
i

ACCELERATING LOCAL SEARCH ALGORITHMS FOR TRAVELLING

SALESMAN PROBLEM USING GPU EFFECTIVELY

by

GİZEM ERMİŞ

Submitted to the Graduate School of Engineering and Natural Sciences

in partial fulfillment of

the requirements for the degree of

Master of Science

Sabancı University

July 2015

ii

iii

© Gizem ERMİŞ 2015

All Rights Reserved

iv

TABLE OF CONTENTS

1 INTRODUCTION ... 1

2 LITERATURE REVIEW ... 6

3 ARCHITECTURE .. 8

3.1 DEVICE MEMORIES AND DATA TRANSFER ... 15

3.2 THREAD SCHEDULING AND LATENCY TOLERANCE 17

3.3 MEMORY MODEL AND LOCALITY .. 24

4 EXPERIMENTAL DESIGN .. 28

4.1 PARALLELIZATION STRATEGY FOR 2-OPT ALGORITHM ON TSP 32

4.2 EXPERIMENTAL RESULTS.. 39

4.2.1 Experiment 1-500 cities ... 41

4.2.2 Experiment 2-1000 Cities .. 46

4.2.3 Experiment 3-1500 Cities .. 48

4.2.4 Experiment 4-2000 Cities .. 50

4.3 SEQUENTIAL VS. PARALLEL 2-OPT PERFORMANCE 51

4.4 ALGORITHM MODIFICATION TO SOLVE LARGE SIZED TRAVELLING

SALESMAN PROBLEMS .. 52

4.4.1 First Step: Decreasing Shared Memory Usage for Each City 52

4.4.2 Second Step: Dividing Problem into Sub Problems 54

4.5 2-OPT ALGORITHM WITH INITIAL SOLUTION .. 60

4.6 3-OPT ALGORITHM ... 61

5 CONCLUSION AND FUTURE RESEARCH .. 65

APPENDICES ... 67

BIBLIOGRAPHY ... 75

Appendix A: 2-Opt Algorithm Results for Different Kinds of Resource Allocations....67

Appendix B: Results for 2-Opt Large Sized Data and 3-opt Algorithms………………71

Appendix C: CUDA Code……………………………………………………...………72

v

LIST OF FIGURES

Figure 1.1 A basic block diagram of a generic multi-core processor 3

Figure 3.1 The architectural difference between CPU and GPU 9

Figure 3.2 Pipelining ... 10

Figure 3.3 The thread hierarchy in the CUDA programming model 12

Figure 3.4 The indexes produced by kernel depending on the number of blocks

launched in the grid and the number of threads launched in the block 13

Figure 3.5 Overview of CUDA device memory model (Kirk and Hwu, 2013) 16

Figure 3.6 The grid of threads produced because of the kernel launch (Hwu, 2013) 17

Figure 3.7 Warp scheduling (Cooper, 2011) .. 19

Figure 3.8 Streaming multiprocessor structure of the GPU device (Nvidia, 2012) 22

Figure 3.9 Thread level parallelism (Volkov, 2010) .. 23

Figure 3.10 Iteration level parallelism (Volkov, 2010) .. 23

Figure 4.1 2-opt step on a travelling salesman tour .. 29

Figure 4.2 Sequential 2-opt algorithm .. 31

Figure 4.3 Assigning thread indices via buit-in variables .. 34

Figure 4.4 Assigning jobs to specified threads ... 34

Figure 4.5 Device function to calculate the distances between cities 37

Figure 4.6 Inputs of occupancy calculator for problem with 500 nodes 44

Figure 4.7 Output of occupancy calculator for problem with 500 nodes 44

Figure 4.8 The effect of block size on occupancy .. 45

Figure 4.9 The effect of shared memory usage on occupancy 45

Figure 4.10 The impact of block size on occupancy for the problem with 1000 nodes . 47

Figure 4.11 The effect of block size on occupancy in the problem with 1500 cities 48

Figure 4.12 The effect of block size on occupancy in the problem with 2000 cities 50

Figure 4.13 Storing the coordinates in the tour order ... 53

Figure 4.14 The modifications in the kernel code for big sized problems 53

Figure 4.15 Modification of the distance function for divided coordinates 57

Figure 4.16 Additional code in the host code to divide coordinates 58

Figure 4.17 Modification in kernel code for divided coordinates 59

Figure 4.18 3-opt exchange .. 61

file:///D:/Users/SUUSER/Desktop/ens555/düzeltme_tez/GizemERMİŞ_Thesis.docx%23_Toc426906970

vi

LIST OF TABLES

Table 3.1 Relationship between the indices, thread id, block id and block dimension .. 14

Table 3.2 CUDA functions and their behaviors ... 17

Table 3.3 The features of a GPU device with compute capability 3.0 19

Table 3.4 Utilizing all possible warps in the streaming multiprocessor 21

Table 3.5 Features of CUDA variables ... 25

Table 4.1 Initial tour order in Example 4.1 ... 29

Table 4.2 All possible edge exchanges for a TSP tour with 10 nodes 30

Table 4.3 Required indexes that will be produced by built-in variables in kernel 31

Table 4.4 Assigning jobs to threads .. 33

Table 4.5 Calculating the job ids using built-in variables and iterations 35

Table 4.6 Thread-level and iteration-level parallelism ... 38

Table 4.7 Predicted best kernel launches vs. observed best kernel launches for TSP with

500 cities .. 41

Table 4.8 Restrictions of shared memory and registers .. 42

Table 4.9 Predicted best kernel launches vs. observed best kernel launches for TSP with

1000 cities .. 46

Table 4.10 Occupancy information for the problem with 1000 nodes 47

Table 4.11 Occupancy information of the problem with 1500 cities 49

Table 4.12 Predicted best kernel launches vs. observed best kernel launches for TSP

with 1500 cities .. 50

Table 4.13 Occupancy information of the problem with 2000 cities 51

Table 4.14 Predicted best kernel launches vs. observed best kernel launches for TSP

with 2000 cities .. 51

Table 4.15 Comparing sequential and parallel 2-OPT algorithm performances 52

Table 4.16 Division scheme of coordinates for the problem with 9000 cities 54

Table 4.17 Division scheme of coordinates for the problem in Example 4.1 55

Table 4.18 Calculated edge exchange effects depending on the coordinate ranges sent to

kernel (see Example 3.1) ... 56

Table 4.19 Calculation of sequential processes for several sized problems 57

Table 4.20 Predicted best kernel launches vs. observed best kernel launches for TSP

with 6000 and 15000 cities .. 60

vii

Table 4.21 Algorithm performances with a naive initial solution vs. with a good initial

solution .. 61

Table 4.22 Possible edge exchanges for 3-opt .. 62

Table 4.23 Some problematic ids stem from the unrevised formula 63

Table 4.24 Results after fixing formula of “i” .. 64

Table A-1 2-opt performance for a TSP tour with 500 cities ... 67

Table A-2 2-opt performance for a TSP tour with 1000 cities 68

Table A-3 2-opt performance for a TSP tour with 1500 cities 69

Table A-4 2-opt performance for a TSP tour with 2000 cities 70

Table B-1 Best 2-Opt Results for Large-Sized Data .. 71

Table B-2 3-Opt Results for Different Sized Data ... 71

viii

ABSTRACT

 “ACCELERATING LOCAL SEARCH ALGORITHMS FOR TRAVELLING

SALESMAN PROBLEM USING GPU EFFECTIVELY”

GİZEM ERMİŞ

M.Sc. ‘Thesis’, July 2015

Prof. Dr. BÜLENT ÇATAY

Keywords: GPU computing, parallelization, optimization, GPU architecture, TSP

The main purpose of this study is to demonstrate the advantages of the GPU usage to

solve computationally hard optimization problems. Thus, to solve the Travelling

Salesman Problem, 2-opt and 3-opt methods were implemented in parallel. These search

techniques compare every possible valid combination of the certain exchange system. It

means that large numbers of calculations and comparisons are required. Through the

parallelization of these methods via the GPU, performance has increased remarkably

compared to performance in the CPU. Because of the distinctive manner of work and

the complicated memory structure of GPU, implementations can be tough. Imprecise

usage of GPU causes considerable decrease in the performance of the algorithm.

Therefore, in addition to comparisons between GPU and CPU performances, the effect

of GPU resource allocations on the GPU performance was examined. Allocating

resources in different ways, several experiments on various sized travelling salesman

problems were tested. According to the experiments, a technique was specified to utilize

GPU resources ideally. Although GPU devices evolve day to day, some resources of

them have still quite restricted capacity. For this reason, when it came to large scale

problems, a special on-chip memory of the GPU device remained incapable. In order to

overcome this issue, some helpful approaches were proposed. Basically, the problem

was divided into parts. Parallelism was applied to each part separately. To sum up, the

aim of this research is to give some useful insights about effective GPU usage and

making researchers in the optimization area familiar with it.

ix

ÖZET

 “GRAFİK İŞLEMCİ BİRİMİNİN ETKİN KULLANIMIYLA GEZGİN SATICI

PROBLEMİ İÇİN YEREL ARAMA ALGORİTMALARININ HIZLANDIRILMASI”

GİZEM ERMİŞ

Yüksek Lisans Tezi, Temmuz 2015

Prof. Dr. BÜLENT ÇATAY

Anahtar sözcükler: Grafik İşlemci Birimi ile programlama, paralleştirme,

optimizasyon, Grafik İşlemci Birimi mimarisi , gezgin satıcı problemi

Çalışmanın temel amacı NP-zor optimizasyon problemlerini çözmede Grafik İşlemci

Birimi kullanımının avantajlarını göstermektir. Bu nedenle, gezgin satıcı problemini

çözmek üzere 2-opt ve 3-opt yöntemleri paralel olarak uygulanmıştır. Yöntemler belirli

bir değişim sisteminin tüm geçerli kombinasyonlarını karşılaştırmaktadır. Bunun anlamı

çok fazla sayıda hesaplama ve karşılaştırma işlemine ihtiyaç duyacak olmalarıdır. Bu

yöntemlerin Grafik İşlemci Birimi aracılığıyla paralelleştirilmesiyle, Merkezi İşlemci

Biriminin performansıyla karşılaştırıldığında performans önemli ölçüde artmıştır.

Grafik İşlemci Biriminin kendine özgü çalışma tarzı ve karmaşık mimari yapısı

nedeniyle, uygulamalar zorlu olabilmektedir. Grafik İşlemci Biriminin özensiz

kullanımı algoritmanın performansında kayda değer bir azalışa yol açabilir. Bu nedenle,

Grafik ve Merkezi İşlemci Birimi performanslarının karşılaştırmalarına ek olarak,

Grafik İşlemci Biriminin kaynak tahsisinin işlemci performansındaki etkisi de

incelenmiştir. Kaynaklar farklı yollarla paylaştırılarak, çeşitli büyüklükteki gezgin satıcı

problemleri üzerinde birtakım deneyler test edilmiştir. Deneylere göre Grafik İşlemci

Birimi kaynaklarını ideal olarak paylaştırmak için bir yöntem belirlenmiştir. Grafik

İşlemci Birimleri günden güne evrilmesine rağmen, bazı kaynakları hala oldukça sınırlı

kapasiteye sahiptir. Bu sebeple, uygulama sırasında söz konusu büyük boyutlu

problemler olduğunda, Grafik İşlemci üzerindeki özel bir bellek yetersiz kalmıştır.

Sorunun üstesinden gelmek için, bazı yararlı yaklaşımlar önerilmiştir. Temel olarak,

problem parçalara ayrılmıştır. Paralelleştirme işlemi her parçaya ayrı ayrı uygulanmıştır.

Özetleyecek olursak, bu araştırmanın amacı Grafik İşlemci Biriminin etkin kullanımıyla

ilgili faydalı bilgiler vermek ve optimizasyon alanındaki araştırmacıların bu konuya

aşina olmalarını sağlamaktır.

x

<< To my irreplaceable family >>

xi

ACKNOWLEDGMENTS

I would like to express my sincere gratitude to my advisor Prof. Dr. Bülent

Çatay for the continuous support of my research. I have many reasons to appreciate

him. In addition to his encouragements to begin this study, during the research he gave

me inspirational ideas and shared his immense knowledge with me. His guidance was

admirable and I could not have imagined having a better advisor and mentor for my

master study.

Besides my advisor, I would like to thank the rest of my thesis committee Asst.

Prof. Dr. Kamer Kaya and Asst. Prof. Dr. Gürkan Öztürk for their insightful comments,

encouragement and valuable feedback.

As my precious family never left me alone in my hardest times, they also

strongly supported me through my research. I feel quite lucky to have such supportive,

helpful and lovely family members. I never can thank them enough.

I am also grateful to my special friends in the IE lab. Murat, Sonia, Ece, Bahar,

Başak, Burcu, Özgün, Ameer, İhsan, Menekşe and Yağmur. They kept me motivated all

the time. Moreover I appreciate to my true friends Tuba, Esra, Çağrı and Hatice for their

endless support, friendship and motivation.

1

1 INTRODUCTION

Optimization problems have maintained their importance in many areas such as industry

and the public sector. Efficiency is as much critical factor as solution quality when an

optimization algorithm is written. Algorithms of optimization methods such as 2-opt or

3-opt are computationally difficult when they are solved via a CPU. A qualified

parallelism can accelerate these kinds of algorithms considerably. While restricted

parallelism can be managed via central processing units (CPUs), the modern graphical

processing units (GPUs) can provide much more parallelism through their highly

parallel structure. Thus they can considerably reduce the execution time of algorithms

by performing a wide range of calculations at the same time, in other words in a parallel

manner.

In the hardware structure of a computer, the task of reading and executing program

instructions belongs to a processor which is a chip in computers. These instructions

notify the processor what to do such as reading data from memory or sending data to an

output bus. CPU is a common type of processor (Prinslow and Jain, 2011). The

processor core or briefly “core” is an individual processor and a modern processor can

have multi or many cores.

Modern GPUs are many-core processors that are specifically designed to perform data-

parallel computation. Data parallelism means that each processor performs the same

task on different pieces of distributed data (Brodtkorb et al., 2013). This data parallel

framework of GPUs is referred to as “single instruction multiple data (SIMD).

 Before the evolution of nowadays’ advance GPUs, traditional, single-core processors

were exploited. A single core processor could provide only concurrency through the

“multithreading”, but no parallelism. Multithreading handles the concurrent execution

of different parts of the same program and each of these parts referred to as thread.

However, it is not possible to execute different tasks or programs in a parallel way via

2

one single-core processor. There is a crucial fundamental difference between

concurrency and parallelism. “In a multithreaded process on a single processor, the

processor can switch execution resources between threads, resulting in concurrent

execution.” It means that although single-core processors can normally execute one

thread at a time, via multithreading the processor can switch between threads, which is

that while one of the threads in the program was waiting another thread can execute,

giving the impression that threads are running concurrently. “In the same multithreaded

process in a multiprocessor environment, each thread in the process can run on a

separate processor at the same time, resulting in parallel execution (Oracle, 2010).”

Computationally hard tasks such as solution of optimization problems were taking a

great deal of time when they were solved by the help of single-core processors. Faster

and faster single-core processors were developed by computer industry, but they were

still insufficient for peak performances. Because it was difficult to accelerate individual

processors/cores further but possible to provide more processing power by putting more

cores onto a single chip/processor, around the year 2000, by fitting more cores in the

same chip, single-core processors evolved to multi-core processors (Figure 1.1), which

work together to process instructions and thus have higher total theoretical performance

(Brodtkorb et al., 2013) (Oxford). Multi-core processors, which have two or more

independent processors, achieved greater performance through parallelism rather than

shortening the completion period of an operation via higher clock speed, in other words

accelerating individual processors. These multi-core CPUs were efficient at task parallel

implementations. Consequently the sequential software started to lose its prestige and

via multiple CPU cores task parallel implementations were applied to computationally

hard tasks.

3

Figure 0.1 A basic block diagram of a generic multi-core processor

After some time, because of gaming industry needs, GPUs which actually were the

normal component in common PCs, developed quickly in terms of computational

performance. Multi-core GPU processors evolved to massive multi-core or many-core

processors which work as massively parallel stream processing accelerators or data

parallel accelerators. Because of the rapid advances of GPUs, they became common as

accelerators in general purpose programming. Although both multi-core CPUs and

GPUs can implement parallel algorithms, the architectural differences between CPUs

and GPUs created different usage areas for them depending upon the nature of the

problem. While multi-core CPUs are designed for task parallel implementations, many-

core processors are specifically designed for data parallel implementations. Instead of

distributing different tasks amongst individual processors, in data parallel computations

the data is distributed (SIMD). Furthermore, CPU performance is better on latency-

sensitive, partially sequential algorithms. However, GPU performance is better on

latency-tolerant, highly-parallel algorithms (Prinslow et al., 2011). In other words, CPU

aims to minimize the time of a single operation or minimize the latency of a single

operation, although GPU tries to maximize the number of operations in unit of time or

maximize throughput in per unit time. Lastly, compared to CPUs, GPUs have much

more arithmetic logic units, which perform all arithmetic computations and comparison

operations. Thus, via GPUs data parallel, throughput-oriented applications with intense

arithmetic operations can be accelerated on a large scale. More extensive differences

between the GPU and CPU architectures will be elaborated on the architecture part.

4

Nowadays, GPUs have many processors and with the help of these processors GPU

performance can be much better than CPU performance in some specific problems,

especially in computational problems. Of course the increase in the number of

processors created a need for simpler processors than previous ones, which we will

elaborate on the Architecture part. Because of these simpler GPU processors and the

limited structure of GPUs with data-parallel computation, it is difficult to solve an entire

problem via GPUs. Thus, to benefit from GPU, we do not necessarily have to choose a

completely parallelizable problem. It is quite sensible to take advantage of GPU

technology in the convenient part of the solution method and continue to use CPU for

remaining parts. In other words an algorithm starts at the CPU and whenever data

parallelism can be managed the data is sent to the GPU and computations are made in

parallel there. This is called general-purpose computation on GPUs (GPGPU) and also

heterogeneous programming.

In order to observe the advantages of GPU usage in solving computationally expensive

optimization problems, we applied the parallel 2-opt and 3-opt local search methods for

the Travelling Salesman Problem (TSP) which are proposed by Rocki and Suda (2012,

2013). The 2-opt technique depending on the best improvement searches for all the

possible swaps in a route and the aim is finding the swap that will decrease the tour cost

most. The method that we applied is a complete 2-opt local search will compare every

possible valid combination of the swapping mechanism (Wikipedia). This is why these

methods take a great deal of time when the CPU is used unless the data is not too small.

As can be realized, 2-opt and 3-opt methods are quite suitable for adapting to the SIMD

architecture of the GPU. Possible swaps will have different effects on the tour cost and

to calculate these effects the same formula will be used. In this situation, possible swaps

can be thought as multiple data and the formula can be thought as single instruction.

Thus, to calculate the effect of each possible swap, by applying parallelism through the

GPU, we can obtain significantly better results in terms of computation time compared

to that of the CPU. Moreover, it is possible to produce accelerations in GPU algorithm

time by using its memory more efficiently.

The main reason for this research is to provide insights into powerful usage of GPUs,

building efficient techniques, sharing some useful experimental results and sighting the

5

advantages of GPU usage. Furthermore, restrictions of GPUs and strategies to overcome

these restrictions will be mentioned. We aim to encourage researchers who are

interested in optimization problems to benefit from the advantages of GPUs.

6

2 LITERATURE REVIEW

Local search is a fundamental algorithm in optimization problems. This algorithm

generates several candidate solutions in the defined neighborhood to improve the

current solution and then picks the best or an improving one among them. This process

continues until there is no further improvement for the current solution. Because the

evaluation of the neighborhood is quite suitable to be performed in parallel, local search

algorithms can be accelerated for problems with large neighborhood substantially.

Up to now, the researchers performing local searches through GPU generally reported

the speedups in comparison to CPU. During GPU implementations, performance

analysis and improvement of system performance is fairly important to provide

effective utilization of GPU resources. Schulz (2013) accelerated the naive GPU

algorithm using profiling tools and saturating device fully. According to the study of

Schulz, to saturate the GPU a large enough problem instance is required. Schulz

achieved a speedup of almost an order of magnitude compared to the Benchmark

Version. Burke and Riise demonstrated that the evaluation of the entire neighborhood to

discover the best improvement can display better performance than applying the first

improvement.

The first research applying some kind of local search to routing problems via GPU

belongs to Janiak et al. (2008). Janiak presented the implementation of a tabu search

algorithm for TSP and flow shop scheduling problem. After CUDA was introduced,

performing local search methods in GPU became much easier. To solve TSP problem

Luong et al. (2009) used GPU as a coprocessor for extensive computations which is

evaluating each solution from a given 2-exchange (swap) neighborhood in parallel.

Remaining computations were done in CPU.

7

A local search has four main steps which are neighborhood generation, evaluation,

move selection and solution update. The simplest method is to create the neighborhood

on the CPU and transferring it to GPU each time. Luong et al. (2011b) applied this

technique which requests copying of a lot of information from the CPU to the GPU.

Other way is to generate neighborhood in GPU.

To evaluate the neighborhood the common method used is to assign one or several

moves to a thread which is called mapping. Luong et al. (2011b), Burke and Riise

(2012) Coelho et al. (2012), Rocki and Suda (2012), Schulz (2013) utilized an explicit

formula to provide mapping. Luong et al. (2011b) used an algorithm. The mapping

approach, which is done in GPU, removes the need for copying some information from

CPU to GPU.

As neighborhood evaluation is the most computationally expensive task, it was

generally performed on the GPU. However, choosing the best move may not be

performed on the GPU.

Luong et al. (2011b), O’Neil et al. (2011), Coelho et al. (2012), Rocki and Suda(2012),

Schulz (2013)presented some implementation details in order to execute kernel

efficiently. Among them the only one who demonstrated the profiling analysis of these

details is Sculz. Moreover, because of the limited memory of GPU, for large

neighborhoods Schulz proposed an implementation that divides the neighborhood in

parts. More comprehensive review of GPU computing and its application to Vehicle

Routing Problems can be found in the studies of Brodtkorb et al. (2013) and Schulz et

al. (2013).

8

3 ARCHITECTURE

In order to comprehend the possible advantages of GPU usage in certain kinds of

applications, firstly the main differences of GPU and CPU architecture should be

understood.

GPUs and multi-core CPUs are specifically designed to perform different types of

parallel computations. Although the design of CPU is optimized for partially-sequential

code performance, GPU is optimized for highly parallel code execution. CPUs can be

called as latency-oriented devices and GPUs are throughput-oriented devices. Latency

is the amount of time to complete a task which is measured in units of time, like

seconds. Throughput is tasks completed per unit time and it is measured in units as stuff

per time, like jobs completed per hour. While CPU aims to minimize latency, GPU tries

to maximize throughput.

The main components of a regular processor are arithmetic logic units (ALU), control

unit, cache and DRAM. The main difference between GPUs and CPUs is that GPUs

devote proportionally more transistors to arithmetic logic units (ALU) and less to

caches and flow control in comparison to CPUs. As mentioned in the introduction, all

arithmetic computations such as multiplication, addition and also comparison operations

are performed by ALUs. GPUs also typically have higher memory bandwidth compared

to CPUs (Oxford).

As seen in the Figure 3.1, CPUs have larger local cache than GPUs. Cache memory is

random access memory (RAM) that a computer microprocessor can access more

quickly than it can access regular RAM and it reduces the instruction and data access

latencies of large complex applications. Moreover CPUs have more sophisticated

control logic in contrast to GPUs. These control logic provides to reduce arithmetic

calculation latency and memory access latency.

9

Figure 0.2 The architectural difference between CPU and GPU

(Kirk and Hwu, 2013)

Control logic and cache memories do not help to reach the peak calculation speed

because large cache memory and sophisticated control logic consume chip area and

power considerably. By using smaller cache and simpler control logic it is possible to

have more arithmetic execution units and memory access channels on chip. So the

larger control logic and cache memory in CPUs are disadvantageous with regards to

time performance of the whole algorithm. (Kirk and Hwu, 2013)

GPUs aim to maximize chip area and power budget dedicated to floating point

calculations. Compared to GPUs, CPUs have very powerful arithmetic control units

(ALU) that can generate arithmetic results in very few clock cycles which requires more

energy. The power of the CPU ALUs stems from sophisticated control unit and big

control cache in the CPU architecture. Because ALUs in CPU are quite powerful, they

have extremely short latency for producing floating arithmetic operations. However,

GPUs have great numbers of energy efficient ALUs which have long latency but

heavily pipelined for high throughput. Pipelining helps microprocessor to begin

executing a second instruction before the first one has been completed. (Figure 3.2) It

means that completion of one operation takes more time, but the total time to complete

all operations can be shorter than in that of CPUs if the large number of ALUs (so many

threads) in GPUs can be fully utilized. In other words, in GPU system overall

throughput is improved, even though the execution of each individual thread is

degraded.

10

Figure 0.3 Pipelining

As discussed earlier, CPU hardware reduces the execution latency of each individual

thread by reducing the latency of operations, while GPU has long latency for a single

thread as it uses simpler control logic and smaller cache. In order to tolerate these

latencies, massive numbers of threads are required like GPUs have. Through these

massive numbers of parallel threads in GPU, the total execution throughput is

maximized although individual threads take much longer time than in CPU.

To sum up, the design of GPU saves chip area and power by allowing pipelined

memory channels and arithmetic operations to have long latency. As the power and area

of the cache, control and individual arithmetic logic unit (ALU) were reduced in the

design of GPU, more memory access units and arithmetic units could be used on a chip

and this kind of a design increased the total execution throughput. In the working

system of GPU, as some of the threads should wait for long latency memory access or

arithmetic operations, it is more advantageous to use large number of parallel threads to

compensate the waiting time. Otherwise GPU usage can be meaningless. In GPU

architecture a small cache memory is provided for each set of multiple threads that

access the same memory data. In this way, instead of going to DRAM these multiple

threads can go the cache, which takes much shorter time (Kirk and Hwu, 2013).

As mentioned earlier, CPUs minimize the execution latency of a single thread while

GPUs maximize execution throughput of all threads. So it can be said that CPU and

GPU have different advantages. By using CPUs for sequential parts of the algorithm

where latency matters and GPUs for parallel parts where throughput wins, the optimal

algorithms can be achieved. This way of programming is called as heterogeneous

programming. In our research, accelerated 2-opt and 3-opt algorithms were investigated

which were written by utilizing heterogeneous programming. CUDA C language which

supports the heterogeneous programming was used. CUDA C is very similar to regular

11

C language, additionally it has a kernel function which exploits parallelism and some

additional functions that provide kernel launch and communication between CPU and

GPU.

A CUDA program has two main components. First one is host code which runs locally

on CPU and second one is GPU kernel code which is a GPU function that runs on GPU

device. A heterogeneous code starts on a CPU host and when parallelization is needed

the host code invokes a GPU kernel on a GPU device (Cornell Workshop, 2015).

As seen in the Figure 3.3, kernels have a grid structure which has lots of thread blocks

and these thread blocks have lots of threads which exploit parallelism. Through these

threads, different parts of the data can be processed independently of each other as

parallel. After kernel finishes its execution, the CPU continues to execute the original

program. In order to use GPU, firstly a device should be initialized and GPU memory

should be allocated in host code. Then the data that will be made parallel should be

transferred to the device from the host and kernel should be invoked. Invoking kernel is

like calling a function. Differently from C, the kernel functions take configuration

parameters or arguments (Hwu, 2015). These configuration parameters consecutively

represent number of blocks in the grid and number of threads in a block. After kernel

finishes its parallel processes, the result should be transferred from device to host if it is

needed.

Each thread in GPU can be thought as a virtualized Von-Neumann processor. Thus,

every CUDA thread can execute a program. As mentioned before, the GPU memory has

lots of threads, in other words lots of processors and the kernel function is executed by

them. Because of the SIMD structure of GPU, all threads in a grid run the same kernel

code. To specify memory addresses and make control decisions, each thread has its own

indexes, in other words each thread has a unique thread ID. These indices are used by

threads in order to decide what data to work on (Hwu, 2015). The threads and blocks

have a 3-dimensional structure to ease parallelism of some specific problems. It

simplifies memory addressing when processing multidimensional data (Hwu, 2015).

However it is not an obligation to use all the dimensions. While applying two

12

dimensions is a betterway in a matrix multiplication, in our study utilizing only one

dimension is more appropriate.

Figure 0.4 The thread hierarchy in the CUDA programming model

 (Virginia Tech)

In order to access the indexes of threads, CUDA has specific predefined variables such

as “threadIdx.x”, “blockIdx.x”, “blockDim.x”, gridDim.x”, which represent “x”

dimension. As we will utilize only one dimension in our problem, we will not

emphasise “y” and “z” dimensions. If the number of threads in a block is represented by

“n”, which refers to as “block dimension (blockDim.x)”, each thread will have different

indexes from “0” up to and including “n-1” in that block. In other words, starting from 0

“threadIdx.x” counts the threads in a block one by one. Through “threadIdx.x” these

indexes can be assigned to a variable in the device. “blockDim.x” takes the size of a

block which is the number of threads in a block. Like threadIdx.x”, “blockIdx.x” counts

the number of blocks in the grid one by one, in a sense it gets the indexes of blocks

from 0 up to the specified number of blocks in a grid. Lastly “gridDim.x” represents the

size of a grid, in other words number of blocks in a grid.

13

Figure 0.5 The indexes produced by kernel depending on the number of blocks

launched in the grid and the number of threads launched in the block

Let’s assume that there are N threads in a block and M blocks in the grid. (Figure 3.4)

In this situation every thread has a thread index and also a block index which are

specified by “threadIdx.x” and “blockIdx.x” consecutively. These are predefined

CUDA variables that can be used in a kernel and they actually are initialized by the

hardware for each thread like below (Hwu, 2013):

threadIdx.x = 0,1,2,3,4............(N-1)

blockDim.x = N

blockIdx.x = 0,1,2,3,4..........(M-1)

“blockDim.x” helps to factor in both the thread index and the block index. In order to

obtain all the thread indexes, the block index (blockIdx.x) should be multiplied by the

block dimension (blockDim.x) and added to the thread index (threadIdx.x) such as

“blockDim.x*blockIdx.x+threadIdx.x”. Via that formula all the indexes of all the

threads in Figure 3.4 will be initialized by the system like in Table 3.1. Third and forth

columns in this table shows how block ids and thread ids in each block are

automatically initialized when kernel launches M blocks including N threads. Second

column shows the size of a block. Depending on these built-in variables, indexes

specific to each thread in the grid are calculated in the first column.

BLOCK 0 BLOCK 1 BLOCK M-1

0 1 2 N-1 N N+1 N+2 2N-1 N*(M-1) N*(M-1)+1 N*M-1
T

h
re

a
d
 0

T
h
re

a
d
 1

T
h
re

a
d
 2

T
h
re

a
d
 N

-1

T
h
re

a
d
 0

T
h
re

a
d
 1

T
h
re

a
d
 2

T
h
re

a
d
 N

-1

T
h
re

a
d
 0

T
h
re

a
d
 1

T
h
re

a
d
 N

-1

14

Table 0.1 The relationship between the indices, thread id, block id and block dimension

As shown in the Figure 3.4 and in the Table 3.1, from the formula

“blockDim.x*blockIdx.x+threadIdx.x”, thread 0 in block 0 has the index of 0 as the

block index is 0. However thread 0 in block 1 has the index of “N” instead of “0”, as the

block index is 1. Then thread 0 in the next block will have the index of “2N”.

Consequently the index values of the first block will range from “0” up to and including

“N-1” , the index values of the second block will range from “N” up to and including

“2N-1” and the index values of the last block will range from “N*(M-1)” up to and

including “N*M-1”. All the indexes from 0 up to and including N*M-1 can be obtained

in this way, as we have “M” blocks and “N” threads in each block (M*N threads

totally). Threads within a block can cooperate via shared memory, atomic operations

and barrier synchronization although threads within different blocks cannot interact

(Hwu, 2013). This subject will be elaborated later.

indexes
(blockDim.x*blockIdx.x+threadIdx.x)

blockDim.x

blockIdx.x

threadIdx.x

0 N 0 0

1 N 0 1

2 N 0 2

.. N 0 ..

N-1 N 0 N-1

N N 1 0

N+1 N 1 1

N+2 N 1 2

.. N 1 ...

2*N-1 N 1 N-1

...

...

...

N*(M-1) N M-1 0

N*(M-1)+1 N M-1 1

N*(M-1)+2 N M-1 2

.. N M-1 ..

N*M-1 N M-1 N-1

15

Of course there are some restrictions in parallelism because of the GPU design. State of

the art GPU cards allow to use maximum 1024 threads in a block and 231-1 blocks in the

grid.

3.1 Device Memories and Data Transfer

As discussed previously, before the kernel invocation the GPU memory should be

allocated and then the necessary data should be moved from CPU (host memory) into

GPU (device memory) via API (application programming interface) functions so that

the device can be ready to process the data.

API functions are programming interface functions in CUDA host code. In industry

standard programming languages are extended via APIs. In order to help C

programmers to use GPUs in a heterogeneous environment, CUDA designers and

NVIDIA proposed some API functions (Hwu, 2013). These API functions provide the

communication and integration between CPU and GPU. Two main API functions are

“device memory allocation” and “host-device data transfer” functions.

A conceptual understanding of CUDA memories is necessary in order to understand

how API functions work (see Figure 3.5) It is known that device has great numbers of

threads and each of these threads is actually a processor. Therefore each thread has

registers as displayed in Figure 3.5 and these registers hold variables that are private to

the thread (Hwu, 2015). In this figure, global memory is the memory that all threads can

have access. The “device memory allocation” functions are specialized functions that

allocate global memory. On the other hand, “host-device data transfer” functions copy

the data from the host memory to the global memory and from the global memory to the

host memory. These API functions should be defined in the host code.

The specific expression of “device memory allocation” function is “cudaMalloc()”

which allocates object in the device global memory. It has two parameters. The first

parameter specifies the address of a pointer to the allocated object and the second one

shows the size of allocated object as bytes.

16

The second function is called “cudaMemcpy()” which is a “host-device data transfer”

function. “cudaMemcpy()” helps to transfer the data from host memory to device

memory and vice versa. It has four parameters which are consecutively pointer to the

destination, pointer to the source, the size of the data to be copied as bytes and the

direction of the transfer (host to device or device to host).

Figure 0.6 Overview of CUDA device memory model (Kirk and Hwu, 2013)

After device memory allocation and data transferring from host to device, the kernel

function can be invoked. In addition to regular features of C functions, CUDA kernel

functions should be preceded by “__global__” keyword so that compiler can understand

that it is a kernel function. Launching the kernel function differs from calling a

traditional C function. It has special parenthesis syntax of “<<< >>>” between the

name of the function and the parameters of the function. This special parenthesis

includes two configuration parameters for the kernel. The first one is the number of

blocks in the grid and the second one is the number of threads in a block.

During the configuration of the kernel, the important point is determining the number of

required threads according to the solution method. When the kernel is launched in the

host code, the kernel function is called and the hardware produces a grid of threads

according to the configuration parameters like in Figure 3.6.

17

Figure 0.7 The grid of threads produced because of the kernel launch (Hwu, 2013)

As mentioned earlier each thread in the grid has the built in variables blockIdx.x,

blockDim.x and threadIdx.x; these predefined variables allow threads to generate

different data indices so that each thread can process a different part of the data. In

addition to these functions it should be known that from kernel or from other device

functions only the device functions can be called and these functions should be

preceded by “__device__”.

The whole CUDA function types are described in the first column of Table 3.2.The

second and third columns consecutively present the places that these functions are

executed and called from. Host functions are actually functions in CPU. They are called

from the host and also executed in the host. “__global__” defines a kernel function and

kernel function has to return “void”. Although kernel functions are called from the host

they are executed on the device. Lastly, “__device__” defines device function which is

called from the device and executed on the device.

Table 0.2 CUDA functions and their behaviors

 Executed on the: Only callable from the:

__device__float DeviceFunc() device device

__global__ void KernelFunc() device host

__host__ float HostFunc() host host

3.2 Thread Scheduling and Latency Tolerance

Up to now, the basic concepts of GPU and the mechanism of a CUDA program are

discussed. In order to reach peak calculation speeds the resources of GPU should be

utilized carefully, rather than using the advantages of GPU randomly. It should be

18

ensured that hardware execution resources are utilized efficiently. In order to manage

this, number of blocks and number of threads should be specified according to the

structure of the execution resources of GPU, in other words CUDA thread blocks

should be assigned to execution resources efficiently. The capacity constraints of

execution resources should be considered and zero-overhead thread scheduling should

be provided to tolerate the latencies in individual threads (Hwu, 2013).

In order to perform thread scheduling properly, firstly the features of the GPU card

should be investigated. GPU cards maintain to evolve, their qualifications change and

improve in time. Current GPU technology is much better than before and in the future

most probably it will be much better than today.

In our study, one of the best GPU cards which named as Quadro K600 is used and its

compute capability is 3.0. Compute capability shows the general specifications and

features of a compute device (Nvidia, 2015). Table 3.3 presents the features of a device

with compute capability 3.0. The capacity constraints of execution resources depend on

the type of GPU device. As illustrated in table, our device can have maximum 1024

threads in a block and “231-1” blocks in the grid.

As mentioned before, when a kernel is launched CUDA system produces equivalent

grid of threads and assigns them to execution resources. The execution resources in

GPU hardware are organized into streaming multiprocessors (SM) (Kirk and Hwu,

2013). Streaming multiprocessors executes the threads in block granularity. All the

threads in a block are assigned to the same SM. Quadro K600 has a very efficient and

advance multiprocessor, which specifically named as “SMX” (Figure 3.8). SMXs have

also some resource limitations. From Table 3.3 it can be seen that each SMX can have

maximum 16 resident blocks and 2048 resident threads.

When the CUDA system assigns a block to a streaming multiprocessor, this block is

divided into 32 thread units which is called warps. In other words, in CUDA each block

is executed as warps and each warp has 32 parallel threads. Each warp has sequential

indexes, for example the first warp has the indexes from 0 up to 31, the second one has

the indexes from 32 up to 63 etc. In each warp the same instruction is executed. When

19

an instruction in a warp should wait for a result of a previous long-latency operation,

this warp cannot be executed. While this warp stalls, another ready warp is selected to

be executed. (see Figure 3.7) This process of tolerating the latency arising from the

long-latency operations with other group of threads is called latency hiding (Kirk and

Hwu, 2013). Consequently, by providing enough active warps, latency hiding can be

managed as the hardware can find a warp for execution at any time rather than waiting

for the busy warps. The GPU hardware doesn’t waste time while choosing the ready

warps, for this reason it is called zero-overhead thread scheduling. As seen in the Table

3.3, the restriction about warps is that one SMX can have maximum 64 warps. As seen

in the Figure 3.8, one SMX has 4 warp schedulers which allow 4 warps to be executed

parallel.

Utilizing great numbers of warps can be the one way of achieving enough parallelism

and increasing the performance, but not necessarily. This kind of parallelism is called

“thread level parallelism”. Thread level parallelism is assessed by the “occupancy”

which is the number of active warps over the maximum number of active warps

supported on one SM. Thus, increasing the occupancy can provide thread level

parallelism. Maximum number of active warps per multiprocessor is 64 in our device, in

addition to the previous restrictions. By considering these memory restrictions, different

combinations of block and grid dimensions can be exploited to increase occupancy.

Table 3.4 demonstrates the configuration parameters when all warps are utilized on the

device. First two columns consecutively show number of threads in a block and number

of blocks in a grid. Depending on the block dimension, the number of active warps in

each block is calculated in the third column and multiplying number of active warps in

each block by number of blocks in the grid the number of active warps in the system is

calculated in the last column.

Figure0.8Warp scheduling (Cooper, 2011)

Table 0.3 The features of a GPU device with compute capability 3.0

20

Technical Specifications Compute Capability 3.0

Maximum dimensionality of grid of thread blocks 3

Maximum x-dimension of a grid of thread blocks

231-1

Maximum y- or z-dimension of a grid of thread blocks

65535

Maximum dimensionality of thread block 3

Maximum x- or y-dimension of a block 1024

Maximum z-dimension of a block 64

Maximum number of threads per block 1024

Warp size 32

Maximum number of resident blocks per multiprocessor 16

Maximum number of resident warps per multiprocessor 64

Maximum number of resident threads per multiprocessor 2048

Number of 32-bit registers per multiprocessor 64 K

Maximum number of 32-bit registers per thread block 64 K

Maximum number of 32-bit registers per thread 63

Maximum amount of shared memory per multiprocessor 48KB

Maximum amount of shared memory per thread block

48KB

Number of shared memory banks 32

Amount of local memory per thread 512KB

Constant memory size 64KB

Cache working set per multiprocessor for constant memory 8KB

Cache working set per multiprocessor for texture memory

Between 12 KB and 48 KB

21

Table 0.4 Utilizing all possible warps in the streaming multiprocessor

Block Dimension
(threads in a block)

Grid Dimension
(number of blocks)

Number of Warps
in a Block

Number Of Warps
in a SM

1024 2 1024/32=32 32*2=64

512 4 512/32=16 16*4=64

256 8 256/32=8 8*8=64

128 16 128/32=4 16*4=64

To sum up, the resource restrictions are like following:

- Number of threads in a block can be maximum 1024.

- A Streaming Multiprocessor can have maximum 16 blocks.

- Blocks are divided by warps. One warp has 32 threads. As a result, one block

can have 1024/32=32 warps most.

- One SM can have maximum 64 warps.

As seen from Table 3.4;

- Number of threads in a block is less than or equal to 1024. Also it is divisible by

the size of a warp which is 32.

- Number of blocks in a grid, i.e., in a streaming multiprocessor, is less than or

equal to 16.

- As one warps contains 32 threads, to find number of warps in a block number of

threads in a block should be divided by 32. For each combination number of

warps in a block is less than or equal to 32 in the table.

- Number of warps in a SM is found multiplying number of warps in a block by

number of blocks in a SM. In the table, number of warps in a SM is equal to 64

which means that all warps in a SM are utilized.

22

Figure 0.9 Streaming multiprocessor structure of the GPU device (Nvidia, 2012)

In addition to thread level parallelism, instruction level parallelism can be applied to

expose enough parallelism and achieve good performance. In instruction level

parallelism an individual thread executes concurrent operations, while independent and

parallel operations are assigned to different threads in thread level parallelism. In other

words, parallel tasks are executed by different threads in TLP (see Figure 3.9) and

parallel tasks are executed by one thread in ILP (see Figure 3.10).

23

Figure 0.10 Thread level parallelism (Volkov, 2010)

Figure 0.11 Iteration level parallelism (Volkov, 2010)

Although thread level parallelism is a good way of increasing performance, the

limitations in kernel resources may prevent hiding latencies at some point. When

resource consumption of a kernel is too large, it restricts the number of concurrent

threads on a streaming multiprocessor. In this situation, instruction level parallelism can

be applied or instruction level parallelism and thread level parallelism can be combined.

In some cases low thread level parallelism with higher instruction level parallelism may

exploit better performance as lower occupancy increases the number of registers per

thread. However, the register pressure also increases. Because all the loads are grouped

or batched together through a thread-private array in register memory in addition to

having each thread execute multiple concurrent operations. Thread private arrays

consume registers and may further add to register pressure (Ruetsch and Fatica, 2013).

Thus, determination of how much thread level or instruction level parallelism will

produce optimal results depends on type of the problem. In this research, certain

experimental studies were done about this subject using 2-opt TSP problem that will be

elaborated on the experimental design section.

24

3.3 Memory Model and Locality

It is possible and important to manage scalable parallel programs via CUDA. A scalable

system is a system whose performance improves after adding hardware, proportionally

to the capacity added. If a system, algorithm or program maintains its efficiency and

practicability when applied to large instances, it is said to scale.

Quickly memory access is a critical factor for a scalable and parallel execution. It is

very important to be careful about using the different memory parts of the GPU

efficiently. In addition to global memory which is mentioned before, shared memory

and registers will be introduced in this chapter. InFigure 3.5, different CUDA memories

can be observed. In this figure, 2 blocks and 2 threads in each block are representatively

demonstrated. Normally a grid has the capability of including a lot more blocks and

threads.

In Figure 3.5, registers and shared memory are called on-chip memories as they are

situated in GPU device. Variables of these memories can be accessed quite quickly and

in a highly parallel way. CUDA memory types specify the visibility of a variable in

addition to its access speed.

As discussed earlier, host code copies the data into the global memory and out of the

global memory through “cudaMemcpy”. All the threads in a grid/kernel can access to

the global memory. Thus, all the threads in a grid can see the contents of the global

memory. In CUDA another memory level is “registers” which are generally used for

frequently used variables. Each thread in the grid has a certain number of registers to

hold its private variables. The variables that are placed into registers by the respective

thread of these registers can only be visible to that same thread. Other threads in the grid

cannot identify the value of these variables. Next memory that we will talk about it is

shared memory. All the blocks in the grid can use shared memory. In shared memory,

some locations are allocated to each block. When a block uses its allocated locations in

the shared memory (i.e. own shared memory), all the threads in that block are able to

see the contents of that locations of the shared memory. Nonetheless, the threads in

other blocks cannot see the contents of these locations. Although each block can read

25

from and write to their own shared memory, the data in the shared memory of different

blocks cannot be visible to each other.

Table 0.5 Features of CUDA variables

Variable declaration Memory Scope Lifetime

intLocalVar; register thread thread

__device__ __shared__intSharedVar; shared block block

__ device__intGlobalVar; global grid application

__device__ __constant__intConstantVar; constant grid application

 In Table 3.5 some features of CUDA variables are demonstrated. It shows the memory

that each variable occupies, the scope of them and how much they exist. In order to use

registers for a CUDA variable, we can declare that variable as an automatic variable in

the kernel function or device function. In a kernel function all the variables that are

declared like in the traditional C function become register variables. Thus, these

variables are located into the registers and the scope of a variable is within one thread.

Each thread in the grid will have the different/own version of that variable. When a

thread changes the value of its private variable, other threads cannot see that

modification. Moreover, the lifetime of a register variable is same with the life of a

thread. It means that the register variable destroyed when its thread finishes execution.

In Table 3.5, the second row shows the declaration of the shared memory variables.

When the identifier “__device__ __shared__” is seen in front of a variable, it means that

this variable will be placed into shared memory. As the scope of the shared memory

variable is within one block, a variable that is declared for a block will only be

detectable for the threads in that block. However, each block will have the different/own

version of that shared memory variable. Thus, the contents of the variables in one block

will not be visible to other blocks in shared memory. Also the lifetime of a shared

memory variable is equal to the lifetime of a block. When a block finishes its execution,

shared memory variables belong to that block are destroyed. In the third row of Table

3.5, the features of global memory can be observed. Global variables can be declared

via “__ device __” statement. Unlike previous variables, global variable is declared in

the host code. Rather than using the “__ device__” expression, more common

declaration of the global memory is provided via “cudaMalloc” and “cudaMemCpy”.

Although accesses to global variables are slow, they are visible to all threads in the

kernel and their lifetime lasts through the execution. For this reason, global variables

26

can be used to cooperate across blocks. But, when a thread changes the value of

particular global variable, other threads may not realize this modification immediately.

Stopping the kernel execution is the only way to provide synchronization between

threads from different blocks. This is why global variables are generally used to send

information from one kernel invocation to another one.

Briefly we will mention some details about CUDA memory variables. Firstly we

actually do not need to use identifier “__ device__” to declare shared memory and

constant memory variables as constant and shared memory are already in the device.

The second detail is that although all automatic variables are placed into registers,

automatic variable arrays are stored in the global memory. Thus the access to a large

automatic array is quite slow.

It is critical to decide where the variables should be declared. If we want host access to

a variable, then the variables should be declared outside any function. The variables that

are declared in a kernel or device function cannot be accessed from host. Constant and

global memory variables are in this class. On the other hand, the variables that host

don’t need to access such as registers and shared memory variables, can be declared in

kernel.

Lastly we should mention shared memory a bit more in detail as it is crucial in terms of

the speed of an algorithm. Shared memory, whose contents are explicitly declared, is an

exceptional memory type in CUDA. Explicit memories are the memories that can be

intentionally and consciously declared. Each streaming multiprocessor (SM) has a

shared memory. Shared memory is much faster accessible than global memory and also

its performance is much better in both latency and throughput. Shared memory is

generally used to store specific part of the data in the global memory which are

frequently used during the execution of kernel (Kirk and Hwu, 2013). Although shared

memory is quite fast, the memory of it is pretty small as it needs to fit into the

processor.

 In CUDA there is a common programming method for shared memory. The most

important point is that the data should be divided into parts called tiles that fit into

27

shared memory. As mentioned before the shared memory is allocated to blocks. So

these tiles are actually blocks. All the threads in a block cooperate and copy the tile

from global memory to the shared memory. As there can be wide range of threads in a

block, a good parallelism can be managed while transferring data to the shared memory.

This kind of parallelism refers to as memory level parallelism. Once the data is moved

to shared memory, the computations can be managed in a much faster way as shared

memory gives the data to the processing units at quite high speed.

28

4 EXPERIMENTAL DESIGN

In this study, to solve symmetric TSP accelerated 2-opt and 3-opt algorithms were

implemented utilizing SIMD structure of GPU. Fundamentally “Accelerating 2-opt and

3-opt Local Search Using GPU in the Travelling Salesman Problem (KamilRocki and

Reiji Suda, 2012) ” and “High Performance GPU Accelerated Local Optimization in

TSP (KamilRocki and Reiji Suda, 2013)” papers were considered. In addition to

observing how much GPU accelerated sequential 2-opt and 3-opt CPU algorithms,

some tests were performed on these algorithms to discover the best way of allocating

GPU resources and also take the advantages of different parallelism strategies.

Repeating 2-opt exchanges on a travelling salesman tour, which considerably improves

the solution, is an efficient local-search method for solving TSP.

As shown in Figure 4.1, in a 2-opt exchange step, two edges are removed from the

current tour and after this removal process two sub-tours emerge. There is only one way

to reconnect these sub-tours by protecting the validity of the travelling salesman tour

and they are connected in this way. 2-opt exchange is performed in the event that the

cost of the two edges that reconnects two new sub-tours created is lower than the cost of

removed edges. As the other parts of the tour remain same, there is no need for further

calculations.

2-opt algorithm calculates the effect of each possible edge exchange on the current tour

cost. From among these possible exchanges, it performs the one with the best

improvement, in other words the exchange that decreases current tour cost most.

Algorithm repeats this step until there is no further improvement.

29

Figure 0.12 2-opt step on a travelling salesman tour

If the number of nodes in the tour is “n”, the number of possible edge exchanges/swaps

in each iteration is
𝑛×(𝑛−1)

2
 .

Example 4.1: Assuming that there are 10 nodes/cities in a tour, all possible edge

exchanges are presented in Table 4.2 in which “t” represents the array that keeps tour

order (check Table 4.1 for the initial tour order).

Table 0.6 Initial tour order in Example 4.1

t[0] t[1] t[2] t[3] t[4] t[5] t[6] t[7] t[8] t[9] t[10]

0 1 2 3 4 5 6 7 8 9 0

As shown in Table 4.2, there are
10∗9

2
= 45 possible edge swaps in a tour consisting of

10 nodes. In this table, the entries (the nodes) in bold consecutively represent the row

and the column indexes of a triangular matrix which will be important in the

parallelization phase of 2-opt algorithm. Note that in the last column of each row

deleted and added edges are same. We don’t save any time when we eliminate these

exchanges as they will be performed in parallel. For this reason we won’t let our

program to make an effort to control unnecessary exchanges.

If node “i” symbolizes the row indexes and node “j” symbolizes the column indexes, “i”

and “j” variables will take the values in Table 4.3.In this table, in each cell the first

number in the parenthesis will be assigned to “i” variable and the second one will be

assigned to “j” variable.

30

Table 0.7 All possible edge exchanges for a TSP tour with 10 nodes

Remove
(t[2],t[1])
(t[1],t[0])
Add
(t[2],t[1])
(t[1],t[0])

Remove
(t[3],t[2])
(t[1],t[0])
Add
(t[3],t[1])
(t[2],t[0])

Remove
(t[3],t[2])
(t[2],t[1])
Add
(t[3],t[2])
(t[2],t[1])

Remove
(t[4],t[3])
(t[1],t[0])
Add
(t[4],t[1])
(t[3],t[0])

Remove
(t[4],t[3])
(t[2],t[1])
Add
(t[4],t[2])
(t[3],t[1])

Remove
(t[4],t[3])
(t[3],t[2])
Add
(t[4],t[3])
(t[3],t[2])

Remove
(t[5],t[4])
(t[1],t[0])
Add
(t[5],t[1])
(t[4],t[0])

Remove
(t[5],t[4])
(t[2],t[1])
Add
(t[5],t[2])
(t[4],t[1])

Remove
(t[5],t[4])
(t[3],t[2])
Add
(t[5],t[3])
(t[4],t[2])

Remove
(t[5],t[4])
(t[4],t[3])
Add
(t[5],t[4])
(t[4],t[3])

Remove
(t[6],t[5])
(t[1],t[0])
Add
(t[6],t[1])
(t[5],t[0])

Remove
(t[6],t[5])
(t[2],t[1])
Add
(t[6],t[2])
(t[5],t[1])

Remove
(t[6],t[5])
(t[3],t[2])
Add
(t[6],t[3])
(t[5],t[2])

Remove
(t[6],t[5])
(t[4],t[3])
Add
(t[6],t[4])
(t[5],t[3])

Remove
(t[6],t[5])
(t[5],t[4])
Add
(t[6],t[5])
(t[5],t[4])

Remove
(t[7],t[6])
(t[1],t[0])
Add
(t[7],t[1])
(t[6],t[0])

Remove
(t[7],t[6])
(t[2],t[1])
Add
(t[7],t[2])
(t[6],t[1])

Remove
(t[7],t[6])
(t[3],t[2])
Add
(t[7],t[3])
(t[6],t[2])

Remove
(t[7],t[6])
(t[4],t[3])
Add
(t[7],t[4])
(t[6],t[3])

Remove
(t[7],t[6])
(t[5],t[4])
Add
(t[7],t[5])
(t[6],t[4])

Remove
(t[7],t[6])
(t[6],t[5])
Add
(t[7],t[6])
(t[6],t[5])

Remove
(t[8],t[7])
(t[1],t[0])
Add
(t[8],t[1])
(t[7],t[0])

Remove
(t[8],t[7])
(t[2],t[1])
Add
(t[8],t[2])
(t[7],t[1])

Remove
(t[8],t[7])
(t[3],t[2])
Add
(t[8],t[3])
(t[7],t[2])

Remove
(t[8],t[7])
(t[4],t[3])
Add
(t[8],t[4])
(t[7],t[3])

Remove
(t[8],t[7])
(t[5],t[4])
Add
(t[8],t[5])
(t[7],t[4])

Remove
(t[8],t[7])
(t[6],t[5])
Add
(t[8],t[6])
(t[7],t[5])

Remove
(t[8],t[7])
(t[7],t[6])
Add
(t[8],t[7])
(t[7],t[6])

Remove
(t[9],t[8])
(t[1],t[0])
Add
(t[9],t[1])
(t[8],t[0])

Remove
(t[9],[8])
(t[2],t[1])
Add
(t[9],t[2])
(t[8],t[1])

Remove
(t[9],t[8])
(t[3],t[2])
Add
(t[9],t[3])
(t[8],t[2])

Remove
(t[9],t[8])
(t[4],t[3])
Add
(t[9],t[4])
(t[8],t[3])

Remove
(t[9],t[8])
(t[5],t[4])
Add
(t[9],t[5])
(t[8],t[4])

Remove
(t[9],t[8])
(t[6],t[5])
Add
(t[9],t[6])
(t[8],t[5])

Remove
(t[9],t[8])
(t[7],t[6])
Add
(t[9],t[7])
(t[8],t[6])

Remove
(t[9],t[8])
(t[8],t[7])
Add
(t[9],t[8])
(t[8],t[7])

Remove
(t[10],t[9])
(t[1],t[0])
Add
(t[10],t[1])
(t[9],t[0])

Remove
(t[10],t[9])
(t[2],t[1])
Add
(t[10],t[2])
(t[9],t[1])

Remove
(t[10],t[9])
(t[3],t[2])
Add
(t[10],t[3])
(t[9],t[2])

Remove
(t[10],t[9])
(t[4],t[3])
Add
(t[10],t[4])
(t[9],t[3])

Remove
(t[10],t[9])
(t[5],t[4])
Add
(t[10],t[5])
(t[9],t[4])

Remove
(t[10],t[9])
(t[6],t[5])
Add
(t[10],t[6])
(t[9],t[5])

Remove
(t[10],t[9])
(t[7],t[6])
Add
(t[10],t[7])
(t[9],t[6])

Remove
(t[10],t[9])
(t[8],t[7])
Add
(t[10],t[8])
(t[9],t[7])

Remove
(t[10],t[9])
(t[9],t[8])
Add
(t[10],t[9])
(t[9],t[8])

31

Table 0.8 Required indexes that will be produced by built-in variables in kernel

(all different city combinations)

 j
i

1 2 3 4 5 6 7 8 9

1

2 (2,1)

3 (3,1) (3,2)

4 (4,1) (4,2) (4,3)

5 (5,1) (5,2) (5,3) (5,4)

6 (6,1) (6,2) (6,3) (6,4) (6,5)

7 (7,1) (7,2) (7,3) (7,4) (7,5) (7,6)

8 (8,1) (8,2) (8,3) (8,4) (8,5) (8,6) (8,7)

9 (9,1) (9,2) (9,3) (9,4) (9,5) (9,6) (9,7) (9,8)

10 (10,1) (10,2) (10,3) (10,4) (10,5) (10,6) (10,7) (10,8) (10,9)

Based on the edge exchange operations in Table 4.2 and specified “i” and “j” values in

Table 4.3, the sequential 2-opt algorithm is demonstrated in Figure 4.2 where “n” is the

number of nodes, “change” is the decrease in tour cost and “global_min” is the

minimum of the “change” values. Searching for minimum of the “change” values gives

the maximum decrease in the tour cost. Algorithm sequentially calculates the decrease

in the tour cost for all possible edge exchanges. Meanwhile, it compares the effect of

current edge exchange with the previous ones. If the current edge exchange improves

the tour cost more than previous best exchange, it stores the related “i” and “j” values.

At the end it reaches the best improvement for the current solution.

Figure 0.13 Sequential 2-opt algorithm

32

4.1 Parallelization Strategy for 2-Opt Algorithm on TSP

In 2-opt method, the same task is performed on different parts of the travelling salesman

tour. As can be seen in the sequential algorithm (see Figure 4.2), the calculation of

“distance(t[i],t[j]) + distance(t[i-1],t[j-1]) - distance(t[i-1],t[i]) -distance(t[j-1]+t[j])” is

applied to all city combinations in the current tour as the best improvement strategy is

implemented. Thus, it can be said that 2-opt algorithm is quite suitable for “single

instruction multiple data (SIMD)” structure of GPU.

 Parallelism can be managed by distributing
n∗(n−1)

2
 possible edge exchanges (see Table

4.2) among different threads equally so that each thread can calculate the effects of

relevant exchanges on the tour cost. In order to achieve distributing process one or more

city combinations (Table 4.3) should be assigned to different threads. In this way each

thread can perform exchange effect calculations on different parts of the tour using city

pairs assigned to it.

In this study “Calculating the effect of single edge exchange” will be called as a “job”

and all jobs will be made parallel to each other to discover the effect of all possible edge

exchanges. As discussed earlier, it is important to combine thread level parallelism and

iteration level parallelism in some situations. In our problem, one thread can perform

several jobs in a parallel way which exploits iteration level parallelism and also

different threads can perform different jobs in parallel to each other which utilizes

thread level parallelism.

To decide how many jobs a thread will perform, number of possible edge exchanges

should be divided by the number of threads.

 𝑁𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑗𝑜𝑏𝑠 𝑓𝑜𝑟 𝑒𝑎𝑐ℎ 𝑡ℎ𝑟𝑒𝑎𝑑 =
n∗(n−1)

2∗totalNumberOfThreadsInGPU
 (4.1)

If 5 threads are used to solve TSP in Example 4.1, each thread will perform
10∗(10−1)

2∗5
=

9 jobs, which will be called “number of iterations” or “iterations” from now on. It

means that each thread will iterate 9 times to calculate the effect of 9 possible swaps.

33

The most critical part in the algorithm is generating common formulas for all threads so

that they can produce “i” and “j” values in Table 4.3. Table 4.4, in which id represents

index of a job, shows the division of jobs between threads and also (i,j) values

associated with these jobs . In order to obtain “i” values which represent rows, we

should relate i values to the job ids that derive from predefined variables in CUDA.

Table 0.9 Assigning jobs to threads

(ids represent jobs that will be performed in parallel)

 j
 i

1 2 3 4 5 6 7 8 9

1

2
thread 0

id = 0
(2,1)

3
thread 1

id=1
(3,1)

thread 2
id=2
(3,2)

4
thread 3

id=3
(4, 1)

thread 4
id=4
(4,2)

thread 0
id=5
(4,3)

5
thread 1

id=6
(5, 1)

thread 2
id=7
(5,2)

thread 3
id=8
(5,3)

thread4
id=9
(5,4)

6
thread 0

id=10
(6, 1)

thread 1
id=11
(6,2)

thread 2
id=12
(6,3)

thread 3
id=13
(6,4)

thread 4
id=14
(6,5)

7
thread 0

id=15
(7, 1)

thread 1
id=16
(7,2)

thread 2
id=17
(7,3)

thread 3
id=18
(7,4)

thread 4
id=19
(7,5)

thread 0
id=20
(7,6)

8
thread 1

id=21
(8, 1)

thread 2
id=22
(8,2)

thread 3
id=23
(8,3)

thread 4
id=24
(8,4)

thread 0
id=25
(8,5)

thread 1
id=26
(8,6)

thread 2
id=27
(8,7)

9
thread 3

id=28
(9, 1)

thread 4
id=29
(9,2)

thread 0
id=30
(9,3)

thread 1
id=31
(9,4)

thread 2
id=32
(9,5)

thread 3
id=33
(9,6)

thread 4
id=34
(9,7)

thread 0
id=35
(9,8)

10
thread 1

id=36
(10, 1)

thread 2
id=37
(10,2)

thread 3
id=38
(10,3)

thread 4
id=39
(10,4)

thread 0
id=40
(10,5)

thread 1
id=41
(10,6)

thread 2
id=42
(10,7)

thread 3
id=43
(10,8)

thread 4
id=44
(10,9)

In example 4.1, there are 45 jobs totally. To complete these jobs 5 threads are allocated

for thread level parallelism and 9 iterations will be performed for iteration level

parallelism. As each of 5 threads iterates through 9 different jobs, at the end all of the

jobs will be performed.

In order to allocate 5 threads, block dimension should be initialized as “5” and grid

dimension is 1 in the host code. If “idx” represents thread ids, it should be defined as in

Figure 4.3.

34

Figure 0.14 Assigning thread indices via buit-in variables

Thus, the variable of “idx” will get the values of “0,1,2,3,4” automatically.

Iteration level parallelism will be managed in the kernel function. If “no” represents the

number of iterations and “packSize” represents all the threads in the grid,job ids will be

obtained asin Figure 4.4.

Figure 0.15 Assigning jobs to specified threads

So the ids will be as follows:

id = 0,1,2,3,4,5,6,7,8,9,10......43,44

Table 4.5 summarizes calculation of first fourteen job ids depending on built-in

variables and iterations.

35

Table 0.10 Calculating the job ids using built-in variables and iterations

threadIdx.x blockIdx.x blockDim.x idx iteration(no) packSize id

0 0 5 0 0 5 0

1 0 5 1 0 5 1

2 0 5 2 0 5 2

3 0 5 3 0 5 3

4 0 5 4 0 5 4

0 0 5 0 1 5 5

1 0 5 1 1 5 6

2 0 5 2 1 5 7

3 0 5 3 1 5 8

4 0 5 4 1 5 9

0 0 5 0 2 5 10

1 0 5 1 2 5 11

2 0 5 2 2 5 12

3 0 5 3 2 5 13

4 0 5 4 2 5 14

 Because up to and including the kth row there are
𝐤∗(k+1)

2
 jobs in Table 4.4, it can be said

that
𝐤∗(k+1)

2
 counts the number of jobs. Through this approach Rocki and Suda achieved

the formula 4.2.

 𝐤 ∗ (k + 1)

2
= id

 (4.2)

By finding the roots of that quadratic equation and modifying it, the formula of “i”

indices were obtained as in 4.3 where “i” values are rounded down in order to generate

integer numbers.

𝑖 =

3 + √8 ∗ 𝑖𝑑 + 1

2

 (4.3)

Utilizing “i” and “id” values, the formula of “j” was obtained like in 4.4 where “j”

values are rounded down in order to generate integer numbers.

𝑗 = 𝑖𝑑 −

(𝑖 − 2) ∗ (𝑖 − 1)

2
+ 1

 (4.4)

For example, when id is equal to “25”,

𝑖 =
3+√8∗25+1

2
= 8,5 ≅ 8 and𝑗 = 25 −

6∗7

2
+ 1 = 5.

36

When id is equal to “11”,

𝑖 =
3+√8∗11+1

2
= 6,2 ≅ 6 and 𝑗 = 11 −

4∗5

2
+ 1 = 2. (Check Table 4.4)

After calculating all the values of (i, j) pairs like in Table4.4, the 2-opt exchange effects

of related edges will be calculated in parallel. In the algorithm, for each (i, j) pair the

cost of the deleted edges will be subtracted from cost of the added edges in order to

discover how much 2-opt exchange decreases the current tour cost. The result will be

assigned to a variable called as “change”. Each thread will store different “change”

values in its own registers. From among these values, after the positive values are

eliminated as they signify increase in the tour cost, the minimum value will be chosen

as it gives the maximum decrease in the tour cost. Then 2-opt exchange will be applied

to relevant edges and the current tour will be updated. The 2-opt exchange operations

will continue until there is no further improvement in the tour cost.

While solving a large scale TSP using GPU, it is not logical to store the calculated

distances between cities in the off-chip global memory since the access of threads in

kernel to the global memory is very slow. As outlined in the “Architecture” on-chip

shared memory is very fast but also very limited which is 48KB in our device, therefore

it cannot be used too. The best way is to store only city coordinates and tour order in

fast shared memory and calculating the necessary distances each time utilizing the high-

power computational power of GPU. The city coordinates will be defined as “structure”

which includes integer x and y variables representing x and y coordinates of the cities.

As the city coordinates and tour order will be stored in the shared memory, it should be

calculated that until which problem size our algorithm will be feasible. The size of a

city coordinate defined as integer is 4 bytes. Moreover tour order will be defined as

“unsigned short” with the size of 2 bytes. The memory needed for each city will be 10

bytes because a city has two coordinates and one tour order.

Shared memory is 48 KB which equals to 48 × 1024 = 49152 bytes. Consequently,

shared memory can store the coordinates and tour order of
49152 𝑏𝑦𝑡𝑒𝑠

10 𝑏𝑦𝑡𝑒𝑠
= 4915 cities.

Under these circumstances solvable maximum problem size is 4915.

37

Formula 4.5 represents the “distance” function which will calculate the Euclidean

distances between cities where “coords[i].x” represents the x coordinate of the city “i”

and “coords[i].y” represents the y coordinate of the city i.

 √(coords[i].x − coords[j].x)2 + (coords[i].y − coords[j]. y)2 (4.5)

Figure 4.5 presents the “distance” function on device. As this function will be called

from kernel function, which executes on the device, and only a device function can be

called from a device function (Table 3.2), the distance function should be preceded by

“__device__” declaration. In order to call “distance” function from host, it should be

preceded by “__host__”.

Figure 0.16 Device function to calculate the distances between cities

In Appendix C the draft view of the algorithm can be examined. Code starts at host

defining necessary variables such as for number of nodes/cities, number of possible

exchanges/swaps in the tour. Variable “iter” (number of iterations) is defined to assign

more than one job to a thread, in other words to decide the amount of iteration level

parallelism. The way of distributing jobs among threads and iterations can be observed

in Table 4.6. In this table, the numbers in the cells show the ids of possible edge

exchange effects (job ids).

38

Table 0.11 Thread-level and iteration-level parallelism

After defining host variables, the device variables are defined for transferring to kernel

and device memory is allocated for them. Firstly city coordinates are transferred from

host to device. Because city coordinates will be fixed throughout the algorithm, it is

enough to do this transfer operation just once. The initial tour order is specified in

ascending order (Table 4.1). Thereby an initial solution is determined. The

configuration parameters (block and grid dimension) and number of iterations are set. It

is important to reiterate that multiplication of iterations, block and grid dimension

should be arranged as equal to the number of possible edge exchanges. As mentioned

before, 2-opt exchange is applied until there is no further decrease in the tour cost. Thus

the kernel function which searches for the best improvement via 2-opt method will be

invoked as long as the best improvement in the tour cost is less than zero. Each time the

updated tour order should be transferred from host to device and then the kernel should

be invoked to begin a new 2-opt search on the new tour.

In kernel function, through built-in CUDA variables the indexes of threads in SM are

assigned to a register variable called “idx”. “packSize” calculates the number of threads

in SM. Via for loop jumping as “packSize” distance iteration times, new jobs are

assigned to threads until all jobs are completed (check Table 4.6). This process provides

iteration level parallelism. Ids of all jobs, in other words all possible exchanges, are

assigned to threads in this way. According to these ids, the indexes of each possible city

39

pairs are calculated (Formula 4.3 and 4.4). Utilizing the indexes of city pairs the

relevant edge exchange effects are calculated in parallel. The exchange which decreases

the tour cost most is detected via CUDA-specific “atomicMin” function and the id of it

is stored. Then this id is copied to host where the necessary edge exchange is performed

in the current tour. Acquired new tour is copied to kernel and next 2-opt search is

performed on this new tour.

General draft of CUDA Code is given in Appendix C.

4.2 Experimental Results

In order to utilize the GPU optimally, different kinds of kernel configuration parameters

will be tested. Considering resource restrictions of our GPU device and occupancy of

streaming multiprocessor in the device, the results will be commented. As discussed

previously, occupancy is calculated by dividing the number of active warps in an SM by

the number of warps supported on an SM of the GPU. Busy warps in SM are called as

active. Occupancy helps to exploit GPU memory efficiently by increasing thread level

parallelism. Through a high occupancy many resources of GPU device can be kept busy

and more jobs can be done in parallel.

Our device, Quadro K600, has 1 streaming multiprocessor which is called SMX and the

compute capability of Quadro K600 is 3.0 (check Table 3.4). Therefore SMX have

maximum 2048resident threads and 16resident blocks. As each warp consists of 32

threads, an SMX have maximum
2048

32
 = 64 resident warps. In order to utilize all the

resident warps in an SMX, blocks and grid should be arranged like in Table 3.5.

However other resource restrictions such as maximum number of registers and shared

memory limit per SMX may prevent to utilize all the warps. These factors should be

checked in order to understand whether they decreased the number of active warps or

not. Total number of registers per SMX is 65536 and shared memory per SMX is

48𝐾𝐵 ∗ 1024 = 49152 bytes in our device. Afterdiscovering the number of registers

and amount of shared memory that each block uses, the number of active blocks and

active warps can be calculated. These factors do not decrease the number of active

40

blocks or warps if there are enough registers and shared memory for each block in the

optimal warp system, in which all the warps are used (check Table 3.5). Otherwise,

occupancy may decrease. Let’s assume that there are 512 threads in a block and 4

blocks in the grid which means 64 possible active warps are available. But, if the

number of registers or amount of shared memory in the SMX is enough for only 3

blocks, it means that there are only 3 active blocks and
512𝑡ℎ𝑟𝑒𝑎𝑑𝑠 𝑖𝑛 𝑎 𝑏𝑙𝑜𝑐𝑘

32𝑡ℎ𝑟𝑒𝑎𝑑𝑠 𝑖𝑛 𝑎 𝑤𝑎𝑟𝑝
× 3𝑏𝑙𝑜𝑐𝑘𝑠 =

48 active warps. A programmer tool called CUDA Occupancy Calculator automatically

performs these calculations when user enters the necessary information about GPU

device and some resource usage. Considering additional factors such as “register

allocation unit size” or “warp allocation granularity”, its calculations are more precise.

For different sized TSPs, the performance changes with different resource allocations

can be examined in the following experiments. As reported in Table 4.6, in our

algorithm some part of the possible swaps should be distributed among launched

threads via block dimension and grid dimension. Then remaining possible swaps should

be assigned to the same threads again via “iterations (no)”. In other words, “number of

iterations” will help to assign more than one job to a thread.

 In these experiments the block dimensions will be arranged as multiples of warp size

which is 32. The configurations with the same block dimensions will be grouped and

there will be 4 groups in our experiments which are 1024, 512, 256 and 128. For each

group different [grid dimension, iterations] combinations will be executed. Among each

group a launch with the best performance will be selected. In the table italic and bold

entries represent them. Then, among all launches the best one or ones will be selected

and the entries in bold indicate them.

In order to select best performance, the kernel performances will be compared because

number of 2-opt iterations will change each time. This change arises from the behavior

of CUDA-specific “atomicMin” function. When different edge exchanges produce the

same amount of decrease in the tour cost, this function may choose any of them at each

program run. For this reason minimized tour cost and 2-opt iteration results are not

identical, but quite close to each other. Nevertheless, in some situations comparing

“cpu+gpu” times will not be fair enough.

41

It is important to reiterate that “grid dimension” and “block dimension” together will

help us to observe the effect of thread level parallelism while “number of iterations”

will help to observe the effect of iteration level parallelism.

4.2.1 Experiment 1-500 cities

We assume that the best kernel launches will be achieved when all warps in SMX are

utilized (i.e when occupancy is 100%). Predicted best kernel launches and observed best

kernel launches are compared in Table 4.7. More detailed performance results for

different sized TSP problems with various configuration parameter settings can be

found in Appendix A.

Table 0.12 Predicted best kernel launches vs. observed best kernel launches for TSP

with 500 cities

Predicted best kernel
launches

Observed best launches

Block
Dim.

Grid
Dim.

of
iterations

Block
Dim.

Grid
Dim.

of
iterations

kernel
time
(ms)

Minimized
cost

of
2-opt

iterations

CPU+GPU
time (ms)

1024 2 61 1024 2 61 0.203 16292 529 325

512 4 61 512 4 61 0.203 16292 529 326

256 8 61 256 8 61 0.209 16196 538 340

128 16 61 128 9 109 0.307 16304 529 346

In Table 4.7 it can be seen that in the first three groups best performances are obtained

when all warps are active. It means that shared memory and registers are enough for all

launched blocks. However, in the last group out of 16 blocks, only 9 blocks are used

when the best performance is obtained.

Restriction of Resources

In our algorithm, each thread uses 20 registers and each block occupies 5012 bytes

shared memory for 500 nodes/cities. For each group calculation of the resource usage in

the SMX is given in Table 4.8. In the table the number of active blocks that registers

42

and shared memory allows is determined. After analyzing restrictions, occupancy is

calculated.

Table 0.13 Restrictions of shared memory and registers

When All
Warps Are
Used in SM

Restriction of Registers Restriction of Shared
Memory

After
Restrictions

Block
Dim

Grid
Dim

of
Registers

Used in SM

max. # of
active blocks

registers allow

Shared
memory
used in

SM

max. # of
active blocks

shared
memory
allows

Grid
Dim

Occupancy

1024 2
1024 ∗ 20
= 20480

65536

20480
= 3 > 2

5012 bytes

49152

5012
= 9 > 2

2

100%

512 4
512 ∗ 20
= 10240

65536

10240
= 6 > 4 49152

5012
= 9 > 4 4 100%

256 8
256 ∗ 20
= 5120

65536

5120
= 12 > 8 49152

5012
= 9 > 8 8 100%

128 16
128 ∗ 20
= 2560

65536

2560
= 25 > 16

𝟒𝟗𝟏𝟓𝟐

𝟓𝟎𝟏𝟐
= 𝟗

< 16
9 56%

1st Group-Block Dimension: 1024

To utilize all the warps in the multiprocessor 2 blocks should be launched.

1st check: Restriction of Registers

 In the first group, because each block has 1024 threads, a block exploits 1024 ∗ 20 =

20480 registers. We know that maximum number of registers per SMX is 65536. Thus

each multiprocessor can have maximum
65536

20480
= 3 blocks. Since there are enough

registers for 3 blocks, which is greater than 2, we conclude that register capacity of the

SMX does not restrict the usage of all active warps.

2nd check: Restriction of Shared Memory

For 500 nodes, shared memory usage per block is 5012 bytes in our program. We know

that maximum shared memory size per streaming multiprocessor is 49152 bytes. So,

shared memory allows
49152

5012
= 9active blocks which is greater than 2.Shared memory

capacity of the SMX does not restrict the usage of all active warps.

43

To sum up, in the first group all 64 warps can be utilized by launching 2 blocks and

1024 threads in a block. As anticipated the best performance is obtained when all warps

are active, in other words when occupancy is %100.

In the second and third group consecutively 4 and 8 blocks are required in order to

utilize all the active warps. Their behaviors are similar to first one. Shared memory and

registers do not give rise to any restrictions and all warps can be utilized which provides

100% occupancy and best performances.

Rather than the first three groups, in the last group shared memory capacity prevents the

usage of all warps.

4th Group-Block Dimension: 128

To utilize all the warps in the multiprocessor 16 blocks should be launched.

Restriction of Shared Memory

Shared memory usage varies with the change of the problem size. Thus occupied shared

memory doesn’t change for this configuration. Although shared memory still

allows
49152

5012
= 9 active blocks, to exploit all warps 16 active blocks are required this

time. It means that in the SMX there is enough memory for only 9 blocks which is

lower than 16. In this group
128

32
∗ 9 = 36 warps out of 64 can be utilized by launching 9

blocks and 128 threads in each block. Unlike %100 occupancy in other groups, in this

group occupancy is
𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑎𝑐𝑡𝑖𝑣𝑒 𝑤𝑎𝑟𝑝𝑠 𝑖𝑛 𝑆𝑀𝑋

𝑚𝑎𝑥𝑖𝑚𝑢𝑚 𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑤𝑎𝑟𝑝𝑠 𝑖𝑛 𝑆𝑀𝑋
=

36

64
=56% which creates worse

performances than other groups. Nevertheless, the best performance within fourth group

is achieved when all warps that shared memory and register allows are used.

Consequently, for the problem with 500 cities best performances are obtained when

occupancy is 100%. It seems that higher occupancy gives better results in our algorithm.

As discussed previously, CUDA Occupancy Calculator performs above calculations

when necessary information about GPU device and resource usage of algorithm is

provided. It asks for the compute capability and shared memory size of the device.

44

Moreover, number of threads in a block of the launched kernel, number of the registers

used per thread and the shared memory occupied by per block should be entered as

inputs. Figure 4.6 displays the Occupancy Calculator inputs that should be entered by

user for the first group.

1.) Select Compute Capability (click): 3,0

1.b) Select Shared Memory Size Config (bytes) 49152

2.) Enter your resource usage:

Threads Per Block 1024

Registers Per Thread 20

Shared Memory Per Block (bytes) 5012

Figure 0.17 Inputs of occupancy calculator for problem with 500 nodes

After the inputs in Figure 4.6are entered, the Occupancy Calculator shows the results

consisting of the number of active threads, warps and blocks per multiprocessor and

also occupancy of the multiprocessor as in Figure 4.7.

3.) GPU Occupancy Data is displayed here and in the graphs:

Active Threads per Multiprocessor 2048

Active Warps per Multiprocessor 64

Active Thread Blocks per Multiprocessor 2

Occupancy of each Multiprocessor 100%

Figure 0.18 Output of occupancy calculator for problem with 500 nodes

From Figure 4.7, it can be seen that our calculations are in line with the results of

Occupancy Calculator. Occupancy Calculator also presents certain plots in which one

can identifies impact of varying block size (Figure 4.8), varying register count per

thread and varying shared memory usage per block (Figure 4.9).

The best block size options can be identified from the Figure 4.8. Clearly block

dimensions 256, 512 and 1024 produce best performances which supports our results in

Table 4.7

45

Figure 0.19 The effect of block size on occupancy

Figure 0.20 The effect of shared memory usage on occupancy

46

4.2.2 Experiment 2-1000 Cities

Table 0.14 Predicted best kernel launches vs. observed best kernel launches for TSP

with 1000 cities

Predicted best kernel
launches

Observed best launches

Block
Dim.

Grid
Dim.

of
iterations

Block
Dim.

Grid
Dim.

of
iterations

Kernel
time
(ms)

Minimized
cost

of
2-opt

iterations

CPU+GPU
time (ms)

1024 2 242 1024 2 242 0.7 35985 1094 1096

512 4 242 512 4 242 0.7 36197 1090 1067

256 8 242 256 4 484 1 36193 1091 1742

128 16 242 128 4 967 2 36544 1089 3036

As illustrated by Table 4.9, from among all groups algorithm performs best when

- Block dimension is 1024 and grid dimension is 2.

- Block dimension is 512 and grid dimension is 4.

Apparently the best performance in third group is worse than the best performances in

the first two groups. In the last group, the best performance is even worse than the best

performance in the third group.

Let’s discover the occupancies for the four groups and decide the best block size for this

problem via Occupancy Calculator. It is important to reiterate that occupied shared

memory changes with the increasing size of the problem. For 1000 nodes necessary

shared memory size is 10012 bytes. Remaining settings will stay as before.

Figure 4.10 shows the best block sizes for this problem as 1024 and 512 which is

consistent with our results obtained in Table 4.9. It comes from activating all the warps

in the SMX. As all warps can be active when block size is 1024 or 512, the best

performances are obtained from among these groups. It appears that occupancy

calculator verifies our results.

47

Figure 0.21 The impact of block size on occupancy for the problem with 1000 nodes

Table 4.10 summarizes the resource usage and GPU occupancy data for all groups. As

listed in the table 32 warps out of 64 are active when block dimension is 256 and only

16 warps can be active when block dimension is set to 128 which gives rise to the

decrease in the occupancy. Worse performances in last two groups (see Table 4.9) are

the consequence of this lower occupancy.

Table 0.15 Occupancy information for the problem with 1000 nodes

RESOURCE USAGE:

Threads Per Block 1024 512 256 128

Registers Per Thread 20 20 20 20

Shared Memory Per Block (bytes) 10012 10012 10012 10012

GPU OCCUPANCY DATA:

Active Threads per Multiprocessor 2048 2048 1024 512

Active Warps per Multiprocessor 64 64 32 16

Active Thread Blocks per Multiprocessor 2 4 4 4

Occupancy of each Multiprocessor 100% 100% 50% 25%

 Inspection of Table 4.10 indicates that in the third group only 4 blocks out of 8 are

active and in the fourth group only 4 blocks out of 16 are active because shared memory

restricts the block size that can be used per multiprocessor with
49152

10012
= 4. Thus, the

48

algorithm displays best performances within these two groups when kernel is launched

with 4 blocks (check Table 4.9).

4.2.3 Experiment 3-1500 Cities

As seen in Figure 4.11 and Table 4.11, occupancy calculator shows that the best block

size is 1024 for the problem with 1500 nodes as 100% occupancy can be managed.

According to the results of occupancy calculator, the performances are expected to be as

follows:

BKT of (Group 1) < BKT of (Group 2) < BKT of (Group 3) < BKT of (Group 4)

(BKT: Best kernel time)

which means

P of (Group 1) > P of (Group 2) > P of (Group 3) > P of (Group 4)

(P: performance, >: better)

Figure 0.22 The effect of block size on occupancy in the problem with 1500 cities

49

Table 0.16 Occupancy information of the problem with 1500 cities

RESOURCE USAGE:

Threads Per Block 1024 512 256 128

Registers Per Thread 20 20 20 20

Shared Memory Per Block (bytes) 15012 15012 15012 15012

GPU OCCUPANCY DATA:

Active Threads per Multiprocessor 2048 1536 768 384

Active Warps per Multiprocessor 64 48 24 12

Active Thread Blocks per Multiprocessor 2 3 3 3

Occupancy of each Multiprocessor 100% 75% 38% 19%

Thus, the best performance should be observed in Group 1. In Group 1 two blocks and

in other groups three blocks can be active. So, the best performances within each group

will be obtained when the launch is arranged considering active thread blocks per

multiprocessor found by occupancy calculator (Table 4.11). Similar to Experiment 2, in

this experiment shared memory prevents utilizing all warps in the multiprocessor.

Shared memory is enough only for 3 blocks.

Table 4.12 displays observed performances of different kernel launches for the problem

size 1500. As anticipated the performance declines with the decrease in the occupancy

as we can see from the table.

Occupancy (>:greater)

Group 1 (100%) > Group 2 (75%) > Group 3 (38%) >Group 4 (19%)

Performance (in terms of kernel time for 1 step 2-opt search) (>:better)

Group 1 (1.739 ms) > Group 2 (2.125 ms) > Group 3 (3.851 ms) >Group 4 (7.515 ms)

First 3 experiments indicates that the best way for the peak performances is after

utilizing all resident warps as shared memory and register limits of the device allow, to

perform remaining jobs through iteration level parallelism. Further experiments will be

demonstrated in order to show the robustness of this approach.

50

Table 0.17 Predicted best kernel launches vs. observed best kernel launches for TSP

with 1500 cities

Predicted best kernel
launches

Observed best launches

Block
Dim.

Grid
Dim.

of
iterations

Block
Dim.

Grid
Dim.

of
iterations

Kernel
time
(ms)

Minimized
cost

of
2-opt

iterations

CPU+GPU
time (ms)

1024 2 549 1024 2 549 1 47585 1645 3262

512 4 549 512 3 732 2 47293 1657 3935

256 8 549 256 3 1464 3 47297 1657 6693

128 16 549 128 3 2928 7 47604 1643 12655

4.2.4 Experiment 4-2000 Cities

As illustrated by Table 4.13, the occupancy declines with the decrease in the block

dimension. For each group 2 blocks can be active which causes the reduction in the

number of active warps of the groups excluding first group. As before the restriction to

active warps stems from the shared memory limit. Since increasing the problem size

accompanies more shared memory usage per block, number of active blocks in the

multiprocessor decreases.

Figure 0.23 The effect of block size on occupancy in the problem with 2000 cities

My Block Size 1024

0

8

16

24

32

40

48

56

64

0 64 128 192 256 320 384 448 512 576 640 704 768 832 896 960 1024

M
u

lt
ip

ro
c
e
s
s
o

r
W

a
rp

O

c
c
u

p
a
n

c
y
(#

 w
a
rp

s
)

Threads Per Block

Impact of Varying Block Size

51

Table 0.18 Occupancy information of the problem with 2000 cities

RESOURCE USAGE:

Threads Per Block 1024 512 256 128

Registers Per Thread 20 20 20 20

Shared Memory Per Block (bytes) 20012 20012 20012 20012

GPU OCCUPANCY DATA:

Active Threads per Multiprocessor 2048 1024 512 256

Active Warps per Multiprocessor 64 32 16 8

Active Thread Blocks per Multiprocessor 2 2 2 2

Occupancy of each Multiprocessor 100% 50% 25% 13%

Table 0.19 Predicted best kernel launches vs. observed best kernel launches for TSP

with 2000 cities

Predicted best kernel
launches

Observed best launches

Block
Dim.

Grid
Dim.

of
iterations

Block
Dim.

Grid
Dim.

of
iterations

kernel
time
(ms)

Minimized
cost

of
2-opt

iterations

CPU+GPU
time (ms)

1024 2 977 1024 2 977 3 60926 2166 7099

512 4 977 512 2 1953 5 61120 2164 11654

256 8 977 256 2 3905 10 61336 2128 21832

128 16 977 128 2 7809 19 61359 2129 42611

4.3 Sequential vs. Parallel 2-opt Performance

Table 4.15 compares the performances of sequential and parallel 2-opt algorithms for

different sized TSP problems. As can be observed that parallel 2-opt algorithm is much

faster than sequential one.

52

Table 0.20 Comparing sequential and parallel 2-Opt algorithm performances

 Sequential 2-opt algorithm Parallel 2-opt algorithm

No of
Nodes

Initial
tour cost

Total
time
(ms)

No of
2-opt

iterations

Minimized
cost

Total time
(CPU+GPU)

(ms)

No of
2-opt

iterations

Minimized
cost

500 380825 253 541 16117 181 533 16278

1000 807793 5512 1081 34448 1096 1094 35985

2000 1705333 79233 2219 61279 7099 2166 60926

3000 3020898 315715 3292 91778 50754 3268 91132

4000 4535148 1287758 4470 121050 93671 4450 121396

4.4 Algorithm Modification to Solve Large Sized Travelling Salesman Problems

Maximum number of cities that can be stored in the shared memory was 4915 in the

previous algorithm and the algorithm was not performing accurately when the problem

size exceeded 4915. In order to solve bigger problems, previous algorithm will be

modified. Looking through earliest formed CUDA code in Appendix C can provide

better understanding about modifications.

4.4.1 First Step: Decreasing Shared Memory Usage for Each City

To save more space in the shared memory, the city coordinates will be sent to kernel in

the tour’s order instead of sending the tour order and city coordinates separately. As the

tour order will not be stored in the shared memory anymore, solvable problem size will

increase to
𝑠ℎ𝑎𝑟𝑒𝑑 𝑚𝑒𝑚𝑜𝑟𝑦

𝑚𝑒𝑚𝑜𝑟𝑦 𝑢𝑠𝑒𝑑 𝑡𝑜 𝑠𝑡𝑜𝑟𝑒 _𝑜𝑜𝑟𝑑𝑖𝑛𝑎𝑡𝑒𝑠 𝑜𝑓 𝑎 𝑐𝑖𝑡𝑦
=

49152 𝑏𝑦𝑡𝑒𝑠

8 𝑏𝑦𝑡𝑒𝑠
= 6144.

Modifications in the Host Code

A new array called “orderedCoords” which will store the city coordinates in the tour

order will be created and before each kernel launch it will be updated with the new

order of city coordinates as in the Figure 4.12.

53

Figure 0.24 Storing the coordinates in the tour order

Modifications in the Kernel Code

As indicated in Figure 4.13, only the array of “orderedCoords” will be stored in the

shared memory, instead of “Coords” and “Tour”. Thus, the “change” formula will also

be modified.

Note: Commented rows in the Figure show the code before modification.

Figure 0.25 The modifications in the kernel code for big sized problems

54

4.4.2 Second Step: Dividing Problem into Sub Problems

In order to increase solvable problem size further, city coordinates will be divided into

partitions as can fit into shared memory and each partition will be sent to kernel

sequentially.

In Table 4.16, the method for dividing coordinates is illustrated for a TSP with 9000

cities. To simplify calculations we will suppose that shared memory can store maximum

6000 cities. The size of partitions should be 6000 and each partition should include

different combinations of city coordinates. In order to provide these combinations there

should be two arrays of city coordinates (coordinates A and B) consisting of 3000 nodes

in one array. Then for each partition the cities in these different arrays will be combined

and 2-opt search will be applied to these combinations. The number of partitions will

change with the number of cities in the problem. For 9000 nodes, there are three

possible arrays of coordinates which are (6000,9000], (3000,6000] and (0,3000].
3×4

2
=

6different combinations of these arrays accompany 6 partitions. Apparently, parallelism

will be managed only within partitions, but not among partitions. In other words,

partitions will be sent to kernel sequentially. For example, the second partition will be

sent to kernel after the computations are performed on partition one.

Table 0.21 Division scheme of coordinates for the problem with 9000 cities

Partitions Coordinates A Coordinates B

1 (6000,9000] (0,3000]

2 (3000,6000] (0,3000]

3 (0,3000] (0,3000]

4 (6000,9000] (3000,6000]

5 (3000,6000] (3000,6000]

6 (6000,9000] (6000,9000]

As can be realized, the range of array coordinates A corresponds to “i” values in the

kernel and the range of array coordinates B corresponds to “j” values. Thus in Partition

1, possible exchange effects between the cities in the range of “i= [6000, 9000]” and “j=

[0, 3000]” are computed. As soon as kernel finishes its search in these 2 ranges

combination, the city coordinates belongs to Partition 2 are sent to kernel. Then the

possible exchange effects between the cities in the range of “i= [3000, 6000]” and “j=

55

[0, 3000]” are computed. After all the six partitions has been sent to the kernel, the

necessary 2-opt exchange which decreases the tour cost most is performed and the same

process is applied to the new tour.

To clarify the discussed method, it will be applied to a small sized example, which we

analyzed before (see Example 4.1), assuming that the shared memory can have

maximum 6 cities. Division of the city coordinates into partitions is illustrated in Table

4.17.

Table 0.22 Division scheme of coordinates for the problem in Example 4.1

(9 cities-45 possible exchanges)

Partitions Coordinates A Coordinates B

1 (6,9] (0,3]

2 (3,6] (0,3]

3 (0,3] (0,3]

4 (6,9] (3,6]

5 (3,6] (3,6]

6 (6,9] (6,9]

Exchanges performed sequentially are represented by different colors in Table 4.18.

Jobs/exchanges belongs to the same partition are performed in parallel. It means that to

complete one 2-opt search through all cities, 6 different city combinations (partitions)

should be transferred to kernel and kernel should be called 6 times. There is a strong

possibility that these sequential processes will extend the execution time of the

algorithm.

56

Table 0.23 Calculated edge exchange effects depending on the coordinate ranges sent to

kernel (see Example 3.1)

 i
j

1 2 3 4 5 6 7 8 9

1

2
Part. 3
Id = 0
(2; 1)

3
Part. 3
Id=1
(3; 1)

Part. 3
Id=2
(3; 2)

4
Part. 2
Id=3
(4; 1)

Part. 2
Id=4
(4; 2)

Part. 2
Id=5
(4; 3)

5
Part. 2
Id=6
(5; 1)

Part. 2
Id=7
(5; 2)

Part. 2
Id=8
(5; 3)

Part. 5
Id=9
(5; 4)

6
Part. 2
Id=10
(6; 1)

Part. 2
Id=11
(6; 2)

Part. 2
Id=12
(6; 3)

Part. 5
Id=13
(6; 4)

Part. 5
Id=14
(6; 5)

7

Part. 1
Id=15
(7; 1)

Part. 1
Id=16
(7; 2)

Part. 1
Id=17
(7; 3)

Part. 4
Id=18
(7; 4)

Part. 4
Id=19
(7; 5)

Part. 4
Id=20
(7; 6)

8
Part. 1
Id=21
(8; 1)

Part. 1
Id=22
(8; 2)

Part. 1
Id=23
(8; 3)

Part. 4
Id=24
(8; 4)

Part. 4
Id=25
(8; 5)

Part. 4
Id=26
(8; 6)

Part. 6
Id=27
(8; 7)

9
Part. 1
Id=28
(9; 1)

Part. 1
Id=29
(9; 2)

Part. 1
Id=30
(9; 3)

Part. 4
Id=31
(9; 4)

Part. 4
Id=32
(9; 5)

Part. 4
Id=33
(9; 6)

Part. 6
Id=34
(9; 7)

Part. 6
Id=35
(9; 8)

10
Part. 1
Id=36
(10; 1)

Part. 1
Id=37
(10; 2)

Part. 1
Id=38
(10; 3)

Part. 4
Id=39
(10; 4)

Part. 4
Id=40
(10; 5)

Part. 4
Id=41
(10; 6)

Part. 6
Id=42
(10; 7)

Part. 6
Id=43
(10; 8)

Part. 6
Id=44
(10; 9)

Number of sequential processes will rise with the increasing size of the problem.

Sequential processes can be calculated via following formula:

𝑛𝑜𝑜𝑓𝑑𝑖𝑓𝑓𝑒𝑟𝑒𝑛𝑡𝑟𝑎𝑛𝑔𝑒𝑠 =

𝑁𝑢𝑚𝑏𝑒𝑟𝑜𝑓𝑛𝑜𝑑𝑒𝑠/𝑐𝑖𝑡𝑖𝑒𝑠

(𝑠ℎ𝑎𝑟𝑒𝑑𝑚𝑒𝑚𝑜𝑟𝑦𝑐𝑖𝑡𝑦𝑠𝑡𝑜𝑟𝑎𝑔𝑒𝑐𝑎𝑝𝑎𝑐𝑖𝑡𝑦 2)⁄

 (4.6)

𝑛𝑜𝑜𝑓𝑝𝑎𝑟𝑡𝑠 =

𝑛𝑜𝑜𝑓𝑑𝑖𝑓𝑓𝑒𝑟𝑒𝑛𝑡𝑟𝑎𝑛𝑔𝑒𝑠 ∗ (𝑛𝑜𝑜𝑓𝑑𝑖𝑓𝑓𝑒𝑟𝑒𝑛𝑡𝑟𝑎𝑛𝑔𝑒𝑠 + 1)

2

 (4.7)

Numbers of sequential processes of some different large sized problems are illustrated

in Table 4.19. In despite of many sequential processes in a problem with 60000 cities, it

is absolutely better than operating all
60000×60001

2
= 1800030000 jobs sequentially.

57

Table 0.24 Calculation of sequential processes for several sized problems

 9000 cities 15000 cities 30000 cities 60000 cities

Number of
different
ranges/arrays

9000

(6000 2)⁄
= 3

15000

(6000 2)⁄
= 5

30000

(6000 2)⁄
= 10

60000

(6000 2)⁄
= 20

Number of
partitions
(different
combinations
of city ranges)

3 × 4

2
= 6

5 × 6

2
= 15

10 × 11

2
= 55

20 × 21

2
= 210

Modifications in the Device Code

 The “distance” function should be modified like in Figure 4.14.

Figure 0.26 Modification of the distance function for divided coordinates

Modifications in the Host Code

Two device arrays should be defined for coordinates A and coordinates B. Then the

ordered coordinates should be copied to these arrays piece by piece. The code in Figure

4.15 generates all the possible range combinations via a, a_end, b, b_end variables. For

the problem with 9000 cities, in the first loop “a” and “a_end” consecutively represent

the beginning and the ending of the city range A in Partition 1. Similarly “b” and

“b_end” consecutively represent the beginning and the ending of the city range B in

Partition 1 (see Table 4.19). After the city coordinates in Partition 1 has been transferred

to the last defined arrays and kernel has performed its jobs on them, the coordinates in

the Partition 2 are copied to these arrays and kernel is invoked again. Until 6 parts are

transferred to kernel, this process is repeated.

58

Figure 0.27 Additional code in the host code to divide coordinates

Note: “half_sm_capacity” represents the size of defined arrays for coordinates A and

coordinates B. “half_sm_capacity” is equal to half of the shared memory capacity which

is 3000.

Modifications in the Kernel Code

Figure 4.16illustrates several modifications in the kernel code. Shared memory should

be allocated for two arrays which represent coordinates of A and coordinates of B. Then

the elements of ordered coordinates of A and B should be transferred the arrays in the

shared memory.

59

Figure 0.28 Modification in kernel code for divided coordinates

Because “i” and “j” values are produced according to the number of cities, “i” should be

restricted with the bounds of array “coordinates A” and “j” should be restricted with the

bounds of array “coordinates B”. Thus, there is an additional “if” condition in order to

control this. Moreover, while transferring the specific range of the data in the array of

“orderedCoords” into the array of “orderedCoordsA” the indices of each element in the

first array decreases as “a” unit. Therefore “a” is extracted from i and “b” is extracted

from j in the formula of “change”.

 Experimental Results for Big Sized Problems

Table 4.20 summarizes the best performances for each group when the problem size is

“6000” and “15000”. Substantial increase in the problem size created shared memory

restriction in each group. Because shared memory allowed only 1 active block, first

group which has more threads in its single block compared to others, performed best

performance. Although none of the groups manage to utilize all warps in the SMX, the

first group with the highest occupancy performed better.

60

Table 0.25 Predicted best kernel launches vs. observed best kernel launches for TSP

with 6000 and 15000 cities

CITIES:6000 EXCHANGES: 18003000 CITIES: 15000 EXCHANGES: 1112507500

Predicted best
kernel launches

Observed best launches Predicted best
kernel launches

Observed best launches

Bloc
k

Dim

Grid
Dim

iters
Bloc

k
Dim

Gri
d

Dim
iters

kerne
l time
(ms)

Bloc
k

Dim

Gri
d

Dim
iters

Bloc
k

Dim

Gri
d

Dim
iters

kerne
l time
(ms)

1024 2 8791 1024 1
1758

2 61 1024 2
5493

6 1024 1
10987

1 1172

512 4 8791 512 1
3516

3 117 512 4
5493

6 512 1
21974

1 2216

256 8 8791 256 1
7032

5 230 256 8
5493

6 256 1
43948

3 4369

4.5 2-Opt Algorithm with Initial Solution

We thought that starting 2-opt algorithm with a good solution can decrease the number

of 2-opt iterations and accordingly shorten the total time of the algorithm. Because of

this reason, we applied nearest neighborhood search to obtain an initial solution with

good quality. Table 4.21provides an overview of comparisons betweenalgorithm with a

good initial solution and algorithm with a naive initial solution. Experimental results in

the table are in line with our expectations. Qualified initial solution decreased the

number of 2-opt iterations. Therefore it decreased the total time (CPU+GPU time) of

the algorithm although nearest neighborhood search is sequentially applied in CPU.

61

Table 0.26 Algorithm performances with a naive initial solution vs. with a good initial

solution

Naive Initial Solution

Nearest Neighborhood Initial Solution

N
o

 o
f

N
o

d
e

s

In
it

ia
l C

o
st

M
in

im
iz

e
d

 C
o

st

N
o

 o
f

2
-o

p
t

it
e

ra
ti

o
n

s

Ti
m

e
 (

C
P

U
+G

P
U

)

In
it

ia
l C

o
st

M
in

im
iz

e
d

 C
o

st

N
o

 o
f

2
-o

p
t

it
e

ra
ti

o
n

s

Ti
m

e
 (

C
P

U
+G

P
U

)

500 380825 16278 533 181 278155 15707 417 173(ms)

1000 807793 35985 1094 1096 643904 39763 867 970(ms)

2000 1705333 60926 2166 7099 1486417 60521 1877 6276(ms)

2500 2348116 78383 2772 23011 1894196 77113 2273 19449(ms)

3000 3020898 91132 3268 50754 2622620 89700 2847 34611(ms)

3500 3774387 105356 3883 62493 3479454 103951 3396 55915(ms)

4000 4535148 121946 4462 93820 4224065 120219 3812 81460(ms)

LARGE SIZE DATA

6000 31433083 10480046 1554 95925 24711210 8559520 1212 74821(ms)

9000 47099249 15206013 2362 493356 37822521 12344314 1876 392864(ms)

4.6 3-Opt Algorithm

3-opt algorithm is quite similar to 2-opt algorithm. The only difference is that 3 edges

will be cut and reconnected this time. Figure 4.17 illustrates one 3-opt move.

 Figure0.293-opt exchange

62

Rocki and Suda obtained the 3-opt formulas in similar way to previous one. Because

there are 3 edge exchanges in 3-opt, there should be a new id of “k” in addition to “i”

and “j”. Table 4.22 demonstrates the id combinations for some of possible 3-opt edge

exchange combinations. In this Table, the values in each cell consecutively represent

the ids of “i”, “j” and “k”. Considering that in this table there are
𝑛∗(𝑛+1)∗(𝑛+2)

6

elements up to and including nth row, Rocki and Suda proposed the Formula 4.8 for “i”.

𝑛 {𝑖} = √3 ∗ 𝑖𝑑 + √9 ∗ 𝑖𝑑2 −
1

9

3

+ √3 ∗ 𝑖𝑑 − √9 ∗ 𝑖𝑑2 −
1

9

3

+ 1 (4.8)

Table 0.27 Possible edge exchanges for 3-opt

2,1,0

3,1,0 3,2,0 3,2,1

4,1,0 4,2,0 4,2,1 4,3,0 4,3,1 4,3,2

5,1,0 5,2,0 5,2,1 5,3,0 5,3,1 5,3,2 5,4,0 5,4,1 5,4,2 5,4,3

We achieved the formula of “j” based on “i” and job ids. (see Formula 4.9)

𝑗 =
3 + √8 ∗ (𝑖𝑑 −

𝑖 ∗ (𝑖 − 1) ∗ (𝑖 − 2)
6) + 1

2

 (4.9)

Based on “i”, “j” and job ids, we obtained the Formula 4.10 for “k”.

𝑘 = 𝑖𝑑 −

𝑖 ∗ (𝑖 − 1) ∗ (𝑖 − 2)

6
−

𝑗 ∗ (𝑗 − 1)

2

 (4.10)

Exception: The formulas above don’t work accurately when id is equal to “0”. We

specified an “if” condition to solve this problem.

Note that “i”, “j” and “k” values should be rounded down to acquire integer values.

As an example these formulas are applied to a 3-opt exchange below:

If id=2 𝑖 = √3 ∗ 2 + √9 ∗ 22 − 1/9
3

+ √3 ∗ 2 − √9 ∗ 22 − 1/9
3

+ 1= 3,49888 ≅ 3

63

 𝑗 =
3 + √8 ∗ (2 −

3 ∗ 2 ∗ 1
6

) + 1

2
= 2 𝑎𝑛𝑑 𝑘 = 2 −

3 ∗ 2 ∗ 1

6
−

2 ∗ 1

2
= 0

Although these formulas give the accurate results up to some point, the formula of i

starts to be problematic at id 454. Because “j” and “k” values depend on i, their

formulas also don’t work. They cannot even produce any number because of inaccurate

“i” values. We solved this issue fixing the formula of “i”.

As seen in Table 4.22,

There are
𝐷∗(𝑛+1)∗(𝑛+2)

6
 elements up to and including nth row.

Since
1∗2∗3

6
= 1, in the first row there should be one“2”

Since
2∗3∗4

6
−

1∗2∗3

6
= 3, in the second row there should be three “3”

Since
 3∗4∗5

6
−

2∗3∗4

6
= 6, in the third row there should be six “4”

Since
13∗14∗15

6
−

12∗13∗14

6
 = 91, in the 13th row there should be ninetyone“14”. However,

the problematic id 454, which is in the 13th row, gives the result as 15 when unrevised

formula of “i” is applied. This situation leads to inaccurate “j” and “k” values. Similarly

formula doesn’t give the correct results for 559th, 679th, 815th, 968th and some other

indexes. It causes more missing results in the further indexes as illustrated in Table

4.23. This table includes some sample ids in which the formula produces inaccurate “i”

values. The first two rows of this table show that the “i” values that should be produced

in specific id gaps and the third row demonstrates the ids which gives inaccurate “i”

values. For example, 6th column of the table explains that starting from id 3276 up to

and including id 3653, “I” should be generated as “28”. However, 3652th and 3652th ids

do not produce that value.

Table 0.28 Some problematic ids stem from the unrevised formula

id range [364,454] [455,559] [560,679] [680,815] [816,968] [3276,3653] [30856,32508]

i 14 15 16 17 18 28 58

problematic ids 454 559 679 815 968 3652,3653
32505,32506

32507,32508

Thus, we modified the formula of “i” as follows:

64

 𝑖𝑛𝑡𝑒𝑔𝑒𝑟 𝑖 = √3 ∗ 𝑖𝑑 + √9 ∗ 𝑖𝑑2 − 1/9
3

+ 1

Some of the generated “i”, “j” and “k” values through revised formula can be observed

in the left Partition of Table 4.24. As realized some of the results are inaccurate, but at

least “j” and “k” produce some values based on the “i” values obtained from the new

formula. Thus, inaccurate results are controlled through a simple “if” statement. In the

right Partition of the table, the corrected results are demonstrated. If “i” and “j” values

are equal to each other, “i” value is incremented 1 unit and then using this updated “i”

value “j” and “k” are calculated again.

Table 0.29 Results after fixing formula of “i”

Results of revised formula Results after control statement

id i j k i j k

1 2 2 0 3 1 0

2 3 2 0 3 2 0

3 3 2 1 3 2 1

4 3 3 0 3 1 0

5 4 2 0 4 2 0

6 4 2 1 4 2 1

7 4 3 0 4 3 0

8 4 3 1 4 3 1

9 4 3 2 4 3 2

10 4 4 0 4 1 0

65

5 CONCLUSION AND FUTURE RESEARCH

In this study we aimed to give some insights about parallelization strategies in CUDA

and propose some methods to utilize GPU resources in a most advantageous way.

Considering the parallelization approaches of Rocki and Suda (2012), best improvement

2-opt and 3-opt local search algorithms were accelerated for solving Travelling

Salesman Problem. Process of searching neighborhood which means calculating the

effect of each possible edge exchange in the tour made in parallel. We performed

detailed performance analysis on 2-opt search algorithm configuring kernel parameters

in different ways. The best performances are obtained when all resident warps in SMX

are utilized which provides 100% occupancy of device. However shared memory

started to restrict the usage of all possible active warps in SMX with the growing size of

the problem. In this situation the best strategy was utilizing all resident warps that

shared memory allows. To sum up, we should keep the warps in device busy as far as

possible which provides thread level parallelism. If the number of edge exchanges is

greater than the total number of threads in launched warps, all exchange effect

calculations should be distributed among the launched threads equally. It means that one

thread will perform more than one exchange effect calculation concurrently and this

accompanies iteration level parallelism. In implemented algorithm after exploiting

thread level parallelism by increasing occupancy until possible highest level, iteration

level parallelism should be applied. For large sized problems fast on-chip shared

memory wasn’t enough to store all city coordinates. Thus, the coordinates are divided

into partitions with the proposed technique of Rocki and Suda (2013). Moreover we

compared the 2-opt algorithm with a nearest neighborhood initial solution and with a

naive initial solution. We observed that qualified initial solution decreased the number

of 2-opt iterations and correspondingly decreased the total time (CPU+GPU) of the

algorithm although nearest neighborhood search is sequentially applied in CPU. Lastly

we modified the 3-opt formula proposed by Rocki and Suda (2012). Although it was

working for many index calculations, it was giving inaccurate results for some of them.

66

In addition to 2-opt and 3-opt search methods we also accelerated exchange of two

nodes and relocate algorithms in similar way. In the future, by combining all algorithms

in this study we are planning to implement Variable Neighborhood Search on

Travelling Salesman Problem to get solutions with better quality. As can be observed, at

some point the search method used cannot improve the tour cost further. In order to

approach optimal solution more, we will switch into another search method which can

improve the current solution. We will combine several methods and try to find the best

combination method with regards to time and solution performance. Because GPU has

peak performances, one may want to reach better solutions in a bit more time and

variable neighborhood can help to get them.

67

APPENDICES

Appendix A: 2-Opt Algorithm Results for Different Kinds of Resource Allocations

TableError! No text of specified style in document.-1 2-opt performance for a TSP

tour with 500 cities

Block
Dimension

Grid
Dimension

Number of
Iterations

GPU
Time (ms)

Minimized
Cost

Number Of 2-Opt
Iterations

CPU + GPU
Time (ms)

1024 122 1 0.369 16298 530 428

1024 61 2 0.295 16304 529 354

1024 2 61 0.205 16278 533 181

1024 1 122 0.333 16148 543 318

512 244 1 0.348 16304 529 264

512 122 2 0.281 16304 529 222

512 4 61 0.212 16298 529 189

512 2 122 0.334 16304 529 249

512 1 244 0.635 16304 529 425

256 488 1 0.366 16304 529 371

256 244 2 0.280 16304 529 301

256 122 4 0.246 16304 529 337

256 8 61 0.209 16193 539 318

256 4 122 0.335 16304 529 267

256 1 488 1.246 16304 529 888

128 975 1 0.624 16304 529 422

128 488 2 0.458 16304 529 423

128 244 4 0.386 16304 529 342

128 122 8 0.353 16304 529 319

128 16 61 0.342 16196 538 313

128 8 122 0.337 16304 529 327

128 1 975 2.469 16304 529 1426

68

Table Error! No text of specified style in document.-2 2-opt performance for a TSP

tour with 1000 cities

Block
Dimension

Grid
Dimension

Number of
Iterations

Kernel
Time (ms)

Minimized
Cost

Number Of 2-Opt
Iterations

CPU + GPU
Time (ms)

1024 484 1 1.556 36193 1091 1914

1024 244 2 1.220 34547 1081 1539

1024 122 4 1.024 34370 1084 1357

1024 61 8 0.921 34546 1082 1201

1024 2 242 0.776 35985 1094 1096

1024 1 484 1.310 36188 1092 1667

512 967 1 1.645 36534 1090 2078

512 488 2 1.216 34547 1081 1592

512 244 4 1.008 34499 1088 1381

512 122 8 0.909 34546 1081 1206

512 61 16 0.869 34691 1074 1234

512 4 242 0.791 36197 1090 1067

512 2 484 1.309 36193 1091 1682

512 1 967 2.515 36539 1090 3021

256 1934 1 2.969 36544 1089 3473

256 967 2 2.129 36543 1091 2518

256 488 4 1.743 34576 1083 2098

256 244 8 1.547 34546 1082 1860

256 122 16 1.453 34691 1074 1770

256 61 32 1.422 34455 1075 1739

256 8 242 1.311 36503 1080 1770

256 4 484 1.309 36193 1091 1742

256 1 1934 4.964 36544 1089 5569

128 3868 1 6.625 36539 1090 7475

128 1934 2 4.548 36548 1090 5227

128 975 4 3.588 34395 1083 4082

128 488 8 3.069 34546 1082 3534

128 244 16 2.796 34691 1074 3259

128 122 32 2.697 34455 1075 3099

128 16 242 2.535 36404 1085 3004

128 8 484 2.529 36000 1093 3017

128 4 967 2.515 36544 1089 3036

128 1 3868 9.866 36544 1089 10896

69

Table Error! No text of specified style in document.-3 2-opt performance for a TSP

tour with 1500 cities

Block
Dimension

Grid Dimension
Number of
Iterations

GPU
Time (ms)

Minimized
Cost

Number Of
2-Opt Iterations

CPU + GPU
Time (ms)

1024 1098 1 3.963 47202 1639 6863

1024 488 3 2.787 47587 1646 4596

1024 244 5 2.326 47173 1646 4167

1024 61 18 1.939 47542 1635 3483

1024 2 549 1.739 47585 1645 3262

1024 1 1098 2.944 47715 1643 5170

512 2196 1 4.824 47297 1654 8411

512 1098 2 3.510 47431 1646 6128

512 488 5 2.776 47171 1647 4966

512 244 9 2.475 47599 1630 4376

512 61 36 2.254 47312 1635 4055

512 4 549 3.005 47513 1636 5329

512 3 732 2.125 47293 1657 3935

512 2 1098 2.947 47715 1643 5224

512 1 2196 5.697 47297 1654 9662

256 4392 1 10.927 47297 1654 18436

256 2196 2 7.090 47431 1646 12171

256 1098 4 5.494 47173 1642 9269

256 488 9 4.546 47599 1630 7827

256 244 18 4.266 47624 1629 7270

256 61 72 4.060 47249 1637 7007

256 8 549 4.328 47615 1570 7067

256 4 1098 5.695 47592 1642 9594

256 3 1464 3.851 47297 1657 6693

256 1 4392 11.244 47297 1654 18729

128 8784 1 24.467 47297 1654 40994

128 4392 2 15.982 47466 1644 26675

128 2196 4 11.861 47173 1642 19753

128 1098 8 9.663 47247 1634 16168

128 488 18 8.568 47532 1633 14249

128 244 36 8.053 47312 1635 13489

128 61 144 7.885 47455 1650 13323

128 16 549 8.479 47603 1580 13610

128 8 1098 8.472 47511 1651 14244

70

128 3 2928 7.515 47604 1643 12655

128 1 8784 23.458 47297 1654 38780

Table Error! No text of specified style in document.-4 2-opt performance for a TSP

tour with 2000 cities

Block
Dimension

Grid
Dimension

Number of
Iterations

GPU
Time (ms)

Minimized
Cost

Number Of 2-Opt
Iterations

CPU + GPU
Time (ms)

1024 1953 1 8.025 61999 2136 17532

1024 977 2 5.552 61240 2171 12537

1024 488 5 4.428 61391 2159 10059

1024 244 9 3.839 60869 2179 8830

1024 61 33 3.309 61266 2140 7466

1024 2 977 3.093 60926 2166 7099

1024 1 1953 5.224 61359 2129 11477

512 3905 1 14.766 60768 2214 33141

512 1953 2 10.097 61913 2134 21924

512 977 4 7.655 61156 2161 17125

512 488 9 6.470 60967 2194 14658

512 244 17 5.885 60918 2182 13285

512 61 65 5.490 61183 2171 12274

512 4 977 5.265 60698 2194 11811

512 2 1953 5.216 61120 2164 11654

512 1 3905 10.109 61336 2128 21763

256 7809 1 30.611 61956 2137 65936

256 3905 2 20.495 61913 2134 44092

256 1953 4 15.229 61253 2136 33095

256 977 8 12.685 61226 2135 27616

256 488 17 11.497 61320 2158 25176

256 244 33 10.810 61337 2137 23334

256 122 65 10.467 61510 2149 22777

256 8 977 10.144 60758 2205 22611

256 4 1953 10.091 61276 2187 22418

256 2 3905 10.090 61336 2128 21832

256 1 7809 20.026 60941 2169 43408

128 15618 1 76.194 61956 2137 163289

128 7809 2 48.314 61913 2134 103469

128 3905 4 34.036 61253 2136 73465

128 1953 8 27.173 61021 2156 58938

128 977 16 23.616 60942 2196 52301

71

128 488 33 21.830 61339 2134 46835

128 244 65 20.933 61510 2149 45153

128 122 129 20.351 61106 2176 44535

128 16 977 21.984 61144 2170 42611

128 2 7809 19.897 61359 2129 42611

128 1 15618 39.655 61359 2129 84226

Appendix B: Results for2-Opt Large Sized Data and 3-opt Algorithms

Table Error! No text of specified style in document.-5Best 2-Opt Results for Large-

Sized Data

of Cities Block Dim Grid Dim iters kernel time (ms)

6000 1024 1 17582 71.420

15000 1024 1 109871 1588.713

30000 1024 1 439468 21681.576

45000 1024 1 988792 104357.210

60000 1024 1 1757842 321000.937

Table Error! No text of specified style in document.-6 3-Opt Results for Different

Sized Data

of Cities kernel time (ms) Minimized Cost
Number Of 2-Opt

Iterations
CPU + GPU
Time (ms)

100 5 5242 83 396

200 19 7969 175 2318

300 33 10333 270 8714

400 61 12960 342 21012

500 103 15998 466 50732

600 175 18909 557 100612

700 270 22783 632 176567

800 358 25945 731 270441

900 502 28570 836 437143

72

1000 631 34945 963 630951

Appendix C : CUDA Code

//KERNEL FUNCTION (DEVICE CODE)

__global__ void kernel(unsigned short *tour, city_coords * coords, int * global_min,

int * index, unsigned intnoOfNodes, unsigned intnoOfSwaps, unsigned intiter)

{

//variable for the ids of threads launched in SM

intidx=blockDim.x*blockIdx.x + threadIdx.x;

//the number of threads in SM

registerintpackSize = blockDim.x*gridDim.x;

registerint i, j, change, id;

register intlocal_min_change = 0;

//Allocating shared memory for tour order and city coordinates.

__shared__ unsigned short t[noOfNodes+1];

__shared__ city_coords c[noOfNodes+1];

//transferring elements of the tour order and city coordinates to shared memory

for(int i= threadIdx.x; i<noOfNodes; i+= blockDim.x)

{ t[i] = tour[i];

c[i] = coords[i]; }

t[noOfNodes]= tour[noOfNodes];

__syncthreads();

//loop to assign multiple jobs to a thread

for(register int no=0; no<iter; no++)

{

//Calculating the ids of total jobs

id = idx + no*packSize;

if(id<noOfSwaps)

{

//calculating the index of the all possible node pairs

i=int(3+sqrtf(8.0f*(float)id+1.0f))/2;

j=id-(i-2)*(i-1)/2+1;

//Calculating the edge exchange effect for each node pair in parallel

change = distance(t[i],t[j],c) + distance(t[i-1],t[j-1],c) - distance(t[i-1],t[i],c)

 - distance(t[j-1],t[j],c);

73

//Finding the minimum change among all possible exchanges

if(change<local_min_change)

{

local_min_change = change;

atomicMin(&global_min[0], change);

}

//finding the index of the minimum change

if(change == global_min[0])

index[0] = id;

}

}

}

// HOST CODE

constintnoOfNodes;

unsignedintnoOfSwaps = noOfNodes*(noOfNodes-1)/2;

unsignedintiter;

unsigned short * tour = new unsigned short[(noOfNodes+1)];

city_coords *coords = (city_coords*)malloc(sizeof(city_coords)*noOfNodes);

int * tour_cost = new int[1];

int *global_min = new int[1];

int * index = new int[1];

// defining device variables and arrays

unsigned short * d_tour;

city_coords *d_coords;

int * device_global_min;

int * device_index;

//allocating device memory for the device variables and arrays

cudaMalloc((void**) &d_tour, sizeof(unsigned short)*(noOfNodes+1)) ;

cudaMalloc((void**) &d_coords, sizeof(city_coords)*noOfNodes);

cudaMalloc((void**) &device_global_min, sizeof(int)*1) ;

cudaMalloc((void**) &device_index, sizeof(int)*1) ;

//reading the city coordinates from the “.txt” file

intvertex_sentinel = 0;

while (vertex_sentinel<noOfNodes)

{

DataFile>>vertex;

DataFile>>coord_x;

DataFile>>coord_y;

coords[vertex-1].x=coord_x;

coords[vertex-1].y=coord_y;

vertex_sentinel++;

 }

//transferring the city coordinates from host to device

cudaMemcpy(d_coords, coords, sizeof(city_coords)*noOfNodes, cudaMemcpyHostToDevice);

// storing current order of travelling salesman tour into the tour order array.

for(int i=0; i<noOfNodes; i++)

{ tour[i]=i; }

tour[noOfNodes] =0;

74

tour_cost[0] = 0;

for(int i=0; i<noOfNodes; i++)

tour_cost[0] = tour_cost[0] + dist(tour[i], tour[i+1],coords);

// configuring the block dimension, grid dimension, number of iterations.

intblockDimX = ;

intgridDimX = ;

iter = ;

global_min[0]=-1;

//call kernel function as long as there is an improvement in the current tour cost

while(global_min[0] < 0)

{

count = count +1 ;

global_min[0] = 0;

index[0] =0;

//Transferring the minimum change and current tour order from host to device.

cudaMemcpy(device_global_min,global_min,sizeof(int),cudaMemcpyHostToDevice);

cudaMemcpy(d_tour,tour,sizeof(unsigned short)*(noOfNodes+1),cudaMemcpyHostToDevice);

//Invoking the kernel function

kernel<<<gridDimX,blockDimX>>>(d_tour,d_coords,device_global_min,device_index,

noOfNodes, noOfSwaps,iter);

//Host Code Continued

// Transferring the minimum “change” value and the index of it from device to host.

cudaMemcpy(global_min, device_global_min, sizeof(int)*1, cudaMemcpyDeviceToHost);

cudaMemcpy(index, device_index, sizeof(int)*1, cudaMemcpyDeviceToHost);

//Performing the edge exchange in the current tour according to the index

int id = index[0];

int i=int(3+sqrtf(8.0f*(float)id+1.0f))/2;

int j=id-(i-2)*(i-1)/2+1;

int swap2 = i-1;

int swap1 = j;

while(swap1 != swap2 && swap1<swap2)

{

int a = tour[swap1];

tour[swap1] = tour[swap2];

tour[swap2]= a;

swap1++;

swap2--;

}

75

BIBLIOGRAPHY

Brodtkorb, A. R., Hagen, T. R., Schulz, C., &Hasle, G. (2013).GPU computing in

discrete optimization.Partition I: Introduction to the GPU. EURO Journal on

Transportation and Logistics, 2(1-2), 129-157.

Christopher Coopern (2011), “GPU Computing with CUDA Lecture 2 - CUDA

Memories”, http://www.bu.edu/pasi/files/2011/07/Lecture2.pdflast, accessed on July

2013

Coelho, I. M., Ochi, L. S., Munhoz, P. L. A., Souza, M. J. F., Farias, R., &Bentes, C.

(2012).The single vehicle routing problem with deliveries and selective pickups in a

CPU-GPU heterogeneous environment. In High Performance Computing and

Communication & 2012 IEEE 9th International Conference on Embedded Software and

Systems (HPCC-ICESS), 2012 IEEE 14th International Conference on (pp. 1606-1611).

IEEE.

Cornell University Virtual Workshop, “Introduction to GPGPU and CUDA

Programming” https://www.cac.cornell.edu/vw/gpu/structure.aspx, accessed on July

2013

https://en.wikipedia.org/wiki/2-opt, accessed on July 2013

Janiak, A., Janiak, W. A., & Lichtenstein, M. (2008).Tabu Search on GPU. J.

UCS, 14(14), 2416-2426.

Kirk, D. B., & Wen-mei, W. H. (2012). Programming massively parallel processors: a

hands-on approach.Newnes.

76

NVIDIA CUDA Programming Guide, “Compute Capabilities”

http://docs.nvidia.com/cuda/cuda-c-programming-guide/index.html#compute-

capabilities, last accessed on July 2013

Nvidia, C. (2012). NVIDIAs next generation CUDA compute architecture: Kepler

GK110. Technical report.

O’neil, M. A., Tamir, D., &Burtscher, M. (2011, July).A parallel gpu version of the

traveling salesman problem. In 2011 International Conference on Parallel and

Distributed Processing Techniques and Applications (pp. 348-353).

Oracle Corporation, http://docs.oracle.com/cd/E19455-01/806-5257/mtintro-

6/index.html, last accessed on July 2013

Oxford University, “GPU Parallelizable Methods”, http://www.oxford-

man.ox.ac.uk/gpuss/simd.html, last accessed on July 2013

Prinslow, G. (2011). Overview of Performance Measurement and Analytical Modeling

Techniques for Multi-core Processors. URL: http://www. cse. wustl. edu/~ jain/cse567-

11/ftp/multcore. pdf.

Rocki, K., &Suda, R. (2012, July). Accelerating 2-opt and 3-opt local search using GPU

in the travelling salesman problem. In High Performance Computing and Simulation

(HPCS), 2012 International Conference on (pp. 489-495). IEEE.

Rocki, K., &Suda, R. (2013, May). High Performance GPU Accelerated Local

Optimization in TSP. In Parallel and Distributed Processing Symposium Workshops &

PhD Forum (IPDPSW), 2013 IEEE 27th International (pp. 1788-1796). IEEE.

Ruetsch, G., &Fatica, M. (2013). CUDA Fortran for Scientists and Engineers: Best

Practices for Efficient CUDA Fortran Programming. Elsevier.

77

Schulz, C. (2013). Efficient local search on the GPU—investigations on the vehicle

routing problem. Journal of Parallel and Distributed Computing, 73(1), 14-31.

Talbi, E. G. (2009).Parallel Local Search on GPU.

Van Luong, T., Melab, N., &Talbi, E. G. (2013).GPU computing for parallel local

search metaheuristic algorithms. Computers, IEEE Transactions on,62(1), 173-185.

Virginia Tech Advanced Research Computing, “CUDA Programming Model”

http://www.arc.vt.edu/resources/software/cuda/, last accessed on July 2013

Volkov, V. (2010, September). Better performance at lower occupancy. InProceedings

of the GPU Technology Conference, GTC (Vol. 10).

Wen-mei W. Hwu, Illinois University Online Course, “Heterogeneous Parallel

Programming”, https://www.coursera.org/course/hetero, last accessed on July 2013

