
PRIVACY PRESERVING PUBLISHING OF

HIERARCHICAL DATA

by İsmet Özalp

Submitted to the Graduate School of Engineering and

Natural Sciences

in partial fulfillment of the requirements for the degree of

Doctor of Philosophy

Sabancı University

August, 2017

© İsmet Özalp 2017

All Rights Reserved

Dedicated to my parents and my brother

for their endless love, support and encouragement

Acknowledgments

First of all I would like to convey my deepest appreciation to my thesis supervisor

Prof. Yücel Saygın. His guidance and wisdom was always there to help me navigate

throughout my Ph.D. journey and this thesis.

Also I would like to express sincere thanks to my thesis co-supervisor Assoc. Prof.

Mehmet Ercan Nergiz for his continuous support and encouragement. Without his men-

toring and guidance this research would not be possible.

Furthermore, I especially like to thank my thesis committee Prof. Erkay Savaş, Prof.

Uğur Sezarman, Assoc. Prof. Hüsnü Yenigün and Asst. Prof. Ali İnan for their comments

and inputs.

In addition, I want to thank my dear collages Dr. Emre Kaplan and Mehmet Emre

Gürsoy for their invaluable inputs and discussions during my research. Also I want to

thank Mr. Bülent Dandin, Mehmet Önder and Özgür Aydınlı for their understanding and

support through out my thesis processes.

iv

PRIVACY PRESERVING PUBLISHING OF HIERARCHICAL DATA

İsmet Özalp

Computer Science and Engineering

Ph.D. Thesis, 2017

Thesis Supervisor: Prof. Yücel Saygın

Thesis Co-supervisor: Assoc. Prof. Mehmet Ercan Nergiz

Keywords: privacy, data publishing, hierachical data, k-anonimity, `-diversity,

anatomization

Abstract

Many applications today rely on storage and management of semi-structured infor-

mation, e.g., XML databases and document-oriented databases. This data often has to

be shared with untrusted third parties, which makes individuals’ privacy a fundamen-

tal problem. In this thesis, we propose anonymization techniques for privacy preserving

publishing of hierarchical data. We show that the problem of anonymizing hierarchical

data poses unique challenges that cannot be readily solved by existing mechanisms. We

addressed these challenges by utilizing two major privacy techniques; generalization and

anatomization.

Data generalization encapsulates data by mapping nearly low-level values (e.g., inf-

luenza) to higher-level concepts (e.g., respiratory system diseases). Using generalizati-

ons and suppression of data values, we revised two standards for privacy protection: k-

anonymity that hides individuals within groups of k members and `-diversity that bounds

the probability of linking sensitive values with individuals. We then apply these standards

to hierarchical data and present utility-aware algorithms that enforce the standards. To

evaluate our algorithms and their heuristics, we experiment on synthetic and real datasets

obtained from two universities. Our experiments show that we significantly outperform

related methods that provide comparable privacy guarantees.

Data anatomization masks the link between identifying attributes and sensitive attribu-

tes. This mechanism removes the necessity for generalization and opens up the possibility

v

for higher utility. While this is so, anatomization has not been proposed for hierarchical

data where utility is a serious concern due to high dimensionality. In this thesis we show,

how one can perform the non-trivial task of defining anatomization in the context of hi-

erarchical data. Moreover, we extend the definition of classical `-diversity and introduce

(p,m)-privacy that bounds the probability of being linked to more than m occurrences of

any sensitive values by p. Again, in our experiments we have observed that even under

stricter privacy conditions our method performs exemplary.

vi

HİYERARŞİK VERİLERDE MAHREMİYETİN KORUNMASI

İsmet Özalp

Bilgisayar Bilimi ve Mühendisliği

Doktora Tezi, 2017

Tez Danışmanı: Prof. Dr. Yücel Saygın

Tez Eş Danışmanı: Doç. Dr. Mehmet Ercan Nergiz

Anahtar Sözcükler: mahremiyet, veri yayınlanması, hiyerarşik veri, k-anonim,

`-çeşitlilik, anatomlama

Özet

Günümüzde bir çok uygulama kısmi belirli verilerin saklanması ve yönetimi (XML

veritabanları ve belge odaklı veritabanları gibi) üzerine kurulmuştur. Bu veriler çoğu za-

man güvenilmeyen üçüncü şahıs ve kurumlarla paylaşılmaktadır. Bu durum bireylerin

veri mahremiyetine yönelik temel sorunları da beraberinde getirmektedir. Bu çalışmada,

hiyerarşik verilerde kullanılmak üzere geliştirilmiş anonimleştirme teknikleri gösteril-

mektedir. Ayrıca bu çalışma ile hiyerarşik verilerin anonimleştirilmesi için günümüz tek-

niklerinin kolaylıkla çözemeyeceği veri mahremiyeti sorunlarına genelleştirme ve anatom-

laştırma tekniklerine dayalı yenilikçi çözümler getirilmektedir.

Veri genelleştirmesi, verilerin neredeyse düşük seviye değerlerini (ör: grip) daha yük-

sek seviye kavramlara (ör: solunum yolu hastalığı) dönüşmesini ihtiva eder. Veri değerle-

rine genelleme ve silme yapılarak, iki önemli mahremiyet standardı k-anonimleme (fert-

leri k tane elemanlı gruplara koyarak saklar) ve `-çeşitlilik (bir kişinin, herhangi bir mah-

rem bilgiyle ilişkilendirilebilme ihtimalini limitler) revize edilmiş ve hiyerarşik verilere

uygulanmıştır. Bu standartları destekleyen fayda duyarlı algoritmalar sunulmuştur. Algo-

ritmaların ve buluşsal yöntemlerin değerlendirmesi için iki farklı üniversite veri setiyle,

biri sentetik diğeri gerçek veri seti olmak üzere, deneyler yapılmıştır. Deney sonuçlarına

göre karşılaştırılabilir gizlilik garantileri sağlayan ilgili yöntemlerden önemli ölçüde daha

iyi performans elde edilmiş ve gösterilmiştir.

vii

Veri anatomlaşlaştırması, belirteç verilerle, mahrem veriler arasındakı bağlantıyı mas-

keler ve genelleme zorunluluğunu ortadan kaldırır. Bu sayede daha yüksek verim sağlama-

ya imkan tanır. Hiyerarşik verilerde yüksek boyutluluk sebebiyle verim sağlamanın ciddi

endişe kaynağı olmasına rağmen anatomlaştırma avantajı hiyerarşik verilerde bu güne

kadar önerilmemiştir. Bu tezde, anatomlaştırma işleminin hiyerarşik verilere nasıl uy-

gulanağını tanımlanmış ve gösterilmiştir. Ayrıca klasik `-çeşitlilik yöntemi geliştirilerek

yeni bir mahremiyet standardı (p,m)-gizliliği önerilmiştir. (p,m)-gizliliği, m tane her-

hangi bir mahrem verinin bir kişiyle ilişkilendirilme ihtimalini p ile limitler. Deney-

ler sonucunda daha zor mahremiyet standartlarında bile örnek teşkil edecek performans

sağladığını gözlemlenmektedir.

viii

Contents

Acknowledgments . iv

Abstract . v

Özet . viii

1 Introduction 1

1.1 Motivation . 1

1.2 Related Work . 5

1.3 Preliminary . 10

1.4 `-diversity vs. k-anonymity in Hierarchical Data 15

1.5 `-diversity in Tabular vs. Hierarchical Data 15

1.6 Anonymizing Relations Separately . 16

1.7 Constructing and Anonymizing a Universal Relation 16

1.8 Problem Definition . 17

2 Privacy Preserving Generalization of Hierarchical Data 20

2.1 Overview . 20

2.2 Generalization of Hierarchical Data . 20

2.3 Anonymization Algorithm . 26

2.3.1 Pairwise Anonymization . 26

2.3.2 Finding a Good Mapping . 29

2.3.3 `-diverse Clustering . 33

2.3.4 Complexity Analysis . 37

2.3.5 Proofs of Correctness . 38

ix

2.4 Experiments . 41

3 Privacy Preserving Anatomization of Hierarchical Data 52

3.1 Overview . 52

3.2 Anatomization of Hierarchical Data . 56

3.3 Anatomization Techniques . 58

3.3.1 t-t Anatomy . 58

3.3.2 v-v Anatomy . 61

3.4 Anatomization Algorithms for Hierarchical Data 65

3.5 Experiments . 69

4 Conclusions 79

4.1 Future Work . 80

x

List of Figures

1.1 A student’s hierarchical data record . 4

1.2 Schema for education data . 8

1.3 Students S1 and S2 and their courses as two tables linked using studentIDs

(primary key in Table 1, foreign key in Table 2) 14

1.4 Potential result if the two tables in Figure 1.3 are anonymized independently 14

1.5 Universal relation constructed by joining the Enrollment and Courses re-

lations with students S3, S4 and S5 using studentIDs 17

1.6 2-diverse version of the universal relation in Figure 1.5 18

2.1 Sample generalization hierarchy for course IDs 21

2.2 A class representative . 25

2.3 Results on the syntheticS dataset for ` = 2, 3, 4, 5 45

2.4 Results on the syntheticT dataset for ` = 2, 3, 4, 5 46

2.5 Results on the real dataset for ` = 2, 3, 4 48

2.6 Execution time on the syntheticS dataset 49

2.7 (a) Hierarchical data records for two sample students. (b) A 2-anonymous

version of these records. (c) A 2-diverse version of these records 51

3.1 Example tree data . 54

3.2 `-diverse result . 55

3.3 t-t anatomy result, QI and SA trees . 60

3.4 v-v anatomy result, QI trees and SA groups 61

3.5 Suppression accuracy at m = 3 `-p varying 70

xi

3.6 Suppression accuracy at p = 0.75 `-m varying 71

3.7 Suppression accuracy at ` = 3 p-m varying 71

3.8 Query accuracy at m = 3 `-p varying . 72

3.9 Query accuracy at p = 0.75 `-m varying 73

3.10 Query accuracy at ` = 3 p-m varying . 73

3.11 Query family accuracy at ` = 2, m = 2, p = 0.5 74

3.12 Query family accuracy at ` = 3, m = 2, p = 0.33 75

3.13 Query family accuracy at ` = 4, m = 2, p = 0.25 75

3.14 Accuracy gain in percentage vs `-diversity 76

3.15 t-t anatomy running time over number of partitions 77

3.16 v-v anatomy running time over number of partitions 77

xii

List of Tables

1.1 Related work on hierarchical data publishing 6

3.1 Generalization and anatomization on sample tabular data 53

xiii

List of Algorithms

1 Top-down anonymization of hierarchical records 28

2 Finding a low-cost mapping greedily . 30

3 Finding a low-cost mapping using a LSAP 32

4 Create `-diverse cluster . 34

5 Clustering algorithm . 35

6 Anatomize . 66

7 Merge . 67

8 MergeVertices . 69

xiv

Chapter 1

Introduction

1.1 Motivation

Today, exabytes of data flows around globe daily. Massive amounts of data created and

shared through search engines, social networks, streaming services, business applications,

software as a service systems and government branches. Large corporations such as

Facebook, Google, IBM, Netflix and Uber are collecting personal data in exchange of

their service. The reason behind sharing data can be due to obligation [1] or commer-

cial/public benefit. For instance, National Institutes of Health which is responsible for

medical research under U.S. Department of Health and Human Services expects some

funded projects to include a plan for sharing research data [2] . Another aspect is these

entities may want to share data to a third party like a data analytics company, with purpose

of research or create more business value.

However, data in today’s world often comes in various complex structures and for-

mats. In particular, hierarchical data has become ubiquitous with the advent of document-

oriented databases following the NoSQL trend (e.g., MongoDB) and the popularity of

markup languages for richly structured documents and objects (e.g., XML, JSON, YAML).

All the ever-increasingly collected data, when combined together pose a threat to privacy.

Simple deductive reasoning or sophisticated knowledge discovery techniques may link

individuals with sensitive information such as sexual preference, political views, alco-

1

hol usage or health condition. Due to such potential risks to individual privacy, many

countries have laws enforcing regulations on data sharing and publishing [3] [4].

Due to inherit privacy risks, data owners are required to de-identify personal data

before sharing it. This is not a straightforward task. Removing personal identifiers from

data, which may seem to be a proper de-identification, is not enough to ensure privacy. It

has been shown that even without the personal identifiers, an attacker can still identify a

person with great accuracy via joining released data with external sources [5]. Besides,

while protecting privacy is paramount, preserving utility is as important. All privacy

preserving data publishing techniques’ main concern is to balance privacy requirements

and amount of information published. They all try to publish as much information as they

can while preserving patterns and statistics in the data. So that when anonymized data is

published, it will be useful for applying knowledge discovery techniques.

Since the risks of identification have been realized, numerous privacy standards and a

variety of methods to enforce these standards have been proposed in the literature. Due

to its simplicity, prior research on privacy preserving data publishing addressed tabular

data. Even though a considerable portion of today’s data is stored and maintained in a

hierarchical form, very few existing work [6] address how privacy can be achieved in a

multirelational setting. Direct application of classical techniques unfortunately does not

satisfy privacy in this setting. Defining and enforcing privacy standards while preserving

utility in high dimensional hierarchical data poses a unique challenge for researchers.

In this thesis, we address the aforementioned challenge by presenting hierarchical

anonymization techniques. In particular, we used generalization and anatomization.

We motivate privacy-related attacks on hierarchical data using the example in Fig-

ure 1.1. This record fits the hierarchical education schema given in Figure 1.2. Student

S, born in 1993 and majoring in Computer Science, took two courses: CS201 and CS306.

For CS201, S submitted evaluations for two of his instructors. For CS306, S submitted

one evaluation and also reported that he bought the Intro to Databases book. We say that

all of this knowledge are QIs of S. Notice that we write QIs as labels of vertices. Know-

ing some or all of these QIs, the goal of the adversary is to learn sensitive information

2

about S (e.g., GPA, letter grades S received from the two courses, his evaluation scores

etc.). Without anonymization this could be trivial: If there is only one Computer Science

student born in 1993 in the database, then the adversary immediately learns the GPA of

S (and consequently, every other sensitive value in S’s data record). Our anonymiza-

tion strategy is to create equivalence classes of size � ` for an input parameter `, such

that even though the adversary knows all of S’s QIs, he can only link S to a group of

` records. Furthermore, using `-diversity, we ensure that sensitive values for each vertex

are well-represented, e.g., if ` = 3, an equivalence class of size 3 that contains S will have

two more students that took CS201 and they all received different letter grades. There-

fore, the adversary (1) cannot distinguish S from the other two records, and (2) cannot

infer with probability > 1/` any particular sensitive value of S. In the upcoming sections

we show that it is not trivial to offer this privacy guarantee. In particular, straightforward

application of existing k-anonymity and `-diversity algorithms are not sufficient.

Adversarial Model. We assume that adversaries have background information regarding

their victims’ QI values. An adversary may know any combination of QI values in the

same or different vertices of his victims’ records. An adversary may also exploit struc-

tural/semantic links, e.g., S has taken 2 courses and bought exactly one book for CS306.

Our anonymization technique therefore ensures anonymity with respect to records’ struc-

ture as well as QIs. Our approach also covers negative knowledge (e.g., S did not take

CS204) as well as positive knowledge (e.g., S took CS201). We assume that adversaries

have no knowledge (positive or negative) of individuals’ sensitive values.

Contributions. This thesis makes the following contributions:

• We demonstrate the plausibility of privacy attacks on hierarchical data, e.g., XML.

We show how hierarchical data anonymization differs from other data models in the

literature.

• We formally define two notions of privacy, k-anonymity and `-diversity, for hi-

erarchical data. We extend popular anonymization methods (generalizations and

suppressions) and utility metrics (e.g., Information Loss Metric LM) so that they

3

Figure 1.1: A student’s hierarchical data record

can be applied to hierarchical data.

• We devise an anonymization algorithm that, given a collection of hierarchical data

records, generates an `-diverse output. We experimentally validate the usefulness

of our algorithm and its heuristics.

• We show how anatomization technique can be used to increase utility in released

hierarchical databases.

• We introduce a new privacy metric (p,m)-privacy that bounds the probability of be-

ing linked to more than m occurrences of any sensitive values by p. The new metric

protects against the disclosure of frequent behaviour where frequency is controlled

by the m parameter.

• We empirically demonstrate that anatomization technique can effectively increase

the utility of hierarchical databases, even under strong privacy requirements.

Organization. The remainder of this thesis is organized as follows: An overview of

related work is given in Section 1.2. In Section 1.3, we formally define our data model

and anonymization techniques, and state related assumptions. Sections 1.4, 1.5, 1.6,

1.7 motivates our approach by explaining why `-diversity is needed and why existing

tabular `-diversity methods are unable to ensure `-diversity in hierarchical data. Chapter

2 proposes a novel anonymization algorithm based on clustering, with certain heuristics

4

and Chapter 3 proposes new privacy technique based on anatomization with two different

extensions. Finally Chapter 4 re-iterates the main points, briefly touches on future work

and concludes this thesis.

1.2 Related Work

Privacy is a term that is inquiry to several disciplines. Thus, definition may vary on the

context and discipline on which it is studied on. Generic explanation of privacy is a state

where individuals can have freedom from interference or intrusion and has the right to be

let alone. Although it has been introduced in late 19th century in ”The Right to Privacy”

[10], it still remains popular due to secrecy need of man.

In this thesis, we introduce methods to meet privacy demand of the users and the ap-

plications which lies in the context of ”data privacy”. In the domain of computing the

concept of data has it’s origins back in early 1900’s, in the endeavours of Claude Shannon.

Shannon, who is an American mathematician and is the author of highly influential article

called ”A Mathematical Theory of Communication” [11], is also known as the father of

information theory. In it’s simplest form data is information which is transformed into a

structure that is adequate for movement and processing. Data privacy is ones ability to

control their data in a computer system, in such fashion one has the ability to decide how

much information to disclose to 3rd parties, or not release at all. Data privacy is investi-

gated in several disciplines like health care, education and communication technologies

together with growing trends of mobile computing devices.

As governments, institutions and corporations have massive of amount data which

they want to publish for research purposes. In order to harvest value among data stores

and discover hidden patterns, while retaining the individuals privacy demand the field of

privacy preserving data publishing has emerged to satisfy requirements.

Privacy in tabular data has been widely studied. A prominent method in data anonymiza-

tion is k-anonymity [5], which states that each record in a k-anonymous dataset must

be indistinguishable from k � 1 other records with respect to their QIs. Such QI-wise

5

Table 1.1: Related work on hierarchical data publishing

Data Model Adversarial

Knowledge

Privacy Notion Anonymization

Operations

[7] XML XML constraints,

functional depen-

dencies

Preventing in-

ferences due to

constraints and

dependencies

Vertex and tree re-

moval

[6] Multi-

relational

SQL

Quasi-identifiers k-anonymity Generalization

(local recoding),

suppression

[8] XML Quasi-identifiers,

dependencies

Anatomy,

�-presence

Disassociation

of QIs and SAs,

schema modifica-

tion

[9] Hierarchical

(one label

per vertex)

 m vertex la-

bels, n edges

k(m,n)-anonymity Generalization

(global recoding),

structural disassoci-

ation

Chapter 2 Hierarchical Quasi-identifiers

and their relation-

ships

`-diversity Generalization

(local recoding),

suppression (partial

and full)

Chapter 3 Hierarchical Quasi-identifiers

and their relation-

ships

Anatomy Suppression (partial

and full)

6

equivalent groups are called equivalence classes (EC). k-anonymity is a promising step

towards privacy, but it is still susceptible to attacks [12, 13]. The main concern regarding

k-anonymity is that it does not consider the distribution of sensitive attributes, e.g., all

individuals in an EC may have the same sensitive value. `-diversity [12] was proposed to

address this problem, and requires that sensitive values in each EC are well-represented.

To achieve this, given an EC we limit an adversary’s probability of inferring a sensitive

value by 1/`. Two popular ways of achieving k-anonymity and `-diversity are generaliza-

tions and suppressions. Generalizations replace specific values by more general ones, e.g.,

course ID “CS305” can be replaced by “CS 3rd year” or “CS3**”. Suppressions conceal

information by deleting it: Records that exist in the original data are completely removed

from the final output. Since we are working with records with complex structures, we will

not only use removal of entire records (i.e., full suppressions), but also partial suppres-

sions (i.e., pruning data records by removing vertices, edges and subtrees). Data pertur-

bation and the addition of counterfeits (i.e., fake information) is beyond the scope of our

anonymization strategy, since we would like the data publisher to remain truthful (i.e., all

data in the output must have originated from the input, and not be randomly spawned by

the anonymization algorithm). k-anonymity was proposed by Sweeney and Samarati and

since then has become a standard for privacy protection [14, 5]. It has been shown that

optimal k-anonymity using generalizations and suppressions is NP-hard [15, 16]. Yet,

achieving practical and efficient k-anonymity on tabular data has been an active area of

research [17, 18, 19, 20, 21]. The main concern regarding k-anonymity is that it does not

consider the distribution of sensitive values [13] and it is therefore susceptible to attribute

linkage attacks [22]. In this thesis, we use `-diversity [12] that addresses this problem. In

[23], authors show that achieving optimal `-diversity through generalizations is NP-hard

for ` � 3. Among notable `-diversity algorithms are those in [24, 12] and [23].

Privacy notions such as k-anonymity and `-diversity were initially introduced for tab-

ular data, but they are being extended and applied to various types of complex data. Here

we describe the differences between our data model and those presented in earlier works

in complex data anonymization. In [25], [26] and [27], authors study variations of k-

7

Figure 1.2: Schema for education data

anonymity (e.g., k-isomorphism) to anonymize graph data. In graph data and social net-

work anonymization ([28]) data often comes in the form of one large graph, and the goal

is to make each vertex isomorphic or indistinguishable from k � 1 other vertices. On the

other hand, our data model assumes one disjoint record per individual. Also, we presume

an explicit hierarchy between vertices, and do not allow cyclic graphs. In [29], [30], [31]

and [32], authors investigate privacy preserving publishing of transactional databases and

set-valued data. Elements in set-valued data do not contain an order or a hierarchy, and

all elements in a database originate from the same domain (e.g., market purchases, search

logs). Our work considers multiple QI and sensitive attributes that each have a separate

domain. Several studies (e.g., [33], [34] and [35]) use generalizations and suppressions

for privacy preservation in spatio-temporal and trajectory data publishing. A trajectory is

an ordered set of points where each point has one immediate neighbor (i.e, a � b � c).

Whereas in hierarchical data, each vertex has multiple children that are potentially from

different domains. Finally, some works such as [36] and [37] assume that the data is in

tabular form, but the domains of sensitive attributes are hierarchically organized. They

8

propose privacy definitions applicable to this particular scenario. However, we assume no

ordering or hierarchy among sensitive values, and instead propose that quasi-identifying

information is organized hierarchically.

Several studies investigate privacy in semi-structured and hierarchical data from the

point of view of access control. In particular, access control systems for XML documents

have been designed and implemented for over a decade [38, 39, 40]. However, these are

orthogonal to our approach: We assume that an adversary will have full knowledge over

the database once it is published. In contrast, access control methods stop unauthorized

users (such as adversaries) from gaining access to sensitive information in the data.

Most closely related to our work are [9], [8], [6] and [7] that study privacy preserving

publishing of hierarchical or tree-structured data. Information regarding these works is

given next, and is also summarized in Table 1.1. In [7], authors focus on cases where

functional dependencies in XML data cause information leakage. They formulate such

dependencies as XML constraints. They propose an algorithm that sanitizes XML doc-

uments according to these constraints so that the resulting document no longer leaks in-

formation. Our adversarial model is broader: We study adversaries that also have back-

ground knowledge regarding their victims. In [8], authors introduce two anonymization

schemes for XML data: an extension of anatomy [41] (another well-known privacy pro-

tection method) and �-dependency. However, these methods transform the schema of

XML documents by de-associating QIs and SAs. Also, they support generalizations of

SAs, which intuitively work against our goal of making records `-diverse. Simultane-

ous to our study, [9] proposed the k

(m,n)-anonymity definition for tree-structured data. In

their work, attackers’ background knowledge is limited to m vertex labels and n struc-

tural relations between vertices (i.e., ancestor/descendant relationships). Also contrary to

our approach, they support structural disassociations which modify the original schema

of records. In addition, they employ a global recoding approach, i.e., if a value is gen-

eralized, then all its appearances in the database must be replaced by the generalized

value. This requirement can be too constraining for high-dimensional and sparse data,

and therefore our solution uses local recoding that allows a value and its generalization

9

to co-exist in the output. Furthermore, their solution is exponential in m. In [6], authors

extend k-anonymity to anonymize multi-relational databases that have snowflake-shaped

entity-relationship diagrams. Their definitions are primarily concerned with k-anonymity,

and although they propose a method for `-diversity, (1) their solution k-anonymizes the

database first and then iteratively tries to find an output that is `-diverse, and (2) they do

not provide any experimental results. The effectiveness of their approach relies heavily

on the k-anonymized database, which is obtained without taking SAs into account. On

the other hand, our algorithms checks for `-diversity at each anonymization step.

1.3 Preliminary

In this chapter we formally state our definitions and assumptions. We introduce concepts

and terms and discuss further on the motivation of our work. In this section, we describe

terms and notions used in both of the works discussed in Chapter 2 and Chapter 3. We

present both formal and verbal descriptions that falls into three categories namely Data

Model, Anonymization and Anatomization.

Definition 1. (Rooted tree) Let T be a graph with n vertices. We say that T is a rooted

tree if and only if:

1. T is a directed acyclic graph with n� 1 edges.

2. One vertex is singled out as the root vertex, and there is a single path from the root

vertex to every other vertex in T .

3. Let children(v) = {c1, ..., cm} denote the children of vertex v, i.e., there exists an

edge v � c

i

if and only if c
i

2 children(v). Then, c1, .., cm are called siblings of

one another, and we assume no ordering among them.

We denote such trees by T (V,E) where V is the set of vertices and E is the set of edges

in the tree.

Definition 2. (Hierarchical data record) We say that a hierarchical data record satisfies

the following conditions:

10

1. It follows a rooted tree structure.

2. Each vertex v has two j-tuples (j � 0) v
QIt

and v

QI

, where v
QIt

contains the names

of QI attributes and v

QI

contains the values of corresponding QIs.

3. Each vertex v also has two m-tuples (0 m 1) v

SAt

and v

SA

, where v

SAt

contains the name of SA and v

SA

contains the value of corresponding SA.

4. We assume (|v
QI

|+ |v
SA

|) � 1 to eliminate empty vertices.

In our examples we adopt the following notation to represent hierarchical records: We

write QI values (v
QI

) as labels of tree vertices and associated SA values (v
SA

) right next

to the vertices (as contiguous information). For the root vertex in Figure 1.1, v
QIt

=(major

program, year of birth), v
SAt

=(GPA), v
QI

=(Computer Science, 1993) and v

SA

=(3.81).

An edge between two vertices signals that information is semantically linked, e.g., the

evaluation score of 9/10 for Prof. Saygin in Figure 1.1 was given by this particular student

and for the CS306 course. Such links can be established through primary and foreign

keys in a multi-relational SQL database, or through hierarchical object representations in

XML or JSON. Conversion of any type of hierarchical data to the structure defined above

is trivial, given which attributes are quasi-identifiers and which ones are sensitive.

We say that an individual’s record in the database conforms to the definition of a hier-

archical data record, and only one hierarchical record exists per individual. The database

is a collection F that contains n hierarchical records, denoted T1, ..., Tn

.

Let v
X

[i] denote the i’th element in the r-tuple v

X

, where r = j or m. Let ⌦(A)

denote the domain of attribute A. We assume, without loss of generality, that the domains

of different attributes are mutually exclusive: ⌦(A) \ ⌦(A0
) = ; for A 6= A

0 . We also

require: 8i 2 {1, .., |v
QI

|}, v
QI

[i] 2 ⌦(v
QIt

[i]). Likewise, if the vertex contains a sensitive

attribute (i.e., |v
SA

| = 1), then v

SA

[1] 2 ⌦(v
SAt

[1]).

Definition 3. (Union-compatibility) Two vertices v and v

0 are union-compatible if and

only if v
QIt

= v

0
QIt

and v

SAt

= v

0
SAt

.

11

We use union-compatibility akin to database relations: Two database relations are

union-compatible if they share the same number of attributes and each attribute is from

the same domain. Similarly, in our case, two vertices are union-compatible if they follow

the same schema (i.e., same QIs and SAs).

In tabular data, suppression of a row refers to the removal of that row from the pub-

lished dataset (or equivalently, all values in that row are replaced by “*”). In our setting,

this translates to completely removing an individual’s hierarchical record. Although this

might be necessary and we support this operation, its effect is also drastic: If the deleted

record is large (i.e., contains a lot of vertices), then a lot of useful information might be

lost. We therefore introduce partial suppressions.

Definition 4. (Partial suppression) We say that a hierarchical data record T

⇤ is a par-

tially suppressed version of T , if T ⇤ is obtained from T by first removing exactly one edge

from T (call this e) and then deleting all vertices and edges that are no longer accessi-

ble from the root of T (i.e., there is no longer a path from the root to them). We write

T

⇤ = '

e

(T) to denote this operation.

Intuitively, a partial suppression is nothing but tree pruning. Such pruning can lead

to the deletion of a single vertex or a subtree containing multiple vertices and edges.

Note that the remainder of the data record is untouched, i.e., vertices that “survive” the

partial suppression operation incur no changes to their QIs or sensitive values. Figure 2.7

contains several examples: From Figure 2.7a to Figure 2.7b, the upper record loses the

vertex with TA5 under CS404. From Figure 2.7a to Figure 2.7c, the edge between the

root and CS404 is broken, which leads to the suppression of a larger subtree (i.e., children

of CS404 are also deleted). We explicitly replace suppressed vertices with dashed lines

and lost information (both v

QI

and v

SA

) with “*” for demonstration purposes. They are

otherwise not part of the output.

Definition 5. (Structural isomorphism) Let T1(V1, E1), T2(V2, E2), ..., T
n

(V
n

, E

n

) de-

note a group of trees with vertex sets V

i

and edge sets E

i

respectively. Let R(T
i

) =

{vi1, vi2, .., vim} denote the breadth-order (level-order) traversal of T
i

. The group of trees

is structurally isomorphic if:

12

1. For i 2 [1, n� 1], we have: |R(T
i

)| = |R(T
i+1)| = m.

2. For j 2 [1,m], let I
j

=
S

i2[1,n] v
i

j

denote the set of vertices at the j’th index of the

traversal. Then, all pairs of vertices in I

j

are union-compatible.

Definition 6. (`-diversity) Let X = {s1, s2, ..., sn} be a multiset of values from the domain

of a sensitive attribute A, i.e., s
i

2 ⌦(A). Let f(s
i

) denote the frequency of value s
i

in X .

Then, X is `-diverse if for all s
i

, f(s
i

) 1/`.

Informally, this probabilistic `-diversity definition states that the frequency of all sen-

sitive values must be bounded by 1/`.

Sensitive attributes can be categorical (e.g., letter grade) or continuous (e.g., GPA).

The domain of categorical SAs consists of discrete values (e.g., letter grades from A to

F), and it is straightforward to evaluate `-diversity on a set of discrete values as above.

However, continuous SAs require an intermediate discretization step. The domain of a

continuous SA is divided into non-overlapping buckets, and X then contains the buck-

ets data values fall into. (E.g., GPA domain [0.0 � 4.0] can be divided into 8 buckets of

size 0.5. A GPA value 3.26 can then translate to the bucket [3.0 � 3.50).) We do not

enforce a specific discretization, instead our algorithms can work with an arbitrary dis-

cretization that meets the demands and preferences of the data publisher. We also allow

discretizations to contain buckets with different sizes.

Definition 7. (Diversity of vertices) Let V = {v1, ..., vn} be a set of vertices from hierar-

chical data records. We study two cases:

• For v

j 2 V , |vj
SA

| = 0. Then, V is `-diverse if and only if all vertices in V are

pairwise union-compatible.

• For vj 2 V , |vj
SA

| = 1. Let X be defined as X = {v1
SA

[1], v2
SA

[1], ..., vn
SA

[1]}. Then,

V is `-diverse if and only if all vertices in V are pairwise union-compatible and X

is `-diverse.

13

Figure 1.3: Students S1 and S2 and their courses as two tables linked using studentIDs

(primary key in Table 1, foreign key in Table 2)

Figure 1.4: Potential result if the two tables in Figure 1.3 are anonymized independently

14

1.4 `-diversity vs. k-anonymity in Hierarchical Data

Prior approaches in hierarchical (and tree-structured) data anonymization against link-

age attacks can be divided into two camps: providing privacy by disassociating QIs and

SAs [8] and extensions of k-anonymity (e.g., multi-relational k-anonymity [6] and k

(m,n)-

anonymity [9]). The former publishes QI values and SA values separately, hence an ad-

versary cannot determine the sensitive value of a particular vertex (e.g., the letter grade S

received from course CS201). In the latter, records are anonymized in terms of structure

and labels (QIs in our case), but sensitive values are left unattended. (In particular, [9]

has no distinction between QI and SA.) Both may result in equivalence classes that leak

sensitive values with significant probabilities.

Let us demonstrate the plausibility of homogeneity and background knowledge attacks

on hierarchical data, where data is k-anonymized according to [6] or [9]. Say that a 2-

anonymous dataset has been published, such as the one in Figure 2.7b. Let the adversary

know beforehand that there will be at most two students that majored in Computer Science

and were born in the 1990s. His victim S is among these two students. The adversary links

S to the records in Figure 2.7b. At this point, the published dataset leaks the following

pieces of information: (1) S received an A- from CS404. (2) S submitted an evaluation

score of 8 for Prof. Levi in CS201. The peculiarity of this example comes from the fact that

the adversary had no knowledge of QI values for the vertices that leaked these information

(e.g., the adversary did not know that S evaluated Prof. Levi). Both of these privacy leaks

could have been avoided if the published data was 2-diverse as in Figure 2.7c.

1.5 `-diversity in Tabular vs. Hierarchical Data

As reported earlier, several algorithms that apply `-diversity to tabular data have been

implemented. In applicable situations, one way of processing hierarchical data is to re-

duce it to tabular data and then run tabular algorithms on it. There are also arguments

that say in most scenarios, converting hierarchical data to a single giant relation and then

using single-table algorithms is undesirable because of potential loss of information and

15

semantic links between data records [42]. We now demonstrate that such conversions and

reductions are not sufficient also for privacy protection.

1.6 Anonymizing Relations Separately

A hierarchical schema (e.g., Figure 1.2) can be represented using multiple database rela-

tions that are linked via primary and foreign keys (i.e., join keys). Then, a straightforward

approach would be to consider each relation independently and run tabular `-diversity

algorithms on them.

Consider the two tables in Figure 1.3, where studentIDs are added and used as join

keys. When these two tables are treated independently, a resulting anonymization could be

the one in Figure 1.4. It can easily be verified that both tables are 2-diverse by themselves.

Converting the result into our hierarchical representation, though, we see that students S1

and S2 are neither 2-anonymous nor 2-diverse. An adversary that knows S1 took CS201

learns the GPA of S1, since S2 has not taken any CS200-series courses.

The main problem of this independent anonymization approach is that anonymizations

are not guaranteed to be consistent between multiple tables. In the first table, S1 and S2’s

tuples are anonymized with respect to each other, but a tabular anonymization algorithm

does not acknowledge this when anonymizing the second table. Hence, S1’s tuples may

be bundled together and S2’s tuples may be bundled together while creating a 2-diverse

version of the second table.

1.7 Constructing and Anonymizing a Universal Relation

Another approach is to flatten hierarchical data into one big relation called the universal

relation, i.e., the universal relation is obtained by joining all relations in a hierarchical

schema using join keys. Figure 1.5 provides a sample universal relation. Notice that this

creates a significant amount of redundancy and undesirable dependencies. Information in

deeper vertices of the records have to be rewritten for each descendant connected to that

16

Figure 1.5: Universal relation constructed by joining the Enrollment and Courses relations

with students S3, S4 and S5 using studentIDs

vertex (e.g., QIs major and year of birth are repeated for each course taken). A second

problem is that leaf vertices may be at different depths, which will force work-arounds

such as having null values in the universal relation. For example, in Figure 1.5 if S3 had

not taken any courses, we would either have to remove him from the universal relation,

or enter nulls for his course and grade. Here we show the ineffectiveness of the universal

relation approach even ignoring the problems discussed up to this point.

The table in Figure 1.6 is 2-diverse in terms of the two sensitive attributes, GPA and

grade. However, the hierarchical records of S3, S4 and S5 are not anonymous: S3 and S5

are shown having taken one CS3** course each, but S4 has taken two. An adversary that

knows S4 is the only student who has enrolled in more than one CS3** course can learn

the grades S4 received from these courses, together with S4’s GPA. The problem this time

arises from the fact that each individual may have an unknown number of entries in the

universal relation.

1.8 Problem Definition

Having established the preliminaries, in this section we formally define and state the

problem.

We now discuss why we require every record T

⇤
i

to belong to exactly one `

j

-diverse

equivalence class. If T ⇤
i

does not belong to exactly one `

j

-diverse equivalence class, then

17

Figure 1.6: 2-diverse version of the universal relation in Figure 1.5

it either belongs to less than one `

j

-diverse equivalence class or multiple equivalence

classes. Say that T ⇤
i

does not belong to an `

j

-diverse equivalence class where `

j

� `.

That is, T ⇤
i

belongs to a t-diverse equivalence class where t < `. Then, clearly it is pos-

sible with certain background knowledge, an adversary will be able to infer the sensitive

attribute in T

⇤
i

with probability 1/t, which is greater than 1/`. This defeats the purpose of

`-diversity and the privacy protection we offer in this thesis. On the other hand, say that

T

⇤
i

belongs to multiple equivalence classes that are `
j

-diverse. We construct an example to

demonstrate the privacy breach here: Let T1, T2 and T3 be three records that each contain

a single vertex, ` be 2, and T1-T2 and T2-T3 be the two equivalence classes (notice that

T2 appears in both equivalence classes). Since T1-T2 and T2-T3 constitute equivalence

classes, due to QI-isomorphism, we know that they have the same QIs. Say that an adver-

sary has knowledge of these QIs and tries to infer a sensitive attribute. If T1 and T3 have

the same sensitive value (and T2 has a different sensitive value) then the probability of

an adversary inferring a sensitive value is 2/3, which is greater than 1/2 (1/`). Whereas

if T2 was not part of both equivalence classes (e.g., T1-T2 was an equivalence class, and

there was a fourth record T4, where T3-T4 was an equivalence class) then the probability

of inference would be at most 2/4, even if all four records had the same QIs. 2/4 = 1/2

18

(i.e., 1/`), hence there would be no privacy breach.

Given a collection of hierarchical data records F (T1, T2, ..., Tn

), an anonymized out-

put F ⇤ is generated via the following principle: For each record T

i

2 F , either T
i

is fully

suppressed and does not appear in F

⇤, or T
i

is transformed into T

⇤
i

2 F

⇤ by performing

a set of generalizations {�} and partial suppressions {'
e

(T
i

)}. With these definitions in

mind, the problem we study in this thesis can be stated as follows: Given a set of hier-

archical data records F , we would like to compute an `-diverse output F ⇤ with minimal

information loss, using the anonymization principle above.

19

Chapter 2

Privacy Preserving Generalization of

Hierarchical Data

2.1 Overview

In this chapter we present a novel privacy preserving publishing technique on hierarchical

datasets. The least one can do to protect privacy is to delete explicitly identifying infor-

mation (e.g., SSN, name). However, it has been shown that this is ineffective: [43] and [5]

report that a set of quasi-identifier (QI) attributes (e.g., gender, zipcode, date of birth) can

uniquely identify the majority of a population and also lead to linkage attacks [22]. An

adversary performs a linkage attack by knowing one or more QI values of his victim, and

trying to infer the victim’s sensitive attribute (SA) (e.g., GPA, health condition) values.

2.2 Generalization of Hierarchical Data

Domain generalization hierarchies (DGH) [12] are taxonomy trees that provide a hierar-

chical order and categorization of values. We assume that a DGH is either available or

easily inferable for each QI. Note that this assumption is widely adopted in the anonymiza-

tion literature [22, 6]. Values observed in the database appear as the leaves of DGHs. The

root vertices of DGHs contain “*” to mean “any value”, i.e., value completely hidden. A

20

Figure 2.1: Sample generalization hierarchy for course IDs

DGH is given for attribute course ID in Figure 2.1.

Definition 8. (Generalization function) For two data values x and x

⇤ from the same QI

attribute A, x⇤ is a valid generalization of x, written x

⇤ 2 �(x), if and only if x⇤ appears

as an ancestor of x in the DGH of A. We abuse notation and write ��1
l

(x⇤) to indicate all

possible leaves that can be generalized to value x

⇤ using valid generalizations.

For example, for the QI course ID, CS3** 2 �(CS303) and CS 2 �(CS303), whereas

CS2** /2 �(CS303). Also, ��1
l

(CS3**) = {CS301, CS303, CS305}, and �

�1
l

(CS305)

= {CS305}.

Definition 9. (Vertex generalization) We say that vertex v

⇤ is a valid generalization of v

and write v

⇤ 2 �(v), if:

1. v and v

⇤ are union-compatible.

2. v

QI

6= v

⇤
QI

.

3. 8a⇤ 2 v

⇤
QI

, either a⇤ 2 v

QI

or there exists a 2 v

QI

such that a⇤ 2 �(a).

4. v

SA

= v

⇤
SA

.

In words, a vertex is generalized when at least one of its QI values gets replaced by

a value that is more general according to the attribute’s DGH. A vertex generalization

leaves sensitive values intact.

21

Various metrics were proposed and used in relevant literature to calculate costs of

anonymization [17, 44, 18, 45]. In this thesis, we will use an extension of the general loss

metric (LM) [20]. Similar extensions were previously applied in a number of settings,

including medical health records [46] and multi-relational databases [6].

Definition 10. (Individual LM cost) Given a DGH for attribute A and a value x 2 ⌦(A)
(i.e., x exists in A’s DGH), the individual LM cost of value x is:

LM

0(x) =
|��1

l

(x)|� 1

|��1
l

(r)|� 1

where r denotes the root of A’s DGH.

Definition 11. (LM cost of a collection of hierarchical records) Let F and F

⇤ be collec-

tions of hierarchical data records, where F ⇤ is obtained via anonymizing F . Let denote

the set of vertices that exist in records in F but do not exist in F

⇤ due to partial or full

suppressions of records. Then, the LM cost of F ⇤ is:

LM(F ⇤) =

(
P

T

⇤
i 2F ⇤

P
v

⇤2T ⇤
i

P
q

⇤2v⇤QI

LM

0(q⇤)) + (
P
p2

|p
QI

|)
P
Ti2F

P
v2Ti

|v
QI

|

These cost metrics measure the utility loss due to generalizations and suppressions.

LM

0 is defined on QI values, and asserts a cost according to how general a QI value

is. For example, according to Figure 2.1, LM 0(CS) = 4/6, LM 0(CS2**) = 1/6 and

LM

0(CS201) = 0. Intuitively, if the output contains CS instead of CS2** or CS201, there

is higher ambiguity regarding the initial QI value that was generalized to CS. Hence, LM 0

assigns a higher penalty to more general QIs.

We use LM

0 to build LM(F ⇤), a cost metric that is suitable to our setting. In this

definition, the anonymization cost is broken down into two factors: The first factor cal-

culates the cost incurred by generalizations of vertices that appear in the published data.

The second factor adds the cost of suppressions. The total cost is calculated on the order

of labels rather than vertices or trees, to better focus on each individual piece of data lost

during anonymization.

22

One can verify that the LM

0 cost of a QI is within the range [0, 1], where the root of

a DGH receives the highest penalty (1) and leaves receive no penalty (0). Consequently,

we ensure that LM(F ⇤) is also normalized to a value within [0, 1].

We compute the LM cost of anonymizing the two records in Figure 2.7c to provide

an example for LM(F ⇤). Assume that F consists of only the two records in Figure 2.7a,

and F

⇤ is the records in Figure 2.7c. Further assume the LM costs of generalizing years

of birth 1994 and 1995 to 199* is 1/10, course IDs CS306 and CS305 to CS3** is 1/3,

instructors Prof. Saygin and Prof. Nergiz to DB Prof. is 2/7, and TA1 and TA2 to TA is

1/2. Then,

LM(F ⇤) =
(1
10 +

1
3 +

2
7 +

1
2) · 2 + 7

19
= 0.497

Definition 12. (QI-isomorphism) Let T1(V1, E1) denote a hierarchical data record with

a set of vertices V1 and edges E1. A data record T2(V2, E2) is QI-isomorphic to T1 if and

only if there exists a bijection f : V1 ! V2 such that:

1. For x, y 2 V1, there exists an edge e

i

2 E2 from f(x) to f(y) if and only if there

exists an edge e

j

2 E1 from x to y.

2. The root vertex is conserved; i.e., denoting the root of the first tree as r1 2 V1 and

the root of the second tree as r2 2 V2, f(r1) = r2.

3. For all pairs (x, x0), where x 2 V1 and x

0 = f(x), x and x

0 are union-compatible

and x

QI

= x

0
QI

.

Definition 13. (Equivalence class of hierarchical records) We say that records D =

{T1, .., Tk

} are k-anonymous and form an equivalence class, if for all i, j where 1
i, j k, the pair (T

i

, T

j

) is QI-isomorphic.

Two records are QI-isomorphic if they appear to be completely same when all sensitive

values are deleted from both. In other words, they are indistinguishable in terms of labels

and structure. There is a clear analogy between the traditional definition of equivalence

23

classes in tabular k-anonymity and our definition for hierarchical records: Both state that

an equivalence class is a set of records that are indistinguishable with respect to their QIs.

Definition 14. (`-diverse equivalence class) We say that records {T1, .., Tk

} form an `-

diverse equivalence class, if and only if:

1. {T1, .., Tk

} constitute an equivalence class.

2. For all 1 i k � 1, let f
i

be a bijection that maps T1’s vertices to T

i+1’s

vertices, as in QI-isomorphism. Let T1 have n vertices, labeled arbitrarily as

v

1
1, v

1
2, v

1
3, .., v

1
n

. Then, there should exist a set of bijections {f1, f2, .., fk�1} such

that 8x 2 {1, 2, .., n}, the set of vertices V = {v1
x

, f1(v1
x

), f2(v1
x

), .., f
k�1(v1

x

)} is

`-diverse.

`-diversity proposes the following extension to k-anonymity: Given a set of k-anonymous

records, we are certain that they are pairwise QI-isomorphic, and it is possible to generate

a set of bijections {f1, f2, .., fk�1} to match their vertices that are equivalent in terms of

structure and QIs. Matching vertices should be `-diverse (i.e., Definition 7) so that for ev-

ery piece of QI or structure-wise knowledge, the corresponding vertices yield a sensitive

value with probability no more than 1/`.

We should point out that multiple bijections between two records’ vertices are possible

if they contain multiple union-compatible sibling vertices with identical QIs. In such

cases, it is too restrictive to require that all possible bijections satisfy `-diversity, therefore

our definition states that it would suffice to have one bijection that does.

Figure 2.7 contains two records together with their 2-anonymous and 2-diverse ver-

sions. This is just one way of anonymizing these records, there are also other correct

(i.e., fitting the definition of anonymity and diversity) anonymizations. The quality of

these anonymizations, however, depend on how much information is lost (according to an

appropriate cost metric). An anonymization that satisfies k-anonymity or `-diversity and

yields the lowest information loss is most desirable.

An alternative representation of an equivalence class which we use in later sections

is the class representative for a given equivalence class. A class representative b
T is es-

24

Figure 2.2: A class representative

sentially a hierarchical data record with one extension: If a vertex contains a sensitive

attribute, its value is not a single element, but rather a list of elements. (8v 2 b
T , v

SA

returns a set rather than a single sensitive value.) We formally define class representative

as follows:

Definition 15. (Class representative) Given an equivalence class D = {T1, .., Tk

} with

the corresponding set of bijections {f1, f2, .., fk�1}, we say b
T is the class representa-

tive for D if b
T is QI-isomorphic to T1 with a bijection function f and 8v 2 b

T , v
SA

=

{f(v)
SA

, f1(f(v))SA, . . . , fk�1(f(v))SA}.

Figure 2.2 shows a representative for the equivalence class given in Figure 2.7c. It is

easy to show that a given equivalence class is `-diverse if and only if the corresponding

representative is `-diverse, that is 8v 2 b
T , the set v

SA

satisfies `-diversity.

Definition 16. (`-diversity of a database) A collection of records F

⇤(T ⇤
1 , ..., T

⇤
n

) is `-

diverse if every record T

⇤
i

2 F

⇤ belongs to exactly one `

j

-diverse equivalence class, and

for all `
j

, `
j

� ` holds.

25

2.3 Anonymization Algorithm

We designed and implemented a solution to the anonymization problem stated at the Sec-

tion 1.8. Before moving forward, we would like to underline two important characteristics

of our anonymization scheme. First, our approach ensures that the data publisher remains

truthful. The output does not contain any information that did not exist originally in the

input, i.e., we do not consider adding new vertices, changing QIs of vertices (other than

generalizing them), or adding new QIs or SAs to existing vertices. Second, vertices that

appear in the output have the same depth, adjacency and parent as they did in the input.

That is, the structure of records in the output are consistent with the input. This schema

preservation enables easier data mining without any ambiguity.

We present our algorithm in two steps: (1) Given two records, we focus on how

to anonymize them with respect to each other so that they become 2-diverse with low

information loss. (2) We build a clustering algorithm that employs the previous step and

class representatives to anonymize an arbitrary number of records.

2.3.1 Pairwise Anonymization

Converting two records to a 2-diverse pair is pivotal not only because we use it as a

building block in our clustering algorithm, but also we employ it as a similarity metric

(i.e., to calculate distance between two hierarchical data records). In addition, given a

fixed pair of records as inputs, the anonymization function should be able to produce a

2-diverse output with as little information loss as possible. Therefore, it relies on finding

vertices and subtrees that are similar in both records.

We define the following notation: Let root(T) denote the root vertex of the hierarchi-

cal data record T , and subtrees(v) denote the subtrees rooted at the children of v (i.e.,

for each child c

i

of v, the hierarchical data record rooted at c
i

is included in subtrees(v)).

Given two QI values X and Y both from the same QI domain, and Z that is the DGH of

the QI, we say that function mrca(X, Y, Z) returns the lowest (i.e., most recent) common

ancestor of X and Y according to Z. Assume that the function cost(T) returns the cost

26

of anonymization of T , given a pre-defined cost metric CM . An applicable cost metric is

LM, and in that case, cost of a record T is:

cost(T) = (
X

v2V

X

q2vQI

LM

0(q)) + (
X

w2

|w
QI

|)

where V denotes the vertices in T that are not suppressed and denotes the vertices

that were in T but are now suppressed. Let clone(T) return a copy of T . Furthermore,

given two vertices a and b, let u-comp(a, b) test the union-compatibility of a and b, and

diverse(a, b) have the following behavior:

diverse(a, b) =

8
><

>:

true if u-comp(a,b) and a

SA

\ b

SA

= ;

false otherwise

A function that anonymizes hierarchical records in top-down manner is presented in

Algorithm 1. We refer to this function as diversify. Without loss of generality, we assume

that for the two input hierarchical records T1 and T2 (rooted at a and b, respectively),

|children(a)| |children(b)|. (Otherwise T1 and T2 can be interchanged as the first step.)

The algorithm can be studied in several steps. First step checks the union compatibility

and diversity of root vertices a and b. If a and b cannot be anonymized, then their trees are

suppressed. In the second step (lines 7-10), we generalize the QIs of a and b according to

their DGHs. Resulting a and b will be indistinguishable in terms of QIs. In step 3 (lines

11-17), the algorithm checks if further calculation is needed: If a and b both have children,

then we need to find a low-cost anonymization of their subtrees. If one does not have any

children, then we can safely suppress the children and subtrees of the other. (Otherwise it

would be impossible to achieve QI-isomorphism due to structural difference.) When the

algorithm reaches line 18, it has dealt with the current level (i.e., checked if root vertices

are diverse, anonymized them and ensured that both have children). A low cost pairing

(i.e., mapping) between the subtrees rooted at a’s children and the subtrees rooted at b’s

children is returned by the function FindMapping. (We will give a detailed explanation

of how the mapping is computed in the next section.) Pairs returned by the function are

suitable candidates to be anonymized with one another. Hence, diversify is run recursively

27

Algorithm 1 Top-down anonymization of hierarchical records
Input: Two hierarchical data records (or class representatives) T1 and T2, anonymization

cost metric for cost calculation, DGHs of QI attributes for finding mrca

Require: |children(root(T1))| |children(root(T2))|, otherwise swap T1 and T2

1: procedure DIVERSIFY

2: a root(T1)

3: b root(T2)

4: if ¬diverse(a,b) then

5: suppress T1 and T2

6: return cost(T1) + cost(T2)

7: for i = 1 to |a
QI

| do

8: g mrca(a
QI

[i], b
QI

[i], DGH of a
QIt

[i])

9: replace a

QI

[i] with g

10: replace b

QI

[i] with g

11: if subtrees(a) = ; and subtrees(b) = ; then

12: return cost(T1) + cost(T2)

13: else if subtrees(a) = ; and subtrees(b) 6= ; then

14: let E be the set of outgoing edges from b

15: for e 2 E do

16: T2 '

e

(T2)

17: return cost(T1) + cost(T2)

18: P FindMapping(subtrees(a), subtrees(b))

19: for each pair (a
i

, b

j

) 2 P do

20: diversify(a
i

, b

j

)

21: for v 2 subtrees(b) and 6 9(x, v) 2 P for some x do

22: Let e be the edge from b to v

23: T2 '

e

(T2)

24: return cost(T1) + cost(T2)

28

on each pair (lines 19-20). Since we assumed |children(a)| |children(b)|, all subtrees

rooted at a’s children will be paired, but some subtrees rooted at b’s children might be

left-overs (i.e., they remain unpaired). Unpaired subtrees are suppressed (lines 21-23) to

achieve QI-isomorphism of T1 and T2. Finally, a successful execution of diversify always

returns the cost of anonymizing its inputs (see the return statements throughout).

2.3.2 Finding a Good Mapping

Recall that FindMapping is called using two lists of hierarchical data records S and U

(where |S| |U |), and the goal is to produce a set of pairs {(s, u) | s 2 S, u 2 U}
that are similar. We measure similarity as the cost of anonymization. Finding an optimal

solution to this problem requires finding all mappings between all elements in S and U ,

and picking the mapping that yields the lowest cost. However, this is infeasible: Let S

have n elements and U have m elements, where m � n. The number of possible pairings

between S and U is
�
m

n

� · n!, which implies exponential complexity. This becomes a

significant problem when the branching factor of input data records is large. (Even for

toy datasets with average branching factors of 6-7, optimal search took several hours.) We

therefore need heuristic strategies for FindMapping. Based on this observation, we now

describe two different solutions to the problem: one that employs a greedy algorithm, and

another that models the problem as an optimization problem using linear programming.

The greedy algorithm. This heuristic traverses S by picking one element at a time,

and finds the most suitable candidate in U to pair the element with. A more formal

description is given in Algorithm 2. The greedy solution has no guarantees of finding a

global optimum, but instead settles for a local optimum in each iteration (i.e., for each

element in S).

The procedure in Algorithm 2 works as follows: We pick one record at a time from

the first set S and call this record f (line 3). Then, we consider each unpaired element

v in the second set U and compute the information loss of anonymizing f with v (lines

6-10). This is done by first making copies of f and v (to make explicit that we do not

modify the original records) and then running diversify on them. The record that yields

29

Algorithm 2 Finding a low-cost mapping greedily
Input: Two lists of hierarchical data records S and U , where |S| |U |

1: procedure FINDMAPPING-GRD

2: P ;
3: for each f 2 S do

4: minCost +1
5: match ;
6: for each v 2 U do

7: f

0 clone(f)

8: v

0 clone(v)

9: c diversify(f 0
, v

0)

10: if c < minCost then

11: minCost c

12: match v

13: P P [(f ,match)

14: U U� match

15: return P

30

the lowest cost wins and gets to pair up with f (lines 10-14). We repeat this procedure

until S is exhausted.

An interesting heuristic is to find a strategy to choose f from S in a way such that

Algorithm 2 performs better. In other words, can the order in which f is chosen from S

affect the final outcome? We tried several heuristics for this, e.g., based on the frequencies

of the vertices and QIs. However, our results were not consistent. One strategy performed

better in some occasions, but worse in others. Also, the increase or decrease in the utility

of the outputs were negligible. Thus, we refrain from building a strategy on top of greedy

mapping, but instead propose the approach described next.

Reduction to an assignment problem. We propose a second strategy for FindMapping:

We model the problem in hand as a linear sum assignment problem (LSAP). LSAP is a

famous linear programming and optimization problem [47], where one has n agents that

need to be assigned to n tasks. Assigning an agent to a task has a certain cost that depends

on the task and the agent performing it. The goal is to find an assignment such that all

tasks are performed by assigning one agent to each task, one task to each agent and the

total cost of the assignment (i.e., linear sum of task-agent pairs selected) is minimized.

More formally, given an n⇥ n cost matrix C = (c
ij

) and a binary variable x

ij

repre-

senting the assignment of agent i to task j, a LSAP can be modeled as:

Minimize
nX

i=1

nX

j=1

c

ij

· x
ij

Subject to:
nX

i=1

x

ij

= 1 for j = 1, 2, .., n

nX

j=1

x

ij

= 1 for i = 1, 2, .., n

x

ij

2 {0, 1} for i, j = 1, 2, .., n

c

ij

� 0 for i, j = 1, 2, .., n

We use the Hungarian algorithm [48] to solve a LSAP, which finds an optimal (i.e.,

lowest-cost) solution to the problem above in O(n3) time. The solution is a collection of

x

ij

s that tell which agent is assigned to which task.

31

Algorithm 3 Finding a low-cost mapping using a LSAP
Input: Two lists of hierarchical data records S and U , where |S| |U |

1: procedure FINDMAPPING-LSAP

2: Initialize |U |⇥ |U | cost matrix C

3: for i = 1 to |S| do

4: for j = 1 to |U | do

5: f

0 clone(S[i])

6: v

0 clone(U [j])

7: c

ij

 diversify(f 0
, v

0)

8: for i = |S|+ 1 to |U | do

9: for j = 1 to |U | do

10: c

ij

 cost of suppressing U [j]

11: X solve the LSAP with cost matrix C

12: P ;
13: for each x

ij

2 X do

14: if x
ij

= 1 and i |S| then

15: P P [(S[i], U [j])

16: return P

32

We now explain how we use LSAPs in FindMapping. The process is shown in Algo-

rithm 3. Given two lists of records S and U , we treat the records in S as agents, and the

records in U as tasks in a LSAP. We calculate the cost of an agent-task pair by running

diversify on them, which computes the information loss incurred for anonymizing that

pair (lines 3-7). This fills the uppermost |S| rows of the cost matrix with non-negative

numbers. In many cases we have |S| < |U | (i.e., number of agents and tasks differ) and

hence the LSAP is unbalanced [49]. In these cases we add dummy suppression agents to

the cost matrix (lowermost |U |� |S| rows) to mark unmatched elements in |U | which will

eventually be suppressed by diversify. We capture the costs of suppressing elements in U

on lines 8-10. The cost method in Section 5.1 can be used for this, and in that case, the

cost of suppressing a subtree is equal to the total number of data entries (i.e., QIs) that are

deleted from that subtree. On line 11 we solve the LSAP using the Hungarian algorithm,

and consequently use this solution to compute the matching pairs of records in S and U

that should be returned by FindMapping, while removing all dummy assignments (lines

13-15).

2.3.3 `-diverse Clustering

Now that we can make a pair of records 2-diverse, we need to extend our strategy to

support ` > 2. We do so using a clustering algorithm. Let c denote a cluster. Each cluster

contains:

• A class representative, denoted crep. This is a summary data structure that depicts

the current state of the cluster. A formal definition of class representatives was

given in Definition 3.14.

• A set of data records, denoted cinit, that are the original (i.e., unmodified) versions

of the records in the cluster.

We first explain how we initialize and build one cluster. The procedure for this is

given in Algorithm 4. Essentially, we treat a cluster as an equivalence class, and use a

clustering algorithm to build `-diverse equivalence classes. A cluster is initialized using

33

one record, and at that point, it is a 1-diverse equivalence class. Then, we iteratively add

new records to a cluster one by one, and each record that joins a t-diverse cluster makes

it (t+ 1)-diverse. The process is terminated when the cluster becomes `-diverse.

In Algorithm 4, a cluster c is initialized using one record on line 3. In order to satisfy

`-diversity, c needs to recruit `�1 other records, hence the loop on line 4. While recruiting

new records, instead of randomly adding records to c, we aim to find the most suitable

record in our database F for c. That is, we find T

b

in F such that diversify(crep, T
b

) would

return the lowest cost (line 5). Once this record is found, it is removed from F and added

to c (lines 6-7). Then, crep is updated on line 8: Generalizations and suppressions are

performed, and sensitive values in T

b

’s vertices are added to matching vertices in crep.

Algorithm 4 Create `-diverse cluster
Input: A collection of n data records F (T1, ..., Tn

),

parameter ` for `-diversity,

data record T

a

2 F

1: procedure CREATECLUSTER

2: F F � T

a

3: Initialize c, where crep = T

a

and cinit = {T
a

}
4: for i = 2 to ` do

5: Find T

b

2 F s.t. argmin
Tb

(diversify(crep, T
b

))

6: F F � T

b

7: cinit cinit [T

b

8: Update crep by diversify(clone(T
b

), crep) and copying sensitive values of

matching vertices

9: return c

We present our main clustering procedure in Algorithm 5 and refer to it as ClusTree.

It receives a database of hierarchical data records F , a privacy parameter ` and two clus-

tering parameters m and s that are both positive floating numbers. It employs Algorithm

4 as follows: It selects records in F to initialize and build new clusters. Based on the

quality of the clusters that are built, ClusTree either accepts or rejects them. Next, we

34

Algorithm 5 Clustering algorithm
Input: A collection of n data records F (T1, ..., Tn

),

parameter ` for `-diversity,

maximum standard deviation multiplier parameter m,

step size parameter s

1: procedure CLUSTREE

2: R ;
3: � 0

4: while true do

5: for each T

a

2 F do

6: if |F | < ` then

7: suppress all T
i

2 F

8: return R

9: c CreateCluster(F , `, T
a

)

10: clcost 0

11: for each T

j

2 c do

12: clcost clcost + cost(T
j

)

13: if |R| > 1 then

14: Let µ be the mean of costs of clusters in R

15: Let � be the standard deviation of costs of clusters in R

16: if clcost > (µ+ � ⇤ �) then

17: Add all T
i

2 cinit back to F

18: Discard cluster c

19: else

20: R R [c

21: else

22: R R [c

23: if |F | = 0 then

24: return R

35

25: � �+ s

26: if � � m then

27: � +1

describe the details of this procedure.

ClusTree picks a T

a

from the input F (line 5) and uses it to create a new cluster

using CreateCluster (line 9). Once a cluster is formed, its total anonymization cost is

calculated (lines 10-12), where the total cost is the sum of individual anonymization costs

of all records within that cluster. At this point, we introduce our clustering heuristic.

We suggest that the quality of a cluster (implied by its cost) depends significantly on the

choice of initial record T

a

. If T

a

happens to be an outlier (e.g., has far less or higher

number of vertices than every other record in F , or its QIs are very rare) then even the

best T
b

s joining T

a

’s cluster will incur high costs of anonymization. Therefore on lines

13-22 of ClusTree, we perform the following check: We compute the mean and standard

deviation of previously formed clusters (lines 14-15). If the cost of the newly formed

cluster c is significantly higher than the mean, it is discarded and all records in c are

inserted back to the input F . Otherwise, c can be added to the output R. We use � to

limit the discrepancy between the cost of c and the mean cost of clusters in R (line 16).

� is initialized to 0 (line 3) and incremented by the step size parameter s (line 25) at each

iteration. We run iterations of the clustering procedure until � goes above m (line 26), and

afterwards we run one final pass with � = +1 (line 27) to allow clusters with any cost.

The output of the clustering algorithm is a set of `-diverse clusters. Records in F that are

not placed in any cluster in R are fully suppressed (lines 6-8). ClusTree terminates when

less than ` records remain in the input F (lines 6-8 and 23-24).

A lower value of � sets a stricter upper bound on the costs of accepted clusters. The

rate at which � increases is determined by the input clustering parameter s. s should be

small enough that expensive clusters are rejected in the first few iterations, but also large

enough that clusters which were rejected in the previous iteration have a chance of being

accepted in the next iteration. Also, smaller s implies larger number of passes over the

36

input database F (although F is consumed in each iteration) and would hence be more

time-consuming. The upper limit parameter m can be determined by experiment. How-

ever, if one assumes that clusters’ costs will approximately follow a uniform distribution,

the probability of a value falling outside µ+3 ·� is significantly small (e.g., 99.7% of the

samples in a normal distribution lie within 3 standard deviations of the mean). So, even in

cases where costs are skewed or randomly distributed, a maximum upper limit of m = 3

or m = 4 should be reasonable.

2.3.4 Complexity Analysis

In this section we analyze the time complexity of our solution. We start with pairwise

anonymization using diversify and FindMapping. Let our hierarchical data records have

branching factor (number of children at each vertex) b � 2 and height (number of edges

on the longest path between the root vertex and a leaf) h. For the sake of simplicity, we’ll

assume that all mrca operations, vertex generalizations and partial and full suppressions

are performed in total time t per diversify call.

The greedy version of FindMapping requires b·(b+1)
2 calls to diversify when called

with two sets of subtrees. To anonymize all pairs of matched subtrees, diversify makes b

recursive calls (lines 19-20 of Algorithm 1). Hence we obtain the following recurrence

relation: T (h) = b

2+b

2 ·T (h� 1)+ b ·T (h� 1)+ t where T (0) = t. Solving this relation,

we find that diversify with FindMapping-GRD is O(t · b

2h

2h).

The LSAP version of FindMapping requires b

2 diversify calls to fill its cost matrix

with agent-task costs (lines 3-7 in Algorithm 3), when called with two sets of subtrees.

Then, finding an optimal solution to the LSAP using the Hungarian algorithm is O(b3).

Similar to above, diversify still makes b recursive calls to anonymize all pairs of matched

subtrees. In this case we obtain the following recurrence relation: T (h) = b

2 ·T (h� 1)+

t+O(b3)+ b ·T (h� 1) where T (0) = t. Solving this relation, we find that diversify with

FindMapping-LSAP is O(b2h+1 + t · b2h).
These results are significant in several ways. First, pairwise anonymization is expo-

nential in h. Practical databases in real world, however, often have small h, e.g., h = 3, 4.

37

Therefore this is not a pressing concern. Second, finding an optimal solution to a LSAP

comes at the price of introducing an additional O(b2h+1) factor in asymptotic complex-

ity. Third, there is the cost of performing generalizations and suppressions, which we

denote by t. The efficiency of these operations is dependent on their implementation.

Some operations can be implemented in constant time (e.g., checking if two vertices are

2-diverse, suppressing a given subtree). In our experiments we saw that the factor t has

significant impact on execution time, hence efficient implementation of generalizations

and suppressions is key to scalability.

The complexity analysis of our clustering algorithm ClusTree is as follows: Let n

be the number of hierarchical data records in the database, ` be the `-diversity parame-

ter, and m and s be the clustering parameters in ClusTree. The complexity of pairwise

anonymization depends on whether GRD or LSAP mapping is used, as shown above. We

denote it here by O(diversify). We provide a worst-case analysis. The worst case occurs

when the first cluster created is the least costly cluster possible, and therefore no cluster

is accepted afterwards until the final iteration.

After initializing a cluster with a record, ClusTree (Algorithm 5) tries finding ` � 1

other records to join that cluster (Algorithm 4). This requires going over the remain-

ing records in the database ` � 1 times and calling diversify. Hence CreateCluster is

O(n · `· diversify). Calculating a cluster’s cost (lines 10-12) can be done cumulatively

within CreateCluster while the cluster is being formed, and there are online algorithms to

compute mean and variance [50] so that computing and updating them when a new cluster

is formed can be a constant time operation (lines 13-22). We therefore find that a single

pass of ClusTree over its input database is O(n2 · `· diversify). A quick calculation shows

that ClusTree performs
⌅
m

s

⇧
+ 2 passes over the data, resulting in a time complexity of

O((
⌅
m

s

⇧
+ 2) · n2 · `· diversify).

2.3.5 Proofs of Correctness

We now prove the correctness of the algorithm ClusTree (given in Algorithm 5), that is,

we prove that the output of the algorithm is an `-diverse anonymization of F . To do this,

38

we first prove the correctness of the algorithm diversify (given in Algorithm 1) which acts

as a building block in ClusTree.

Definition 17. We say a class representative T is `0-diverse if each vertex in T contains

exactly ` sensitive values.

Corollary 1. If a class representative T is `0-diverse then T is also `-diverse.

Theorem 1. Let T1 and T2 be `

0
1 and `

0
2-diverse class representatives of equivalence

classes D1 and D2 respectively. Then diversify on T1 and T2 creates a (`1 + `2)0-diverse

representative for the anonymization of T1 and T2.

Proof. By induction:

Base Case: If the height of T1 is 0, that is, T1 is ;, T2 is suppressed. Since we will not have

any vertex in T

⇤, T ⇤ is a valid anonymization of both T1 and T2 and satisfies (`1 + `2)0-

diversity.

Inductive Step: Let us denote a data record with height k as T h=k. By inductive hypoth-

esis, we assume diversify runs correctly for records with height at most k � 1. That is,

diversify on `

0
1-diverse T

h=i

1 and `

0
2-diverse T

h=j

2 creates an (`1 + `2)0-diverse representa-

tive for i, j 2 [0, k � 1]. We now prove the theorem for T h=i

1 and T

h=j

2 where i, j k.

We proceed with the proof as follows. We first show that the roots are properly di-

versified, that is, generalized to a (`1+ `2)0-diverse representative vertex (or suppressed if

diversification is not possible). We then show that the children of both trees are properly

mapped, paired and diversified.

Diversification of the Root: Let a, b, and t be the roots of T h=i

1 , T h=j

2 , and T

⇤ re-

spectively. Due to the anonymization process enforced by diversify, if t 6= ;, we have

t

SA

= a

SA

[b

SA

. If a
SA

\ b

SA

6= ;, then t

SA

does not satisfy (`1 + `2)0-diversity. In

such a case, diversify, at lines 4-6, suppresses T h=i

1 and T

h=j

2 and subsequently T

⇤ = ;.
Suppressed T

⇤ is an (`1 + `2)0-diverse anonymization. If a
SA

\ b
SA

= ;, at lines 7-10, QI

values in both roots are generalized into the nearest common parent, thus QI-isomorphism

of T ⇤ is ensured at root level. Since t

SA

= a

SA

[b

SA

, |a
SA

| = `1, and |b
SA

| = `2 then

t

SA

will contain `1 + `2 sensitive values, thus satisfies (`1 + `2)0-diversity.

39

Diversification of the Children: Let C
A

= {A1, . . . , Am

}, C
B

= {B1, . . . , Bn

}, C
T

=

{T1, . . . , Tm

} are the subtrees attached to a, b, and t respectively and m n. If C
A

is

empty, diversify, at lines 11-17, suppresses all trees in C

B

, consequently C

T

= ;. In such

a case, T ⇤ will be composed of a single already-diversified root, thus satisfies (`1 + `2)0-

diversity. If C
A

is not ;, either of the FindMapping functions are called. Both algorithms

guarantee that every A

i

2 C

A

is paired with some unique B

j

2 C

B

. diversify, at lines

19-20, calls itself recursively on the paired subtrees. Note that due to omission of the root,

all subtrees in C

A

and C

B

have heights less than k. By the inductive hypothesis, for every

pair (A
i

, B
j

) matched, diversify correctly returns (`1 + `2)0-diverse anonymization T

i

of

A

i

and B

j

. If there exists any unpaired subtree, diversify, in lines 21-23, suppresses it.

Since the root is already-diversified, all vertices in T

⇤ satisfies (`1 + `2)0-diversity.

Theorem 2. Algorithm CreateCluster, when given records F = {T1, . . . , Tn

}, ` n,

T

a

2 F returns a cluster c where crep is `0-diverse and T

a

2 cinit.

Proof. At start, representative crep is initialized to T

a

satisfying 1-diversity. At iteration i

of the for loop, (i� 1)0-diverse crep is diversified with a 1-diverse record and by Theorem

1, the resulting representative which is assigned to crep satisfies i-diversity. At the end

of the loop, crep satisfies `

0-diversity (thus, `-diversity) and cinit contains the associated

equivalence class.

Theorem 3. ClusTree, when called on records F = {T1, . . . , Tn

}, returns an `-diverse

anonymization of F .

Proof. The ClusTree algorithm is basically a loop where at each iteration the following is

performed:

• At lines 5-22, ClusTree scans all records currently in F once and for each record,

the function CreateCluster creates a single `-diverse cluster. Between lines 16-28,

if the quality of the previously-formed cluster is far away from normal parameters,

the cluster is discarded. Otherwise, it is moved from F to the result list. Distance

threshold on the quality is controlled by the parameter �.

40

• � is incremented, and after reaching m it is set as1.

The algorithm halts only when there are less than ` records not clustered, in which

case these records are suppressed. Due to correctness of CreateCluster, if the algorithm

terminates, every record in F (except the few suppressed ones) belongs to exactly one

cluster (equivalence class). Thus, by Definition 16, the returned clusters and the corre-

sponding equivalence classes give an `-diverse anonymization of the original records.

We conclude by stating that the algorithm always halts, that is, we will eventually have

|F | < `. Note that the distance threshold � that decides whether to discard a previously-

formed cluster is monotonically increasing with each iteration of the while loop. After

reaching m, � is set to 1. When this happens, no cluster will be discarded, thus every

cluster formed by CreateCluster function is removed from F . Since CreateCluster is

called on every record in T

a

, we will eventually be left with few enough records in F and

the algorithm returns.

2.4 Experiments

We implemented our algorithms in Java 8 and used MongoDB 2.4 to store our datasets.

Experiments were conducted on a commodity machine with Intel Core i7 2.40 GHz CPU

and 16 GB RAM.

Evaluation metrics. We use three means of evaluation: LM cost, average query accuracy

and KL-divergence. LM outputs a numerical value between 0 and 1 that conveys the

average cost of generalizations and suppressions over the whole database. Lower LM cost

implies higher data utility and therefore preferable anonymization.

For measuring query accuracy, we randomly generate several aggregate count queries

(e.g., “How many students took CS301?” or “How many CS courses were taken in to-

tal?”). We issue these queries on the original dataset (X
i

denotes the result of the ith

query) and the anonymized dataset (Y
i

denotes the result of the ith query). Then, average

query accuracy is computed as follows (where N is the total number of queries):

41

NP
i=1

(1� (
|Y

i

�X

i

|
X

i

· 100%))

N

As a third metric, we employ the Kullback-Leibler divergence (KL-divergence, in

short) as follows: We find the distribution of sensitive values in the original and anonymized

dataset. Let us call these probability distributions Q and P , respectively. For example, the

distribution of letter grades in the original dataset could be 20% A, 25% A- etc., but due

to suppressions, this distribution may change to 25% A, 15% A- etc. in the anonymized

dataset. The KL-divergence of Q from P is defined as [51]:

D

KL

(P ||Q) =
X

i

(P (i) · log
P (i)

Q(i)
)

A smaller KL-divergence implies that P and Q are closer to one another, and hence

the statistical properties of the data are better preserved after anonymization. Thus, sim-

ilar to LM cost, it is more desirable to have smaller KL-divergence. We measure the

KL-divergence of all sensitive values (e.g., GPA, letter grades and book prices) one by

one, and report the average. Since generalizations do not affect sensitive values, only

suppressions cause changes in their distribution. Therefore, KL-divergence is a good way

to evaluate the effect of suppressions on the statistical properties of a dataset.

Datasets. We report results on three datasets (two synthetic and one real) obtained from

two different universities in Turkey. Both datasets share a similar schema to that in Fig-

ure 1.2.

For the synthetic datasets, we obtained data regarding students from Sabanci Univer-

sity’s Computer Science (CS) program. The data contained the GPA and (partial) course

grades of 30 students from this year’s graduating class. To test with a meaningful number

of data records, we simulated several students based on this sample, with the guidelines

explained in the next paragraph.

We assumed that approximately the same number of students graduate every year, and

set their current age according to their year of graduation. We simulated GPA values using

42

a normal distribution, where the mean and the standard deviation were determined by the

GPA scores of our sample. According to Sabanci University’s CS program requirements,

we ensured that all students took the obligatory courses. To each student, we randomly

assigned a fixed number of courses from the pool of core courses, and a varying number

of technical area electives. Students’ grades were determined by their GPA and the type

of course (e.g., we observed that most students perform better in obligatory courses). We

assumed that a student would buy 0 to 2 books for each course.

We created two synthetic datasets, syntheticT and syntheticS, both containing 1000

students with approximately 20 courses per student. syntheticS uses the schema in Fig-

ure 1.2, i.e., (major,YoB)! courses! books. In order to test with an increased height,

in syntheticT we added an intermediate level between the root and the courses, that de-

picts the year in which courses were taken, i.e., freshman, sophomore, junior or senior.

Therefore the schema in syntheticT is: (major,YoB)! college years! courses! books.

The division of courses into college years was probabilistic based on whether the course

is a pre-requisite for any of the other courses the student took, and the usual timeframe in

which the course is actually taken at Sabanci University.

The real dataset contains 3162 students together with their years of birth, their GPA,

the courses they took and the grades they received. So, records in this dataset have only

the first two levels shown in Figure 1.2. Furthermore, instead of the QI attribute age, we

used year of birth. We set DGHs of courses according to their IDs.

Algorithms. We evaluate five approaches, four of which are presented in this thesis. For

these, we used the LM metric as the anonymization cost metric in Algorithm 1. We tested

ClusTree with the greedy and LSAP-based implementations of FindMapping. We call

the resulting methods ClusTree-GRD and ClusTree-LSAP, respectively. Regarding the

parameters of ClusTree, we set s = 0.5 since we saw that values below 0.5 did not make

an observable difference, and we obtained the best results with m = 4.

To demonstrate the effectiveness of our clustering heuristic, we implemented a sec-

ond procedure that does not contain any checks regarding the costs of clusters, i.e., we

initialize � = +1 on line 3 of Algorithm 5. We refer to this implementation as CToff.

43

There are also two versions of CToff : CToff-GRD and CToff-LSAP, depending on whether

FindMapping is greedy or LSAP-based.

In addition, we implemented the multi-relational k-anonymity algorithm together with

its `-diversity extension (dMiRaCle) proposed in [6]. To the best of our knowledge, this is

the only algorithm that can provide similar privacy guarantees to ours (i.e., `-diversity) in

hierarchical data. We converted our datasets into multi-relational databases and ran dMiR-

aCle on them. There are two parameters in dMiRaCle: climit (a limit on the number of

active clusters allowed during the algorithm) and th (a distance threshold parameter used

in dMiRaCle’s clustering phase). In our tests, we exactly mimicked the parameters sug-

gested by the authors: We set climit to be 150 and tested with th 2 [0, 1] with increments

of 0.1, and picked the best-performing result to report in this thesis.

Results and Discussion. We graph our results for varying values of ` in Figure 2.3,

Figure 2.4 and Figure 2.5 on the synthetic datasets and the real dataset, respectively. In

all experiments, we observe that LM cost and KL-divergence increase and query accu-

racy decreases as privacy requirements get stricter, i.e., ` is increased from 2 to 5. Two

factors contribute to the loss of data utility when ` is increased: (1) The anonymization

algorithm needs to find ` records for each cluster, i.e., higher ` requires more records per

cluster. Each record that joins a cluster causes generalizations and/or suppressions. These

anonymization operations are never reverted at a later point (e.g., when a new record joins

a cluster), therefore the cost of a cluster always accumulates. (2) For large values of `, it is

harder to find ` different sensitive values per vertex. Consider a case where the instructor

of CS306 decided to grade very generously and all students received either A or A- from

this course. When ` = 3, CS306 courses may never be matched with each other simply

because there are only 2 different grades observed in the database. Hence, either all oc-

currences of CS306 have to be suppressed, or they will be generalized with other courses

(e.g., CS3** courses would be the best candidates) so that they become 3-diverse in the

output.

We also observe that our algorithm outperforms dMiRaCle by a great margin in every

experiment. As explained in Section 2, [6]’s dMiRaCle is primarily concerned with k-

44

(a) LM cost

(b) Query accuracy

(c) KL-divergence

Figure 2.3: Results on the syntheticS dataset for ` = 2, 3, 4, 5

45

(a) LM cost

(b) Query accuracy

(c) KL-divergence

Figure 2.4: Results on the syntheticT dataset for ` = 2, 3, 4, 5

46

anonymity, and its `-diversity extension depends on k-anonymizing an input dataset first

and then finding an `-diverse output. This can be a reasonable strategy when ` is small

(e.g., ` = 2), since a 2-anonymous equivalence class can, by coincidence, happen to be 2-

diverse (or, making it 2-diverse might require very few operations). However, when ` = 3

or 4, if the initial equivalence class is not built with `-diversity in mind, later operations to

make it `-diverse will be very costly. Our experiments demonstrate this: There is a sharp

increase in LM cost and a sharp decrease in query accuracy (in all three datasets) when `

is increased from 2 to 3.

We obtained better results on the synthetic datasets compared to the real dataset. We

believe that this is caused by the fact that the real dataset is more sparse (e.g., there are

5000 unique courses, some of which are taken by very few students) and has more vari-

ance (e.g., some students took only 1-2 courses, whereas others took 60-70). In contrast,

the synthetic datasets are more evenly distributed, e.g., all students are CS majors that

take around the same number of courses, most of which are courses in Computer Science

or related areas. Also, we obtain roughly 10-15% better results on syntheticS compared

to syntheticT. The probable cause for this is the division of courses into college years in

syntheticT. For example, consider two students S1 and S2 that take the elective course

EL101, but S1 takes EL101 in her freshman year whereas S2 takes EL101 in her senior

year. Unless diversify decides to match S1’s freshman year with S2’s senior year (which

is a small probability, assuming S1’s freshman courses are more similar to S2’s freshman

courses rather than her senior courses) the EL101 vertices will not be matched with each

other. Instead, they will be matched with other courses or suppressed, due to the top-

down nature of diversify. The syntheticS dataset does not suffer from this problem, since

courses are directly children of the root vertices, and are not divided into college years.

We also would like to study the effects of our heuristics, by comparing (1) ClusTree

versus CToff to validate that our clustering heuristic is useful, and (2) LSAP versus GRD

to validate the effect of using an optimal solution against a greedy solution. In most

experiments, we see that ClusTree outperforms CToff and LSAP outperforms GRD, as ex-

pected. The difference between LSAP and GRD is usually more evident when ` is large,

47

(a) LM cost

(b) Query accuracy

(c) KL-divergence

Figure 2.5: Results on the real dataset for ` = 2, 3, 4

48

apart from the ` = 4 case on the real dataset, since most of the data in this experiment

is destroyed no matter which algorithm is used. Also, although our LSAP approach pro-

vides an optimal solution to the subtree matching problem, neither ClusTree nor CToff

guarantee optimality in the clustering phase - as in any clustering algorithm. Therefore

we cannot claim that ClusTree-LSAP or CToff-LSAP are optimal or they should outper-

form their greedy counterparts in all experiments. In most experiments they do, which is

intuitive, but there are also a few cases where the GRD approach performs almost as good

as or somewhat better than LSAP. This happens often when ` is small, and in particular

the KL-divergence experiment on the syntheticS dataset.

Figure 2.6: Execution time on the syntheticS dataset

With regard to efficiency, we obtained the execution times in Figure 2.6 on syntheticS.

This dataset contains 1000 hierarchical data records (with height = 3) and a total of ap-

proximately 42000 vertices. CToff is significantly faster than ClusTree, since it performs

a single pass over the data. For all ` values, it took 2-3 minutes to run CToff-GRD and 3-4

minutes to run CToff-LSAP. Since ClusTree performs multiple passes over the data (with

increasing �), it turns out to be roughly 10-15 times slower than CToff. The differences

49

between execution times become more significant as ` is increased. All of these results

are in line with our complexity analyses.

Finally, we would like to emphasize the trade-offs between data utility and efficiency.

The choice of using ClusTree over CToff and LSAP over GRD both increase data utility,

but come at the cost of increased execution time. On average, the best-performing algo-

rithm (in terms of query accuracy and LM cost) is ClusTree-LSAP, which also happens to

be the slowest.

50

Fi
gu

re
2.

7:
(a

)
H

ie
ra

rc
hi

ca
ld

at
a

re
co

rd
s

fo
r

tw
o

sa
m

pl
e

st
ud

en
ts

.
(b

)
A

2-
an

on
ym

ou
s

ve
rs

io
n

of
th

es
e

re
co

rd
s.

(c
)

A
2-

di
ve

rs
e

ve
rs

io
n

of
th

es
e

re
co

rd
s

51

Chapter 3

Privacy Preserving Anatomization of

Hierarchical Data

3.1 Overview

In Chapter 2, we used the method of generalization to protect the privacy of individuals in

shared hierarchical databases. While the proposed technique is effective, we still face two

major issues not adequately addressed by `-diverse generalization of hierarchical data. In

this chapter, we develop solutions for each of these issues as follows:

Utility of the released data: Over-generalization incurs heavy loss of utility especially

when a natural domain generalization hierarchy is not present or difficult to find. The loss

of utility is further amplified due to the high dimensional data.

How to preserve utility while protecting privacy has been widely studied for the

anonymization of tabular data. One effective technique in this domain is the anatomy

method which guarantees better utilized anonymizations compared to the traditional gen-

eralization techniques. Instead of applying value generalizations, anatomy breaks the link

between QI and sensitive attributes associated with individuals in a given group. As an

example, in Table 3.1, we show the private Table T , its 2-diverse generalization T

⇤, and

its 2-diverse anatomization T

A. Note that TA is composed of a QI table and an asso-

ciated SA (sensitive attribute) table. While both tables can be joined via the group id

52

Table 3.1: Generalization and anatomization on sample tabular data

(a) Private data table T

Id Age Sex Nationality Disease

1 42 M Ukrainian Hearth Disease

2 46 M Romanian Flu

3 54 F Turkish Bronchitis

4 51 F Italian Dyspepsia

5 24 M German Pneumonia

6 22 F German Gastritis

(b) `-diverse generalization T ⇤

Id Age Sex Nationality Disease

1 [40-50] M Eastern European Hearth Disease

2 [40-50] M Eastern European Flu

3 [50-55] F Mediterranean Bronchitis

4 [50-55] F Mediterranean Dyspepsia

5 [20-25] M German Pneumonia

6 [20-25] F German Gastritis

(c) QI table for anatomization TA

Age Sex Nationality Group Id

42 M Ukrainian 1

46 M Romanian 1

54 F Turkish 2

51 F Italian 2

24 M German 3

22 F German 3

(d) SA table for anatomization TA

Group Id Disease Count

1 Hearth Disease 1

1 Flu 1

2 Bronchitis 1

2 Dyspepsia 1

3 Pneumonia 1

3 Gastritis 1

53

Figure 3.1: Example tree data

attribute, within a group, which QI row is associated with which SA row is hidden. For

example, an adversary knowing that his 42 years old, male, Ukranian friend is in the re-

leased anatomization can at best link him to hearth disease or flu with equal probabilities.

Thus, the released data respects 2-diversity. Note that 2-diverse anatomization T

A offers

a richer information content than 2-diverse generalization T

⇤ which groups the same set

of individuals as TA does.

Despite the apparent advantage of anatomy on utility, no work has been done to apply

anatomization to hierarchical data. In this chapter, we show how one can create privacy-

preserving anatomization of a given hierarchical dataset and experimentally demonstrate

54

Figure 3.2: `-diverse result

that anatomy can significantly increase the utility of released hierarchical databases.

Multi-sensitive values linked to individuals: `-diversity is initially designed for tabu-

lar private databases in which each individual is associated with a single sensitive value.

However, hierarchical data belonging to an individual may exhibit multiple sensitive value

from the same domain. This introduces a unique privacy attack even if the released hierar-

chical data respects `-diversity. To demonstrate the attack, consider the private database,

in Figure 3.1, showing the blood types and health records of two patients in a given hos-

pital. (E.g., the second tree belongs to an 46 years old patient with AB- blood type. The

patient has been diagnosed as having AIDS twice in 2000 and 2006; while diagnosed as

55

suffering from Flu and Cold in 2006 and 2007, respectively.) We also show, in Figure 3.2,

a 2-diverse generalization of both patients. Note that an adversary knowing that her 46

years of friend visited the hospital in 2006 can at best map him to one of the generalized

trees. The generalization respects 2-diversity in that the respective diagnosis in 2006 can

be either Alcohol poisoning or AIDS with equal probability 0.5. While the diagnosis in

each distinct visit demonstrates the required diversity, unfortunately the same cannot be

said when we consider multiple visits. Note that, both trees contain AIDS, a disease not

treatable. Regardless of when the diagnosis happened, the attacker will conclude that his

friend suffers from AIDS.

Due to inadequate privacy offered by classical `-diversity, in this chapter, we pro-

pose a new privacy metric (p,m)-privacy that limits an attacker’s confidence in linking

at most m instance of a particular sensitive attribute to an individual over multiple nodes

of anonymous trees. We propose an anatomization algorithm to enforce the new metric

and experimentally show that (p,m)-privacy can be achieved with high utility in released

hierarchical databases.

3.2 Anatomization of Hierarchical Data

`-diversity states that the observed frequency of any sensitive value in a multiset or group

must be bounded by 1/`. We note that SAs can be categorical or continuous: The domains

of categorical SAs consist of discrete values, and the definition above applies trivially.

Continuous SAs require an intermediate discretization step, in which their domains are

divided into non-overlapping buckets. A uniform discretization is often assumed, how-

ever, we designed our algorithms to accommodate arbitrary discretizations that meet the

preferences of the data publisher.

As demonstrated in Section 3.1, despite `-diversity, the nature of hierarchical data

allows linkage attacks in which: (i) an individual can be linked to a sensitive value with

high probability, and (ii) an individual can be linked to having multiple occurrences of a

sensitive value. For some sensitive values the latter may not constitute a privacy risk, e.g.,

56

linking Alice to flu with high probability, or Alice being diagnosed with flu multiple times

may not be a problem. However, some sensitive values, such as AIDS or alcohol poisoning

are discriminatory by nature. Therefore we need to limit an adversary’s confidence in

linking a discriminatory value with an individual.

We introduce the (p,m)-privacy principle for this purpose. First, since anatomy works

by disassociating QIs and SAs, reconstruction of the data and therefore linkage attacks are

probabilistic (hence the parameter p). Second, for some discriminatory sensitive values,

their number of occurrence is important (hence the parameter m). For example, a sin-

gle occurrence of AIDS might be sufficient to discriminate against an individual, but it

might take more than two occurrences of alcohol poisoning to deduce alcohol addiction

problems and consequently discriminate.

Definition 18. (Discriminatory rule) A discriminatory rule is a triplet (s
i

,m, p) where

s

i

is a sensitive value within the domain of a SA, m is the maximum number of allowed

occurrences of s
i

in any tree, and p is a probability (confidence threshold) 0 < p 1.

For example, the verbal rules given above could be written as: (AIDS, 1, 1/2) and

(alcohol poisoning, 2, 1/3).

Definition 19. ((p,m)-privacy) We say that a publication of the private data F satisfies

(p,m)-privacy if for all discriminatory rules (s
i

,m, p) and an adversary observing the

published data:

8T 2 F, Pr[Adversary links T to � m occurrences of s
i

] p

Informally, (p,m)-privacy states that the published data should not cause an adversary

to discriminate against an individual with confidence greater than p. For example, for any

T 2 F , Pr[T is linked to AIDS] 1
/2 and Pr[T is linked to at most 2 occurrences of al-

cohol poisoning] 1
/3. Note that, per the definition above, the confidence of 1 occurrence

of alcohol poisoning can be >

1
/3, and this would not yield a violation of (p,m)-privacy.

57

3.3 Anatomization Techniques

We developed two techniques based on the disassociation of QIs and SAs for privacy

preserving publishing of hierarchical data records. Per the naming in the seminal work of

Xiao and Tao studying disassociation on tabular data [41], we refer to our techniques as

anatomization techniques.

Our two techniques are called tree-by-tree anatomy (t-t anatomy) and vertex-by-vertex

anatomy (v-v anatomy) due to their grouping and publishing strategy. Both techniques

satisfy `-diversity and (p,m)-privacy, but the application and enforcement of these privacy

notions are inherently different. Hence, as the experiments in Section 3.5 will show, one

technique may outperform the other with respect to the information loss in its output,

based on the values of parameters `, p and m.

3.3.1 t-t Anatomy

The general idea behind t-t anatomy is to first distribute each record T 2 F into one of

the many groups. We discuss how groups are formed in coming sections. Each group has

a unique group ID, and it is modified to enforce `-diversity and (p,m)-privacy. When a

group is published, the records in that group are divided into two separate trees: one for

QIs (called QI-trees) and one for SAs (called SA-trees).

We illustrate this process in Figure 3.3 and introduce some notation. Let the trees in

Figure 3.1 be located in the group with group ID G0. To enforce `-diversity and (p,m)-

privacy, we perform some modifications (suppressions and vertex reordering) on the trees.

Before publication, we separate the QIs and SAs by dividing G0’s trees into QI-trees and

SA-trees as shown. We use the projection operation from the database literature to denote

this operation, e.g., ⇡
QI

(T) outputs the QI-tree of T , and ⇡

SA

(T) outputs the SA-tree

of T . Note that from the published version, an adversary equipped with arbitrary infor-

mation regarding an individual’s QIs is not able to locate that individual’s SA-tree (and

hence sensitive values) with probability larger than 1
/|G0|, where |G0| is the cardinality

of G0. Given the published QI-trees and SA-trees, reconstruction of the original data is

58

probabilistic, using the permutation operation which we denote by ./. Note that in the

general case, for a group cardinality of g, there exist g! different permutations. For any

one individual T , the probability that the adversary correctly links the QIs and SAs of an

individual through reconstruction is 1
/g.

Enforcement of `-diversity requires structural isomorphism as well as sufficient diversity

in sensitive values. An adversary with complete knowledge of his victim’s QIs will only

be able to link an individual to a group ID (say G0) under which there must exist at least `

SA-trees as a pre-requisite for `-diversity. Then, for each vertex, we check if the matching

vertices in the SA-trees (i.e., vertices that appear in the same index of the ordered tree

traversal) satisfy `-diversity. This is formalized in the following definition.

Definition 20. (`-diversity for t-t anatomy) Let G be a t-t anatomous publication of a

group of QI-trees and SA-trees, R(T
i

) = {vi1, vi2, .., vim} denote the breadth-order traver-

sal of SA-tree T

i

, and I
j

=
S

i2[1,|G|] v
i

j

denote the set of vertices at the j’th index of the

traversal, as in the definition of isomorphism. G satisfies `-diversity, if:

1. The number of QI-trees and SA-trees is equal, and � `.

2. QI-trees are structurally isomorphic, and so are SA-trees.

3. For all j 2 [1,m], the set consisting of the sensitive values (v
SA

) of the vertices in

I
j

satisfies `-diversity.

As an example, consider the 2-diverse anatomization given in Figure 3.3. Rule 1 and

2 can easily be verified as there are exactly two structurally isomorphic trees in QI and

SA groups. For rule 3, I1 represents the root nodes of the trees. Corresponding set of

sensitive {0+, AB-} satisfy 2-diversity. Similarly, for I2, I3, and I4, the corresponding

sets are {Alcohol P., AIDS}, {Alcohol P., Flu}, and {Diaria, Cold} respectively. All sets

respects 2-diversity, thus rule 3 holds as well.

Enforcement of (p,m)-privacy. Let S denote the list of all discriminatory rules. To

enforce (p,m)-privacy, we check each rule (s
i

,m, p) 2 S one by one. First, we find

the number of SA-trees in G which would violate the rule if they were linked with an

59

individual: Let c(T, s
i

) denote the number of observances of s
i

in SA-tree T . Then, we

define µ(G, s

i

,m) as the number of SA-trees T 2 G such that c(T, s
i

) � m. Second,

recall that an adversary’s confidence in linking an individual to a particular SA-tree is
1
/|G|. Linking to any one of the µ trees causes a privacy violation. Therefore, we arrive

at the following: If µ(G, si,m)
/|G| p, the discriminatory rule is satisfied; else, the rule is

violated. This is formalized below.

Definition 21. ((p,m)-privacy for t-t anatomy) Let G be a t-t anatomous publication of

a group of QI-trees and SA-trees, and S denote a list of discriminatory rules. G satisfies

(p,m)-privacy, if for each rule (s
i

,m, p) 2 S , we have:

µ(G, s

i

,m)

|G| p

As an example, t-t anatomization in Figure 3.3 satisfies (AIDS, 1, 0.5) rule. Note that

there is only 1 out of 2 SA trees having at least one occurrence of AIDS. Similarly, the

anatomization also satisfies (Alcohol P., 2, 0.5) rule.

Figure 3.3: t-t anatomy result, QI and SA trees

60

Finally, we say that a t-t anatomous publication of the whole data is privacy preserving,

if for all groups G

i

containing QI-trees and SA-trees, `-diversity and (p,m)-privacy are

satisfied.

3.3.2 v-v Anatomy

Figure 3.4: v-v anatomy result, QI trees and SA groups

In t-t anatomy, both QI-trees and SA-trees follow a tree structure where each piece of

information is explicitly linked to the other with tree edges. This can be regarded as both

an advantage and a disadvantage. Its advantage is that there is no ambiguity in the output

regarding which sensitive values occur together. Hence, data reconstruction and inter-

pretation is easier: Given the QI-trees and SA-trees in a group, the potential hierarchical

data records can be reconstructed using a permutation operation ./ and we can run any

data mining task on these outputs as if we ran them on the original (private, unpublished)

records. Another advantage is that joint distributions and correlations between sensitive

61

values are preserved in the published data.

However, explicit links between sensitive values can also become a disadvantage.

The general assumption in the privacy preserving data publishing literature is that an

adversary has his victims’ QI information, but no knowledge of SAs. The previous works

on hierarchical data publishing also employ this assumption [6, 52]. However, as [53]

points out, the unique nature of hierarchical data may invalidate this assumption. Let

us assume a stronger adversary, who not only has QI information, but also one sensitive

value. For example, for the publication in Figure 3.3, let the adversary know that Alice’s

diagnosis in 2007 was Cold. Such knowledge is realistic, e.g., the adversary was a co-

worker of Alice and Alice might have given this information thinking Cold is common

and harmless. Then, since all other SAs are linked to Cold, the adversary immediately

learns that Alice was also diagnosed with AIDS in 2000. This shows that in hierarchical

data, direct links between SAs can help an adversary infer discriminatory sensitive values

given that he knows a non-discriminatory value. A second disadvantage is that explicit

links makes enforcing (p,m)-privacy harder which we will cover in coming sections.

We designed v-v anatomy to overcome this problem. v-v anatomy prevents this attack

at the expense of no longer preserving correlations between sensitive values. The pub-

lishing strategy of v-v anatomy is roughly the same for QIs, i.e., QIs are still published as

tree structures. However, SAs are published in independent groups rather than trees.

We illustrate v-v anatomy using Figure 3.4. In contrast to QI-trees in t-t anatomy, we

use augmented QI-trees (AQI-trees) in v-v anatomy. AQI-trees extend QI-trees by adding

an explicit sensitive value identifier associated with each vertex, e.g., G0.1, G1.1, G1.2.

For each AQI-tree published in one group, we ensure that the vertices which appear in

the same index of the breadth-order traversal have the same identifier. (Formally, for the

traversal of AQI-tree T

i

in group G, i.e., R(T
i

) = {vi1, vi2, .., vim}, for all j, the set of

vertices I
j

=
S

i2[1,|G|] v
i

j

contain the same sensitive value identifier.) Furthermore, each

identifier is unique, i.e., it is never repeated within the same tree. Each unique identifier

corresponds to one sensitive attribute group (SA-group). An SA-group is a collection

(multiset) of sensitive values. The key difference between v-v anatomy and t-t anatomy

62

is that v-v anatomy employs SA-groups instead of SA-trees.

For a vertex v in an augmented QI-tree, we use v.SAG to denote the corresponding

SA group and v.I to denote the vertices that has the same sensitive value identifier.

We now discuss how reconstruction works in v-v anatomy and how the aforemen-

tioned privacy attack is prevented. Consider the v-v anatomization given in Figure 3.4.

First, let Bob be the 47 years old victim whose QIs are known by the adversary in Figure

3.4. Then, the adversary can precisely locate Bob’s QI-tree. For each of Bob’s sensitive

values, the adversary observes an SA-group identifier, e.g., G1.2 containing {Alcohol

P.,Flu}. However, none of Bob’s actual sensitive values can be inferred with probability

larger than 1
/̀ , as long as each SA-group satisfies `-diversity. Second, let Alice be the 46

years old victim whose QIs are known by the adversary, and in addition, one more of her

SAs are also known, say the diagnosis Cold in 2007. Notice that the unknown SAs cannot

be inferred, e.g., even if Cold is known by the adversary, a second diagnosis, {Alcohol

P.,Flu} cannot be discovered with confidence larger than 1
/̀ because it occurs in an in-

dependent SA-group G1.2. (Of course, in this stronger adversarial setting, `-diversity

and (p,m)-privacy lose their meaning for the sensitive value that is already known by the

adversary.)

The permutation operation (i.e., ./) is more involved: Let T be an AQI-tree with |V |
vertices. For each vertex, given that the publication satisfies `-diversity, there exists an

SA-group of cardinality at least ` that stores potential sensitive values for that vertex.

Therefore the ./ operation has at least (`!)|V | outputs, as opposed to `! in t-t anatomy. The

probability that an individual’s all sensitive values are correctly reconstructed is `

�|V |,

as opposed to `

�1 in t-t anatomy. Typical values for ` 2 [2, 5], hence it is possible to

enumerate all outputs of ./ in t-t anatomy. On the other hand, we often have trees with

|V | � 20, which causes the output of ./ to be incomputable in the case of v-v anatomy.

Hence, when reconstructing v-v anatomous data, we need to resort to answering queries

probabilistically. This limitation in practicality is the price we have to pay to overcome

the aforementioned attack.

Enforcement of `-diversity has 3 requirements: (1) Structural isomorphism of AQI-trees

63

prohibits linkage attacks based on structural differences. (2) The existence and unique-

ness of SA-groups within each tree guarantees that an individual’s information is not

under-represented or over-represented in SA-groups. (3) Since SA-groups are multisets

by construction, application of the standard `-diversity definition (in Def. 6) is sufficient

to ensure `-diversity of the published information. These 3 requirements are formalized

in the definition below.

Definition 22. (`-diversity for v-v anatomy) Let G be a v-v anatomous publication of a

group of AQI-trees and SA-groups. G satisfies `-diversity, if:

1. The number of AQI-trees in the group is � `, and all AQI-trees are structurally

isomorphic.

2. Each vertex in an AQI-tree is associated with an SA-group, and no SA-group is

repeated twice in the same AQI-tree.

3. Each SA-group satisfies the multiset `-diversity definition given in Def. 6.

Enforcement of (p,m)-privacy. Let (s
i

,m, p) be the discriminatory rule under consider-

ation. First, we observe that after `-diversity is satisfied, the frequency of occurrence of s
i

in any SA-group must be less than or equal to 1
/̀ . From a worst-case perspective, assume

that the frequency is equal to 1
/̀ . Let ⌘(G, s

i

) denote the number of SA-groups in G that

contain one or more occurrences of s
i

. The probability that an adversary infers exactly m

occurrences of s
i

in any reconstructed hierarchical data record in G follows a Binomial

distribution:

Pr[X = m] = Pr[m; ⌘(G, s

i

),
1

`

]

=

✓
⌘(G, s

i

)

m

◆
· (1

`

)m · (1� 1

`

)⌘(G,si)�m

where X is a random variable capturing the number of occurrences of s
i

in any recon-

structed record in G. From Def. 19, we need to ensure: Pr[X � m] p. It follows that:

64

1� Pr[X < m] p

Pr[X < m] � 1� p

Following the cumulative distribution function of the Binomial distribution, together with

the notation above, the LHS term can be written as follows:

Pr[X < m] =
bm�1cX

j=0

✓
⌘(G, s

i

)

j

◆
· (1

`

)j · (1� 1

`

)⌘(G,si)�j

Definition 23. ((p,m)-privacy for v-v anatomy) Let G be a v-v anatomous publication

of a group of AQI-trees and SA-groups, and S denote a list of discriminatory rules. G

satisfies (p,m)-privacy, if for each rule (s
i

,m, p) 2 S , the following inequality holds:
bm�1cX

j=0

✓
⌘(G, s

i

)

j

◆
· (1

`

)j · (1� 1

`

)⌘(G,si)�j � 1� p

where j is an integer.

The v-v anatomization given in Figure 3.4 satisfies (p,m)-privacy with rules (AIDS,1,1⁄2)

and (Alcohol P.,2,1⁄4). For the latter, we have two SA-groups containing Alcohol P. (e.g.,

⌘(G,Alcohol P.) = 2). We have
�
2
0

� · (1/2)2 + �
2
1

� · 1/2 · 1/2 = 3
/4 � 1 � 1

/4, thus the rule

holds. Note that even though the groups and the corresponding node matchings are the

same in v-v and t � t anatomizations in Figures 3.4 and 3.3, v-v anatomization satisfies

a stronger (p,m)-privacy standard. While this is so, t� t anatomization has the ability to

better preserve the explicit links between sensitive values.

Finally, we say that a v-v anatomous publication of the whole data is privacy preserving,

if for all groups containing AQI-trees and SA-groups, `-diversity and (p,m)-privacy are

satisfied.

3.4 Anatomization Algorithms for Hierarchical Data

In this section, we propose an algorithm for hierarchical data that creates t-t or v-v anat-

omizations satisfying `-diversity and (p,m)-privacy. The pseudocode for the algorithm

Anatomize is given in Algorithm 6.

65

Algorithm 6 Anatomize
Require: A collection of trees F , privacy parameter ` and a set of discriminatory rules

R.

Ensure: The returned dataset is an anatomization of F and respects `-diversity and

(m, p)-privacy for the given rules.

1: let FA be an empty set of augmented trees

2: let LP be an empty set of trees

3: let FP = {F1, . . . , Fnp

} where each F

i

is an empty set of trees.

4: FP = partition(F, np)

5: FP = FP + LP

6: for all F
i

2 FP do

7: for all T 2 F

i

do

8: if |F
i

| < ` then

9: LP = LP [F

i

10: break

11: F

i

= F

i

� T

12: let TA be an augmented tree structurally isomorphic to T .

13: for all vertex v

A 2 T

A do

14: let v be the vertex with the same breadth-first order in T

15: v

A

.SAG = {v.sa}
16: v

A

.I = {v}
17: for j 2, ` do

18: T

0 argmin
T2Fi

COST(Merge(TA

, T, R))

19: T

A Merge(TA

, T

0)

20: F

i

= F

i

� T

0

21: F

A = F

A + T

A

22: generate and return t-t or v-v anatomization respecting SA groups and matched ver-

tices (e.g., I) in F

A

.

66

As the first step on line 4, the algorithm splits the data into equal size partitions where

the number of partitions np is an input parameter. To partition, we order the collection

of trees according to number of vertices in the trees and then place them into new sets in

such a way that each partition contains trees with similar number of vertices. The algo-

rithm almost always groups trees belonging to the same partition. Partitioning makes the

algorithm more efficient by only searching for groups within a much smaller population

at a small cost to utility. We claim that the cost to utility is minimal. An optimal algorithm

without partitioning would avoid grouping trees with many vertices with those with few

vertices since such grouping would cause many vertices in the former to be suppressed.

Thus, for most trees best possible group candidates reside in the same partition.

On the next step, the algorithm iterates over each partition F

i

on line 6 and tries to

group trees in F

i

. Each group is represented as an augmented tree so that information

about linked vertices and associated SA groups can be maintained. `-diversity is enforced

in an incremental fashion. For instance, if ` is 3, algorithm will first pick a tree T from F

and find the closest tree that can be merged with minimum cost so that the resultant group

satisfies 2-diversity. (we discuss algorithm merge shortly) Then, another tree is merged

with the group in such a way that the final group satisfies 3-diversity. Finally the group

is then put in the result set FA on line 21. Note that any group created by the algorithm

contains exactly ` data trees. At the end of the loop, those < ` many trees that cannot

be diversified are moved to a temporary partition LP . Trees in LP are revisited once all

partitions are processed.

Algorithm 7 Merge

Require: augmented tree T

A, tree T and a set of discriminatory rules R

Ensure: the returned augmented tree is a merge of the two input trees and does not violate

the discriminatory rules.

1: T̂

A = clone(TA)

2: MergeVertices({root(T̂A)},{root(T)},T̂A,R)

Algorithm Merge (given in Alg. 7) gets an associated j-diverse augmented tree for the

existing group and a tree T , and merges them into a new (j + 1)-diverse augmented tree

67

respecting discriminatory rules. The merge of the trees is performed recursively in a top-

down fashion. At each level of the trees, the algorithm MergeVertices (given in Alg. 8)

maps each vertex v

A in the augmented tree with exactly and uniquely one vertex v in the

data tree only if the following conditions are met. First, the sensitive value v.sa associated

with v should not appear in the SA group v

A

.SAG. Recall that groups contain exactly

` trees, thus any repeating sensitive attribute would violate `-diversity. Second, adding

v.sa in v

A

.SAG should not violate any of the discriminatory rules. Recall that given the

augmented tree TA, this check can be performed via Definition 23 or 21 depending on the

desired type of the anatomization. If both conditions are met, the vertices are linked and

the algorithm is called on the children of vertices recursively on line 8.

68

Algorithm 8 MergeVertices

Require: set of augmented vertices V A, set of vertices V , associated augmented tree TA,

and a set of discriminatory rules R

Ensure: V

A and V are merged into V

A in such a way that SA groups in T

A respects

diversity and (p,m)-privacy

1: set all vA 2 V

A and v 2 V as unmatched.

2: for all vA 2 V

A do

3: for all unmatched v 2 V do

4: if v.sa /2 v

A

.SAG then

5: v

A

.SAG = v

A

.SAG+ v.sa

6: v

A

.I = v

A

.I + v

7: if T

A satisfies (m, p)-privacy rules R(see Def. 23 and 21) then

8: MergeVertices(children of vA, children of vA, TA, R)

9: set vA and v as matched.

10: break

11: else

12: v

A

.SAG = v

A

.SAG� v.sa

13: v

A

.I = v

A

.I � v

14: if vA is unmatched then

15: suppress the subtree rooted by v

A in T

A

3.5 Experiments

We now present experimental results regarding anatomization algorithms we proposed

for hierarchical databases. We implemented our algorithms in Java 8. Experiments were

conducted on a machine with Intel Xeon E3 @ 3.60 GHz CPU and 32 GB RAM. In

order to evaluate our work on (p,m)-privacy, we did extensive experiments which show

the effects of varying the privacy parameters p, m and `. These experiments include

measurement of suppression and query accuracy. At the end of this section, we compare

69

our technique with our previous work described in Chapter 2. We use the same dataset

syntheticS detailed in Section 2.4 in all of these experiments.

We use two quality metrics to evaluate the utility of released hierarchical data. First

metric we use is suppression accuracy. Suppression accuracy can be calculated as
P

Ti2F
|{v | v2TA

i }|
|{v | v2Ti}|

|F | · 100

where T

A

i

is the anatomized tree linked to the same individual as T
i

and query accuracy

can be calculated with the same formula given in 2.4

Suppression accuracy

0

10

20

30

40

50

60

70

80

90

100

l:2	p:0.5 l:2	p:0.75 l:2	p:1 l:3	p:0.5 l:3	p:0.75 l:3	p:1 l:4	p:0.5 l:4	p:0.75 l:4	p:1

t-t	anatomy v-v	anatomy

Figure 3.5: Suppression accuracy at m = 3 `-p varying

In Figure 3.5, we fix m at 3 and demonstrate the change in suppression accuracy with

respect to various ` and p. It’s clearly seen that p and accuracy are directly proportional,

e.g., as p increases, so does the accuracy. Utility and privacy requirements are inversely

proportional. As ` increases, so does the number of trees per group. Each additional tree

requires more suppression, thus the utility drops. Note that when p is 1, t-t anatomy yields

the same suppression accuracy as v-v anatomy. This is an expected behaviour since for

p = 1 the discriminatory rules are not enforced.

70

0

10

20

30

40

50

60

70

80

90

100

l:2	m:1 l:2	m:3 l:2	m:5 l:3	m:1 l:3	m:3 l:3	m:5 l:4	m:1 l:4	m:3 l:4	m:5

t-t	anatomy v-v	anatomy

Figure 3.6: Suppression accuracy at p = 0.75 `-m varying

In Figure 3.6 we fix p at 0.75 and we investigate the change in suppression accuracy

versus change in ` and m. As m increases, the standard tolerates more occurrences of the

same sensitive values appearing in an anatomized tree, this in return decreases the number

of suppressed vertices per anatomized tree.

0

10

20

30

40

50

60

70

80

90

100

p:0.5	m:1 p:0.75	m:1 p:1	m:1 p:0.5	m:3 p:0.75	m:3 p:1	m:3 p:0.5	m:5 p:0.75	m:5 p:1	m:5

t-t	anatomy v-v	anatomy

Figure 3.7: Suppression accuracy at ` = 3 p-m varying

In Figure 3.7 we fix ` at 3. We observe change in suppression accuracy due to change

in m and p. Similar conclusions can be derived here, increase in m and p results in better

71

accuracy.

In all three experiments, we achieve > 60% accuracy for ` = 2. This drops to > 50%

and > 40% for ` = 3 and ` = 4. We also observe the overhead of achieving (p,m)-

privacy. For example, the accuracy increases to > 80%, > 70%, and > 60% when p = 1.

Another important point is that in all our suppression tests with p 6= 1 v-v anatomy almost

always performs better than t-t anatomy. Recall that a grouping achieving (p,m)-privacy

for t-t anatomy also satisfies (p,m)-privacy for v-v anatomy. However, the reverse is not

the same. Thus, there likely exist groupings with lower number of suppressions satisfying

(p,m)-privacy for v-v anatomy but not t-t anatomy.

Query accuracy

0

10

20

30

40

50

60

70

80

90

100

l:2	p:0.5 l:2	p:0.75 l:2	p:1 l:3	p:0.5 l:3	p:0.75 l:3	p:1 l:4	p:0.5 l:4	p:0.75 l:4	p:1

t-t	anatomy v-v	anatomy

Figure 3.8: Query accuracy at m = 3 `-p varying

In Figure 3.8, we examine query accuracy with varying ` and p when m is fixed at 3.

We observe a slightly different behaviour compared to the results in Figure 3.5, Figure

3.6 and Figure 3.7. As in suppression accuracy experiments, v-v anatomy out-performs

t-t anatomy in all settings p 6= 1. When p = 1, however, we see t-t anatomy results in

anatomizations with better query accuracy. This is an expected behaviour. Note that a

grouping achieves `-diversity for t-t anatomy if and only if it also does for v-v anatomy.

72

As discussed in Section 3.3.1 and 3.3.2, for the same grouping, t-t anatomy preserves

explicit links between sensitive values, thus provides better query accuracy. Note that

the information content within explicit links are not captured by the suppression accuracy

metric.

0

10

20

30

40

50

60

70

80

90

100

l:2	m:1 l:2	m:3 l:2	m:5 l:3	m:1 l:3	m:3 l:3	m:5 l:4	m:1 l:4	m:3 l:4	m:5

t-t	anatomy v-v	anatomy

Figure 3.9: Query accuracy at p = 0.75 `-m varying

In Figures 3.9 and 3.10, we observe a similar behaviour as in Figures 3.6 and 3.7.

0

10

20

30

40

50

60

70

80

90

100

p:0.5	m:1 p:0.75	m:1 p:1	m:1 p:0.5	m:3 p:0.75	m:3 p:1	m:3 p:0.5	m:5 p:0.75	m:5 p:1	m:5

t-t	anatomy v-v	anatomy

Figure 3.10: Query accuracy at ` = 3 p-m varying

We now investigate how query type affects utility by clustering queries into partitions

73

(e.g., query families). We have created 10 different query families which are based on the

count of SAs and QIs in different depths of the trees and their combinations. It includes

queries such as:

• The count of students having A- or B+ from a Math or CS course.

• The count of students with age 26 and has taken CS 201.

• The count of students that has taken Math 101 and got grade B- in Math 101 and

also has bought Math 101 textbook.

In Figure 3.11, Figure 3.12 and Figure 3.13, we show accuracy versus queries (denoted

with their family id numbers). We have different settings of `, p and m in each figure so

that it enable us to compare t-t anatomy and v-v anatomy. In all these figures, we can

clearly see that when the depth of the query increases, the query accuracy reduces which

is an expected behaviour. Because as we go down during top down merging of trees when

upper level parent node is suppressed, children nodes that are connected to the parent

node are also suppressed.

0

10

20

30

40

50

60

70

80

90

100

1 2 3 4 5 6 7 8 9 10

t-t	anatomy v-v	anatomy

Figure 3.11: Query family accuracy at ` = 2, m = 2, p = 0.5

74

0

10

20

30

40

50

60

70

80

90

100

1 2 3 4 5 6 7 8 9 10

t-t	anatomy v-v	anatomy

Figure 3.12: Query family accuracy at ` = 3, m = 2, p = 0.33

0

10

20

30

40

50

60

70

80

90

100

1 2 3 4 5 6 7 8 9 10

t-t	anatomy v-v	anatomy

Figure 3.13: Query family accuracy at ` = 4, m = 2, p = 0.25

75

0

2

4

6

8

10

12

2 3 4

t-t	anatomy	gain v-v	anatomy	gain

Figure 3.14: Accuracy gain in percentage vs `-diversity

Comparison to Previous Work

In order to evaluate our anatomy technique with generalization technique proposed in

Chapter 2, we run the same query accuracy tests on `-diverse generalization, `-diverse t-t

and v-v anatomization with no discriminatory rules. In Figure 3.14, x-axis shows ` values

and y-axis shows accuracy gain (in percentage) against `-diversity. We observe that t-t-

anatomization offers 6-10% more query accuracy compared to generalization. This drops

to 3-5% better accuracy for v-v-anatomy.

76

Effect of partitioning

0

50

100

150

200

250

300

350

400

450

48

48.5

49

49.5

50

50.5

51

51.5

52

52.5

53

1 2 3 4 5

Average	 Suppression	Accuracy Average	 Duration	in	S

Figure 3.15: t-t anatomy running time over number of partitions

0

200

400

600

800

1000

1200

1400

1600

55.5

56

56.5

57

57.5

58

58.5

59

59.5

60

60.5

1 2 3 4 5

Average	 Suppression	Accuracy Average	 Duration	in	S

Figure 3.16: v-v anatomy running time over number of partitions

77

In Figure 3.15 and Figure 3.16, we investigate the effect of partitioning over utility. In

both figures, horizontal axis denotes the number of clusters and vertical axis denotes the

average utility and right vertical axis denotes the average duration in seconds. For both t-t

anatomy and v-v anatomy, one can improve the running time of the anatomization process

by increasing the number of partitions. Normally the size of the clusters decreases as the

number of partitions increases. Hence the speedup is based on comparing less number of

trees in the same cluster. For instance, increasing the number of partitions up to 5 results

in reduction of running time to one third of using a single partition. This incurs only a %3

loss of utility which a good trade-off between utility and efficiency. One may prefer this

method for a rapid preview or when the efficiency is a concern as in streaming databases.

78

Chapter 4

Conclusions

In this thesis we addressed the problem of privacy in hierarchical data publishing. We dis-

cussed how popular privacy notions such as k-anonymity, `-diversity, as well as other new

standards can be applied to hierarchical data with generalization and anatomy techniques.

In Chapter 2 we designed an algorithm that produces `-diverse generalizations of collec-

tions of hierarchical data records. Even though we use the LM metric in Chapter 2, our

approach is suitable for other monotonic cost metrics. For example, one can use a metric

that penalizes certain levels in the hierarchical schema more than others (e.g., to apply

more emphasis on courses than evaluations). Other domain-specific heuristics can also be

employed. To fight sparsity of high-dimensional data and provide flexibility, our solution

uses local recoding. We also address negative knowledge as well as positive knowledge:

For every piece of information an adversary has (e.g., student has taken course X and/or

has not taken course Y), there are at least ` records in the anonymized output that fit this

description. Therefore, the adversary’s confidence regarding a particular sensitive value

of his victim is always bounded by 1/`.

There are also certain limitations of our approach in Chapter 2. For example, if all

records in an equivalence class contain the letter grade A for different courses, an ad-

versary may learn with probability > 1/` that his victim has received an A from some

course, even though he cannot be certain which course it was. In certain cases such dis-

closures might be unacceptable, e.g., adversary learns that his victim has AIDS from

79

an anonymized medical data set. To aid in this problem, in Chapter 3 we presented

new standard called (p,m)-privacy which bounds the probability of being linked to more

than m occurrences of any sensitive values by p, through defining discriminatory rules

for different sensitive values. Instead of utility-expensive generalizations, we enforced

(p,m)-privacy with anatomization which de-associates QIs and SAs to increase utility in

shared databases. We have proposed two different types of de-association (publishing

techniques), t-t anatomy and v-v anatomy, each of which is better suited in a different

scenario. Both proposed techniques ensure `-diversity and (p,m)-privacy.

4.1 Future Work

Anonymization and anatomization techniques are extensively studied in the literature.

Current techniques are mostly developed for tabular data. We believe that hierarchical

data is also as important as tabular data. With growing number of devices and combining

various sources of information available, near future will witness more hierarchical data

sets than ever, which will bring the challenge of privacy preserving data transformation

of hierarchical data for data owners.

This thesis brings a novel solution to this problem. We can discuss several direc-

tions as future work. Since our anonymization and anatomization strategy does not allow

noise in the output. One could try to see whether data utility can be improved by adding

noise and counterfeits like differential privacy [54], which relies on noise addition. This

question may yield alternative techniques for reaching higher data utility. Also one may

improve the current partitioning technique by altering the introduced partitioning scheme

(i.e. introducing new partitioning strategies). Moreover one may also come up with new

publishing methods other than t-t and v-v anatomy which should be investigated in future.

In addition in Chapter 3 our proposed techniques results in exactly ` number of trees

in a group. One may try to add more than ` trees in a group, as it’s perfectly okay to have

more than ` trees in group as long as (p,m)-privacy and/or `-diversity are satisfied.

Furthermore there are numerous tools and engines that process hierarchical data. In

80

particular, XML streams and query engines are widely used in today’s world. An inter-

esting area of research is how our definitions of privacy can be applied in these contexts

(e.g., XML data streams) [55].

Finally, hierarchical data anonymization and anatomization is open to develop further

techniques to work for different privacy definitions and expectations.

81

Bibliography

[1] US Congress, Sponsor: Sen. Brian Schatz , “S.2852, open government data act,”

2016.

[2] US Department of Health and Human Services, National Institutes of Health , “Nih

data sharing policy and implementation guidance,” 2016.

[3] Council of European Union, “Directive 95/46/ec protection of individuals with re-

gard to the processing of personal data on the free movement of such data, oj l 281,

23/11/95, pp 31-50,” 1995.

[4] US Department of Health and Human Services, Health Information Privacy, “The

hipaa privacy rule,” 2002.

[5] L. Sweeney, “k-anonymity: A model for protecting privacy,” International Journal

of Uncertainty, Fuzziness and Knowledge-Based Systems, vol. 10, no. 05, pp. 557–

570, 2002.

[6] M. E. Nergiz, C. Clifton, and A. E. Nergiz, “Multirelational k-anonymity,” IEEE

Transactions on Knowledge and Data Engineering, vol. 21, no. 8, pp. 1104–1117,

2009.

[7] X. Yang and C. Li, “Secure xml publishing without information leakage in the pres-

ence of data inference,” in Proceedings of the 30th International Conference on Very

Large Data Bases (VLDB 2004), pp. 96–107, VLDB Endowment, 2004.

82

[8] A. H. Landberg, K. Nguyen, E. Pardede, and J. W. Rahayu, “�-dependency for

privacy-preserving xml data publishing,” Journal of Biomedical Informatics, vol. 50,

pp. 77–94, 2014.

[9] O. Gkountouna and M. Terrovitis, “Anonymizing collections of tree-structured

data,” IEEE Transactions on Knowledge and Data Engineering, vol. 27, no. 8, 2015.

[10] S. D. Warren and L. D. Brandeis, “The right to privacy,” Harvard Law Review, vol. 4,

no. 5, pp. 193–220, 1890.

[11] C. E. Shannon, “A mathematical theory of communication,” Bell System Technical

Journal, vol. 27, no. 3, pp. 379–423, 1948.

[12] A. Machanavajjhala, D. Kifer, J. Gehrke, and M. Venkitasubramaniam, “l-diversity:

Privacy beyond k-anonymity,” ACM Transactions on Knowledge Discovery from

Data (TKDD), vol. 1, no. 1, p. 3, 2007.

[13] T. M. Truta and B. Vinay, “Privacy protection: p-sensitive k-anonymity property,”

in Proceedings of the 22nd International Conference on Data Engineering (ICDE

2006) Workshops, p. 94, IEEE, 2006.

[14] P. Samarati and L. Sweeney, “Protecting privacy when disclosing information: k-

anonymity and its enforcement through generalization and suppression,” tech. rep.,

SRI International, 1998.

[15] K. LeFevre, D. J. DeWitt, and R. Ramakrishnan, “Mondrian multidimensional k-

anonymity,” in Proceedings of the 22nd International Conference on Data Engi-

neering (ICDE 2006), pp. 25–25, IEEE, 2006.

[16] A. Meyerson and R. Williams, “On the complexity of optimal k-anonymity,” in Pro-

ceedings of the 23rd ACM Symposium on Principles of Database Systems (PODS

2004), pp. 223–228, ACM, 2004.

83

[17] R. J. Bayardo and R. Agrawal, “Data privacy through optimal k-anonymization,”

in Proceedings of the 21st International Conference on Data Engineering (ICDE

2005), pp. 217–228, IEEE, 2005.

[18] V. S. Iyengar, “Transforming data to satisfy privacy constraints,” in Proceedings of

the 8th ACM International Conference on Knowledge Discovery and Data Mining

(SIGKDD 2002), pp. 279–288, ACM, 2002.

[19] K. LeFevre, D. J. DeWitt, and R. Ramakrishnan, “Incognito: Efficient full-domain

k-anonymity,” in Proceedings of the 24th ACM International Conference on Man-

agement of Data (SIGMOD 2005), pp. 49–60, ACM, 2005.

[20] M. E. Nergiz, A. Tamersoy, and Y. Saygin, “Instant anonymization,” ACM Transac-

tions on Database Systems, vol. 36, no. 1, p. 2, 2011.

[21] L. Sweeney, “Achieving k-anonymity privacy protection using generalization and

suppression,” International Journal of Uncertainty, Fuzziness and Knowledge-

Based Systems, vol. 10, no. 05, pp. 571–588, 2002.

[22] B. Fung, K. Wang, R. Chen, and P. S. Yu, “Privacy-preserving data publishing: A

survey of recent developments,” ACM Computing Surveys (CSUR), vol. 42, no. 4,

p. 14, 2010.

[23] X. Xiao, K. Yi, and Y. Tao, “The hardness and approximation algorithms for

l-diversity,” in Proceedings of the 13th International Conference on Extending

Database Technology (EDBT 2010), pp. 135–146, ACM, 2010.

[24] J. Liu and K. Wang, “On optimal anonymization for l+-diversity,” in Proceedings of

the 26th International Conference on Data Engineering (ICDE 2010), pp. 213–224,

IEEE, 2010.

[25] J. Cheng, A. W.-C. Fu, and J. Liu, “K-isomorphism: privacy preserving network

publication against structural attacks,” in Proceedings of the 29th ACM International

Conference on Management of Data (SIGMOD 2010), pp. 459–470, ACM, 2010.

84

[26] K. Liu and E. Terzi, “Towards identity anonymization on graphs,” in Proceedings of

the 27th ACM International Conference on Management of Data (SIGMOD 2008),

pp. 93–106, ACM, 2008.

[27] E. Zheleva and L. Getoor, “Preserving the privacy of sensitive relationships in graph

data,” in Proceedings of the 2nd International Workshop on Privacy, Security and

Trust in KDD (PinKDD 2008), pp. 153–171, Springer, 2008.

[28] B. Zhou, J. Pei, and W. Luk, “A brief survey on anonymization techniques for pri-

vacy preserving publishing of social network data,” ACM SIGKDD Explorations

Newsletter, vol. 10, no. 2, pp. 12–22, 2008.

[29] G. Ghinita, P. Kalnis, and Y. Tao, “Anonymous publication of sensitive transac-

tional data,” IEEE Transactions on Knowledge and Data Engineering, vol. 23, no. 2,

pp. 161–174, 2011.

[30] Y. He and J. F. Naughton, “Anonymization of set-valued data via top-down, local

generalization,” Proceedings of the VLDB Endowment, vol. 2, no. 1, pp. 934–945,

2009.

[31] M. Terrovitis, N. Mamoulis, and P. Kalnis, “Privacy-preserving anonymization of

set-valued data,” Proceedings of the VLDB Endowment, vol. 1, no. 1, pp. 115–125,

2008.

[32] M. Terrovitis, N. Mamoulis, and P. Kalnis, “Local and global recoding methods for

anonymizing set-valued data,” The VLDB Journal, vol. 20, no. 1, pp. 83–106, 2011.

[33] A. E. Cicek, M. E. Nergiz, and Y. Saygin, “Ensuring location diversity in privacy-

preserving spatio-temporal data publishing,” The VLDB Journal, vol. 23, no. 4,

pp. 609–625, 2014.

[34] M. E. Nergiz, M. Atzori, and Y. Saygin, “Towards trajectory anonymization: a

generalization-based approach,” in Proceedings of the 2008 ACM SIGSPATIAL In-

85

ternational Workshop on Security and Privacy in GIS and LBS, pp. 52–61, ACM,

2008.

[35] M. Terrovitis and N. Mamoulis, “Privacy preservation in the publication of trajecto-

ries,” in Proceedings of the 9th International Conference on Mobile Data Manage-

ment (MDM 2008), pp. 65–72, IEEE, 2008.

[36] A. H. Landberg, J. W. Rahayu, and E. Pardede, “n-dependency: dependency diver-

sity in anatomised microdata tables,” Logic Journal of IGPL, vol. 19, no. 5, pp. 679–

702, 2011.

[37] N. Li, T. Li, and S. Venkatasubramanian, “t-closeness: Privacy beyond k-anonymity

and l-diversity,” in Proceedings of the 23rd International Conference on Data Engi-

neering (ICDE 2007), pp. 106–115, IEEE, 2007.

[38] E. Bertino, S. Castano, E. Ferrari, and M. Mesiti, “Specifying and enforcing access

control policies for xml document sources,” World Wide Web, vol. 3, no. 3, pp. 139–

151, 2000.

[39] E. Damiani, S. De Capitani di Vimercati, S. Paraboschi, and P. Samarati, “A fine-

grained access control system for xml documents,” ACM Transactions on Informa-

tion and System Security (TISSEC), vol. 5, no. 2, pp. 169–202, 2002.

[40] I. Fundulaki and M. Marx, “Specifying access control policies for xml documents

with xpath,” in Proceedings of the 9th ACM Symposium on Access Control Models

and Technologies, pp. 61–69, ACM, 2004.

[41] X. Xiao and Y. Tao, “Anatomy: Simple and effective privacy preservation,” in Pro-

ceedings of the 32nd International Conference on Very Large Data Bases (VLDB

2006), pp. 139–150, VLDB Endowment, 2006.

[42] J. Han, M. Kamber, and J. Pei, Data mining: concepts and techniques. Elsevier,

2011.

86

[43] L. Sweeney, “Uniqueness of simple demographics in the us population,” tech. rep.,

Carnegie Mellon University, 2000.

[44] E. Bertino, D. Lin, and W. Jiang, “A survey of quantification of privacy preserving

data mining algorithms,” in Privacy-preserving data mining, pp. 183–205, Springer,

2008.

[45] X. Xiao and Y. Tao, “Personalized privacy preservation,” in Proceedings of the 25th

ACM International Conference on Management of Data (SIGMOD 2006), pp. 229–

240, ACM, 2006.

[46] A. Tamersoy, G. Loukides, M. E. Nergiz, Y. Saygin, and B. Malin, “Anonymiza-

tion of longitudinal electronic medical records,” IEEE Transactions on Information

Technology in Biomedicine, vol. 16, no. 3, pp. 413–423, 2012.

[47] J. Munkres, “Algorithms for the assignment and transportation problems,” Journal

of the Society for Industrial and Applied Mathematics, vol. 5, no. 1, pp. 32–38, 1957.

[48] H. W. Kuhn, “The hungarian method for the assignment problem,” Naval Research

Logistics Quarterly, vol. 2, no. 1-2, pp. 83–97, 1955.

[49] D. W. Pentico, “Assignment problems: A golden anniversary survey,” European

Journal of Operational Research, vol. 176, no. 2, pp. 774–793, 2007.

[50] B. Welford, “Note on a method for calculating corrected sums of squares and prod-

ucts,” Technometrics, vol. 4, no. 3, pp. 419–420, 1962.

[51] D. J. MacKay, Information theory, inference and learning algorithms. Cambridge

university press, 2003.

[52] I. Ozalp, M. E. Gursoy, M. E. Nergiz, and Y. Saygin, “Privacy-preserving publishing

of hierarchical data,” ACM Trans. Priv. Secur., vol. 19, pp. 7:1–7:29, Sept. 2016.

[53] M. E. Gursoy, A. Inan, M. E. Nergiz, and Y. Saygin, “Privacy-preserving learning

analytics: Challenges and techniques,” IEEE Transactions on Learning Technolo-

gies, vol. 10, no. 1, pp. 68–81, 2017.

87

[54] C. Dwork, “Differential privacy: A survey of results,” in Theory and applications of

models of computation, pp. 1–19, Springer, 2008.

[55] B. Zhou, Y. Han, J. Pei, B. Jiang, Y. Tao, and Y. Jia, “Continuous privacy preserving

publishing of data streams,” in Proceedings of the 12th International Conference on

Extending Database Technology (EDBT 2009), pp. 648–659, ACM, 2009.

88

	Acknowledgments
	Abstract
	Özet
	Introduction
	Motivation
	Related Work
	Preliminary
	–diversity vs. –anonymity in Hierarchical Data
	–diversity in Tabular vs. Hierarchical Data
	Anonymizing Relations Separately
	Constructing and Anonymizing a Universal Relation
	Problem Definition

	Privacy Preserving Generalization of Hierarchical Data
	Overview
	Generalization of Hierarchical Data
	Anonymization Algorithm
	Pairwise Anonymization
	Finding a Good Mapping
	–diverse Clustering
	Complexity Analysis
	Proofs of Correctness

	Experiments

	Privacy Preserving Anatomization of Hierarchical Data
	Overview
	Anatomization of Hierarchical Data
	Anatomization Techniques
	t-t Anatomy
	v-v Anatomy

	Anatomization Algorithms for Hierarchical Data
	Experiments

	Conclusions
	Future Work

