by the specification FSM M . This is called the conformance testing or the

fault detection problem. An input sequence that can determine if IUT is a correct

or a faulty implementation of the specification is called a checking sequence.

State verification is a crucial part of the conformance testing since the main aim

is to find a correspondence between the states of the implementation N and the

specification M . Also, for an input sequence to be a checking sequence, it has to

verify every transition of the specificationM [31]. State verification experiment gives

the information at which state the IUT currently is. A transition verification can

only be performed by recognizing the initial and the final states of the transition.

Recognition of states is required to determine whether the IUT is in the correct

state before the input symbol of the transition is applied, also to check if it reaches

to the correct state after the application of the input symbol of the transition,

while giving the expected output symbol. There are special sequences that solve

the state verification problem. Three techniques are proposed for state verification:

Distinguishing Sequence (DS) [29], Unique Input Output (UIO) sequences [29] and

Characterizing Sets [23]. Checking sequence generation methods using the above

special sequences are called the D-Method [29], U-Method [29], andW-Method [10, 27]

respectively.

According to the survey in [25], the earliest published work on conformance testing

dates back to the 50’s and activities mainly focused on automata theory and sequen-

tial circuit testing. Machine identification problem was published in 1956 Moore’s

paper [13]. In this paper, he studied the problem of machine identification where

there is an FSM with a known number of states and problem is to determine the

state diagram of the unknown FSM by observing its I/O behaviour. As well as

the machine identification problem, he also raised the topic of conformance testing

problem.

In 1964, Hennie [19] proposed a method called D–method that is if the FSM has

a preset distinguishing sequence of length L then one can construct a checking

sequence of length polynomial in L and the number of states of the FSM. However,

not every FSM has a PDS so that Hennie also proposed a method that generates

exponentially long checking sequences for the case where PDS cannot be found for

an FSM. Following this work, it has been widely assumed that fault detection is

easy if the FSM has a PDS and hard otherwise. Later other checking sequence

3

generation methods that are based on UIO sequences [1, 29], characterizing sets [10]

and transition tours [11, 27] were proposed.

Although there were some studies in late 60’s and early 70’s, conformance testing

became a more active research area at the beginning of 90’s and is studied due

to its applications in testing communication protocols. Because protocols are set

of rules and behaviours that describe how a computer system in a network should

behave and their implementations should be tested to decide whether they conform

the defined behaviours or not. Therefore, it made the conformance testing one of

the central problems in protocols so that they are modelled by FSMs with a small

number of states, but a large number of input and output symbols. The methods

proposed so far was only used in some special cases, since conformance testing of

large machines with many states, input and output symbols cannot be handled by

using a brute force approach requiring an exponential length test sequence.

Later studies focused on the cases where the checking sequence length stays polyno-

mial. Those were the methods which use PDS for state verification where a reliable

reset in the implementation may or may not be available. In general, some im-

provements are introduced using global optimization techniques. In [1], UIO is used

instead of the PDS and the checking sequence generation problem is modelled as a

rural Chinese postman tour problem and a checking sequence generation problem

is solved by computing the minimum-cost tour of the transition graph of a finite

state machine. This optimization problem is further improved in [20, 21]. In [21],

the method that uses a predefined set of sequences for state verification and an

acyclic set of transitions is improved by stating how these sets should be chosen. In

[20], method proposed in [21] is further improved by making the state verification

sequences to verify set of states at once.

This optimization problem is further improved by eliminating redundant transition

verification subsequences [9]. In [32], the checking sequence generation problem is

further optimized by eliminating the overlapping parts of the PDS. These were all

methods trying to provide global optimization. In [2], Simao et al. proposed a

method that optimizes the sequence locally, instead of global optimization. The

basic idea in [2] is to exploit overlapping between sequences used in state verifica-

tion. They obtained better results in comparison to global optimization methods in

most cases with this approach. In this thesis, we also try to optimize checking se-

quence locally, but we reduce the length of the checking sequence by using multiple

4

ADSs(Adaptive Distinguishing Sequences) for state verification.

There are many methods to build checking sequences based on ADSs. One point that

is common to many of these methods is the requirement to select one ADS among the

possible ones, when there are many. Some results are known regarding the selection

of such a sequence: in [33], it is shown that some of the possible state identification

sequences may lead to shorter checking sequences because they would facilitate

the overlap. It is generally believed that choosing an overall shorter distinguishing

sequence should yield shorter checking sequences, but [30] have shown that finding

the shortest ADS is NP-complete. By and large, most published papers on the topic

of checking sequence generation are essentially mute on the topic of the choice of

the ADS and focus mainly on generating as good a checking sequence as possible,

given the selected ADS. Nonetheless, none of the published papers considers using

multiple state identification sequences in checking sequence construction. Therefore,

this thesis pioneers usage of multiple state identification sequences.

The contributions of this thesis to the conformance testing are threefold. First,

we present an Answer Set Programming (ASP) formulation to generate an ADS.

Therefore, we utilize the construction of ADSs. Secondly, we present a method that

determines whether a given input sequence is an adaptive distinguishing sequence

based checking sequence or not. Lastly, we present a method that generates a check-

ing sequence. Our main contribution is using multiple ADSs to generate a checking

sequence. We redefine the concept of state recognition in the context of multiple

ADSs. In addition, we investigate the advantages and disadvantages of recognizing

a state with multiple ADS. We introduce the concept of Cross Verification which

is essential for state recognition by multiple state identification sequences. Experi-

ments show that our method achieves a reduction in the length of checking sequence

compared to the method in [28] that uses a single ADS to generate a checking se-

quence.

The rest of this thesis is organized as follows. In Chapter 2, the basic information

on FSMs and conformance testing is provided. In Chapter 3, concept of state

recognition in the context of the multiple ADS is presented. In Chapter 4, our

checking sequence generation algorithm is provided in detail. In Chapter 5, we

present the ASP formulation of the shortest ADS. In Chapter 6, we present the

experimental results. Finally Chapter 7 contains the concluding remarks.

5

Chapter 2

Preliminaries

2.1 FSM Fundamentals

An finite state machine (FSM) is specified by a quintuple M = (S,X, Y, �,�), where

• S is a finite set of states with n = |S|.

• X is a finite set of input symbols with p = |X|.

• Y is a finite set of output symbols with q = |Y |.

• � is a state transition function that maps S ⇥X to S.

• � is an output function that maps S ⇥X to Y .

s1

s2 s3

a/0

b, c/1

a, c/1
b/0

a, b/1

c/0

Figure 2.1: The FSM M0

6

An FSM M0 used as a running example throughout the thesis is depicted in Figure

2.1. Here, S = {s1, s2, s3}, X = {a, b, c}, and Y = {0, 1}. From the arc s1 ! s2 with

label b/1, it is possible to deduce that, if M0 receives input symbol b when in state

s1, then it produces the output symbol 1 and moves to state s2. A transition ⌧ is

defined by a tuple (s
i

, s
j

; x/y) in which s
i

is the starting state, x is the input symbol,

s
j

= �(s
i

, x) is the ending state, and y = �(s
i

, x) is the output symbol.

2.1.1 Extending Next State and Output Functions

The functions � and � can be extended to take input sequences as follows. For a state

s 2 S, an input sequence x̃ 2 X?, and input symbol x 2 X and let xx̃ 2 X? denote

the input sequence obtained by concatenation of x̃ and x (that is a juxtaposition

of input (output) sequences and input (output) symbols mean concatenation) then

the transition and output functions are extended to sequence of inputs as

• �̃(s, x.x̃) = �̃(�(s, x), x̃) where �̃(s, ") = s.

• �̃(s, x.x̃) = �(s, x).�̃(�(s, x), x̃) where �̃(s, ") = ".

Note that, for the empty sequence " we define �(s, ") = s and �(s, ") = ". Through-

out the thesis, we will denote functions �̃ and �̃ as � and �, respectively.

2.1.2 Some Properties of FSMs

Two states s
i

and s
j

of M are equivalent if, for every input sequence x̃ 2 X?,

�(s
i

, x̃) = �(s
j

, x̃). If �(s
i

, x̃) 6= �(s
j

, x̃), then x̃ distinguishes between s
i

and s
j

. For

example, the input sequence a distinguishes states s1 and s2 of M0.

Now we will define some properties regarding FSMs with the help of the definition

of equivalent states.

• FSM M is completely specified if the transition function �(s
i

, x) and �(s, x) is

defined for each s 2 S and for each input symbol x 2 X. In other words, FSM

M is completely specified if � and � functions are total functions, otherwise it

is partially specified.

7

• Two FSMs, M1 and M2 are equivalent if and only if, for every state of M1,

there is an equivalent state of M2 and vice versa.

• FSMM is minimal if there is no FSM with fewer states thanM is equivalent to

M . For an FSM M to be minimal, no two states of M are equivalent. There

are algorithms that computes an equivalent minimal FSM when an FSM is

given as an input [13].

• FSM M is strongly connected if for each pair of states (s
i

, s
j

) there exists an

input sequence x̃ such that �(s
i

, x̃) = s
j

.

• FSM M deterministic if for each state s 2 S and for each input symbol x 2 X,

M has at most one transition with start state s and input symbol x.

Note that, the way we define an FSM by using functions for � & � (instead of

relations) only allows us to denote deterministic machines. For nondeterministic

machines, relations are used instead of functions. In this thesis, we consider only

deterministic and completely specified FSMs. Therefore, � and � are total functions.

2.2 Representing an FSM by a Directed Graph

An FSM M can be represented by a digraph G = (V,E) where a set of vertices

V represents the set of states S of M , and a set of directed edges E represents

the transitions of M . Each edge e = (v
i

, v
j

; x/y) 2 E, is a state transition ⌧ =

(s
i

, s
j

; x/y) from the state s
i

to state s
j

with an input symbol x 2 X and an output

symbol y 2 Y , where v
i

and v
j

are the starting and ending vertices of e (states of

⌧), and input/output (i.e., I/O) pair x/y is the label of e, denoted by label(e). Two

edges e
i

and e
j

are called adjacent if the ending vertex of e
i

and the starting vertex

of e
j

are same. We will also use (v
i

, v
j

) to denote an edge when the edge label is not

important.

A path P = (n1, n2; x1/y1)(n2, n3; x2/y2) . . . (nr�1, nr

; x
r�1/yr�1), r � 1, of G =

(V,E) is a finite sequence of adjacent (not necessarily distinct) edges in E. The I/O

sequence x1x2 . . . xr�1/y1y2 . . . yr�1 is called the label of P . P is also represented by

(n1, nr

; x̃/ỹ), where x̃/ỹ is the label of P .

For two paths P1&P2, P1P2 denotes the concatenation of P1&P2, provided that the

ending vertex of the last edge in P2 is the same as the starting vertex of the first

8

edge in P2. A path P 0 is a subpath of P , if there exist paths P1 and P2 such that

P = P1P
0P2.

2.2.1 Paths of Input Sequences

Let P
M,x̃

be the path that starts from a designated state of M and follows the

transition function along the application of the input sequence x̃. For example, if

we assume that we start from the state s1 of M0 and x̃ = aabb, then P
M,x̃

is shown

in Figure 2.2.

Since the starting state is known, the state corresponding to each node in P
M,x̃

is

known. These states are given as s
i

’s in Figure 2.2. With each node of P
M,x̃

, we

also associate an identifier m
i

in order to be able to refer to the individual nodes in

P
M,x̃

.

m1

s1

m2

s1

m3

s1

m4

s2

m5

s2

a/0 a/0 b/1 b/0

Figure 2.2: A Path P
M,x̃

, constructed by using input sequence x̃ and the FSM M0

This kind of path representation will be used to define Recognition Automaton which

is one of the key concepts of this thesis.

2.3 Distinguishing Sequences

As stated in 1, we will consider the use of distinguishing sequences for checking

sequence generation. Distinguishing sequences are special sequences used for state

identification. There are two types of distinguishing sequences: preset and adaptive

distinguishing sequences.

2.3.1 Preset Distinguishing Sequence

A Preset Distinguishing Sequence (PDS) of an FSM M is an input sequence D in

response to which every state of M gives a distinct output sequence. For instance,

9

ba is a PDS for FSM M0 shown in Figure 2.1.

• �(s1, ba) = 11

• �(s2, ba) = 01

• �(s3, ba) = 10

If the specification FSM has a PDS, then the state verification problem is solved by

applying the PDS to the state that is to be verified. However not every minimal

FSM has a PDS [23]. To determine if an FSM has a PDS is a PSPACE-complete

problem [24].

2.3.2 Adaptive Distinguishing Sequence

An Adaptive Distinguishing Sequence (ADS) of M is a decision tree rather than a

sequence. Di↵erent from the conventional terminology in the literature, we call an

ADS of an FSM M as ADS tree of M . We use the term ADS to refer to an ADS

of a state. ADS of the state s corresponds to a root-to-leaf path of an ADS tree

related to the states. Below we make formal definitions of ADS and ADS tree.

An ADS tree A for an FSM with n states, is a rooted decision tree with n leaves,

where the leaves are labeled by distinct states of M , internal nodes are labeled with

input symbols, the edges emanating from a node are labeled with distinct output

symbols. The concatenation of the labels of the internal nodes on a path from

root to leaf labeled by a state s
i

represents an ADS A
i

of the state s
i

and the

concatenation of edge labels on the same path corresponds to the output sequence

Y
i

that is produced in response to A
i

by s
i

. In other words, �(s
i

,A
i

) = Y
i

.

Note that, since the output symbols on the edges originating from the same node

are distinct, for any other state s
j

, we have �(s
i

,A
i

) 6= �(s
j

,A
i

).

An ADS tree A, specifies an ADS for each state s
i

in M . We also use the notation

A = {A1, . . . ,An

} to denote the ADS tree A as a set of ADSs for the states of M .

Note that PDS is a special case of ADS where for all states s
i

, A
i

= D. Therefore

every FSM which has a PDS also has an ADS. However the inverse is not true.

That is there exist FSMs with an ADS but no PDS. Compared to PDS, ADS has

10

some advantages. Determining the existence of an ADS and finding one if exist is

polynomial in number of states and number of inputs [24].

2.3.3 Multiple Adaptive Distinguishing Sequence

Throughout this paper, we use multiple ADS trees such that A = {A1,A2, . . . ,Ak}
where k � 1 is the number of ADS trees and Ai is the ith ADS tree in the set. Since

there are multiple ADS trees, then every state s
i

has multiple ADSs. The set of all

ADSs for a state s
i

represented by A

i

= {A1
i

,A2
i

, . . .Al

i

} where 1  l  k. Note

that k � 1. Since more than one ADS tree in A can have the same ADS for s
i

.

a

a

s2s3

0 1

s1

0 1

Figure 2.3: An ADS Tree A1

b

b

31

0 1
2

0 1

Figure 2.4: An ADS Tree A2

c

c

12

0 1
3

0 1

Figure 2.5: An ADS Tree A3

For FSM M0 given in Figure 2.1, a set of ADS trees A = {A1,A2,A3} is given in

Figures 2.3, 2.4 and 2.5. For this set of ADS trees, the set of ADSs of the states of

M0 are:

• A1 = {a, bb, cc}

• A2 = {aa, b, cc}

• A3 = {aa, bb, c}

11

This thesis considers the problem of generating an e�cient checking sequence from

a deterministic and completely specified FSM M by using multiple adaptive distin-

guishing sequences.

2.4 Checking Sequences based on Distinguishing

Sequences

A checking sequence generated from an FSM is used in testing to demonstrate

correctness of an implementation under test. In a checking sequence, distinguishing

sequences are applied in order to recognize the state of the implementation.

Let M = (S,X, Y, �,�) denote an FSM that models a black box implementation N .

A checking sequence is a test sequence that verifies the implementation is correct.

We have the following usual assumptions on N . It has the same I/O alphabet as

M , and the number of states of N is at most the same as that of M . The faults

in the implementation are caused by the faulty implementation of output and/or

next state functions. Let �(M) be the set of FSMs that have at most n states and

the same input and output alphabets as M and N 2 �(M). N is isomorphic to

M if there is a one-to-one and onto function f on the state sets of M and N such

that for any state transition (s
i

, s
j

; x/y) of M , (f(s
i

), f(s
j

); x/y) is a transition of

N . A checking sequence for M is an input sequence starting at a designated state

of M and distinguishes M from any N 2 �(M) that is not isomorphic to M . In

other words, when a checking sequence is applied to any faulty implementation of

the specification M , the output produced by the black box implementation will be

di↵erent than the output produced by the specification M as an indication of one

or more faults.

The main aspect of a checking sequence is that it defines a one to one and onto

function f between state set of specification M and state set of implementation N .

This is accomplished by the concepts of state recognition and transition verification.

We will define these concepts using distinguishing sequences of FSM M as follows.

Let P = (n1, nr+1; x̃/ỹ) be a path in G from n1 to n
r+1 with the label x̃/ỹ =

x1x2 . . . xr

/ y1y2 . . . yr. Also let A be an ADS of M . There are two types of recog-

nitions, namely d-recognition and t-recognition [31]. A node in P is said to be

recognized as some state of M if it is either d-recognized or t-recognized where

12

d-recognition and t-recognition are defined as follows:

• A node n of P is d-recognized as the state s
i

of M if n is the starting node of

a subpath of P with label A
i

/�(s
i

,A
i

)

• A node n
i

of P is t-recognized as state s of M if there are two subpaths

(n
q

, n
i

; x̃/ỹ) and (n
j

, n
k

; x̃/ỹ) of P such that n
q

and n
j

are recognized as the

same state s0 of M , n
k

is recognized as state s of M .

In addition, a transition verification is defined as follows. A transition ⌧ = (s
i

, s
j

; x/y)

of M is verified if there is an edge (n
k

, n
k+1; x/y) of P such that nodes n

k

and n
k+1

are recognized as states s
i

and s
j

of M respectively.

The following theorem from [31] (rephrased in our notation) states a su�cient con-

dition for a checking sequence.

Theorem 1 Let ! be the input portion of the label of a path P of directed graph G

(for FSM M) such that every transition is verified in P . Then ! forms a checking

sequence for M .

This thesis considers the problem of generating a checking sequence by using mul-

tiple ADS trees. The state recognitions and transition verifications is performed by

using multiple ADSs. This requires some modifications on the definition of state

recognition and transition verification concepts. These modifications are presented

in the next chapter.

13

Chapter 3

State Recognition using Multiple ADS Trees

In the literature state recognition is performed using a distinguishing sequence or a

characterizing set or a set of UIO sequences but none of them use multiple of these

sequences to recognize a state.

Let M be a minimal, completely specified, deterministic and strongly connected

FSM with n states. �(M) denotes the set of FSMs such that each FSM N 2 �(M)

has at most n states and has the same input and output alphabets as M . An input

sequence ! is a checking sequence for M if and only if ! distinguishes between M

and all elements of �(M) that are not isomorphic to M . A checking sequence ! is

designed to be applied at a particular state s1 of M . Before the application of a

checking sequence, the implementation is initialized to bring N to its state (node

n1) which is supposed to correspond to s1 of M (e.g. by using a homing sequence

followed by a transfer sequence). Then ! is applied to node n1 of N . ! is a checking

sequence for M if and only if �(s1,!) 6= �(n1,!) for any faulty implementation N .

Hence when checking sequence ! is applied on any faulty implementation N , the

output produced by N will be di↵erent than the output produced by specification

M .

A checking sequence defines a one to one and onto function f between the states of

the specification M and the nodes of the implementation N and tries to show that

there is a correspondence between specification M and implementation N in terms

of transition and output functions. Thus, our job is to find this correspondence by

using state recognitions. But in the context of multiple ADS trees, state recognition

14

di↵ers from the conventional definition. We explain the state recognition in the

context of multiple ADS trees in this chapter.

Let P
M,!

be the path that is produced by the application of checking sequence !

on s1 of M where nodes are labeled as m
i

’s. Let P
N,!

be the path that is produced

by the application of ! on N after the initialization of N as explained above where

nodes are labeled as n
i

’s. For any m
i

2 P
M,!

, we know the corresponding state s
j

of M by tracing the application of ! on M starting from s1. For N to be a correct

implementation of M , for any n
i

, we should be able to understand that n
i

corre-

sponds to the same state as m
i

. Therefore, we already have an idea for each n
i

to

which state it should turn out to correspond in the end. However, we need to derive

su�cient evidence for the state corresponding to n
i

’s based on the response of n
i

to

the part of the checking sequence applied to it. The evidence we gather along the ap-

plication of ! is defined as the state recognition in the context of multiple ADS tree

and the rules we use for state recognition are given below. As stated before, there

are similar state recognition rules considering the case where only one ADS tree

is used in the literature. In our work, we use multiple ADS trees and extend the

definition of state recognition that uses multiple ADS trees. The extended definition

of state recognition using multiple ADS trees is recursive. We first give an intuitive

explanation to provide a better understanding.

3.1 Cross Verification

Using multiple ADS trees has a particular disadvantage, which we call Cross Ver-

ification. In order to explain the problem, let us suppose that Aj

i

and Ak

i

are two

ADSs for a state s
i

, and they are applied to the implementation at nodes n and n0,

and the expected outputs are observed. When one considers the application of Aj

i

and Ak

i

independently, both n and n0 are recognized as the state s
i

. However, we

cannot directly infer from the application of Aj

i

and Ak

i

that n and n0 are actually

the same implementation states. A faulty implementation may have two di↵erent

states, and we might be applying Aj

i

and Ak

i

at those states. Therefore, one needs to

make sure that n and n0 are actually the same implementation states as well. This

requires some additional information to be extracted based on the observations from

the implementation.

15

s1

s2 s3

a/1 b/1

s/4

t/4

a/2

b/2

a/3

b/3

Figure 3.1: The FSM M1 with two ADS trees: a and b.

To explain the need for cross verification, suppose that we are given the FSM M1

in Figure 3.1. We can split the original FSM M1 into two subgraphs such that each

subgraph has all the states of the original FSM and a subset of the edges. The

union of the subgraph is the original graph.

We split the M1 into two subgraphs as shown in Figure 3.2 and Figure 3.3. Then

we generate checking sequences for each subgraph, using a di↵erent ADS tree each

time. We use two simple ADS trees a and b for subgraphs shown in Figure 3.2 and

Figure 3.3, respectively. Then, we generate the checking sequences for each graph

as CS1 = aasaaa and CS2 = bbtbbb. Since both sequences start and end in state

1, we can simply concatenate them to attempt to create a checking sequence for

original FSM M1, e.g. CS3 = aasaaabbtbbb. Unfortunately, the resulting sequence

is not a checking sequence: the FSM shown in Figure 3.5 produces the same output

sequence as the response to CS3 with the FSM of Figure 3.1, although it is not

isomorphic to the FSM shown in Figure 3.1.

16

s1

s2 s3

a/1

s/4

a/2

a/3

Figure 3.2: A subgraph of the FSM M0: aasaaa is a CS

s1

s2 s3

b/1

t/4

b/2

b/3

Figure 3.3: A subgraph of the FSM M0: bbtbbb is a CS

The problem is that although each subgraph is independently correctly verified by

its own checking sequence, the states that are identified in each subgraph do not

correspond to each other (in some sense, states s2 and s3 are swapped between the

two subgraphs in this example). What we need to do, in addition to the above, is to

force the fact that the node recognized by each application of the ADS in di↵erent

subgraphs correspond to one another. One simple solution is to create a spanning

tree on top of the original graph, and add the recognition of the spanning tree in

each of the subgraph, This way, we know that the nodes in di↵erent subgraphs

correspond to the same implementation states as well.

17

s3

s1

s2

a/3

s/4

Figure 3.4: Spanning tree of the FSM M1

For example, if we add the spanning tree shown in Figure 3.4, the checking sequence

for subgraph in Figure 3.2 doesn’t change since the tree is included in it, while the

checking sequence for the second subgraph in Figure 3.3 becomes CS2 = bbtbbbsbab,

and the combined checking sequence is aasaaabbtbbbsbab, which does not produce

the expected output sequence on the FSM of Figure 3.5.

s1

s2 s3

a/1 b/1

s/4

t/4

a/2

b/3

a/3

b/2

Figure 3.5: This FSM is not isomorphic to the M1 but produces the same output
response to aasaaabbtbbb

In our algorithm, we overcome this problem by di↵erentiating between the con-

cepts of “d-recognition” and “d-recognition by an ADS Aj

i

”. We declare a node

d-recognized if it is d-recognized by Aj

i

for all j’s. This requirement forces an obser-

vation of the application of each ADS Aj

i

on the same implementation state. Such

a set of observations provides information that the states recognized by di↵erent

ADSs are the same implementation states. Therefore, we cross verify the node by

all ADSs.

18

3.2 Extended State Recognition Definition

Consider a checking sequence ! and ADS tree Aj and the path P
M,!

. The checking

sequence generation methods that use single ADS tree in the literature guarantee

that there is a subpath (n
p

, n
q

/Aj

i

;�(s
i

,Aj

i

)) for every state s
i

of M where n
p

cor-

responds to s
i

. In other words, for an ADS tree Aj, a node n
p

in P
N,!

is recognized

as the state s
i

if Aj

i

is applied at n
p

and the response is �(s
i

,Aj

i

). This provides an

evidence of the existence of a state in N that is similar to s
i

, which is actually the

state of N corresponding to the node n
i

. If we have such an evidence for every state

s
i

in P
N,!

, then we call Aj as a legal ADS tree for N .

In multiple ADS tree case, we also need to check whether all ADSs Aj

i

of ADS trees

Aj are applied to the nodes corresponding to the state s
i

. All ADS trees Aj has to

be a legal ADS tree for a sequence to be a checking sequence. However, applying

each ADS Aj

i

to the node n
p

corresponding to the state s
i

is costly. Therefore, we

gather information through the nodes that are already recognized by an ADS that

belongs to a legal ADS tree as the same implementation states. In other words

in P
N,!

, we can combine the information belonging to the di↵erent nodes that are

d-recognized as same implementation states. Acquiring this indirect information

relies on the nodes that are d-recognized by an ADS belongs to a legal ADS tree.

That’s why we call this notion recursive.

Since the legality of an ADS tree is a recursive notion, we explain it inductively.

Therefore the base case for the notion of a legal ADS tree is following:

An ADS tree Aj is called a legal ADS tree if for all Aj

i

2 Aj, Aj

i

is observed as a

subpath (n, ñ;Aj

i

/�(s
i

,Aj

i

)) on P
N,!

where node n is assumed to be the state s
i

.

Inductive definition of a legal ADS tree will be done after the definition of valid

observation.

In literature, the methods use a single ADS tree to generate a checking sequence do

not consider the notion of the legal ADS tree, since ADS tree is legal by nature of

checking sequence. Therefore, definition of d-recognition does not consider the legal-

ity of an ADS tree. But when we use multiple ADS trees, a node n is d-recognized by

Aj

i

if there is a subpath (n, ñ;Aj

i

/�(s
i

,Aj

i

)) of path P
N,!

where Aj is a legal ADS

tree.

Intuitively, two nodes are i-equivalent if they correspond to same implementation

19

state. Formally, two nodes n
p

and n
q

are i-equivalent if and only if they are both

d-recognized by Aj

i

where Aj is a legal ADS tree. Note that nodes are i-equivalent to

themselves. When we identify two di↵erent nodes to be i-equivalent, this information

can provide some additional evidence which do not exist in the linear view of the

path P
N,!

. For example, consider the path given in Figure 3.6 , where the node

n
i

is recognized as state s1. If the nodes n2 and n5 are understood to be the

same implementation state (i.e. i-equivalent), then we also obtain an additional

observation for n1 which applying aa of n1 would produce 12 as a response.

n1. . . n2 n3 . . .

n4. . . n5 n6 . . .

a/1 b/0

b/0 a/2

Figure 3.6: Two subpaths of P
N,!

It is stated before that we can also gather additional evidence regarding ADSs

through the nodes that are recognized as the same implementation state. That’s

why i-equivalence changes the definition of the legal ADS tree as a result of the

recursion. To explain this, we first have to define valid observation of Aj

i

for s
i

.

Definition 1 There exists subpaths:

• (n
p0 , np1 ;↵1/�1)

• (n0
p1
, n

p2 ;↵2/�2)

. . .

. . .

• (n0
pk
, n

pk+1
;↵

k+1/�k+1)

Such that n
pl
and n0

pl
are i-equivalent for 1  l  k, then there is a valid observation

of ↵ for s from n
p0, where ↵ = ↵1, . . . ,↵k+1 and s is the state corresponding node

n
p0.

Valid observation definition let us define the notion of a legal ADS tree and d-

recognition since, we no longer need to have an evidence of an application of Aj

i

as

20

a subpath, but we can obtain such an evidence as a valid observation. Now we can

make inductive definition for a legal ADS tree. We call an ADS tree Aj a legal ADS

tree for N , if 8s
i

2 S, 9 a node n 2 P
N,!

such that there is a valid observation of Aj

i

from n. Obviously, a node n is d-recognized by Aj

i

if there is a valid observation of

Aj

i

from n. Also the node n is d-recognized as s
i

if it is d-recognized by Aj

i

for all j

as the state s
i

.

Definition 2 We now formally define this mutually recursive notion as follows:

• d-recognition by Aj

i

: A node n
p

is d-recognized by Aj

i

as a state s
i

of specifi-

cation if

– There is a valid observation of Aj

i

from n
p

.

– There exist a node n
q

which is d-recognized by Aj

i

as s
i

and nodes n
p

and

n
q

are i-equivalent.

• i-equivalence: Two nodes n
p

and n
q

(not necessarily distinct nodes) are recog-

nized as equivalent implementation states (shortly i-equivalent) if

– For some Aj

i

, both n
p

and n
q

are d-recognized by Aj

i

as s
i

.

– There exist nodes n0
p

and n0
q

that are i-equivalent and we have valid ob-

servation of ↵ both from n0
p

and n0
q

that ends with n
p

and n
q

, respectively.

• d-recognition: A node n of P
N,!

is said to be d � recognized as state s
i

of

specification M if for all j, node n is d-recognized by Aj

i

as a state s
i

of M .

For transition verification, a transition t = (s, s0; x/y) of specification M is verified

if there is a subpath (n
i

, n
i+1; x/y) of PN,!

and nodes n
i

and n
i+1 are d-recognized

as states s and s0 of M .

As [31] suggested ! is a checking sequence if every transition of M is verified.

3.3 Checking Sequences: Su�cient Condition

This section gives a su�cient condition for a sequence to be a checking sequence.

This result is a consequence of Theorem 1. Normally, the main condition for a

sequence to be a checking sequence is to verify every transition of M [31]. In

21

this section we will introduce the notion of Recognition Automaton and redefine

the su�cient condition for a sequence to be a checking sequence in the context of

Recognition Automaton.

Recognition Automaton is a graph R = (V
R

, E
R

) such that each v
i

2 V
R

corresponds

to the partitioning of the nodes of P
N,!

as
Q

= ⇡1, ⇡2, . . . , ⇡k

where ⇡
i

is the set of

all nodes in P
N,!

that are i-equivalent to each other. R = (V
R

, E
R

) is defined as, 9v
i

for each ⇡
i

2
Q

and (v
i

, v
j

) 2 E
R

if and only if 9n
l

2 ⇡
i

and n
l+1 2 ⇡

j

such that

(n
l

, n
l+1;�/�) is a subpath of P

N,!

.

Definition 3 A node v
i

of R is d-recognized if 9n 2 ⇡
i

such that n is d-recognized.

Since ⇡
i

is set of nodes that are i-equivalent to each other, once at least one of them

is d-recognized, then 8v 2 ⇡
i

are d-recognized by definition.

Definition 4 If Aj

i

can be traced on R starting from node v
i

, then v
i

is d-recognized

by Aj

i

as the state s
i

.

Since the nodes in ⇡
i

are i-equivalent to each other, any path traced on R is a valid

observation for the nodes in ⇡
i

. Thus, any path (v
q

, v
p

;Aj

i

/�(s
i

,Aj

i

)) on R, is a valid

observation starting from the node v
q

and v
q

is d-recognized by Aj

i

as the state s
i

.

Lemma 2 If R is isomorphic to M , then all nodes of R are d-recognized.

Proof. Consider a node v
i

2 R and an ADS Aj

i

. Since R is isomorphic to M , Aj

i

for all i and j can be traced on R and the evidence of all the nodes in ⇡
i

producing

the expected output to Aj

i

can be obtained and all nodes of R are d-recognized.

Lemma 3 If R is isomorphic to M , then ! is a checking sequence.

Proof. If R is isomorphic to M , then all nodes of R are d-recognized by Lemma 1.

By isomorphism between R and M , all transitions of M exists in R. Therefore, all

transitions of M are verified. Using Theorem 1, ! is a checking sequence.

22

3.4 Generation of Recognition Automaton

As stated earlier, recognition automaton R is a representation of i-equivalence be-

tween nodes of P
N,!

since each v
i

2 V
R

corresponds to the partitioning of the nodes

of P
N,!

as
Q

= ⇡1, ⇡2, . . . , ⇡k

where ⇡
i

is the set of all nodes in P
N,!

that are

i-equivalent to each other. If i-equivalence between nodes are ignored, then recog-

nition automaton R is simply a path P
N,!

where nodes n
i

represents states visited

in N when ! is applied.

If we can find a one to one correspondence between the nodes of P
N,!

and P
M,!

,

and observe that every transition of P
N,!

is verified then we can say that ! is a

checking sequence of M . We consider P
N,!

as a graph R to find this correspondence

between nodes of P
N,!

and P
M,!

and call this graph R as the initial recognition

automaton. It is called that way, since initially we just assume that nodes n
i

of

R corresponds to the states that should be visited along the application of ! on

M starting from state s1 but we are not sure about this assumption and try to

gather recognition information to recognize nodes n
i

correctly. While we process

the recognition automaton, we reduce the number of nodes in R, as we merge the

nodes that correspond to the same implementation states. We call reduction of

nodes in R as collapse of R. Therefore, if R eventually collapses to M where R is

initially a path P
N,!

then ! is a checking sequence by Lemma 3.

Formally, given a I/O sequence !/y we consider a path P
N,!

. Then we repre-

sent P
N,!

as a graph. We call this graph recognition automaton and represent

it as R = (V
R

, E
R

) where initially V
r

= {n1, n2, . . . , nk+1} and E
R

= {(n
i

, n
i+1;

x/y)|(n
i

, n
i+1; x/y) 2 P

N,!

} and |!| = k.

For example, consider the I/O sequence !/y = aabbbcccaacbacbbb/001001001010101

10 and P
N,!

given in Figure 3.7. Since P
N,!

represents the nodes visited and out-

puts gathered by the application of the input sequence ! on the implementation N

starting from the node that is assumed to correspond to s1, PN,!

can be considered

as initial the recognition automaton R where we did not observe the recognition of

nodes yet.

The main aim is to recognize each node in the recognition automaton R so that if R

becomes isomorphic toM , we can conclude that ! is a checking sequence. Beginning

with the initial R, we try to find the correspondence between the nodes of P
M,!

and

23

n1

s1

n2

s1

n3

s1

n4

s2

n5

s2

n6

s2

n7

s3

n8

s3

n9

s3

n10

s1

n11

s1

n12

s2

n13

s2

n14

s3

n15

s3

n16

s1

n17

s2

n18

s2

a/0 a/0 b/1 b/0 b/0 c/1 c/0 c/0

a/1

a/0c/1b/0a/1c/0b/1b/1b/0

Figure 3.7: A Path P
N,!

m1

s1

m2

s1

m3

s1

m4

s2

m5

s2

m6

s2

m7

s3

m8

s3

m9

s3

m10

s1

m11

s1

m12

s2

m13

s2

m14

s3

m15

s3

m16

s1

m17

s2

m18

s2

a/0 a/0 b/1 b/0 b/0 c/1 c/0 c/0

a/1

a/0c/1b/0a/1c/0b/1b/1b/0

Figure 3.8: A Path P
M,!

P
N,!

shown in Figure 3.7 and Figure 3.8. We assume that the node n1 corresponds

to the state s1 of M and all n
i

’s are assumed to be the states that should be visited

if we apply the same input sequence to the specification FSM M . These respective

states of n
i

’s are shown in the lower parts of the nodes. By recognizing the nodes,

we verify the assumption that the node corresponds to the state shown in the lower

part of the node. This recognition process is explained in the next section.

3.5 State Recognition on Recognition Automaton

Given an I/O sequence !/y, considering the path P
N,!

we form the initial recognition

automaton R as explained above. Once the recognition automaton R is generated

without considering the state recognitions the partitioning of the nodes of R is
Q

= ⇡1, ⇡2, . . . , ⇡k+1 where k = |!| and
Q

i

= ⇡
i

because 8n
i

2 P
N,!

, n
i

is i-

equivalent only to itself. In other words, ⇡
i

= {n
i

}. So that, the initial recognition

automaton R is the same as P
N,!

.

In Figure 3.7 and Figure 3.8, we see that both implementation N and specification

M give the same output sequence in response to !. But to conclude that N is a

correct implementation of M , we need to show ! is a checking sequence. We know

that a su�cient condition for ! to be a checking sequence is that R can be reduced

24

into a form that is isomorphic to M .

We collapse R into M by considering state recognitions. To do that, whenever

an evidence regarding to a node correspondence between P
N,!

and P
M,!

is found,

partitioning
Q

is updated. One way of recognizing a node is to look for an occurrence

of a valid observation corresponding to the application of an ADS Aj

i

in R. That is

if R has a subpath (n, n0;Aj

i

,�(s
i

,Aj

i

)) then the node n cannot be any state other

than s
i

when Aj is a legal ADS tree. Therefore, such nodes can easily be recognized

as the corresponding states and the recognition automaton R can be collapsed by

merging the nodes that are recognized as the same states.

Since state recognition using multiple ADS trees is a mutually recursive notion, we

need to consider intuitive definitions of this notion first. Intuitively, to recognize a

node n
p

in R as the state s
i

, we need to observe the output of �(s
i

,Aj

i

) as a response

to Aj

i

starting from node n
p

, where Aj is a legal ADS tree. Therefore, the first task

to start state recognition within R is to find which ADS trees that are legal.

Since we check whether N is a correct implementation of M or not, we need to

consider the ADS trees that belong to M shown in Figures 2.3, 2.4 and 2.5. First

thing is to find which ADS trees are legal. It can be done by simply traversing R

and by observing whether there is a valid observation of all the ADSs belong to

an ADS tree generating correct responses according to the Table 3.1. The output

responses of states s
i

’s to the Aj

i

’s of Aj shown in Table 3.1, where Aj’s are ADS

trees shown in Figures 2.3, 2.4 and 2.5.

Aj

i

s1 s2 s3

A1
A1

1 a 0 1 1
A1

2 aa 00 11 10
A1

3 aa 00 11 10

A2
A2

1 bb 10 00 11
A2

2 b 1 0 1
A2

3 bb 10 00 11

A3
A3

1 cc 11 10 00
A3

2 cc 11 10 00
A3

3 c 1 1

Table 3.1: ADS Table

Consider the ADS tree A2. From nodes n3, n4 and n15 which correspond to states

s1, s2 and s3 respectively, we observe the corresponding output responses �(s
i

,A2
i

)

25

as shown in Figure 3.9 labeled as red nodes and edges. Hence A2 is a legal ADS tree

and by using it, valid observations and recognitions based on A2 can be performed

and i-equivalence between nodes can be stated.

n1

s1

n2

s1

n3

s1

n4

s2

n5

s2

n6

s2

n7

s3

n8

s3

n9

s3

n10

s1

n11

s1

n12

s2

n13

s2

n14

s3

n15

s3

n16

s1

n17

s2

n18

s2

a/0 a/0 b/1 b/0 b/0 c/1 c/0 c/0

a/1

a/0c/1b/0a/1c/0b/1b/1b/0

Figure 3.9: Showing ADS tree A2 is legal

We show the valid observations based on A2 in Figure 3.10 with blue nodes and

edges. According to these valid observations following evidences are gathered:

• Nodes n3 and n16 are d-recognized by A2
1 as state s1.

• Nodes n4, n5, n12 and n17 are d-recognized by A2
2 as state s2.

• Node n15 is d-recognized by A2
3 as state s3.

n1

s1

n2

s1

n3

s1

n4

s2

n5

s2

n6

s2

n7

s3

n8

s3

n9

s3

n10

s1

n11

s1

n12

s2

n13

s2

n14

s3

n15

s3

n16

s1

n17

s2

n18

s2

a/0 a/0 b/1 b/0 b/0 c/1 c/0 c/0

a/1

a/0c/1b/0a/1c/0b/1b/1b/0

Figure 3.10: Valid observations based on A2

We know that the nodes d-recognized by the same ADS as the same specification

state are i-equivalent. Since each v
i

2 V
R

corresponds to the partitioning of nodes
Q

= ⇡1, ⇡2, . . . , ⇡k

where ⇡
i

is the set of all nodes in P
N,!

that are i-equivalent

to each other, we can treat i-equivalent nodes as a single node of R. We call this

operation “merging nodes” and it is defined in following section.

26

3.6 Merging Nodes on Recognition Automaton

In the previous section we encounter nodes that are i-equivalent. For example, nodes

n3 and n16 are i-equivalent since they are both d-recognized by A2
1 where A2 is a legal

ADS. Therefore, we know that they belong to the same ⇡
i

2 R. For representation

purposes, we show sets ⇡
i

’s as a single node in R and call this operation merging.

Whenever we understand that two nodes n and n0 of R are i-equivalent, we merge

those nodes in R by the following rules:

Rule 1 Updating the start node of each edge emanating from node n0 as n

Rule 2 Updating the end node of each edge ending at node n0 as n

Rule 3 Eliminate the edges emanating from node n with same input label and merge

the ending nodes of corresponding edges.

Rule 4 If node n0 is d-recognized by some Aj

i

where node n is not d-recognized by Aj

i

,

then we treat node n as it is d-recognized by Aj

i

.

Consider the first two rules of merging operation applied on nodes n3 and n16 of

R. Then R will be evaluated to the graph shown in Figure 3.11. Note that we

update the starting node of the edges emanating from n16 as n3. Also, we updated

the ending node of the edges ending at n16 as n3. Now, the node n3 has emanating

edges with the same input label b. Using Rule 3, we eliminate the emanating edges

that have the same input label by merging their ending nodes n4 and n17. Merging

the nodes n4 and n17 leads to merging operation on nodes n5 and n18 too. As a

result of consecutive merging operations, R becomes as shown in Figure 3.12.

n1

s1

n2

s1

n3

s1

n4

s2

n5

s2

n6

s2

n7

s3

n8

s3

n9

s3

n10

s1

n11

s1

n12

s2

n13

s2

n14

s3

n15

s3

n17

s2

n18

s2

a/0 a/0 b/1 b/0 b/0 c/1 c/0 c/0

a/1

a/0c/1b/0a/1c/0

b/1b/1

b/0

Figure 3.11: An Application of Rule 1 and 2 on R

27

n1

s1

n2

s1

n3

s1

n4

s2

n5

s2

n6

s2

n7

s3

n8

s3

n9

s3

n10

s1

n11

s1

n12

s2

n13

s2

n14

s3

n15

s3

a/0 a/0 b/1 b/0 b/0 c/1 c/0 c/0

a/1

a/0c/1b/0a/1c/0

b/1

Figure 3.12: An Application of Rule 3 and 4 on R

Now we will proceed to merge nodes n4 and n5 since they are i-equivalent. When

we eliminate n5 and update the ending node of the edge emanating from n4 with

input label b as n4 and update the start node of the edge emanating from n5 as

n4, node n4 will have two edges emanating from n4 with input label b. Therefore,

we understand that n6 is also equivalent to n4, since they are both ending nodes of

the edges emanating from n4 with input label b. The Figure 3.13 shows R when we

merge n4, n5 and n6.

n1

s1

n2

s1

n3

s1

n4

s2

n7

s3

n8

s3

n9

s3

n10

s1

n11

s1

n12

s2

n13

s2

n14

s3

n15

s3

a/0 a/0 b/1

b/0

c/1 c/0 c/0

a/1

a/0c/1b/0a/1c/0

b/1

Figure 3.13: Merging nodes n4, n5 and n6 on R

In addition, we know that node n4 and n12 should be merged since they are also

i-equivalent. We should update the edges emanating from and ending at node n12

shown in Figure 3.13 as blue edges. After this update, the node n4 has two di↵erent

edges emanating from itself with the same input label b as shown in Figure 3.14

which also has to be handled by merging two ending nodes n4 and n13 of those

edges. After completing every merging operation that can be done based on the

i-equivalent nodes stated before, the resulting recognition automaton R shown in

Figure 3.15.

28

n1

s1

n2

s1

n3

s1

n4

s2

n7

s3

n8

s3

n9

s3

n10

s1

n11

s1

n13

s2

n14

s3

n15

s3

a/0 a/0 b/1

b/0

c/1 c/0 c/0

a/1

a/0

c/1
b/0

a/1c/0

b/1

Figure 3.14: Merging nodes n4 and n12 on R

Note that in Figure 3.15, the node n4 is d-recognized by an ADS A2
2. Blue edges

show the valid observations based on the ADS A2.

n1

s1

n2

s1

n3

s1

n4

s2

n7

s3

n8

s3

n9

s3

n10

s1

n11

s1

n14

s3

n15

s3

a/0 a/0 b/1

b/0

c/1 c/0 c/0

a/1

a/0

c/1
a/1

c/0

b/1

Figure 3.15: Merging nodes n4 and n13 on R

Now the next task is to find out if we can observe evidences on R that make any

other ADS tree legal. Consider the ADS tree A3 and blue edges on Figure 3.16.

Note that we observe A3
1 starting from node n11 which is assumed to be state s1, A3

2

starting from node n4 which is assumed to be state s2 and A3
3 starting from node

n7 which is assumed to be state s3. Therefore, ADS tree A3 is now legal and can be

used to find valid observations and state recognitions.

We show the valid observations based on A3 in Figure 3.17 with blue nodes and

edges. According to these valid observations following evidences are gathered:

• Node n11 is d-recognized by A3
1 as state s1.

• Node n4 is d-recognized by A3
2 as state s2.

• Nodes n7, n8 and n14 are d-recognized by A3
3 as state s3.

29

n1

s1

n2

s1

n3

s1

n4

s2

n7

s3

n8

s3

n9

s3

n10

s1

n11

s1

n14

s3

n15

s3

a/0 a/0 b/1

b/0

c/1 c/0 c/0

a/1

a/0

c/1
a/1

c/0

b/1

Figure 3.16: Showing ADS tree A3 is legal

n1

s1

n2

s1

n3

s1

n4

s2

n7

s3

n8

s3

n9

s3

n10

s1

n11

s1

n14

s3

n15

s3

a/0 a/0 b/1

b/0

c/1 c/0 c/0

a/1

a/0

c/1
a/1

c/0

b/1

Figure 3.17: Valid observations on R based on the ADS Tree A3

We can now merge nodes n7, n8 and n14 since they are i-equivalent to each other.

When we merge them, R becomes as shown in Figure 3.18. Note that node n7 has

three edges emanating from itself with input label c as shown in Figure 3.18, so that

we have to merge the ending nodes n7, n9 and n15 of those edges. Figure 3.19 shows

the final R, when we finish the merging operations based on A3. Now we should

find out if A1 is legal or not. Figure 3.19 shows the evidences of A1 being legal.

Note that we observe A1
1 starting from node n10 which is assumed to be state s1, A1

2

starting from node n4 which is assumed to be state s2 and A1
3 starting from node n7

which is assumed to be state s3. Therefore, ADS tree A1 is legal and can be used

to find valid observations and state recognitions.

By using A1, following d-recognitions can be done:

• Nodes n1, n2 and n10 is d-recognized by A1
1 as state s1.

• Node n4 is d-recognized by A1
2 as state s2.

• Node n7 is d-recognized by A1
3 as state s3.

30

n1

s1

n2

s1

n3

s1

n4

s2

n7

s3

n9

s3

n10

s1

n11

s1

n15

s3

a/0 a/0 b/1

b/0 c/0

c/0

a/1

a/0

c/1

a/1 , c/1

c/0

b/1

Figure 3.18: Merging nodes n7, n8 and n14 on R

n1

s1

n2

s1

n3

s1

n4

s2

n7

s3

n10

s1

n11

s1

a/0 a/0 b/1

b/0

c/0

a/1

a/0

c/1

c/1, a/1

b/1

Figure 3.19: Showing ADS Tree A1 is legal

Therefore, we should merge the nodes n1, n2 and n10. When we merge them, there

will be three di↵erent edges that emanate from the same node n10 with the same

input label a, so that the ending nodes of these edges should also be merged which

correspond to n10, n3 and n11. As a result, the final form of R will be equal to M as

shown in Figure 3.21 which proves that ! is a checking sequence since R becomes

isomorphic to M .

31

n3

s1

n4

s2

n7

s3

n10

s1

n11

s1

b/1

b/0

c/0

a/1

a/0

c/1

a/0

a/0

c/1, a/1

b/1

Figure 3.20: Merging nodes n1, n2 and n10 on R

n4

s2

n7

s3

n10

s1

b/0

c/0

a, b/1

a/0

b, c/1a, c/1

Figure 3.21: A Collapsed Recognition Automaton R

32

Chapter 4

Checking Sequence Generation Algorithm

In this chapter, a method to generate a checking sequence using multiple ADS trees

will be presented. This method generates a checking sequence by extending the

current sequence at each iteration similar to the methods given in [2, 28]. However

the proposed method di↵ers from the methods in [2, 28] since it considers multiple

ADS trees. In addition, our method consists of two phases like the method in [2].

In the first phase an input sequence ! is generated but ! is not guaranteed to be

a checking sequence. If it is not a checking sequence, then the method moves on

to the second phase and performs a post-processing. In the post-processing phase,

! is further extended until it becomes a checking sequence. Our method uses the

concept of recognition automaton and constructs a recognition automaton at each

iteration while generating the checking sequence. Since the su�cient condition for

a sequence to be a checking sequence is to collapse recognition automaton into the

specification machine M as told in Chapter 3, the main task the method tries to

accomplish is extending the sequence in a way it collapses the recognition automaton

to the specification M . Therefore, the method will be explained through the concept

of recognition automaton.

In the following sections, the two phases of the method are explained in detail.

The reason why the sequence generated in the first phase may not be a checking

sequence is presented. Lastly, we reveal how we extend ! so that it becomes a

checking sequence in the post-processing phase.

33

4.1 Mutual Dependency Between ADS Trees

We stated that the input sequence ! generated in the first phase of the algorithm

is not guaranteed to be a checking sequence. The reason for that is we do not

apply the rules of state recognition as presented in Chapter 3. We ignore the legal

ADS concept to provide local optimization. Therefore, the application of the state

recognition definition di↵ers in the algorithm.

For a sequence !̃ to be a checking sequence, R which is equal to the path P
N,!̃

initially, should collapse into the specification M . To collapse R into the M , we

should merge the i-equivalent nodes. Therefore, d-recognition of the nodes is a

must. For a node to be d-recognized by Aj

i

as the state s
i

, the ADS tree Aj has

to be a legal ADS tree. Therefore, waiting for an ADS tree to become a legal

one for state recognitions is a costly action. That’s why we decide to ignore the

legal ADS tree concept. In other words, the node is d-recognized by Aj

i

as the

state s
i

even though the ADS tree Aj is not legal. We call this kind of recognition

Conditional State Recognition. Conditional state recognition does not require a legal

ADS tree. Therefore, just an observation of a subpath of recognition automaton R

with label Aj

i

is enough. However, conditional state recognition becomes an actual

state recognition when the ADS tree the recognition is done with becomes a legal

one.

Definition 5 According to this, we define conditional state recognition as follows:

• conditional d-recognition by Aj

i

: A node n
p

is d-recognized conditionally by

Aj

i

as a state s
i

of specification if

– There is a subpath (n
p

, n
q

;Aj

i

/�(n
p

,Aj

i

)) of R, or

– There exist a node n
q

which is d-recognized conditionally by Aj

i

as s
i

and

nodes n
p

and n
q

have i-equivalence candidacy.

• conditional i-equivalence: Two nodes n
p

and n
q

(not necessarily distinct nodes)

are i-equivalent conditionally and they are recognized as implementation states

conditionally if

– For some Aj

i

, both n
p

and n
q

are d-recognized conditionally by Aj

i

as s
i

.

34

– There exist nodes n0
p

and n0
q

that are i-equivalent conditionally and there

exist two subpaths (n0
p

, n
p

;↵/�(n0
p

,↵)) and (n0
q

, n
q

;↵/�(n0
q

,↵)) of R.

• conditional d-recognition: A node n of R is d-recognized conditionally as the

state s
i

of specification M if for all j, node n is d-recognized conditionally by

Aj

i

as a state s
i

of M .

Checking sequence generation methods existing in the literature use a single ADS

tree. When a checking sequence ! is constructed by using a single ADS tree, then

it is guaranteed that the ADS tree is a legal ADS tree since all ADSs belong to it

will be applied to its respective nodes at least one time explicitly. But in our case,

we use multiple ADS trees, and the application of all ADSs belonging to ADS trees

is a very costly action. Hence we try to avoid explicit application of all ADSs at all

states. To this end, we gather state recognition information using valid observations

obtained through the use of i-equivalent states. In this way we can reduce the length

of a checking sequence. So that while preventing the costly part of using multiple

ADS trees, we can take the advantage of the ADSs with relatively short lengths for

transition verification.

As mentioned above we try to use i-equivalent nodes to gather information about

other ADSs that are not applied explicitly. To explain this idea, suppose that there

are two subpaths (n
p

, n
q

;Aj

i

/�(s
i

,Aj

i

)) and (n
r

, n
s

;↵/�(s
k

,↵)) of P
N,!

as in Figure

4.1. Also, suppose that n
p

and n
s

are i-equivalent, n
r

is claimed to be state s
k

, and

↵Aj

i

equals to Al

k

. Therefore, we can say that Al

k

is applied on node n
r

. In this

way, we obtain a valid observation for the application of Al

k

at node n
r

, even though

there is no such subpath of P
N,!

corresponding to an explicit application.

np

si

nq

sr

nr

sk

ns

si

Aj
i /�(si,A

j
i)

↵/�(sk,↵)

Figure 4.1: Two subpaths of P
N,!

35

In our algorithm we change the definition of recognitions, therefore we do not check if

ADS tree is legal or not, explicitly. We use partial information about the application

of ADSs that is not guaranteed to be correct. This creates a dependency between

the ADS trees in terms of legality. To explain this, let us take two subpaths a

(n
p

, n
q

;Aj

i

/�(s
i

,Aj

i

)) and (n
r

, n
s

;↵/�(s
k

,↵)) of P
N,!

just like in Figure 4.1, and

assume that n
p

and n
s

are both d-recognized by Aj

i

conditionally. Therefore, n
p

and

n
s

are i-equivalent nodes conditionally. Also suppose that ADS tree Aj is not a legal

ADS and the node n
r

corresponds to the state s
k

and ↵Aj

i

equals to Al

k

. Since the

ADS treeAj is not a legal ADS tree, the information that the node n
r

is d-recognized

by Al

k

we gather over node n
p

is not guaranteed to be correct. Therefore, the node

n
r

is d-recognized conditionally by Al

k

. The ADS tree Al is dependent on the ADS

tree Aj because of the information we gathered about Al

k

over the nodes that are

d-recognized by Aj

i

conditionally. To get rid of this dependency, it is enough to have

valid observations that make the ADS tree Aj legal.

4.2 Phase 1: Sequence Generation

In the first phase of the method, an input sequence !, which may not be a checking

sequence, is constructed iteratively. In this method, the recognition of a node in R is

achieved by using the recognition types declared in Section 3.5. Since the sequence

is extended iteratively similar to the methods in [12, 2], we have plenty of options

about how to extend the sequence. In this section, after presenting the sequence

extension options, we will explain the decision mechanisms to make a choice between

these options.

Note that current node n
c

is the node of R corresponding to the last node of the

path P
N,!̃

. The node n
c

is updated within the each extension of !̃.

4.2.1 Sequence Extension Options

In this section we will present the ways we use to extend the sequence. There are

four ways of extending the sequence and they are explained below:

• State recognition by backtracking:

36

As we find i-equivalent states, R collapses into a graph with a smaller number

of nodes and the nodes become more connected to each other since edges, with

di↵erent input labels, of i-equivalent nodes, originate from the same node in

the collapsed form of R. Therefore, we know that when we follow the edges in

the reverse direction starting from the current node n
c

, we can find di↵erent

paths from nodes of R to n
c

. The main purpose of finding these paths is that

there is a possibility that these paths could be extended to provide a state

recognition.

n1

s3

n2

s3

n3

s3

n4

s1

n5

s3

n6

s1

n7

s1

c/0

a/1

a/1 a/0

a/1

a/0

Figure 4.2: Backtracking Example

Consider the Figure 4.2. For backtracking purposes, the tree T in Figure 4.3

is constructed based with a root n
c

which is the node n7. T is constructed

by selecting n
c

as a root and appending the edges in the reverse direction to

the nodes. T is allowed to have a depth of length of the longest ADS we use.

Therefore, by doing a breadth-first search on T , we can find any path from n
c

to any node which is no longer than the longest ADS.

The purpose of the reverse breadth-first search is to find the node n
p

where

its d-recognition can be completed by extending the path from n
p

to n
c

. In

other words, the path from the node n
p

that is found by a reverse breadth-

first search to the current node n
c

is a prefix of an ADS Aj

i

where n
p

is not

d-recognized by Aj

i

as the state s
i

yet. Formally, n
c

is the last node of the

path P
N,!̃

, there is a node n
p

and a subpath (n
p

, n
c

;↵/�(n
p

,↵)) in R where

node n
p

is assumed to be the state s
i

and it is not d-recognized by Aj

i

. Also ↵

is a prefix of Aj

i

. Therefore, the node n
p

can be d-recognized by Aj

i

by simply

adding � where Aj

i

= ↵�.

37

n7

s1

n4

s1

n2

s3

n3

s3

n6

s1

n1

s3

n5

s3

c/0

a/1

a/1

a/0

a/1

a/0

Figure 4.3: The Tree T constructed for backtracking

Below we list the backtracking candidates:

– Extend the path (n2, n7; a/1) in accordance with the A1
2 = aa by append-

ing an edge with input label a to the node n7. Therefore, the node n2 is

d-recognized by A1
3 as state s3.

– Extend the R in accordance with the A1
1 = a by appending edge with

input label a to the node n7. Therefore, the node n7 is d-recognized by

A1
1 as state s1.

Note that backtracking includes the appending ADS to the current state for

state recognition.

After finding candidates, the algorithm should decide which candidate to use.

It makes this choice greedily as follows:

Rule 1 If there is a unique shortest extension sequence, then this shortest se-

quence is used.

Rule 2 If there are multiple candidates for Rule 1, one of them is chosen ran-

domly.

For this case, we cannot distinguish the candidates. Therefore, we extend the

sequence by appending the edge with input label a.

For example consider node n2 in Figure 4.2, and assume that we try to d-

recognize the node n2 by A1
3 as state s3. Since current node is n

c

, to d-

recognize n2 by A1
3 we need to extend the current sequence by � = a. After

extending the sequence by a, we append a new edge (n7, n8; a/0) to R as shown

38

in Figure 4.4. If we assume that A1 is a legal ADS tree then the node n2 is

now d-recognized by A1
3.

n1

s3

n2

s3

n3

s3

n4

s1

n5

s3

n6

s1

n7

s1

n8

s1

c/0

a/1

a/1 a/0

a/1

a/0

a/0

Figure 4.4: Updated Recognition Automaton R after sequence extension

We understand that both nodes n3 and n5 are already d-recognized by A1
3 in

Figure 4.2 where we assume A1 is a legal ADS tree. With this information, we

know that nodes n2, n3 and n5 are i-equivalent since they are all d-recognized

by A1
3. Without considering this i-equivalence relation, the recognition au-

tomaton R is the graph shown in Figure 4.4. Below we list the i-equivalent

nodes of R of Figure 4.4:

– Nodes n2, n3, n5 are i-equivalent since they are all d-recognized by A1
3.

– Nodes n4, n6, n7 are i-equivalent since they are all d-recognized by A1
1.

When we consider i-equivalence relation between these nodes and merge them,

R becomes the automaton given Figure 4.5.

n1

s3

n2

s3

n7

s1

c/0 a/1

a/0

Figure 4.5: Recognition Automaton R after merging operations

• Extension for transition verification:

In some cases, the current node n
c

is d-recognized conditionally so that our

algorithm does not choose to extend the sequence to do a state recognition.

39

Our algorithm aims to verify its unverified transitions since appending an ADS

would be useless while n
c

is d-recognized conditionally. The unverified transi-

tions of n
c

correspond to the edges whose ending node is not d-recognized or

d-recognized conditionally. Therefore, algorithm checks the emanating edges

of n
c

to find edges with ending node without a d-recognition or conditional

d-recognition. After finding such edges, the algorithm calculates the required

extension sequences. The extension sequences are calculated as follows. Sup-

pose that the algorithm finds an edge (n
c

, n
c,p

; x
p

/y
p

) where the node n
c,p

corresponds to the state s
i

and n
c,p

is not d-recognized or d-recognized con-

ditionally by Aj

i

as the state s
i

. Therefore, one extension possibility is to use

x
p

Aj

i

, in order to obtain d-recognition or conditional d-recognition of n
c,p

by

Aj

i

.

Formally, let {n
c

, n
c,i

; x
i

/y
i

be the set of outgoing edges of n
c

, where n
c,i

corre-

sponds to the state s
i

. Then the set of possible extension sequences are x
i

Aj

i

,

where Aj

i

is an ADS such that n
c,i

is not d-recognized by Aj

i

yet.

The current node n
c

could have more than one edges (n
c

, n
c,1; x1/y1), . . . , (nc

,

n
c,k

; x
k

/y
k

). Therefore, when algorithm operates to find an extension sequence

to do transition verification, we would also have more than one extension

candidates. Formally, there are edges (n
c

, n
c,1; x1/y1) , . . . (nc

, n
c,k

; x
k

/y
k

) and

some of the nodes n
c,p

is not d-recognized or d-recognized conditionally by Aj

i

,

8j as the state s
i

. Therefore, we would have multiple extension sequences like

x
p

Aj

i

and we call the set of sequences x
p

Aj

i

as a candidate set for transition

verification extension.

After finding candidates, the algorithm should decide which candidate to use.

It makes this choice greedily as follows:

Rule 1 If there is a unique shortest extension sequence, then this shortest se-

quence is used.

Rule 2 If there are multiple shortest possible extension sequences, then the exten-

sion sequence for n
c,i

with the fewest number of remaining d-recognition

by ADSs is used.

Rule 3 If there are multiple candidates for Rule 2, one of them is chosen ran-

domly.

40

n8

s1

n4

s2

n1

s1

n5

s2

n6

s2

n7

s3

n2

s2

n3

s2

b/0

c/1

a/0

b/1

c/1

b/1 b/0

Figure 4.6: Transition verification example

Assume that the Figure 4.6 is a part of R. According to this:

– n
c

is d-recognized conditionally since it is d-recognized conditionally by

Aj

1 for all j.

– A as a d-recognition candidacy by A2
1.

– B has a d-recognition candidacy by A2
2.

– D does not have any d-recognition candidacy.

Therefore sequence extension candidates will be as follows:

– For node A:

∗ x1 = a and A could have a d-recognition candidacy by A1
1. Therefore

overall extension sequence would be x1.A1
1 = aa.

∗ x1 = a and A could have a d-recognition candidacy by A3
1. Therefore

overall extension sequence would be x1.A3
1 = acc.

– For node B:

∗ x2 = b and B could have a d-recognition candidacy by A1
2. Therefore

overall extension sequence would be x1.A1
2 = baa.

∗ x2 = b and B could have a d-recognition candidacy by A3
2. Therefore

overall extension sequence would be x1.A3
2 = bcc.

– For node D:

∗ x3 = c and D could have a d-recognition candidacy by A1
3. Therefore

overall extension sequence would be x1.A1
3 = caa.

41

∗ x3 = c and D could have a d-recognition candidacy by A2
3. Therefore

overall extension sequence would be x1.A2
3 = cb.

∗ x3 = c and D could have a d-recognition candidacy by A3
3. Therefore

overall extension sequence would be x1.A3
3 = ccc.

In this case the shortest extension sequences are x1A1
1 = aa and x3A2

3 = cb.

Therefore the algorithm finds two same length shortest extension sequences

and cannot make a decision based on Rule 1. Now it tries to make a choice

based on Rule 2 and explores the number of conditional d-recognition of the

nodes n1 and n6. Since we know that n1 is d-recognized conditionally by A2
1

and n6 is not d-recognized conditionally, it chooses sequence x1A1
1 = aa to

extend the sequence !̃. If the algorithm hits the case that could not di↵eren-

tiate these two nodes based on Rule 2 then it would make a choice randomly

as stated in Rule 3.

n8

s1

n4

s2

n1

s1

n5

s2

n6

s2

n7

s3

n2

s2

n3

s2

n9

s1

b/0

c/1

a/0

b/1

c/1

a/0

b/1 b/0

Figure 4.7: Sequence extension on R

After appending the extension sequence aa to !̃, the resulting R is shown in

Figure 4.7. Now we know that nodes n1 and n8 are conditionally i-equivalent

because they are both d-recognized conditionally by A1
1 Hence we can merge

them. According to the merging rules given in 3, they lead us to merge nodes

n4 and n5 to the nodes n2 and n3, respectively. The resulting R is shown in

Figure 4.8.

42

n8

s1

n2

s2

n3

s2

n6

s2

n7

s3

b/0

c/1

a/0

b/1

c/1

Figure 4.8: Updated Recognition Automaton R after transition verification

• Extension for missing transition verification:

In some cases the current node n
c

is d-recognized by Aj

i

conditionally, 8j as

the state s
i

and the outgoing edges n
c

has that correspond to transitions of

M are verified. Hence the algorithm does not choose to extend sequence to

do a state recognition or a transition verification. In this case, the algorithm

searches for the edges of n
c

that corresponds to transitions of M which are

missing in R.

Therefore, the algorithm aims to find these absent transitions. After finding

such transitions, the algorithm calculates the required extension sequences.

The extension sequences are calculated as follows. Suppose that the algorithm

finds a transition t = (s
i

, s
k

; x/y) where the current node n
c

does not have

an edge with input label x and n
c

corresponds to the state s
i

. Then it finds

an ADS Aj

k

which can be used to perform conditional d-recognition for the

node to be created as an ending node of the edge which corresponds to the

transition t on the recognition automaton R.

Formally, let {n
c

, n
c,i

, x
i

/y
i

} be the set of outgoing edges of n
c

. Suppose that

X
nc is the set of input symbols where the node n

c

does not have an edge with

input symbol x 2 X
nc . Also, let {s

i

, s
k

; x/y} be the set of transitions, where

the node n
c

corresponds to the state s
i

and x 2 X
nc . Then the set of possible

extension sequences are xAj

k

, 8j.

After finding possible extension sequences, the algorithm should decide which

one to use. It makes this choice greedily as follows:

Rule 1 If there is a unique shortest extension sequence, then this shortest se-

quence is used.

43

Rule 2 If there are multiple candidates for Rule 1, one of them is chosen ran-

domly.

n6

s1

n2

s2

n1

s1

n3

s2

n4

s2

n5

s3

b/0

c/1

a/0

b/1

c/1

Figure 4.9: Missing Transition Verification Example

Consider the recognition automaton R in Figure 4.9 and assume that the

nodes n1,n2 and n4 are d-recognized conditionally and the input alphabet of

the specification M̃ is {a, b, c, d, e, f}. Note that the input alphabet of M̃ is

di↵erent from M . According to this:

– n6 is d-recognized conditionally since it is d-recognized conditionally by

Aj

1 for all j.

– The transitions with input label a, b and c are verified.

Suppose that n0
c

is the ending node of transition that is going to be added

as an edge to the recognition automaton R. Therefore sequence extension

candidates will be as follows:

– For transition t = (s1, s1; d/0):

∗ dA1
1 = da to d-recognize n0

c

conditionally by A1
1.

∗ dA2
1 = dbb to d-recognize n0

c

conditionally by A2
1.

∗ dA3
1 = dcc to d-recognize n0

c

conditionally by A3
1.

– For transition t = (s1, s1; e/0):

∗ eA1
1 = ea to d-recognize n0

c

conditionally by A1
1.

∗ eA2
1 = ebb to d-recognize n0

c

conditionally by A2
1.

∗ eA3
1 = ecc to d-recognize n0

c

conditionally by A3
1.

44

– For transition t = (s1, s2; f/0):

∗ fA1
2 = faa to d-recognize n0

c

conditionally by A1
2.

∗ fA2
2 = fb to d-recognize n0

c

conditionally by A2
2.

∗ fA3
2 = fcc to d-recognize n0

c

conditionally by A3
2.

For this case the shortest extension sequences are dA1
1 = da, eA1

1 = ea and

fA2
2 = fb. Therefore the algorithm cannot decide over the same length ex-

tension sequences di↵erentiate based on Rule 1. Therefore it makes a choice

randomly as stated in Rule 2 and extend the sequence with dA1
1 = da.

n6

s1

n2

s2

n1

s1

n3

s2

n4

s2

n5

s3

n7

s1

n8

s1

d/0a/0

b/0

c/1

a/0

b/1

c/1

Figure 4.10: Recognition Automaton R after sequence extension

We append da to !̃ and update recognition automaton R like in Figure 4.10.

Now we know that nodes n6 and n7 are i-equivalent since they are both d-

recognized by A1
1 as state s1 conditionally. Hence we merge them and R

becomes as shown in Figure 4.11.

n6

s1

n2

s2

n1

s1

n3

s2

n4

s2

n5

s3

b/0

c/1

a/0

b/1

c/1

d/0

Figure 4.11: Recognition Automaton R after merging operations

• Shortest path to the unrecognized node:

45

In some cases current node n
c

is d-recognized by Aj

i

conditionally, 8j as the

state s
i

and all of its transitions are verified. Therefore, d-recognizing the node

n
c

conditionally or verifying its transitions will be pointless. If we encounter

such a case, we make a breadth first search in R from the current node n
c

to

find the shortest path to a node n0
c

such that:

1 n0
c

is not d-recognized conditionally, or

2 n0
c

is d-recognized conditionally but has at least one unverified transition,

or

3 n0
c

is d-recognized conditionally but has at least one missing transition

Formally, there are subpaths (n
c

, n0
c

;w
s

/w
y

) of R. The node n
c

is d-recognized

conditionally and does not have any missing transition and all transitions of

n
c

are verified. But the node n0
c

is not d-recognized by an ADS conditionally

or has unverified transitions or has missing transitions. Therefore we call set

of sequences !
s

as a candidate set for shortest path extensions. After finding

candidates, the algorithm should decide which candidate to use. It makes this

choice greedily as follows:

Rule 1 If there is a unique shortest extension sequence, then this shortest se-

quence is used.

Rule 2 If there are multiple candidates for Rule 1, one of them is chosen ran-

domly.

After appending !
s

to !̃, and updating the recognition automaton R accord-

ingly, it follows the procedures explained in this section previously based on

the new current node.

n1

s1

n2

s2

n3

s3

n4

s1

n5

s3

b, c/1

a/0 b/0

a/1

c/1

c/0

c/0

a/1

Figure 4.12: A Recognition Automaton R

46

Consider the Figure 4.12, according to this where n
c

= n1:

– The nodes n3, n4 and n5 are not d-recognized conditionally.

– The nodes n3, n4 and n5 have missing and unverified transitions.

Therefore, the algorithm tries to find a shortest path from the node n1 to the

nodes n3, n4 and n5. According to this, sequence extension candidates will be

as follows:

– For node n3:

∗ The path (n1, n3;!s

/!
y

) where w
s

could be ba.

– For node n4:

∗ The path (n1, n4;!s

/!
y

) where w
s

could be baa.

– For node n5:

∗ The path (n1, n5;!s

/!
y

) where w
s

could be bc.

For this case the shortest extension sequences are ba and bc. Therefore the

algorithm cannot decide over the same length extension sequences based on

Rule 1. Therefore, it makes a choice randomly as stated in Rule 2 and extend

the sequence with ba.

We append ba to !̃ and update the recognition automaton R. This update

does not change the structure of R but makes the node n3 the new current

node n
c

.

Now we know that the current node is n3 and we can continue to the next

iteration of the algorithm by taking the node n3 into consideration.

The sequence extension options are presented above in this section. Now we will

present the algorithm that reveals how we use those options. As it is seen in Algo-

rithm 1, we start to construct the recognition automaton R with a single node n1

that corresponds to state s1 of M . We then iteratively extend it by considering the

extension options we have. First we check if we could extend the sequence by back-

track extension. If we could not find a situation to do backtrack extension, then we

look for a transition verification. If we encounter a node with all transitions verified,

then we look for a missing transition. If we could not find any missing transition,

47

which means the current node is d-recognized and all of its transitions are verified,

then we find a path that takes the current node to the nearest node which is not

d-recognized or has a missing transition or has an unverified transition.

Algorithm 1 Sequence generation algorithm

Input: Deterministic and completely specified FSM M
Input: Set of ADSs A = {A1, . . . ,Ak} where k > 0
Output: !̃ an input sequence for M
!̃ ✏
R is the recognition automaton with a single node n1

n
c

 n1 where n
c

is the current node
while R 6= M do
� backtrack(R, n

c

, A) // try to extend using backtracking
if � = ✏ then
� transitionverification(R, M , n

c

, A) // try to do transition verification
if � = ✏ then
� missingtransition(R,M , n

c

, A) // try to extend by verifying a missing
transition
if � = ✏ then
� shortestpath(R, n

c

, A)
end if

end if
end if
!̃ !̃�
n
c

 update(R, �)
end while

Within an iteration of the algorithm, we update the recognition automaton R as

we append new extension sequence to !̃ and do the conditional recognitions. In

the update part, we merge the nodes as we find out that they are i-equivalent

conditionally. The Algorithm 1 stops when R is isomorphic to M .

4.3 Phase 2: Checking if a sequence is a checking

sequence

Previously we noted that, the sequence generated by Phase 1 may not be a checking

sequence due to dependencies between ADS trees in terms of legality. Therefore,

in Phase 2 we operate on P
N,!

to detect dependencies between ADS trees. If it

48

finds dependency then it breaks it by extending the sequence !̃ to provide more

observations. In the end, all ADS trees become legal and !̃ is turned out to be a

checking sequence.

In Phase 2, we initialize the recognition automaton R equals to P
N,!

. Phase 2 stops

when R collapses into a form that is isomorphic to the specification M . At each

iteration, it first tries to find a legal ADS tree in R, for which some i-equivalent

nodes are not merged. If it finds such an ADS tree, then it updates the recognition

automaton R and merge the i-equivalent nodes. If it cannot find a legal ADS tree,

then it extends the sequence based on the set of rules to complete missing valid

observations of ADSs of an ADS tree. The algorithm ends when all ADS trees are

legal and R is isomorphic to M .

Consider the input sequence generated by Phase 1 is !/y = aabbbcccaacbacbbb/0010

0100101010110 and P
N,!

given in Figure 4.13. In Phase 2, we try to find a legal ADS

tree by considering the legal observations of ADSs. It is stated that the purpose of

Phase 2 is to check whether ! is a checking sequence. If it is not, the sequence is

converted into a checking sequence by making every ADS tree legal by extending

the sequence. The sequence is extended to provide valid observation of ADSs.

n1

s1

n2

s1

n3

s1

n4

s2

n5

s2

n6

s2

n7

s3

n8

s3

n9

s3

n10

s1

n11

s1

n12

s2

n13

s2

n14

s3

n15

s3

n16

s1

n17

s1

a/0 a/0 b/1 b/0 b/0 c/1 c/0 c/0

a/1

a/0c/1b/0a/1c/0b/1a/0

Figure 4.13: Valid Observation of ADSs on the Path P
N,!

Consider Figure 4.13, the algorithm investigates the valid observations of ADSs.

The legal observations present on P
N,!

are as follows:

• The subpath (n1, n2; a/0) corresponds to legal observation of A1
1.

• The subpath (n3, n5; bb/10) corresponds to legal observation of A2
1.

• The subpath (n4, n5; b/0) corresponds to legal observation of A2
2.

• The subpath (n6, n8; cc/10) corresponds to legal observation of A3
2.

49

• The subpath (n7, n8; c/0) corresponds to legal observation of A3
3.

• The subpath (n9, n11; aa/10) corresponds to legal observation of A1
3.

Now we know that none of the ADS trees we use is a legal ADS tree since we do not

see valid observations for Aj

i

, 8i for any j. The algorithm tries to convert at least

one of the ADS trees into a legal one by extending the sequence. The algorithm

calculates extension candidates as follows:

• To legalize the ADS tree A1, we need to append A1
2 to the node corresponds

to state s2. Since the current node is n17 and it does not have any outgoing

edge, the sequence should be extended to transfer the node n17 to some node

corresponding to state s2. This transfer could be provided by an extension

sequence !
t

which is b or c. Therefore, the total extension sequence could be

either bA1
2 = baa or cA1

2 = caa.

• To legalize the ADS tree A2, we need to append A2
3 to the node corresponding

to state s3. Since current node is n17 and it does not have any outgoing

edge, the sequence should be extended to transfer the node n17 to some node

corresponding to state s3. This transfer could be provided by an extension

sequences !
t

which is ba or bc or ca or cc. Therefore, the total extension

sequence is !
t

A2
3.

• To legalize the ADS tree A3, we need to append A3
1 to the node corresponding

to state s1. Since current node n17 corresponds to state s1, we can directly

extend the sequence by A3
1 = cc.

After determining the extension candidates, the algorithm makes this choice among

the candidates greedily as follows:

1 If there is a unique shortest extension sequence, then this shortest sequence is

used.

2 If there are multiple candidates for Rule 1, one of them is chosen randomly.

According to the rules above, the algorithm chooses the shortest extension sequence

and it is cc in this case. Hence the sequence is extended by cc and recognition

automaton is updated as shown in Figure 4.14.

50

n1

s1

n2

s1

n3

s1

n4

s2

n5

s2

n6

s2

n7

s3

n8

s3

n9

s3

n10

s1

n11

s1

n12

s2

n13

s2

n14

s3

n15

s3

n16

s1

n17

s1

n18

s2

n19

s3

a/0 a/0 b/1 b/0 b/0 c/1 c/0 c/0

a/1

a/0c/1b/0a/1c/0b/1a/0c/1c/1

Figure 4.14: Sequence Extension on the Path P
N,!

0

This extension made ADS tree A3 legal, therefore the next task the algorithm per-

forms is to find the nodes d-recognized by A3. Nodes n7, n8 and n14 are all d-

recognized by A3 as state s3, hence they are i-equivalent. The information we

gathered from the nodes n7 and n8 indicates that the nodes n9 and n15 are also

i-equivalent to n7. Therefore nodes n7, n8, n9, n14 and n15 can be merged in n7.

The resulting recognition automaton R is shown in Figure 4.15.

n1

s1

n2

s1

n3

s1

n4

s2

n5

s2

n6

s2

n7

s3

n10

s1

n11

s1

n12

s2

n13

s2

n16

s1

n17

s1

n18

s2

n19

s3

a/0 a/0 b/1 b/0 b/0 c/1

c/0

a/1

b/1

a/0

c/1

b/0

a/1

a/0

c/1

c/1

Figure 4.15: A Path P
N,!

0 after merging nodes n7, n8, n9, n14 and n15

For the next iteration of the algorithm, it will again search for a legal ADS tree

on R with i-equivalent nodes that are not merged yet. Note that, the i-equivalence

relation based on the ADS treesA1 andA2 is not considered in the previous iteration.

Therefore, the algorithm investigates the valid observations of ADSs that belong to

ADS trees A1 and A2. The legal observations regarding ADS trees A1 and A2

present on R are as follows:

51

• The subpath (n1, n2; a/0) corresponds to legal observation of A1
1.

• The subpath (n13, n10; aa/11) corresponds to legal observation of A1
2.

• The subpath (n7, n11; aa/10) corresponds to legal observation of A1
3.

• The subpath (n3, n5; bb/10) corresponds to legal observation of A2
1.

• The subpath (n4, n5; b/0) corresponds to legal observation of A2
2.

Now we know that the ADS tree A1 is legal since there are valid observations for A1
i

,

8i on R. The algorithm identifies the i-equivalent nodes based on the ADS tree A1.

The nodes n1, n2, n10, n16 are i-equivalent nodes since they are all d-recognized by

A1
1 as s1. Merging these nodes also gives the information that the nodes n3, n11 and

n17 are also i-equivalent to the node n1. Therefore the algorithm merges the nodes

n1, n2, n3, n10, n11, n16, n17 into the node n1. The resulting recognition automaton

R is shown in Figure 4.16.

n1

s1

n4

s2

n5

s2

n6

s2

n7

s3

n12

s2

n13

s2

a/0

b/1 b/0 b/0 c/1

c/0

a/1b/1

c/1

b/0

a/1

Figure 4.16: A Path P
N,!

0 after merging nodes n1, n2, n3, n10, n11, n16, n17

In the next iteration of the algorithm, it will again search for a legal ADS tree with

i-equivalent nodes that are not merged yet. Therefore, the algorithm investigates

the valid observations of ADSs that belong to ADS tree A2. The legal observations

of the ADS tree A2 present on R are as follows:

• The subpath (n1, n5; bb/10) corresponds to legal observation of A2
1.

• The subpath (n4, n5; b/0) corresponds to legal observation of A2
2.

• The subpath (n7, n4; bb/11) corresponds to legal observation of A2
3.

52

Now we know that the ADS tree A2 is legal since there are valid observations for

A2
i

, 8i on R. The algorithm identifies the i-equivalent nodes based on the ADS tree

A2. The nodes n4, n5, n12 are i-equivalent nodes since they are all d-recognized by

A2
2 as s2. Merging these nodes also gives the information that the nodes n6 and

n13 are also i-equivalent to the node n4. Therefore the algorithm merges the nodes

n4, n5, n6, n12 and n13 into the node n4. The resulting recognition automaton R is

shown in Figure 4.17.

n1

s1

n4

s2

n7

s3

a/0

b/1 c/1

b/0

a/1 c/1

c/0

a/1 b/1

Figure 4.17: Resulting Recognition Automaton R

Since the resulting recognition automaton is isomorphic to the specification M and

all of the ADS trees we use are legal, sequence ! becomes a checking sequence by

only extending the sequence generated by Phase 1 with cc.

53

Chapter 5

Construction and Selection of ADS Trees

In this thesis, we used multiple ADS trees. Therefore, we need to generate ADS

trees for each FSM M we used in the experiments. We think that the ADS trees

generated for M should include shorter ADSs for each state of M , so that we could

use these shorter ADSs for transition verification to reduce the length of the checking

sequence.

An ADS is a sequence for a state q where it distinguishes the state q from any

other state s of M in terms of their output responses to the ADS while preventing

other states to be merged into the same state during the application of the ADS.

In other words, when an ADS is applied to all states of M , the state q produces a

di↵erent output sequence as a response to the ADS from any other state. Although

the output responses of the states other than q could be the same with each other,

application of the ADS on other states does not cause states to be indi↵erentiable.

Formally, an ADS for a state q is an input sequence ↵ such that:

If 8s 2 S, s 6= q then �(s,↵) 6= �(q,↵) and for any prefix ↵0 of ↵, 8s, s0 2 Q if

�(s,↵0) = �(s0,↵0) then �(s,↵0) 6= �(s0,↵0).

In other words, they never merge into the same state, when their output responses

are the same. To generate ADS trees that have shorter ADS for a state q, we use

the shortest ADS for the state q. Since an ADS is one branch of the ADS tree,

and we know that an ADS prevents other states to be merged into the same state,

we can complete the other branches of the ADS tree after we construct the branch

corresponding to the state q.

54

In this section, we explain how we use the idea stated above to generate ADS trees.

As stated above, an ADS is needed to generate an ADS tree. Therefore, we present

how we generate an ADS using Answer Set Programming (ASP). In addition, we

propose a method to choose a set of ADS trees from the ADS tree pool.

5.1 ASP Formulation of ADS

Lee and Yannakakis have reported that checking the existence of an ADS can be

decided in polynomial time [24]. However, computing a shortest ADS for a given

state q is an NP-hard problem [30]. Therefore, it is a hard problem to solve. In this

thesis, we take an advantage of the usefulness of Answer Set Programming [6, 26]

to solve this optimization problem.

In this thesis, we formulate the problem of computing a shortest ADS for a state q in

Answer Set Programming [26] - a knowledge representation and reasoning paradigm

with an expressive formalism and e�cient solvers for NP-Hard problems. The idea

of ASP is to formalize a given problem as “program” and to solve the problem by

computing models called “answer sets” [16] of the program using “ASP solvers”,

such as Clasp [15].

To formulate the problem of generating a shortest ADS, we should consider the

decision version of the problem. Therefore, let us first consider the decision version

of the shortest ADS problem:

For an FSM M = (S,X, Y, �,�), a state q of M , and a positive integer constant c,

decide whether q has an ADS ↵ of length c.

To do that, we need a set of atoms that will represent the transitions, states, input

and output symbols of FSM M and other atoms and set of rules to formulate the

decision version of the problem of generating an ADS, so that we can find an answer

set that represents the ADS. Without loss of generality, we represent states and

input and output symbols of a FSM M = (S,X, Y, �,�), by the range of numbers

1 . . . n and 1 . . . j and 1 . . . k (n = |Q|, j = |X|, k = |Y |), respectively. Then an FSM

M = (S,X, Y, �,�) can be described in ASP by three forms of atoms given below:

• state(s) (1  s  n) describing the states in Q,

• i-symbol(x) (1  x  j) describing the input symbols in X,

55

• o-symbol(y) (1  y  k) describing the output symbols in Y ,

• transition(s, x, y, s0) (1  s, s0  n, 1  x  j, 1  y  k) describing the

transitions where �(s, j) = s0, �(s, j) = y

We represent possible lengths i of sequences by atoms of the form step(i) (1  i  c).

An ADS ↵ of length c is characterized by atoms of the form ads(i, x) (1  i  c,

1  x  j) describing that the ith symbol of the sequence ↵ is x.

Using these atoms, we can represent the decision version of the shortest ADS problem

with a “generate-and-test” methodology used in various ASP formulations. In the

following, we represent ASP formulations based on this approach.

In this ASP formulation, we use an auxiliary concept of a path characterized by a

sequence ↵1,↵2, . . . ,↵c

of symbols in X, which is defined as a sequence q1, q2, . . . , qc+1

of states in Q and a sequence of output symbols y1, y2, . . . , yc such that �(q
i

,↵
i

) =

q
i+1 and �(q

i

,↵
i

) = y
i

for every i (1  i  c). The existence of such a path of length

i in M from a state s to a state q (i.e., the reachability of a state q from a state

s by a path of length i in M) characterized by the first i symbols of a word ↵ is

represented by atoms of the form path(s, i+ 1, y, q) defined as follows:

path(s, 1, s) state(s)

path(s, i+ 1, q) path(s, i, r), ads(i, x), transition(r, x, y, q)

active(s, i+ 1), state(s), state(r), state(q), i-symbol(x)

o-symbol(y), step(i)

(5.1)

In this formulation, first we “generate” a sequence ↵ of c symbols by the following

choice rule:

1{ads(i, j) : i-symbol(j)}1 step(i) (5.2)

where step(i) is defined by a set of facts:

step(i) (1  i  c) (5.3)

To specify the state where we want to find an ADS for, we use the atom adsState(q).

We also “generate” the output sequence that is defined by output(i, y) atom where

56

it is the sequence generated when the ADS is applied to the state q that we are

trying to find an ADS for, by the following rule:

o-symbol(i, y) path(q, i, r), ads(i, x), transition(r, x, y, s),

state(s), state(r), state(q), adsState(q)

i-symbol(x), o-symbol(y), step(i)

(5.4)

We try to distinguish the output of a state s from the output generated by the state

q when we apply the ADS. Therefore, we check the states whether they are still

needed to be di↵erentiated or not and if they need to, then we label them as active

at step i with the atom active(s, i) by using the following rules:

active(s, 0) state(s)

active(s, i+ 1) path(s, i, r), ads(i, x), transition(r, x, y, q)

active(s, i), output(i, y), state(s), state(r), state(q)

i-symbol(x), o-symbol(y), step(i)

(5.5)

We also specify the states that are already distinguished from the state q. To do

that we use the atom active(s, i) and when we find a state that is active at step i

but not active at step i+ 1, then we know that the state s is di↵erentiated and we

label it as finished(s, i) to specify that it is di↵erentiated from state q at step i by

the following rule:

finished(s, i+ 1, y, z) path(s, i, r), transition(r, x, y, z), ads(i, x)

active(s, i), notactive(s, i+ 1), state(s), state(r), state(z)

i-symbol(x), o-symbol(y), step(i)

(5.6)

After specifying the states that are distinguished, we also check that whether they

are merged into the same state in any step since it is a necessary condition for an

ADS. While di↵erentiating the state q from any other state, it does not let the

other states to be merged into the same state. This condition is guaranteed by the

following rule:

 finished(s, i, y, z), finished(q, i, y, z), state(s), state(q), state(z)

o-symbol(y), step(i)
(5.7)

57

The union of the program ASP that consists of the rules (5.1), (5.2), (5.3), (5.4),

(5.5), (5.6), (5.7), with a set of facts describing an FSM M has an answer set i↵

there exists an ADS of length c for state q.

5.1.1 Optimization

The ASP formulation given in Section 5.1 with a set of facts describing an FSM M ,

have answer sets if the given FSM M has an ADS of length c for a state q. In order

to find the shortest length ADS, one can perform a binary search on possible values

of c.

In this section, we present another ASP formulation where we let the ASP solver

decide the length l of a shortest ADS, where l  c:

1{shortest(l) : 1  l  c}1 (5.8)

and declare possible lengths of sequences:

step(j) shortest(i) (1  j  i  c). (5.9)

Next, we ensure that l is indeed the optimal value, by the following optimization

statement

#minimize[shortest(l) = l] (5.10)

We denote by ASPopt the ASP formulation obtained from ASP by adding the rules

(5.8) and (5.10), and replacing the rules (5.3) by the rules (5.9). If ASPopt with

a set of facts describing an FSM M has an answer set X then X characterizes a

shortest ADS of state q for M .

5.2 ADS Tree Generation Using an ADS

In Section 5.1, we describe the ASP formulation to generate shortest ADS for a

particular state q. Now we will describe how we generate an ADS tree using an

ADS. It is stated that we use multiple ADS and main purpose is to get advantage of

58

relatively shorter ADSs of states while doing the transition verification. Therefore,

we need ADS trees that have shorter ADSs for di↵erent sets of states. In this way,

we have relatively shorter ADSs for each state and once we are done with the cross

verification, we can use the shorter ADSs to verify transitions. This is the main idea

for reducing the length of the checking sequence even though the cross verification

is costly.

The ADS trees that have relatively shorter ADSs for the set of states is called

unbalanced ADS trees. We generate unbalanced trees using an ADS of a particular

state q. Given a branch of an unknown ADS tree as an ADS, our job is to find out

the other branches of the ADS tree. To do that, we apply the ADS to all the states

step by step. We keep the set of states that respond with same output sequence and

when a set of states is distinguished from the state q, we stop applying the ADS to

that set of states. In the end we acquire sets of states where the states in the same

set are not distinguished from each other. Therefore, if we find an ADS (sub)tree

that distinguishes the states within the same set, we can complete all the branches

of the ADS tree and generate an ADS tree with shorter ADS for state q.

Formally, let the sequence ↵ = ↵1 . . .↵c

be an ADS for state q where FSM M has n

states in total and the length of ↵ is c. Let ↵i be a prefix ↵1 . . .↵i

of the sequence ↵.

Let Q
i

= {s 2 Q|�(s,↵i)) = �(q,↵i)}. In other words Q
i

is the set of states whose

output response is same as the output response of q up to and including the ith step.

Let Q
i

= Q
i�1\Qi

be the set of states whose output responses are distinguished

from q at the ith step. Let B
x/y

= {s 2 B|�(s, x) = y} be the set of states in

B which produce the output sequence y for the input sequence x. Let B = Q
i

,

then the partition
Q

i

= {B
x/y

|y 2 �(B, x)}. The partition
Q

i

stands for the set of

states whose output responses to ↵i are the same with each other while their output

responses are distinguished from the state q.

59

↵1

↵2
Q

1,1
. . .

Q
1,`1

↵i

Q
2,1

. . .
Q

2,`2

↵c

q

Q
i,1

. . .
Q

i,`k

Figure 5.1: A Partial ADS Tree

Consider the partial ADS tree shown in Figure 5.1. Let
Q

i,j

be the jth set of

partition
Q

i

. Therefore each
Q

i,j

stands for the set of states that respond to ↵i

with the same output sequence. To complete the ADS tree, the states in
Q

i,j

are

needed to be distinguished from each other. Note that
Q

i,j

corresponds to the initial

states. However, for the subtree to be rooted at the node corresponding to
Q

i,j

, we

need to consider the current states reached by the application of ↵i. The current

states are �(
Q

i,j

,↵i). Hence, in order to complete the ADS tree, we need to find an

ADS (sub)tree, that can distinguish the set of states �(
Q

i,j

,↵i).

To distinguish the states within
Q

i,j

, we use an ADS tree generated by the LY

Algorithm [24]. We denote this ADS tree by ALY . We know that each s 2 �(
Q

i,j

,↵i)

has an ADS within ALY but we do not simply append these ADSs to the states

60

s 2 �(
Q

i,j

,↵i). We apply them step by step until we distinguish all the states in

�(
Q

i,j

,↵i) from each other. Step by step application of an ADS corresponds to the

application of an ADS symbol by symbol. Therefore, we can detect the symbol

which we can distinguish the states and prevent from any unnecessary sequence

extension.

b

s2 {s1, s3}

0

1

Figure 5.2: Initial Partial ADS Tree

Now, we will explain the whole process with an example. According to the FSM M

in Figure 2.2, an ADS for state s2 is ↵ = b. Suppose that the ADS tree generated

by LY Algorithm ALY is shown in Figure 2.5. The partial ADS tree after the

application of ADS ↵ = b to all states is given in Figure 5.2. There is one set
Q

1,1

in the partition
Q

1 and it includes the states s1 and s3. Therefore the states s1 and

s3 are needed to be distinguished. First we need to find where those states go after

the application of ↵ = b. We know that �(s1, b) = s2 and �(s3, b) = s1. As a result,

the set �(
Q

1,1, b) becomes {s1, s2}. The ADSs of states s1 and s2 from the ADS tree

ALY are cc and cc respectively. Since we applied the ADSs step by step to the set

�(
Q

1,1, b), we first apply c to the set �(
Q

1,1, b). The resulting partial ADS tree is

given in Figure 5.3. Since both states respond to c with the output symbol 1, they

are not distinguished from each other yet.

b

s2 c

{s1, s3}

0
1

1

Figure 5.3: A Partial ADS Tree Step 1

61

Then we apply the next symbol of the ADSs which is also c in this case. Now we

have the set �(
Q

1,1, bc) = {s2, s3}. We apply c to the set {s2, s3}. The output

responses of states s2 and s3 are �(s2, c) = 0 and �(s3, c) = 1. Therefore, the initial

states s1 and s3 are managed to be distinguished from each other by the application

of bcc. The complete ADS tree is shown in Figure 5.4.

b

s2 c

c

s1 s3

0
1

0
1

1

Figure 5.4: A Complete ADS Tree

For the experiments we conduct, we generate ADS trees based on the shortest ADS

for each state of the FSM under test. Therefore an FSMM with state number n, has

n ADS trees in the beginning where each ADS tree favoring a particular state s by

having a shortest ADS for the state s. Nevertheless, it is obvious that it cannot be

advantageous to use all of the ADS trees because the cost of cross verification could

be quite big. We need to develop an ADS selection algorithm to pick the ADS trees

that could reduce the length of the checking sequence by providing shorter ADSs

for transition verification and keeping the cost of cross verification at an acceptable

level. In the next section, we explain a method to reduce the length of checking

sequences by choosing the ADS trees from a given ADS tree pool.

5.3 ADS Tree Selection Algorithm

As stated in Section 5.2, we generate an ADS tree for each state. In this section, we

present an algorithm to choose a subset of ADS trees that we can use to generate a

62

checking sequence shorter than the one generated when a single ADS tree is used.

Having an ADS tree for each state s is advantageous, since it reduces the cost of

verification of incoming transitions of s. On the other hand, having a large number

of ADS trees increases the cost of cross verification. Therefore there is a trade-o↵

that we need to consider.

One idea to select a subset of ADS trees could be the following. Given a set of ADS

trees A, it is possible to design a heuristic that is based on a cost function that

estimates the length of a checking sequence if a certain subset A0 ⇢ A is used. The

cost function could be based on the sum of the lengths of the required transition

and state verification sequences by making use of all ADS trees in A0. However, our

initial experiments showed that, such a cost function does not realistically give an

estimate on the length of checking sequences. Luckily, checking sequence generation

algorithms are quite fast. Therefore, rather than using a cost function to estimate

the length of a checking sequence, one can simply generate a checking sequence

using all ADSs in A0. We proposed a greedy algorithm that creates subsets of ADSs

greedily and generate checking sequences based on this idea.

Let CS(M,A0) be an algorithm that constructs a checking sequence for M using all

ADS trees in A0. The algorithm to select ADS trees that generates shorter checking

sequences is an iterative algorithm and is composed of two phases. Phase 1 finds

a pair Ai,Aj 2 A, such that CS(M, {Ai, Aj}) is the shortest checking sequence

for M among all possible pairs of ADS trees. Phase 2 starts with the best pair

A0 = {Ai,Aj} found in Phase 1, and greedily extends the subset A0 by adding a

new ADS tree into A0. Formally, as long as there exists an ADS tree Ak 2 A \ A0

such that CS(M,A0 [{Ak}) is shorter than CS(M,A0), the algorithm extends A0.

Among all possible ADS trees Ak 2 A \ A0, the one giving the largest reduction in

the length of the checking sequence is chosen, where a tie is broken randomly. After

we identify such an ADS tree Ak, the subset A0 is updated as A0 = A0 [{Ak}.

This algorithm does not optimize the set of ADS trees globally, but it makes the best

choice at each iteration and it optimizes the length of checking sequence locally. For

the rest of the thesis we call this algorithm Pair ADS Tree Selection Algorithm. In

addition, we use Single ADS Tree Selection Algorithm to refer the same algorithm

that starts with a single ADS Tree that generates the shortest checking sequence

instead of a pair of ADS trees.

63

Chapter 6

Experimental Results

In this section the experimental results for the checking sequence generation method

will be discussed. The methods have been implemented in Java and the experiments

have been executed on a machine with 2,5 GHz Intel Core i5 and 4 GB DDR3 RAM.

The FSMs that are used in experiments are generated by using the random FSM

generation tool reported in [12]. For the experiments, 10 sets of FSMs are used.

Each set of FSMs contains 100 FSMs having number of states n, where n is ranging

from 10 to 100 (increasing with a step size of 10). Each FSM has 5 input symbols

and 5 output symbols. Also each FSM has an ADS tree. The tool we are using

implements LY algorithm [24] to construct an ADS tree and is biased toward finding

ADS trees that generally contain repetitions of the same input symbol. But since

we need multiple ADS trees, we use the method to construct ADS trees explained

in Chapter 5. In this section, we explain how we compare the performance of our

method with the method in [2] that uses a single ADS tree. The comparisons will be

in terms of the checking sequence length. In addition, we present the experimental

results regarding the e↵ect of cross verification and dependencies between ADS trees.

We also compare the ADS tree selection algorithms.

6.1 Comparison with Simao et al.s Method

For the experimental results that will be presented in this section, the method

presented in Chapter 3 is used to generate a checking sequence. We used the ADS

64

tree selection algorithms presented in Chapter 5 to find a set of ADS trees to generate

the shortest checking sequence. These results are compared with the method in [2].

The experiments show that our method can outperform the method in [2] in most

cases.

Table 6.1 shows for each set of 100 FSMs with a number of states ranging from 10

to 100, the average checking sequence length improvement of our method compared

to the method in [2]. “Number of FSMs” column stands for the number of FSMs

we achieve the improvement. Therefore, the improvements listed in column “% Im-

provement” is calculated based on the cases where we achieve an improvement, and

it shows the average percentage improvement on the length of checking sequences.

Number of States % Improvement Number of FSMs
10 12,80 61
20 11,00 61
30 9,27 66
40 8,11 74
50 7,79 78
60 7,01 95
70 6,83 95
80 6,61 100
90 6,32 100
100 5,98 100

Table 6.1: Improvement in CS Lengths

Note that with the increasing number of states the average improvement in the

length decreases. It is because the number of states increases the cost of cross

verification. To increase the improvement in checking sequence length, we try to

increase the e↵ect of transition verification in checking sequence construction. It is

previously stated that we have a trade-o↵ between cross verification and transition

verification in multiple ADS trees case. In other words, number of ADS trees used

increases the cost of cross verification, but the shorter ADSs in ADS trees favoring

di↵erent states decreases the cost of transition verification. Therefore, to show

the e↵ect of shorter ADSs on transition verification cost, we randomly append the

transitions to the states of the FSMs we used to gather the results in Table 6.1.

We append 4 transitions to each state of FSMs with di↵erent input labels. In other

words, we expand the input alphabet of the FSMs by 4. Table 6.2 shows the e↵ect

65

of additional transitions. With the additional transitions, both the number of FSMs

that we observe the improvement and the improvement on checking sequence lengths

increase. This is because the cross verification cost is constant while we decrease

the transition verification cost.

Number of States % Improvement Number of FSMs
10 13,40 69
20 11,50 78
30 10,50 84
40 10,33 83
50 9,42 83
60 8,65 87
70 7,95 96
80 7,49 100
90 6,94 100
100 6,52 100

Table 6.2: Improvement in CS Lengths with 4 additional input symbols

To support this result that backs up our idea about the e↵ect of shorter ADSs on

transition verification cost, we again append 4 more transitions to each state of

FSMs with di↵erent input labels and run the same tests on them. The result is

shown in Table 6.3. After appending more transitions we observe further improve-

ments in our results. Therefore, we conclude that our method using multiple ADS

trees performs better with the increasing number of transitions, because shorter

ADSs are advantageous for transition verification.

Number of States % Improvement Number of FSMs
10 14,60 78
20 12,50 82
30 11,30 92
40 10,90 93
50 10,40 93
60 9,08 94
70 8,16 97
80 8,08 100
90 7,52 100
100 6,98 100

Table 6.3: Improvement in CS Lengths with 8 additional input symbols

66

Number of
States

% Improvement % Improvement (+4) % Improvement (+8)

10 -6,18 -4,6 -4,45
20 -5,65 -3,92 -3,72
30 -3,55 -2,72 -2,41
40 -3,21 -2,39 -2,04
50 -4,17 -3,25 -2,74
60 -4,55 -3,22 -2,87
70 -5,09 -4,26 -3,42
80 - - -
90 - - -
100 - - -

Table 6.4: Experimental results for FSMs without an improvement

In Table 6.4, we present the results regarding the cases where we do not observe

a reduction in the length of checking sequences. These results show the average

percentage increase in the length of checking sequences for these cases. We know that

as the number of input symbols of an FSM increases, the improvement percentage

on the length of checking sequences increases from the previous experimental results.

This statement can also be supported by the results in Table 6.4, where we see that

as the number of input symbols increases, the average increase on the length of

checking sequence decreases.

We also know that as the number of states increases, the improvement percentage

decreases from the previous results. For the cases we fail to observe an improvement,

this statement still holds. As the number of states increases, the average percentage

increase on the length of checking sequences decreases for most of the cases. For

FSMs with 50 or more states, this statement does not hold. This is because for

such FSMs, the average is calculated based on a small number of FSMs since as the

number of states increases, the number of cases we fail to observe an improvement

decreases.

67

6.2 Contribution of Pair ADS Tree Selection Al-

gorithm

One can ask the question that “Why the ADS tree selection algorithm starts with

the pair of ADS trees?”. First, we conduct the same sequence of tests with the single

ADS tree selection algorithm that is same with pair ADS tree selection algorithm

but it starts with a single ADS tree not a pair of ADS trees. The experiments show

that when we start the ADS selection algorithm with a single ADS tree, we obtain

lesser improvement.

Table 6.5, 6.6 and 6.7 correspond to the same set of experiments above. The im-

provement we obtain with a single ADS tree selection algorithm shows the same

characteristics with the pair ADS tree selection algorithm with respect to increasing

number of states and increasing number of transitions. The improvement decreases

with the increasing number of states and increases with the additional transitions.

However, overall improvement is less than the pair ADS tree selection algorithm.

Therefore, the idea is that to approach to the globally optimal solution, it is better

to start the ADS tree selection algorithm with a combination of ADS trees with

cardinality bigger than 1. In other words, our algorithm could perform better if we

start the ADS tree selection algorithm with a set of 3 ADS trees.

Number of States % Improvement Number of FSMs
10 8,82 49
20 7,51 57
30 6,61 65
40 5,48 63
50 4,97 51
60 4,20 48
70 4,41 42
80 2,56 89
90 2,45 98
100 2,02 98

Table 6.5: Improvement in CS Lengths (Single ADS Tree Selection Algorithm)

This result can also be supported by the statistics shown in Table 6.8. Table 6.8

shows the percentage of the cases where the single ADS tree that generates a shortest

checking sequence is included in the set of multiple ADS trees that is found by

68

pair ADS tree selection algorithm. According to this, starting ADS tree selection

algorithm with a pair of ADS trees makes a drastic di↵erence.

Number of States % Improvement Number of FSMs
10 11,83 63
20 8,62 80
30 8,62 86
40 7,36 92
50 6,36 85
60 5,92 85
70 5,52 88
80 4,66 100
90 4,25 100
100 4,22 98

Table 6.6: Improvement in CS Lengths with 4 additional input symbols (Single ADS
Tree Selection Algorithm)

Number of States % Improvement Number of FSMs
10 12,24 74
20 8,97 89
30 9,71 95
40 8,60 96
50 7,54 94
60 6,64 95
70 6,56 95
80 6,12 100
90 5,37 100
100 5,28 100

Table 6.7: Improvement in CS Lengths with 8 additional input symbols (Single ADS
Tree Selection Algorithm)

Table 6.8 shows the percentage of the ADS trees used to generate shortest checking

sequence by the method in [2] included in the set of ADS trees used to generate

shortest checking sequence with our method. The percentage decreases with the

increasing number of states. With the increasing number of states, we generate

ADS trees as many as state number. Therefore, the possibility of the single ADS

tree being included in the set of multiple ADS trees is decreasing.

69

Number of States
Percentage of Single
ADS Inclusion

10 33,75
20 15,62
30 14,45
40 11,0
50 10,75
60 9,80
70 10,25
80 8,70
90 7,00
100 5,75

Table 6.8: Percentage of single ADS tree included in multiple ADS trees

6.3 The Negative E↵ect Of Cross Verification

We stated that the improvement decreases with the increasing number of states of

FSMs because of the increasing cost of cross verification. We want to explore the

e↵ect of cross verification more. Therefore, we conduct the same set of experiments

by ignoring the cross verification. In other words, we altered the algorithm such

that for the d-recognition of the node, it is enough to d-recognize the node by a

single ADS Aj

i

. Without cross verification the improvement of our method beats

the algorithm in [2] with marked di↵erence. Results are shown in Table 6.9.

Number of
States

% Improvement
with no additional
transitions

% Improvement
with 4 additional
transitions

%Improvement
with 8 additional
transitions

10 34,48 60,99 72,63
20 28,12 54,88 69,11
30 25,85 54,32 68,54
40 22,23 53,57 63,49
50 20,45 53,90 57,85
60 19,42 51,00 55,98
70 19,33 49,80 53,81
80 21,16 46,18 50,89
90 18,83 43,12 49,34
100 15,12 40,65 46,67

Table 6.9: Improvement in CS Lengths without Cross Verification

70

6.4 Contributions of Phase 1 and Phase 2

In this section, we will analyze experimental results of our method only and present

the contributions of Phase 1 and Phase 2 to the average checking sequence length.

Table 6.10 shows the contribution Phase 2 to the average checking sequence length.

The percentage contribution of Phase 2 to the checking sequence length increases

with the size of the FSM. The average percentage contribution of Phase 2 to the

length of the checking sequence seems to be around 25%.

Number of States
Percentage Contribution
of Phase 2

Average Number of
ADS trees used

10 2,93 3,02
20 6,96 3,79
30 13,48 5,3
40 19,50 6,17
50 23,03 6,15
60 28,08 6,55
70 26,63 5,02
80 35,57 7,14
90 38,06 8,48
100 46,69 9,0

Table 6.10: Contribution of Phase 2 to CS Length

The Table 6.10 also shows the average number of ADS trees used. The number

of ADS trees used increases with the size of the FSM. Therefore, it increases the

dependency between ADS trees. This might be the reason for the percentage con-

tribution of Phase 2 to the checking sequence length increases with the size of the

FSM because Phase 2 is responsible for breaking the dependencies between ADS

trees.

71

Chapter 7

Conclusion and Future Work

In this thesis, three aspects of FSM based testing is addressed.

First contribution of this thesis is the formulation of the problem of finding a shortest

adaptive distinguishing sequence for a state q of an FSM M using Answer Set

Programming. It is an NP-Hard problem and the Answer Set Programming is used

to solve this optimization problem. Two di↵erent ASP formulations are given. In

this way, we utilize the construction of ADS trees and create the ADSs suitable for

our needs.

Another contribution of the thesis is a method that can answer the following ques-

tion: Given an input output sequence X/Y and a set of ADS trees for an FSM M ,

is X/Y a checking sequence for M which is generated by using the proposed method

that uses state recognition techniques already existing in the literature, such as d-

and t-recognition. However we also introduce some novel state recognition methods

for multiple state identification sequences. Although using multiple state identifi-

cation sequences increases the cost of cross verification, we showed that for most of

the cases we decrease the length of checking sequence by taking advantage of using

shorter ADSs for transition verification.

The major contribution of the thesis is a new adaptive distinguishing sequence based

checking sequence generation algorithm. Our method is based on a local optimiza-

tion. It provides locally optimal decisions based on the concept of the recognition

automaton. By using recognition automaton, we can detect the best extensions

that shorten the checking sequence. Our method consists of two phases, in the first

72

phase a sequence is generated with little consideration in state recognition. If the

sequence generated in the first phase is not a checking sequence then it is extended

to a checking sequence in Phase 2.

We stated that there are many methods to build checking sequences based on ADS

trees. These methods all require a single ADS tree to be given, and they are mute

to the potential ADS trees that can be used for generating a checking sequence.

They generally focus on generating as good a checking sequence as possible, given

the selected ADS. It is not exceptional that an FSM that has one ADS actually has

more than one. Thus, it is interesting to question the choice of a particular ADS for

the entire checking sequence. Indeed, the di↵erent ADS trees of a given FSM may

have di↵erent properties that would be interesting to exploit for the construction

of the checking sequence. The most obvious one is that a given ADS tree might

be quite short for some of the states and longer for others, while another ADS tree

might be the opposite. Major contribution of our method is to use ADS trees that

best suit our goal of a shorter checking sequence at di↵erent points in the checking

sequence construction.

The experimental results have shown that our method achieves a reduction in the

length of the checking sequence over the method presented in [2]. We think that,

there is still a room for further improvement using our method. The experiments

show that approximately 25% of the checking sequence length stem from the ex-

tensions in Phase 2 and this extension length can be reduced. In Phase 2 of the

algorithm, we implemented a very simple idea to extend the sequence to a checking

sequence and it does not investigate the dependency between ADS trees globally.

However a closer analysis of the final form of the recognition automaton may actu-

ally yield shorter extensions required. As a future work, we want to find some good

heuristics that makes these extensions more cleverly. It may also be worthwhile to

reconsider our eager and careless conditional state recognition approach in Phase 1.

In addition, the experiments showed that without considering cross verification, our

method achieves much better results. Therefore, another research direction could

be investigating a clever way to cross verify the nodes.

We also stated that we estimate a cost function to calculate the optimal ADS tree

set. The experiments showed that the cost function does not reveal realistic re-

sults. Therefore, we used ADS tree selection algorithms that generate the check-

ing sequence while selecting the optimal set of ADS trees. Obviously, this is time

73

consuming. However, one of the research directions could be the detection of the

characteristics of the optimal set of ADS trees by working on the FSMs to estimate

a better cost function.

Another promising research direction seems to be the generation of ADS trees that

optimizes the checking sequence length. In our work, we generate ADS trees that

favor a state of the FSM. This is feasible for the FSMs with a number of states

less than 100. But for an FSM with extremely large number of states, this is not

practical. Therefore, ADS tree generation should be di↵erent for larger FSMs. For

example, the ASP formulation of ADS can be adjusted to generate shortest ADSs

for a group of states and selection of the group of states can be optimized.

74

Bibliography

[1] Alfred V. Aho, Anton T. Dahbura, David Lee, and M. mit Uyar. An op-

timization technique for protocol conformance test generation based on uio

sequences and rural chinese postman tours. IEEE Transactions on Communi-

cations, 39(11):1604–1615, 1991.

[2] Adenilso Sim ao and Alexandre Petrenko. Generating checking sequences for

partial reduced finite state machines. pages 153–168. 2008.

[3] F. Belina and D. Hogrefe. The ccitt-specification and description language sdl.

Comput. Netw. ISDN Syst., 16(4):311–341, March 1989.

[4] Aysu Betin-Can and Tevfik Bultan. Verifiable concurrent programming using

concurrency controllers. In Proceedings of the 19th IEEE International Confer-

ence on Automated Software Engineering, ASE ’04, pages 248–257, Washington,

DC, USA, 2004. IEEE Computer Society.

[5] R. Binder. Testing Object-oriented Systems: Models, Patterns, and Tools. Ob-

ject Technology Series. Addison-Wesley, 2000.

[6] Gerhard Brewka, Thomas Eiter, and Miroslaw Truszczynski. Answer set pro-

gramming at a glance. Commun. ACM, 54(12):92–103, December 2011.

[7] E. Brinksma. A Theory for the Derivation of Tests. University of Twente,

Department of Computer Science, 1988.

[8] S. Budkowski and P. Dembinski. An introduction to estelle: A specification lan-

guage for distributed systems. Comput. Netw. ISDN Syst., 14(1):3–23, March

1987.

[9] Jessica Chen, Robert M. Hierons, Hasan Ural, and Hsn Yenign. Eliminating re-

dundant tests in a checking sequence. In Ferhat Khendek and Rachida Dssouli,

75

editors, TestCom, volume 3502 of Lecture Notes in Computer Science, pages

146–158. Springer, 2005.

[10] T. S. Chow. Testing software design modeled by finite-state machines. IEEE

Trans. Softw. Eng., 4(3):178–187, May 1978.

[11] A.T. Dahbura, K.K. Sabnani, and M.U. Uyar. Formal methods for generating

protocol conformance test sequences. Proceedings of the IEEE, 78(8):1317–1326,

Aug 1990.

[12] Emre Dincturk. A two phase approach for checking sequence generation, 2009.

[13] E.F. Moore. Gedanken-experiments on sequential machines. In C.E. Shannon

and J. MacCarthy, editors, Automata Studies, pages 129–153, Princeton, New

Jersey, 1956. Princeton University Press.

[14] A.D. Friedman and P.R. Menon. Fault detection in digital circuits. Computer

applications in electrical engineering series. Prentice-Hall, 1971.

[15] Martin Gebser, Benjamin Kaufmann, Andr Neumann, and Torsten Schaub. A

conflict-driven answer set solver. In LPNMR, pages 260–265, 2007.

[16] Michael Gelfond and Vladimir Lifschitz. Classical negation in logic programs

and disjunctive databases. pages 365–386, 1991.

[17] David Harel. Statecharts: A visual formalism for complex systems. Sci. Com-

put. Program., 8(3):231–274, June 1987.

[18] May Haydar, Alexandre Petrenko, and Houari Sahraoui. Formal verification of

web applications modeled by communicating automata. In David de Frutos-

Escrig and Manuel Nez, editors, Formal Techniques for Networked and Dis-

tributed Systems FORTE 2004, volume 3235 of Lecture Notes in Computer

Science, pages 115–132. Springer Berlin Heidelberg, 2004.

[19] F. C. Hennine. Fault detecting experiments for sequential circuits. In Pro-

ceedings of the 1964 Proceedings of the Fifth Annual Symposium on Switching

Circuit Theory and Logical Design, SWCT ’64, pages 95–110, Washington, DC,

USA, 1964. IEEE Computer Society.

[20] R. M. Hierons and H. Ural. Correction to: Reduced length checking sequences.

IEEE Transactions on Computers, 58(2):287–287, 2009.

76

[21] Rob M. Hierons and Hasan Ural. Optimizing the length of checking sequences.

IEEE Transactions on Computers, 55(5):618–629, 2006.

[22] Gerard J. Holzmann. Design and Validation of Computer Protocols. Prentice-

Hall, Inc., Upper Saddle River, NJ, USA, 1991.

[23] Zvi Kohavi. Switching and Finite Automata Theory: Computer Science Series.

McGraw-Hill Higher Education, 2nd edition, 1990.

[24] D. Lee and M. Yannakakis. Testing finite-state machines: State identification

and verification. IEEE Trans. Comput., 43(3):306–320, March 1994.

[25] D. Lee and Mihalis Yannakakis. Principles and methods of testing finite state

machines-a survey. Proceedings of the IEEE, 84(8):1090–1123, Aug 1996.

[26] Vladimir Lifschitz. What is answer set programming? In AAAI, pages 1594–

1597, 2008.

[27] S. Naito and M. Tsunoyama. Ilth IEEE Fault Tolerant Comput. Symp.

[28] Alexandre Petrenko, Adenilso da Silva Simão, and Nina Yevtushenko. Gener-

ating checking sequences for nondeterministic finite state machines. In ICST,

pages 310–319, 2012.

[29] Krishan K. Sabnani and Anton T. Dahbura. A protocol test generation proce-

dure. Computer Networks, 15:285–297, 1988.

[30] Uraz Cengiz Türker and Hüsnü Yenigün. Hardness and inapproximability of

minimizing adaptive distinguishing sequences. pages 264–294, 2014.

[31] Hasan Ural, Xiaolin Wu, and Zhang Fan. On minimizing the lengths of checking

sequences. IEEE Transactions on Computers, 46(1):93, 1997.

[32] Hasan Ural and Fan Zhang. Reducing the lengths of checking sequences by

overlapping. In M. mit Uyar, Ali Y. Duale, and Mariusz A. Fecko, editors,

TestCom, volume 3964 of Lecture Notes in Computer Science, pages 274–288.

Springer, 2006.

[33] B. Yang and H. Ural. Protocol conformance test generation using multiple uio

sequences with overlapping. SIGCOMM Comput. Commun. Rev., 20(4):118–

125, August 1990.

77

	Introduction
	Preliminaries
	FSM Fundamentals
	Extending Next State and Output Functions
	Some Properties of FSMs

	Representing an FSM by a Directed Graph
	Paths of Input Sequences

	Distinguishing Sequences
	Preset Distinguishing Sequence
	Adaptive Distinguishing Sequence
	Multiple Adaptive Distinguishing Sequence

	Checking Sequences based on Distinguishing Sequences

	State Recognition using Multiple ADS Trees
	Cross Verification
	Extended State Recognition Definition
	Checking Sequences: Sufficient Condition
	Generation of Recognition Automaton
	State Recognition on Recognition Automaton
	Merging Nodes on Recognition Automaton

	Checking Sequence Generation Algorithm
	Mutual Dependency Between ADS Trees
	Phase 1: Sequence Generation
	Sequence Extension Options

	Phase 2: Checking if a sequence is a checking sequence

	Construction and Selection of ADS Trees
	ASP Formulation of ADS
	Optimization

	ADS Tree Generation Using an ADS
	ADS Tree Selection Algorithm

	Experimental Results
	Comparison with Simao et al.â•Žs Method
	Contribution of Pair ADS Tree Selection Algorithm
	The Negative Effect Of Cross Verification
	Contributions of Phase 1 and Phase 2

	Conclusion and Future Work

