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Abstract 

Tissue engineering is a highly promising multi-disciplinary field for development of 

biological substitutes to replace or enhance the functions of damaged tissue or organs. 

Traditionally, highly porous scaffolds have been used for most of the tissue engineering 

applications. However, the challenges in seeding the cells into a scaffold and possible 

immunogenic reactions of scaffold materials have led to a new method of bioprinting 

with live cells. With the recent advancement in bio-additive manufacturing, cells with 

or without biological active molecules and biomaterials can be bioprinted layer-by-layer 

to form three-dimensional (3D) tissue constructs.  

In this research work, novel biomodeling and path planning methods for bioprinting are 

proposed so three-dimensional tissue structures could be biomimetically printed with 

live cells directly from medical images. First, the medical images of the targeted tissue 

are imaged and segmented to convert computer tomography (CT) or magnetic 

resonance imaging (MRI) images to a mesh model.  For path planning and optimization, 

the generated mesh models need to be converted to computer-aided (CAD) models. The 

captured mesh models are converted into smooth parametric surfaces by developed 

novel biomodeling algorithms. Then, several bioprinting strategies are proposed to 

bioprint live multi-cellular aggregates using the created computer models.  Because 

mechanically weak cellular aggregates need to be supported perfectly at each layer, 

several support structure generation algorithms are proposed. The proposed methods are 

used to make bioprinted cellular aggregates conserve their planned 3D form, while 

providing sufficient conditions for cell fusion. The proposed algorithms are 

implemented and several example tissue structures are bioprinted by directly controlling 

a bioprinter with the generated commands. The results show that multicellular 

aggregates and their support structures can be bioprinted biomimetically in the form of 

the biomodeled tissues.  
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3 BOYUTLU BİYO-BASIM İÇİN BASIM YOLU HESAPLANMASI VE TOPOLOJİ 

OPTİMİZASYONU 

Can Küçükgül 

Endüstri Mühendisliği, Yüksek Lisans Tezi, 2014 

Tez Danışmanı:  Doç. Dr. Bahattin Koç 

Anahtar Kelimeler: 3B biyo-basım; iskelesiz doku mühendisliği; makro-vasküler 

yapılar; biyo-eşlenik; basım yolu optimizasyonu; bilgisayar destekli biyo-üretim 

Özet 

Doku mühendisliği hastalıklı veya zarar görmüş doku veya organların fonksiyonlarını 

yeniden sağlamak veya geliştirmek için çalışan, son derece umut verici bir multi-

disipliner alandır. Şimdiye kadarki doku mühendisliği çalışmaları, genellikle gözenekli 

doku iskelelerin geliştirilmesi üzerinde yoğunlaşmıştır. Ancak, doku iskelelerinde 

kullanılan biyo-malzemelere karşı vücudun vereceği immünojenik reaksiyonlar ve 

iskelelere hücre ekiminin zorlukları, doğrudan canlı hücrelerin basımı (biyo-basım)  

yönteminin gerekliliğini ortaya koymuştur. Katmanlı-üretim ve biyo-basım 

alanlarındaki yenilikçi çalışmalar, canlı hücrelerin diğer biyo-malzemelerle veya tek 

olarak katman-katman basılarak üç boyutlu doku yapılarının oluşturulabilmesine olanak 

sağlamaktadır.  

Bu araştırmanın amacı, üç boyutlu doku yapılarını biyo-basım yöntemi ile dokunun 

veya organın anatomik yapısına uygun olarak üretmek için yeni biyo-modelleme ve 

basım-yolları yöntemleri geliştirmektir. Basılması hedeflenen dokunun anatomik 

yapısına uygun üretmek için, ilk olarak medikal görüntüleri ağ modeline çevrilerek 

bilgisayar ortamına aktarılır. Geliştirilen yeni biyo-modelleme metotlarıyla elde edilen 

bu ağ modeli, basım yolu hesaplamaları ve optimizasyonun yapıla bilinmesi için 

parametrik yüzey modeline dönüştürülür. Bu modeller kullanılarak, optimum basım 

yollarının hesaplanması için metotları geliştirilmiştir. Canlı hücreler mekanik açıdan 

zayıf olduklarından onları basılacak katmanlar boyunca destekleyip bir arada 

durmalarını sağlayacak destek yapıları geliştirilmiştir. Böylelikle canlı hücreler 

basıldıkları formu koruyacak ve füzyonları kolaylaşacaktır. Geliştirilen biyo-modelleme 

ve basım yolu hesaplama algoritmaları ile biyo-yazıcı kontrol edilerek farklı doku 

yapıları katman-katman canlı hücreler kullanılarak basılmıştır. Elde edilen sonuçlar ile 

canlı hücreler ve destek yapıları ile basılan doku yapıları, biyo-modellenen dokunun 

anatomik yapısına birebir benzerlikte üretilebileceği gösterilmiştir. 



vii 

 

TABLE OF CONTENTS 

Acknowledgments  .......................................................................................................... iii 

Abstract ............................................................................................................................. v 

Özet  ................................................................................................................................. vi 

TABLE OF CONTENTS ................................................................................................ vii 

LIST OF FIGURES ......................................................................................................... ix 

LIST OF TABLES ........................................................................................................... xi 

1.   Introduction ............................................................................................................... 1 

      1.1 Introduction and Literature Review ...................................................................... 1 

      1.2 Organization of Thesis .......................................................................................... 5 

2.   3D Imaging and Biomimetic Biomodeling .............................................................. 6 

      2.1 3D Imaging of Vascular Constructs ...................................................................... 6 

      2.2 Biomimetic Biomodeling of Vascular Constructs ................................................ 7 

3.   Path Planning for 3D Bioprinting ......................................................................... 18 

      3.1 3D Bioprinting System  ...................................................................................... 18 

      3.2 3D Bioprinting of Biomimetic Aortic Vascular Constructs with Self-Supporting 

Cells  ............................................................................................................................... 20 

      3.3 Zig-Zag Approach for Vertical Path Planning of Vascular Constructs  ............. 25 

      3.4 Transforming Biomodeled Smooth Parametric Surfaces to a Vertical Form  .... 32 

      3.5 Path planning with Self-Supporting Method for Branched Vascular Constructs 

 ........................................................................................................................................ 37 

      3.6 Path Planning with Hybrid Method for Branched Vascular Constructs  ............ 42 

      3.7 Generating Horizontal Centerline Curves to Guide Path Planning of Horizontal 

Branched Vascular Construct Printing  .......................................................................... 48 

      3.8 Path Planning for Horizontal Vascular Construct Printing  ................................ 51 

4.   Implementations and Examples of Bioprinting and Path Planning Methods ... 56 

      4.1 Material (Hydrogel) & Bio-ink Preparation  ...................................................... 56 



viii 

 

      4.2 Accuracy Results of Biomimetic Biomodeling Phase  ....................................... 57 

      4.3 Path Planning and Bioprinting Examples  .......................................................... 60 

5.   Conclusions and Future Study............................................................................... 68 

6.   Bibliography ............................................................................................................ 70 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



ix 

 

LIST OF FIGURES 

Figure 1.1 Representative Images of Human Aorta and Coronary Arteries............... 4 

Figure 2.1 Imaging & Segmentation of Blood Vessels .............................................. 7 

Figure 2.2 Generation of Smooth Parametric Surfaces from Mesh Models............... 8 

Figure 2.3 Current Face Sets for Consecutive Section Curves ................................. 10 

Figure 2.4 Determination of Angles between Parent and Child Trajectory Curves . 12 

Figure 2.5 Biomodeling Phase of a Branched Vascular Construct .......................... 14 

Figure 3.1  NovoGen MMX
TM

 (Organovo) Bioprinter  ............................................ 19 

Figure 3.2  Bioprinting Path Generation with Route Points ...................................... 20 

Figure 3.3 Path Planning of Support Structures and Cellular Aggregates in Self-

Supporting Method  ........................................................................................................ 21 

Figure 3.4 Contouring of Smooth Surfaces and Bioprinting Topology ................... 22 

Figure 3.5 Implementation of Self-Supporting Path Planning Generation............... 24 

Figure 3.6 Path Planning of a Layer with Zig-Zag Method ..................................... 26 

Figure 3.7 Union and Split Operations of Offset Curves ......................................... 27 

Figure 3.8 Implementation of Zig-Zag Path Planning Generation ........................... 29 

Figure 3.9 Conversion of the Biomodeled Trajectory Curves to a Vertical Pattern  34 

Figure 3.10  Branching Line Organization in Generating Vertical Smooth Surfaces.. 35 

Figure 3.11  Determination of Border Curves for a Layer .......................................... 38 

Figure 3.12  Linking Procedure of the Curves that are in the Same Set...................... 39 

Figure 3.13  Path Planning of a Three Branched Vascular Model with Self-Supporting 

Method ............................................................................................................................ 40 

Figure 3.14 Traveling Point Extraction Process for Hybrid Printing ......................... 43 



x 

 

Figure 3.15  The Zig-Zag Pattern Outer Support Structure Generation ...................... 44 

Figure 3.16 Generation of Main Road Curves from Trajectory Curves ..................... 48 

Figure 3.17  Generation of Sorted Road Curves from Main Road Curves ................. 49 

Figure 3.18  Organization of Support Structures and Cellular Aggregates in 

Horizontal Path Planning  ............................................................................................... 52 

Figure 3.19  The Role of Polygons in Horizontal Path Planning ................................ 53 

Figure 3.20  Path Planning Topology for Horizontal Printing  ................................... 54 

Figure 4.1  Biomodeling Results of Branched Vascular Constructs ......................... 58 

Figure 4.2  Contouring Operations for both Mesh and Smooth Surface Model ....... 59 

Figure 4.3  Biomodeling Results of Branched Vascular Constructs ......................... 60 

Figure 4.4  Smoothness Analysis for the Mesh Model and Smooth Surface Model  61 

Figure 4.5  3D Printed MEF Cells with Self-Supporting Method ............................. 62 

Figure 4.6  Path Planning of Three Consecutive Layers with Zig-Zag Method ....... 63 

Figure 4.7  3D Printed Layers with Zig-Zag Method ................................................ 63 

Figure 4.8  The Cross Sectional Path Planning View of a Branched Model with Self-

Supporting Method  ........................................................................................................ 64 

Figure 4.9  3D Printed MEF Cells for a Branched Vascular Model with Self-

Supporting Method  ........................................................................................................ 64 

Figure 4.10  The Cross Sectional Path Planning View of a Branched Model with Self-

Hybrid Printing Method  ................................................................................................. 65 

Figure 4.11  3D Printed Vertical Construct with Hybrid Printing Method ................. 66 

Figure 4.12  Path Planning of a Two Branched Vascular Construct with Vertical 

Printing Method  ............................................................................................................. 66 

Figure 4.13  3D Printed Branched Construct with Vertical Printing Method  ............ 67 



xi 

 

LIST OF TABLES 

Table 4.1 Errors of the Biomimetic Biomodeling Phase for Abdominal Aorta 

Model.. ............................................................................................................................ 59 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



1 

 

 

 

 

 

 

 

Chapter 1  

 

Introduction and Literature Review 

 

1.1 Introduction 

Maintaining the physical well-being and healthy life is one of the most important 

elements for an individual. However, malfunctioning or failing organs or tissues hamper 

one‘s health greatly. Especially, cardiovascular organ failures are the primary reasons of 

deaths and they rank among the top ten leading causes of morbidity and mortality [1]. 

Among several treatment methods, autografts and blood vessel transplantation are the 

most effective treatments for cardiovascular diseases. However, their use is limited 

because of the limited numbers of autografts at donor site and the patient‘s deficient 

health conditions. Recently, tissue engineering is a highly promising multi-disciplinary 

field for development of biological substitutes to replace or enhance the functions of 

defected tissue or organs for treatment of cardiovascular diseases [2, 3, 4].   

Early tissue engineering strategies have involved developing a synthetic, biological or 

composite scaffold and seeding cells into it. There-dimensional (3D) scaffolds aim to 

take over the role of extracellular matrix (ECM), to supply a suitable environment for 

cell attachment, proliferation and differentiation and have the same functional role until 

the cells create their own ECM. With recent advancements in additive or layered-based 

manufacturing, biofabrication or bioprinting techniques have recently been developed 

for tissue engineering [5]. It is possible to fabricate tissue scaffolds with precise 
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geometries layer-by-layer according to a computer-aided design model of the respective 

tissue or body part [6, 7]. Especially, synthetic-biologic hydrogel hybrids with their 

biochemical and mechanical properties mimicking the native ECM are strong 3D cell 

culture platforms for cell physiology and tissue printing studies [8]. However, there are 

very few biomaterials which can effectively mimic the natural ECM environment. 

Moreover, a scaffold material should maintain integrity of tissue growth, controlled 

degradation and should be nontoxic and nonimmunogenic [9, 10]. It is also essential to 

control the micro-architecture of scaffolds. Several researchers have investigated 

designing functionally gradient porous scaffolds with controllable heterogeneous porous 

architecture [11, 12].  

Because of these challenges and drawbacks of the scaffold-based methods, the recent 

vascular tissue engineering studies focus on scaffold-free techniques. In scaffold-free 

tissue engineering, spherical/cylindrical cell aggregates with or without biomaterials are 

used as building blocks to create 3D tissue constructs.  

Scaffold-free tissue engineering approaches are generally based on bioprinting or direct 

cell writing. There are three main branches describing the variety of technologies of 

scaffold-free bioprinting, namely, inkjet-based, direct laser writing, and 

extrusion/deposition based bioprinting [13].  Inkjet-based printing is developed to print 

bioink, which combines biomaterials and cells in the form of droplets. Its high-

throughput efficiency and cost effectiveness make this approach highly versatile [7]. 

Inkjet based approaches are generally based on two technologies namely continuous 

inkjet (CIJ), where small droplets with a stable flow made by fluid instability through a 

nozzle on a passage and drop-on-demand (DOD) inkjet where ink droplets are produced 

when they need to be deposited [7]. Direct laser printing has an advantage to have high 

resolution over other bioprinting methods. However it has its own disadvantages like 

process-induced cell damage and toxic photo-initiator usage [7]. In extrusion-based 

printing and direct cell writing, strands of biomaterials or living cellular aggregates can 

be printed continuously layer-by-layer. Moreover, they provide adequate mechanical 

integrity to fabricate 3D structures [7]. Scaffold-free tissue engineering has got much 

superiority over scaffold-based one, such as, simple scale-up and automation, 

vascularization advantage in thick tissues and accurate parallel deposition of various 

types of cells [7, 14]. 
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In the literature, there have been a few research focusing on scaffold-free tissue 

engineering of small-diameter, multi-layered, tubular vascular and nerve grafts [4, 9, 13, 

14, 15, 16]. Different 3D bioprinting systems have been proposed to fabricate vascular 

structures. A platform-assisted 3D inkjet bioprinting system was used in order to 

fabricate NIH 3T3 mouse fibroblast-based tubes with an overhang structure having 

post-printing cell viability above 82% [14]. Multicellular spherical and cylindrical 

aggregates have been bioprinted to achieve flexibility in tube diameter and wall 

thickness and to form branched tubular structures [13, 15, 17]. However, cell aggregates 

should be perfectly supported by hydrogels for 3D printing. Human embryonic stem cell 

spheroid aggregates consisting controllable and repeatable sizes are fabricated with a 

valve-based cell printer [18]. According to that work, the printed stem cells have high 

viability after printing and are able to differentiate into any of the three germ layers. 

Nevertheless, the formation of large amounts of spherical aggregates requires a lot of 

time and the fusion process of the spheroids is completed in 5-7 days [18]. On the other 

hand, it is possible to fabricate more controlled structure in a short time using 

cylindrical cell aggregates (bio-ink). Moreover, the fusion of cylindrical bio-inks takes 

relatively short time (2-4 days) [17].  

Even though recent studies in bioprinting have advanced tissue engineering greatly, 

fabricating complex biological tissues or organ constructs biomimetically has been still 

lacking. Bottom-up scaffold-free approaches have a great potential to provide the 

necessary level of flexibility for patient specific, customized tissue or organ 

biofabrication [19, 20]. However, biomimetic and patient specific computer-aided 

modeling of tissue or organs including crucial information of tissue/organ‘s biological, 

biophysical, and biochemical properties should be developed [21].   

In the literature, several modeling and reconstruction applications on hard tissues and 

bones has been developed [22, 23]. While mimicking the interior micro architecture of 

the fabricated tissue, scaffold‘s porosity ratio is analyzed in these works. Moreover, a 

micro channel vascular network of a rat liver is generated, considering vascular design 

parameters such as branching angles and diameters to reach an anatomically correct 

representative model [24]. However, path planning and optimization for bioprinting 

directly from computer models need to be developed to achieve the goal of patient 

specific, customized organ and body part fabrication. 
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Additionally, bioprinting has its own challenges such as printing time and cell viability, 

limited number of biomaterials that can be used and biological and physical constraints. 

The bioprinting process needs to be performed in as minimum as possible amount of 

time, so that the cellular aggregates only face stress and lack of medium for a short 

period and hence, detrimental effects on cell viability can be minimized. Moreover, 

there are limited numbers of material and biomaterials available to be used in 

bioprinting, therefore; selecting the most appropriate biomaterial-cell combination for 

the desired task is very critical. Lastly, sufficient geometric conditions must be satisfied 

with path planning in order to enable cell fusion for both in between layers and within 

the layers after bioprinting. 

The main goal of this research work is to develop novel computer aided algorithms and 

strategies to biomodel and generate path planning for 3D bioprinting of blood vessel 

constructs biomimetically. While generating a path plan for 3D bioprinting, the focus is 

centralized on obtaining an anatomically correct representative/substitute of the desired 

vessel. Therefore branching topology and length information for each separate branch 

of the original vessel needs to be preserved. A macro-vascular model is generated 

biomimicking real blood vessel models directly from medical images. Main blood 

vessels that are used throughout this research are descending human abdominal aorta 

(Figure 1.1(a)) [25] and coronary arteries (Figure 1.1(b)) [26].  

 

Figure 1.1. Representative images of human aorta and coronary arteries [26]. 
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1.2 Organization of Thesis 

The presentation of this thesis is organized as follows: 3D imaging and biomodeling is 

discussed in Chapter 2. Path planning generation for bioprinting is presented in Chapter 

3. Implementations and examples of the developed methods are presented in Chapter 4.  

Then conclusions and future studies are given in Chapter 5. 
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Chapter 2  

 

3D Imaging and Biomimetic Biomodeling 

 

2.1 3D Imaging of Vascular Constructs 

To be able to mimic and 3D bioprint a tissue, the anatomically-correct geometry of the 

targeted tissue has to be obtained and converted into a computer-aided design (CAD) 

model. Medical images such as Magnetic Resonance Imaging (MRI) or Computer 

Tomography (CT) are used for capturing the anatomically correct models of targeted 

tissue or organs. To capture the 3D geometry of a tissue or organ, the medical images 

need to be imaged and segmented. For segmentation, the Mimics (Medical Image 

Segmentation for Engineering on Anatomy) software [27] is used.  

To demonstrate the proposed methodology, a part of human abdominal aorta model 

obtained from a computer tomography scan as shown in Figure 2.1. In Mimics, a part of 

the vessel is masked from the scan image, which contains the geometrical information 

of aorta. Then, region growing method is used to capture the 3D geometry of the aorta. 

Then, the segmented part of the aorta is converted into a 3D mesh model. Figure 2.1 

shows the imaging and segmentation steps for capturing the geometry of the abdominal 

aorta.  
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Figure 2.1. Segmentation phase of an aorta vessel, from abdominal region. 

The initial geometric information of the model is represented as a mesh model or 

stereolithography (STL) model. The STL files are generated by tessellating the outside 

surface of the object with triangles. The STL model of the extracted blood vessel is 

shown in Figure 2.2. 

2.2 Biomodeling of Vascular Constructs 

As explained above, an anatomically correct STL model of blood vessels are obtained 

using the segmentation software. As shown in Figure 2.2, the converted STL models of 

the vessels are not smooth and approximated with numerous triangular facets. In order 

to generate bioprinting path planning as well as the topology optimization for 

bioprinting processes, the resultant STL models need to be represented by parametric 

surfaces. A novel biomodeling method is developed to convert these mesh (triangular 

facets) models into smooth parametric surfaces to be used for 3D bioprinting. The 

parametric representation of vessel models also eliminates the noise stemmed from the 

previous segmentation phase. First, the section curves are generated from the mesh 

model. The center points of each section (contour) are then calculated. The generated 

center points are used for approximation of a centerline curve. Lastly, the NURBS 

surfaces are generated along the trajectory of the calculated centerline curve. 
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To identify the boundaries of the STL model of the vessels, edge curves EC = 

{ECb}b=0..B are defined as the end sections (bottom and top curves), as shown with red 

and green curves in Figure 2.2 and 2.5. Those curves are basically the starting and the 

end section curves of the STL models. The first edge curve which is also the first 

section curve EC0 is used to initiate the centerline curve extraction process. Since STL 

models are represented with triangulated surfaces, all faces F = {Fn}n = 1..N have three 

vertices and each vertex can be a part of several faces as shown in Figure 2.2(b). 

Initially, all the vertices V = {Vm}m = 1..M are set ―unvisited” (𝑉𝑚
𝑖𝑛𝑓𝑜

= 0). Once the 

generation of section curves started, they start to surround the mesh surface while 

heading towards the edge curves one by one. The trajectory that the section curves 

follow is their marching direction. The ―unvisited‖ vertices will be marked as ―visited‖ 

(𝑉𝑚
𝑖𝑛𝑓𝑜

 = 1) when they contribute to form a section curve with respect to the marching 

direction. 

 

Figure 2.2. (a-b) STL file of the aorta, mesh structure. (b) The modeled aorta‘s edge 

curves (green & red) and the initial section curve (red). (b-c) STL (mesh) surface of 

aorta, the initial center points & smoothed representation of the centerline curve. 
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The set of sections is represented as SC = {SCk}k=1..K and each section is defined with l 

vertices (points) represented as section curve vertices SCV = {Vk,l}. Since the end points 

of the face edges from the first section (EC0) belong to a set of elements of vertices list, 

the algorithm marks those points as ―visited‖ in order to proceed and not to visit those 

vertices again. Connecting these l vertices (points) respectively results in a closed 

polyline curve, thus we refer the sections as section curves as shown in Figure 2.2(b). 

Moreover, the set of n faces that are connected to each vertex l, FV = {Fl,n}n=1..N are 

grouped and constitute the elements of the current face set CFS. As shown in Figure 

2.3, the green polyline is the k
th

 section curve and red faces connected to it are the 

current face set. For each section curve, there will be center points CP = {CPk} k=1..K 

reflecting the area weight-based center points for that section curve, and respective 

radius values R = {Rk} k=1..K reflecting the radius of the generated sphere of that section 

curve. The center points and the corresponding radius values are calculated as follows:  

, , ,
1.. 1.. 1..

( ) ( ) ( )

, ,
k l k l k l

l L l L l L
k

x y zV V V

CP
L L L

  
   

 
 
 

        (2.1) 

 ,1..
,

k k l kl L
R mean V CP




 

Where; 

, 1..{ }k k l l LSCV V  are set of l points with x-y-z coordinates, and CPk and Rk are the 

center points and radius of k
th

 section curve, respectively. 
  

 

Connecting center points CP = {CPk} k=1..K, along each branch form  trajectory curves 

TC = {TCi}i=1..I. Each center point will be a part of at least one (two at joint points) 

trajectory curve as shown in Figure 2.4. The total number of trajectory curves is at least 

as number of branches as the algorithm introduces two new trajectory curves at each 

branching point. A better understanding of the concept is illustrated in Figure 2.5, with 

five trajectory curves on a three-branched coronary artery model.    

Throughout the method, the area weight-based center points and their corresponding 

radius values are determined according to those vertices in the current section SCV, 

marking the vertices of SCV as ―visited‖ and updating the current face set CFS like in 
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Figure 2.3. As shown in Figure 2.3, k
th

 section curve is highlighted with green polyline, 

with having red faces connecting to it as current face set. Then ―unvisited‖ vertices of 

the red current face set generates the new k+1
th

 section curve with a discrete yellow 

polyline, which renews the current face set with the blue faces. If a joint point is 

introduced (in branching parts), then the second set of faces is preserved to continue 

marching for a new trajectory curve at a later stage. Whenever a section curve intersects 

with one of the edge curves or reaches a joint point, then the current trajectory curve is 

finalized and the iteration continues with a subsequent trajectory curve. As shown in 

Figure 2.5(b), after TC1 reaches to a joint point, TC2 starts to march through the edge, 

and when one of the section curves of TC2 intersects with the edge curve, then marching 

turn passes to TC3. 

 

Figure 2.3. Current face set (red), for section curve k, and current face set (blue), for 

section curve k+1; with respect to the marching direction. 

After the trajectory curves with their respective center points and radius values are 

calculated and stored dynamically along the marching direction, the parent-child 

relationships needs to be found to fit surfaces through each branch. In Figure 2.5(b), 

TC1 is the parent of both TC2 and TC3, while TC2 and TC3 is the child of TC1. If a 

trajectory curve does not have any child, then this trajectory curve is a leaf curve. If a 
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trajectory curve does not have a parent, then this trajectory curve is a root curve. 

Starting from the root TC1, each trajectory curve determines its two child (if any) 

trajectory curves. 

When all parent-child pairs are determined, for each parent trajectory curve TCi, the 

algorithm computes the angles among each parent and two child (t & t-1) group (3 pairs 

for a group). In this section, for biomimetic modeling, the branching angles are not 

needed for surface generation; however in subsequent sections (3.4 & 3.7) branching 

angles information will be used to generate centerline curves in a particular 2-

coordinates plane. Therefore, to convert the sum of the angle pairs for each group to a 

planar form and span 360 degrees, the algorithm scales the sum of three pair angles to 

360 degrees (2Π in total) with the procedure below, as also shown in Figure 2.4 at the 

joint point: 

     ratio ← ( TC𝑖
𝑎𝑛𝑔𝑙𝑒 ,𝑡

 + TC𝑖
𝑎𝑛𝑔𝑙𝑒 ,𝑡−1

 + child_angle ) / 2Π 

     TC𝑖
𝑎𝑛𝑔𝑙𝑒 ,𝑡

 ← ratio × TC𝑖
𝑎𝑛𝑔𝑙𝑒 ,𝑡

  

     TC𝑖
𝑎𝑛𝑔𝑙𝑒 ,𝑡−1

 ← ratio × TC𝑖
𝑎𝑛𝑔𝑙𝑒 ,𝑡−1

  

Then each trajectory curves‘ length is determined by connecting its center points 

through the marching direction. 
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Figure 2.4. Determination of angles between a parent trajectory curve i, and its two 

child. 

Moreover, a predetermined number of last center points for each trajectory curve are 

omitted. Because of the reason that the algorithm examines the surface information of 

mesh to extract the trajectory curves by using the generated center points, branching 

parts are realized when they already occurred. This fact causes the approximated 

trajectory curves to intersect with the mesh surface, as shown with blue pipes in Figure 

2.4. Therefore, by omitting a number of center points from the last part (the number is 

determined by a function of mesh volume and total facets) the trajectory curves lies 

securely inside of the mesh surface, as shown with green pipes in Figure 2.4. Then, 

median radius values are determined for each trajectory curve in order to decrease the 

radius variety before the smooth surface generation, to obtain a finer surface geometry. 

After each trajectory curve with their corresponding center points are calculated from 

each leaf curve to the root, the algorithm links child trajectory curves with its parents 

and stacks the respective center points and radius values in a topological order. For all 

branches and for each leaf trajectory curve reaching the root, the algorithm fits a B-

spline curve, which will be the centerline for the respective parametric surface. This 

parametric B-spline centerline curve is defined as [28]: 
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CPq‘s are the control points, and the Nq,p(u) are the pth-degree B-spline basis functions 

as defined above with the knot vector U={u0,…,um} where uq‘s be a nondecreasing 

sequence of real numbers.  

Then the parametric B-spline surface(s) of the vessel model are generated using the 

centerline curve(s) TPb(u), with respect to the median radius value of relevant center 

points as shown in Figure 2.5(c). This operation basically sweeps a planar closed curve 

along the centerline curve. Denote the centerline by TPb(u) and the planar closed curve 

by T(v). T(v)‘s radius value gets the TC𝑙𝑒𝑎𝑓 ,𝑏
𝑚𝑒𝑑𝑖𝑎𝑛 _𝑟𝑎𝑑 value for the starting point, and 

TC𝑟𝑜𝑜𝑡
𝑚𝑒𝑑𝑖𝑎𝑛 _𝑟𝑎𝑑 value for the ending point of the respective centerline curve, and if there 

are any other trajectory curves linking leaf and the root, their respective 

TC𝑙𝑖𝑛𝑘𝑒𝑟
𝑚𝑒𝑑𝑖𝑎𝑛 _𝑟𝑎𝑑 radius values are placed on their middle center point 𝑇𝐶𝑙𝑖𝑛𝑘𝑒𝑟

𝑚𝑖𝑑 _𝐶𝑃 locations 

(Figure 2.5(c)).  A general form of the swept surface is given by [28]: 

( , ) ( ) ( ) ( )b bS u v TP u M u T v            (2.3)

  _ _
( ) cos( ), sin( )

median rad median rad
i iT v r v r v       

Where; 0 ≤ u ≤ 1 and 0 ≤ v ≤1 

Where M(u) is a 3x3 matrix incorporating rotation and nonuniform scaling of T(v) as a 

function of u. 
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Figure 2.5. (a) Mesh model of a three-branched coronary artery vessel, (b) generated 

trajectory curves according to the model, (c) generated smooth surfaces with respect to 

trajectory curves and median radius values. 

As explained above, generating smooth parametric surfaces from the mesh model is 

determined using Algorithm 1 for which its pseudo-code is given below: 

Algorithm 1. Biomimetic Smooth Parametric Surface(s) Generation 

Input: 

M0:    Mesh model of vessel network 

EC = {ECb}b = 0..B:   a set of edge curves on Mesh 

F = {Fn}n = 1..N:  a set of faces on Mesh 

V = {Vm}m = 1..M:  a set of vertices on Mesh 

Output: 

Sb(u,v) :   generated NURBS Surface(s) 

TC:    trajectory curve array 

Start  

Initialize i ← 1, k ← 1, j ← 0, num_Branches_Reached ← 0, check_intersection ← 0 

Initialize p ← 1, t ← 1, cubic_Volume_of_Mesh ← 𝑀0
𝑣𝑜𝑙𝑢𝑚𝑒  

If ( N / cubic_Volume_of_Mesh > 1 ) Then { num_Points_to_Delete ← 2 } 

Else { num_Points_to_Delete ← 1 } 

For (all Vm) { 𝑉𝑚
𝑖𝑛𝑓𝑜

 ← 0 = ―not visited‖ } 

SCk ← EC0 

SCVk = {Vk,l} ← a set of l vertices that k
th 

section curve contains/intersects 

For (all Vk,l) { 

  𝑉𝑘,𝑙
𝑖𝑛𝑓𝑜

 ← 1 = ―visited‖ 

  FV ← FV ∪ {Fl,n} ‗// a set of n faces that are connected to vertex l 

} 
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CFS ← {FV} ∪ CFS 

TC𝑖
𝐶𝑃,𝑝

 ← CPk ‗// using Equation(2.1)  

TC𝑖
𝑅,𝑝

 ← Rk ‗// using Equation(2.1) 

While (num_Branches_Reached < B) { 

  For ( n = 1 to size(CFS0) ) { 

    If ( 𝑉𝑛,1
𝑖𝑛𝑓𝑜

 + 𝑉𝑛,2
𝑖𝑛𝑓𝑜

 + 𝑉𝑛,3
𝑖𝑛𝑓𝑜

 == 1 ) Then { 

      If ( 𝑉𝑛,1
𝑖𝑛𝑓𝑜

 == 0 ) Then { VC ← VC ∪ {Vn,1} } 

      If ( 𝑉𝑛,2
𝑖𝑛𝑓𝑜

 == 0 ) Then { VC ← VC ∪ {Vn,2} } 

      If ( 𝑉𝑛,3
𝑖𝑛𝑓𝑜

 == 0 ) Then { VC ← VC ∪ {Vn,3} }  

    } 

  } 

  If ( 𝐶𝐹𝑆0
𝐶𝑃 ≠ NULL) Then { 

    p ← 1, i ← i + 1 

    TC𝑖
𝐶𝑃,𝑝

 ← 𝐶𝐹𝑆0
𝐶𝑃  

    TC𝑖
𝑅,𝑝

 ← 𝐶𝐹𝑆0
𝑅   

    𝐶𝐹𝑆0
𝐶𝑃 ← NULL, 𝐶𝐹𝑆0

𝑅  ← NULL 

  } 

  CC ← check curves obtained by connecting vertices of VC in a topological order 

  If ( size(CC) = 1) Then { 

    k ← k + 1, p ← p + 1 

    SCk ← CC0 

    SCVk = {Vk,l} ← a set of l vertices that k
th 

section curve contains/intersects 

    For (all Vk,l) { 

 𝑉𝑘,𝑙
𝑖𝑛𝑓𝑜

 ← 1 = ―visited‖ 

 FV ← FV ∪ {Fl,n} ‗// a set of n faces that are connected to vertex l 

    } 

    For ( b = 1 to B) { 

      If ( SCVk ∩ ECb ≠ ∅ ) Then { 

        num_Branches_Reached ← num_Branches_Reached + 1 

        check_intersection ← 1 

        SCVk  ← ECb 

        TC𝑖
𝐶𝑃,𝑝

 ← CPk ‗// using Equation(2.1)  

        TC𝑖
𝑅,𝑝

 ← Rk ‗// using Equation(2.1) 

        Delete ← CFS0 

      } 

    } 

    For (all Vk,l) { 

 𝑉𝑘,𝑙
𝑖𝑛𝑓𝑜

 ← 1 = ―visited‖ 

 FV ← FV ∪ {Fl,n} ‗// a set of n faces that are connected to vertex l 

    } 

    If (check_intersection == 0 ) Then { CFS0  ← {FV} –  CFS0 } 

  } 

  Else { 

    𝐶𝐹𝑆0
𝐶𝑃 ← CPk 

    𝐶𝐹𝑆0
𝑅  ← Rk 

    k ← k + 1, i ← i + 1, p ← 1 
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    TC𝑖
𝐶𝑃,𝑝

 ← CPk-1 ‗// using Equation(2.1)  

    TC𝑖
𝑅,𝑝

 ← Rk-1   ‗// using Equation(2.1) 

    SCk ← CC0 

    SCVk = {Vk,l} ← a set of l vertices that k
th 

section curve contains/intersects 

    For (all Vk,l) { 

 𝑉𝑘,𝑙
𝑖𝑛𝑓𝑜

 ← 1 = ―visited‖ 

 FV ← FV ∪ {Fl,n} ‗// a set of n faces that are connected to vertex l 

    } 

    CFS  ← ({FV} –  CFS0) ∪ CFS   

  } 

  Delete ← VC 

  Delete ← CC 

} 

For ( i = 1 to I) { 

  t ← 1 

  TC𝑖
𝑙𝑒𝑛𝑔𝑡 𝑕

 ← total length of the polyline, composed of connecting TC𝑖
𝐶𝑃 ‘s from the 

first_index through last_index in topological order 

  For ( j = 1 to I) { 

    If ( i ≠ j) Then { 

      If ( TC𝑖
𝐶𝑃,𝑙𝑎𝑠𝑡 _𝑖𝑛𝑑𝑒𝑥 (𝑝)

 == TC𝑗
𝐶𝑃,𝑓𝑖𝑟𝑠𝑡 _𝑖𝑛𝑑𝑒𝑥 (𝑝)

) Then { 

         TC𝑖
𝑐𝑕𝑖𝑙𝑑 ,𝑡

 ← TCj 

         TC𝑗
𝑝𝑎𝑟𝑒𝑛𝑡

 ← TCi 

         t ← t + 1 

      } 

    } 

    Delete ← last num_Points_to_Delete TC𝑖
𝐶𝑃‘s & TC𝑖

𝑅‘s 

    TC𝑖
𝑚𝑒𝑑𝑖𝑎𝑛 _𝑟𝑎𝑑 ← median( all TC𝑖

𝑅) 

  } 

} 

For ( i = 1 to I) { 

  t ← 1 

  If ( TC𝑖
𝑐𝑕𝑖𝑙𝑑  ≠ NULL) Then { 

    child_angle ← angle({TC𝑖
𝑐𝑕𝑖𝑙𝑑 ,𝑡

, TC𝑖
𝑐𝑕𝑖𝑙𝑑 ,𝑡+1

}) 

    For ( j = 1 to I) { 

      If ( i ≠ j and TC𝑗
𝑝𝑎𝑟𝑒𝑛𝑡

 == TCi) Then {  

        TC𝑖
𝑎𝑛𝑔𝑙𝑒 ,𝑡

 ← angle({ TCi, TCj }) 

        t ← t + 1 

      } 

    } 

    ratio ← ( TC𝑖
𝑎𝑛𝑔𝑙𝑒 ,𝑡

 + TC𝑖
𝑎𝑛𝑔𝑙𝑒 ,𝑡−1

 + child_angle ) / 2Π 

    TC𝑖
𝑎𝑛𝑔𝑙𝑒 ,𝑡

 ← ratio × TC𝑖
𝑎𝑛𝑔𝑙𝑒 ,𝑡

  

    TC𝑖
𝑎𝑛𝑔𝑙𝑒 ,𝑡−1

 ← ratio × TC𝑖
𝑎𝑛𝑔𝑙𝑒 ,𝑡−1

  

  } 

} 

b ← 0 
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For ( i = 1 to I) { 

  If ( TC𝑖
𝑐𝑕𝑖𝑙𝑑  == NULL) Then { 

     b ← b + 1 

   While ( TC𝑖
𝑝𝑎𝑟𝑒𝑛𝑡

 ≠ NULL) { 

      TPb ← TPb ∪ {TC𝑖
𝐶𝑃} 

      TRb ← TRb ∪ {TC𝑖
𝑅} 

      TCi ← TC𝑖
𝑝𝑎𝑟𝑒𝑛𝑡

 

    } 

    TPb(u) ← approximate a trajectory curve with the CPb‘s using Equation (2.2)  

    Sb(u,v) ← build the surface along TPb(u) with respect to its CPb‘s median radius 

values(s) using Equation (2.3) 

  } 

} 

End 
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Chapter 3  

 

Path Planning for 3D-Bioprinting 

Previous works on scaffold-free 3D bioprinting of vascular structures are generally 

based on simple vertical extrusions [29]. In this chapter, we are bioprinting complex 

geometries of cellular structures with self supporting hydrogels. Not only because of its 

complex geometry, but also due to the dynamic structures of both cells and hydrogels, it 

is challenging to build such structures in 3D. Here, an anatomically correct 

representation of vessels is aimed; therefore, mechanically-weak cellular aggregates 

should be supported by hydrogels to have sufficient conditions for cell fusion. In order 

to mimic the original vessel effectively and to minimize the human interventions, 

topology optimization is carried out for 3D bioprinting to control the bioprinter directly 

from generated commands. 

3.1 3D Bioprinting System 

In this research, the NovoGen MMX
TM

 (Organovo) bioprinter is used for printing three 

dimensional biomodeled tissues. This automated 3D bioprinter has three stepper motors 

for X-Y-Z motion as well as two deposition heads to print hydrogel biomaterials and 

cellular aggregates (bio-ink). The bioprinter has a built-in controller system, where the 

micro-deposition is maintained throughout the printing with a laser-based calibration. 

Glass capillaries with 250/500 μm diameter are used as deposition tips for two 

deposition heads. Those capillaries are both capable of aspirating and dispensing gels or 

cell aggregates using a metal plunger inside of them which works as a piston moving up 

and down (Figure 3.1). The bioprinter has heating and cooling chambers with adjustable 
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temperatures, ranging from 25°C to 95°C for heating and 4°C to 25°C for cooling. 

Thermo reversible hydrogel is placed into the heating chamber to preserve its liquid 

form in order to be able to aspirate it into the glass capillary. After aspiration, the gel 

head moves to the cooling chamber and keep the capillary, filled with hydrogel, inside 

the chamber for a predetermined time in order for hydrogel to become a gel. After this 

phase change, the gel head can dispense the material with its piston downside 

movement. The speed of the push down movement is exactly the same with the speed of 

the capillaries horizontal movement. The cell-deposition head moves the same way 

except the heating and cooling steps are not used for cellular aggregates (bio-ink).  

 

Figure 3.1. NovoGen MMXtm (Organovo) Bioprinter. 

Although the bioprinter software has a built-in controller commands, they cannot be 

used for printing complex structures. One of the biggest drawbacks of the current 

software is that, it can only dispense fluid or gels in linear-movements. Because of this 

limitation, paths with curves need to be approximated with short linear segments. A 

user-generated scripts needs to be developed for controlling the bioprinter directly for 

printing complex 3D structures. As shown in Figure 3.2, once a planned curve trajectory 
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{Ct} is determined with at most capillary volume vcapillary length, a linear interpolation is 

used on the curve to extract the n route points {RPt,n} of planned curve {Ct} for the 

bioprinter to follow the linear paths between the points in topological order as shown 

with red curves (bioprinter curves). Eventually there will be errors between the planned 

curve trajectory and bioprinter curve trajectory, as bioprinter curve trajectory shortcuts 

the small arc segments with small linear line segments. The maximum error, maximum 

linear distance between planned curve and bioprinter curve for a specific arc segment, 

will be the bioprinting error for the generated model.  After series of bioprinting trials, 

its optimized that, the cylindrical planned trajectory curves are divided to its n route 

points where each linear distance between the consecutive point pairs {RPt,n,RPt,n+1} of 

0.3 mm gives the best result with 3 mm/s deposition speed, in terms of planned shape 

formation. With these parameters, the bioprinting errors for macro-vascular models are 

between 0.05 mm minimum and 0.12 mm maximum.    

 

Figure 3.2. Cylindrical trajectories curve that lengths capillary volume is separated to its 

route points; route points are connected to form the bioprinting path for that curve. 

 

3.2 3D Bioprinting of Biomimetic Aortic Vascular Constructs with Self-Supporting 

Cells 

After the smooth surface model of aorta Sb(u,v) is
 
generated in biomodeling section 

(Chapter 2), an optimum 3D bioprinting topology needs to be determined in order to 
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obtain an anatomically correct representation of the printed vessel. Path planning for 

both cellular aggregates and hydrogel support structures is calculated in this section. 

Both cellular aggregates and support structures are printed by a glass capillary in a gel 

like form layer by layer to form the 3D tissue construct. Because of the fact that the 

bioprinted materials are not self-shape conserving, both cells and support structures 

should accordingly be placed on the valleys of the preceding layer (shown in Figure 3.3) 

in order to provide cell fusion and structure conservation and most importantly, to reach 

correct anatomical model of the original vessel. 

 

 

Figure 3.3. Three consecutive example layers showing how support structures (blue) 

and cellular aggregates (red) are placed on the valleys of the preceding layer. 

In the model, the height increments between consecutive layers is slightly less than the 

diameter of the capillary tubes, the total number of layers (totalLayers) is calculated by 

dividing the surface height to the height_increment amount. The vessel‘s surface 

representation is then sliced with successive planes which resulted in contour curves 

Cj,0(t) = {cj,0}j=1..totalLayers for each layer as shown in Figure 3.4. The number of cylinders 

for each layer is then determined by the maxStepj value from maxStepj= topSupport + 

totalLayers – j where topSupport is the number of support cylinders on top layer that is 

entered by user. Since maxStepj variable is dependent to layer number, its value is 

maximum initially and drops by one at every consecutive layer through top, which 

provides constant elevation between successive layers.  
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To conserve the general shape of the vessel on each layer and to prevent the 

deformation of weak cellular aggregates, each contour curve is offset using the maxStepj 

value of the specific layer on x,y-plane as shown in Figure 3.4. The initial offset amount 

Oj,i = {oj,i}i=1..maxStepj for a layer can be found by the following formula: 

 

     , /2 1j i j capillaryo maxStep i d            (3.1) 

 Where dcapillary is the diameter of the glass capillaries used. 

 

 

Figure 3.4. (a) The slicing process of a blood vessel and the placement of the support 

structures & cellular aggregates at j
th

 layer, (b) The bioprinting topology for three 

example consecutive layers, of both support structures and cellular aggregates. 

The initial offset amount for a layer is strictly positive, resulting in exterior offset 

curves. However, the offset amount is dropped by the capillary diameter for each 

successive cylinder on that layer. Therefore, after (maxStepj/2) cylinders, the offset 
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amount will become negative resulting in interior offset curves as shown in Figure 3.4. 

Thus, cellular aggregates are supported by support structures from both inner and outer 

directions. As cj,0(t) defines a contour curve of the surface on a given height and a curve 

parameter t, then the offset curves cj,i(t) is calculated with offset amount oj,i as follows: 

 

      , ,0 , , 1..max j
j i j j i j i i Step

t c t o N tc


           (3.2) 

Where; 

 ,j iN t  = unit normal vector on curve  ,0j tc at a parametric location t. 

  

Two center cylinders on a layer (red ones in Figure 3.4), with respect the maxStepj 

value, is placed as cellular aggregates and the remaining cylinders as support structures 

in order to effectively mimic the original vessel dimensions and to provide better 

coverage of cells. Furthermore, at a layer, support structures are printed first, and then 

the cellular aggregates in order to prevent cell outflow and to preserve anatomically 

correct shape of the modeled vessel as shown in Figure 3.4. As the oj,i‘s for the j
th

 layer 

keeps decreasing by dcapillary  amount at each increment on i, support structures on a 

layer are printed from the outermost one to the innermost one as shown in Figure 3.4.  

After appropriate sections of the cell composition and support structure are determined 

for each layer, the 3D bioprinting path plan for cell-biomaterial topology is calculated. 

Then, layer by layer, these cylindrical aggregates of the cell and gels will be printed 

accordingly a file that is generated by Algorithm 2 using a 3D bioprinter [4].  A cross 

sectional view of a smooth blood vessel (aorta) model and the surrounding support 

structures, which are generated by Algorithm 1 and 2, are shown in Figure 3.5. The 

finalized aorta model is composed of cellular aggregates and support structures that 

keep the cellular aggregates in its designed shape. Since the cylindrical cell aggregates 

are lacking in strength than the biomaterial, each layer is perfectly supported for stable 

cell aggregate printing [4]. 
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Figure 3.5. Representation of the ‗Self-Supporting‘ model, with vessel (grey), cellular 

aggregates (red) and support structures (blue). 

Algorithm 2 presents the calculation of the self-supporting structures and path planning 

for 3D bioprinting of both cellular aggregates and support structures. The algorithm 

takes the generated B-spline surface of vessel model and outputs a path plan for 

bioprinting of anatomically correct vessel model. 

Algorithm 2. Self-Supporting Structure Generation 

Input: 

Sb(u,v):   generated NURBS Surface 

dcapillary:  diameter of the glass capillaries 

topSupport:  number of support cylinders on top layer (user input) 

Output: 

Finalized vascular model, with support structure 

Path planning for 3D-Bioprinting (a compatible script file for the 3D-Bioprinter) 

Start 

Initialize totalLayers←(surfaceHeight/elevate)+1, j← 1, n← 1, i← 1, contourLevel ← 

0 

Initialize maxStepj← topSupport+totalLayers-j 

For ( j = 1 to totalLayers) { 

  contourLevel←contourLevel + elevate 

  If (cj,0← contouring the surface from a given contourLevel, results in a closed curve) 

Then { 

    Initialize oj,i← (maxStepi/2)×dcapillary 

    For ( i = 1 to maxStepi) { 

cj,i← offset cj,0 by oj,i using Equation (3.2) 

       Initialize curveLength← length(cj,i) 

If (curveLength < minSegmentLength) Then {Exit For Loop}  
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     If ( i = maxStepi/2 or i = maxStepi/2+1) Then { 

       Store cj,i and curveLength in the script file as cellular structure} 

       Else{Store cj,i and curveLength in the script file as support structure} 

oj,i←calculate oj,i using Equation (3.2) 

    } 

maxStepj← topSupport + totalLayers – j  } 

} 

End 

 

3.3 Zig-Zag Approach for Vertical Path Planning of Vascular Constructs 

Similar to Self-Supporting path planning, a zig-zag based path planning is proposed for 

branched vascular constructs. After obtaining the freeform surface representation of the 

branched vascular constructs, the final step before the fabrication process is to create a 

bioprinting path plan for both cellular aggregates and support structures. An algorithm 

is developed to determine an optimum path-plan for bioprinting of branched structures 

such as coronary arteries. The proposed algorithm creates a zig-zag pattern path to 

anatomically mimic the shape of the vessel with cellular aggregates while providing 

support structure to conserve its form.  

The proposed method starts with calculating an invisible bounding box, BB0 = {bb0, 

bb1, bb2, bb3, bb4, bb5, bb6, bb7} of the generated smooth parametric surfaces Sb(u,v). 

The edges of the bounding box lie parallel to X-Y-Z-axis. Then those points are offset 

with a predetermined amount in x,y-plane to enlarge planar area, which will be the 

domain for zig-zag shaped support structures that lie perpendicular to each other for 

each subsequent layer as shown in Figure 3.6. Then the layer number is determined by 

dividing the vertical surface length to predetermined distance (interval) between the 

parallel layers and contourLevel is set to the bottom plane of the box. 
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Figure 3.6. The printing order of outer support structures; first green, second magenta, 

third gray, fourth yellow curves and fifth brown curves. 

For each layer, starting from the bottom level, contourLevel and duplicate vertices‘ z-

coordinates of the enlarged bounding box are increased by interval amount to determine 

the level of the contour for that layer. For each layer i, the algorithm introduces at most 

B closed contour curves CCi = {Ci,b}b=1..B from the smooth surfaces Sb(u,v). And offset 

those closed curves with an amount of offsetAmount ← (cellStripe + supportStripe / 2) 

× dcapillary with the following equation: 

      , ,, 1..

offsetAmout
i b i bi b i B

t C t offsetAmount N tC


          (3.3) 

Where;   

  ,i bN t  = unit normal vector on curve  ,i b tC at a parametric location t 

 

This offset operation results in at most B offset contour curves OCi = 

{𝐶𝑖,𝑏
𝑜𝑓𝑓𝑠𝑒𝑡𝐴𝑚𝑜𝑢𝑛𝑡

}b=1..B. cellStripe variable defines the number of cylindrical cellular 

aggregates to satisfy desired wall thickness, and supportStripe variable defines the 

number of supportive cylinders to conserve cellular aggregates. The gap between OCi‘s 

and CCi‘s (part B‘s in Figure 3.7) implies that the cellular aggregates should be placed 

to the area between those curves.  
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Figure 3.7. (a) Union operation of intersecting OCi‘s (shown with red), results in blue 

curve. Support structure space (A&C), cellular aggregate space (B). (b) Splitting of an 

even layer OCi‘s to its six successor curves (red-blue-cyan-black-yellow-magenta), 

from its deflection points and greatest & lowest x-coordinate points. 

For even numbered layers; offset curves OCi‘s are split from the deflection points where 

G
1
 discontinuity occurs - sudden change points in direction of the unit tangent vectors 

of the respective curve - and min. & max. x-coordinate points resulting in new OCi set 

(as shown in Figure 3.7(b)).  

For odd numbered layers; offset curves OCi‘s are split from the deflection points and 

min. & max. y-coordinate points resulting in new OCi set. Along with the border lines 

that are placed around the domain of the enlarged bounding box (Figure 3.6), they 

constitute the layer curve set LCi,k, for the respective layer i. 

After layer curve sets LCi,k‘s are generated, they crossed with parallel lines (lying 

perpendicular to x,z-plane for even numbered, y,z-plane for odd numbered layers) 

contourLevel. The intersections of layer curves and those parallel lines results in n 

intersection points Pi = {Pi,n}. Each intersection point Pi,n has three type of information, 

which layer curve LCi,k it belongs to 𝑃𝑖,𝑛
𝑐𝑢𝑟𝑣𝑒 _𝑖𝑑 , which move made last 𝑃𝑖,𝑛

𝑝𝑟𝑒𝑣𝑖𝑜𝑢𝑠𝑀𝑜𝑣𝑒
 and 

its status 𝑃𝑖,𝑛
𝑖𝑛𝑓𝑜

 (whether if its ―visited‖, ―not visited‖, or ―waiting‖) to guide the 

algorithm to form non-intersecting and non-repeating support cylinders. Then Pi‘s are 

sorted in descending order with respect to x,y,z-coordinates for even numbered layers, 

and sorted in descending order with respect to y,x,z-coordinates for odd numbered 

layers. 
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After the point sorting process, the algorithm starts to generate support structures COi‘s, 

that cover the cellular aggregates from outside in a zig-zag fashion. Therefore, from 

Pi‘s, the algorithm starts a dynamic search from the lowest indexed ―not visited‖ point 

for a feasible neighbor point and connect them to form polylines. Searching for a 

feasible neighbor point procedure for an intersection point Pi,n, for even numbered 

layers is as follows:  

If 𝑃𝑖,𝑛
𝑝𝑟𝑒𝑣𝑖𝑜𝑢𝑠𝑀𝑜𝑣𝑒

= 0 Then search for a ―non-visited” point, shares same x-coordinate 

and a lower y-coordinate, pick the closest one and set its 𝑃𝑖,𝑛+1
𝑝𝑟𝑒𝑣𝑖𝑜𝑢𝑠𝑀𝑜𝑣𝑒

= 1 

If 𝑃𝑖,𝑛
𝑝𝑟𝑒𝑣𝑖𝑜𝑢𝑠𝑀𝑜𝑣𝑒

= 1 Then search for a ―non-visited” point, lies in the same curve, has a 

lower x-coordinate, pick the closest one and set its 𝑃𝑖,𝑛+1
𝑝𝑟𝑒𝑣𝑖𝑜𝑢𝑠𝑀𝑜𝑣𝑒

= 2 

If 𝑃𝑖,𝑛
𝑝𝑟𝑒𝑣𝑖𝑜𝑢𝑠𝑀𝑜𝑣𝑒

= 2 Then search for a ―non-visited” point, shares same x-coordinate 

and a greater y-coordinate, pick the closest one and set its 𝑃𝑖,𝑛+1
𝑝𝑟𝑒𝑣𝑖𝑜𝑢𝑠𝑀𝑜𝑣𝑒

= 3 

If 𝑃𝑖,𝑛
𝑝𝑟𝑒𝑣𝑖𝑜𝑢𝑠𝑀𝑜𝑣𝑒

= 3 Then search for a ―non-visited” point, lies in the same curve, has a 

lower x-coordinate, pick the closest one and set its 𝑃𝑖,𝑛+1
𝑝𝑟𝑒𝑣𝑖𝑜𝑢𝑠𝑀𝑜𝑣𝑒

= 0 

For odd numbered layers, a neighbor point for intersection point Pi,n is searched using 

previousMove as follows: 

If 𝑃𝑖,𝑛
𝑝𝑟𝑒 𝑣𝑖𝑜𝑢𝑠𝑀𝑜𝑣𝑒

= 0 Then search for a ―non-visited” point, shares same y-coordinate 

and a lower x-coordinate, pick the closest one and set its 𝑃𝑖,𝑛+1
𝑝𝑟𝑒𝑣𝑖𝑜𝑢𝑠𝑀𝑜𝑣𝑒

= 1 

If 𝑃𝑖,𝑛
𝑝𝑟𝑒𝑣𝑖𝑜𝑢𝑠𝑀𝑜𝑣𝑒

= 1 Then search for a ―non-visited” point, lies in the same curve, has a 

lower y-coordinate, pick the closest one and set its 𝑃𝑖,𝑛+1
𝑝𝑟𝑒𝑣𝑖𝑜𝑢𝑠𝑀𝑜𝑣𝑒

= 2 

If 𝑃𝑖,𝑛
𝑝𝑟𝑒𝑣𝑖𝑜𝑢𝑠𝑀𝑜𝑣𝑒

= 2 Then search for a ―non-visited” point, shares same y-coordinate 

and a greater x-coordinate, pick the closest one and set its 𝑃𝑖,𝑛+1
𝑝𝑟𝑒𝑣𝑖𝑜𝑢𝑠𝑀𝑜𝑣𝑒

= 3 

If 𝑃𝑖,𝑛
𝑝𝑟𝑒𝑣𝑖𝑜𝑢𝑠𝑀𝑜𝑣𝑒

= 3 Then search for a ―non-visited” point, lies in the same curve, has a 

lower y-coordinate, pick the closest one and set its 𝑃𝑖,𝑛+1
𝑝𝑟𝑒𝑣𝑖𝑜𝑢𝑠𝑀𝑜𝑣𝑒

= 0 
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Hence, the search process continues dynamically and a zigzag patterned support curves 

are generated for subsequent layers. 

After that, contour curves CCi‘s will be offset inwards and resulting curves to be union 

to form cellular aggregates CMi, with respect to cellStripe value (the number of 

cylinders to meet the desired wall thickness). If the offset curves form the inside support 

curves CIi until minimum segment length is reached to prevent any self-intersection.  

After path planning and topology optimization is finalized, first the support structures 

and then the cellular aggregates are bioprinted at each layer. Figure 3.8 shows branching 

steps of the coronary artery model with three consecutive layers, along with their 

contour curves (shown with blue curves at the bottom part); offset curves (shown with 

black curves at the bottom part); and the deflection points (red circles at the bottom 

part) for each layer.  

 

Figure 3.8. Example layers of a coronary artery, showing the joint locations of the 

branched vessel model (Figure 2.5).  

For this method, the pseudo-code of Algorithm 3 is given below. 

Algorithm 3. Zig-Zag Support Structure Generation 

Input: 

Sb(u,v):   generated NURBS Surface(s) 

dcapillary:    diameter of the glass capillaries 

vcapillary:  max. volume of the glass capillaries 

cellStripe:  the number of cylindrical cellular aggregates to satisfy desired 

wall thickness  
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supportStripe:  the number of supportive cylinders to conserve cellular 

aggregates 

interval:  distance between planar layers 

gap:   distance between subsequent linear support cylinders  

enlarge:  enlargement amount of the cutting plane 

Output: 

Finalized vascular model, with support structure 

Path planning for 3D-Bioprinting ( a compatible script file for the 3D-Bioprinter) 

Start 

{ bb0, bb1, bb2, bb3, bb4, bb5, bb6, bb7} ← BoundingBox(Sb(u,v))  

lb ← bb0, rb ← bb1, rt ← bb2, lt ← bb3 

lb
´
← (bb0(x) – enlarge, bb0(y) – enlarge, bb0(z)), rb

´
 ← (bb1(x) + enlarge, bb1(y) – 

enlarge, bb1(z))  

rt
´
 ← (bb2(x) + enlarge, bb2(y) + enlarge, bb2(z)), lt

´
 ← (bb3(x) – enlarge, bb3(y) + 

enlarge, bb3(z)) 

Initialize totalLayers ← floor(distance(bb3,bb0) / interval)+1, j ← 1, n ← 1, i ← 1  

Initialize contourLevel ← plane({lb
´
, rb

´
, rt

´
, lt

´
}) = ―0‖ 

For ( i = 1 to totalLayers) { 

  contourLevel ← contourLevel + interval 

  lb
´
(z) ← lb

´
(z) + interval, rb

´
(z) ← rb

´
(z) + interval 

  rt
´
(z) ← rt

´
(z) + interval, lt

´
(z) ← lt

´
(z) + interval 

  offsetAmount ← (cellStripe + supportStripe / 2) × dcapillary 

  For ( all Sb(u,v)) { 

    Ci,b ← contour(Sb(u,v))contourLevel  ‗// contour curves at respective contour level 

    𝐶𝑖,𝑏
𝑜  ← offset(Ci,b)offsetAmount   ‗// offset curves with respective offset amount 

      CCi = {Ci,b} ← a set of b closed contour curves that i
th 

layer contains 

    OCi ← OCi ∪ {𝐶𝑖,𝑏
𝑜 } 

  } 

  If ( i == EVEN) Then { 

    OCi ← split(OCi)intersection,minX,maxX   

    line1 ← addLine({lb
´
, rb

´
}) 

    line2 ← addLine({lt
´
, rt

´
}) 

    LCi,k ← OCi ∪ line1 ∪ line2  

    l ← lb
´
 

    For ( j = lt
´
(x) to rt

´
(z)) Step gap { 

      line ← addLine({j,l}) 

      For ( all LCi,k) { 

        If ( LCi,k ∩ line ≠ NULL) Then { 

          Pi,n ← LCi,k ∩ line  

          𝑃𝑖,𝑛
𝑖𝑛𝑓𝑜

 ← ―not visited‖ = 0 

          𝑃𝑖 ,𝑛
𝑐𝑢𝑟𝑣𝑒 _𝑖𝑑  ← k  

          Pi ← Pi ∪ {Pi,n} 

        } 

      } 

      l(x) ← 
 
l(x) + gap 

    } 

    Pi ← sortPoints(Pi)x,y,z  

    curveLength ← 0 
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    polyLine ← NULL 

    While ( min(𝑃𝑖
𝑖𝑛𝑓𝑜

) == 0) { 

       If (Pi,n ← polyLine
endpoint 

); If Not { 

       Pi,n ← get the minimum_indexed  𝑃𝑖,𝑛
𝑖𝑛𝑓𝑜

 == 2 = ―waiting‖ point; If Not { 

       Pi,n ← get the minimum_indexed  𝑃𝑖,𝑛
𝑖𝑛𝑓𝑜

 == 0 = ―not visited‖ point } 

       Pi,n+1 ←  find the best appropriate neighbor point according to previousMove; If 

Not { 

         COi ← COi ∪ polyLine  

         𝑃𝑖,𝑛
𝑖𝑛𝑓𝑜

 ←  ―visited‖ = 1 

         polyLine ← NULL 

         return_to_start_of_the_loop } 

         line ← addLine({Pi,n, Pi,n+1}) 

       If ( polyLine
length

 + line
length 

 ≤ vcapillary) Then { 

         polyLine ← polyLine ∪ line 

         𝑃𝑖,𝑛
𝑖𝑛𝑓𝑜

 ← ―visited‖ = 1 

       } 

      Else { 

        𝑃𝑖,𝑛
𝑖𝑛𝑓𝑜

 ← ―waiting‖ = 2 

      } 

    } 

  } 

  Else { 

    OCi ← split(OCi)intersection,minY,maxY   

    line1 ← addLine({lt
´
, lb

´
}) 

    line2 ← addLine({rt
´
, rb

´
}) 

    LCi,k ← OCi ∪ line1 ∪ line2  

    l ← lb
´
 

    For ( j = lb
´
(y) to lt

´
(y)) Step gap { 

      line ← addLine({j,l}) 

      For ( all LCi,k) { 

        If ( LCi,k ∩ line ≠ NULL) Then { 

          Pi,n ← LCi,k ∩ line  

          𝑃𝑖,𝑛
𝑖𝑛𝑓𝑜

 ← ―not visited‖ = 0 

          𝑃𝑖 ,𝑛
𝑐𝑢𝑟𝑣𝑒 _𝑖𝑑  ← k  

          Pi ← Pi ∪ {Pi,n} 

        } 

      } 

      l(y) ← 
 
l(y) + gap 

    } 

    Pi ← sortPoints(Pi)y,x,z  

    curveLength ← 0 

    polyLine ← NULL 

    While ( min(𝑃𝑖
𝑖𝑛𝑓𝑜

) == 0) { 

       If (Pi,n ← polyLine
endpoint 

); If Not { 

       Pi,n ← get the minimum_indexed  𝑃𝑖,𝑛
𝑖𝑛𝑓𝑜

 == 2 = ―waiting‖ point; If Not { 

       Pi,n ← get the minimum_indexed  𝑃𝑖,𝑛
𝑖𝑛𝑓𝑜

 == 0 = ―not visited‖ point } 
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       Pi,n+1 ←  find the best appropriate neighbor point according to previousMove; If 

Not { 

         COi ← COi ∪ polyLine  

         𝑃𝑖,𝑛
𝑖𝑛𝑓𝑜

 ←  ―visited‖ = 1 

         polyLine ← NULL 

         return_to_start_of_the_loop } 

         line ← addLine({Pi,n, Pi,n+1}) 

       If ( polyLine
length

 + line
length 

 ≤ vcapillary) Then { 

         polyLine ← polyLine ∪ line 

         𝑃𝑖,𝑛
𝑖𝑛𝑓𝑜

 ← ―visited‖ = 1 

       } 

      Else { 

        𝑃𝑖,𝑛
𝑖𝑛𝑓𝑜

 ← ―waiting‖ = 2 

      } 

    } 

  } 

  For ( all CCi) { 𝐶𝐶𝑖,𝑏
𝑐𝑕𝑒𝑐𝑘  ← 0 } 

  offsetAmount ← (cellStripe + supportStripe - 1 / 2) × dcapillary 

  While ( min(𝐶𝐶𝑖
𝑐𝑕𝑒𝑐𝑘 ) == 0 ) { 

    For ( b = 1 to B) { 

      If ( 𝐶𝐶𝑖,𝑏
𝑐𝑕𝑒𝑐𝑘  ← 0 ) Then { 

        𝑐𝑟𝑣 ← offset(Ci,b)offsetAmount   

        If ( 𝑐𝑟𝑣𝑙𝑒𝑛𝑔𝑡 𝑕  ≤ min_Segment_Length ) Then { 𝐶𝐶𝑖,𝑏
𝑐𝑕𝑒𝑐𝑘  ← 1 } 

        If ( 0 ≤ offsetAmount < (cellStripe + supportStripe - 1 / 2) × dcapillary) Then {  

          CMi ← CMi ∪ 𝑐𝑟𝑣 } 

        Else { CIi ← CIi ∪ 𝑐𝑟𝑣 }         

      } 

    } 

    offsetAmount ← offsetAmount –  dcapillary 

  } 

Send_to_Bioprinter( { COi, CIi, CMi} ) 

} 

End 

 

3.4 Transforming Biomodeled Smooth Parametric Surfaces to a Vertical Form 

The proposed Self-Support and Zig-Zag methods presented in Section 3.2 and 3.3 could 

result in excessive use of support material and cells, as well as increase in the total 

printing time which could negatively affect cell viability. Since the printed tissue 

constructs are flexible in nature, they can be twisted to a degree and keep the desired 

shape. Therefore, we designed a new surface representation that elongates vertically in 

z-direction by preserving the original lengths and branching topology of the vessel. 
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The main idea here is to convert the components of the trajectory curve set TCi = 

{TCi}i=1..I to linear form and build smooth surfaces along those curve Si(u,v), with 

respect to each of their median radius TC𝑖
𝑚𝑒𝑑𝑖𝑎𝑛 _𝑟𝑎𝑑  values. Each trajectory curve, other 

that the root (TC1), has a branching part TC𝑖
𝑏𝑟𝑎𝑛𝑐 𝑕𝐿𝑖𝑛𝑒  (to get separated from the 

direction of its parent curve) and a linear part TC𝑖
𝑟𝑒𝑠𝑡 , if TC𝑖

𝑙𝑒𝑛𝑔𝑡 𝑕
 is greater than 

branchLine, as shown in Figure 3.9. minDistance (the minimum linear distance between 

two parallel branches) and branchingAngle (the separation angle of two branches) 

values are determined by the user and those two parameters, together with the 

maxRadius (the maximum median radius of the trajectory curves other than the root) 

value, determines the length of the branchLine by:      

            

                   (3.4) 

minDistance + 2 × maxRadius > 2 × branchLine × Cos(Π/2 – (branchingAngle / 2)) 

For the trajectory curves whose length TC𝑖
𝑙𝑒𝑛𝑔𝑡 𝑕

 is shorter than branchLine, their length 

is adjusted to branchLine so that the minimum distance between the surfaces is satisfied 

and any possible intersection of the branches is avoided. Hence, no other trajectory 

curves median radius value {𝑇𝐶𝑖
𝑚𝑒𝑑𝑖𝑎𝑛 _𝑟𝑎𝑑 }i=2..I is greater than maxRadius as shown in 

Figure 3.10(a).  
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Figure 3.9. Converting the biomodeled trajectory curves to a vertical pattern, with 

respect to each trajectory curves original lengths. 

First, the root (TC1) curve approximates a linear centerline curve line1, lies in z-plane 

with its length equal toTC1
𝑙𝑒𝑛𝑔𝑡 𝑕

, then the surface S1(u,v)  along line1 with respect to its 

radius 𝑇𝐶1
𝑚𝑒𝑑𝑖𝑎𝑛 _𝑟𝑎𝑑  is fitted with the following equation: 

1 1( , ) ( ) ( ) ( )S u v line u M u T v            (3.5) 

 _ _
1 1( ) cos( ), sin( )
median rad median rad

T v TC v TC v  

0 ≤ u ≤ 1 and 0 ≤ v ≤1  

Where M(u) is a 3x3 matrix incorporating rotation and nonuniform scaling of T(v) as a 

function of u. 

After that, for each trajectory curve {TCi}i=2..I, branchLine (TC𝑖
𝑏𝑟𝑎𝑛𝑐 𝑕𝐿𝑖𝑛𝑒 ) and rest 

(TC𝑖
𝑟𝑒𝑠𝑡 ) parts are generated vertically with respect to the respective trajectory curves‘ 

length and branchingAngle, as shown in Figure 3.9. The key point of this centerline 

curve generation is that each parent-child pair lies in perpendicular planes, therefore any 
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possible intersection between the branches are eliminated. Lastly, the smooth surface(s) 

Si(u,v) are built along centerline curve(s) with respect to its median radius 

𝑇𝐶𝑖
𝑚𝑒𝑑𝑖𝑎𝑛 _𝑟𝑎𝑑 , as shown in Figure 3.10(b) showing a branched vessel model with three 

branches and five trajectory curves. 

 

Figure 3.10. (a) The organization of the branching line with respect to the branching 

angle, minimum distance between the branches and maximum branch radius; vertical 

surface representation of a coronary artery, (b) coronary artery model with three 

branches and five trajectory curves. 

The pseudo-code for Algorithm 4 is given below. 

Algorithm 4. Smooth Parametric Surface Generation for Vertical 3D-Bioprinting 

Input: 

TC:   trajectory curve array 

minDistance:  the minimum planar distance between parallel branch surfaces 

branchingAngle: the planar angle between all branch pairs  

pS:   the predefined spot for starting point of trajectory curves & 

smooth surfaces 

branchLine:  the minimum length of a branching line 

increment:  increment amount for the length of branching lines, in case they 

fall short 

Output: 

Si(u,v) :  generated NURBS Surface(s) 

Start  

Initialize maxBranches ← 2, i ← 1, constructionPlane ← (x,y), t ← 1   

maxRadius ← max(TC𝑖
𝑚𝑒𝑑𝑖𝑎𝑛 _𝑟𝑎𝑑 )i = 2..I  

While ( minDistance + maxBranches × maxRadius > maxBranches × branchLine × 

Cos(Π/2 –  (branchingAngle / 2))) { 

  branchLine ← branchLine + increment 

} 



36 

 

destinationi ← (pS (x), pS (y), pS (z) + TC𝑖
𝑙𝑒𝑛𝑔𝑡 𝑕

) 

linei ← addLine({pS, destinationi}) 

𝑐𝑖𝑟𝑐𝑙𝑒𝑖
1 ← addCircle(𝑙𝑖𝑛𝑒𝑖

𝑠𝑡𝑎𝑟𝑡𝑃𝑜𝑖𝑛𝑡 , 𝑇𝐶𝑖
𝑚𝑒𝑑𝑖𝑎𝑛 _𝑟𝑎𝑑 )constructionPlane 

𝑐𝑖𝑟𝑐𝑙𝑒𝑖
2 ← addCircle(𝑙𝑖𝑛𝑒𝑖

𝑒𝑛𝑑𝑃𝑜𝑖𝑛𝑡 , 𝑇𝐶𝑖
𝑚𝑒𝑑𝑖𝑎𝑛 _𝑟𝑎𝑑 )constructionPlane 

𝑇𝐶𝑖
𝑠𝑢𝑟𝑓𝑎𝑐𝑒

 ← loftSurface({𝑐𝑖𝑟𝑐𝑙𝑒𝑖
1, linei, 𝑐𝑖𝑟𝑐𝑙𝑒𝑖

2}) 

Si(u,v) ←  𝑇𝐶𝑖
𝑠𝑢𝑟𝑓𝑎𝑐𝑒

 

(TC𝑖
𝑐𝑕𝑖𝑙𝑑 ,𝑡

)
startPoint

 ←  𝑙𝑖𝑛𝑒𝑖
𝑒𝑛𝑑𝑃𝑜𝑖𝑛𝑡 , (TC𝑖

𝑐𝑕𝑖𝑙𝑑 ,𝑡+1
)
startPoint

 ←  𝑙𝑖𝑛𝑒𝑖
𝑒𝑛𝑑𝑃𝑜𝑖𝑛𝑡  

(TC𝑖
𝑐𝑕𝑖𝑙𝑑 ,𝑡

)
startCircle 

←  𝑐𝑖𝑟𝑐𝑙𝑒𝑖
2, (TC𝑖

𝑐𝑕𝑖𝑙𝑑 ,𝑡+1
)
startCircle

 ←  𝑐𝑖𝑟𝑐𝑙𝑒𝑖
2 

(TC𝑖
𝑐𝑕𝑖𝑙𝑑 ,𝑡

)
plane

 ←  ―1‖ = (x,z), (TC𝑖
𝑐𝑕𝑖𝑙𝑑 ,𝑡+1

)
plane

 ←  ―1‖ = (x,z) 

(TC𝑖
𝑐𝑕𝑖𝑙𝑑 ,𝑡

)
angle

 ←  (Π + branchingAngle / 2), (TC𝑖
𝑐𝑕𝑖𝑙𝑑 ,𝑡+1

)
angle

 ←  (Π –  branchingAngle 

/ 2) 

For ( i = 1 to I) { 

  If (TC𝑖
𝑝𝑎𝑟𝑒𝑛𝑡

 ≠ NULL) Then { 

    If (TC𝑖
𝑝𝑙𝑎𝑛𝑒

 == ―1‖ = (x,z)) Then { 

      If (TC𝑖
𝑎𝑛𝑔𝑙𝑒

 < Π) Then {destinationi ← (TC𝑖
𝑠𝑡𝑎𝑟𝑡𝑃𝑜𝑖𝑛𝑡  (x) + (branchingAngle / 2) × 

branchLine, TC𝑖
𝑠𝑡𝑎𝑟𝑡𝑃𝑜𝑖𝑛𝑡  (y), TC𝑖

𝑠𝑡𝑎𝑟𝑡𝑃𝑜𝑖𝑛𝑡  (z) + Sin(Π/2 – (branchingAngle / 2)) × 

branchLine)} 

      If (TC𝑖
𝑎𝑛𝑔𝑙𝑒

 > Π) Then {destinationi ← (TC𝑖
𝑠𝑡𝑎𝑟𝑡𝑃𝑜𝑖𝑛𝑡  (x) –  (branchingAngle / 2) × 

branchLine, TC𝑖
𝑠𝑡𝑎𝑟𝑡𝑃𝑜𝑖𝑛𝑡  (y), TC𝑖

𝑠𝑡𝑎𝑟𝑡𝑃𝑜𝑖𝑛𝑡  (z) + Sin(Π/2 – (branchingAngle / 2)) × 

branchLine)} 

      linei ← addLine({pS, destinationi}) 

      𝑐𝑖𝑟𝑐𝑙𝑒𝑖
1 ← addCircle(𝑙𝑖𝑛𝑒𝑖

𝑒𝑛𝑑𝑃𝑜𝑖𝑛𝑡 , 𝑇𝐶𝑖
𝑚𝑒𝑑𝑖𝑎𝑛 _𝑟𝑎𝑑 )constructionPlane 

    } 

    Else { 

      If ( TC𝑖
𝑎𝑛𝑔𝑙𝑒

 < Π) Then {destinationi ← ( TC𝑖
𝑠𝑡𝑎𝑟𝑡𝑃𝑜𝑖𝑛𝑡 (x), TC𝑖

𝑠𝑡𝑎𝑟𝑡𝑃𝑜𝑖𝑛𝑡 (y) + 

(branchingAngle / 2) × branchLine, TC𝑖
𝑠𝑡𝑎𝑟𝑡𝑃𝑜𝑖𝑛𝑡 (z) + Sin(Π/2 – (branchingAngle / 2)) × 

branchLine)} 

      If ( TC𝑖
𝑎𝑛𝑔𝑙𝑒

 > Π) Then {destinationi ← ( TC𝑖
𝑠𝑡𝑎𝑟𝑡𝑃𝑜𝑖𝑛𝑡 (x), TC𝑖

𝑠𝑡𝑎𝑟𝑡𝑃𝑜𝑖𝑛𝑡 (y) –  

(branchingAngle / 2) × branchLine, TC𝑖
𝑠𝑡𝑎𝑟𝑡𝑃𝑜𝑖𝑛𝑡 (z) + Sin(Π/2 – (branchingAngle / 2)) × 

branchLine)} 

      linei ← addLine({pS, destinationi}) 

      𝑐𝑖𝑟𝑐𝑙𝑒𝑖
1 ← addCircle(𝑙𝑖𝑛𝑒𝑖

𝑒𝑛𝑑𝑃𝑜𝑖𝑛𝑡 , 𝑇𝐶𝑖
𝑚𝑒𝑑𝑖𝑎𝑛 _𝑟𝑎𝑑 )constructionPlane 

    } 

    If ( TC𝑖
𝑙𝑒𝑛𝑔𝑡 𝑕

 ≤ branchLine ) Then { 

      𝑇𝐶𝑖
𝑠𝑢𝑟𝑓𝑎𝑐𝑒

 ← loftSurface({TC𝑖
𝑠𝑡𝑎𝑟𝑡𝐶𝑖𝑟𝑐𝑙𝑒 , linei, 𝑐𝑖𝑟𝑐𝑙𝑒𝑖

1}) 

      Si(u,v) ←  𝑇𝐶𝑖
𝑠𝑢𝑟𝑓𝑎𝑐𝑒

 

    } 

    Else { 

      𝑇𝐶𝑖
𝑠𝑢𝑟𝑓𝑎𝑐𝑒 ,𝑡

 ← loftSurface({TC𝑖
𝑠𝑡𝑎𝑟𝑡𝐶𝑖𝑟𝑐𝑙𝑒 , linei, 𝑐𝑖𝑟𝑐𝑙𝑒𝑖

1}) 

      𝑑𝑒𝑠𝑡𝑖𝑛𝑎𝑡𝑖𝑜𝑛𝑖
2 ← ((linei)

endPoint
(x), (linei)

endPoint
(y), (linei)

endPoint
(z) + TC𝑖

𝑙𝑒𝑛𝑔𝑡 𝑕
 –  

branchLine) 

      𝑙𝑖𝑛𝑒𝑖
2 ← addLine({(linei)

endPoint
, 𝑑𝑒𝑠𝑡𝑖𝑛𝑎𝑡𝑖𝑜𝑛𝑖

2}) 

      𝑐𝑖𝑟𝑐𝑙𝑒𝑖
2 ← addCircle(𝑙𝑖𝑛𝑒𝑖

𝑒𝑛𝑑𝑃𝑜𝑖𝑛𝑡 , 𝑇𝐶𝑖
𝑚𝑒𝑑𝑖𝑎𝑛 _𝑟𝑎𝑑 )constructionPlane 
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      𝑇𝐶𝑖
𝑠𝑢𝑟𝑓𝑎𝑐𝑒 ,𝑡+1

 ← loftSurface({𝑐𝑖𝑟𝑐𝑙𝑒𝑖
1, 𝑙𝑖𝑛𝑒𝑖

2, 𝑐𝑖𝑟𝑐𝑙𝑒𝑖
2}) 

      Si(u,v) ←  𝑇𝐶𝑖
𝑠𝑢𝑟𝑓𝑎𝑐𝑒 ,𝑡

 ∪ 𝑇𝐶𝑖
𝑠𝑢𝑟𝑓𝑎𝑐𝑒 ,𝑡+1

 

    } 

  } 

} 

End 

 

3.5 Path planning with Self-Supporting Method for Branched Vascular Constructs 

After obtaining the vertically biomodeled smooth parametric surfaces with Algorithm 4, 

path planning and topology optimization needs to be carried out to 3D bioprint the 

model. In this part, a novel method is proposed for 3D bioprinting path planning which 

is also capable of printing branched structures. The main idea of self-supporting method 

for branched vascular constructs is to use least amount of material to cover and support 

the cellular aggregates. Hence, the method also optimizes the duration of the printing 

process to improve the cell viability. 

The support structures are printed in a circular form in this approach, therefore the 

curves that are generated by contouring the whole surface representation at each layer k, 

CCk = {Ck,n}k=1..K need to be offset inwards and outwards to form the support wall. 

Because of weak mechanical properties of hydrogel support material, they cannot keep 

their 3D form if printed on top of each other. Therefore, each support piece at each layer 

k+1 needs to be deposited on to the valleys of the support material at the preceding layer 

k. For each layer, Algorithm 5 computes the border curves BCk = {BCk,n}n=1..N and total 

number of cylindrical support structure and bio-ink pieces (maxStepk) for that layer. 

Border curves represent the largest boundaries of outward support structure for that 

layer. As can be seen in Figure 3.11, the border curves of the k+1
th

 layer (BCk+1) are 

shown with black curves. To determine the border curves for the k
th

 layer, the contour 

curves CCk are iteratively offset outwards with the capillary diameter dcapillary 

increments in the offset amount (blue curves in Figure 3.11), once offset curves are 

large enough to strictly enclose the border curves of the k+1
th

 layer, then they set as the 

border curves of their layer. Moreover, the total number of increments in offset amount 

to generate offset curves will be the total number of cylindrical support structure and the 

bio-ink pieces (maxStepk) for that layer, as shown with blue curves in Figure 3.11. 
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To determine the border curves and the total number of cylindrical support structures 

and bio-ink pieces for each layer, a top-down approach needs to be developed. 

Therefore, the algorithm uses the user defined variable for determining the border 

curves and number of support cylinders for the top layer. Here, topSupport is a user 

variable for the number of support cylindrical pieces to enclose each n contour curve 

CK,n at the top layer. From that information, maxStepK will be equal to topSupport and 

the border curves for that layer can be found: 

 offsetAmount ← (topSupport / 2) × dcapillary         (3.6) 

      , ,, 1..

offsetAmout
K n K nK n n N

t C t offsetAmount N tC


      

Where;     

 ,K nN t  = unit normal vector on curve  ,K n tC at a parametric location t 

 BCK = {𝐶𝐾,𝑛
𝑜𝑓𝑓𝑠𝑒𝑡𝐴𝑚𝑜𝑢𝑛𝑡

} 

The algorithm then starts iterating downwards through the layers and determines the 

border curves and the total number of cylindrical support structures and bio-ink pieces 

for each layer, with the methodology explained above. 

 

Figure 3.11. Determination of border curves for layer k, using the border curve 

information of layer k+1. 

Once the total number of cylindrical support structures and bio-ink pieces are 

determined for each layer, from bottom to top layer, contour curves CCk are offset with 

sequentially decreasing offset amounts (o) with maxStepk times resulting in offset 
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curves 𝐶𝑘,𝑛
𝑜 . According to the cellStripe value (the number of bio-ink cylinders to satisfy 

the wall thickness of the vessel) and the distance between the offset curves and the 

contour curves, the types of the offset curves 𝐶𝑘,𝑛
𝑜  are determined, whether they are 

outwards or inwards support cylinders {COk, CIk} (support structures), or bio-ink 

cylinders middle {CMk} as shown in Figure 3.12. As shown in Figure 3.12, the contour 

curves (shown with black curves) represents the inner boundaries of the biomodeled 

vessel, the closest cellStripe number (2 in this specific example) of cylindrical curves in 

outward direction represents the bio-ink cylinders middle (shown with red curves). The 

rest of the cylinders are grouped as support cylinders outwards and inwards (shown with 

blue) according to their orientation based on their corresponding contour curves. Every 

cylinder curve in each of the three sets {COk, CIk, CMk}, starting from the broadest 

curve for each set, are then linked together if they can connect each other with a line 

segment (Figure 3.12), if that line segment satisfies the following conditions: 

 The line segment must be linear. 

 The line segment must not intersect any of the other curves belonging to 

any of these sets.    

 The line segments‘ lengths must be at most equals to dcapillary. 

 

Figure 3.12. Linking procedure for supportive cylinders inwards, bio-ink cylinders 

middle and supportive cylinders outwards. 

At a layer, the support cylinders outwards and inwards are printed first, and then the 

bio-ink aggregates are deposited along the valleys of the support structure. A 
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representative path planning example of a three branched, eight trajectory curved 

surface model is shown in Figure 3.13. 

 

Figure 3.13. A representative path planning example of a three branched, eight 

trajectory curved surface model. 

The pseudo-code of the Algorithm 5 is given below. 

Algorithm 5. Vertical 3D-Bioprinting Self-Supporting Model 

Input: 

Si(u,v):   generated NURBS Surface(s) 

dcapillary:  diameter of the glass capillaries 

topSupport:  the number of supportive cylinders at top layer 

vcapillary:  max. volume of the glass capillaries 

cellStripe:  the number of cylindrical cellular aggregates to satisfy desired 

wall thickness  

interval:  distance between layers 

Output: 

Finalized vascular model, with support structure 

Path planning for 3D-Bioprinting ( a compatible script file for the 3D-Bioprinter) 

Start  

{ bb0, bb1, bb2, bb3, bb4, bb5, bb6, bb7} ← BoundingBox(Sb(u,v))  

lb ← bb4, rb ← bb5, rt ← bb6, lt ← bb7  

Initialize totalLayers ← floor(distance(bb3,bb0) / interval)+1, j ← 1, k ← totalLayers, i 

← 1  

Initialize contourLevel ← plane({lb, rb, rt, lt}) = ―k‖ 

contourLevel ← contourLevel –  interval 

lb(z) ← lb(z) –  interval, rb(z) ← rb(z) – interval, rt(z) ← rt(z) –  interval, lt(z) ← lt(z) –  

interval 

offsetAmount ← (topSupport / 2) × dcapillary 

For ( all Si(u,v)) { 

  Ck,n ← contour(Si(u,v))contourLevel 

  𝐶𝑘,𝑛
𝑜  ← offset(Ck,n)offsetAmount   
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  CCk = {Ck,n} ← a set of n closed contour curves that k
th 

layer contains 

  OCk ← OCk ∪ {𝐶𝑘,𝑛
𝑜 } 

  BCk ← OCk 

  maxStepk ← topSupport 

} 

For ( k = 1 to K) { 

  contourLevel ← contourLevel –  interval 

  lb(z) ← lb(z) –  interval, rb(z) ← rb(z) –  interval 

  rt(z) ← rt(z) –  interval, lt(z) ← lt(z) – interval 

   j ← K – k 

  𝐵𝐶𝑗+1
𝑗

 ← transport(BCj+1)contourLevel  

  maxStepj ← 1 

  offsetAmount ← (maxStepj / 2) × dcapillary 

  For ( all Si(u,v)) { 

    Cj,n ← contour(Si(u,v))contourLevel 

    𝐶𝑗 ,𝑛
𝑜  ← offset(Cj,n)offsetAmount   

       CCj = {Cj,n} ← a set of n closed contour curves that j
th 

layer contains 

    OCj ← OCj ∪ {𝐶𝑗 ,𝑛
𝑜 } 

  } 

  BCj ← OCi 

  While (𝐵𝐶𝑗+1
𝑗

 ⊇  𝐵𝐶𝑗 ) { 

     maxStepj ← maxStepj + 1 

     offsetAmount ← (maxStepj / 2) × dcapillary 

     For ( all Si(u,v)) { 

       Cj,n ← contour(Si(u,v))contourLevel 

       𝐶𝑗 ,𝑛
𝑜  ← offset(Cj,n)offsetAmount   

           CCj = {Cj,n} ← a set of n closed contour curves that j
th 

layer contains 

       OCj ← OCj ∪ {𝐶𝑗 ,𝑛
𝑜 } 

       BCj ← OCi 

     } 

   } 

  maxStepj ← 2 × maxStepj  

} 

contourLevel ← plane({lb, rb, rt, lt}) = ―0‖ 

For ( k = 1 to K) { 

  contourLevel ← contourLevel + interval 

  lb(z) ← lb(z) + interval, rb(z) ← rb(z) + interval 

  rt(z) ← rt(z) + interval, lt(z) ← lt(z) + interval 

  offsetAmount ← (maxStepk / 2) × dcapillary 

  For ( all Si(u,v)) { 

    Ck,n ← contour(Si(u,v))contourLevel 

    CCk = {Ck,n} ← a set of n closed contour curves that k
th 

layer contains 

   } 

   For ( all CCk) { 𝐶𝐶𝑘,𝑛
𝑐𝑕𝑒𝑐𝑘  ← 0 }   

   For ( j = 1 to maxStepk ) { 

     For ( n = 1 to num_Contour_Curves) { 

      If (𝐶𝐶𝑘,𝑛
𝑐𝑕𝑒𝑐𝑘  ← 0 ) Then { 
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         𝐶𝑘,𝑛
𝑜  ← offset(Ck,n)offsetAmount   

         OCk ← OCk ∪ {𝐶𝑘,𝑛
𝑜 } 

         If ( (𝐶𝑘,𝑛
𝑜 )

length
 ≤ min_Segment_Length ) Then { 𝐶𝐶𝑘,𝑛

𝑐𝑕𝑒𝑐𝑘  ← 1 } 

         If ((j ≥ maxStepk /2 – cellStripe) and (j ≤ maxStepk /2)) Then { CMk ← CMk ∪ 

𝐶𝑘,𝑛
𝑜 } 

         ElseIf  (j < maxStepk /2 – cellStripe)  Then { COk ← COk ∪ 𝐶𝑘,𝑛
𝑜 }         

         Else { CIk ← CIk ∪ 𝐶𝑘,𝑛
𝑜 }         

       } 

     } 

     offsetAmount ← offsetAmount –  dcapillary 

   } 

} 

Connect( { COk, CIk, CMk} ) 

Split( { COk, CIk, CMk}, vcapillary ) 

Send_to_Bioprinter( { COk, CIk, CMk} ) 

End 

 

3.6 Path Planning with Hybrid Method for Branched Vascular Constructs 

Figure 3.13 shows that Self-Supporting methods implementation with vertically 

biomodeled smooth surfaces neither reduce the supporting material usage and duration 

of the bioprinting process, as it utilizes an excessive number of outwards supporting 

cylinders. To effectively reduce the printing time and material use, a hybrid method is 

proposed where self-supporting and zig-zag methods are combined.  

The proposed hybrid method is mainly constructed over self-supporting method as two 

methodologies show great similarities. By altering the self-supporting method‘s border 

curve constraint with a more relaxed constraint and by introducing a new path planning 

pattern, the algorithm reduces the printing duration and material use significantly (as 

shown in Figure 4.10). 

In self-supporting method, for any subsequent layer, whenever the boundaries of the 

offset contour curves OCk of the k
th

 layer strictly encloses the largest outward 

boundaries of the border curves of the upper layer BCk+1, then those OCk curves are set 

as the border curves BCk of k
th

 layer. However, in this hybrid method, the largest 

outward boundaries of the offset contour curves of the k
th

 layer do not have to enclose 

the boundaries of the border curves BCk+1 of the upper layer. This constraint conversion 

makes BCk = BCk+1 possible for layers of contouring the same vertical extruded surface 

group.  



43 

 

Once BCk‘s are set for each layer, from bottom to top layer, the algorithm checks for the 

odd numbered layers k that satisfies BCk = BCk+1 property. If the border curves BCk‘s 

are set as curveOutsk, the outward support border cylinders of bio-ink cylinders are set 

as curveInsk, and the hollow area between the {curveInsk, curveOutsk} need to be filled 

by custom zig-zag pattern that is generated by Algorithm 6.  

 

Figure 3.14. Traveling point extraction process for large and small distance curves. 

If the linear distance between curveInsk and curveOutsk pairs is greater than maxGap 

(user defined distance) value, then the algorithm approximates another set of curves 

curveMidsk that pass just from the middle of {curveInsk, curveOutsk} as in Figure 3.14. 

Division of each curve set {curveInsk, curveMidsk ,curveOutsk} to x, 3x and 2x points 

respectively, results in relative sized point sets for each curve set 

{𝑃𝑖𝑛𝑠
𝑥 , 𝑃𝑚𝑖𝑑𝑠

3𝑥 , 𝑃𝑜𝑢𝑡𝑠
2𝑥 }

x=1..X
 (Figure 3.14). For instance, 𝑃𝑜𝑢𝑡𝑠

2𝑥  represents the 2x division 

points of curveOutsk. By traveling among the division points in a planned way as shown 

in Figure 3.15, a zig-zag patterned support structure is generated for odd layers 

satisfying BCk = BCk+1. This zig-zag patterned support structure will be the k
th

 layers 
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support cylinders outwards (COk) set, as shown in Figure 3.15. The rest of the 

methodology is completely identical with the self-supporting approach explained above.  

 

Figure 3.15. The zig-zag pattern outer support structure COk generation for odd 

numbered layers, for both large and small distance curves. 

The proposed hybrid method reduces the material and time for subsequent vertical 

layers, and hence for the whole bioprinting process. 

The pseudo-code of the Algorithm 6 is given below. 

Algorithm 6. Vertical 3D-Bioprinting Hybrid Model 

Input: 

Si(u,v):   generated NURBS Surface(s) 

dcapillary:  diameter of the glass capillaries 

topSupport:  the number of supportive cylinders at top layer 

vcapillary:  max. volume of the glass capillaries 

cellStripe:  the number of cylindrical cellular aggregates to satisfy desired 

wall thickness  

interval:  distance between layers 

maxGap:  critical distance between contour curves 
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Output: 

Finalized vascular model, with support structure 

Path planning for 3D-Bioprinting ( a compatible script file for the 3D-Bioprinter) 

Start  

{ bb0, bb1, bb2, bb3, bb4, bb5, bb6, bb7} ← BoundingBox(Sb(u,v))  

lb ← bb4, rb ← bb5, rt ← bb6, lt ← bb7  

Initialize totalLayers ← floor(distance(bb3,bb0) / interval)+1, j ← 1, k ← totalLayers, i 

← 1  

Initialize contourLevel ← plane({lb, rb, rt, lt}) = ―k‖ 

contourLevel ← contourLevel –  interval 

lb(z) ← lb(z) –  interval, rb(z) ← rb(z) – interval, rt(z) ← rt(z) –  interval, lt(z) ← lt(z) –  

interval 

offsetAmount ← (topSupport / 2) × dcapillary 

For ( all Si(u,v)) { 

  Ck,n ← contour(Si(u,v))contourLevel 

  𝐶𝑘,𝑛
𝑜  ← offset(Ck,n)offsetAmount   

  CCk = {Ck,n} ← a set of n closed contour curves that k
th 

layer contains 

  OCk ← OCk ∪ {𝐶𝑘,𝑛
𝑜 } 

  BCk ← OCk 

  maxStepk ← topSupport 

} 

For ( k = 1 to K) { 

  contourLevel ← contourLevel –  interval 

  lb(z) ← lb(z) –  interval, rb(z) ← rb(z) –  interval 

  rt(z) ← rt(z) –  interval, lt(z) ← lt(z) – interval 

   j ← K – k 

  𝐵𝐶𝑗+1
𝑗

 ← transport(BCj+1)contourLevel 

  maxStepj ← 1 

  offsetAmount ← (maxStepj / 2) × dcapillary 

  For ( all Si(u,v)) { 

    Cj,n ← contour(Si(u,v))contourLevel 

    𝐶𝑗 ,𝑛
𝑜  ← offset(Cj,n)offsetAmount   

       CCj = {Cj,n} ← a set of n closed contour curves that j
th 

layer contains 

     OCj ← OCj ∪ {𝐶𝑗 ,𝑛
𝑜 } 

  } 

  borderCurvesj ← OCi 

  While (𝐵𝐶𝑗+1
𝑗

 ⊃  𝐵𝐶𝑗 ) { 

     maxStepj ← maxStepj + 1 

     offsetAmount ← (maxStepj / 2) × dcapillary 

     For ( all Si(u,v)) { 

       Cj,n ← contour(Si(u,v))contourLevel 

       𝐶𝑗 ,𝑛
𝑜  ← offset(Cj,n)offsetAmount   

           CCj = {Cj,n} ← a set of n closed contour curves that j
th 

layer contains 

       OCj ← OCj ∪ {𝐶𝑗 ,𝑛
𝑜 } 

        BCj ← OCi 

     } 

   }  

  maxStepj ← 2 × maxStepj  
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} 

contourLevel ← plane({lb, rb, rt, lt}) = ―0‖ 

For ( k = 1 to totalLayers) { 

  contourLevel ← contourLevel + interval 

  lb(z) ← lb(z) + interval, rb(z) ← rb(z) + interval 

  rt(z) ← rt(z) + interval, lt(z) ← lt(z) + interval 

  offsetAmount ← (maxStepk / 2) × dcapillary 

  For ( all Si(u,v)) { 

    Ck,n ← contour(Si(u,v))contourLevel 

    CCk = {Ck,n} ← a set of n closed contour curves that k
th 

layer contains 

   } 

   If ((BCk == BCk+1) and (k == ODD)) Then {  

      amount ← (cellStripe + ½) × dcapillary   

      curveInsk ← offset(CCk)amount 

      curveOutsk ← BCk 

      If (maxStepk / 2 × dcapillary  >  maxGap) Then {  

        amount ← maxStepk / 4 × dcapillary   

        curveMidsk ← offset(curveInsk)amount 

            x ← avg(curveIns
length

) 

        𝑃𝑖𝑛𝑠
𝑥  ← divide(curveInsk)x 

        𝑃𝑚𝑖𝑑𝑠
3𝑥  ← divide(curveMidsk)3x 

        𝑃𝑜𝑢𝑡𝑠
2𝑥  ← divide(curveOutsk)2x 

        For (x = 0 to X) { ‗// For all CCk 

          If ( x == 0) Then { 

            PPk ← PPk ∪ {𝑃𝑖𝑛𝑠
0  ∪ 𝑃𝑜𝑢𝑡𝑠

𝑙𝑎𝑠𝑡 _𝑖𝑛𝑑𝑒𝑥   ∪ 𝑃𝑜𝑢𝑡𝑠
0  ∪ 𝑃𝑚𝑖𝑑𝑠

𝑙𝑎𝑠𝑡 _𝑖𝑛𝑑𝑒𝑥  ∪ 𝑃𝑚𝑖𝑑𝑠
1  ∪ 𝑃𝑜𝑢𝑡𝑠

0  ∪ 𝑃𝑜𝑢𝑡𝑠
1  

∪ 𝑃𝑖𝑛𝑠
0 } 

          } 

          ElseIf ( (x > 0) and (x < X)) Then { 

            PPk ← PPk ∪ {𝑃𝑖𝑛𝑠
𝑘  ∪ 𝑃𝑜𝑢𝑡𝑠

2𝑘−1   ∪ 𝑃𝑜𝑢𝑡𝑠
2𝑘  ∪ 𝑃𝑚𝑖𝑑𝑠

3𝑘−1  ∪ 𝑃𝑚𝑖𝑑𝑠
3𝑘+1  ∪ 𝑃𝑜𝑢𝑡𝑠

2𝑘  ∪ 𝑃𝑜𝑢𝑡𝑠
2𝑘+1  ∪ 

𝑃𝑖𝑛𝑠
𝑘 } 

          } 

          Else { COk  ← polyLine(PPk)}   

        } 

      } 

      Else { 

         x ← avg(curveIns
length

) 

        𝑃𝑖𝑛𝑠
𝑥  ← divide(curveInsk)x 

        𝑃𝑜𝑢𝑡𝑠
2𝑥  ← divide(curveOutsk)2x 

        For (x = 0 to X) { ‗// For all CCk 

          If ( x == 0) Then { 

            PPk ← PPk ∪ {𝑃𝑖𝑛𝑠
0  ∪ 𝑃𝑜𝑢𝑡𝑠

𝑙𝑎𝑠𝑡 _𝑖𝑛𝑑𝑒𝑥   ∪ 𝑃𝑜𝑢𝑡𝑠
1  ∪ 𝑃𝑖𝑛𝑠

0 } 

          } 

          ElseIf ( (x > 0) and (x < X)) Then { 

            PPk ← PPk ∪ {𝑃𝑖𝑛𝑠
𝑘  ∪ 𝑃𝑜𝑢𝑡𝑠

2𝑘−1  ∪ 𝑃𝑜𝑢𝑡𝑠
2𝑘+1 ∪ 𝑃𝑖𝑛𝑠

𝑘 } 

          } 

          Else { COk  ← polyLine(PPk)}   

        } 

      } 
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      For ( all CCk) { 𝐶𝐶𝑘,𝑛
𝑐𝑕𝑒𝑐𝑘  ← 0 }   

      For ( j = maxStepk /2 – cellStripe to maxStepk ) { 

      For ( n = 1 to num_Contour_Curves) { 

        If (𝐶𝐶𝑘,𝑛
𝑐𝑕𝑒𝑐𝑘  ← 0 ) Then { 

           𝐶𝑘,𝑛
𝑜  ← offset(Ck,n)offsetAmount   

           OCk ← OCk ∪ {𝐶𝑘,𝑛
𝑜 } 

           If ( (𝐶𝑘,𝑛
𝑜 )

length
 ≤ min_Segment_Length ) Then { 𝐶𝐶𝑘,𝑛

𝑐𝑕𝑒𝑐𝑘  ← 1 } 

           If ((j ≥ maxStepk /2 – cellStripe) and (j ≤ maxStepk /2)) Then { CMk ← CMk ∪ 

𝐶𝑘,𝑛
𝑜 } 

           Else { CIk ← CIk ∪ 𝐶𝑘,𝑛
𝑜 }         

         } 

       } 

       offsetAmount ← offsetAmount –  dcapillary 

     } 

   } 

   Else { 

     For ( all CCk) { 𝐶𝐶𝑘,𝑛
𝑐𝑕𝑒𝑐𝑘  ← 0 }   

      For ( j = 1 to maxStepk ) { 

      For ( n = 1 to num_Contour_Curves) { 

        If (𝐶𝐶𝑘,𝑛
𝑐𝑕𝑒𝑐𝑘  ← 0 ) Then { 

           𝐶𝑘,𝑛
𝑜  ← offset(Ck,n)offsetAmount   

           OCk ← OCk ∪ {𝐶𝑘,𝑛
𝑜 } 

           If ( (𝐶𝑘,𝑛
𝑜 )

length
 ≤ min_Segment_Length ) Then { 𝐶𝐶𝑘,𝑛

𝑐𝑕𝑒𝑐𝑘  ← 1 } 

           If ((j ≥ maxStepk /2 – cellStripe) and (j ≤ maxStepk /2)) Then { CMk ← CMk ∪ 

𝐶𝑘,𝑛
𝑜 } 

           ElseIf  (j < maxStepk /2 – cellStripe)  Then { COk ← COk ∪ 𝐶𝑘,𝑛
𝑜 }         

           Else { CIk ← CIk ∪ 𝐶𝑘,𝑛
𝑜 }         

         } 

       } 

       offsetAmount ← offsetAmount –  dcapillary 

     } 

  } 

} 

Connect( { COk, CIk, CMk} ) 

Split( { COk, CIk, CMk}, vcapillary ) 

Send_to_Bioprinter( { COk, CIk, CMk} ) 

End 

 

 

3.7 Generating Horizontal Centerline Curves to Guide Path Planning of 

Horizontal Branched Vascular Construct Printing 

As an alternative approach to vertical bioprinting of biomimetic vascular constructs, a 

horizontal path planning methodology is proposed in Sections 3.7 and 3.8. To optimize 
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this bioprinting horizontal path planning, the centerline curves must be generated to 

guide the bioprinter to follow the trajectories for creating the vascular constructs. 

The steps for the proposed horizontal methods follow the same way as the vertical 

surface generation method (Section 3.4) but in the horizontal x,y-plane. Starting from a 

root trajectory curve (TC1), each trajectory curve {TCi}i=1..I, is duplicated from the end 

point of its parent curve. An example is shown in Figure 3.16 for a five branched 

vascular structure with nine trajectory curves.  

After each trajectory curve is determined, from each leaf curve (trajectory curves 

without any child, a total b branches in the structure) to the root, algorithm connects 

child trajectory curves with its parents through the root. This connected curve 

mainRoadsb is set as the centerline for the respective branch b (as shown in Figure 

3.16).  

 

Figure 3.16. Approximation of centerline curves using trajectory curve information and 

the angles between parent-child trajectory curve pairs; and generation of branch number 

main roads from leaves to the root. 

This main roads set represents the branch curves, each of them starting from a root 

curve. For path planning purpose, the main road curve set needs to be sorted in the 

clockwise direction where the base is the root curve. However, simple Euclidean 

coordinate system information is not enough to determine the order of the branches. 
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Therefore, each curve in mainRoads set is offset in counterclockwise direction and the 

total intersection number with the mainRoads set is determined as the sorted rank of that 

specific mainRoadsb branch as shown in Figure 3.17.  

Lastly, each consecutive main road pair, {mainRoadsb, mainRoadsb+1}, intersected and 

combined from the intersection point to create the trajectory curves to be used in 

Section 3.8 to organize path planning, the set of {sortedRoadsb}b=0..B constitutes each 

bridge curve from mainRoadsb to mainRoadsb+1, including sortedRoads0 = mainRoads1 . 

Figure 3.17 shows the sorted roads set (shown with blue curves) for a five branched 

structure, at the same time sortedRoads2 is highlighted with red arrow (also implies the 

printing direction). 

 

Figure 3.17. Determining the ranks of the main roads and generating arranged sorted 

roads for 3D printing. 

The pseudo-code of the Algorithm 7 is given below. 

Algorithm 7. Centerline Curves Generation for Horizontal 3D-Bioprinting 

Input: 

TC:   trajectory curve array 

pS:   the predefined spot for starting point of trajectory curves & 

smooth surfaces 

Output: 

sortedRoadsb:  updated trajectory curve array 

Start  

Initialize maxBranches ← 2, i ← 1, constructionPlane ← (x,y), t ← 1, intersection ← 0    

totalRadius ← sum(TC𝑖
𝑚𝑒𝑑𝑖𝑎𝑛 _𝑟𝑎𝑑 )i = 1..I  
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cpCount ← count(TC𝑖
𝐶𝑃)i = 1..I 

meanRadius ← totalRadius / cpCount 

destinationi ← (pS (x), pS (y) + TC𝑖
𝑙𝑒𝑛𝑔𝑡 𝑕

, pS (z)) 

linei ← addLine({pS, destinationi}) 

TC𝑖
𝑐𝑢𝑟𝑣𝑒 _𝑖𝑑  ← linei 

 (TC𝑖
𝑐𝑕𝑖𝑙𝑑 ,𝑡

)
startPoint

 ←  𝑙𝑖𝑛𝑒𝑖
𝑒𝑛𝑑𝑃𝑜𝑖𝑛𝑡 , (TC𝑖

𝑐𝑕𝑖𝑙𝑑 ,𝑡+1
)
startPoint

 ←  𝑙𝑖𝑛𝑒𝑖
𝑒𝑛𝑑𝑃𝑜𝑖𝑛𝑡  

 (TC𝑖
𝑐𝑕𝑖𝑙𝑑 ,𝑡

)
side

 ←  1 = ―left‖, (TC𝑖
𝑐𝑕𝑖𝑙𝑑 ,𝑡+1

)
side

 ←  2 = ―right‖ 

For ( i = 1 to I) { 

  If (TC𝑖
𝑝𝑎𝑟𝑒𝑛𝑡

 ≠ NULL) Then { 

    If (TC𝑖
𝑠𝑖𝑑𝑒  == 1 = ―left‖) Then { 

      destinationi ← findDestination({ TC𝑖
𝑝𝑎𝑟𝑒𝑛𝑡 ,𝑐𝑢𝑟𝑣𝑒 _𝑖𝑑

, TC𝑖
𝑠𝑡𝑎𝑟𝑡𝑃𝑜𝑖𝑛𝑡 , 2Π –  

TC𝑖
𝑎𝑛𝑔𝑙𝑒

})constructionPlane 

      linei ← addLine({pS, destinationi}) 

      TC𝑖
𝑐𝑢𝑟𝑣𝑒 _𝑖𝑑  ← linei 

      If (TC𝑖
𝑐𝑕𝑖𝑙𝑑  ≠ NULL) Then { 

        (TC𝑖
𝑐𝑕𝑖𝑙𝑑 ,𝑡

)
startPoint

 ←  𝑙𝑖𝑛𝑒𝑖
𝑒𝑛𝑑𝑃𝑜𝑖𝑛𝑡 , (TC𝑖

𝑐𝑕𝑖𝑙𝑑 ,𝑡+1
)
startPoint

 ←  𝑙𝑖𝑛𝑒𝑖
𝑒𝑛𝑑𝑃𝑜𝑖𝑛𝑡   

        (TC𝑖
𝑐𝑕𝑖𝑙𝑑 ,𝑡

)
side

 ←  1 = ―left‖, (TC𝑖
𝑐𝑕𝑖𝑙𝑑 ,𝑡+1

)
side

 ←  2 = ―right‖ 

       } 

    } 

    Else { 

      destinationi ← findDestination({ TC𝑖
𝑝𝑎𝑟𝑒𝑛𝑡 ,𝑐𝑢𝑟𝑣𝑒 _𝑖𝑑

, TC𝑖
𝑠𝑡𝑎𝑟𝑡𝑃𝑜𝑖𝑛𝑡 , 2Π –  

TC𝑖
𝑎𝑛𝑔𝑙𝑒

})constructionPlane 

      linei ← addLine({pS, destinationi}) 

      TC𝑖
𝑐𝑢𝑟𝑣𝑒 _𝑖𝑑  ← linei 

      If (TC𝑖
𝑐𝑕𝑖𝑙𝑑  ≠ NULL) Then { 

        (TC𝑖
𝑐𝑕𝑖𝑙𝑑 ,𝑡

)
startPoint

 ←  𝑙𝑖𝑛𝑒𝑖
𝑒𝑛𝑑𝑃𝑜𝑖𝑛𝑡 , (TC𝑖

𝑐𝑕𝑖𝑙𝑑 ,𝑡+1
)
startPoint

 ←  𝑙𝑖𝑛𝑒𝑖
𝑒𝑛𝑑𝑃𝑜𝑖𝑛𝑡   

        (TC𝑖
𝑐𝑕𝑖𝑙𝑑 ,𝑡

)
side

 ←  1 = ―left‖, (TC𝑖
𝑐𝑕𝑖𝑙𝑑 ,𝑡+1

)
side

 ←  2 = ―right‖ 

       } 

    } 

  } 

} 

For ( i = 1 to B) { 

  If (TC𝑖
𝑐𝑕𝑖𝑙𝑑  == NULL) Then { 

    mainRoadsi ← TC𝑖
𝑐𝑢𝑟𝑣𝑒 _𝑖𝑑   

  } 

} 

For ( i = 1 to B) { 

  While (𝑚𝑎𝑖𝑛𝑅𝑜𝑎𝑑𝑠𝑖
𝑠𝑡𝑎𝑟𝑡𝑃𝑜𝑖𝑛𝑡  ≠ pS) Then { 

    mainRoadsi ← mainRoadsi ∪ 𝑚𝑎𝑖𝑛𝑅𝑜𝑎𝑑𝑠𝑖
𝑝𝑎𝑟𝑒𝑛𝑡

 

  } 

} 

sortedRoads0 ← NULL 

For ( i = 1 to B) { 

  intersection ← 1 

  testCurve ← offset(mainRoadsi)0.1    
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  For ( j = 1 to B) { 

    If ((testCurve ∩ mainRoadsj) ≠ NULL ) Then { 

      intersection ← intersection + 1 

    } 

  } 

  sortedRoadsintersection ← mainRoadsi 

  dummy ← 𝑠𝑜𝑟𝑡𝑒𝑑𝑅𝑜𝑎𝑑𝑠𝑖𝑛𝑡𝑒𝑟𝑠𝑒𝑐𝑡𝑖𝑜𝑛
𝑒𝑛𝑑𝑃𝑜𝑖𝑛𝑡  

  𝑠𝑜𝑟𝑡𝑒𝑑𝑅𝑜𝑎𝑑𝑠𝑖𝑛𝑡𝑒𝑟𝑠𝑒𝑐𝑡𝑖𝑜𝑛
𝑒𝑛𝑑𝑃𝑜𝑖𝑛𝑡  ← 𝑠𝑜𝑟𝑡𝑒𝑑𝑅𝑜𝑎𝑑𝑠𝑖𝑛𝑡𝑒𝑟𝑠𝑒𝑐𝑡𝑖𝑜𝑛

𝑠𝑡𝑎𝑟𝑡𝑃𝑜𝑖𝑛𝑡  

  𝑠𝑜𝑟𝑡𝑒𝑑𝑅𝑜𝑎𝑑𝑠𝑖𝑛𝑡𝑒𝑟𝑠𝑒𝑐𝑡𝑖𝑜𝑛
𝑠𝑡𝑎𝑟𝑡𝑃𝑜𝑖𝑛𝑡  ← dummy 

} 

sortedRoads0 ← sortedRoads1 

For ( i = 1 to B – 1) { 

   pt ← firstIntersectionPoint({sortedRoadsi, sortedRoadsi+1}) 

  line1 ← addSubCurve({𝑠𝑜𝑟𝑡𝑒𝑑𝑅𝑜𝑎𝑑𝑠𝑖
𝑠𝑡𝑎𝑟𝑡𝑃𝑜𝑖𝑛𝑡 , pt}) 

  line2 ← addSubCurve({pt, 𝑠𝑜𝑟𝑡𝑒𝑑𝑅𝑜𝑎𝑑𝑠𝑖+1
𝑠𝑡𝑎𝑟𝑡𝑃𝑜𝑖𝑛𝑡 }) 

  sortedRoadsi ← line1 ∪ line2 

} 

End 

 

3.8 Path Planning for Horizontal Vascular Construct Printing 

After obtaining the trajectory centerline curve set {sortedRoadsb} from Algorithm 7, the 

path planning for bioprinting is determined. Since bioprinting is limited to a single 

plane, the radius of the vascular construct must be constant throughout. Moreover, the 

path planning is also limited to the capillary diameter dcapillary, as the parallel horizontal 

sequence of support structure and bio-ink pieces must be exactly differ by dcapillary 

(Figure 3.18). Therefore, mean radius of the model, meanRadius, is calculated and 

converted to a cylindrical quantity vesselRadius by dividing it to elevate (distance 

between layers) amount. As also can be seen from Figure 3.18, the total cylinder 

numbers of support structures and bio-ink‘s at each layer, layerLengthi, is decreasing by 

one at every successive layer for each branch, so that each cylinder can lie through the 

valleys that have been formed by the previous layer.  
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Figure 3.18. The organization of support structures (blue) and cellular aggregates (red) 

with respect to the vessel models radius, in horizontal path planning. 

Using the number of support structure layers at top and bottom and the cellStripe value 

(the number of bio-ink cylinders to mimic natural wall thickness), the total number of 

layers, i=1..I, is determined. Then, at start points of each sortedRoadsb curve, cellStripe 

numbers of six-edged polygons PG = {PGb,cellStripe}b=1..B  are placed, with the radius of 

vesselRadius, as shown for a five branched vascular structure in Figure 3.19.  

For each layer, the curves sortedRoadsb are transported vertically in an order from 

sortedRoads1 to sortedRoadsB to the level of that specific layer. Then each sortedRoadsb 

curves are offset in x-y plane with offset amounts, incrementing with capillary diameter 

dcapillary amount, in clockwise and counterclockwise directions. If those offset curves 

intersects with polygons PGb,cellStripe for that branch, then offset curves are set as 

cylindrical bio-ink pieces CMb. If there is no intersection, then the offset curves are set 
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as cylindrical support structures COb (in Figure 3.19, blue cylinders represents the 

support structures, while red ones are representing bio-ink). 

 

Figure 3.19. Placements of polygons in order to classify support structures and cellular 

aggregates for horizontal path planning. 

At a layer, the support cylinders are printed first, then the bio-ink aggregates are 

deposited along the valleys that support structures are formed as shown in Figure 3.20. 
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Figure 3.20. Five example layers from a five branched vascular construct to express the 

path planning topology for horizontal printing, blue cylinders represents the support 

structures, while red ones are representing bio-ink. 

The pseudo-code of the Algorithm 8 is given below. 

Algorithm 8. Horizontal 3D-Bioprinting Self-Supporting Model 

Input: 

{sortedRoadsb}b=0..B:   generated centerline trajectory curve array 

dcapillary:    diameter of the glass capillaries 

meanRadius:     average radius value of the vascular structure 

support:    the total number of supportive layers (both on top 

and bottom) 

vcapillary:    max. volume of the glass capillaries 

cellStripe:    the number of cylindrical cellular aggregates to 

satisfy desired wall thickness  

elevate:    distance between layers 

Output: 

Finalized vascular model, with support structure 

Path planning for 3D-Bioprinting ( a compatible script file for the 3D-Bioprinter) 

Start  

vesselRadius ← floor(meanRadius / elevate) ‗// radius in terms of cylinders 

Initialize totalLayers ← (2 × (vesselRadius –  1) + 1) + cellStripe × 2 + support 

Initialize baseLength ← vesselRadius + cellStripe + totalLayers 

Initialize j ← 1, k ← 0, i ← 1, layerLengthi ← baseLength 

For ( i = 2 to I) { 

  layerLengthi ← baseLength + 1 –  i 
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} 

For ( i = 1 to I) { 

  For ( k = 0 to B) { 

    pt ← 𝑠𝑜𝑟𝑡𝑒𝑑𝑅𝑜𝑎𝑑𝑠𝑘
𝑠𝑡𝑎𝑟𝑡𝑃𝑜𝑖𝑛𝑡  

    For ( l = 1 to cellStripe) { 

      𝑝𝑔𝑘
𝑙  ← addPolygon({((vesselRadius + 1 –  l) × dcapillary), pt, 6}) 

      PGk ← PGk ∪ 𝑝𝑔𝑘
𝑙  

    } 

    curve ← move({sortedRoadsk, (– (((totalLayers – i) / 2) – i) })z    

    If ( k == 0) Then { 

      For ( j == 1 to ceil(layerLengthi / 2)) { 

        If ((layerLengthi / 2) == INT) Then { 

          offsetAmount ← ( j – 1) ×  dcapillary 

          crv ← offset(curve)offsetAmount   

        } 

        Else { 

          offsetAmount ← ( j – 0.5) ×  dcapillary 

          crv ← offset(curve)offsetAmount   

        }  

        If ( (crv ∩ PGk) == NULL) Then { COk ← COk ∪ crv }  

        If ( (crv ∩ PGk) ≠ NULL) Then { CMk ← CMk ∪ crv }        

      } 

    } 

    Else { 

      For ( j == 1 to floor(layerLengthi / 2)) { 

        If ((layerLengthi / 2) == INT) Then { 

          offsetAmount ← ( j – 1) ×  dcapillary 

          crv ← offset(curve)offsetAmount   

        } 

        Else { 

          offsetAmount ← ( j – 0.5) ×  dcapillary 

          crv ← offset(curve)offsetAmount   

        } 

        If ( (crv ∩ PGk) == NULL) Then { COk ← COk ∪ crv }  

        If ( (crv ∩ PGk) ≠ NULL) Then { CMk ← CMk ∪ crv }        

      } 

    } 

    If ( (layerLengthi == ODD) and (k ≠ 0)) Then { 

      pt ← firstIntersectionPoint({curve,{COk, CMk}})   

     crv ← addSubCurve({curve
startPoint

, pt})  

     If ( (crv ∩ PGk) == NULL) Then { COk ← COk ∪ crv }  

     If ( (crv ∩ PGk) ≠ NULL) Then { CMk ← CMk ∪ crv }        

    } 

  } 

  Connect( { COk, CMk} ) 

  Split( { COk, CMk}, vcapillary ) 

  Send_to_Bioprinter( { COk, CMk} ) 

} 

End 
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Chapter 4  

 

Implementations and Examples  

 

4.1 Material (Hydrogel) & Bio-ink Preparation 

A bio-inert, thermo-reversible hydrogel called NovoGel was used as a support material 

for 3D printing of the developed models. The preparation of 2% (w/v) NovoGel 

(Organovo) was carried out with phosphate buffered saline (PBS: Thermo Scientific 

Hyclone 1X) with Ca
2+

 and Mg
2+

 salts. The solution was mixed with magnetic stirrer 

and it was kept in microwave for 1 minute on high power settings. Then, the solution 

was located in a water bath set at 70°C. NovoGel solution was autoclaved following 

standard liquid sterilization procedures [4]. 

The 3D bioprinting requires a uniformly flat surface. After the sterilizing a 2 % Agarose 

solution with PBS (Thermo Scientific Hyclone 1X), 20 mL agarose solution is 

transferred using a pipette onto a petri dish bottom covering the entire dish surface. In 

compliance with aseptic techniques, the sterilized mold was slowly put down onto the 

agarose inside the petri dish. The mold was carefully taken away from the petri dish 

after the agarose solution became completely gel [4]. During the material preparation, 

adequate sterilization rules are followed against any contamination. 

For Bio-ink preparation [20], immortalized MEF cells were cultured in 15 cm-diameter 

culture dishes. Cells were detached from the culture plate using two different 
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approaches. Cells were either detached using 0.1% trypsin (Biological Industries, Israel) 

for 10 minutes (Exp1), or 2.5 mM EGTA (ethylene glycol-bis(2-aminoethyl ether)-

N,N,N´,N) (Idranal VI, Fluka, Germany) in PBS [20]. Following detachment, trypsin or 

EGTA was neutralized using serum containing medium. Following detachment, cells 

were centrifuged at 200 x g and supernatant was discarded. The cell pellet was 

resuspended to obtain 10 x 10
6
 cells / 20 ml medium incubated at 37°C in 15 ml-conical 

tubes under rotation (PTR-30 Grant-Bio rotator, U.K). Following pelleting, cells were 

resuspended in 1 ml medium and transferred into 1.5 ml Eppendorf tubes and 

centrifuged again (1000 x g). Then, the cell pellets were drawn into capillary tubes. 

Following incubation of cells in capillaries at indicated times in a 50 ml-falcon tube 

containing culture medium inside tissue culture incubator. Following incubation, cells 

inside the capillary tubes were extruded into cylindrical grooves on agarose gel (2% in 

PBS). Then, plates were covered with culture medium and put into the incubator until 

cylindrical bioinks are formed. Cylindrical bioink MEF cells were drawn back into 

capillary tubes and bioprinting was performed using the 3D bio-printer. 

For continuous bioprinting, cells were centrifuged at 200 x g. The pellet was 

resuspended to have 20 x 10
6
 cells / 6.5 ml and transferred into 15 ml-conical tubes. 

Following rotation at 37°C, cells were pelleted and transferred into Eppendorf tubes. 

Cell pellets in 1.5 ml Eppendorf tubes (60 x 10
6
 cells in total) were transferred into 

capillaries by continuous bioprinting [4]. 

4.2 Accuracy Results of Biomimetic Biomodeling Phase 

To highlight the proposed biomimetic biomodeling methods capabilities, three different 

mesh models of blood vessels are used, as shown in Figure 4.1. First two of them are 

three branched and the last one is five branched. According to the visual observations 

from Figure 4.1, the generated parametric smooth surfaces shapes mostly mimic the 

natural vessel geometries of the mesh models.  
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Figure 4.1. Biomodeling results of branched vascular constructs, from mesh models to 

smooth surfaces. 

To conduct quantification analysis of the errors, contour curves are obtained with 

periodical increments for abdominal aorta‘s mesh model and abdominal aorta‘s smooth 

surface model (shown in Figure 4.2).  
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Figure 4.2. Contouring operations for both Mesh and Smooth Surface Model. 

Then minimum, maximum and average difference (distance) of mesh contour curves 

and surface contour curves at all contour layers are found. Those values are the errors of 

biomodeling algorithm for the abdominal aorta model.  The results of the comparisons 

are shown in Table 4.1: 

                  Error 

Contour # 

Min. 

Error (mm) 

Max. 

Error (mm) 

Avg. 

Error (mm) 

Contour 1 0.06 0.91 0.52 

Contour 2 0.045 0.84 0.4 

Contour 3 0.02 0.26 0.11 

Contour 4 0.01 0.29 0.14 

Contour 5 0.05 0.72 0.43 

Contour 6 0.063 0.88 0.65 

Table 4.1. Six countours errors of the biomimetic biomodeling phase for abdominal 

aorta model. 
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Observing the quantification of the errors, as ultimate goal is to generate path planning 

for bioprinting of vascular constructs in a reasonable mimicked way, those errors are 

negligible as abdominal aorta models, which is used in this work, diameter is around 9 

mm. 

Another set of analysis are done for evaluating the surface smoothness of the generated 

smooth surface model. Since the mesh model generated by the segmentation software 

includes a lot of noise and errors, approximation with a smooth surface eliminates 

surface roughness and errors. As shown in Figure 4.3, the continuity of the black and 

white stripes from top to bottom of the aorta‘s smooth surface model indicates smooth 

connection, tangency, and curvature match through the domain of the surface. 

Therefore, the results of smoothness of biomodeling phase are highly satisfying.  

 

Figure 4.3. Smoothness analysis for the mesh model and smooth surface model. 

4.3 Path Planning and Bioprinting Examples 

Various path planning examples and their bioprinting outcomes are listed for each five 

main path planning and topology optimization methods explained before. The proposed 

techniques have been implemented with Rhinoceros 4.0 [30], using Rhino Script and 

Visual Basic programming languages. Observing the shape formations of the bioprinted 

structures, it can be stated that path planning methodologies are highly effective in 

generating biomimetic representatives of the blood vessels. In other words, the results 

show that multicellular aggregates and their support structures can be bioprinted 

biomimetically to form the biomodeled tissues.  
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First, an eight-layered aortic vascular construct piece is biomodeled, with 9 millimeters 

in diameter and 3.5 millimeters long [20], as shown in Figure 4.4, and it is bioprinted, 

using MEF cells as bio-ink (Figure 4.5), layer-by-layer with self-supporting method that 

is proposed in Section 3.2. This method is developed for non-branched vascular 

constructs.  

 

Figure 4.4. The cross sectional path planning view of the aortic model with support 

structures (blue) generated with respect to the self-supporting model and cellular 

aggregates (red). 
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Figure 4.5. 3D printed MEF cell aggregates of originally mimicked aorta model with 

self-supporting path plan. 



63 

 

Three consecutive layers of the branching part of biomimetically biomodeled coronary 

artery (Figure 4.6), is printed using hydrogel and red colored hydrogel pair (replicating 

bio-ink) as shown in Figure 4.7.  

 

Figure 4.6. Path planning of a coronary artery model for three consequent layers, with 

zig-zag method. 

 

Figure 4.7. 3D printed layers of the coronary artery model, with zig-zag method. 

To demonstrate further improvements and its capabilities in printing branched vascular 

structures with self-supporting method, an eight-layered, 3.5 millimeter diameters each 
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and 3.5 millimeters long two- branched structure is modeled (Figure 4.8), and printed 

with hydrogels as supportive structure and MEF cells as bio-ink, as shown in Figure 4.9.  

 

Figure 4.8. The cross sectional path planning view of the branched vascular model 

(grey) with support structures (blue) generated with respect to the self-supporting model 

and cellular aggregates (red). 

 

Figure 4.9. 3D printed MEF cell aggregates of branched vascular model in self-

supporting model. 
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The fourth path planning example group is generated with hybrid method, as discussed 

in Section 3.6; this method is developed to overcome the time issue that exists in self-

supporting method and provides material and time gain for consequent vertical layers, 

as can be observed by the vertical parts of the biomodeled vascular construct and their 

support structure width in Figure 4.10. Even though, hybrid method provides 40% time 

gain over self-supporting method. Moreover, in Figure 4.11, a simple vertical extruded 

surface is modeled with 4 millimeters diameter and 2 centimeters long, and printed with 

hydrogels. 

 

Figure 4.10. The cross sectional path planning view of the branched vascular model 

(grey) with support structures (blue) generated with respect to the hybrid printing model 

and cellular aggregates (red). 
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Figure 4.11. 3D printed non-branched vertical vascular construct with hybrid printing 

method. 

Lastly, a seven-layered ―Y‖ shape two-branched vascular construct is modeled with 1.2 

millimeters radius (Figure 4.12). The horizontal path planning method is used for that 

example, while printing is done with blue colored, red colored and plain hydrogels, as 

shown in Figure 4.13. This approach is suitable for long and highly branched vessels, as 

bioprinting those kind of structures in vertical way results in both material and time 

waste, which is an issue for cell viability. Horizontal printing approach provides nearly 

30% time gain over hybrid method for the same example model. 

 

Figure 4.12. The path planning of a two branched vascular model with support 

structures (blue) generated with respect to the horizontal printing model and cellular 

aggregates (red). 
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Figure 4.13. 3D printed two branched vascular construct with horizontal printing 

method. Colored hydrogels represent the cellular aggregates. 
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Chapter 5  

 

Conclusions and Future Study 

 

Increasing organ failures and cardiovascular diseases in recent years require alternative 

treatment procedures. Tissue engineering is one of the promising alternatives for 

development of biological substitutes.  Especially, with recent advancements in 

bioprinting, 3D tissue constructs can be printed layer-by-layer using live cells and 

biomaterials.  

In this thesis, novel biomodeling and path planning for 3D bioprinting are proposed. 

Scaffold-free macro-vascular structures are biomimetically printed with live cells and 

support biomaterials directly with the developed path planning algorithms. First, 

medical images of the desired blood vessels are segmented and stored as a STL (mesh) 

file to effectively mimic anatomic information of the blood vessel. Then, those mesh 

models are converted into smooth parametric surfaces by developed novel biomodeling 

algorithms. In order to bioprint anatomically correct vascular structures, mechanically 

weak cellular aggregates should be supported perfectly at each layer. Therefore, several 

support structure generation algorithms are also developed, namely zig-zag, self-

supporting, hybrid and vertical bioprinting. Those methodologies use directly the 

biomimetically biomodeled surface representation of the desired blood vessels. 

However, as the horizontal boundaries and the area that the model occupies cannot be 

controlled by biomimetic biomodeling, material use and therefore the printing time 
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increases for each layer. In order to favor cell viability, the total printing time needs to 

be optimized to minimum level. Moreover, the generated path plans may not guarantee 

cell contact between layers, as the slopes of the biomodeled structures or the separation 

angles of branches might exceed the maximum allowable slope for cell fusion between 

vertical layers. To overcome those drawbacks two new path planning methodologies are 

developed while preserving the original branching topology, separation angles and 

length information of the desired blood vessel. The self-supporting and hybrid methods 

are combined to bioprint cellular aggregates in vertical direction, by orienting radial 

group of cellular aggregates on top of each other for each layer. The motivation of this 

vertical bioprinting approach is that vascular cells lies in radial direction to form the 

natural blood vessels with ring like cellular structures. The second path planning 

methodology aims to generate horizontal path planning based on native vessels 

branching topology and length information. This approach is suitable for long and 

highly branched vessels. Overall, the main aim of these algorithms is to make bioprinted 

cellular aggregates conserve their 3D forms according to the planned model, while 

providing sufficient conditions for cell fusion. The bioprinting results with various size, 

diameter and branched vascular models show that multicellular aggregates as well as 

their support structures can be bioprinted layer-by-layer to form anatomically correct 

substitutes of the biomodeled tissues.  

After the bioprinting process, the printed structure needs to be matured in an incubator 

with an appropriate medium up to 7-10 days. Then, the structure is carefully separated 

and cleaned from its supportive hydrogel walls and then placed into a bioreactor. The 

transfer to bioreactor enables printed cells of the vessel construct to fuse and further 

maturation with the flow medium. This engineered bioreactor mimics the biologically 

active environment for the bioprinted blood vessel and improves its mechanical strength 

over time. Moreover, it increases the burst pressure of the bioengineered vessel while 

providing satisfactory suturability level. For the future study, a bioreactor can be 

developed for further maturation of the printed vacular constructs. A continuous 

deposition bioprinter can also be developed to bioprint all the support biomaterials and 

cellular aggregates once at a layer. Therefore, with this enhancement, bioprinting of 

complex tissues and even organs could be possible with the proposed path planning 

algorithms.  
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