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Abstract

Visualization and analysis of micro/nano structures throughout multiphase flow

have received significant attention in recent years due to remarkable advances in

micro imaging technologies. In this context, monitoring bubbles and describing

their structural and motion characteristics are crucial for hydrodynamic cavitation

in biomedical applications.

In this thesis, novel vision based estimation techniques are developed for the

analysis of cavitation bubbles. Cone angle of multiphase bubbly flow and

distributions of scattered bubbles around main flow are important quantities in

positioning the orifice of cavitation generator towards the target and controlling

the destructive cavitation effect. To estimate the cone angle of the flow, a Kalman

filter which utilizes 3D Gaussian modeling of multiphase flow and edge pixels of

the cross-section is implemented. Scattered bubble swarm distributions around

main flow are assumed to be Gaussian and geometric properties of the covari-

ance matrix of the bubble position data are exploited. Moreover, a new method

is developed to track evolution of single, double and triple rising bubbles during

hydrodynamic cavitation. Proposed tracker fuses shape and motion features of

the individually detected bubbles and employs the well-known Bhattacharyya dis-

tance. Furthermore, contours of the tracked bubbles are modeled using elliptic

Fourier descriptors (EFD) to extract invariant properties of single rising bubbles

throughout the motion. To verify the proposed techniques, hydrodynamic cavitat-

ing bubbles are generated under 10 to 120 bars inlet pressures and monitored via

Particle Shadow Sizing (PSS) technique. Experimental results are quite promising.
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Özet

Mikro görüntüleme teknolojilerindeki kayda değer gelişmeler sayesinde mikro/nano

yapıların çok fazlı akış boyunca görüntülenmesi ve analizi son yıllarda oldukça ilgi

görmüştür. Bu bağlamda, kabarcıkların izlenmesi ve onların yapısal ve hareket

karakteristiklerinin tanımlanması biyomedikal uygulamalardaki hidrodinamik

kavitasyon için oldukça önemlidir.

Bu tezde, kabarcıklı kavitasyonun analizi için görme tabanlı özgün kestirim

teknikleri geliştirilmiştir. Çok fazlı kabarcıklı akışın koni açısı ve ana akış etrafındaki

saçılmış kabarcıkların dağılımları kavitasyon üreticisinin ağzını hedefe doğru

pozisyonlamada ve tahrip edici kavitasyon etkisini kontrol etmede oldukça önemli

niceliklerdir. Akışın koni açısını kestirmek için çok fazlı akış 3B Gaussian olarak

modellenmiş ve ara kesitin kenar piksellerinden faydalanan Kalman süzgeci uygu-

lanmıştır. Ana akış etrafında saçılmış kabarcık sürü dağılımlarının Gaussian olduğu

varsayılıp kabarcık pozisyon verilerinin kovaryans matrisinin geometrik özelliklerinden

faydalanılmıştır. Dahası, hidrodinamik kavitasyon boyunca tekli, ikili ve üçlü

doğan kabarcıkların gelişimini takip etmek için yeni bir yöntem geliştirilmiştir.

Önerilen takip edici, bireysel tespit edilen kabarcıkların şekil ve hareket özelliklerini

birleştirmekte ve iyi bilinen Bhattacharyya mesafesini kullanmaktadır. Ayrıca,

takip edilen kabarcıkların dış hatları tekli doğan kabarcıkların hareket boyunca

değişmeyen özelliklerini çıkarmak için eliptik Fourier tanımlayıcılar (EFD) kul-

lanılarak modellenmiştir. Önerilen teknikleri doğrulamak için, hidrodinamik kavi-

tasyon kabarcıkları 10 - 120 bar giriş basınçları altında üretilmiş ve parçacık gölge

boyutlama tekniğiyle izlenmiştir. Deneysel sonuçlar oldukça umut vericidir.
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Chapter 1

Introduction

Richard Feynman talked about the problems and possibilities of small (and even

atomic) scale manipulation and control in 1959. According to him, physical rules

in atomic level could be very distinctive, so different forces and effects may exist

that we don’t encounter in macro world. In his famous talk, he expressed his expec-

tations about exploring the atomic level possibilities with developing technology

[4]. His foresighted considerations could be realized after 20 years with advance-

ments in micro electro mechanical systems (MEMS) [5] and recent technological

developments enable us to search for atomic level structures.

In addition to atomic level manipulation and control, investigation and interven-

tion of micro/nano fluidics have gained excessive attention in recent years. Designs

of micro fluidic channel structures contribute to achieve several micron level tasks

such as micro-manipulation, micro-fabrication, micro-assembly, micro-sensing and

micro-actuation. Micro fluidic studies are older than Feynman’s talk. One of the

most well-known and oldest micro fluidic experiments belongs to Reynolds [6]. His

experiments were based on pipe flow that was driven by pressure and he explained

the transition to turbulence.

1
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1.1 Motivation

After 2000, interest and research studies about micro/nano fluidics rose rapidly and

became an important constituent in both academia and industry. Micro fluidics

based structures are employed in several industrial applications such as 2D/3D

printers, agglutination machines and electronic cooling devices. In literature, spe-

cialized forms of microchannels as Lab-on-Chip (LOC) or biochips are used in

biology to investigate the cell behaviours under various conditions and find pos-

sible diagnostics. Figure 1.1 shows the published patents and journal articles to

demonstrate the ascending interest in microfluidics research study and an increas-

ing potential in commercial applications.

Figure 1.1: Published patents and journal articles about microfluidics until
2013 [1]

Visualization of the microfluidic process has an extreme importance on making

progress in research studies and developing novel products in industrial applica-

tions. Many microscale visualization systems aim to extract the velocity fields,

profiles and motion of the flow [7]. Advances in visualization components such

as power LEDs and lasers as illumination sources, high speed CCD and CMOS
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cameras as capturing elements, advance image and video processing algorithms

and high computational capabilities allow to design sophisticated imaging system

architectures. Particle Image Velocimetry, Laser/Phase Doppler Anemometry, In-

terferometric Particle Imaging and Particle Shadow Sizing architectures are most

commonly preferred techniques depending on the needs of applications.

Hydrodynamic cavitation is a specialized form of multiphase flow which occurs

when flow is exposed to sudden pressure change [2]. Cavitation-induced bubbles

are unwanted due to their destructive effect. Recent research studies [2, 8] employ

devastating hydrodynamic cavitation bubbles in biomedical applications. There-

fore, visualization of hydrodynamic cavitation phenomenon with several up-to-date

imaging technologies and analysis of cavitation caused bubbles with advanced com-

puter vision algorithms are very evocatory.

1.2 Contributions of the thesis

This thesis aims to design a visualization system architecture for monitoring hydro-

dynamic cavitation and proposes particular solutions to the analysis of cavitation

bubbles for employing this multiphase phenomenon in biomedical applications.

In the first part of the thesis, Kalman filter based virtual cone angle estimation

is presented in order to position the orifice of bubbly flow generator effectively.

To control the destructive cavitation effect, scattered bubble swarms distributions

around the main flow is analyzed by utilizing the covariance matrix of bubble po-

sitions data. In the second part, a new tracking by detection method is developed

by utilizing the morphological and motion characteristics of individually detected

bubbles. Fusion of shape and motion features are employed in well-known Bhat-

tacharyya distance to provide a robust tracker. Evolutions of single, double and

triple rising bubbles are tracked and analyzed during hydrodynamic cavitation.

In the third part, contour edges of previously tracked single bubbles are modeled

using elliptic Fourier descriptors (EFD) to extract invariant properties throughout

the motion.
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1.3 Outline of the thesis

Chapter 2 explains hydrodynamic cavitation phenomenon, demonstrates several

micro/nano imaging systems including the implemented Particle Shadow Sizing

(PSS). Then, an overview of segmentation and tracking algorithms with special-

ized to bubble tracking as well are presented. Chapter 3 is on visual analysis

of cavitation flow. In this context, Kalman filter based multiphase bubbly flow

cone angle estimation and scattered bubble distribution modeling are proposed.

Chapter 4 introduces a new single, double and triple cavitation bubbles tracker

that utilizes structure and motion information. In Chapter 5, contour edges of

single tracked bubbles are modeled using elliptic Fourier descriptor. Chapter 6

is on the experimental results which are implemented on the images of hydrody-

namic cavitating bubbles generated under 10 to 120 bars inlet pressures. Finally

thesis is concluded in Chapter 7 and possible future works are discussed.

1.4 Publications

• G. Alcan, M. Ghorbani, A. Kosar, M. Unel, “Vision Based Cone Angle Esti-

mation of Bubbly Cavitating Flow and Analysis of Scattered Bubbles using

Micro Imaging Techniques”, 41st Annual Conference of the IEEE Industrial

Electronics Society (IECON 2015), Yokohama, Japan, November 9-12,2015

• M. Ghorbani, G. Alcan, D. Yilmaz, M. Unel, A. Kosar, “Visualization

and image processing of spray structure under the effect of cavitation phe-

nomenon”, 9th International Symposium on Cavitation (CAV 2015), EPFL,

Lausanne, Switzerland, December 6-10, 2015

• M. Ghorbani, G. Alcan, S. E. Yalcin, Z. Zhakypov, M. Unel, D. Gozuacik, S.

Ekici, H. Uvet, A. Sabanovic, A. Kosar, “Visualization of Microscale Bub-

bly Cavitation Flow via Particle Shadow Sizing Imaging and Vision Based

Estimation of the Cone Angle”, Journal Paper (under preparation)



Chapter 2

Literature Survey and

Background

2.1 Hydrodynamic Cavitation Phenomenon

Sudden pressure drop down below the vapor pressure of the liquid results in va-

porization and bubble generation. This phenomenon is called hydrodynamic cavi-

tation. When a liquid flowing through an inlet channel is exposed to pass through

the micro orifice throat, velocity of the flow increases and subsequently decrease

in pressure causes formation of gas bubbles [2]. Several research studies enable

physical explanations, applications and visualizations of hydrodynamic cavitation

[9–13].

Figure 2.1: Hydrodynamic cavitation generator microchannel [2]

Generated bubbles in lower inlet pressure, may collapse when they are subjected

to atmospheric pressure. Highly destructive shock waves are generated by the

5
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collapse of cavitation-caused bubbles. Continuous collision of solid surfaces and

generated bubbles leads to cavitation erosion [14].

Destructive effect of hydrodynamic cavitation is normally undesirable and must be

minimized in machines closely interact with liquids such as ships’ propellers and

hydraulic turbines [15]. Turning destructive effect into an advantage is possible in

many biological and biomedical applications. Perk et. al [2] utilized hydrodynamic

cavitation as a tool in kidney stone erosion and showed that hydrodynamic cavita-

tion can be used as an alternative in biomedical applications. Similarly, prostate

cells are killed and benign prostatic hyperplasia tissue is ablated by hydrodynamic

cavitation in [8].

Gogate and Pandit [16] present the future of hydrodynamic cavitation within

the context of hydrodynamic cavitation reactors design, modeling and analysis of

bubble dynamics and cavitation yields, investigation of bubble-bubble and bubble-

flow interactions.

2.2 Micro/Nano Visualization Systems

2.2.1 Particle Image Velocimetry (PIV)

Particle Image Velocimetry (PIV) is a measurement technique that provides in-

stantaneous velocity fields of the particles during the flow motion [17, 18]. To

visualize the flow velocity, micron sized small particles called “seeding” are mixed

into the fluid which reflect the light and enable to monitor the motion (Figure

2.2). Tracer particles are captured in consecutive frames and local displacements

are calculated with several correlation techniques [19]. By utilizing the funda-

mental speed definition as derivative of positions, high accuracy velocity fields are

obtained with the help of precise calibration and exact correlations.

Generally fluid is illuminated with a plane light sheet source which provides to

obtain 2 component velocity vectors in cross-section of the flow (Figure 2.3). Since
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Figure 2.2: PIV configuration and obtained example velocity fields [3]

flow motion can be very fast, power LEDs or more preferably high power lasers

are used to illuminate tracers. To increase the accuracy of velocity fields, double

pulsed led or laser sources are preferred to obtain double consecutive frames with

a few nano seconds delays.

Figure 2.3: PIV measurement principles [3]

High frequency illumination sources necessitate the high speed cameras. Recent

advances in imaging technologies such as high speed CCS and CMOS cameras

make it possible to acquire real-time velocity maps [20].

Since classical PIV provides only 2 component velocity map in a plane, the visu-

alization can be enhanced by utilizing more cameras with different configurations

(Figure 2.4). Stereoscopic PIV provides three velocity components but the veloc-

ities still belong to a plane by employing 2 cameras appropriately [21, 22].

During PIV and Stereo PIV measurements, particle correlation accuracy may

lessen due to partial or fully occlusions. A tracer particle detected in one frame

may not be detected in the following frame as well. To recover the positions of

almost each tracer seedings, particles should be followed in a volume instead of
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a plain. Volumetric PIV includes more than 2 cameras (ideally four) to achieve

three velocity components in a volume, not a plain [23].

Figure 2.4: Stereo PIV (2 cam.), Volumetric PIV (4 cam.) Configurations [3]

2.2.2 Laser Doppler Anemometry (LDA)

Laser Doppler Anemometry (LDA), also known as Laser Doppler Velocimetry

(LDV) utilizes well-known Doppler shift effect in laser beam to measure the ve-

locity of gas or fluid flows [24].

Figure 2.5: LDA configuration [3]
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Measurement probe includes transmitting and receiving optics as well. When a

seeding particles moves around the intersection points of transmitting laser beams,

received light intensity changes due to Doppler shift (Figure 2.6). After a series

of signal processing algorithms applied, velocity components of the corresponding

points can be recovered [25].

Figure 2.6: LDA measurement principles[3]

As distinct from PIV, which is a whole field measurement technique, LDA trans-

mitting probe is targeted to a single point in gas or fluid flow (Figure 2.5). In

addition to turbulence, up to three component velocity of a single point can be

measured with LDA. Deen applied both single camera PIV with LDA gas-liquid

flow in a bubble column and stated the advantages and disadvantages of these

techniques. PIV can measure whole plane without distorting the flow but tempo-

ral resolution in PIV is very low, e.g. 15 Hz for digital PIV. On the other hand,

temporal resolution in LDA is very high e.g. 1kHz, but LDA can measure just

single point, so velocities of different phases cannot be measured [26].

2.2.3 Phase Doppler Anemometry (PDA)

Phase Doppler Anemometry is an extension of Laser Doppler Anemometry. PDA

transmitting probe is also targeted to a single point but different from LDA, three
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receiving probes are separated from transmitting probe and they measure the

scattered angle of the particle (Figure 2.7).

Figure 2.7: PDA configuration[3]

Spherical particles such as droplets, bubbles and solid seeding particles, reflects

waves which are proportional to their velocities in return to two laser beam coming

from transmitting probe. Receiving probes sense these waves with different phases

and this phase shift is also proportional to the diameters of spherical particles [27].

Figure 2.8: PDA measurement principle [3]

Measurement principles of PDA also provide measurements related to sizes and

shapes of particles. Consequently, PDA is often preferred in research studies such
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as analysis of bubbly multiphase flows, spray characterization, liquid atomization

[28–30].

2.2.4 Interferometric Particle Imaging (IPI)

Interferometric Particle Imaging (IPI) also known as Interferometric Mie Imaging

(IMI) is based on utilizing the focused and defocused images of spherical particles

[31]. Obtaining focused and defocused images can be done via a single camera

with moving platform or dual camera with adjusted positions. ‘Interferometric’

term explains that the reflection and refractions of shiny points are interfered to

generate a fringe pattern in overlapping region (Figure 2.9).

Figure 2.9: IPI configuration and fringe pattern generation in overlapping
area [3]

Mie theory [32] explains that obtained fringe patterns corresponds to the far field

scattering. Number of fringes in overlapping region increases with the larger di-

ameter of shiny points. Aperture angle is another important parameter for IMI.

Angle between laser sheet and high speed camera’s focal axis should be 90 degree

for parallel polarization and 68 degree for perpendicular polarization [33].

In several research studies [34–36] Interferometric Particle (Mie) Imaging is im-

plemented to measure the sizes, velocities and positions of transparent spherical

particles in gas or fluid flows.
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2.2.5 Particle Shadow Sizing (PSS)

Particle Shadow Sizing (PSS) also known as Particle Shadow Velocimetry (PSV) is

a whole field optical imaging technique like PIV. Differently, light source is located

on the optical axis of high speed camera and particle shadows are monitored

(Figure 2.10).

Figure 2.10: PSS configuration [3]

Particles, droplets, bubbles and small solid structures such as powder could be

visualized in the scope of micron scale with appropriate magnification levels [37].

High speed laser sources, long distance microscopes and high speed CCD and

CMOS cameras enable not only recovering the two component velocity fields but

also size and shape information thanks to advanced image acquisition and pro-

cessing methods [38]. Observed particles do not need to be shiny or spherical as

in the case of LDA, PDA and IPI to recover their shape information, since PSS

measurement principle does not depend on the scattering light from the surface

of the particle. Instead, direct in-line illumination is employed to visualize the

particle shadows on bright background [39].

Since observed particle speed may be very high due to the motion of the gas

or fluid flow, non-coherent high power LEDs or single/dual high power lasers are

employed as illumination sources. Recently, non-coherent power LED illumination

based high magnified PSV imaging architectures are exploited to investigate micro

bubbles and micro structures, so this procedure is also called µPSV [40, 41].
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Within the scope of this thesis, PSS imaging system architecture with different

illumination configurations is designed to visualize multiphase flow and analyze

hydrodynamic cavitation bubbles and droplets.

Figure 2.11: Particle Shadow Sizing components

Visualization system includes Dantec Dynamics Dual Power TR laser, Dantec

Dynamics Shadow Strobe, alternatively Power LED, Phantom v9.1 high speed

camera, Questar QM 100 long distance microscope, synchronization component

and Sutter Instruments MP-285 micromanipulator (Figure 2.11).

Dual Power TR Laser has up to 30 mJ energy and up to 10 kHz repetition rate,

which allows to illuminate high speed micro particles. Targeting the laser directly

to the camera optical axis is very hazardous since laser is a focused form of scat-

tered light beams. Thus, Shadow Probe is needed to scatter laser beam and create

a homogeneous light bundle. Shadow Strobe carries focused laser beam through

the 2 meter liquid light guide cable and scatter the beam with several mirrors

and lenses. Spotlight adjustment behind the strobe (Figure 2.13) can be manip-

ulated linearly to change spotlight size from few mm2 to 1000 mm2 and working

distance from 10 cm to 1 m [42]. By this adjustment Shadow Strobe can be used

in “telecentric” or “microscope” mode, as we prefer telecentric mode because of

its easy-to-use structure.

In our former experiments, we employed Phantom v310 CMOS camera with In-

finity Model K2 DistaMax Long Distance Microscope, that provides 10.000 fps 8
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Figure 2.12: PSS configuration with Power LED (left) and Shadow Strobe
(right)

Figure 2.13: Left: Spotlight adjustment Right: Microscope (up) and Telecen-
tric(bottom) Modes

bit images with 600×800 resolution. Covered area corresponds to 4578µ×6104µ.

2 pulsed 198 LED array was used as illumination sources.

In new visualization system, Phantom v9.1 high speed camera provides up to 10

kHz frame rate and 1600×1200 pixel resolution. To increase the magnification

2× lens and Questar QM 100 Long-Distance Microscope are equipped with the

camera. Questar QM 100 supplies 16× magnification in 15 cm - 35 cm working

distance. Final 32× magnification covers the 857µ×610µ area. Synchronization

component is assigned in timings of single and double frame modes of power LED

or laser source. It also adjusts the shutter time of camera to capture the stage.
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Figure 2.14: Hydrodynamic cavitation visualization system

Before acquiring shadow images, the most challenging issue is to focus the system

on the desired location. Since we employ very high magnification levels, it is not

easy to find the focus point exactly for a few trials. To ease the focusing period,

MP-285 micromanipulator, which has a few submicron sensitivity, is utilized to

find focus points accurately. Finally, a complete particle shadow sizing based

hydrodynamic cavitation visualization system architecture is obtained as in Figure

2.14.

2.3 Segmentation and Visual Tracking Methods

Image segmentation is one of the most fundamental approaches in computer

vision which enables and contributes various other vision methodologies as well

such as recognition and tracking. Typically image segmentation methods start

with image preprocessing steps to eliminate noises and proceed with specific tasks

that put forward desired region(s) of the image. Segmentation can be based on

searching for a predefined single object or multiple regions that behave in the

same manner. Starting from the earliest techniques to up-to-date algorithms,

segmentation methods can be investigated in 6 groups.
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1. Thresholding methods as initially Otsu [43] defined, convert multilevel

grayscale images into binary images according to specific threshold level,

which can be categorized into three such as global thresholding, local thresh-

olding and dynamic thresholding based on the selection of threshold level T.

2. Edge detection based segmentation necessitates to find the edges be-

tween the regions. In computer vision, edges are defined as the pixels which

have sudden transition change in intensity. Edge detection is one of the most

primitive and fundamental segmentation method. Kittler and Illingworth

[44] proposed a gray histogram techniques which was based on modifica-

tions to Otsu’s [43] threshold method. Instead of gray histogram, Canny

presented a novel computational approach to edge detection which was a

gradient based method [45].

3. Region based segmentation methods rely on connected pixel groups

in whole image and segmented into sub regions. Chang and Xiaobo [46]

proposed a method which does not require any parameter tuning or a priori

knowledge. The method mainly includes region growing, region splitting and

merging techniques.

4. Partial Differential Equation (PDE) based segmentation meth-

ods propose to solve the partial differential equation model by a numerical

scheme to segment the image. Snakes (active contours) [47], Level set model

[48], Mumford Shah [49] model and C-V model [50] are powerful examples

of PDE based image segmentation methods.

5. Artificial Neural Network (ANN) based segmentation methods

involve in conversion of segmentation problem into Neural Network problem,

where every pixel is mapped as neurons and segmentation is considered as

an energy minimization problem [51].

6. Clustering based segmentation methods are unsupervised methodolo-

gies which necessitate to define a set of categories as clusters by classifying

the pixels. Hard clustering [52] and Fuzzy clustering [53] are two different

ways of clustering based segmentation.
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Visual object tracking is very challenging problem which aims to locate moving

object(s) throughout the sequential video frames. Tracking process includes de-

tection tracking and analysis of predefined interested objects, which enables this

technique to be used in various applications such as motion-based recognition,

automated surveillance systems human-machine interactions, vision based vehicle

navigation, traffic monitoring and video indexing [54].

Simply, visual object tracking can be considered as an estimation problem to

predict the target object(s) in upcoming video frames, which makes representation

of target object very crucial in visual tracking. Within this context, tracking

methods can be categorized according to types of target representation as point

tracking, kernel tracking and silhouette tracking.

1. Point tracking requires to represent the target object by distinct feature

points and these points may necessitate to be detected again during the

consecutive video frames. Point tracking can be investigated in two groups

according to representation of modeling as deterministic or probabilistic:

• Modifying Greedy Exchange (MGE) tracker [55] and Greedy Optimal

Assignment (GOA) [56] tracker are examples of deterministic point

tracking methods, which mainly target to handle occlusion and wrong

detection problems.

• Kalman filter based tracker [57], Joint Probabilistic Data Association

Filter (JPDAF) tracker [58] and Probabilistic Multi-Hypothesis Track-

ing (PMHT) [59] are instances of statistical point tracking models,

which include probabilistic approaches to track single or multiple tar-

gets.

2. Kernel tracking requires the object shape and appearance, so tracking can

be performed by computing the motion of the related kernel representing the

shape of the target object. Rotation, translation and affine transformations

are fundamentals of computed motions.
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• Mean-shift [60], Kanade-Lucas-Tomasi [61] and Layering tracking meth-

ods [62] are based on a template or distribution based appearance mod-

els which can be obtained by several distinct features of interested tar-

get(s).

• Eigen tracking [63] and Support Vector Machine (SVM) tracker [64] re-

quire multi-view appearance models, which can be acquired by multiple

cameras or a single moving camera during the motion.

3. Silhouette tracking is based on the estimation of the target object region

in consecutive frames and tracker is focused on the object region such as

area, orientation, form of edge maps, appearance density. Shape matching

or contour evolution is applied to track the silhouettes.

• State space models [65], Variational methods [66] and Heuristic methods

[67] are silhouette tracking methods which investigate the change of

outer boundary of target(s) during the video frames.

• Hausdorff [68], Hough transform [69] and Histogram [70] models track

the silhouette(s) of the interested object(s) by shape matching.

A common characteristic of these methods is representing the target in a specific

form and they differ from each other within the concept of how to do it. However,

various tracking applications show that target object’s shape may be deformed,

pose could be varied or environmental factors such as varying illumination, occlu-

sions and camera motion can disturb the target representation, which created a

need for online learning techniques that capable of updating these changes during

the video frames [71].

Online learning based tracking algorithms can be investigated in two groups as gen-

erative and discriminative methods. In generative method, updating the appear-

ance of the target object is proposed to achieve robust tracking [72–74], whereas

in discriminative methods (as known as tracking by detection) sets of features

to identify both object and background are utilized to train a classifier to learn
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the changes and segment the interested target(s) during consecutive video frames

[75–77].

2.3.1 Bubble/Droplet Tracking

In literature, there exist several micron sized particles, bubbles and droplets track-

ing algorithms applied in various visualization systems. Bubble/droplet tracking

techniques in literature can be investigated in 3 groups such as shape/contour

modeling based tracking, label-free tracking and matching based tracking.

Cheng and Burkhardt develop a bubble contour tracking system by assuming

their shape as circular. Positions of the bubbles are recovered by radial scans

and the method is able to handle with overlapping issues [78]. Tomiyama et al.

demonstrate 3D bubble tracking method in vertical pipe, which mainly depends

on shape models and proper boundary conditions [79]. Okawa et al also utilizes

the bubble shape function to track the rising bubbles in a pipe. Additionally phase

coupling models are proposed due to the requirement of that conservation of the

equations must be solved simultaneously [80].

Basu presents a time-resolve analysis of droplets via droplet morphology and ve-

locimetry (DMV), which includes several preprocessing steps to distinguish fore-

ground from background and correlation steps. Proposed label-free technique sup-

plies several motion and structural information related to micron scale droplets

[81]. Jüngst et al also propose a label free tracking for long term observation

of lipid droplets throughout the cells by Coherent Anti-Stokes Raman Scattering

(CARS) microscopy [82].

Qian et al. propose matching and tracking method, which utilizes genetic algo-

rithm. Method can distinguish similar sized and shaped bubble in even kinetic

occlusion cases as well [83]. Xue et al. present a tracking and 3D reconstruction

method in stereo vision by matching correspondences of bubble distinct features

from different half views [84].



Chapter 3

Visual Analysis of Cavitation

Flow

Visualization of micro scale cavitation bubbles using the Particle Shadow Siz-

ing (PSS) imaging technique and processing acquired images using appropriate

algorithms are very crucial visual tasks. Extracting visual information from mi-

croscopic images and estimating important parameters of the underlying physical

phenomenon have been the focus of several research studies in the past [85–87].

Figure 3.1: Bubbly flow at different inlet pressures was recorded in 4 segments

Cavitating flows emerging from the short microchannel were recorded at different

inlet pressures from 10 bars to 120 bars while outlet pressure was 1 atm. Due to

narrow depth of field of visualization system, only a 4.5 mm x 6.1 mm local area

could become possible to monitor with proposed visualization system. Starting

from the beginning of the orifice, systems field of view is moved toward to end

of the flow with around 3.5 mm distances to investigate the entire of bubbly flow

motion (Figure 3.1).

20
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A virtual cone starting from the orifice of the bubbly flow generator along with

the flow was formed during the cavitation process. Angle of the virtual cone have

to be determined to control the orifice position of bubbly flow generator towards

the target and estimate the covered area in various deterioration operations.

Ascending pressure level naturally leads to an increase in the speed of multiphase

bubbly flow, complicating to visualize the entire of the flow motion and detect

bubbles individually. Visualization of hydrodynamic cavitation was implemented

with different illumination sources.

• Experiment 1: Commonly used dual LEDs were utilized as illumination

sources. Since illumination power is lower due to LEDs, scattered bubbles

around main jet flow could not be caught, resulting that first segments of

the flow until medium inlet pressure (Pi ≤ 50 bars) were observed as solid

pipeline (Figure 3.2). With ascending inlet pressures after 50 bars, virtual

cone angle formed in segment 1 got widened. Additionally, until the medium

inlet pressure, droplets could be visualized individually in 3rd and 4th seg-

ments, which became impossible with higher inlet pressures due to obvious

ascending flow motion.

Figure 3.2: Exp 1 : Visualization of the flow in 4 segments (Pi = 50 bars)

• Experiment 2: Dual LEDs were replaced by a single power LED to enhance

the illumination. Scattered bubbles around main jet flow in first segments

became visible with new illumination source (Figure 3.3). Bubbles could be

easily separated from the main multiphase jet flow in 3rd segment with the

pressure level below 30 bars and in 4th segment with 40 to 50 bars, whereas it

was impossible to detect bubbles individually with the pressure level above
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60 bars since multiphase bubbly flow jet abode its partial solidarity due to

high pressure.

Figure 3.3: Exp 2 : Visualization of the flow in 4 segments (Pi = 50 bars)

In both experiments, acquired images were not appropriate enough to calculate

the virtual cone angle without any processing steps, so several image preprocessing

techniques are applied to each frame throughout the recorded video to enhance

the image quality.

3.1 Cone Angle Estimation

During the hydrodynamic cavity flow visualization, main multiphase flow jet and

scattered bubbles around the main jet constitute a rough virtual cone in each

frame. In order to employ the hydrodynamic cavitation in various biomedical

applications such as kidney stone erosion, one must position the orifice of bubbly

flow generator towards the target specimen (e.g. kidney stone) accurately and

be aware of the manipulated area of multiphase bubbly flow. Hence, estimation

method of virtually obtained cone angle is proposed based on the processing of

each frames in recorded bubbly flow video. Since estimation of the cone angle

from a single frame could be unreliable, superimposition of preprocessed binary

frames is applied to construct 3D structure, which is then modeled as Gaussian

and utilized to take cross-section for detection of bubbly flow edges. Finally, best

lines are fitted to extracted edge points and Kalman filter [88, 89] is employed for

robust estimation of cone angle.
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3.1.1 Image Preprocessing Methods

In recorded images, the main multiphase flow jet and bubbles around it may not

be distinguished from the background easily due to shadows, noises and undesired

particles. In order to segment the pertinent parts of the bubbly flow, several image

preprocessing steps must be applied to acquired data. These steps involves con-

trast stretching, morphological operations, thresholding and connected component

analysis. Since the quality of illumination source was different in Experiment 1 and

2, necessity and the order of the mentioned steps may vary depending upon the

needs of visualization system. Appropriate combination of image preprocessing

methods were employed to pick out droplets individually in Segment 3 of Experi-

ment 1, main jet flow and scattered bubbles around it in Segment 1 of Experiment

2 from the background.

3.1.1.1 Contrast Stretching

Illumination is very crucial factor to obtain well distinguishable images of par-

ticles/flow in several micro imaging techniques such as Particle Shadow Sizing.

Due to narrow field of view, contrast of the acquired images may not be sufficient

enough. In such cases, before starting to implement any visual algorithm, contrast

stretching method is usually employed which enables to enhance the grayscale level

(Figure 3.4 , 3.6).

Figure 3.4: Exp.1 (a) Unprocessed original image (b) Contrast adjusted image

With a convenient form of contrast transformation function, below a certain ref-

erence point levels are darkened and above the same point levels are brightened in
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original image to achieve higher contrast [90]. Contrast stretching is a specialized

form of histogram equalization technique which distributes the grayscale levels

uniformly (Figure 3.5 , 3.7) to sharpen the image and upgrade the discernibility.

Figure 3.5: Exp.1 (a) Histogram of original image (b) Histogram of contrast
adjusted image

Figure 3.6: Exp.2 (a) Unprocessed original image (b) Contrast adjusted image

Figure 3.7: Exp.2 (a) Histogram of original image (b) Histogram of contrast
adjusted image
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3.1.1.2 Morphological Operations

Morphological operations are nonlinear transformations of binary images which

alter the shape or structure of an object in the image [90–92]. Two main mor-

phological operators, erosion and dilation are originated from set theory in Math-

ematics [92]. Erosion of A by B (A 	 B) and dilation of A by B (A ⊕ B) are

defined respectively as follows

A	B = {z|(B)z ⊆ A} (3.1)

A⊕B = {z|(B̂)z ∩ A 6= ∅} (3.2)

The combinations of these fundamental operators with different orders also define

new operators such as closing and opening. Closing is the erosion of the dilation

and opening is the dilation of the erosion. Opening operator can clean the small

objects from the foreground, whereas closing operator can clean the small gaps

in foreground [90]. The opening of set A by structuring element B (A ◦ B) and

the closing of set A by structuring element B (A • B) are defined respectively as

follows

A ◦B = (A	B)⊕B (3.3)

A •B = (A⊕B)	B (3.4)

Figure 3.8: Representation of opening A by structuring element B

Gonzalez and Wood [90] depict the opening operator as rolling the structuring ele-

ment along through the inner boundary of the object (Figure 3.8), which enhance

the images as a tool of noise removal and gaps filling. Additionally, a wisely-

determined structuring element of opening operator can bring out the preferred
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segments of the image and eliminate the rest. In this sense, during Experiment 1,

3×13 vertical rectangle structuring element was chosen due the shapes of droplets

in segment 3, enabling droplet candidate regions distinguishable from background

easily (Figure 3.9).

Figure 3.9: Exp.1 (a) Contrast adjusted image (b) Opening operation

3.1.1.3 Thresholding

Since morphological operations disambiguated the droplets in Experiment 1 and

contrast adjusted images make it feasible to distinguish hybrid bubble and main

multiphase bubbly flow structure from the background in Experiment 2, segmen-

tation of droplets and hybrid structure were done by thresholding with an ap-

propriate level (Figure 3.10 , 3.11). Optimum threshold level was designated by

Otsu’s clustering-based method [43], which converts grayscale image to binary

image based on two clusters as foreground and background.

Figure 3.10: Exp.1 (a) Opened image (b) Thresholding the opened image

Thresholding based segmentation may sometimes lead to introduce some distur-

bances, noises and bring about some gaps or missing data in the binary image,
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Figure 3.11: Exp.2 (a) Contrast adjusted image (b) Thresholding the contrast
adjusted image

which creates need for structural improvements and enhancements. Morpholog-

ical operations are employed to purify the binary image from noises and fill the

blank holes that are caused by thresholding (Figure 3.12). Structuring element B

is determined as a disk with small enough radius, enabling to clean adventitiously

generated noise particle and filling the unintentionally comprised holes.

Figure 3.12: Exp.2 (a) Thresholded image (b) Opening of thresholded image
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3.1.1.4 Connected Component Analysis

Nonlinear filtering based preprocessing steps may not always end up with perfect

noise free results. To bring out the pertinent regions and eliminate the rest, region

based Connected Component Analysis (CCA) can be employed. CCA looks for the

relationships between pixels and divides them into different groups. In each group,

pixels are located in the neighborhood of each other and labeled with pre-specified

properties.

Figure 3.13: Exp.1 (a) Existence of circular noise (b) Removal of circular
noise

In Experiment 1, all labeled regions in pre-processed binary images were candi-

dates of droplets. With prior observed knowledge, droplets had some considerable

amount of pixel wise areas between 5000 and 15000. Thus, less than a certain

pixel wise area, regions could be seen as noise and excluded.

Apart from less amount of pixel wise area, it is observed that there were some

circular regions which did not flow like other droplets (Figure 3.13(a)). After su-

perimposition of several images, which will be presented in the following section,

circular noise trajectory could be easily distinguished from usual droplets’ tra-

jectories. The shapes of droplets were utilized in this case to get rid of circular

noise. In geometry, eccentricity of a shape represents how it is close to a pure

circle. This number is between 0 - 1 and it is close to 1 if the shape is pure circle.

Obviously eccentricities of droplets and circular noises were far from each other,

which made it possible to increase the droplet detection accuracy by eliminating

the non-droplet regions (Figure 3.13(b)).
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3.1.2 3D Gaussian Modeling

After some preprocessing steps explained in Section 3.1.1 are applied to each

frames, acquired binary images are considered as instant positions of the droplets

in Experiment 1, the bubbles and main bubbly flow jet in Experiment 2. In place

of calculating the cone angle from each single frames, instant positions are accu-

mulated and each binary frames are superimposed to gather information about

the motion during the whole process of bubbly flow.

Figure 3.14: Exp.1 Superimposition of frames
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Figure 3.15: Exp.2 Superimposition of frames

As shown in Figure 3.14 and 3.15, red peaks and lighter segments of the im-

age represent the places where flow occurs most frequently. 2D representation

of superimposed structure encourages to construct its 3D form to reach detailed

information about the flow. Indeed 3D structure of superimposed bubbly flow

indicated Gaussian distribution.

Superimposition procedure is applied in Experiment 2 with various inlet pressures

from 10 bars to 120 bars (Figure 3.16), which showed that ascending pressure level

results in obtaining wider Gaussian distribution.

Since droplets could be visualized individually in 3rd segments until the medium
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Figure 3.16: Exp.2 Obtained 3D Gaussian structure for each inlet pressures
10-120 bars

inlet pressure (Pi ≤ 50 bars) in Experiment 2, superimposition was not applied

to images belonging to inlet pressure higher than medium pressure. Instead, each

frame was assumed to be superimposed by several undistinguished droplets, ac-

cordingly 3D representation of each acquired (and preprocessed) frames were in-

deed Gaussian distribution instinctively (Figure 3.17).

In order to investigate the influence of ascending pressure level and determine a

convenient interval for cross-section, second order Gaussian polynomial function
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Figure 3.17: Exp.1 3D structure at higher inlet pressure levels (Pi > 50 bars)

is fitted to data belongs to the cross section of formed 3D structure along Z axis

(perpendicular to image plane) by nonlinear least squares method and trust-region

algorithm (Figure 3.18). Goodness of fit (Fit R-Square and RMSE) and Gaussian

functions with its parameters (σ and µ) are demonstrated in Table 3.1 and Table

3.2 respectively for each inlet pressures from 10 bars to 120 bars.

Figure 3.18: Exp.2 Gaussian function fit (Pi=110 bars)

Pressure (bars) Fit R-Square Fit RMSE
10 0.9997 1.075
20 1 0.4328
30 0.9996 1.518
40 0.9995 1.739
50 0.9997 1.294
60 0.9996 3.078
70 0.9996 2.279
80 0.9996 3.578
90 0.9997 2.406
100 0.9998 2.068
110 0.9998 1.922
120 0.9999 1.802

Table 3.1: Exp.2 Gaussian function fit goodness for each inlet pressures
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Pressure (bars) Standard Deviation (σ) Mean (µ) Equation

10 8.5489 305.8 f(x) = 399.7e−
(

x−305.8
12.09

)2
20 13.0320 284.5 f(x) = 342.5e−

(
x−284.5
18.43

)2
30 14.7361 282.9 f(x) = 377e−

(
x−282.9
20.84

)2
40 16.2493 289.3 f(x) = 370.3e−

(
x−289.3
22.98

)2
50 18.0524 288.4 f(x) = 352.4e−

(
x−288.4
25.53

)2
60 17.1049 282.5 f(x) = 724.3e−

(
x−282.5
24.19

)2
70 18.9999 284.5 f(x) = 480.5e−

(
x−284.5
26.87

)2
80 24.5336 286.2 f(x) = 694.8e−

(
x−286.2
34.85

)2
90 25.5336 288.8 f(x) = 532.8e−

(
x−288.8
36.11

)2
100 31.5228 290.5 f(x) = 496.1e−

(
x−290.5
44.58

)2
110 35.2210 296.8 f(x) = 531.1e−

(
x−296.8
49.81

)2
120 31.8693 306.7 f(x) = 686.2e−

(
x−306.7
45.07

)2
Table 3.2: Exp.2 Gaussian function and its parameters for each inlet pressures

3.1.3 Best Line Fitting

To estimate the cone angle of bubbly flow, edges of the main flow jet is required

to be extracted by thresholding the 3D structure at some level along Z axis. One

can notice that thresholding the structure from a Z level closest to peak or bottom

cannot provide sufficient edge information regarded to overall flow. By utilizing

the Gaussian function nature, Zmax and Zmin levels are designated in relation to

standard deviation (σ) and mean (µ) parameters as follows

Zmax = f(µ∓ σ) (3.5)

Zmin = f(µ∓ 2σ) (3.6)

High fidelity side edge points of bubbly flow can be obtained by thresholding the

3D structure at appropriate Z levels (Figure 3.19(a)), where

f(µ∓ 2σ) ≤ Z ≤ f(µ∓ σ) (3.7)
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Figure 3.19: Exp.2 (a) Thresholding the 3D structure at a certain Z level (b)
Best lines fitting to the side edges of bubbly flow

Z levels are selected randomly in compliance with above condition and best lines

are fitted to edge points (Figure 3.20(a)) acquired by thresholding the structure

at this Z level.

Figure 3.20: Exp.2 (Pi > 50 bars) (a) Detected flow edges (b) Best line fitting

Minimization of sums of squares of geometric (perpendicular) distance from data

points to the best line is implemented and the equation of the line is written as

sin(α)x− cos(α)y = ρ (3.8)

where ρ is the distance of the line from the origin and α is the angle between the

line and positive x axis. Slope of the line (m) can be written as

m = − sin(α)

−cos(α)
= tan(α) (3.9)
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Figure 3.21: Exp.1 (Pi ≤ 50 bars) Best lines fitting to edges

Two distinct best lines are fitted to left and right sides of the flow (Figure 3.19(b),

3.20(b) and 3.21). Cone angle of the bubbly flow can be considered as the angle

between these lines (Figure 3.22) and can be calculated as

θ = arctan(
m1 −m2

1 +m1m2

) (3.10)

where m1 and m2 are slopes of the lines, and m1 > m2.

Figure 3.22: Angle between two lines
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3.1.4 Kalman Filter Estimation

Cone angle (θ) of the flow and angle measurements from subsequent images would

be assumed to remain the same if there were no noises or disturbances. More

realistically, the cone angle can be defined as the state of a dynamical system

where calculated angles are considered as measurements, and both are corrupted

with additive noises; i.e.

θ(k + 1) = θ(k) + w(k) (3.11)

z(k) = θ(k) + v(k) (3.12)

where θ(k) is the state of the process, w(k) is the process noise, z(k) is measure-

ment and v(k) is the measurement noise. Process and measurement noises are

modeled by zero mean Gaussian noise with constant covariances, Cw and Cv, re-

spectively. Optimal state (cone angle) can be estimated by the following Kalman

filter

θ̂(k + 1|k) = θ̂(k) (3.13)

P (k + 1|k) = P (k) + Cw (3.14)

K(k + 1) = P (k + 1|k)
(
P (k + 1|k) + Cv

)−1

(3.15)

θ̂(k + 1) = θ̂(k + 1|k) +K(k + 1)
(
z(k + 1)− θ̂(k + 1|k)

)
(3.16)

P (k + 1) =
(
I −K(k + 1)

)
P (k + 1|k) (3.17)

where is θ̂(k + 1|k) the state prediction at time k+1 given all measurements and

estimations up to time k, θ̂(k) is the optimal state at time k. P (k+1|k) and P (k+1)

are a priori and a posteriori covariance matrices associated with predicted and

updated state estimates. z(k + 1) is the measurement, i.e. calculated angle from

frame k+1, taken at time k+1. Covariance of the process noise (Cw) is initialized

with a low value such as 0.001 and covariance of the measurement noise (Cv) is

determined experimentally from calculated angles. To initialize the Kalman filter,
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the optimal state estimate is initialized with θ̂(0) = 0 and a posteriori covariance

is initialized as P (0) = 50.

3.2 Scattered Bubbles Modeling

Throughout the process of hydrodynamic cavitation, multi-phase bubbly flow in-

volves scattered bubbles around it starting from the orifice of bubbly flow gen-

erator. These initially originated bubbles are considered as the most devastating

forms because of harboring the initial power depending on sudden pressure change.

Intrinsically, amount of scattered bubbles depends on the inlet pressure level. To

investigate the catastrophic effect of newborn bubbles just after the orifice of gen-

erator, determination of their distributions along with various inlet pressures is

very essential.

As explained in Section 3.1.1, acquired shadow images were purified from the

noise and disturbance and enhanced to put emphasis on pertinent regions (Figure

3.23(b)). With the help of CCA explained in Section 3.1.1.4, main jet flow and

the orifice of the probe were excluded from the images based on the pixel wise

area difference (Figure 3.23(c)).

Figure 3.23: (a) Exit from the orifice (b) Pre-processed and labelled image
(c) Scattered bubbles around main flow
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All scattered bubbles under various inlet pressures (10 ≤ Pi ≤ 120 bars) were

extracted as far as possible. The entities of them became more frequent close

to main jet flow and rare farther. Distributions are obtained by segmenting the

bubbles in specified horizontal intervals and two peak Gaussian distribution forms

were observed (Figure 3.24).

Figure 3.24: Scattered bubbles distributions (10 ≤ Pi ≤ 120 bars)

Characterization of the scattered bubbles distribution was done by modeling the

left and right side of bubbles separately as Gaussian (normal) distribution and

exploration of semi-axis lengths of ellipse based on covariance matrix is proposed

(Figure 3.25).

Figure 3.25: Scattered bubbles detection and distribution modeling
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Under ascending inlet pressures, the orientation and semi-axis lengths of the el-

lipses change in different manners, which are depicted with 3 different random

frames for each inlet pressures in Figure 3.26.

Figure 3.26: Changing orientation and axis lengths of the ellipses in various
inlet pressures

The distribution of bubble centroids could be represented by axes magnitudes and

orientation of an ellipse, which based on the variance of the centroid data. If

the axes of this ellipse, parallel to x-y, then equation can be written in terms of

standard deviations as

(
x

σ1

)2

+

(
y

σ2

)2

= s (3.18)

s is the scale of ellipse, which represents the confidence level according to Chi-

Square likelihood [93].
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Corresponding ellipses don’t have to be aligned along with x-y axis, so non-zero

covariance can exist. Eigenvalues and eigenvectors of covariance matrix of the

bubble centroid data were utilized to determine semi-axis lengths and directions

of the ellipse. Major (a) and minor (b) axis lengths of the ellipses can be calculated

as follows

a =
√
λmax (3.19)

b =
√
λmin (3.20)

where λmax and λmin are largest and smallest eigenvalues of covariance matrix

of bubble centroid data respectively and semi-axis directions are determined by

corresponding eigenvectors (vmax,vmin). Angle between major axes and horizontal

axes can be calculated from the largest eigenvector as

α = atan2(vmax(2), vmax(1)) (3.21)

Ultimately, points on the ellipse can be generated by the mean of the centroid

position data [Xµ, Yµ]T and β ∈ [0, 2π) as

[
Xe

Ye

]
=

[
cos(α) −sin(α)

sin(α) cos(α)

][
a.cos(β)

b.sin(β)

]
+

[
Xµ

Yµ

]
(3.22)



Chapter 4

Visual Tracking of Single, Double,

Triple Cavitation Bubbles

Hydrodynamic cavitation generates several bubbles/droplets which size, amount,

speed and shape depend on varying inlet pressure levels. These physical quantities

are key features determining the devastating impact during hydrodynamic cavita-

tion as a biomedical application tool. To investigate the relations between these

physical features and destructiveness in various inlet pressures and designate the

optimum required pressure level for a specific task during biomedical applications,

hydrodynamic cavitation caused bubbles must be detected and tracked throughout

the multiphase flow and their morphological properties have to be extracted.

Although recent advances in imaging technologies enable us to visualize structures

in micro scale with high speed cameras, robust image and video processing algo-

rithms are still needed to handle the problems in detection and tracking processes.

Within this context, some specific problems in bubble detection and tracking pro-

cedure can be listed as:

1. Simultaneous illumination changes may result in undesired reflections and

shadows.

41
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2. Monitored bubbles can be very similar and cannot be distinguished from

each other.

3. Tracked single bubble can undergo dramatic morphological changes during

the motion.

4. Tracking may be disturbed by partial or full occlusions by another bubbles.

5. Several bubbles can merge and form a bigger one.

6. One big bubble can split into several small ones.

7. Split and merge events may follow each other frequently.

To overcome some of these problems and achieve a high tracking performance,

a new bubble tracking method is presented. Proposed tracking method can be

implemented with two consecutive stages: (i) segmentation of bubbles individually

and (ii) tracking of predefined single, dual or triple bubbles in upcoming video

frames.

4.1 Bubble Segmentation

Particle Shadow Sizing (PSS) technique provides grayscale image sequence and

illumination in each frames depends on bubbles’ structures and concentration. As

stated in Chapter 3, imaging system architecture enables to visualize the bubbles

individually and separate from the main multiphase jet flow in 3rd segment, cor-

responds to 9 mm distance after the orifice (Figure 3.1) with the inlet pressure

level below 30 bars. Segmentation of bubbles in each frames individually requires

a series of image processing steps similar to Section 3.1.1.

Since obtained images have insufficient contrast to segment foreground and back-

ground easily, stretching operation is applied as depicted in Section 3.1.1.1 to

enhance the noticeability (Figure 5.4).
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Figure 4.1: (a) Unprocessed original image (b) Contrast adjusted image

Stretching operation distributes the grayscale levels roughly uniformly along the

histogram scale to increase the contrast (Figure 4.2).

Figure 4.2: (a) Unprocessed histogram (b) Contrast adjusted histogram

As distinct from common segmentation methods, extracting the contours of the

bubbles with high precision is important for both robustness of tracker and ac-

curate contour modeling. For this purpose, wisely selected structuring element is

utilized in morphological opening operation to eliminate noises and sharpen the

edges of bubbles (Figure 4.3 (a)).

An optimum threshold level is determined as in Section 3.1.1.3 and applied to

morphologically opened image. Since some parts of bubbles reflect the light and
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rest absorb, shadow images may contain some gaps after thresholding (Figure 4.3

(b)). Thus, image filling operation is applied as a final step (Figure 4.3 (c)).

Figure 4.3: (a) Morphological operation (b) Thresholding (c) Image filling

Finally obtained binary image represents the locations of bubbles as foreground,

which are then labelled via Connected Component Analysis (CCA) and important

properties of bubble regions are extracted such as

• Center of mass coordinates (Cx,Cy)

• Area

• Eccentricity

Segmented/labelled bubble regions are stored in vertical centroid location order

and identification number is assigned each of them according to this order. In

addition to these properties, Canny edge detection algorithm [45] is implemented

to find the edge pixels of the image and calculate the circumferences of the bubble

regions.
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4.2 Tracking

4.2.1 Single Bubble Tracking

In Section 2.3, various tracking methods are investigated under several groups

based on the representation of the target. Particle shadow sizing technique pro-

vides us the silhouettes of the bubbles, thus images contain only structural infor-

mation, color and texture information cannot be recovered by this visualization.

Profitably the imaging architecture supply remarkable motion information with

high speed cameras.

Taking into account all of these, structural and motion characteristics of bubbles

are utilized to represent the target of the tracking. Motion information is then

checked again to increase the robustness and accuracy. Feature vector of a bubble

object based on structural properties are formed as

Obj =



Cx

Cy

E

p

A

T


(4.1)

where Cx and Cy are the center of mass coordinates, E is eccentricity, p is circum-

ference, A is area and T is thinness ratio which is calculated as

T =
4πA

p2
(4.2)

Feature vectors (Eq 4.1) of each segmented bubble regions are calculated in consec-

utive frames. Since a single bubble may change its shape during the flow motion,

instead of looking for a match of the object precisely in candidates, smallest shape
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variations are searched. It is assumed that mass/volume of a bubble must be con-

served, so changes in eccentricity, thinness ratio, area and circumference should

compensate each other. Bubble vertical center of mass is directly related to the ve-

locity of the bubble against gravitational force, which could be assumed as slightly

changing for a single bubble.

Preselected one single bubble feature vector (Obj) is compared with the feature

vectors (Tar) in next frame and well-known Bhattacharyya distance [94] is em-

ployed to find the similarity between two feature vectors. Bhattacharyya distance

can be calculated as

DB(Obj, Tar) =
1

4
ln

(
1

4

(σ2
Obj

σ2
Tar

+
σ2
Tar

σ2
Obj

+ 2
))

+
1

4

(
(µObj − µTar)2

σ2
Obj + σ2

Tar

)
(4.3)

whereDB(Obj, Tar) is Bhattacharyya distance between object feature vector (Obj)

and target feature vector (Tar), σ2
Obj and σ2

Tar are variances, µObj and µTar are

means of the object and target feature vectors respectively.

Figure 4.4: Bhattacharyya distances between consecutive frames

If object bubble is monitored in the next frame, minimum Bhattacharyya dis-

tance between these vectors would belong to the targeted bubble (Figure 4.4). In
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addition to minimum DB, vertical position change is also checked. Since bub-

bles flow downward and their speed is slightly changing, negative vertical change

and abnormal traveled distance are penalized via increasing the corresponding DB

(Algorithm4.1).

Algorithm 4.1 Single Bubble Tracking

Construct Object feature vector via segmentation
Initialization:

IsTracked=true;
d=maximum possible travel distance;
maxDB=maximum Bhattacharyya distance to go on tracking;

while IsTracked == true do
Segment the next frame
Construct the target feature vectors of each bubble regions
Calculate each of DB(Obj, Tar)
if (Tar(2)-Obj(2) < 0) || (Tar(2)-Obj(2) > d)

Penalizing: Increase the DB

endif
Select the target bubble according to minimum DB

if (min(DB) > maxDB)
End of tracking: IsTracked = false

else
Obj ← Tar

endif
end

Finally, selected single bubble can be tracked throughout the flow until it exits

from the field of view (Figure 4.5).

Figure 4.5: Single bubble tracking throughout the flow
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4.2.2 Double and Triple Bubble Tracking

During hydrodynamic cavitation, it is observed that frequently two single bubbles

come together and merge to form a bigger one, additionally big bubbles also tend

to split into two single bubbles as well. Two close bubbles do not always merge

but prefer to move as attached each other.

When the amount of bubbles increase within the field of view, more than two

bubbles are also come together to merge or attach each other. Ordinarily triple

bubbles interact each other since obtained bubbles are in micro scale. In case

of more than three interactions, closely interacted two or three bubbles merge

together.

To investigate the relation between closely travelling bubbles and to decide the

merge or attach condition, tracking of double and triple bubbles must be per-

formed. In order to achieve double/triple bubble tracking, selected two/three

bubbles are considered as a whole structure, a slight modification is applied to

Equation 4.1 and Algorithm 4.2 can be implemented by

Obj =



Ctotalx

Ctotaly

ptotal

Atotal

Ttotal


(4.4)

where Ctotalx and Ctotaly are center of mass coordinates of double/triple bubble

structure. Since eccentricity is meaningless for separate structures, E is excluded

from the feature vector. Thinness ratio (T), circumference (p) and area (A) values

are calculated by assuming the double/triple bubbles as a single structure.

Obviously, tracker must follow the target in cases of merge and split, so it must

change its mode as single, double or triple bubble tracking with respect to mini-

mum Bhattacharyya distance (Figure 4.6, 4.7, 4.8). To visualize the current mode



Visual Tracking of Single, Double, Triple Cavitation Bubbles 49

of tracker, just contour of the bubble is highlighted for single bubble tracking,

contours of the bubbles and also convex hull of the bubbles are highlighted for

double bubble tracking (Figure 4.9) and finally contours of bubbles and the tri-

angle obtained by three centers of the bubbles are highlighted for triple bubble

tracking.

Algorithm 4.2 Double/Triple Bubble Tracking

Construct Object feature vector via segmentation (Single/Double/Triple)
Initialization:

IsTracked=true;
d=maximum possible travel distance;
maxDB=maximum Bhattacharyya distance to go on tracking;

while IsTracked == true do
Segment the next frame
Construct the target feature vectors of each single bubble regions
Order the segmented regions vertically ascending
Construct the target feature vectors of each consecutive double bubbles
Construct the target feature vectors of each consecutive triple bubbles
Calculate each of DB(Obj, Tar) for single, double and triple
if (Tar(2)-Obj(2) < 0) || (Tar(2)-Obj(2) > d)

Penalizing: Increase the DB

endif
Select the target bubble according to minimum DB

if (min(DB) > maxDB)
End of tracking: IsTracked = false

else
Obj ← Tar

endif
end

Figure 4.6: DB values between object vector and single target vectors
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Figure 4.7: DB values between object vector and double target vectors

Figure 4.8: DB values between object vector and triple target vectors

Figure 4.9: Double bubble tracking throughout the flow



Chapter 5

Modeling of Cavitation Bubbles

using Elliptic Fourier Descriptors

Throughout the tracking of cavitation bubbles in Section 4, structural and motion

properties are utilized. In each frame, tracked bubbles’ contours are segmented

from background to extract circumferences and areas, and construct the feature

vector for the tracker. Segmented contours show the evolution of the bubble along

with the fluid flow. It is suspected that the evolution of the bubble contours may

contain useful information related to hydrodynamic cavitation and the released

opinions could be exploited in the usage of hydrodynamic cavitation as a tool for

several biomedical applications.

Shape evolution of cavitation bubbles can be considered as a closed curve changing

over time. Curve’s data points are the edge pixels of segmented bubble contours

and can be written as

x(s) = x(s+ L)

y(s) = y(s+ L)
(5.1)

where x(s) and y(s) are horizontal and vertical functions of closed curve with arc

length parameter s and total length of the curve L. Since equations in 5.1 are

periodic with L, the well-known elliptic Fourier descriptors (EFD) [95] can be

employed as

51
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x(θ) = a0 +
n∑
k=1

(akcoskθ + bksinkθ)

y(θ) = c0 +
n∑
k=1

(ckcoskθ + dksinkθ)

(5.2)

where edge pixel locations of segmented contours, x and y are written as a function

of normalized parameter θ as

θ =
s

L
2π (5.3)

where θ∈[0, 2π) for s ∈ [0, L). Since θ is an angle and can be written as θ = wt

where w is angular velocity of moving pixel point on the closed edge contour, by

assigning w = 1 rad/sec, θ can be easily related to time as θ = t. Now, edge pixel

locations x and y are described with periodic functions of t with period 2π
w

.

In equation 5.2, n is total number of harmonics, so it is a positive integer. Initial

coefficients, which are actually the center of mass coordinates, can be calculated

by

a0 =
1

N

N∑
i=1

xi

c0 =
1

N

N∑
i=1

yi

(5.4)

Rest of the coefficients in EFD can be found as

ak =
2

N

N∑
i=1

xicos(kwt)

bk =
2

N

N∑
i=1

xisin(kwt)

ck =
2

N

N∑
i=1

yicos(kwt)

dk =
2

N

N∑
i=1

yisin(kwt)

(5.5)
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First harmonic gives an ellipse located at (a0,c0) and covers the whole closed

curve. After that few harmonics construct the curve roughly. Increasing the

number of the harmonics enable to embrace the details related to closed curve.

Theoretically, infinite number of harmonics must recover the whole closed curve

with precise details but in practice, high precision in closed curve modeling may

not be necessary depending on the scenario.

Figure 5.1: Blue: Data points Red: EFD Modeling

Figure 5.2: Blue: Data points Red: EFD Modeling
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In the case of EFD modeling of segmented bubble contours, data points are ex-

tracted from the images with the help of a series segmentation techniques 4.1.

Naturally these points are disturbed by noises and trying to find best fit with

higher number of harmonics is an inconvenient idea. Since complex contours can

be roughly represented by 5-10 harmonics, optimum number of harmonics n is

chosen to be 8 for EFD modeling of cavitation bubbles.

Figure 5.3: 6 Harmonic ellipses

Figure 5.4: 8 Harmonic ellipses

Once the closed curve is modeled by elliptic Fourier descriptors, it can be rep-

resented by n harmonic ellipses used in 5.2. Major and minor semi axis lengths
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and the angle between horizontal line and major axis can be retrieved with the

corresponding coefficients (ak, bk, ck, dk) by forming the matrix E as follows:

E =

[
ak bk

ck dk

]
(5.6)

EET can be decomposed into eigenvalues and corresponding eigenvectors by

EET = RφSR
T
φ (5.7)

Major axis length (a), minor axis length (b) and angle between major axis and

horizontal axis (θ) can be calculated as

a =
√
λmax (5.8)

b =
√
λmin (5.9)

θ = atan2(V (2), V (1)) (5.10)

where λmax and λmin are maximum and minimum eigenvalues of EET respectively

(diagonal elements of S) and V is the eigenvector corresponding to the largest

eigenvalue of EET .

Obtained characteristic properties of each ellipse (a, b, θ) are utilized to investigate

invariant properties of EFD modeled cavitation bubbles. Feature vectors of ith

frame for each characteristic properties with N harmonics are formed as

fai = [a1 a2 . . . aN ]T

fbi = [b1 b2 . . . bN ]T

fθi = [θ1 θ2 . . . θN ]T

(5.11)
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Covariance of each feature data can be calculated as

Σa =
1

m

m∑
i=1

(fai − f̄a)(fai − f̄a)T

Σb =
1

m

m∑
i=1

(fbi − f̄b)(fbi − f̄b)T

Σθ =
1

m

m∑
i=1

(fθi − f̄θ)(fθi − f̄θ)T

(5.12)

where m is total number of tracked frames and f̄a, f̄b, f̄θ are calculated as

f̄a =
1

m

m∑
i=1

fai

f̄b =
1

m

m∑
i=1

fbi

f̄θ =
1

m

m∑
i=1

fθi

(5.13)

Root-mean-square (RMS) values of each columns of covariance matrices demon-

strate the dominance of the corresponding feature with respect to other features.



Chapter 6

Experimental Results

6.1 Cone Angle Estimation

As stated in Chapter 3, cone angle estimation procedure is implemented to the

images acquired by two different illumination configurations. Angle estimation

is performed via random selection of Z values according to Equation 3.7 below

medium inlet pressure (Pi < 60 bars) in Experiment 1

Figure 6.1: Exp.1 Estimated cone angles with different inlet pressures (10,
30, 50 bars)

57
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Results in Figure 6.1 show that with Pi = 10 bars pressure, virtual cone angle

can be estimated around 2.1 degrees. Increasing the Pi pressure, leads to increase

in cone angle as well. 30 bars inlet pressure forms around 3.3 degrees cone angle,

whereas the angle is around 3.5 degrees with 50 bars inlet pressure.

Figure 6.2: Exp.1 Estimated cone angles with inlet pressure Pi=80 bars

Figure 6.3: Exp.1 Estimated cone angles with inlet pressure Pi=100 bars

With inlet pressure above 60 bars, Kalman filter results show that estimations are

highly smoothed versions of the calculated angles from images (Figure 6.2, 6.3,
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Figure 6.4: Exp.1 Estimated cone angles with inlet pressure Pi=120 bars

6.4). Average of estimations, exhibit the same behaviour as lower inlet pressures.

Increasing pressure above 60 bars to 120 bars, estimated angles reached up to 13

degrees.

Figure 6.5: Exp.1 Estimated angles through 10 to 120 bar inlet pressures

Finally, all estimated angles from various inlet pressures from 10 to 120 bars are

gathered and showed in Figure 6.5. Results show that, cone angle of bubbly flow

changes with proportional to inlet pressure from 2 to 14 degrees.
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In Experiment 2, results of the cone angle estimation by Kalman filter are de-

picted in Figures 6.6, 6.7, 6.8 where at each pressure level several image frames

are captured and processed to get angle measurements.

Figure 6.6: Exp.2 Red: Calculations Blue: Estimations (10 - 40 bars)

Figure 6.7: Exp.2 Red: Calculations Blue: Estimations (50 - 80 bars)

Note that although angle measurements from individual frames are quite fluctuat-

ing (in red), the estimated angles (in blue) by Kalman filter are very smooth due

to the nature of the filter which combines predictions from a model that describes
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Figure 6.8: Exp.2 Red: Calculations Blue: Estimations (90 - 120 bars)

evolution of the cone angle and angle measurements computed from new frames.

As it can be seen from these figures, new measurements are highly noisy. Kalman

filter smoothes out these noisy measurements and generates optimal estimates that

are much more meaningful. The average of angles estimated by Kalman filter at

different pressure levels are then computed and plotted in Figure 6.9. This figure

clearly shows that the cone angle gets larger by increasing inlet pressure values.

Figure 6.9: Exp.2 Estimated angles through 10 to 120 bar inlet pressures
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6.2 Scattered Bubbles Modeling

Distribution results of scattered bubbles (Figure 3.24) show that scattered bubble

population is increased with the increasing inlet pressure.

Figure 6.10: (a) Unprocessed original image (b) Contrast adjusted image

These distributions form two-peak Gaussian distributions (Figure 6.11). Each

peak is investigated separately by a covariance matrix of distributed bubble po-

sitions. During experiments with inlet pressures between 10 bars to 120 bars,

detected bubble areas vary from 30 µm to 2 mm (Figure 6.10).

Figure 6.11: (a) Unprocessed original image (b) Contrast adjusted image
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Major Major Minor Minor
Inlet Semi-Axes Semi-Axes Semi-Axes Semi-Axes

Pressure Left Right Left Right
(bar) (mm) (mm) (mm) (mm)

10 1.9430 1.1114 0.3593 0.1858
20 1.6254 1.1174 0.6497 0.4076
30 1.4965 1.1947 0.5549 0.4339
40 1.4188 1.2654 0.4781 0.3747
50 1.3949 1.3383 0.4399 0.3616
60 1.3574 1.3464 0.4031 0.2945
70 1.3545 1.3610 0.4064 0.2909
80 1.3470 1.3600 0.4673 0.3243
90 1.3520 1.3953 0.4385 0.3484
100 1.3784 1.3633 0.4535 0.2575
110 1.3223 1.3969 0.5870 0.3168
120 1.3754 1.3575 0.5558 0.2888

Table 6.1: Major - Minor Axes Properties of Bubble Distributions

Semi-axes lengths of ellipses obtained from covariance matrices (Table 6.1) show

that major axes lengths are more determinative than minor axes lengths, since

they are along the motion of bubbles. When the left major semi-axes lengths

increase, corresponding right ones decrease because of the oscillation of bubbly

flow generator.

Figure 6.12: (a) Unprocessed original image (b) Contrast adjusted image
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In general, major axes lengths can be considered as decreasing on the average,

which shows that more stationary clusters are generated around main flow. Ad-

ditionally, after a certain pressure level (Pi > 50), major and minor axes lengths

do not change dramatically. Scattered bubbles are distributed around main flow

in the same way but amount of bubbles are increasing (Fig.6.12).

6.3 Visual Tracking of Single, Double and Triple

Cavitation Bubbles

Individually distinguished bubble images are obtained in Experiment 2 as men-

tioned in Section 3. Bubbles are detected after 11 mm from the orifice of cavitation

generator with low inlet pressure less than 10 bars.

Proposed structural and motion characteristics based tracking performs pretty

good since minimum Bhattacharyya distances shown in results are around 0.001.

Although one pair of bubbles alter its shape dramatically in example 6.3.13, bub-

bles are still tracked as a group, which shows the validity of mass/volume con-

servation assumption. In this context, two individually tracked bubbles examples

(6.3.13, 6.3.14) demonstrate the same thinness ratio pattern despite circumference

and area changes are completely different.

Mass/volume conservation assumption also enables tracker to handle the occasions

of merging and splitting of bubbles. Merging examples (6.3.5, 6.3.6 and 6.3.7) show

that bubbles lose slow down during the merging period and after that accelerate

to reach the former speed level. Slowing down impact is also valid for attached

movement without merging. Sticking example (6.3.8) shows that congregation

decreases the overall speed but less than merging case.

Differently, splitting examples (6.3.9, 6.3.10 and 6.3.11) demonstrate that bubbles

gather pace during the splitting period. Example 6.3.12 shows the impacts of

splitting and merging on the speed of bubbles when they occur consecutively.
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6.3.1 Single Tracking Example - 1

• Single bubble with approximately 496 µm diameter changes both its orien-

tation and morphology. (Starting frame no: 67)

Figure 6.13: Bubble Tracking

Figure 6.14: Minimum Bhattacharyya distances during the motion

Figure 6.15: Speed of tracked bubbles
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Figure 6.16: Silhouettes of tracked bubbles

Figure 6.17: Eccentricity changes during the motion

Figure 6.18: Thinness ratio changes during the motion

Figure 6.19: Circumference changes during the motion

Figure 6.20: Area changes during the motion
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6.3.2 Single Tracking Example - 2

• Single bubble with approximately 397 µm diameter is just changing its ro-

tation and elliptic shape is conserved. (Starting frame no: 35)

Figure 6.21: Bubble Tracking

Figure 6.22: Minimum Bhattacharyya distances during the motion

Figure 6.23: Speed of tracked bubbles
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Figure 6.24: Silhouettes of tracked bubbles

Figure 6.25: Eccentricity changes during the motion

Figure 6.26: Thinness ratio changes during the motion

Figure 6.27: Circumference changes during the motion

Figure 6.28: Area changes during the motion
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6.3.3 Single Tracking Example - 3

• Single bubble with approximately 351 µm diameter does not change the

orientation much but the shape is changed dramatically during the flow.

(Starting frame no: 39)

Figure 6.29: Bubble Tracking

Figure 6.30: Minimum Bhattacharyya distances during the motion

Figure 6.31: Speed of tracked bubbles
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Figure 6.32: Silhouettes of tracked bubbles

Figure 6.33: Eccentricity changes during the motion

Figure 6.34: Thinness ratio changes during the motion

Figure 6.35: Circumference changes during the motion

Figure 6.36: Area changes during the motion
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6.3.4 Single Tracking Example - 4

• Single bubble with approximately 496 µm diameter moves through the flow

smoothly and don’t alter its shape very much. (Starting frame no: 250)

Figure 6.37: Bubble Tracking

Figure 6.38: Minimum Bhattacharyya distances during the motion

Figure 6.39: Speed of tracked bubbles
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Figure 6.40: Silhouettes of tracked bubbles

Figure 6.41: Eccentricity changes during the motion

Figure 6.42: Thinness ratio changes during the motion

Figure 6.43: Circumference changes during the motion

Figure 6.44: Area changes during the motion
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6.3.5 Merging Example - 1

• Two individual bubbles with approximately 465 µm and 175 µm diameter

merge to form a single bubble. (Starting frame no: 14)

Figure 6.45: Bubble Tracking

Figure 6.46: Minimum Bhattacharyya distances during the motion

Figure 6.47: Speed of tracked bubbles
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Figure 6.48: Silhouettes of tracked bubbles

Figure 6.49: Thinness ratio changes during the motion

Figure 6.50: Circumference changes during the motion

Figure 6.51: Area changes during the motion
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6.3.6 Merging Example - 2

• Two individual bubbles with approximately 457 µm and 343 µm diameter

merge to form a single bubble. (Starting frame no: 437)

Figure 6.52: Bubble Tracking

Figure 6.53: Minimum Bhattacharyya distances during the motion

Figure 6.54: Speed of tracked bubbles
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Figure 6.55: Silhouettes of tracked bubbles

Figure 6.56: Thinness ratio changes during the motion

Figure 6.57: Circumference changes during the motion

Figure 6.58: Area changes during the motion



Experimental Results 77

6.3.7 Merging Example - 3

• Three individual bubbles with approximately 389 µm, 427 µm and 412 µm

diameter merge to form a single bubble. (Starting frame no: 457)

Figure 6.59: Bubble Tracking

Figure 6.60: Minimum Bhattacharyya distances during the motion

Figure 6.61: Speed of tracked bubbles
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Figure 6.62: Silhouettes of tracked bubbles

Figure 6.63: Thinness ratio changes during the motion

Figure 6.64: Circumference changes during the motion

Figure 6.65: Area changes during the motion
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6.3.8 Sticking Example

• Two individual bubbles with approximately 412 µm and 358 µm diameter

stick and move together without merging. (Starting frame no: 55)

Figure 6.66: Bubble Tracking

Figure 6.67: Minimum Bhattacharyya distances during the motion

Figure 6.68: Speed of tracked bubbles
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Figure 6.69: Silhouettes of tracked bubbles

Figure 6.70: Thinness ratio changes during the motion

Figure 6.71: Circumference changes during the motion

Figure 6.72: Area changes during the motion
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6.3.9 Splitting Example - 1

• Single bubble with approximately 614 µm diameter splits into two bubbles

with diameters of 328 µm and 419 µm (Starting frame no: 31)

Figure 6.73: Bubble Tracking

Figure 6.74: Minimum Bhattacharyya distances during the motion

Figure 6.75: Speed of tracked bubbles
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Figure 6.76: Silhouettes of tracked bubbles

Figure 6.77: Thinness ratio changes during the motion

Figure 6.78: Circumference changes during the motion

Figure 6.79: Area changes during the motion
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6.3.10 Splitting Example - 2

• Single bubble with approximately 602 µm diameter splits into two bubbles

with diameters of 450 µm and 358 µm (Starting frame no: 218)

Figure 6.80: Bubble Tracking

Figure 6.81: Minimum Bhattacharyya distances during the motion

Figure 6.82: Speed of tracked bubbles
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Figure 6.83: Silhouettes of tracked bubbles

Figure 6.84: Thinness ratio changes during the motion

Figure 6.85: Circumference changes during the motion

Figure 6.86: Area changes during the motion
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6.3.11 Splitting Example - 3

• Double bubble structure splits into three bubbles with diameters of 269 µm,

463 µm and 358 µm (Starting frame no: 388)

Figure 6.87: Bubble Tracking

Figure 6.88: Minimum Bhattacharyya distances during the motion

Figure 6.89: Speed of tracked bubbles
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Figure 6.90: Silhouettes of tracked bubbles

Figure 6.91: Thinness ratio changes during the motion

Figure 6.92: Circumference changes during the motion

Figure 6.93: Area changes during the motion
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6.3.12 Consecutive Merging and Splitting Example

• Two single bubbles with approximately 356 µm and 366 µm diameters merge

and splits consecutively. (Starting frame no: 41)

Figure 6.94: Bubble Tracking

Figure 6.95: Minimum Bhattacharyya distances during the motion

Figure 6.96: Speed of tracked bubbles
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Figure 6.97: Silhouettes of tracked bubbles

Figure 6.98: Thinness ratio changes during the motion

Figure 6.99: Circumference changes during the motion

Figure 6.100: Area changes during the motion
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6.3.13 Individual Bubble Tracking Example - 1

• During double bubble tracking one of the bubbles alters its shape dramati-

cally. (Starting frame no: 75)

Figure 6.101: Bubble Tracking

Figure 6.102: Minimum Bhattacharyya distances during the motion

Figure 6.103: Speed of tracked bubbles
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Figure 6.104: Silhouettes of tracked bubbles

Figure 6.105: Thinness ratio changes during the motion

Figure 6.106: Circumference changes during the motion

Figure 6.107: Area changes during the motion
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6.3.14 Individual Bubble Tracking Example - 2

• Two bubbles with approximately 300 µm and 387 µm diameters are tracked.

(Starting frame no: 155)

Figure 6.108: Bubble Tracking

Figure 6.109: Minimum Bhattacharyya distances during the motion

Figure 6.110: Speed of tracked bubbles
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Figure 6.111: Silhouettes of tracked bubbles

Figure 6.112: Thinness ratio changes during the motion

Figure 6.113: Circumference changes during the motion

Figure 6.114: Area changes during the motion
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6.3.15 Individual Bubble Tracking Example - 3

• Three bubbles with approximately 375 µm, 311 µm and 280 µm diameters

are tracked after splitting. (Starting frame no: 550)

Figure 6.115: Bubble Tracking

Figure 6.116: Minimum Bhattacharyya distances during the motion

Figure 6.117: Speed of tracked bubbles
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Figure 6.118: Silhouettes of tracked bubbles

Figure 6.119: Thinness ratio changes during the motion

Figure 6.120: Circumference changes during the motion

Figure 6.121: Area changes during the motion
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6.3.16 Triple, Double and Single Tracking Example

• Three bubbles with approximately 364 µm, 470 µm and 397 µm diameters

merge and split consecutively. (Starting frame no: 112)

Figure 6.122: Bubble Tracking

Figure 6.123: Minimum Bhattacharyya distances during the motion

Figure 6.124: Speed of tracked bubbles
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Figure 6.125: Silhouettes of tracked bubbles

Figure 6.126: Thinness ratio changes during the motion

Figure 6.127: Circumference changes during the motion

Figure 6.128: Area changes during the motion
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6.4 EFD Modeling

EFD models of single bubble tracked in Section 6.3.1 are shown in Figure 6.129.

Figures 6.130 and 6.131 show that first and third harmonics are dominant accord-

Figure 6.129: EFD models of tracked bubbles

ing to a and b features. Major axis (a) is dominant over minor axis (b) since bubble

changes its elliptic shapes during the motion.

a1 a2 a3 a4 a5 a6 a7 a8
F:1 37.5415 2.1880 2.1746 1.3417 0.5896 0.7467 0.4417 0.2996
F:2 43.4364 1.3961 3.7060 0.7575 0.5020 0.4461 0.3449 0.1423
F:3 46.9455 2.0456 3.5691 1.0682 0.8757 0.8697 0.4917 0.2375
F:4 46.0731 0.5705 3.5297 0.3183 1.1405 0.3948 0.4609 0.1845
F:5 41.5536 1.9976 2.3520 0.5995 0.9182 0.4080 0.2445 0.2386
F:6 36.9090 1.2068 1.2539 0.7365 0.3897 0.4261 0.3012 0.2697
F:7 35.7855 1.3956 1.7285 0.5048 0.3505 0.0726 0.1691 0.1147
F:8 35.0930 1.7129 2.3927 1.1929 0.3432 0.6975 0.3295 0.4147
F:9 36.3615 1.4138 1.7456 0.9861 0.6379 0.4757 0.1856 0.4869
F:10 38.3321 2.9243 2.4248 0.9923 0.3024 0.9142 0.4797 0.2330

Table 6.2: Major axis (a) changes of harmonics throughout the tracked frames

Figure 6.130: RMS Values of Covariance Columns for ‘a’
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b1 b2 b3 b4 b5 b6 b7 b8
F:1 28.5617 0.3414 1.3194 0.1600 0.2224 0.3069 0.2382 0.0504
F:2 28.3603 0.3412 1.3155 0.1797 0.1997 0.0729 0.0703 0.0362
F:3 29.4485 0.6137 1.8000 0.1478 0.4507 0.1921 0.2727 0.1149
F:4 30.9607 0.0118 2.2325 0.1972 0.0006 0.0645 0.0890 0.0922
F:5 30.2453 0.2910 0.8816 0.3581 0.1163 0.1252 0.1409 0.1063
F:6 29.3057 0.5863 0.7386 0.5276 0.1347 0.1788 0.0171 0.0967
F:7 27.7846 0.6696 1.0029 0.3910 0.0056 0.0067 0.0578 0.0639
F:8 27.7527 0.5107 2.0570 0.2622 0.1762 0.2071 0.2561 0.1100
F:9 27.9491 1.0050 1.1010 0.8779 0.0051 0.0557 0.0206 0.1882
F:10 28.9105 0.2825 0.0592 0.0761 0.1471 0.1407 0.1675 0.0611

Table 6.3: Minor axis (b) changes of harmonics throughout the tracked frames

Figure 6.131: RMS Values of Covariance Columns for ‘b’

θ1 θ2 θ3 θ4 θ5 θ6 θ7 θ8
F:1 0.9701 -1.8252 1.5274 2.6317 2.4001 2.6553 -2.9672 -2.5900
F:2 1.2987 -3.1011 2.8720 -2.6541 -2.0487 -3.0374 2.7283 -2.7340
F:3 1.3541 2.8327 -2.0603 -2.6776 2.3358 2.8177 2.9551 3.1352
F:4 1.5171 2.8679 -2.7675 -2.2491 3.1033 -3.0054 -2.9015 3.0637
F:5 1.7983 2.9118 2.1818 1.8293 -3.0850 -2.9752 -2.2215 3.1135
F:6 2.1836 -2.6844 -2.8771 2.9603 3.0835 1.3488 -1.9396 2.8040
F:7 2.8665 1.9119 3.0171 -2.8334 -1.7984 -2.4033 1.4590 -3.1023
F:8 -3.0208 -2.6414 1.4655 2.7454 1.6556 1.3214 0.9936 -2.9833
F:9 -2.5512 2.0839 1.6886 -2.4331 -3.0265 -1.9417 1.9757 3.0427
F:10 0.9618 -1.7803 2.5368 2.4034 2.9013 1.7319 1.6955 -2.4811

Table 6.4: Angle in radian (θ) changes of harmonics throughout the tracked
frames

Figure 6.132: RMS Values of Covariance Columns for ‘θ’
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EFD models of single bubble tracked in Section 6.3.2 are shown in Figure 6.133.

Figures 6.134 and 6.135 show that first four harmonics are dominant according to

a and b features. Major axis (a) and minor axis (b) are equally dominant since

the bubble is just rotating and not much changing its elliptic shape during the

motion.

Figure 6.133: EFD models of tracked bubbles

a1 a2 a3 a4 a5 a6 a7 a8
F:1 33.8526 0.9609 2.3345 0.3976 0.5393 0.2438 0.1598 0.0836
F:2 33.0038 1.4321 1.6408 0.6150 0.2815 0.1950 0.0844 0.0470
F:3 30.2865 0.6445 1.2103 0.4120 0.3086 0.2103 0.0606 0.1044
F:4 32.6546 0.6189 2.2035 0.2953 0.2531 0.0637 0.1417 0.0837
F:5 31.5778 0.9410 1.6185 0.2193 0.3644 0.1180 0.0859 0.2413
F:6 32.5290 0.5329 0.8067 0.5974 0.2084 0.1340 0.2288 0.1385
F:7 33.5760 0.7897 1.5708 0.5180 0.1133 0.1829 0.0849 0.1422
F:8 30.9898 0.9159 1.0427 0.4545 0.2481 0.2290 0.2631 0.2092
F:9 29.9482 2.2563 1.7067 1.6412 0.6507 0.5136 0.4097 0.2946
F:10 31.0532 2.6633 2.3165 1.1554 0.4405 0.5226 0.2508 0.3844

Table 6.5: Major axis (a) changes of harmonics throughout the tracked frames

Figure 6.134: RMS Values of Covariance Columns for ‘a’
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b1 b2 b3 b4 b5 b6 b7 b8
F:1 23.2721 0.5431 1.6258 0.1433 0.2734 0.0890 0.0384 0.0098
F:2 24.5008 0.3248 1.0611 0.1799 0.2220 0.0650 0.0535 0.0150
F:3 25.8599 0.3690 0.3379 0.0073 0.1636 0.0894 0.0045 0.0407
F:4 22.4055 0.1806 1.7126 0.1467 0.0309 0.0255 0.0482 0.0617
F:5 25.1667 0.6276 1.1887 0.1420 0.1710 0.0336 0.0245 0.1202
F:6 26.2798 0.1588 0.2434 0.1006 0.0462 0.0128 0.0131 0.0113
F:7 23.8678 0.2533 1.2747 0.2434 0.0302 0.0770 0.0232 0.0223
F:8 25.2412 0.7062 0.5102 0.2857 0.2188 0.0459 0.1559 0.1658
F:9 24.2780 1.4997 1.2178 0.5265 0.0277 0.0034 0.0702 0.0832
F:10 22.9713 2.3984 1.4676 1.0569 0.2784 0.0186 0.0448 0.1641

Table 6.6: Minor axis (b) changes of harmonics throughout the tracked frames

Figure 6.135: RMS Values of Covariance Columns for ‘b’

θ1 θ2 θ3 θ4 θ5 θ6 θ7 θ8
F:1 1.9880 -2.2864 3.0946 1.5903 1.6516 1.8567 2.2158 -2.9903
F:2 1.7647 -2.8258 -2.2045 3.0563 2.4623 -2.5798 -2.6376 -2.2125
F:3 -2.3247 2.9613 -3.0414 -3.0096 2.1042 1.5201 -2.2279 2.2507
F:4 -2.7564 -2.9402 2.2061 3.0746 -2.1662 -2.4891 -3.0101 1.0925
F:5 -2.9762 1.7203 0.9862 1.8023 -2.4075 2.3115 1.9967 -2.4381
F:6 2.4299 -2.3466 -1.9703 -2.0661 -3.1089 -2.3555 -2.2642 -2.5355
F:7 2.0927 1.7779 -2.9428 -2.0614 -2.4530 -2.0230 1.7262 -2.4657
F:8 1.8963 3.0917 1.2690 -2.3859 -2.7461 -2.9633 1.8003 2.7220
F:9 0.8983 3.0817 2.3170 -2.9022 -3.0352 2.3415 -2.4028 -2.3922
F:10 -2.6740 2.9638 1.5619 3.1196 2.0394 -2.6102 -2.8059 -2.4913

Table 6.7: Angle in radian (θ) changes of harmonics throughout the tracked
frames

Figure 6.136: RMS Values of Covariance Columns for ‘θ’
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EFD models of single bubble tracked in Section 6.3.3 are shown in Figure 6.137.

Figures 6.138 and 6.139 show that first three harmonics are dominant according

to a and b features. Major axis (a) is dominant over minor axis (b) since bubble

changes its elliptic shapes very much during the motion.

Figure 6.137: EFD models of tracked bubbles

a1 a2 a3 a4 a5 a6 a7 a8
F:1 46.3908 3.9728 5.7094 0.9396 0.6278 0.5886 0.2210 0.1908
F:2 44.1529 2.7603 3.3126 0.5979 0.7522 0.5728 0.3343 0.1857
F:3 35.8103 2.0737 2.2322 0.8282 0.3273 0.2395 0.1731 0.0783
F:4 34.3179 0.3009 1.9680 0.3638 0.6593 0.3177 0.0692 0.1461
F:5 37.4422 0.6215 1.7810 0.3742 0.2292 0.0805 0.1729 0.1103
F:6 34.0517 0.5102 1.6335 0.2408 0.1914 0.1872 0.2410 0.1169
F:7 34.7023 1.7639 1.3487 0.4138 0.2649 0.4112 0.2005 0.2302
F:8 39.4472 2.3941 2.1901 2.1532 0.5147 0.5993 0.3230 0.2544
F:9 39.8831 2.1997 2.4779 0.6383 0.5512 0.3391 0.5954 0.3016
F:10 35.9077 2.6640 1.4549 1.2128 0.2742 0.2708 0.5277 0.5011

Table 6.8: Major axis (a) changes of harmonics throughout the tracked frames

Figure 6.138: RMS Values of Covariance Columns for ‘a’
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b1 b2 b3 b4 b5 b6 b7 b8
F:1 22.3338 2.3399 3.7416 0.4091 0.1799 0.3841 0.0611 0.0690
F:2 22.5255 0.0773 2.8299 0.4266 0.2348 0.3708 0.0774 0.0852
F:3 26.9159 0.6529 0.8574 0.3328 0.2630 0.0801 0.1391 0.0420
F:4 27.7925 0.1753 0.7477 0.2192 0.1383 0.2311 0.0343 0.0887
F:5 28.0116 0.3134 1.3034 0.2442 0.1015 0.0232 0.0544 0.0108
F:6 26.4030 0.0826 0.9637 0.0962 0.0736 0.0656 0.0587 0.0875
F:7 27.0416 0.0311 0.4106 0.0061 0.1467 0.1270 0.0793 0.0812
F:8 22.1015 0.8724 1.6949 0.8863 0.0787 0.2186 0.0189 0.0497
F:9 22.8166 1.3505 1.8382 0.0706 0.0958 0.2329 0.1012 0.2160
F:10 27.1928 1.3363 0.1982 0.3608 0.1999 0.0785 0.2919 0.0606

Table 6.9: Minor axis (b) changes of harmonics throughout the tracked frames

Figure 6.139: RMS Values of Covariance Columns for ‘b’

θ1 θ2 θ3 θ4 θ5 θ6 θ7 θ8
F:1 1.5892 2.1612 -2.8649 1.7005 2.2886 2.0795 2.3023 1.2682
F:2 1.5905 -2.7802 2.0436 2.5130 -1.9291 -3.1252 2.7689 -2.7059
F:3 1.5783 2.9756 -2.9854 1.7908 3.0211 -2.8259 1.1444 2.0951
F:4 -3.0390 -2.4471 -3.0167 1.9577 1.5902 -2.3132 1.2006 -2.8407
F:5 -3.0371 1.6655 2.8837 1.2081 -2.6041 3.0531 -2.4503 2.1271
F:6 -2.9962 1.9754 2.9014 -2.4934 1.5844 2.2673 1.9671 3.0182
F:7 1.5704 2.9286 3.0461 -2.3328 1.2814 3.0470 2.3697 -1.9831
F:8 1.6138 1.9396 1.0343 -2.7763 2.7191 -2.4853 -2.9659 2.1376
F:9 1.6277 1.4163 1.9672 2.6387 2.7940 2.7206 2.6999 2.6381
F:10 1.6450 1.8803 -2.5929 -2.5046 3.0124 1.7371 2.4362 2.7556

Table 6.10: Angle in radian (θ) changes of harmonics throughout the tracked
frames

Figure 6.140: RMS Values of Covariance Columns for ‘θ’
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EFD models of single bubble tracked in Section 6.3.4 are shown in Figure 6.141.

Figures 6.142 and 6.143 show that first four harmonics are dominant according to

a and b features. Major axis (a) and minor axis (b) are equally dominant and with

compared to rest of EFD models variance is very much less since bubble don’t

alter its shape dramatically during the motion.

Figure 6.141: EFD models of tracked bubbles

a1 a2 a3 a4 a5 a6 a7 a8
F:1 31.8840 3.7984 0.8241 2.0189 0.6916 0.3009 0.2642 0.2816
F:2 31.2679 1.5541 1.2190 0.5869 0.3569 0.2060 0.3386 0.1409
F:3 32.4159 2.1695 1.7685 1.1726 0.4321 0.1282 0.1138 0.0544
F:4 32.2752 2.4397 1.2102 1.1356 0.2806 0.1299 0.1021 0.1143
F:5 32.3354 1.0127 2.0243 0.6510 0.6406 0.3562 0.3350 0.3346
F:6 33.2968 2.3787 2.0204 1.2768 0.3148 0.4345 0.0834 0.1665
F:7 31.7136 2.4428 1.8515 0.7716 0.2741 0.2711 0.1942 0.2021
F:8 31.8771 1.9298 0.4561 1.2278 0.3895 0.4016 0.2172 0.2483
F:9 33.7844 2.1801 0.7659 1.2453 0.3833 0.3133 0.2080 0.1843
F:10 31.5473 2.5485 1.5955 0.1681 0.6694 0.1229 0.5948 0.2640

Table 6.11: Major axis (a) changes of harmonics throughout the tracked
frames

Figure 6.142: RMS Values of Covariance Columns for ‘a’



Experimental Results 104

b1 b2 b3 b4 b5 b6 b7 b8
F:1 22.9447 1.7000 0.4246 1.0606 0.2652 0.1208 0.1433 0.1704
F:2 25.9578 0.3838 0.7340 0.0116 0.1580 0.0054 0.1096 0.0206
F:3 24.8102 1.3361 0.9764 0.6631 0.1875 0.0172 0.0218 0.0143
F:4 27.2298 1.0895 0.5001 0.7102 0.0708 0.0579 0.0247 0.0670
F:5 26.1694 0.0032 0.6814 0.1617 0.3330 0.0168 0.0098 0.0151
F:6 23.9426 1.4246 1.4290 0.7738 0.2296 0.2813 0.0551 0.1187
F:7 25.7185 0.7217 1.1968 0.3586 0.0212 0.0816 0.0212 0.0907
F:8 25.5860 0.3521 0.1363 0.8362 0.0427 0.1098 0.0188 0.1328
F:9 24.5585 0.9901 0.0906 0.1827 0.2629 0.0222 0.0934 0.0439
F:10 26.6423 0.6281 0.7484 0.1300 0.1848 0.0380 0.0674 0.1826

Table 6.12: Minor axis (b) changes of harmonics throughout the tracked
frames

Figure 6.143: RMS Values of Covariance Columns for ‘b’

θ1 θ2 θ3 θ4 θ5 θ6 θ7 θ8
F:1 -2.7167 1.4156 -2.4709 1.5187 1.3238 1.5755 -2.8501 1.1278
F:2 2.7712 1.5368 -2.6921 2.8054 2.1698 -3.0275 2.7368 -2.1760
F:3 2.2638 -2.6098 1.4908 -2.4693 2.7207 2.2313 1.8292 2.7862
F:4 1.6766 -2.9527 -2.5710 -2.5575 2.6255 2.3748 2.5809 1.5261
F:5 -2.3331 -1.6829 2.8404 2.8592 2.2661 2.4876 2.4721 2.4460
F:6 -2.6850 1.1525 2.0717 1.3086 2.9197 2.9735 1.1079 -3.0380
F:7 3.1386 1.9952 -2.7382 2.0045 3.0928 2.3858 -2.1043 -2.9314
F:8 2.3607 2.7525 -3.0207 2.9320 1.7706 2.6121 2.6831 -2.4248
F:9 1.7683 3.0485 2.9405 -2.9878 2.8733 1.8329 -2.2965 2.2447
F:10 1.3776 2.3881 -2.1152 2.5395 2.6669 -2.9857 -2.2712 1.1325

Table 6.13: Angle in radian (θ) changes of harmonics throughout the tracked
frames

Figure 6.144: RMS Values of Covariance Columns for ‘θ’



Chapter 7

Conclusion and Future Works

In this thesis, visualization system architectures for multiphase flow imaging is dis-

cussed and novel vision based methods to quantify the hydrodynamic cavitating

flow and cavitation induced bubbles are proposed. First, analysis of hydrodynamic

cavitation flow is performed by processing the images acquired by Particle Shadow

Sizing (PSS) technique and bubbles are generated under 10 to 120 bars inlet pres-

sures. During the process of hydrodynamic cavitation, multiphase bubbly flow

forms a virtual cone which starts with the orifice and extends through the flow.

Virtually obtained cone angle of multiphase flow is estimated through 3D Gaussian

modeling and employing a recursive filtering, i.e. Kalman filter, which is a requi-

site to position the orifice of bubbly cavitating flow generator during biomedical

applications. Observed newborn bubbles soon after the orifice of hydrodynamic

cavitation generator probe are considered as the most destructive ones and their

distributions around main jet flow is determined with the assumption of Gaussian

distribution to control their catastrophic effects and estimate the operational area.

Second, a new tracking-by-detection method is proposed to track the bubbles and

droplets throughout the flow, which is very crucial to investigate the evolution

of bubbles and examine the interactions of bubble-bubble and bubble-specimen.

Proposed structural and motion characteristics based method is adapted to track

single, double and triple bubbles, which enables to clarify the interactions as split-

ting and merging. Third, tracked single bubbles’ contour edges are modeled via

105
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elliptic Fourier descriptors to extract the invariant features throughout the evolu-

tion. All proposed methods are applied to 8 bit grayscale shadow images acquired

by PSS in MATLAB environment.

As a future work, laser induced double frame high speed images can be utilized to

visualize the bubbles smaller than 30µ. Furthermore proposed methods within this

thesis can be extended to explain the evolution of smaller bubbles and interactions.
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