
i

PATH PLANNING AND TOPOLOGY OPTIMIZATION FOR BIOMIMETIC

THREE-DIMENSIONAL BIOPRINTING

by

CAN KÜÇÜKGÜL

Submitted to the Graduate School of Engineering and Natural Sciences

in partial fulfillment of

the requirements for the degree of

Master of Science

Sabancı University

Spring 2013-2014

ii

PATH PLANNING AND TOPOLOGY OPTIMIZATION FOR BIOMIMETIC

THREE-DIMENSIONAL BIOPRINTING

APPROVED BY:

Assoc. Prof. Dr. Bahattin Koç...

(Thesis Supervisor)

Assoc. Prof. Dr. Gözde Ünal ..

Assist. Prof. Dr. Murat Kaya..

DATE OF APPROVAL: ...

iii

ACKNOWLEDGEMENTS

I would like to express my sincere gratitude to my advisor, Dr. Bahattin Koc for his

constant guidance, motivation and patience. I am really thankful for his direction,

devotion and encouragement which kept me focused on my work. I believe that I have

learned a lot from him.

I would also like to thank my dissertation committee members Dr. Gözde Ünal and Dr.

Murat Kaya for their participation, time, and attention to improve my dissertation.

Additionally, I‘m also thankful for Dr. Gözde Ünal for sharing the mesh file of the

coronary artery in evolution of this work. Alongside, I am grateful to TUBITAK for

funding this project (Project # 112M094).

It is a pleasure to thank my research group members Saime Burçe Özler and Forough

Hafezi, for their endless understanding and support, which helped me lot to come this

far both in academic and social life. I would like to extend my thanks to all the faculty,

staff, and students I‘ve been fortunate to encounter in the Department of Industrial

Engineering during my graduate studies at Sabancı University.

Finally, I would like to thank my family, for their endless love, care, support and

inspiration, without which I would not have accomplished this graduate study.

iv

© Can Küçükgül 2014

All Rights Reserved

v

PATH PLANNING AND TOPOLOGY OPTIMIZATION FOR BIOMIMETIC

THREE-DIMENSIONAL BIOPRINTING

Can Küçükgül

Industrial Engineering, Master‘s Thesis, 2014

Thesis Supervisor: Assoc. Prof. Dr. Bahattin Koç

Keywords: 3D bioprinting; scaffold-free tissue engineering; macro-vascular structures;

biomimetic; path planning and optimization; computer-aided bio-manufacturing

Abstract

Tissue engineering is a highly promising multi-disciplinary field for development of

biological substitutes to replace or enhance the functions of damaged tissue or organs.

Traditionally, highly porous scaffolds have been used for most of the tissue engineering

applications. However, the challenges in seeding the cells into a scaffold and possible

immunogenic reactions of scaffold materials have led to a new method of bioprinting

with live cells. With the recent advancement in bio-additive manufacturing, cells with

or without biological active molecules and biomaterials can be bioprinted layer-by-layer

to form three-dimensional (3D) tissue constructs.

In this research work, novel biomodeling and path planning methods for bioprinting are

proposed so three-dimensional tissue structures could be biomimetically printed with

live cells directly from medical images. First, the medical images of the targeted tissue

are imaged and segmented to convert computer tomography (CT) or magnetic

resonance imaging (MRI) images to a mesh model. For path planning and optimization,

the generated mesh models need to be converted to computer-aided (CAD) models. The

captured mesh models are converted into smooth parametric surfaces by developed

novel biomodeling algorithms. Then, several bioprinting strategies are proposed to

bioprint live multi-cellular aggregates using the created computer models. Because

mechanically weak cellular aggregates need to be supported perfectly at each layer,

several support structure generation algorithms are proposed. The proposed methods are

used to make bioprinted cellular aggregates conserve their planned 3D form, while

providing sufficient conditions for cell fusion. The proposed algorithms are

implemented and several example tissue structures are bioprinted by directly controlling

a bioprinter with the generated commands. The results show that multicellular

aggregates and their support structures can be bioprinted biomimetically in the form of

the biomodeled tissues.

vi

3 BOYUTLU BİYO-BASIM İÇİN BASIM YOLU HESAPLANMASI VE TOPOLOJİ

OPTİMİZASYONU

Can Küçükgül

Endüstri Mühendisliği, Yüksek Lisans Tezi, 2014

Tez Danışmanı: Doç. Dr. Bahattin Koç

Anahtar Kelimeler: 3B biyo-basım; iskelesiz doku mühendisliği; makro-vasküler

yapılar; biyo-eşlenik; basım yolu optimizasyonu; bilgisayar destekli biyo-üretim

Özet

Doku mühendisliği hastalıklı veya zarar görmüş doku veya organların fonksiyonlarını

yeniden sağlamak veya geliştirmek için çalışan, son derece umut verici bir multi-

disipliner alandır. Şimdiye kadarki doku mühendisliği çalışmaları, genellikle gözenekli

doku iskelelerin geliştirilmesi üzerinde yoğunlaşmıştır. Ancak, doku iskelelerinde

kullanılan biyo-malzemelere karşı vücudun vereceği immünojenik reaksiyonlar ve

iskelelere hücre ekiminin zorlukları, doğrudan canlı hücrelerin basımı (biyo-basım)

yönteminin gerekliliğini ortaya koymuştur. Katmanlı-üretim ve biyo-basım

alanlarındaki yenilikçi çalışmalar, canlı hücrelerin diğer biyo-malzemelerle veya tek

olarak katman-katman basılarak üç boyutlu doku yapılarının oluşturulabilmesine olanak

sağlamaktadır.

Bu araştırmanın amacı, üç boyutlu doku yapılarını biyo-basım yöntemi ile dokunun

veya organın anatomik yapısına uygun olarak üretmek için yeni biyo-modelleme ve

basım-yolları yöntemleri geliştirmektir. Basılması hedeflenen dokunun anatomik

yapısına uygun üretmek için, ilk olarak medikal görüntüleri ağ modeline çevrilerek

bilgisayar ortamına aktarılır. Geliştirilen yeni biyo-modelleme metotlarıyla elde edilen

bu ağ modeli, basım yolu hesaplamaları ve optimizasyonun yapıla bilinmesi için

parametrik yüzey modeline dönüştürülür. Bu modeller kullanılarak, optimum basım

yollarının hesaplanması için metotları geliştirilmiştir. Canlı hücreler mekanik açıdan

zayıf olduklarından onları basılacak katmanlar boyunca destekleyip bir arada

durmalarını sağlayacak destek yapıları geliştirilmiştir. Böylelikle canlı hücreler

basıldıkları formu koruyacak ve füzyonları kolaylaşacaktır. Geliştirilen biyo-modelleme

ve basım yolu hesaplama algoritmaları ile biyo-yazıcı kontrol edilerek farklı doku

yapıları katman-katman canlı hücreler kullanılarak basılmıştır. Elde edilen sonuçlar ile

canlı hücreler ve destek yapıları ile basılan doku yapıları, biyo-modellenen dokunun

anatomik yapısına birebir benzerlikte üretilebileceği gösterilmiştir.

vii

TABLE OF CONTENTS

Acknowledgments .. iii

Abstract ... v

Özet ... vi

TABLE OF CONTENTS .. vii

LIST OF FIGURES ... ix

LIST OF TABLES ... xi

1. Introduction ... 1

 1.1 Introduction and Literature Review .. 1

 1.2 Organization of Thesis .. 5

2. 3D Imaging and Biomimetic Biomodeling .. 6

 2.1 3D Imaging of Vascular Constructs .. 6

 2.2 Biomimetic Biomodeling of Vascular Constructs .. 7

3. Path Planning for 3D Bioprinting ... 18

 3.1 3D Bioprinting System .. 18

 3.2 3D Bioprinting of Biomimetic Aortic Vascular Constructs with Self-Supporting

Cells ... 20

 3.3 Zig-Zag Approach for Vertical Path Planning of Vascular Constructs 25

 3.4 Transforming Biomodeled Smooth Parametric Surfaces to a Vertical Form 32

 3.5 Path planning with Self-Supporting Method for Branched Vascular Constructs

 .. 37

 3.6 Path Planning with Hybrid Method for Branched Vascular Constructs 42

 3.7 Generating Horizontal Centerline Curves to Guide Path Planning of Horizontal

Branched Vascular Construct Printing .. 48

 3.8 Path Planning for Horizontal Vascular Construct Printing 51

4. Implementations and Examples of Bioprinting and Path Planning Methods ... 56

 4.1 Material (Hydrogel) & Bio-ink Preparation .. 56

viii

 4.2 Accuracy Results of Biomimetic Biomodeling Phase 57

 4.3 Path Planning and Bioprinting Examples .. 60

5. Conclusions and Future Study... 68

6. Bibliography .. 70

ix

LIST OF FIGURES

Figure 1.1 Representative Images of Human Aorta and Coronary Arteries............... 4

Figure 2.1 Imaging & Segmentation of Blood Vessels .. 7

Figure 2.2 Generation of Smooth Parametric Surfaces from Mesh Models............... 8

Figure 2.3 Current Face Sets for Consecutive Section Curves 10

Figure 2.4 Determination of Angles between Parent and Child Trajectory Curves . 12

Figure 2.5 Biomodeling Phase of a Branched Vascular Construct 14

Figure 3.1 NovoGen MMX
TM

 (Organovo) Bioprinter .. 19

Figure 3.2 Bioprinting Path Generation with Route Points 20

Figure 3.3 Path Planning of Support Structures and Cellular Aggregates in Self-

Supporting Method .. 21

Figure 3.4 Contouring of Smooth Surfaces and Bioprinting Topology 22

Figure 3.5 Implementation of Self-Supporting Path Planning Generation............... 24

Figure 3.6 Path Planning of a Layer with Zig-Zag Method 26

Figure 3.7 Union and Split Operations of Offset Curves ... 27

Figure 3.8 Implementation of Zig-Zag Path Planning Generation 29

Figure 3.9 Conversion of the Biomodeled Trajectory Curves to a Vertical Pattern 34

Figure 3.10 Branching Line Organization in Generating Vertical Smooth Surfaces.. 35

Figure 3.11 Determination of Border Curves for a Layer .. 38

Figure 3.12 Linking Procedure of the Curves that are in the Same Set...................... 39

Figure 3.13 Path Planning of a Three Branched Vascular Model with Self-Supporting

Method .. 40

Figure 3.14 Traveling Point Extraction Process for Hybrid Printing 43

x

Figure 3.15 The Zig-Zag Pattern Outer Support Structure Generation 44

Figure 3.16 Generation of Main Road Curves from Trajectory Curves 48

Figure 3.17 Generation of Sorted Road Curves from Main Road Curves 49

Figure 3.18 Organization of Support Structures and Cellular Aggregates in

Horizontal Path Planning ... 52

Figure 3.19 The Role of Polygons in Horizontal Path Planning 53

Figure 3.20 Path Planning Topology for Horizontal Printing 54

Figure 4.1 Biomodeling Results of Branched Vascular Constructs 58

Figure 4.2 Contouring Operations for both Mesh and Smooth Surface Model 59

Figure 4.3 Biomodeling Results of Branched Vascular Constructs 60

Figure 4.4 Smoothness Analysis for the Mesh Model and Smooth Surface Model 61

Figure 4.5 3D Printed MEF Cells with Self-Supporting Method 62

Figure 4.6 Path Planning of Three Consecutive Layers with Zig-Zag Method 63

Figure 4.7 3D Printed Layers with Zig-Zag Method .. 63

Figure 4.8 The Cross Sectional Path Planning View of a Branched Model with Self-

Supporting Method .. 64

Figure 4.9 3D Printed MEF Cells for a Branched Vascular Model with Self-

Supporting Method .. 64

Figure 4.10 The Cross Sectional Path Planning View of a Branched Model with Self-

Hybrid Printing Method ... 65

Figure 4.11 3D Printed Vertical Construct with Hybrid Printing Method 66

Figure 4.12 Path Planning of a Two Branched Vascular Construct with Vertical

Printing Method ... 66

Figure 4.13 3D Printed Branched Construct with Vertical Printing Method 67

xi

LIST OF TABLES

Table 4.1 Errors of the Biomimetic Biomodeling Phase for Abdominal Aorta

Model.. .. 59

1

Chapter 1

Introduction and Literature Review

1.1 Introduction

Maintaining the physical well-being and healthy life is one of the most important

elements for an individual. However, malfunctioning or failing organs or tissues hamper

one‘s health greatly. Especially, cardiovascular organ failures are the primary reasons of

deaths and they rank among the top ten leading causes of morbidity and mortality [1].

Among several treatment methods, autografts and blood vessel transplantation are the

most effective treatments for cardiovascular diseases. However, their use is limited

because of the limited numbers of autografts at donor site and the patient‘s deficient

health conditions. Recently, tissue engineering is a highly promising multi-disciplinary

field for development of biological substitutes to replace or enhance the functions of

defected tissue or organs for treatment of cardiovascular diseases [2, 3, 4].

Early tissue engineering strategies have involved developing a synthetic, biological or

composite scaffold and seeding cells into it. There-dimensional (3D) scaffolds aim to

take over the role of extracellular matrix (ECM), to supply a suitable environment for

cell attachment, proliferation and differentiation and have the same functional role until

the cells create their own ECM. With recent advancements in additive or layered-based

manufacturing, biofabrication or bioprinting techniques have recently been developed

for tissue engineering [5]. It is possible to fabricate tissue scaffolds with precise

2

geometries layer-by-layer according to a computer-aided design model of the respective

tissue or body part [6, 7]. Especially, synthetic-biologic hydrogel hybrids with their

biochemical and mechanical properties mimicking the native ECM are strong 3D cell

culture platforms for cell physiology and tissue printing studies [8]. However, there are

very few biomaterials which can effectively mimic the natural ECM environment.

Moreover, a scaffold material should maintain integrity of tissue growth, controlled

degradation and should be nontoxic and nonimmunogenic [9, 10]. It is also essential to

control the micro-architecture of scaffolds. Several researchers have investigated

designing functionally gradient porous scaffolds with controllable heterogeneous porous

architecture [11, 12].

Because of these challenges and drawbacks of the scaffold-based methods, the recent

vascular tissue engineering studies focus on scaffold-free techniques. In scaffold-free

tissue engineering, spherical/cylindrical cell aggregates with or without biomaterials are

used as building blocks to create 3D tissue constructs.

Scaffold-free tissue engineering approaches are generally based on bioprinting or direct

cell writing. There are three main branches describing the variety of technologies of

scaffold-free bioprinting, namely, inkjet-based, direct laser writing, and

extrusion/deposition based bioprinting [13]. Inkjet-based printing is developed to print

bioink, which combines biomaterials and cells in the form of droplets. Its high-

throughput efficiency and cost effectiveness make this approach highly versatile [7].

Inkjet based approaches are generally based on two technologies namely continuous

inkjet (CIJ), where small droplets with a stable flow made by fluid instability through a

nozzle on a passage and drop-on-demand (DOD) inkjet where ink droplets are produced

when they need to be deposited [7]. Direct laser printing has an advantage to have high

resolution over other bioprinting methods. However it has its own disadvantages like

process-induced cell damage and toxic photo-initiator usage [7]. In extrusion-based

printing and direct cell writing, strands of biomaterials or living cellular aggregates can

be printed continuously layer-by-layer. Moreover, they provide adequate mechanical

integrity to fabricate 3D structures [7]. Scaffold-free tissue engineering has got much

superiority over scaffold-based one, such as, simple scale-up and automation,

vascularization advantage in thick tissues and accurate parallel deposition of various

types of cells [7, 14].

3

In the literature, there have been a few research focusing on scaffold-free tissue

engineering of small-diameter, multi-layered, tubular vascular and nerve grafts [4, 9, 13,

14, 15, 16]. Different 3D bioprinting systems have been proposed to fabricate vascular

structures. A platform-assisted 3D inkjet bioprinting system was used in order to

fabricate NIH 3T3 mouse fibroblast-based tubes with an overhang structure having

post-printing cell viability above 82% [14]. Multicellular spherical and cylindrical

aggregates have been bioprinted to achieve flexibility in tube diameter and wall

thickness and to form branched tubular structures [13, 15, 17]. However, cell aggregates

should be perfectly supported by hydrogels for 3D printing. Human embryonic stem cell

spheroid aggregates consisting controllable and repeatable sizes are fabricated with a

valve-based cell printer [18]. According to that work, the printed stem cells have high

viability after printing and are able to differentiate into any of the three germ layers.

Nevertheless, the formation of large amounts of spherical aggregates requires a lot of

time and the fusion process of the spheroids is completed in 5-7 days [18]. On the other

hand, it is possible to fabricate more controlled structure in a short time using

cylindrical cell aggregates (bio-ink). Moreover, the fusion of cylindrical bio-inks takes

relatively short time (2-4 days) [17].

Even though recent studies in bioprinting have advanced tissue engineering greatly,

fabricating complex biological tissues or organ constructs biomimetically has been still

lacking. Bottom-up scaffold-free approaches have a great potential to provide the

necessary level of flexibility for patient specific, customized tissue or organ

biofabrication [19, 20]. However, biomimetic and patient specific computer-aided

modeling of tissue or organs including crucial information of tissue/organ‘s biological,

biophysical, and biochemical properties should be developed [21].

In the literature, several modeling and reconstruction applications on hard tissues and

bones has been developed [22, 23]. While mimicking the interior micro architecture of

the fabricated tissue, scaffold‘s porosity ratio is analyzed in these works. Moreover, a

micro channel vascular network of a rat liver is generated, considering vascular design

parameters such as branching angles and diameters to reach an anatomically correct

representative model [24]. However, path planning and optimization for bioprinting

directly from computer models need to be developed to achieve the goal of patient

specific, customized organ and body part fabrication.

4

Additionally, bioprinting has its own challenges such as printing time and cell viability,

limited number of biomaterials that can be used and biological and physical constraints.

The bioprinting process needs to be performed in as minimum as possible amount of

time, so that the cellular aggregates only face stress and lack of medium for a short

period and hence, detrimental effects on cell viability can be minimized. Moreover,

there are limited numbers of material and biomaterials available to be used in

bioprinting, therefore; selecting the most appropriate biomaterial-cell combination for

the desired task is very critical. Lastly, sufficient geometric conditions must be satisfied

with path planning in order to enable cell fusion for both in between layers and within

the layers after bioprinting.

The main goal of this research work is to develop novel computer aided algorithms and

strategies to biomodel and generate path planning for 3D bioprinting of blood vessel

constructs biomimetically. While generating a path plan for 3D bioprinting, the focus is

centralized on obtaining an anatomically correct representative/substitute of the desired

vessel. Therefore branching topology and length information for each separate branch

of the original vessel needs to be preserved. A macro-vascular model is generated

biomimicking real blood vessel models directly from medical images. Main blood

vessels that are used throughout this research are descending human abdominal aorta

(Figure 1.1(a)) [25] and coronary arteries (Figure 1.1(b)) [26].

Figure 1.1. Representative images of human aorta and coronary arteries [26].

5

1.2 Organization of Thesis

The presentation of this thesis is organized as follows: 3D imaging and biomodeling is

discussed in Chapter 2. Path planning generation for bioprinting is presented in Chapter

3. Implementations and examples of the developed methods are presented in Chapter 4.

Then conclusions and future studies are given in Chapter 5.

6

Chapter 2

3D Imaging and Biomimetic Biomodeling

2.1 3D Imaging of Vascular Constructs

To be able to mimic and 3D bioprint a tissue, the anatomically-correct geometry of the

targeted tissue has to be obtained and converted into a computer-aided design (CAD)

model. Medical images such as Magnetic Resonance Imaging (MRI) or Computer

Tomography (CT) are used for capturing the anatomically correct models of targeted

tissue or organs. To capture the 3D geometry of a tissue or organ, the medical images

need to be imaged and segmented. For segmentation, the Mimics (Medical Image

Segmentation for Engineering on Anatomy) software [27] is used.

To demonstrate the proposed methodology, a part of human abdominal aorta model

obtained from a computer tomography scan as shown in Figure 2.1. In Mimics, a part of

the vessel is masked from the scan image, which contains the geometrical information

of aorta. Then, region growing method is used to capture the 3D geometry of the aorta.

Then, the segmented part of the aorta is converted into a 3D mesh model. Figure 2.1

shows the imaging and segmentation steps for capturing the geometry of the abdominal

aorta.

7

Figure 2.1. Segmentation phase of an aorta vessel, from abdominal region.

The initial geometric information of the model is represented as a mesh model or

stereolithography (STL) model. The STL files are generated by tessellating the outside

surface of the object with triangles. The STL model of the extracted blood vessel is

shown in Figure 2.2.

2.2 Biomodeling of Vascular Constructs

As explained above, an anatomically correct STL model of blood vessels are obtained

using the segmentation software. As shown in Figure 2.2, the converted STL models of

the vessels are not smooth and approximated with numerous triangular facets. In order

to generate bioprinting path planning as well as the topology optimization for

bioprinting processes, the resultant STL models need to be represented by parametric

surfaces. A novel biomodeling method is developed to convert these mesh (triangular

facets) models into smooth parametric surfaces to be used for 3D bioprinting. The

parametric representation of vessel models also eliminates the noise stemmed from the

previous segmentation phase. First, the section curves are generated from the mesh

model. The center points of each section (contour) are then calculated. The generated

center points are used for approximation of a centerline curve. Lastly, the NURBS

surfaces are generated along the trajectory of the calculated centerline curve.

8

To identify the boundaries of the STL model of the vessels, edge curves EC =

{ECb}b=0..B are defined as the end sections (bottom and top curves), as shown with red

and green curves in Figure 2.2 and 2.5. Those curves are basically the starting and the

end section curves of the STL models. The first edge curve which is also the first

section curve EC0 is used to initiate the centerline curve extraction process. Since STL

models are represented with triangulated surfaces, all faces F = {Fn}n = 1..N have three

vertices and each vertex can be a part of several faces as shown in Figure 2.2(b).

Initially, all the vertices V = {Vm}m = 1..M are set ―unvisited” (𝑉𝑚
𝑖𝑛𝑓𝑜

= 0). Once the

generation of section curves started, they start to surround the mesh surface while

heading towards the edge curves one by one. The trajectory that the section curves

follow is their marching direction. The ―unvisited‖ vertices will be marked as ―visited‖

(𝑉𝑚
𝑖𝑛𝑓𝑜

 = 1) when they contribute to form a section curve with respect to the marching

direction.

Figure 2.2. (a-b) STL file of the aorta, mesh structure. (b) The modeled aorta‘s edge

curves (green & red) and the initial section curve (red). (b-c) STL (mesh) surface of

aorta, the initial center points & smoothed representation of the centerline curve.

9

The set of sections is represented as SC = {SCk}k=1..K and each section is defined with l

vertices (points) represented as section curve vertices SCV = {Vk,l}. Since the end points

of the face edges from the first section (EC0) belong to a set of elements of vertices list,

the algorithm marks those points as ―visited‖ in order to proceed and not to visit those

vertices again. Connecting these l vertices (points) respectively results in a closed

polyline curve, thus we refer the sections as section curves as shown in Figure 2.2(b).

Moreover, the set of n faces that are connected to each vertex l, FV = {Fl,n}n=1..N are

grouped and constitute the elements of the current face set CFS. As shown in Figure

2.3, the green polyline is the k
th

 section curve and red faces connected to it are the

current face set. For each section curve, there will be center points CP = {CPk} k=1..K

reflecting the area weight-based center points for that section curve, and respective

radius values R = {Rk} k=1..K reflecting the radius of the generated sphere of that section

curve. The center points and the corresponding radius values are calculated as follows:

, , ,
1.. 1.. 1..

() () ()

, ,
k l k l k l

l L l L l L
k

x y zV V V

CP
L L L

  
   

 
 
 

 (2.1)

 ,1..
,

k k l kl L
R mean V CP




Where;

, 1..{ }k k l l LSCV V  are set of l points with x-y-z coordinates, and CPk and Rk are the

center points and radius of k
th

 section curve, respectively.

Connecting center points CP = {CPk} k=1..K, along each branch form trajectory curves

TC = {TCi}i=1..I. Each center point will be a part of at least one (two at joint points)

trajectory curve as shown in Figure 2.4. The total number of trajectory curves is at least

as number of branches as the algorithm introduces two new trajectory curves at each

branching point. A better understanding of the concept is illustrated in Figure 2.5, with

five trajectory curves on a three-branched coronary artery model.

Throughout the method, the area weight-based center points and their corresponding

radius values are determined according to those vertices in the current section SCV,

marking the vertices of SCV as ―visited‖ and updating the current face set CFS like in

10

Figure 2.3. As shown in Figure 2.3, k
th

 section curve is highlighted with green polyline,

with having red faces connecting to it as current face set. Then ―unvisited‖ vertices of

the red current face set generates the new k+1
th

 section curve with a discrete yellow

polyline, which renews the current face set with the blue faces. If a joint point is

introduced (in branching parts), then the second set of faces is preserved to continue

marching for a new trajectory curve at a later stage. Whenever a section curve intersects

with one of the edge curves or reaches a joint point, then the current trajectory curve is

finalized and the iteration continues with a subsequent trajectory curve. As shown in

Figure 2.5(b), after TC1 reaches to a joint point, TC2 starts to march through the edge,

and when one of the section curves of TC2 intersects with the edge curve, then marching

turn passes to TC3.

Figure 2.3. Current face set (red), for section curve k, and current face set (blue), for

section curve k+1; with respect to the marching direction.

After the trajectory curves with their respective center points and radius values are

calculated and stored dynamically along the marching direction, the parent-child

relationships needs to be found to fit surfaces through each branch. In Figure 2.5(b),

TC1 is the parent of both TC2 and TC3, while TC2 and TC3 is the child of TC1. If a

trajectory curve does not have any child, then this trajectory curve is a leaf curve. If a

11

trajectory curve does not have a parent, then this trajectory curve is a root curve.

Starting from the root TC1, each trajectory curve determines its two child (if any)

trajectory curves.

When all parent-child pairs are determined, for each parent trajectory curve TCi, the

algorithm computes the angles among each parent and two child (t & t-1) group (3 pairs

for a group). In this section, for biomimetic modeling, the branching angles are not

needed for surface generation; however in subsequent sections (3.4 & 3.7) branching

angles information will be used to generate centerline curves in a particular 2-

coordinates plane. Therefore, to convert the sum of the angle pairs for each group to a

planar form and span 360 degrees, the algorithm scales the sum of three pair angles to

360 degrees (2Π in total) with the procedure below, as also shown in Figure 2.4 at the

joint point:

 ratio ← (TC𝑖
𝑎𝑛𝑔𝑙𝑒 ,𝑡

 + TC𝑖
𝑎𝑛𝑔𝑙𝑒 ,𝑡−1

 + child_angle) / 2Π

 TC𝑖
𝑎𝑛𝑔𝑙𝑒 ,𝑡

 ← ratio × TC𝑖
𝑎𝑛𝑔𝑙𝑒 ,𝑡

 TC𝑖
𝑎𝑛𝑔𝑙𝑒 ,𝑡−1

 ← ratio × TC𝑖
𝑎𝑛𝑔𝑙𝑒 ,𝑡−1

Then each trajectory curves‘ length is determined by connecting its center points

through the marching direction.

12

Figure 2.4. Determination of angles between a parent trajectory curve i, and its two

child.

Moreover, a predetermined number of last center points for each trajectory curve are

omitted. Because of the reason that the algorithm examines the surface information of

mesh to extract the trajectory curves by using the generated center points, branching

parts are realized when they already occurred. This fact causes the approximated

trajectory curves to intersect with the mesh surface, as shown with blue pipes in Figure

2.4. Therefore, by omitting a number of center points from the last part (the number is

determined by a function of mesh volume and total facets) the trajectory curves lies

securely inside of the mesh surface, as shown with green pipes in Figure 2.4. Then,

median radius values are determined for each trajectory curve in order to decrease the

radius variety before the smooth surface generation, to obtain a finer surface geometry.

After each trajectory curve with their corresponding center points are calculated from

each leaf curve to the root, the algorithm links child trajectory curves with its parents

and stacks the respective center points and radius values in a topological order. For all

branches and for each leaf trajectory curve reaching the root, the algorithm fits a B-

spline curve, which will be the centerline for the respective parametric surface. This

parametric B-spline centerline curve is defined as [28]:

13

,

1

() () 0 1
bp

b q p q
q

TP u N u CP u


    (2.2)

Where B-spline basis function is;

 1

,0

if 1
()

0 otherwise

q q

q

u u u
N u

 
 


1
, , 1 1, 1

1 1

() () ()
qq p

q p q p q p
q p q q p q

u uu uq
N u N u N u

u u u u

 

  
   


 

 

CPq‘s are the control points, and the Nq,p(u) are the pth-degree B-spline basis functions

as defined above with the knot vector U={u0,…,um} where uq‘s be a nondecreasing

sequence of real numbers.

Then the parametric B-spline surface(s) of the vessel model are generated using the

centerline curve(s) TPb(u), with respect to the median radius value of relevant center

points as shown in Figure 2.5(c). This operation basically sweeps a planar closed curve

along the centerline curve. Denote the centerline by TPb(u) and the planar closed curve

by T(v). T(v)‘s radius value gets the TC𝑙𝑒𝑎𝑓 ,𝑏
𝑚𝑒𝑑𝑖𝑎𝑛 _𝑟𝑎𝑑 value for the starting point, and

TC𝑟𝑜𝑜𝑡
𝑚𝑒𝑑𝑖𝑎𝑛 _𝑟𝑎𝑑 value for the ending point of the respective centerline curve, and if there

are any other trajectory curves linking leaf and the root, their respective

TC𝑙𝑖𝑛𝑘𝑒𝑟
𝑚𝑒𝑑𝑖𝑎𝑛 _𝑟𝑎𝑑 radius values are placed on their middle center point 𝑇𝐶𝑙𝑖𝑛𝑘𝑒𝑟

𝑚𝑖𝑑 _𝐶𝑃 locations

(Figure 2.5(c)). A general form of the swept surface is given by [28]:

(,) () () ()b bS u v TP u M u T v  (2.3)

  _ _
() cos(), sin()

median rad median rad
i iT v r v r v

Where; 0 ≤ u ≤ 1 and 0 ≤ v ≤1

Where M(u) is a 3x3 matrix incorporating rotation and nonuniform scaling of T(v) as a

function of u.

14

Figure 2.5. (a) Mesh model of a three-branched coronary artery vessel, (b) generated

trajectory curves according to the model, (c) generated smooth surfaces with respect to

trajectory curves and median radius values.

As explained above, generating smooth parametric surfaces from the mesh model is

determined using Algorithm 1 for which its pseudo-code is given below:

Algorithm 1. Biomimetic Smooth Parametric Surface(s) Generation

Input:

M0: Mesh model of vessel network

EC = {ECb}b = 0..B: a set of edge curves on Mesh

F = {Fn}n = 1..N: a set of faces on Mesh

V = {Vm}m = 1..M: a set of vertices on Mesh

Output:

Sb(u,v) : generated NURBS Surface(s)

TC: trajectory curve array

Start

Initialize i ← 1, k ← 1, j ← 0, num_Branches_Reached ← 0, check_intersection ← 0

Initialize p ← 1, t ← 1, cubic_Volume_of_Mesh ← 𝑀0
𝑣𝑜𝑙𝑢𝑚𝑒

If (N / cubic_Volume_of_Mesh > 1) Then { num_Points_to_Delete ← 2 }

Else { num_Points_to_Delete ← 1 }

For (all Vm) { 𝑉𝑚
𝑖𝑛𝑓𝑜

 ← 0 = ―not visited‖ }

SCk ← EC0

SCVk = {Vk,l} ← a set of l vertices that k
th

section curve contains/intersects

For (all Vk,l) {

 𝑉𝑘,𝑙
𝑖𝑛𝑓𝑜

 ← 1 = ―visited‖

 FV ← FV ∪ {Fl,n} ‗// a set of n faces that are connected to vertex l

}

15

CFS ← {FV} ∪ CFS

TC𝑖
𝐶𝑃,𝑝

 ← CPk ‗// using Equation(2.1)

TC𝑖
𝑅,𝑝

 ← Rk ‗// using Equation(2.1)

While (num_Branches_Reached < B) {

 For (n = 1 to size(CFS0)) {

 If (𝑉𝑛,1
𝑖𝑛𝑓𝑜

 + 𝑉𝑛,2
𝑖𝑛𝑓𝑜

 + 𝑉𝑛,3
𝑖𝑛𝑓𝑜

 == 1) Then {

 If (𝑉𝑛,1
𝑖𝑛𝑓𝑜

 == 0) Then { VC ← VC ∪ {Vn,1} }

 If (𝑉𝑛,2
𝑖𝑛𝑓𝑜

 == 0) Then { VC ← VC ∪ {Vn,2} }

 If (𝑉𝑛,3
𝑖𝑛𝑓𝑜

 == 0) Then { VC ← VC ∪ {Vn,3} }

 }

 }

 If (𝐶𝐹𝑆0
𝐶𝑃 ≠ NULL) Then {

 p ← 1, i ← i + 1

 TC𝑖
𝐶𝑃,𝑝

 ← 𝐶𝐹𝑆0
𝐶𝑃

 TC𝑖
𝑅,𝑝

 ← 𝐶𝐹𝑆0
𝑅

 𝐶𝐹𝑆0
𝐶𝑃 ← NULL, 𝐶𝐹𝑆0

𝑅 ← NULL

 }

 CC ← check curves obtained by connecting vertices of VC in a topological order

 If (size(CC) = 1) Then {

 k ← k + 1, p ← p + 1

 SCk ← CC0

 SCVk = {Vk,l} ← a set of l vertices that k
th

section curve contains/intersects

 For (all Vk,l) {

 𝑉𝑘,𝑙
𝑖𝑛𝑓𝑜

 ← 1 = ―visited‖

 FV ← FV ∪ {Fl,n} ‗// a set of n faces that are connected to vertex l

 }

 For (b = 1 to B) {

 If (SCVk ∩ ECb ≠ ∅) Then {

 num_Branches_Reached ← num_Branches_Reached + 1

 check_intersection ← 1

 SCVk ← ECb

 TC𝑖
𝐶𝑃,𝑝

 ← CPk ‗// using Equation(2.1)

 TC𝑖
𝑅,𝑝

 ← Rk ‗// using Equation(2.1)

 Delete ← CFS0

 }

 }

 For (all Vk,l) {

 𝑉𝑘,𝑙
𝑖𝑛𝑓𝑜

 ← 1 = ―visited‖

 FV ← FV ∪ {Fl,n} ‗// a set of n faces that are connected to vertex l

 }

 If (check_intersection == 0) Then { CFS0 ← {FV} – CFS0 }

 }

 Else {

 𝐶𝐹𝑆0
𝐶𝑃 ← CPk

 𝐶𝐹𝑆0
𝑅 ← Rk

 k ← k + 1, i ← i + 1, p ← 1

16

 TC𝑖
𝐶𝑃,𝑝

 ← CPk-1 ‗// using Equation(2.1)

 TC𝑖
𝑅,𝑝

 ← Rk-1 ‗// using Equation(2.1)

 SCk ← CC0

 SCVk = {Vk,l} ← a set of l vertices that k
th

section curve contains/intersects

 For (all Vk,l) {

 𝑉𝑘,𝑙
𝑖𝑛𝑓𝑜

 ← 1 = ―visited‖

 FV ← FV ∪ {Fl,n} ‗// a set of n faces that are connected to vertex l

 }

 CFS ← ({FV} – CFS0) ∪ CFS

 }

 Delete ← VC

 Delete ← CC

}

For (i = 1 to I) {

 t ← 1

 TC𝑖
𝑙𝑒𝑛𝑔𝑡 𝑕

 ← total length of the polyline, composed of connecting TC𝑖
𝐶𝑃 ‘s from the

first_index through last_index in topological order

 For (j = 1 to I) {

 If (i ≠ j) Then {

 If (TC𝑖
𝐶𝑃,𝑙𝑎𝑠𝑡 _𝑖𝑛𝑑𝑒𝑥 (𝑝)

 == TC𝑗
𝐶𝑃,𝑓𝑖𝑟𝑠𝑡 _𝑖𝑛𝑑𝑒𝑥 (𝑝)

) Then {

 TC𝑖
𝑐𝑕𝑖𝑙𝑑 ,𝑡

 ← TCj

 TC𝑗
𝑝𝑎𝑟𝑒𝑛𝑡

 ← TCi

 t ← t + 1

 }

 }

 Delete ← last num_Points_to_Delete TC𝑖
𝐶𝑃‘s & TC𝑖

𝑅‘s

 TC𝑖
𝑚𝑒𝑑𝑖𝑎𝑛 _𝑟𝑎𝑑 ← median(all TC𝑖

𝑅)

 }

}

For (i = 1 to I) {

 t ← 1

 If (TC𝑖
𝑐𝑕𝑖𝑙𝑑 ≠ NULL) Then {

 child_angle ← angle({TC𝑖
𝑐𝑕𝑖𝑙𝑑 ,𝑡

, TC𝑖
𝑐𝑕𝑖𝑙𝑑 ,𝑡+1

})

 For (j = 1 to I) {

 If (i ≠ j and TC𝑗
𝑝𝑎𝑟𝑒𝑛𝑡

 == TCi) Then {

 TC𝑖
𝑎𝑛𝑔𝑙𝑒 ,𝑡

 ← angle({ TCi, TCj })

 t ← t + 1

 }

 }

 ratio ← (TC𝑖
𝑎𝑛𝑔𝑙𝑒 ,𝑡

 + TC𝑖
𝑎𝑛𝑔𝑙𝑒 ,𝑡−1

 + child_angle) / 2Π

 TC𝑖
𝑎𝑛𝑔𝑙𝑒 ,𝑡

 ← ratio × TC𝑖
𝑎𝑛𝑔𝑙𝑒 ,𝑡

 TC𝑖
𝑎𝑛𝑔𝑙𝑒 ,𝑡−1

 ← ratio × TC𝑖
𝑎𝑛𝑔𝑙𝑒 ,𝑡−1

 }

}

b ← 0

17

For (i = 1 to I) {

 If (TC𝑖
𝑐𝑕𝑖𝑙𝑑 == NULL) Then {

 b ← b + 1

 While (TC𝑖
𝑝𝑎𝑟𝑒𝑛𝑡

 ≠ NULL) {

 TPb ← TPb ∪ {TC𝑖
𝐶𝑃}

 TRb ← TRb ∪ {TC𝑖
𝑅}

 TCi ← TC𝑖
𝑝𝑎𝑟𝑒𝑛𝑡

 }

 TPb(u) ← approximate a trajectory curve with the CPb‘s using Equation (2.2)

 Sb(u,v) ← build the surface along TPb(u) with respect to its CPb‘s median radius

values(s) using Equation (2.3)

 }

}

End

18

Chapter 3

Path Planning for 3D-Bioprinting

Previous works on scaffold-free 3D bioprinting of vascular structures are generally

based on simple vertical extrusions [29]. In this chapter, we are bioprinting complex

geometries of cellular structures with self supporting hydrogels. Not only because of its

complex geometry, but also due to the dynamic structures of both cells and hydrogels, it

is challenging to build such structures in 3D. Here, an anatomically correct

representation of vessels is aimed; therefore, mechanically-weak cellular aggregates

should be supported by hydrogels to have sufficient conditions for cell fusion. In order

to mimic the original vessel effectively and to minimize the human interventions,

topology optimization is carried out for 3D bioprinting to control the bioprinter directly

from generated commands.

3.1 3D Bioprinting System

In this research, the NovoGen MMX
TM

 (Organovo) bioprinter is used for printing three

dimensional biomodeled tissues. This automated 3D bioprinter has three stepper motors

for X-Y-Z motion as well as two deposition heads to print hydrogel biomaterials and

cellular aggregates (bio-ink). The bioprinter has a built-in controller system, where the

micro-deposition is maintained throughout the printing with a laser-based calibration.

Glass capillaries with 250/500 μm diameter are used as deposition tips for two

deposition heads. Those capillaries are both capable of aspirating and dispensing gels or

cell aggregates using a metal plunger inside of them which works as a piston moving up

and down (Figure 3.1). The bioprinter has heating and cooling chambers with adjustable

19

temperatures, ranging from 25°C to 95°C for heating and 4°C to 25°C for cooling.

Thermo reversible hydrogel is placed into the heating chamber to preserve its liquid

form in order to be able to aspirate it into the glass capillary. After aspiration, the gel

head moves to the cooling chamber and keep the capillary, filled with hydrogel, inside

the chamber for a predetermined time in order for hydrogel to become a gel. After this

phase change, the gel head can dispense the material with its piston downside

movement. The speed of the push down movement is exactly the same with the speed of

the capillaries horizontal movement. The cell-deposition head moves the same way

except the heating and cooling steps are not used for cellular aggregates (bio-ink).

Figure 3.1. NovoGen MMXtm (Organovo) Bioprinter.

Although the bioprinter software has a built-in controller commands, they cannot be

used for printing complex structures. One of the biggest drawbacks of the current

software is that, it can only dispense fluid or gels in linear-movements. Because of this

limitation, paths with curves need to be approximated with short linear segments. A

user-generated scripts needs to be developed for controlling the bioprinter directly for

printing complex 3D structures. As shown in Figure 3.2, once a planned curve trajectory

20

{Ct} is determined with at most capillary volume vcapillary length, a linear interpolation is

used on the curve to extract the n route points {RPt,n} of planned curve {Ct} for the

bioprinter to follow the linear paths between the points in topological order as shown

with red curves (bioprinter curves). Eventually there will be errors between the planned

curve trajectory and bioprinter curve trajectory, as bioprinter curve trajectory shortcuts

the small arc segments with small linear line segments. The maximum error, maximum

linear distance between planned curve and bioprinter curve for a specific arc segment,

will be the bioprinting error for the generated model. After series of bioprinting trials,

its optimized that, the cylindrical planned trajectory curves are divided to its n route

points where each linear distance between the consecutive point pairs {RPt,n,RPt,n+1} of

0.3 mm gives the best result with 3 mm/s deposition speed, in terms of planned shape

formation. With these parameters, the bioprinting errors for macro-vascular models are

between 0.05 mm minimum and 0.12 mm maximum.

Figure 3.2. Cylindrical trajectories curve that lengths capillary volume is separated to its

route points; route points are connected to form the bioprinting path for that curve.

3.2 3D Bioprinting of Biomimetic Aortic Vascular Constructs with Self-Supporting

Cells

After the smooth surface model of aorta Sb(u,v) is

generated in biomodeling section

(Chapter 2), an optimum 3D bioprinting topology needs to be determined in order to

21

obtain an anatomically correct representation of the printed vessel. Path planning for

both cellular aggregates and hydrogel support structures is calculated in this section.

Both cellular aggregates and support structures are printed by a glass capillary in a gel

like form layer by layer to form the 3D tissue construct. Because of the fact that the

bioprinted materials are not self-shape conserving, both cells and support structures

should accordingly be placed on the valleys of the preceding layer (shown in Figure 3.3)

in order to provide cell fusion and structure conservation and most importantly, to reach

correct anatomical model of the original vessel.

Figure 3.3. Three consecutive example layers showing how support structures (blue)

and cellular aggregates (red) are placed on the valleys of the preceding layer.

In the model, the height increments between consecutive layers is slightly less than the

diameter of the capillary tubes, the total number of layers (totalLayers) is calculated by

dividing the surface height to the height_increment amount. The vessel‘s surface

representation is then sliced with successive planes which resulted in contour curves

Cj,0(t) = {cj,0}j=1..totalLayers for each layer as shown in Figure 3.4. The number of cylinders

for each layer is then determined by the maxStepj value from maxStepj= topSupport +

totalLayers – j where topSupport is the number of support cylinders on top layer that is

entered by user. Since maxStepj variable is dependent to layer number, its value is

maximum initially and drops by one at every consecutive layer through top, which

provides constant elevation between successive layers.

22

To conserve the general shape of the vessel on each layer and to prevent the

deformation of weak cellular aggregates, each contour curve is offset using the maxStepj

value of the specific layer on x,y-plane as shown in Figure 3.4. The initial offset amount

Oj,i = {oj,i}i=1..maxStepj for a layer can be found by the following formula:

     , /2 1j i j capillaryo maxStep i d   (3.1)

 Where dcapillary is the diameter of the glass capillaries used.

Figure 3.4. (a) The slicing process of a blood vessel and the placement of the support

structures & cellular aggregates at j
th

 layer, (b) The bioprinting topology for three

example consecutive layers, of both support structures and cellular aggregates.

The initial offset amount for a layer is strictly positive, resulting in exterior offset

curves. However, the offset amount is dropped by the capillary diameter for each

successive cylinder on that layer. Therefore, after (maxStepj/2) cylinders, the offset

23

amount will become negative resulting in interior offset curves as shown in Figure 3.4.

Thus, cellular aggregates are supported by support structures from both inner and outer

directions. As cj,0(t) defines a contour curve of the surface on a given height and a curve

parameter t, then the offset curves cj,i(t) is calculated with offset amount oj,i as follows:

      , ,0 , , 1..max j
j i j j i j i i Step

t c t o N tc


  (3.2)

Where;

 ,j iN t = unit normal vector on curve  ,0j tc at a parametric location t.

Two center cylinders on a layer (red ones in Figure 3.4), with respect the maxStepj

value, is placed as cellular aggregates and the remaining cylinders as support structures

in order to effectively mimic the original vessel dimensions and to provide better

coverage of cells. Furthermore, at a layer, support structures are printed first, and then

the cellular aggregates in order to prevent cell outflow and to preserve anatomically

correct shape of the modeled vessel as shown in Figure 3.4. As the oj,i‘s for the j
th

 layer

keeps decreasing by dcapillary amount at each increment on i, support structures on a

layer are printed from the outermost one to the innermost one as shown in Figure 3.4.

After appropriate sections of the cell composition and support structure are determined

for each layer, the 3D bioprinting path plan for cell-biomaterial topology is calculated.

Then, layer by layer, these cylindrical aggregates of the cell and gels will be printed

accordingly a file that is generated by Algorithm 2 using a 3D bioprinter [4]. A cross

sectional view of a smooth blood vessel (aorta) model and the surrounding support

structures, which are generated by Algorithm 1 and 2, are shown in Figure 3.5. The

finalized aorta model is composed of cellular aggregates and support structures that

keep the cellular aggregates in its designed shape. Since the cylindrical cell aggregates

are lacking in strength than the biomaterial, each layer is perfectly supported for stable

cell aggregate printing [4].

24

Figure 3.5. Representation of the ‗Self-Supporting‘ model, with vessel (grey), cellular

aggregates (red) and support structures (blue).

Algorithm 2 presents the calculation of the self-supporting structures and path planning

for 3D bioprinting of both cellular aggregates and support structures. The algorithm

takes the generated B-spline surface of vessel model and outputs a path plan for

bioprinting of anatomically correct vessel model.

Algorithm 2. Self-Supporting Structure Generation

Input:

Sb(u,v): generated NURBS Surface

dcapillary: diameter of the glass capillaries

topSupport: number of support cylinders on top layer (user input)

Output:

Finalized vascular model, with support structure

Path planning for 3D-Bioprinting (a compatible script file for the 3D-Bioprinter)

Start

Initialize totalLayers←(surfaceHeight/elevate)+1, j← 1, n← 1, i← 1, contourLevel ←

0

Initialize maxStepj← topSupport+totalLayers-j

For (j = 1 to totalLayers) {

 contourLevel←contourLevel + elevate

 If (cj,0← contouring the surface from a given contourLevel, results in a closed curve)

Then {

 Initialize oj,i← (maxStepi/2)×dcapillary

 For (i = 1 to maxStepi) {

cj,i← offset cj,0 by oj,i using Equation (3.2)

 Initialize curveLength← length(cj,i)

If (curveLength < minSegmentLength) Then {Exit For Loop}

25

 If (i = maxStepi/2 or i = maxStepi/2+1) Then {

 Store cj,i and curveLength in the script file as cellular structure}

 Else{Store cj,i and curveLength in the script file as support structure}

oj,i←calculate oj,i using Equation (3.2)

 }

maxStepj← topSupport + totalLayers – j }

}

End

3.3 Zig-Zag Approach for Vertical Path Planning of Vascular Constructs

Similar to Self-Supporting path planning, a zig-zag based path planning is proposed for

branched vascular constructs. After obtaining the freeform surface representation of the

branched vascular constructs, the final step before the fabrication process is to create a

bioprinting path plan for both cellular aggregates and support structures. An algorithm

is developed to determine an optimum path-plan for bioprinting of branched structures

such as coronary arteries. The proposed algorithm creates a zig-zag pattern path to

anatomically mimic the shape of the vessel with cellular aggregates while providing

support structure to conserve its form.

The proposed method starts with calculating an invisible bounding box, BB0 = {bb0,

bb1, bb2, bb3, bb4, bb5, bb6, bb7} of the generated smooth parametric surfaces Sb(u,v).

The edges of the bounding box lie parallel to X-Y-Z-axis. Then those points are offset

with a predetermined amount in x,y-plane to enlarge planar area, which will be the

domain for zig-zag shaped support structures that lie perpendicular to each other for

each subsequent layer as shown in Figure 3.6. Then the layer number is determined by

dividing the vertical surface length to predetermined distance (interval) between the

parallel layers and contourLevel is set to the bottom plane of the box.

26

Figure 3.6. The printing order of outer support structures; first green, second magenta,

third gray, fourth yellow curves and fifth brown curves.

For each layer, starting from the bottom level, contourLevel and duplicate vertices‘ z-

coordinates of the enlarged bounding box are increased by interval amount to determine

the level of the contour for that layer. For each layer i, the algorithm introduces at most

B closed contour curves CCi = {Ci,b}b=1..B from the smooth surfaces Sb(u,v). And offset

those closed curves with an amount of offsetAmount ← (cellStripe + supportStripe / 2)

× dcapillary with the following equation:

      , ,, 1..

offsetAmout
i b i bi b i B

t C t offsetAmount N tC


   (3.3)

Where;

  ,i bN t = unit normal vector on curve  ,i b tC at a parametric location t

This offset operation results in at most B offset contour curves OCi =

{𝐶𝑖,𝑏
𝑜𝑓𝑓𝑠𝑒𝑡𝐴𝑚𝑜𝑢𝑛𝑡

}b=1..B. cellStripe variable defines the number of cylindrical cellular

aggregates to satisfy desired wall thickness, and supportStripe variable defines the

number of supportive cylinders to conserve cellular aggregates. The gap between OCi‘s

and CCi‘s (part B‘s in Figure 3.7) implies that the cellular aggregates should be placed

to the area between those curves.

27

Figure 3.7. (a) Union operation of intersecting OCi‘s (shown with red), results in blue

curve. Support structure space (A&C), cellular aggregate space (B). (b) Splitting of an

even layer OCi‘s to its six successor curves (red-blue-cyan-black-yellow-magenta),

from its deflection points and greatest & lowest x-coordinate points.

For even numbered layers; offset curves OCi‘s are split from the deflection points where

G
1
 discontinuity occurs - sudden change points in direction of the unit tangent vectors

of the respective curve - and min. & max. x-coordinate points resulting in new OCi set

(as shown in Figure 3.7(b)).

For odd numbered layers; offset curves OCi‘s are split from the deflection points and

min. & max. y-coordinate points resulting in new OCi set. Along with the border lines

that are placed around the domain of the enlarged bounding box (Figure 3.6), they

constitute the layer curve set LCi,k, for the respective layer i.

After layer curve sets LCi,k‘s are generated, they crossed with parallel lines (lying

perpendicular to x,z-plane for even numbered, y,z-plane for odd numbered layers)

contourLevel. The intersections of layer curves and those parallel lines results in n

intersection points Pi = {Pi,n}. Each intersection point Pi,n has three type of information,

which layer curve LCi,k it belongs to 𝑃𝑖,𝑛
𝑐𝑢𝑟𝑣𝑒 _𝑖𝑑 , which move made last 𝑃𝑖,𝑛

𝑝𝑟𝑒𝑣𝑖𝑜𝑢𝑠𝑀𝑜𝑣𝑒
 and

its status 𝑃𝑖,𝑛
𝑖𝑛𝑓𝑜

 (whether if its ―visited‖, ―not visited‖, or ―waiting‖) to guide the

algorithm to form non-intersecting and non-repeating support cylinders. Then Pi‘s are

sorted in descending order with respect to x,y,z-coordinates for even numbered layers,

and sorted in descending order with respect to y,x,z-coordinates for odd numbered

layers.

28

After the point sorting process, the algorithm starts to generate support structures COi‘s,

that cover the cellular aggregates from outside in a zig-zag fashion. Therefore, from

Pi‘s, the algorithm starts a dynamic search from the lowest indexed ―not visited‖ point

for a feasible neighbor point and connect them to form polylines. Searching for a

feasible neighbor point procedure for an intersection point Pi,n, for even numbered

layers is as follows:

If 𝑃𝑖,𝑛
𝑝𝑟𝑒𝑣𝑖𝑜𝑢𝑠𝑀𝑜𝑣𝑒

= 0 Then search for a ―non-visited” point, shares same x-coordinate

and a lower y-coordinate, pick the closest one and set its 𝑃𝑖,𝑛+1
𝑝𝑟𝑒𝑣𝑖𝑜𝑢𝑠𝑀𝑜𝑣𝑒

= 1

If 𝑃𝑖,𝑛
𝑝𝑟𝑒𝑣𝑖𝑜𝑢𝑠𝑀𝑜𝑣𝑒

= 1 Then search for a ―non-visited” point, lies in the same curve, has a

lower x-coordinate, pick the closest one and set its 𝑃𝑖,𝑛+1
𝑝𝑟𝑒𝑣𝑖𝑜𝑢𝑠𝑀𝑜𝑣𝑒

= 2

If 𝑃𝑖,𝑛
𝑝𝑟𝑒𝑣𝑖𝑜𝑢𝑠𝑀𝑜𝑣𝑒

= 2 Then search for a ―non-visited” point, shares same x-coordinate

and a greater y-coordinate, pick the closest one and set its 𝑃𝑖,𝑛+1
𝑝𝑟𝑒𝑣𝑖𝑜𝑢𝑠𝑀𝑜𝑣𝑒

= 3

If 𝑃𝑖,𝑛
𝑝𝑟𝑒𝑣𝑖𝑜𝑢𝑠𝑀𝑜𝑣𝑒

= 3 Then search for a ―non-visited” point, lies in the same curve, has a

lower x-coordinate, pick the closest one and set its 𝑃𝑖,𝑛+1
𝑝𝑟𝑒𝑣𝑖𝑜𝑢𝑠𝑀𝑜𝑣𝑒

= 0

For odd numbered layers, a neighbor point for intersection point Pi,n is searched using

previousMove as follows:

If 𝑃𝑖,𝑛
𝑝𝑟𝑒 𝑣𝑖𝑜𝑢𝑠𝑀𝑜𝑣𝑒

= 0 Then search for a ―non-visited” point, shares same y-coordinate

and a lower x-coordinate, pick the closest one and set its 𝑃𝑖,𝑛+1
𝑝𝑟𝑒𝑣𝑖𝑜𝑢𝑠𝑀𝑜𝑣𝑒

= 1

If 𝑃𝑖,𝑛
𝑝𝑟𝑒𝑣𝑖𝑜𝑢𝑠𝑀𝑜𝑣𝑒

= 1 Then search for a ―non-visited” point, lies in the same curve, has a

lower y-coordinate, pick the closest one and set its 𝑃𝑖,𝑛+1
𝑝𝑟𝑒𝑣𝑖𝑜𝑢𝑠𝑀𝑜𝑣𝑒

= 2

If 𝑃𝑖,𝑛
𝑝𝑟𝑒𝑣𝑖𝑜𝑢𝑠𝑀𝑜𝑣𝑒

= 2 Then search for a ―non-visited” point, shares same y-coordinate

and a greater x-coordinate, pick the closest one and set its 𝑃𝑖,𝑛+1
𝑝𝑟𝑒𝑣𝑖𝑜𝑢𝑠𝑀𝑜𝑣𝑒

= 3

If 𝑃𝑖,𝑛
𝑝𝑟𝑒𝑣𝑖𝑜𝑢𝑠𝑀𝑜𝑣𝑒

= 3 Then search for a ―non-visited” point, lies in the same curve, has a

lower y-coordinate, pick the closest one and set its 𝑃𝑖,𝑛+1
𝑝𝑟𝑒𝑣𝑖𝑜𝑢𝑠𝑀𝑜𝑣𝑒

= 0

29

Hence, the search process continues dynamically and a zigzag patterned support curves

are generated for subsequent layers.

After that, contour curves CCi‘s will be offset inwards and resulting curves to be union

to form cellular aggregates CMi, with respect to cellStripe value (the number of

cylinders to meet the desired wall thickness). If the offset curves form the inside support

curves CIi until minimum segment length is reached to prevent any self-intersection.

After path planning and topology optimization is finalized, first the support structures

and then the cellular aggregates are bioprinted at each layer. Figure 3.8 shows branching

steps of the coronary artery model with three consecutive layers, along with their

contour curves (shown with blue curves at the bottom part); offset curves (shown with

black curves at the bottom part); and the deflection points (red circles at the bottom

part) for each layer.

Figure 3.8. Example layers of a coronary artery, showing the joint locations of the

branched vessel model (Figure 2.5).

For this method, the pseudo-code of Algorithm 3 is given below.

Algorithm 3. Zig-Zag Support Structure Generation

Input:

Sb(u,v): generated NURBS Surface(s)

dcapillary: diameter of the glass capillaries

vcapillary: max. volume of the glass capillaries

cellStripe: the number of cylindrical cellular aggregates to satisfy desired

wall thickness

30

supportStripe: the number of supportive cylinders to conserve cellular

aggregates

interval: distance between planar layers

gap: distance between subsequent linear support cylinders

enlarge: enlargement amount of the cutting plane

Output:

Finalized vascular model, with support structure

Path planning for 3D-Bioprinting (a compatible script file for the 3D-Bioprinter)

Start

{ bb0, bb1, bb2, bb3, bb4, bb5, bb6, bb7} ← BoundingBox(Sb(u,v))

lb ← bb0, rb ← bb1, rt ← bb2, lt ← bb3

lb
´
← (bb0(x) – enlarge, bb0(y) – enlarge, bb0(z)), rb

´
 ← (bb1(x) + enlarge, bb1(y) –

enlarge, bb1(z))

rt
´
 ← (bb2(x) + enlarge, bb2(y) + enlarge, bb2(z)), lt

´
 ← (bb3(x) – enlarge, bb3(y) +

enlarge, bb3(z))

Initialize totalLayers ← floor(distance(bb3,bb0) / interval)+1, j ← 1, n ← 1, i ← 1

Initialize contourLevel ← plane({lb
´
, rb

´
, rt

´
, lt

´
}) = ―0‖

For (i = 1 to totalLayers) {

 contourLevel ← contourLevel + interval

 lb
´
(z) ← lb

´
(z) + interval, rb

´
(z) ← rb

´
(z) + interval

 rt
´
(z) ← rt

´
(z) + interval, lt

´
(z) ← lt

´
(z) + interval

 offsetAmount ← (cellStripe + supportStripe / 2) × dcapillary

 For (all Sb(u,v)) {

 Ci,b ← contour(Sb(u,v))contourLevel ‗// contour curves at respective contour level

 𝐶𝑖,𝑏
𝑜 ← offset(Ci,b)offsetAmount ‗// offset curves with respective offset amount

 CCi = {Ci,b} ← a set of b closed contour curves that i
th

layer contains

 OCi ← OCi ∪ {𝐶𝑖,𝑏
𝑜 }

 }

 If (i == EVEN) Then {

 OCi ← split(OCi)intersection,minX,maxX

 line1 ← addLine({lb
´
, rb

´
})

 line2 ← addLine({lt
´
, rt

´
})

 LCi,k ← OCi ∪ line1 ∪ line2

 l ← lb
´

 For (j = lt
´
(x) to rt

´
(z)) Step gap {

 line ← addLine({j,l})

 For (all LCi,k) {

 If (LCi,k ∩ line ≠ NULL) Then {

 Pi,n ← LCi,k ∩ line

 𝑃𝑖,𝑛
𝑖𝑛𝑓𝑜

 ← ―not visited‖ = 0

 𝑃𝑖 ,𝑛
𝑐𝑢𝑟𝑣𝑒 _𝑖𝑑 ← k

 Pi ← Pi ∪ {Pi,n}

 }

 }

 l(x) ←

l(x) + gap

 }

 Pi ← sortPoints(Pi)x,y,z

 curveLength ← 0

31

 polyLine ← NULL

 While (min(𝑃𝑖
𝑖𝑛𝑓𝑜

) == 0) {

 If (Pi,n ← polyLine
endpoint

); If Not {

 Pi,n ← get the minimum_indexed 𝑃𝑖,𝑛
𝑖𝑛𝑓𝑜

 == 2 = ―waiting‖ point; If Not {

 Pi,n ← get the minimum_indexed 𝑃𝑖,𝑛
𝑖𝑛𝑓𝑜

 == 0 = ―not visited‖ point }

 Pi,n+1 ← find the best appropriate neighbor point according to previousMove; If

Not {

 COi ← COi ∪ polyLine

 𝑃𝑖,𝑛
𝑖𝑛𝑓𝑜

 ← ―visited‖ = 1

 polyLine ← NULL

 return_to_start_of_the_loop }

 line ← addLine({Pi,n, Pi,n+1})

 If (polyLine
length

 + line
length

 ≤ vcapillary) Then {

 polyLine ← polyLine ∪ line

 𝑃𝑖,𝑛
𝑖𝑛𝑓𝑜

 ← ―visited‖ = 1

 }

 Else {

 𝑃𝑖,𝑛
𝑖𝑛𝑓𝑜

 ← ―waiting‖ = 2

 }

 }

 }

 Else {

 OCi ← split(OCi)intersection,minY,maxY

 line1 ← addLine({lt
´
, lb

´
})

 line2 ← addLine({rt
´
, rb

´
})

 LCi,k ← OCi ∪ line1 ∪ line2

 l ← lb
´

 For (j = lb
´
(y) to lt

´
(y)) Step gap {

 line ← addLine({j,l})

 For (all LCi,k) {

 If (LCi,k ∩ line ≠ NULL) Then {

 Pi,n ← LCi,k ∩ line

 𝑃𝑖,𝑛
𝑖𝑛𝑓𝑜

 ← ―not visited‖ = 0

 𝑃𝑖 ,𝑛
𝑐𝑢𝑟𝑣𝑒 _𝑖𝑑 ← k

 Pi ← Pi ∪ {Pi,n}

 }

 }

 l(y) ←

l(y) + gap

 }

 Pi ← sortPoints(Pi)y,x,z

 curveLength ← 0

 polyLine ← NULL

 While (min(𝑃𝑖
𝑖𝑛𝑓𝑜

) == 0) {

 If (Pi,n ← polyLine
endpoint

); If Not {

 Pi,n ← get the minimum_indexed 𝑃𝑖,𝑛
𝑖𝑛𝑓𝑜

 == 2 = ―waiting‖ point; If Not {

 Pi,n ← get the minimum_indexed 𝑃𝑖,𝑛
𝑖𝑛𝑓𝑜

 == 0 = ―not visited‖ point }

32

 Pi,n+1 ← find the best appropriate neighbor point according to previousMove; If

Not {

 COi ← COi ∪ polyLine

 𝑃𝑖,𝑛
𝑖𝑛𝑓𝑜

 ← ―visited‖ = 1

 polyLine ← NULL

 return_to_start_of_the_loop }

 line ← addLine({Pi,n, Pi,n+1})

 If (polyLine
length

 + line
length

 ≤ vcapillary) Then {

 polyLine ← polyLine ∪ line

 𝑃𝑖,𝑛
𝑖𝑛𝑓𝑜

 ← ―visited‖ = 1

 }

 Else {

 𝑃𝑖,𝑛
𝑖𝑛𝑓𝑜

 ← ―waiting‖ = 2

 }

 }

 }

 For (all CCi) { 𝐶𝐶𝑖,𝑏
𝑐𝑕𝑒𝑐𝑘 ← 0 }

 offsetAmount ← (cellStripe + supportStripe - 1 / 2) × dcapillary

 While (min(𝐶𝐶𝑖
𝑐𝑕𝑒𝑐𝑘) == 0) {

 For (b = 1 to B) {

 If (𝐶𝐶𝑖,𝑏
𝑐𝑕𝑒𝑐𝑘 ← 0) Then {

 𝑐𝑟𝑣 ← offset(Ci,b)offsetAmount

 If (𝑐𝑟𝑣𝑙𝑒𝑛𝑔𝑡 𝑕 ≤ min_Segment_Length) Then { 𝐶𝐶𝑖,𝑏
𝑐𝑕𝑒𝑐𝑘 ← 1 }

 If (0 ≤ offsetAmount < (cellStripe + supportStripe - 1 / 2) × dcapillary) Then {

 CMi ← CMi ∪ 𝑐𝑟𝑣 }

 Else { CIi ← CIi ∪ 𝑐𝑟𝑣 }

 }

 }

 offsetAmount ← offsetAmount – dcapillary

 }

Send_to_Bioprinter({ COi, CIi, CMi})

}

End

3.4 Transforming Biomodeled Smooth Parametric Surfaces to a Vertical Form

The proposed Self-Support and Zig-Zag methods presented in Section 3.2 and 3.3 could

result in excessive use of support material and cells, as well as increase in the total

printing time which could negatively affect cell viability. Since the printed tissue

constructs are flexible in nature, they can be twisted to a degree and keep the desired

shape. Therefore, we designed a new surface representation that elongates vertically in

z-direction by preserving the original lengths and branching topology of the vessel.

33

The main idea here is to convert the components of the trajectory curve set TCi =

{TCi}i=1..I to linear form and build smooth surfaces along those curve Si(u,v), with

respect to each of their median radius TC𝑖
𝑚𝑒𝑑𝑖𝑎𝑛 _𝑟𝑎𝑑 values. Each trajectory curve, other

that the root (TC1), has a branching part TC𝑖
𝑏𝑟𝑎𝑛𝑐 𝑕𝐿𝑖𝑛𝑒 (to get separated from the

direction of its parent curve) and a linear part TC𝑖
𝑟𝑒𝑠𝑡 , if TC𝑖

𝑙𝑒𝑛𝑔𝑡 𝑕
 is greater than

branchLine, as shown in Figure 3.9. minDistance (the minimum linear distance between

two parallel branches) and branchingAngle (the separation angle of two branches)

values are determined by the user and those two parameters, together with the

maxRadius (the maximum median radius of the trajectory curves other than the root)

value, determines the length of the branchLine by:

 (3.4)

minDistance + 2 × maxRadius > 2 × branchLine × Cos(Π/2 – (branchingAngle / 2))

For the trajectory curves whose length TC𝑖
𝑙𝑒𝑛𝑔𝑡 𝑕

 is shorter than branchLine, their length

is adjusted to branchLine so that the minimum distance between the surfaces is satisfied

and any possible intersection of the branches is avoided. Hence, no other trajectory

curves median radius value {𝑇𝐶𝑖
𝑚𝑒𝑑𝑖𝑎𝑛 _𝑟𝑎𝑑 }i=2..I is greater than maxRadius as shown in

Figure 3.10(a).

34

Figure 3.9. Converting the biomodeled trajectory curves to a vertical pattern, with

respect to each trajectory curves original lengths.

First, the root (TC1) curve approximates a linear centerline curve line1, lies in z-plane

with its length equal toTC1
𝑙𝑒𝑛𝑔𝑡 𝑕

, then the surface S1(u,v) along line1 with respect to its

radius 𝑇𝐶1
𝑚𝑒𝑑𝑖𝑎𝑛 _𝑟𝑎𝑑 is fitted with the following equation:

1 1(,) () () ()S u v line u M u T v  (3.5)

 _ _
1 1() cos(), sin()
median rad median rad

T v TC v TC v

0 ≤ u ≤ 1 and 0 ≤ v ≤1

Where M(u) is a 3x3 matrix incorporating rotation and nonuniform scaling of T(v) as a

function of u.

After that, for each trajectory curve {TCi}i=2..I, branchLine (TC𝑖
𝑏𝑟𝑎𝑛𝑐 𝑕𝐿𝑖𝑛𝑒) and rest

(TC𝑖
𝑟𝑒𝑠𝑡) parts are generated vertically with respect to the respective trajectory curves‘

length and branchingAngle, as shown in Figure 3.9. The key point of this centerline

curve generation is that each parent-child pair lies in perpendicular planes, therefore any

35

possible intersection between the branches are eliminated. Lastly, the smooth surface(s)

Si(u,v) are built along centerline curve(s) with respect to its median radius

𝑇𝐶𝑖
𝑚𝑒𝑑𝑖𝑎𝑛 _𝑟𝑎𝑑 , as shown in Figure 3.10(b) showing a branched vessel model with three

branches and five trajectory curves.

Figure 3.10. (a) The organization of the branching line with respect to the branching

angle, minimum distance between the branches and maximum branch radius; vertical

surface representation of a coronary artery, (b) coronary artery model with three

branches and five trajectory curves.

The pseudo-code for Algorithm 4 is given below.

Algorithm 4. Smooth Parametric Surface Generation for Vertical 3D-Bioprinting

Input:

TC: trajectory curve array

minDistance: the minimum planar distance between parallel branch surfaces

branchingAngle: the planar angle between all branch pairs

pS: the predefined spot for starting point of trajectory curves &

smooth surfaces

branchLine: the minimum length of a branching line

increment: increment amount for the length of branching lines, in case they

fall short

Output:

Si(u,v) : generated NURBS Surface(s)

Start

Initialize maxBranches ← 2, i ← 1, constructionPlane ← (x,y), t ← 1

maxRadius ← max(TC𝑖
𝑚𝑒𝑑𝑖𝑎𝑛 _𝑟𝑎𝑑)i = 2..I

While (minDistance + maxBranches × maxRadius > maxBranches × branchLine ×

Cos(Π/2 – (branchingAngle / 2))) {

 branchLine ← branchLine + increment

}

36

destinationi ← (pS (x), pS (y), pS (z) + TC𝑖
𝑙𝑒𝑛𝑔𝑡 𝑕

)

linei ← addLine({pS, destinationi})

𝑐𝑖𝑟𝑐𝑙𝑒𝑖
1 ← addCircle(𝑙𝑖𝑛𝑒𝑖

𝑠𝑡𝑎𝑟𝑡𝑃𝑜𝑖𝑛𝑡 , 𝑇𝐶𝑖
𝑚𝑒𝑑𝑖𝑎𝑛 _𝑟𝑎𝑑)constructionPlane

𝑐𝑖𝑟𝑐𝑙𝑒𝑖
2 ← addCircle(𝑙𝑖𝑛𝑒𝑖

𝑒𝑛𝑑𝑃𝑜𝑖𝑛𝑡 , 𝑇𝐶𝑖
𝑚𝑒𝑑𝑖𝑎𝑛 _𝑟𝑎𝑑)constructionPlane

𝑇𝐶𝑖
𝑠𝑢𝑟𝑓𝑎𝑐𝑒

 ← loftSurface({𝑐𝑖𝑟𝑐𝑙𝑒𝑖
1, linei, 𝑐𝑖𝑟𝑐𝑙𝑒𝑖

2})

Si(u,v) ← 𝑇𝐶𝑖
𝑠𝑢𝑟𝑓𝑎𝑐𝑒

(TC𝑖
𝑐𝑕𝑖𝑙𝑑 ,𝑡

)
startPoint

 ← 𝑙𝑖𝑛𝑒𝑖
𝑒𝑛𝑑𝑃𝑜𝑖𝑛𝑡 , (TC𝑖

𝑐𝑕𝑖𝑙𝑑 ,𝑡+1
)
startPoint

 ← 𝑙𝑖𝑛𝑒𝑖
𝑒𝑛𝑑𝑃𝑜𝑖𝑛𝑡

(TC𝑖
𝑐𝑕𝑖𝑙𝑑 ,𝑡

)
startCircle

← 𝑐𝑖𝑟𝑐𝑙𝑒𝑖
2, (TC𝑖

𝑐𝑕𝑖𝑙𝑑 ,𝑡+1
)
startCircle

 ← 𝑐𝑖𝑟𝑐𝑙𝑒𝑖
2

(TC𝑖
𝑐𝑕𝑖𝑙𝑑 ,𝑡

)
plane

 ← ―1‖ = (x,z), (TC𝑖
𝑐𝑕𝑖𝑙𝑑 ,𝑡+1

)
plane

 ← ―1‖ = (x,z)

(TC𝑖
𝑐𝑕𝑖𝑙𝑑 ,𝑡

)
angle

 ← (Π + branchingAngle / 2), (TC𝑖
𝑐𝑕𝑖𝑙𝑑 ,𝑡+1

)
angle

 ← (Π – branchingAngle

/ 2)

For (i = 1 to I) {

 If (TC𝑖
𝑝𝑎𝑟𝑒𝑛𝑡

 ≠ NULL) Then {

 If (TC𝑖
𝑝𝑙𝑎𝑛𝑒

 == ―1‖ = (x,z)) Then {

 If (TC𝑖
𝑎𝑛𝑔𝑙𝑒

 < Π) Then {destinationi ← (TC𝑖
𝑠𝑡𝑎𝑟𝑡𝑃𝑜𝑖𝑛𝑡 (x) + (branchingAngle / 2) ×

branchLine, TC𝑖
𝑠𝑡𝑎𝑟𝑡𝑃𝑜𝑖𝑛𝑡 (y), TC𝑖

𝑠𝑡𝑎𝑟𝑡𝑃𝑜𝑖𝑛𝑡 (z) + Sin(Π/2 – (branchingAngle / 2)) ×

branchLine)}

 If (TC𝑖
𝑎𝑛𝑔𝑙𝑒

 > Π) Then {destinationi ← (TC𝑖
𝑠𝑡𝑎𝑟𝑡𝑃𝑜𝑖𝑛𝑡 (x) – (branchingAngle / 2) ×

branchLine, TC𝑖
𝑠𝑡𝑎𝑟𝑡𝑃𝑜𝑖𝑛𝑡 (y), TC𝑖

𝑠𝑡𝑎𝑟𝑡𝑃𝑜𝑖𝑛𝑡 (z) + Sin(Π/2 – (branchingAngle / 2)) ×

branchLine)}

 linei ← addLine({pS, destinationi})

 𝑐𝑖𝑟𝑐𝑙𝑒𝑖
1 ← addCircle(𝑙𝑖𝑛𝑒𝑖

𝑒𝑛𝑑𝑃𝑜𝑖𝑛𝑡 , 𝑇𝐶𝑖
𝑚𝑒𝑑𝑖𝑎𝑛 _𝑟𝑎𝑑)constructionPlane

 }

 Else {

 If (TC𝑖
𝑎𝑛𝑔𝑙𝑒

 < Π) Then {destinationi ← (TC𝑖
𝑠𝑡𝑎𝑟𝑡𝑃𝑜𝑖𝑛𝑡 (x), TC𝑖

𝑠𝑡𝑎𝑟𝑡𝑃𝑜𝑖𝑛𝑡 (y) +

(branchingAngle / 2) × branchLine, TC𝑖
𝑠𝑡𝑎𝑟𝑡𝑃𝑜𝑖𝑛𝑡 (z) + Sin(Π/2 – (branchingAngle / 2)) ×

branchLine)}

 If (TC𝑖
𝑎𝑛𝑔𝑙𝑒

 > Π) Then {destinationi ← (TC𝑖
𝑠𝑡𝑎𝑟𝑡𝑃𝑜𝑖𝑛𝑡 (x), TC𝑖

𝑠𝑡𝑎𝑟𝑡𝑃𝑜𝑖𝑛𝑡 (y) –

(branchingAngle / 2) × branchLine, TC𝑖
𝑠𝑡𝑎𝑟𝑡𝑃𝑜𝑖𝑛𝑡 (z) + Sin(Π/2 – (branchingAngle / 2)) ×

branchLine)}

 linei ← addLine({pS, destinationi})

 𝑐𝑖𝑟𝑐𝑙𝑒𝑖
1 ← addCircle(𝑙𝑖𝑛𝑒𝑖

𝑒𝑛𝑑𝑃𝑜𝑖𝑛𝑡 , 𝑇𝐶𝑖
𝑚𝑒𝑑𝑖𝑎𝑛 _𝑟𝑎𝑑)constructionPlane

 }

 If (TC𝑖
𝑙𝑒𝑛𝑔𝑡 𝑕

 ≤ branchLine) Then {

 𝑇𝐶𝑖
𝑠𝑢𝑟𝑓𝑎𝑐𝑒

 ← loftSurface({TC𝑖
𝑠𝑡𝑎𝑟𝑡𝐶𝑖𝑟𝑐𝑙𝑒 , linei, 𝑐𝑖𝑟𝑐𝑙𝑒𝑖

1})

 Si(u,v) ← 𝑇𝐶𝑖
𝑠𝑢𝑟𝑓𝑎𝑐𝑒

 }

 Else {

 𝑇𝐶𝑖
𝑠𝑢𝑟𝑓𝑎𝑐𝑒 ,𝑡

 ← loftSurface({TC𝑖
𝑠𝑡𝑎𝑟𝑡𝐶𝑖𝑟𝑐𝑙𝑒 , linei, 𝑐𝑖𝑟𝑐𝑙𝑒𝑖

1})

 𝑑𝑒𝑠𝑡𝑖𝑛𝑎𝑡𝑖𝑜𝑛𝑖
2 ← ((linei)

endPoint
(x), (linei)

endPoint
(y), (linei)

endPoint
(z) + TC𝑖

𝑙𝑒𝑛𝑔𝑡 𝑕
 –

branchLine)

 𝑙𝑖𝑛𝑒𝑖
2 ← addLine({(linei)

endPoint
, 𝑑𝑒𝑠𝑡𝑖𝑛𝑎𝑡𝑖𝑜𝑛𝑖

2})

 𝑐𝑖𝑟𝑐𝑙𝑒𝑖
2 ← addCircle(𝑙𝑖𝑛𝑒𝑖

𝑒𝑛𝑑𝑃𝑜𝑖𝑛𝑡 , 𝑇𝐶𝑖
𝑚𝑒𝑑𝑖𝑎𝑛 _𝑟𝑎𝑑)constructionPlane

37

 𝑇𝐶𝑖
𝑠𝑢𝑟𝑓𝑎𝑐𝑒 ,𝑡+1

 ← loftSurface({𝑐𝑖𝑟𝑐𝑙𝑒𝑖
1, 𝑙𝑖𝑛𝑒𝑖

2, 𝑐𝑖𝑟𝑐𝑙𝑒𝑖
2})

 Si(u,v) ← 𝑇𝐶𝑖
𝑠𝑢𝑟𝑓𝑎𝑐𝑒 ,𝑡

 ∪ 𝑇𝐶𝑖
𝑠𝑢𝑟𝑓𝑎𝑐𝑒 ,𝑡+1

 }

 }

}

End

3.5 Path planning with Self-Supporting Method for Branched Vascular Constructs

After obtaining the vertically biomodeled smooth parametric surfaces with Algorithm 4,

path planning and topology optimization needs to be carried out to 3D bioprint the

model. In this part, a novel method is proposed for 3D bioprinting path planning which

is also capable of printing branched structures. The main idea of self-supporting method

for branched vascular constructs is to use least amount of material to cover and support

the cellular aggregates. Hence, the method also optimizes the duration of the printing

process to improve the cell viability.

The support structures are printed in a circular form in this approach, therefore the

curves that are generated by contouring the whole surface representation at each layer k,

CCk = {Ck,n}k=1..K need to be offset inwards and outwards to form the support wall.

Because of weak mechanical properties of hydrogel support material, they cannot keep

their 3D form if printed on top of each other. Therefore, each support piece at each layer

k+1 needs to be deposited on to the valleys of the support material at the preceding layer

k. For each layer, Algorithm 5 computes the border curves BCk = {BCk,n}n=1..N and total

number of cylindrical support structure and bio-ink pieces (maxStepk) for that layer.

Border curves represent the largest boundaries of outward support structure for that

layer. As can be seen in Figure 3.11, the border curves of the k+1
th

 layer (BCk+1) are

shown with black curves. To determine the border curves for the k
th

 layer, the contour

curves CCk are iteratively offset outwards with the capillary diameter dcapillary

increments in the offset amount (blue curves in Figure 3.11), once offset curves are

large enough to strictly enclose the border curves of the k+1
th

 layer, then they set as the

border curves of their layer. Moreover, the total number of increments in offset amount

to generate offset curves will be the total number of cylindrical support structure and the

bio-ink pieces (maxStepk) for that layer, as shown with blue curves in Figure 3.11.

38

To determine the border curves and the total number of cylindrical support structures

and bio-ink pieces for each layer, a top-down approach needs to be developed.

Therefore, the algorithm uses the user defined variable for determining the border

curves and number of support cylinders for the top layer. Here, topSupport is a user

variable for the number of support cylindrical pieces to enclose each n contour curve

CK,n at the top layer. From that information, maxStepK will be equal to topSupport and

the border curves for that layer can be found:

 offsetAmount ← (topSupport / 2) × dcapillary (3.6)

      , ,, 1..

offsetAmout
K n K nK n n N

t C t offsetAmount N tC


  

Where;

 ,K nN t = unit normal vector on curve  ,K n tC at a parametric location t

 BCK = {𝐶𝐾,𝑛
𝑜𝑓𝑓𝑠𝑒𝑡𝐴𝑚𝑜𝑢𝑛𝑡

}

The algorithm then starts iterating downwards through the layers and determines the

border curves and the total number of cylindrical support structures and bio-ink pieces

for each layer, with the methodology explained above.

Figure 3.11. Determination of border curves for layer k, using the border curve

information of layer k+1.

Once the total number of cylindrical support structures and bio-ink pieces are

determined for each layer, from bottom to top layer, contour curves CCk are offset with

sequentially decreasing offset amounts (o) with maxStepk times resulting in offset

39

curves 𝐶𝑘,𝑛
𝑜 . According to the cellStripe value (the number of bio-ink cylinders to satisfy

the wall thickness of the vessel) and the distance between the offset curves and the

contour curves, the types of the offset curves 𝐶𝑘,𝑛
𝑜 are determined, whether they are

outwards or inwards support cylinders {COk, CIk} (support structures), or bio-ink

cylinders middle {CMk} as shown in Figure 3.12. As shown in Figure 3.12, the contour

curves (shown with black curves) represents the inner boundaries of the biomodeled

vessel, the closest cellStripe number (2 in this specific example) of cylindrical curves in

outward direction represents the bio-ink cylinders middle (shown with red curves). The

rest of the cylinders are grouped as support cylinders outwards and inwards (shown with

blue) according to their orientation based on their corresponding contour curves. Every

cylinder curve in each of the three sets {COk, CIk, CMk}, starting from the broadest

curve for each set, are then linked together if they can connect each other with a line

segment (Figure 3.12), if that line segment satisfies the following conditions:

 The line segment must be linear.

 The line segment must not intersect any of the other curves belonging to

any of these sets.

 The line segments‘ lengths must be at most equals to dcapillary.

Figure 3.12. Linking procedure for supportive cylinders inwards, bio-ink cylinders

middle and supportive cylinders outwards.

At a layer, the support cylinders outwards and inwards are printed first, and then the

bio-ink aggregates are deposited along the valleys of the support structure. A

40

representative path planning example of a three branched, eight trajectory curved

surface model is shown in Figure 3.13.

Figure 3.13. A representative path planning example of a three branched, eight

trajectory curved surface model.

The pseudo-code of the Algorithm 5 is given below.

Algorithm 5. Vertical 3D-Bioprinting Self-Supporting Model

Input:

Si(u,v): generated NURBS Surface(s)

dcapillary: diameter of the glass capillaries

topSupport: the number of supportive cylinders at top layer

vcapillary: max. volume of the glass capillaries

cellStripe: the number of cylindrical cellular aggregates to satisfy desired

wall thickness

interval: distance between layers

Output:

Finalized vascular model, with support structure

Path planning for 3D-Bioprinting (a compatible script file for the 3D-Bioprinter)

Start

{ bb0, bb1, bb2, bb3, bb4, bb5, bb6, bb7} ← BoundingBox(Sb(u,v))

lb ← bb4, rb ← bb5, rt ← bb6, lt ← bb7

Initialize totalLayers ← floor(distance(bb3,bb0) / interval)+1, j ← 1, k ← totalLayers, i

← 1

Initialize contourLevel ← plane({lb, rb, rt, lt}) = ―k‖

contourLevel ← contourLevel – interval

lb(z) ← lb(z) – interval, rb(z) ← rb(z) – interval, rt(z) ← rt(z) – interval, lt(z) ← lt(z) –

interval

offsetAmount ← (topSupport / 2) × dcapillary

For (all Si(u,v)) {

 Ck,n ← contour(Si(u,v))contourLevel

 𝐶𝑘,𝑛
𝑜 ← offset(Ck,n)offsetAmount

41

 CCk = {Ck,n} ← a set of n closed contour curves that k
th

layer contains

 OCk ← OCk ∪ {𝐶𝑘,𝑛
𝑜 }

 BCk ← OCk

 maxStepk ← topSupport

}

For (k = 1 to K) {

 contourLevel ← contourLevel – interval

 lb(z) ← lb(z) – interval, rb(z) ← rb(z) – interval

 rt(z) ← rt(z) – interval, lt(z) ← lt(z) – interval

 j ← K – k

 𝐵𝐶𝑗+1
𝑗

 ← transport(BCj+1)contourLevel

 maxStepj ← 1

 offsetAmount ← (maxStepj / 2) × dcapillary

 For (all Si(u,v)) {

 Cj,n ← contour(Si(u,v))contourLevel

 𝐶𝑗 ,𝑛
𝑜 ← offset(Cj,n)offsetAmount

 CCj = {Cj,n} ← a set of n closed contour curves that j
th

layer contains

 OCj ← OCj ∪ {𝐶𝑗 ,𝑛
𝑜 }

 }

 BCj ← OCi

 While (𝐵𝐶𝑗+1
𝑗

 ⊇ 𝐵𝐶𝑗) {

 maxStepj ← maxStepj + 1

 offsetAmount ← (maxStepj / 2) × dcapillary

 For (all Si(u,v)) {

 Cj,n ← contour(Si(u,v))contourLevel

 𝐶𝑗 ,𝑛
𝑜 ← offset(Cj,n)offsetAmount

 CCj = {Cj,n} ← a set of n closed contour curves that j
th

layer contains

 OCj ← OCj ∪ {𝐶𝑗 ,𝑛
𝑜 }

 BCj ← OCi

 }

 }

 maxStepj ← 2 × maxStepj

}

contourLevel ← plane({lb, rb, rt, lt}) = ―0‖

For (k = 1 to K) {

 contourLevel ← contourLevel + interval

 lb(z) ← lb(z) + interval, rb(z) ← rb(z) + interval

 rt(z) ← rt(z) + interval, lt(z) ← lt(z) + interval

 offsetAmount ← (maxStepk / 2) × dcapillary

 For (all Si(u,v)) {

 Ck,n ← contour(Si(u,v))contourLevel

 CCk = {Ck,n} ← a set of n closed contour curves that k
th

layer contains

 }

 For (all CCk) { 𝐶𝐶𝑘,𝑛
𝑐𝑕𝑒𝑐𝑘 ← 0 }

 For (j = 1 to maxStepk) {

 For (n = 1 to num_Contour_Curves) {

 If (𝐶𝐶𝑘,𝑛
𝑐𝑕𝑒𝑐𝑘 ← 0) Then {

42

 𝐶𝑘,𝑛
𝑜 ← offset(Ck,n)offsetAmount

 OCk ← OCk ∪ {𝐶𝑘,𝑛
𝑜 }

 If ((𝐶𝑘,𝑛
𝑜)

length
 ≤ min_Segment_Length) Then { 𝐶𝐶𝑘,𝑛

𝑐𝑕𝑒𝑐𝑘 ← 1 }

 If ((j ≥ maxStepk /2 – cellStripe) and (j ≤ maxStepk /2)) Then { CMk ← CMk ∪

𝐶𝑘,𝑛
𝑜 }

 ElseIf (j < maxStepk /2 – cellStripe) Then { COk ← COk ∪ 𝐶𝑘,𝑛
𝑜 }

 Else { CIk ← CIk ∪ 𝐶𝑘,𝑛
𝑜 }

 }

 }

 offsetAmount ← offsetAmount – dcapillary

 }

}

Connect({ COk, CIk, CMk})

Split({ COk, CIk, CMk}, vcapillary)

Send_to_Bioprinter({ COk, CIk, CMk})

End

3.6 Path Planning with Hybrid Method for Branched Vascular Constructs

Figure 3.13 shows that Self-Supporting methods implementation with vertically

biomodeled smooth surfaces neither reduce the supporting material usage and duration

of the bioprinting process, as it utilizes an excessive number of outwards supporting

cylinders. To effectively reduce the printing time and material use, a hybrid method is

proposed where self-supporting and zig-zag methods are combined.

The proposed hybrid method is mainly constructed over self-supporting method as two

methodologies show great similarities. By altering the self-supporting method‘s border

curve constraint with a more relaxed constraint and by introducing a new path planning

pattern, the algorithm reduces the printing duration and material use significantly (as

shown in Figure 4.10).

In self-supporting method, for any subsequent layer, whenever the boundaries of the

offset contour curves OCk of the k
th

 layer strictly encloses the largest outward

boundaries of the border curves of the upper layer BCk+1, then those OCk curves are set

as the border curves BCk of k
th

 layer. However, in this hybrid method, the largest

outward boundaries of the offset contour curves of the k
th

 layer do not have to enclose

the boundaries of the border curves BCk+1 of the upper layer. This constraint conversion

makes BCk = BCk+1 possible for layers of contouring the same vertical extruded surface

group.

43

Once BCk‘s are set for each layer, from bottom to top layer, the algorithm checks for the

odd numbered layers k that satisfies BCk = BCk+1 property. If the border curves BCk‘s

are set as curveOutsk, the outward support border cylinders of bio-ink cylinders are set

as curveInsk, and the hollow area between the {curveInsk, curveOutsk} need to be filled

by custom zig-zag pattern that is generated by Algorithm 6.

Figure 3.14. Traveling point extraction process for large and small distance curves.

If the linear distance between curveInsk and curveOutsk pairs is greater than maxGap

(user defined distance) value, then the algorithm approximates another set of curves

curveMidsk that pass just from the middle of {curveInsk, curveOutsk} as in Figure 3.14.

Division of each curve set {curveInsk, curveMidsk ,curveOutsk} to x, 3x and 2x points

respectively, results in relative sized point sets for each curve set

{𝑃𝑖𝑛𝑠
𝑥 , 𝑃𝑚𝑖𝑑𝑠

3𝑥 , 𝑃𝑜𝑢𝑡𝑠
2𝑥 }

x=1..X
 (Figure 3.14). For instance, 𝑃𝑜𝑢𝑡𝑠

2𝑥 represents the 2x division

points of curveOutsk. By traveling among the division points in a planned way as shown

in Figure 3.15, a zig-zag patterned support structure is generated for odd layers

satisfying BCk = BCk+1. This zig-zag patterned support structure will be the k
th

 layers

44

support cylinders outwards (COk) set, as shown in Figure 3.15. The rest of the

methodology is completely identical with the self-supporting approach explained above.

Figure 3.15. The zig-zag pattern outer support structure COk generation for odd

numbered layers, for both large and small distance curves.

The proposed hybrid method reduces the material and time for subsequent vertical

layers, and hence for the whole bioprinting process.

The pseudo-code of the Algorithm 6 is given below.

Algorithm 6. Vertical 3D-Bioprinting Hybrid Model

Input:

Si(u,v): generated NURBS Surface(s)

dcapillary: diameter of the glass capillaries

topSupport: the number of supportive cylinders at top layer

vcapillary: max. volume of the glass capillaries

cellStripe: the number of cylindrical cellular aggregates to satisfy desired

wall thickness

interval: distance between layers

maxGap: critical distance between contour curves

45

Output:

Finalized vascular model, with support structure

Path planning for 3D-Bioprinting (a compatible script file for the 3D-Bioprinter)

Start

{ bb0, bb1, bb2, bb3, bb4, bb5, bb6, bb7} ← BoundingBox(Sb(u,v))

lb ← bb4, rb ← bb5, rt ← bb6, lt ← bb7

Initialize totalLayers ← floor(distance(bb3,bb0) / interval)+1, j ← 1, k ← totalLayers, i

← 1

Initialize contourLevel ← plane({lb, rb, rt, lt}) = ―k‖

contourLevel ← contourLevel – interval

lb(z) ← lb(z) – interval, rb(z) ← rb(z) – interval, rt(z) ← rt(z) – interval, lt(z) ← lt(z) –

interval

offsetAmount ← (topSupport / 2) × dcapillary

For (all Si(u,v)) {

 Ck,n ← contour(Si(u,v))contourLevel

 𝐶𝑘,𝑛
𝑜 ← offset(Ck,n)offsetAmount

 CCk = {Ck,n} ← a set of n closed contour curves that k
th

layer contains

 OCk ← OCk ∪ {𝐶𝑘,𝑛
𝑜 }

 BCk ← OCk

 maxStepk ← topSupport

}

For (k = 1 to K) {

 contourLevel ← contourLevel – interval

 lb(z) ← lb(z) – interval, rb(z) ← rb(z) – interval

 rt(z) ← rt(z) – interval, lt(z) ← lt(z) – interval

 j ← K – k

 𝐵𝐶𝑗+1
𝑗

 ← transport(BCj+1)contourLevel

 maxStepj ← 1

 offsetAmount ← (maxStepj / 2) × dcapillary

 For (all Si(u,v)) {

 Cj,n ← contour(Si(u,v))contourLevel

 𝐶𝑗 ,𝑛
𝑜 ← offset(Cj,n)offsetAmount

 CCj = {Cj,n} ← a set of n closed contour curves that j
th

layer contains

 OCj ← OCj ∪ {𝐶𝑗 ,𝑛
𝑜 }

 }

 borderCurvesj ← OCi

 While (𝐵𝐶𝑗+1
𝑗

 ⊃ 𝐵𝐶𝑗) {

 maxStepj ← maxStepj + 1

 offsetAmount ← (maxStepj / 2) × dcapillary

 For (all Si(u,v)) {

 Cj,n ← contour(Si(u,v))contourLevel

 𝐶𝑗 ,𝑛
𝑜 ← offset(Cj,n)offsetAmount

 CCj = {Cj,n} ← a set of n closed contour curves that j
th

layer contains

 OCj ← OCj ∪ {𝐶𝑗 ,𝑛
𝑜 }

 BCj ← OCi

 }

 }

 maxStepj ← 2 × maxStepj

46

}

contourLevel ← plane({lb, rb, rt, lt}) = ―0‖

For (k = 1 to totalLayers) {

 contourLevel ← contourLevel + interval

 lb(z) ← lb(z) + interval, rb(z) ← rb(z) + interval

 rt(z) ← rt(z) + interval, lt(z) ← lt(z) + interval

 offsetAmount ← (maxStepk / 2) × dcapillary

 For (all Si(u,v)) {

 Ck,n ← contour(Si(u,v))contourLevel

 CCk = {Ck,n} ← a set of n closed contour curves that k
th

layer contains

 }

 If ((BCk == BCk+1) and (k == ODD)) Then {

 amount ← (cellStripe + ½) × dcapillary

 curveInsk ← offset(CCk)amount

 curveOutsk ← BCk

 If (maxStepk / 2 × dcapillary > maxGap) Then {

 amount ← maxStepk / 4 × dcapillary

 curveMidsk ← offset(curveInsk)amount

 x ← avg(curveIns
length

)

 𝑃𝑖𝑛𝑠
𝑥 ← divide(curveInsk)x

 𝑃𝑚𝑖𝑑𝑠
3𝑥 ← divide(curveMidsk)3x

 𝑃𝑜𝑢𝑡𝑠
2𝑥 ← divide(curveOutsk)2x

 For (x = 0 to X) { ‗// For all CCk

 If (x == 0) Then {

 PPk ← PPk ∪ {𝑃𝑖𝑛𝑠
0 ∪ 𝑃𝑜𝑢𝑡𝑠

𝑙𝑎𝑠𝑡 _𝑖𝑛𝑑𝑒𝑥 ∪ 𝑃𝑜𝑢𝑡𝑠
0 ∪ 𝑃𝑚𝑖𝑑𝑠

𝑙𝑎𝑠𝑡 _𝑖𝑛𝑑𝑒𝑥 ∪ 𝑃𝑚𝑖𝑑𝑠
1 ∪ 𝑃𝑜𝑢𝑡𝑠

0 ∪ 𝑃𝑜𝑢𝑡𝑠
1

∪ 𝑃𝑖𝑛𝑠
0 }

 }

 ElseIf ((x > 0) and (x < X)) Then {

 PPk ← PPk ∪ {𝑃𝑖𝑛𝑠
𝑘 ∪ 𝑃𝑜𝑢𝑡𝑠

2𝑘−1 ∪ 𝑃𝑜𝑢𝑡𝑠
2𝑘 ∪ 𝑃𝑚𝑖𝑑𝑠

3𝑘−1 ∪ 𝑃𝑚𝑖𝑑𝑠
3𝑘+1 ∪ 𝑃𝑜𝑢𝑡𝑠

2𝑘 ∪ 𝑃𝑜𝑢𝑡𝑠
2𝑘+1 ∪

𝑃𝑖𝑛𝑠
𝑘 }

 }

 Else { COk ← polyLine(PPk)}

 }

 }

 Else {

 x ← avg(curveIns
length

)

 𝑃𝑖𝑛𝑠
𝑥 ← divide(curveInsk)x

 𝑃𝑜𝑢𝑡𝑠
2𝑥 ← divide(curveOutsk)2x

 For (x = 0 to X) { ‗// For all CCk

 If (x == 0) Then {

 PPk ← PPk ∪ {𝑃𝑖𝑛𝑠
0 ∪ 𝑃𝑜𝑢𝑡𝑠

𝑙𝑎𝑠𝑡 _𝑖𝑛𝑑𝑒𝑥 ∪ 𝑃𝑜𝑢𝑡𝑠
1 ∪ 𝑃𝑖𝑛𝑠

0 }

 }

 ElseIf ((x > 0) and (x < X)) Then {

 PPk ← PPk ∪ {𝑃𝑖𝑛𝑠
𝑘 ∪ 𝑃𝑜𝑢𝑡𝑠

2𝑘−1 ∪ 𝑃𝑜𝑢𝑡𝑠
2𝑘+1 ∪ 𝑃𝑖𝑛𝑠

𝑘 }

 }

 Else { COk ← polyLine(PPk)}

 }

 }

47

 For (all CCk) { 𝐶𝐶𝑘,𝑛
𝑐𝑕𝑒𝑐𝑘 ← 0 }

 For (j = maxStepk /2 – cellStripe to maxStepk) {

 For (n = 1 to num_Contour_Curves) {

 If (𝐶𝐶𝑘,𝑛
𝑐𝑕𝑒𝑐𝑘 ← 0) Then {

 𝐶𝑘,𝑛
𝑜 ← offset(Ck,n)offsetAmount

 OCk ← OCk ∪ {𝐶𝑘,𝑛
𝑜 }

 If ((𝐶𝑘,𝑛
𝑜)

length
 ≤ min_Segment_Length) Then { 𝐶𝐶𝑘,𝑛

𝑐𝑕𝑒𝑐𝑘 ← 1 }

 If ((j ≥ maxStepk /2 – cellStripe) and (j ≤ maxStepk /2)) Then { CMk ← CMk ∪

𝐶𝑘,𝑛
𝑜 }

 Else { CIk ← CIk ∪ 𝐶𝑘,𝑛
𝑜 }

 }

 }

 offsetAmount ← offsetAmount – dcapillary

 }

 }

 Else {

 For (all CCk) { 𝐶𝐶𝑘,𝑛
𝑐𝑕𝑒𝑐𝑘 ← 0 }

 For (j = 1 to maxStepk) {

 For (n = 1 to num_Contour_Curves) {

 If (𝐶𝐶𝑘,𝑛
𝑐𝑕𝑒𝑐𝑘 ← 0) Then {

 𝐶𝑘,𝑛
𝑜 ← offset(Ck,n)offsetAmount

 OCk ← OCk ∪ {𝐶𝑘,𝑛
𝑜 }

 If ((𝐶𝑘,𝑛
𝑜)

length
 ≤ min_Segment_Length) Then { 𝐶𝐶𝑘,𝑛

𝑐𝑕𝑒𝑐𝑘 ← 1 }

 If ((j ≥ maxStepk /2 – cellStripe) and (j ≤ maxStepk /2)) Then { CMk ← CMk ∪

𝐶𝑘,𝑛
𝑜 }

 ElseIf (j < maxStepk /2 – cellStripe) Then { COk ← COk ∪ 𝐶𝑘,𝑛
𝑜 }

 Else { CIk ← CIk ∪ 𝐶𝑘,𝑛
𝑜 }

 }

 }

 offsetAmount ← offsetAmount – dcapillary

 }

 }

}

Connect({ COk, CIk, CMk})

Split({ COk, CIk, CMk}, vcapillary)

Send_to_Bioprinter({ COk, CIk, CMk})

End

3.7 Generating Horizontal Centerline Curves to Guide Path Planning of

Horizontal Branched Vascular Construct Printing

As an alternative approach to vertical bioprinting of biomimetic vascular constructs, a

horizontal path planning methodology is proposed in Sections 3.7 and 3.8. To optimize

48

this bioprinting horizontal path planning, the centerline curves must be generated to

guide the bioprinter to follow the trajectories for creating the vascular constructs.

The steps for the proposed horizontal methods follow the same way as the vertical

surface generation method (Section 3.4) but in the horizontal x,y-plane. Starting from a

root trajectory curve (TC1), each trajectory curve {TCi}i=1..I, is duplicated from the end

point of its parent curve. An example is shown in Figure 3.16 for a five branched

vascular structure with nine trajectory curves.

After each trajectory curve is determined, from each leaf curve (trajectory curves

without any child, a total b branches in the structure) to the root, algorithm connects

child trajectory curves with its parents through the root. This connected curve

mainRoadsb is set as the centerline for the respective branch b (as shown in Figure

3.16).

Figure 3.16. Approximation of centerline curves using trajectory curve information and

the angles between parent-child trajectory curve pairs; and generation of branch number

main roads from leaves to the root.

This main roads set represents the branch curves, each of them starting from a root

curve. For path planning purpose, the main road curve set needs to be sorted in the

clockwise direction where the base is the root curve. However, simple Euclidean

coordinate system information is not enough to determine the order of the branches.

49

Therefore, each curve in mainRoads set is offset in counterclockwise direction and the

total intersection number with the mainRoads set is determined as the sorted rank of that

specific mainRoadsb branch as shown in Figure 3.17.

Lastly, each consecutive main road pair, {mainRoadsb, mainRoadsb+1}, intersected and

combined from the intersection point to create the trajectory curves to be used in

Section 3.8 to organize path planning, the set of {sortedRoadsb}b=0..B constitutes each

bridge curve from mainRoadsb to mainRoadsb+1, including sortedRoads0 = mainRoads1 .

Figure 3.17 shows the sorted roads set (shown with blue curves) for a five branched

structure, at the same time sortedRoads2 is highlighted with red arrow (also implies the

printing direction).

Figure 3.17. Determining the ranks of the main roads and generating arranged sorted

roads for 3D printing.

The pseudo-code of the Algorithm 7 is given below.

Algorithm 7. Centerline Curves Generation for Horizontal 3D-Bioprinting

Input:

TC: trajectory curve array

pS: the predefined spot for starting point of trajectory curves &

smooth surfaces

Output:

sortedRoadsb: updated trajectory curve array

Start

Initialize maxBranches ← 2, i ← 1, constructionPlane ← (x,y), t ← 1, intersection ← 0

totalRadius ← sum(TC𝑖
𝑚𝑒𝑑𝑖𝑎𝑛 _𝑟𝑎𝑑)i = 1..I

50

cpCount ← count(TC𝑖
𝐶𝑃)i = 1..I

meanRadius ← totalRadius / cpCount

destinationi ← (pS (x), pS (y) + TC𝑖
𝑙𝑒𝑛𝑔𝑡 𝑕

, pS (z))

linei ← addLine({pS, destinationi})

TC𝑖
𝑐𝑢𝑟𝑣𝑒 _𝑖𝑑 ← linei

 (TC𝑖
𝑐𝑕𝑖𝑙𝑑 ,𝑡

)
startPoint

 ← 𝑙𝑖𝑛𝑒𝑖
𝑒𝑛𝑑𝑃𝑜𝑖𝑛𝑡 , (TC𝑖

𝑐𝑕𝑖𝑙𝑑 ,𝑡+1
)
startPoint

 ← 𝑙𝑖𝑛𝑒𝑖
𝑒𝑛𝑑𝑃𝑜𝑖𝑛𝑡

 (TC𝑖
𝑐𝑕𝑖𝑙𝑑 ,𝑡

)
side

 ← 1 = ―left‖, (TC𝑖
𝑐𝑕𝑖𝑙𝑑 ,𝑡+1

)
side

 ← 2 = ―right‖

For (i = 1 to I) {

 If (TC𝑖
𝑝𝑎𝑟𝑒𝑛𝑡

 ≠ NULL) Then {

 If (TC𝑖
𝑠𝑖𝑑𝑒 == 1 = ―left‖) Then {

 destinationi ← findDestination({ TC𝑖
𝑝𝑎𝑟𝑒𝑛𝑡 ,𝑐𝑢𝑟𝑣𝑒 _𝑖𝑑

, TC𝑖
𝑠𝑡𝑎𝑟𝑡𝑃𝑜𝑖𝑛𝑡 , 2Π –

TC𝑖
𝑎𝑛𝑔𝑙𝑒

})constructionPlane

 linei ← addLine({pS, destinationi})

 TC𝑖
𝑐𝑢𝑟𝑣𝑒 _𝑖𝑑 ← linei

 If (TC𝑖
𝑐𝑕𝑖𝑙𝑑 ≠ NULL) Then {

 (TC𝑖
𝑐𝑕𝑖𝑙𝑑 ,𝑡

)
startPoint

 ← 𝑙𝑖𝑛𝑒𝑖
𝑒𝑛𝑑𝑃𝑜𝑖𝑛𝑡 , (TC𝑖

𝑐𝑕𝑖𝑙𝑑 ,𝑡+1
)
startPoint

 ← 𝑙𝑖𝑛𝑒𝑖
𝑒𝑛𝑑𝑃𝑜𝑖𝑛𝑡

 (TC𝑖
𝑐𝑕𝑖𝑙𝑑 ,𝑡

)
side

 ← 1 = ―left‖, (TC𝑖
𝑐𝑕𝑖𝑙𝑑 ,𝑡+1

)
side

 ← 2 = ―right‖

 }

 }

 Else {

 destinationi ← findDestination({ TC𝑖
𝑝𝑎𝑟𝑒𝑛𝑡 ,𝑐𝑢𝑟𝑣𝑒 _𝑖𝑑

, TC𝑖
𝑠𝑡𝑎𝑟𝑡𝑃𝑜𝑖𝑛𝑡 , 2Π –

TC𝑖
𝑎𝑛𝑔𝑙𝑒

})constructionPlane

 linei ← addLine({pS, destinationi})

 TC𝑖
𝑐𝑢𝑟𝑣𝑒 _𝑖𝑑 ← linei

 If (TC𝑖
𝑐𝑕𝑖𝑙𝑑 ≠ NULL) Then {

 (TC𝑖
𝑐𝑕𝑖𝑙𝑑 ,𝑡

)
startPoint

 ← 𝑙𝑖𝑛𝑒𝑖
𝑒𝑛𝑑𝑃𝑜𝑖𝑛𝑡 , (TC𝑖

𝑐𝑕𝑖𝑙𝑑 ,𝑡+1
)
startPoint

 ← 𝑙𝑖𝑛𝑒𝑖
𝑒𝑛𝑑𝑃𝑜𝑖𝑛𝑡

 (TC𝑖
𝑐𝑕𝑖𝑙𝑑 ,𝑡

)
side

 ← 1 = ―left‖, (TC𝑖
𝑐𝑕𝑖𝑙𝑑 ,𝑡+1

)
side

 ← 2 = ―right‖

 }

 }

 }

}

For (i = 1 to B) {

 If (TC𝑖
𝑐𝑕𝑖𝑙𝑑 == NULL) Then {

 mainRoadsi ← TC𝑖
𝑐𝑢𝑟𝑣𝑒 _𝑖𝑑

 }

}

For (i = 1 to B) {

 While (𝑚𝑎𝑖𝑛𝑅𝑜𝑎𝑑𝑠𝑖
𝑠𝑡𝑎𝑟𝑡𝑃𝑜𝑖𝑛𝑡 ≠ pS) Then {

 mainRoadsi ← mainRoadsi ∪ 𝑚𝑎𝑖𝑛𝑅𝑜𝑎𝑑𝑠𝑖
𝑝𝑎𝑟𝑒𝑛𝑡

 }

}

sortedRoads0 ← NULL

For (i = 1 to B) {

 intersection ← 1

 testCurve ← offset(mainRoadsi)0.1

51

 For (j = 1 to B) {

 If ((testCurve ∩ mainRoadsj) ≠ NULL) Then {

 intersection ← intersection + 1

 }

 }

 sortedRoadsintersection ← mainRoadsi

 dummy ← 𝑠𝑜𝑟𝑡𝑒𝑑𝑅𝑜𝑎𝑑𝑠𝑖𝑛𝑡𝑒𝑟𝑠𝑒𝑐𝑡𝑖𝑜𝑛
𝑒𝑛𝑑𝑃𝑜𝑖𝑛𝑡

 𝑠𝑜𝑟𝑡𝑒𝑑𝑅𝑜𝑎𝑑𝑠𝑖𝑛𝑡𝑒𝑟𝑠𝑒𝑐𝑡𝑖𝑜𝑛
𝑒𝑛𝑑𝑃𝑜𝑖𝑛𝑡 ← 𝑠𝑜𝑟𝑡𝑒𝑑𝑅𝑜𝑎𝑑𝑠𝑖𝑛𝑡𝑒𝑟𝑠𝑒𝑐𝑡𝑖𝑜𝑛

𝑠𝑡𝑎𝑟𝑡𝑃𝑜𝑖𝑛𝑡

 𝑠𝑜𝑟𝑡𝑒𝑑𝑅𝑜𝑎𝑑𝑠𝑖𝑛𝑡𝑒𝑟𝑠𝑒𝑐𝑡𝑖𝑜𝑛
𝑠𝑡𝑎𝑟𝑡𝑃𝑜𝑖𝑛𝑡 ← dummy

}

sortedRoads0 ← sortedRoads1

For (i = 1 to B – 1) {

 pt ← firstIntersectionPoint({sortedRoadsi, sortedRoadsi+1})

 line1 ← addSubCurve({𝑠𝑜𝑟𝑡𝑒𝑑𝑅𝑜𝑎𝑑𝑠𝑖
𝑠𝑡𝑎𝑟𝑡𝑃𝑜𝑖𝑛𝑡 , pt})

 line2 ← addSubCurve({pt, 𝑠𝑜𝑟𝑡𝑒𝑑𝑅𝑜𝑎𝑑𝑠𝑖+1
𝑠𝑡𝑎𝑟𝑡𝑃𝑜𝑖𝑛𝑡 })

 sortedRoadsi ← line1 ∪ line2

}

End

3.8 Path Planning for Horizontal Vascular Construct Printing

After obtaining the trajectory centerline curve set {sortedRoadsb} from Algorithm 7, the

path planning for bioprinting is determined. Since bioprinting is limited to a single

plane, the radius of the vascular construct must be constant throughout. Moreover, the

path planning is also limited to the capillary diameter dcapillary, as the parallel horizontal

sequence of support structure and bio-ink pieces must be exactly differ by dcapillary

(Figure 3.18). Therefore, mean radius of the model, meanRadius, is calculated and

converted to a cylindrical quantity vesselRadius by dividing it to elevate (distance

between layers) amount. As also can be seen from Figure 3.18, the total cylinder

numbers of support structures and bio-ink‘s at each layer, layerLengthi, is decreasing by

one at every successive layer for each branch, so that each cylinder can lie through the

valleys that have been formed by the previous layer.

52

Figure 3.18. The organization of support structures (blue) and cellular aggregates (red)

with respect to the vessel models radius, in horizontal path planning.

Using the number of support structure layers at top and bottom and the cellStripe value

(the number of bio-ink cylinders to mimic natural wall thickness), the total number of

layers, i=1..I, is determined. Then, at start points of each sortedRoadsb curve, cellStripe

numbers of six-edged polygons PG = {PGb,cellStripe}b=1..B are placed, with the radius of

vesselRadius, as shown for a five branched vascular structure in Figure 3.19.

For each layer, the curves sortedRoadsb are transported vertically in an order from

sortedRoads1 to sortedRoadsB to the level of that specific layer. Then each sortedRoadsb

curves are offset in x-y plane with offset amounts, incrementing with capillary diameter

dcapillary amount, in clockwise and counterclockwise directions. If those offset curves

intersects with polygons PGb,cellStripe for that branch, then offset curves are set as

cylindrical bio-ink pieces CMb. If there is no intersection, then the offset curves are set

53

as cylindrical support structures COb (in Figure 3.19, blue cylinders represents the

support structures, while red ones are representing bio-ink).

Figure 3.19. Placements of polygons in order to classify support structures and cellular

aggregates for horizontal path planning.

At a layer, the support cylinders are printed first, then the bio-ink aggregates are

deposited along the valleys that support structures are formed as shown in Figure 3.20.

54

Figure 3.20. Five example layers from a five branched vascular construct to express the

path planning topology for horizontal printing, blue cylinders represents the support

structures, while red ones are representing bio-ink.

The pseudo-code of the Algorithm 8 is given below.

Algorithm 8. Horizontal 3D-Bioprinting Self-Supporting Model

Input:

{sortedRoadsb}b=0..B: generated centerline trajectory curve array

dcapillary: diameter of the glass capillaries

meanRadius: average radius value of the vascular structure

support: the total number of supportive layers (both on top

and bottom)

vcapillary: max. volume of the glass capillaries

cellStripe: the number of cylindrical cellular aggregates to

satisfy desired wall thickness

elevate: distance between layers

Output:

Finalized vascular model, with support structure

Path planning for 3D-Bioprinting (a compatible script file for the 3D-Bioprinter)

Start

vesselRadius ← floor(meanRadius / elevate) ‗// radius in terms of cylinders

Initialize totalLayers ← (2 × (vesselRadius – 1) + 1) + cellStripe × 2 + support

Initialize baseLength ← vesselRadius + cellStripe + totalLayers

Initialize j ← 1, k ← 0, i ← 1, layerLengthi ← baseLength

For (i = 2 to I) {

 layerLengthi ← baseLength + 1 – i

55

}

For (i = 1 to I) {

 For (k = 0 to B) {

 pt ← 𝑠𝑜𝑟𝑡𝑒𝑑𝑅𝑜𝑎𝑑𝑠𝑘
𝑠𝑡𝑎𝑟𝑡𝑃𝑜𝑖𝑛𝑡

 For (l = 1 to cellStripe) {

 𝑝𝑔𝑘
𝑙 ← addPolygon({((vesselRadius + 1 – l) × dcapillary), pt, 6})

 PGk ← PGk ∪ 𝑝𝑔𝑘
𝑙

 }

 curve ← move({sortedRoadsk, (– (((totalLayers – i) / 2) – i) })z

 If (k == 0) Then {

 For (j == 1 to ceil(layerLengthi / 2)) {

 If ((layerLengthi / 2) == INT) Then {

 offsetAmount ← (j – 1) × dcapillary

 crv ← offset(curve)offsetAmount

 }

 Else {

 offsetAmount ← (j – 0.5) × dcapillary

 crv ← offset(curve)offsetAmount

 }

 If ((crv ∩ PGk) == NULL) Then { COk ← COk ∪ crv }

 If ((crv ∩ PGk) ≠ NULL) Then { CMk ← CMk ∪ crv }

 }

 }

 Else {

 For (j == 1 to floor(layerLengthi / 2)) {

 If ((layerLengthi / 2) == INT) Then {

 offsetAmount ← (j – 1) × dcapillary

 crv ← offset(curve)offsetAmount

 }

 Else {

 offsetAmount ← (j – 0.5) × dcapillary

 crv ← offset(curve)offsetAmount

 }

 If ((crv ∩ PGk) == NULL) Then { COk ← COk ∪ crv }

 If ((crv ∩ PGk) ≠ NULL) Then { CMk ← CMk ∪ crv }

 }

 }

 If ((layerLengthi == ODD) and (k ≠ 0)) Then {

 pt ← firstIntersectionPoint({curve,{COk, CMk}})

 crv ← addSubCurve({curve
startPoint

, pt})

 If ((crv ∩ PGk) == NULL) Then { COk ← COk ∪ crv }

 If ((crv ∩ PGk) ≠ NULL) Then { CMk ← CMk ∪ crv }

 }

 }

 Connect({ COk, CMk})

 Split({ COk, CMk}, vcapillary)

 Send_to_Bioprinter({ COk, CMk})

}

End

56

Chapter 4

Implementations and Examples

4.1 Material (Hydrogel) & Bio-ink Preparation

A bio-inert, thermo-reversible hydrogel called NovoGel was used as a support material

for 3D printing of the developed models. The preparation of 2% (w/v) NovoGel

(Organovo) was carried out with phosphate buffered saline (PBS: Thermo Scientific

Hyclone 1X) with Ca
2+

 and Mg
2+

 salts. The solution was mixed with magnetic stirrer

and it was kept in microwave for 1 minute on high power settings. Then, the solution

was located in a water bath set at 70°C. NovoGel solution was autoclaved following

standard liquid sterilization procedures [4].

The 3D bioprinting requires a uniformly flat surface. After the sterilizing a 2 % Agarose

solution with PBS (Thermo Scientific Hyclone 1X), 20 mL agarose solution is

transferred using a pipette onto a petri dish bottom covering the entire dish surface. In

compliance with aseptic techniques, the sterilized mold was slowly put down onto the

agarose inside the petri dish. The mold was carefully taken away from the petri dish

after the agarose solution became completely gel [4]. During the material preparation,

adequate sterilization rules are followed against any contamination.

For Bio-ink preparation [20], immortalized MEF cells were cultured in 15 cm-diameter

culture dishes. Cells were detached from the culture plate using two different

57

approaches. Cells were either detached using 0.1% trypsin (Biological Industries, Israel)

for 10 minutes (Exp1), or 2.5 mM EGTA (ethylene glycol-bis(2-aminoethyl ether)-

N,N,N´,N) (Idranal VI, Fluka, Germany) in PBS [20]. Following detachment, trypsin or

EGTA was neutralized using serum containing medium. Following detachment, cells

were centrifuged at 200 x g and supernatant was discarded. The cell pellet was

resuspended to obtain 10 x 10
6
 cells / 20 ml medium incubated at 37°C in 15 ml-conical

tubes under rotation (PTR-30 Grant-Bio rotator, U.K). Following pelleting, cells were

resuspended in 1 ml medium and transferred into 1.5 ml Eppendorf tubes and

centrifuged again (1000 x g). Then, the cell pellets were drawn into capillary tubes.

Following incubation of cells in capillaries at indicated times in a 50 ml-falcon tube

containing culture medium inside tissue culture incubator. Following incubation, cells

inside the capillary tubes were extruded into cylindrical grooves on agarose gel (2% in

PBS). Then, plates were covered with culture medium and put into the incubator until

cylindrical bioinks are formed. Cylindrical bioink MEF cells were drawn back into

capillary tubes and bioprinting was performed using the 3D bio-printer.

For continuous bioprinting, cells were centrifuged at 200 x g. The pellet was

resuspended to have 20 x 10
6
 cells / 6.5 ml and transferred into 15 ml-conical tubes.

Following rotation at 37°C, cells were pelleted and transferred into Eppendorf tubes.

Cell pellets in 1.5 ml Eppendorf tubes (60 x 10
6
 cells in total) were transferred into

capillaries by continuous bioprinting [4].

4.2 Accuracy Results of Biomimetic Biomodeling Phase

To highlight the proposed biomimetic biomodeling methods capabilities, three different

mesh models of blood vessels are used, as shown in Figure 4.1. First two of them are

three branched and the last one is five branched. According to the visual observations

from Figure 4.1, the generated parametric smooth surfaces shapes mostly mimic the

natural vessel geometries of the mesh models.

58

Figure 4.1. Biomodeling results of branched vascular constructs, from mesh models to

smooth surfaces.

To conduct quantification analysis of the errors, contour curves are obtained with

periodical increments for abdominal aorta‘s mesh model and abdominal aorta‘s smooth

surface model (shown in Figure 4.2).

59

Figure 4.2. Contouring operations for both Mesh and Smooth Surface Model.

Then minimum, maximum and average difference (distance) of mesh contour curves

and surface contour curves at all contour layers are found. Those values are the errors of

biomodeling algorithm for the abdominal aorta model. The results of the comparisons

are shown in Table 4.1:

 Error

Contour #

Min.

Error (mm)

Max.

Error (mm)

Avg.

Error (mm)

Contour 1 0.06 0.91 0.52

Contour 2 0.045 0.84 0.4

Contour 3 0.02 0.26 0.11

Contour 4 0.01 0.29 0.14

Contour 5 0.05 0.72 0.43

Contour 6 0.063 0.88 0.65

Table 4.1. Six countours errors of the biomimetic biomodeling phase for abdominal

aorta model.

60

Observing the quantification of the errors, as ultimate goal is to generate path planning

for bioprinting of vascular constructs in a reasonable mimicked way, those errors are

negligible as abdominal aorta models, which is used in this work, diameter is around 9

mm.

Another set of analysis are done for evaluating the surface smoothness of the generated

smooth surface model. Since the mesh model generated by the segmentation software

includes a lot of noise and errors, approximation with a smooth surface eliminates

surface roughness and errors. As shown in Figure 4.3, the continuity of the black and

white stripes from top to bottom of the aorta‘s smooth surface model indicates smooth

connection, tangency, and curvature match through the domain of the surface.

Therefore, the results of smoothness of biomodeling phase are highly satisfying.

Figure 4.3. Smoothness analysis for the mesh model and smooth surface model.

4.3 Path Planning and Bioprinting Examples

Various path planning examples and their bioprinting outcomes are listed for each five

main path planning and topology optimization methods explained before. The proposed

techniques have been implemented with Rhinoceros 4.0 [30], using Rhino Script and

Visual Basic programming languages. Observing the shape formations of the bioprinted

structures, it can be stated that path planning methodologies are highly effective in

generating biomimetic representatives of the blood vessels. In other words, the results

show that multicellular aggregates and their support structures can be bioprinted

biomimetically to form the biomodeled tissues.

61

First, an eight-layered aortic vascular construct piece is biomodeled, with 9 millimeters

in diameter and 3.5 millimeters long [20], as shown in Figure 4.4, and it is bioprinted,

using MEF cells as bio-ink (Figure 4.5), layer-by-layer with self-supporting method that

is proposed in Section 3.2. This method is developed for non-branched vascular

constructs.

Figure 4.4. The cross sectional path planning view of the aortic model with support

structures (blue) generated with respect to the self-supporting model and cellular

aggregates (red).

62

Figure 4.5. 3D printed MEF cell aggregates of originally mimicked aorta model with

self-supporting path plan.

63

Three consecutive layers of the branching part of biomimetically biomodeled coronary

artery (Figure 4.6), is printed using hydrogel and red colored hydrogel pair (replicating

bio-ink) as shown in Figure 4.7.

Figure 4.6. Path planning of a coronary artery model for three consequent layers, with

zig-zag method.

Figure 4.7. 3D printed layers of the coronary artery model, with zig-zag method.

To demonstrate further improvements and its capabilities in printing branched vascular

structures with self-supporting method, an eight-layered, 3.5 millimeter diameters each

64

and 3.5 millimeters long two- branched structure is modeled (Figure 4.8), and printed

with hydrogels as supportive structure and MEF cells as bio-ink, as shown in Figure 4.9.

Figure 4.8. The cross sectional path planning view of the branched vascular model

(grey) with support structures (blue) generated with respect to the self-supporting model

and cellular aggregates (red).

Figure 4.9. 3D printed MEF cell aggregates of branched vascular model in self-

supporting model.

65

The fourth path planning example group is generated with hybrid method, as discussed

in Section 3.6; this method is developed to overcome the time issue that exists in self-

supporting method and provides material and time gain for consequent vertical layers,

as can be observed by the vertical parts of the biomodeled vascular construct and their

support structure width in Figure 4.10. Even though, hybrid method provides 40% time

gain over self-supporting method. Moreover, in Figure 4.11, a simple vertical extruded

surface is modeled with 4 millimeters diameter and 2 centimeters long, and printed with

hydrogels.

Figure 4.10. The cross sectional path planning view of the branched vascular model

(grey) with support structures (blue) generated with respect to the hybrid printing model

and cellular aggregates (red).

66

Figure 4.11. 3D printed non-branched vertical vascular construct with hybrid printing

method.

Lastly, a seven-layered ―Y‖ shape two-branched vascular construct is modeled with 1.2

millimeters radius (Figure 4.12). The horizontal path planning method is used for that

example, while printing is done with blue colored, red colored and plain hydrogels, as

shown in Figure 4.13. This approach is suitable for long and highly branched vessels, as

bioprinting those kind of structures in vertical way results in both material and time

waste, which is an issue for cell viability. Horizontal printing approach provides nearly

30% time gain over hybrid method for the same example model.

Figure 4.12. The path planning of a two branched vascular model with support

structures (blue) generated with respect to the horizontal printing model and cellular

aggregates (red).

67

Figure 4.13. 3D printed two branched vascular construct with horizontal printing

method. Colored hydrogels represent the cellular aggregates.

68

Chapter 5

Conclusions and Future Study

Increasing organ failures and cardiovascular diseases in recent years require alternative

treatment procedures. Tissue engineering is one of the promising alternatives for

development of biological substitutes. Especially, with recent advancements in

bioprinting, 3D tissue constructs can be printed layer-by-layer using live cells and

biomaterials.

In this thesis, novel biomodeling and path planning for 3D bioprinting are proposed.

Scaffold-free macro-vascular structures are biomimetically printed with live cells and

support biomaterials directly with the developed path planning algorithms. First,

medical images of the desired blood vessels are segmented and stored as a STL (mesh)

file to effectively mimic anatomic information of the blood vessel. Then, those mesh

models are converted into smooth parametric surfaces by developed novel biomodeling

algorithms. In order to bioprint anatomically correct vascular structures, mechanically

weak cellular aggregates should be supported perfectly at each layer. Therefore, several

support structure generation algorithms are also developed, namely zig-zag, self-

supporting, hybrid and vertical bioprinting. Those methodologies use directly the

biomimetically biomodeled surface representation of the desired blood vessels.

However, as the horizontal boundaries and the area that the model occupies cannot be

controlled by biomimetic biomodeling, material use and therefore the printing time

69

increases for each layer. In order to favor cell viability, the total printing time needs to

be optimized to minimum level. Moreover, the generated path plans may not guarantee

cell contact between layers, as the slopes of the biomodeled structures or the separation

angles of branches might exceed the maximum allowable slope for cell fusion between

vertical layers. To overcome those drawbacks two new path planning methodologies are

developed while preserving the original branching topology, separation angles and

length information of the desired blood vessel. The self-supporting and hybrid methods

are combined to bioprint cellular aggregates in vertical direction, by orienting radial

group of cellular aggregates on top of each other for each layer. The motivation of this

vertical bioprinting approach is that vascular cells lies in radial direction to form the

natural blood vessels with ring like cellular structures. The second path planning

methodology aims to generate horizontal path planning based on native vessels

branching topology and length information. This approach is suitable for long and

highly branched vessels. Overall, the main aim of these algorithms is to make bioprinted

cellular aggregates conserve their 3D forms according to the planned model, while

providing sufficient conditions for cell fusion. The bioprinting results with various size,

diameter and branched vascular models show that multicellular aggregates as well as

their support structures can be bioprinted layer-by-layer to form anatomically correct

substitutes of the biomodeled tissues.

After the bioprinting process, the printed structure needs to be matured in an incubator

with an appropriate medium up to 7-10 days. Then, the structure is carefully separated

and cleaned from its supportive hydrogel walls and then placed into a bioreactor. The

transfer to bioreactor enables printed cells of the vessel construct to fuse and further

maturation with the flow medium. This engineered bioreactor mimics the biologically

active environment for the bioprinted blood vessel and improves its mechanical strength

over time. Moreover, it increases the burst pressure of the bioengineered vessel while

providing satisfactory suturability level. For the future study, a bioreactor can be

developed for further maturation of the printed vacular constructs. A continuous

deposition bioprinter can also be developed to bioprint all the support biomaterials and

cellular aggregates once at a layer. Therefore, with this enhancement, bioprinting of

complex tissues and even organs could be possible with the proposed path planning

algorithms.

70

Bibliography

[1] Nemeno-Guanzon JG, Lee S, Berg JR, Jo YH, Yeo JE, Nam BM, Koh Y-G, Lee JI.

2012. Trends in tissue engineering for blood vessels. J. Biomed. Biotechnol. 2012:14.

[2] Langer R, Vacanti JP. Tissue engineering. Science. 1993;260(0036-8075 (Print)):920-6.

[3] Pollok JM, Vacanti JP. Tissue engineering. Semin Pediatr Surg. 1996(1055-8586

(Print)):191-6.

[4] Kucukgul C, Ozler B, Karakas HE, Gozuacik D, Koc B. 2013. 3D Hybrid Bioprinting

of Macrovascular Structures. Procedia Engineering 59(0):183-192.

[5] Wüst S, Müller R, Hofmann S. Controlled Positioning of Cells in Biomaterials—

Approaches Towards 3D Tissue Printing. Journal of Functional Biomaterials.

2011;2(3):119-54.

[6] Melchels FPW, Domingos MAN, Klein TJ, Malda J, Bartolo PJ, Hutmacher DW.

Additive manufacturing of tissues and organs. Progress in Polymer Science.

2012;37(8):1079-104.

[7] Koç B, Hafezi F, Ozler SB, Kucukgul C. Bioprinting-Application of Additive

Manufacturing in Medicine. In: Bandyopadhyay A, Bose S, editors. Additive

Manufacturing: CRC Press; in press.

[8] Tibbitt MW, Anseth KS. 2009. Hydrogels as extracellular matrix mimics for 3D cell

culture. Biotechnology and Bioengineering 103(4):655-663.

[9] Nakayama K. In Vitro Biofabrication of Tissues and Organs. In: Forgacs G, Sun W,

editors. Biofabrication: Micro- and Nano-fabrication, Printing, Patterning and

Assemblies: Elsevier; 2013. p. 1-16.

[10] Matsuda N, Shimizu T, Yamato M, Okano T. Tissue Engineering Based on Cell Sheet

Technology. Advanced Materials. 2007;19(20):3089-99.

[11] Khoda AKM, Ozbolat IT, Koc B. 2011. A functionally gradient variational porosity

architecture for hollowed scaffolds fabrication. Biofabrication 3(3):034106.

71

[12] Khoda AKM, Ozbolat IT, Koc B. 2013. Designing heterogeneous porous tissue

scaffolds for additive manufacturing processes. Computer-Aided Design 45(12):1507-

1523.

[13] Ozbolat IT, Yin Y. Bioprinting Toward Organ Fabrication: Challenges and Future

Trends. Biomedical Engineering, IEEE Transactions on. 2013;60(3):691-9.

[14] Xu C, Chai W, Huang Y, Markwald RR. Scaffold-free inkjet printing of three-

dimensional zigzag cellular tubes. Biotechnology and Bioengineering.

2012;109(12):3152-60.

[15] Marga F, Jakab K, Khatiwala C, Shepherd B, Dorfman S, Hubbard B, Colbert S, Gabor

F. 2012. Toward engineering functional organ modules by additive manufacturing.

Biofabrication 4(2):022001.

[16] Billiet T, Vandenhaute M, Schelfhout J, Van Vlierberghe S, Dubruel P. A review of

trends and limitations in hydrogel-rapid prototyping for tissue engineering.

Biomaterials. 2012;33(26):6020-41.

[17] Norotte C, Marga FS, Niklason LE, Forgacs G. 2009. Scaffold-free vascular tissue

engineering using bioprinting. Biomaterials 30(30):5910-5917.

[18] Faulkner-Jones A, Greenhough S, King JA, Gardner J, Courtney A, Shu W. 2013.

Development of a valve-based cell printer for the formation of human embryonic stem

cell spheroid aggregates. Biofabrication 5(1):015013.

 [19] Mironov V, Kasyanov V, Markwald RR. Organ printing: from bioprinter to organ

biofabrication line. Curr Opin Biotechnol. 2011;22(5):667-73.

[20] Kucukgul Can, Ozler Saime Burce, Inci İlyas, Irmak Ster, Gozuacik Devrim, Taralp

Alpay, et al. 3D Bioprinting of Biomimetic Aortic Vascular Constructs with Self-

Supporting Cells. Bioengineering and Biotechnology. submitted in 2014.

[21] Sun W, Starly B, Nam J, Darling A. Bio-CAD modeling and its applications in

computer-aided tissue engineering. Computer-Aided Design. 2005;37(11):1097-114.

72

[22] Chen Z, Su Z, Ma S, Wu X, Luo Z. Biomimetic modeling and three-dimension

reconstruction of the artificial bone. Comput Methods Programs Biomed.

2007;88(2):123-30.

[23] Wu S, Liu X, Yeung KWK, Liu C, Yang X. Biomimetic porous scaffolds for bone

tissue engineering. Materials Science and Engineering: R: Reports. 2014;80(0):1-36.

[24] Li X, He J, Liu Y, Zhao Q, Wu W, Li D, et al. Biomaterial Scaffolds with Biomimetic

Fluidic Channels for Hepatocyte Culture. Journal of Bionic Engineering. 2013;10(1):57-

64.

[25] Human Coronary Artery [30.08.2014]. Available from:

http://www.promocell.com/fileadmin/promocell/Kapitelbilder/Human_Coronary_Arter

y_Smooth_Muscle_Cells_2.jpg.

[26] Human Body Anatomy [30.08.2014]. Available from: http://www.cea1.com/anatomy-

sistems/aorta-and-arteries/.

[27] http://www.materialise.com/mimics, Mimics. 2008.

[28] Piegl L, Tiller W. 1997. The NURBS Book: Springer. 646 p.

[29] Christopher MO, Francoise M, Gabor F, Cheryl MH. 2013. Biofabrication and testing

of a fully cellular nerve graft. Biofabrication 5(4):045007.

[30] Rhinoceros 4.0, Robert McNeel & Associates, Seattle., http://www.rhino3d.com.

http://www.promocell.com/fileadmin/promocell/Kapitelbilder/Human_Coronary_Artery_Smooth_Muscle_Cells_2.jpg
http://www.promocell.com/fileadmin/promocell/Kapitelbilder/Human_Coronary_Artery_Smooth_Muscle_Cells_2.jpg
http://www.cea1.com/anatomy-sistems/aorta-and-arteries/
http://www.cea1.com/anatomy-sistems/aorta-and-arteries/
http://www.rhino3d.com/

