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Atılgan for their helpful comments about my thesis.

All of my other Sabancı University Professors are also deserving of my gratitude for
everything they have ever taught me. I am also thankful to my classmates and officemates
for their friendship and complimentary assistances in any topic.

Finally, my family and my fiancée deserve infinite thanks for their encouragement and
endless support throughout my education.

iii



c© Danial Esmaeili Aliabadi 2016
Sabancı University

All Rights Reserved
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Özet

Serbestleştirilmiş elektrik piyasaları üreticiler arasındaki rekabet sayesinde kullanıcılara
daha uygun fiyattan elektrik ulaştırabilmek için oluşturulmuştur. Her ne kadar bu pazar
modelinin bu amaca hizmet etmesi beklense de, en eski serbest elektrik piyasaları bile rek-
abeti tehdit eden unsurlara maruz kalmaktadır. Elektrik pazarını idare etmekle sorumlu
olan bağımsız sistem operatörü, kullanıcılara mümkün olan en düşük fiyattan elektrik
sağlamayı hedeflerken rekabet eksikliği fiyatların yükselmesine neden olabilir. Pazardaki
rekabet seviyesini etkilemesi beklenen ve birarada etkilerini göz önünde bulundurduğumuz
üç faktör bağımsız sistem operatörünün stratejik seçimlerinden biri olan pazar-kapatma
mekanizması, elektrik üretici firmaların stratejik fiyat verme politikaları ve iletim ağının
özellikleri olarak belirlenmiştir.

Çalışmamızda bağımsız sistem operatörü ve üreticileri biraraya getiren pazar-kapatma
mekanizmasını oyun kuramı yaklaşımıyla ele alarak hem matematiksel modelleme yaklaşımı
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hem de ajan-temelli bir simülasyon modeli kullanıyoruz. Serbest elektrik pazarlarını
inceleyen yazın güç üretici firmaların davranışlarını iletim ağını ve pazar katılımcıları
üzerindeki etkilerini göz önünde bulundurmadan incelemişlerdir. Zira, iletim ağının mod-
ellere dahil edilmesi oyun-kuramı temelli yaklaşımları içinden çıkılmaz bir hale getire-
bilir. Her iki modelleme yaklaşımımızda da iletim ağını ve etkilerini göz önüne almakta
iken, çalışmamızı gün-öncesi piyasasının incelenmesi ile sınırlandırmayı tercih ediyoruz.

Oyun kuramı temelli anlayış üreticilerin kartelleşmeye yönelik davranışlar içine girmelerini
neden olacak koşulların anlaşılmasında kullanılıyor. Bu koşullar, bağımsız sistem op-
eratörü ve üreticilerinin birbirleriyle çelişen amaç fonksiyonlarını barındıran iki seviyeli
bir optimizasyon problemi içerisine yerleştiriliyor. Çok amaçlı iki seviyeli problemi
çözmek için bir algoritma geliştiriyoruz, ve yeterli şartlar oluştuğunda üreticilerin opti-
mal davranışlarının kartelleşmeye yönelik olduğunu gösterebiliyoruz.

Güç üretici firmaların stratejik davranışları ajan temelli bir simülasyon modeli kul-
lanılarak farklı market kapatma mekanizmaları altında inceleniyor. Hem fiyatlandırma
kurallarının hem de güç paylaşım politikalarının güç üretici firmaların davranışlarını etk-
ileyebildikleri gözlemlenmektedir. Teklif-kadar-öde fiyatlandırma politikasının rasgele
paylaşım politikasıyla birlikte kullanılması eş fiyatlandırma politikasının eşit paylaştırma
politikasıyla birlikte kullanılmasına göre (fiyatların daha düşük olmasını sağlayarak) kamu
yararına olduğu ortaya çıkmıştır. Geniş bir aralıkta kullanılan öğrenme modeli parame-
trelerinin farklı vakalar üzerinde kurgulandığı kapsamlı bir simülasyon deney sonuçları
sunulmaktadır.
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Abstract

As a result of liberalization, deregulated electricity markets were formed to provide af-
fordable electricity for consumers through promoting competition. Although the new
market is expected to serve this purpose, even the earliest deregulated electricity mar-
kets are prone to threats that may disrupt the competition. While the independent system
operator, responsible for administering the electricity markets, aims to provide the con-
sumer with the lowest possible electricity price, lack of competition may increase prices.
We consider the effect of three major factors hand-in-hand on that may affect the level
of competition in the market: the independent system operator’s market-clearing mech-
anism as a strategic choice, strategic bidding behavior of generation companies and the
transmission network.
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We use both a mathematical modeling approach and an agent-based simulation model
with a game-theoretic understanding of the market clearance mechanism involving the
independent system operator and the power generation companies (as the players). The
literature on deregulated electricity markets mostly focus on analyzing the behavior of
power generating companies without considering the transmission network and its im-
pact on the players’ behavior since including transmission network makes game-theoretic
approaches intractable. While we consider the transmission grid in both modeling ap-
proaches, we confine the boundary of our analysis to the day-ahead market.

The game-theoretic understanding assists in characterizing a set of sufficient condi-
tions for the generators to engage in a collusive behavior. These conditions are embedded
into a bi-level optimization problem where the objectives of the independent systems op-
erator are conflicting with those of the generators. We develop an algorithm to solve the
multi-objective bi-level problem and we show that the generators’ optimal behavior are
collusive when sufficient conditions exist.

We investigate the strategic behavior of power generation companies under different
market-clearing mechanisms by an agent-based simulation model. We observe that both
pricing rules and rationing policies can alter the behavior of generation companies. We
find that pay-as-bid pricing rule together with random dispatch policy improves social
welfare more than uniform pricing with equal dispatch policy. Finally, we investigate the
effects of risk attitude and capacity withholding. We present a complete set of results of
simulation experiments using various cases for a wide range of learning model parameters.
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Chapter 1

Introduction

1.1 Electricity Market

Unlike other commodities, electricity can not be stored easily; therefore, it should be
instantly consumed when it is generated. This unique feature brings technical and eco-
nomical complexity to the trading mechanism. Electricity industry (almost) everywhere
started with vertically integrated monopolies that were either state-owned or privately-
owned. Poor performance of these regulated monopolies as a result of high operating
costs and construction cost leads to high retail prices; the low performance together with
development of more efficient generation technologies stimulate changes that would re-
duce electricity costs and retail prices ([54, 55]).

England and Wales’s electricity market was among the first in the history that be-
come deregulated in early 1990s after Chile restructured its electricity market in 1982.
Shortly after that, Norway adopted a pool scheme forming the Nord Pool, which after-
wards comprise Sweden, Finland and Denmark. This liberalization process has acceler-
ated so rapidly that today most of the produced electricity is traded in deregulated markets.

The primal goal of deregulated electricity markets is to attain affordable electricity
prices through a competitive market which leads to maximum social welfare. However,
designing a deregulated market with perfect competition is extremely challenging. Level
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of competition and price volatility are affected by several factors including demand elas-
ticity, market share of generation companies and their strategic behavior. It is also known
that market power1 and strategic behavior of suppliers may cause the market to divert
from a perfectly competitive market. Besides, as studied by Harvey and Hogan [49] and
Johnsen et al. [53], lack of transmission capacity (congestion) in the network and the grid
structure also interferes with competition while affecting the strategic market behavior of
the generators.

In fact, research has shown that some electricity markets are far from being compet-
itive and act more like oligopolies. In David and Wen [25] the reasons for electricity
markets to retain an oligopoly rather than a perfect competition are reported as

• limited number of generators,

• transmission constraints and congestion that isolates certain consumers from some
generators,

• transmission losses that discourage consumers from distant producers, and

• entry barriers for new competitors, e.g. capital investment.

The oligopolistic nature of electricity market along with repetitive interaction of par-
ticipants facilitates collusion. Collusion is an agreement between two or more parties to
limit open competition. Explicit collusion in electricity market is forbidden but some-
times, it exists even in the absence of explicit agreement; then, it is called tacit collusion.
To attain a competitive market, collusion among competitors should be mitigated. In
general, it is not an easy task for the regulator to identify collusive behavior. For exam-
ple, tacit collusion, as a major cause in increasing consumer prices and decreasing level of
competition, is hard to recognize because there is no known agreement between suppliers.

By means of simulation-based models, research has shown that repetitive bargaining
may result in tacit collusion [1, 12, 21, 99]. In real-life electricity markets, Guan et al.
[46], Sweeting [98], and Fabra and Toro [35] have shown that generation companies might

1An ability which enables GenCos to maintain prices profitably above competitive levels for a significant
period of time [81].
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be engaged in tacit collusion in decentralized electricity markets of California, England
and Wales, and Spain, respectively. The last incident was reported in the UK again when
the big six energy suppliers which used to produce about 70% of electricity were accused
of preventing effective competition. The parliament was about to freeze the price of elec-
tricity to avoid tacit collusion exactly after 15 years of opening the deregulated market
[75].

Nowadays, power delivery can be regarded as consisting of all services, including
generation, transmission, distribution and trading. Generation and trading layers consider
electricity as a commodity, whereas transmission and distribution layers focus on provid-
ing electricity services.

1.1.1 Generation Companies

Power Generation Companies (GenCos) are the building blocks of any electricity market.
GenCos produce electricity and sell the produced electricity into the market. The strategic
behavior of GenCos is major determinant in identifying their market position. There
are several factors which can be considered as an influential factor on GenCos’ strategic
behavior.

• One major factor is the type of technology they utilize. For example, a wind power
generation company has lower production cost but it experiences higher risk due
to stochastic nature of wind and higher setup cost per MW of capacity than a coal
plant.

• The size of the company also matters; smaller producers are more sensitive towards
risk than large ones because risk will have more intense effect on their business.

Cost of production and production capacity characterize GenCos bidding strategies.
A GenCo determines its bids by looking into its production cost. In general, bids are
higher than production cost (except for some rare case that government gives subsidy to a
public plant to keep the price of electricity low for the end consumers). In the literature,
production cost is mostly deterministic and usually considered as either quadratic or linear
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function of the amount of generated electricity. Generation capacity is also important
since GenCos may hold their available production capacity to keep the electricity price
high artificially and exercise their market power. In this study, the production cost is
considered as a deterministic linear function of produced electricity.

1.1.2 Transmission Network

Although generation industry is deregulated in today’s electricity markets, transmission
is still left regulated [57]. GenCos’ competition level and transmission grid structure are
interrelated. Transmission bottlenecks can result in locational market power and provide
opportunity for generation companies to exercise market power [68]. Thus, the regulator
should design the transmission system such that it eliminates market power potentials and
aids competition [73, 115].

In spite of abundant transmission capacity even in developed countries such as Ger-
many, the responsible regulatory authority expects major congestion in the electricity
transmission grid due to structural changes on the production side [105]. Therefore, con-
sidering transmission network is becoming indispensable part of studies.

In order to depict different players in the electricity market and their interrelations,
we resort to a network representation where nodes represent the players and the arcs
between nodes correspond to transmission lines. This network representation may also
be considered as an abstract model of the transmission grid. In this network, a node with
supply of electricity represents a GenCo while a node with no supply but demand for
electricity represents a demand center which may also be referred to as a Load-Serving
Entity (LSE2) transmitting or distributing the electrical power to end-users (residential or
commercial) or to other LSEs.

The transmission line could afford to transmit only up to a certain level of electricity
due to some physical restrictions such as a thermal constraint. The power network is said
to be “congested” if a fully loaded transmission line cannot accommodate requests or ex-

2A Load-Serving Entity (LSE) is an electric utility, transmitting utility or Federal power marketing
agency that has an obligation under Federal, State, or local law or under long-term contracts to provide
electrical power to end-use (residential or commercial) consumers or to other LSEs with end-use consumers.
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pectations for further use. Network congestion is managed either by increasing domestic
supply in congested nodes or by allowing different prices at different nodes when conges-
tion is experienced. The latter approach allows for an efficient management of congestion,
since higher price at a node will decrease demand and resolve congestion.

1.1.3 Trading Mechanism

Electricity can be traded either via contracts or through centralized trading. With bilateral
contracts, two participants (one seller and one buyer) negotiate and agree on the terms
of contracts. Conversely, in centralized trading all offers from different participants (all
sellers and buyers) are collected at one place and the regulator decides on the terms of
contracts.

In deregulated electricity markets, Independent System Operator (ISO) plays the reg-
ulator’s role to ensure the independent operational control of the transmission grid and
assist competition among all the individual market participants. The ISO should be un-
biased and independent to operate the market efficiently. The ISO is also responsible of
managing congestion in the transmission grid.

Pool-based markets are considered in the class of centralized trading. A pool-based
market is more effective than a market based on bilateral contracts because tracking agree-
ments between pairs of traders is not necessary and this gives incentives to small con-
sumers to have an active part in the electricity market. In pool-based market, the supply
side bids are active while the demand side is approximated based on historical informa-
tion. Pool markets are widely used in the United States. Unlike pool-based market model,
exchange model utilizes both active supply and active demand; therefore, buyers and sell-
ers can place bids in the market simultaneously. Exchange model is more common in
Europe.

Day-ahead market is an example of centralized markets. There are two main ap-
proaches to day-ahead market design: USA pool models and European exchange models.
Day-ahead market has special importance among all trading floors since it clears the mar-
ket for the next day and the price of electricity in day-ahead market is used as a reference
in other trading floors such as real-time and forward markets [28]. The focus of this study
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is solely on the day-ahead pool-based electricity market.
The ISO runs the day-ahead market hourly to determine which GenCo should produce

how much electricity and the price. In the day-ahead market’s auction, GenCos compete
for the next day supply of an inelastic load demand. Each GenCo bids the minimum
acceptable unit price of electricity for itself. Based on the predetermined market-clearing
mechanism including a pricing rule, the ISO specifies the unit price of electricity (market
clearance price) and each GenCo’s assigned power.

1.1.4 Market-Clearing Mechanism

The most common pricing rules in electricity market literature are uniform and pay-as-bid
pricing (see Cramton [22]). With uniform pricing, all GenCos with winning bids are paid
the market-clearing price, whereas with pay-as-bid pricing, each GenCo is paid at its own
bid.

These two pricing rules, in their original forms, fail to consider the physical limitations
of the transmission lines. Based on uniform pricing, a more realistic rule, AC Optimal
Power Flow (OPF) [89], has been developed that takes into account transmission line
constraints. Researchers often consider a simplified version of AC-OPF, known as DC-
OPF which is more tractable and common [19, 96]. In DC-OPF, each node in the grid
may have a different price due to physical constraints of transmission lines, and GenCos
in the same node are paid the same price.

An alternative to nodal pricing is zonal pricing, in which nodes are grouped into zones
bounded by potential constraint interfaces and each zone has same price. This method
encourages generators to be located within high-priced zones and focuses on relieving
flow constraints in the congested interfaces between zones. In such a market, the bound-
aries must be updated from time to time to accommodate the generation and transmission
expansion [83].

Even though nodal pricing is the efficient way to account for transmission constraints,
most electricity markets still apply a uniform pricing rule in Europe as congestion is less
of a problem [105]. However, the ISO has to take into account all network restrictions. If
the obtained market solution is infeasible, re-dispatching becomes inevitable in order to
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avoid uniform pricing errors [43]. Therefore, taking uniform and pay-as-bid pricing rules
into account is critical not only for academics but also for practitioners. In this section,
we explain each pricing rule in details.

1.1.4.1 Without Transmission Network

In the day-ahead market, the ISO clears the bids sequentially for each hour of the next
day through an auction mechanism. For any hour, each GenCo (GenCo-i) participates in
the auction with its maximum capacity (Pmax

i ) and submits a minimum acceptable price
(bi) from a discrete set of available bids (bi ∈ Bi) to the ISO. Based on the predetermined
pricing rule, the ISO determines electricity price (λ) and the power to be dispatched by
each GenCo (Pi ≤ Pmax

i ). We now discuss different market-clearing mechanisms with
respect to pricing rules and power dispatch (rationing) policies.

The combination of price and production quantity submitted to the ISO by a GenCo
is referred to as the energy block of that GenCo. As illustrated in Figure 1.1, the ISO
sorts received blocks in an increasing order of their prices (b(i) ≤ b(i+1)), and accepts pro-
duction offers starting from the cheapest block (b(1) × Pmax

(1) ) until demand is completely
satisfied [80]. This procedure is known as the merit order.

Under uniform pricing, the ISO determines electricity price (λ) as that of the last
accepted block offer. Winning GenCos, whose price bids were less than or equal to the
price accepted by the ISO, are paid at λ for a unit of electricity. Since they are gaining
no less than what they have asked in their bids, these GenCos accept the cleared price.
Turkey is one of many countries in the world that employs uniform pricing rule [27].

Figure 1.1 depicts energy block offers accepted under uniform pricing by the merit or-
der procedure. Blue shaded energy blocks are those of the winning GenCos. The partially
shaded block determines the price while only part of the capacity of the corresponding
GenCo is accepted by the ISO.

In this example, clearing price is determined as b(3) because D ≥ Pmax
(1) + Pmax

(2) and
D ≤ Pmax

(1) + Pmax
(2) + Pmax

(3) . Thus, all winning GenCos are paid λ = b(3). As a result,
payoff for GenCo-1 is r1 = Pmax

1 (λ − c1), for GenCo-2 r2 = Pmax
2 (λ − c2), and for

GenCo-3 r3 = (D − Pmax
(1) − Pmax

(2) )(λ − c3). Here, ci stands for the generation cost of
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GenCo-i.
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Figure 1.1: Supply curve from GenCos’ bids

Different from uniform pricing, in pay-as-bid pricing rule, each GenCo is paid exactly
at its own bid, but not more. Pay-as-bid pricing rule is used in Iran’s electricity market[10,
41]. According to the example in Figure 1.1, the GenCo with the least expensive block
will receive a price of b(1) instead of λ for Pmax

(1) unit of electricity. The next block will
receive b(2) for Pmax

(2) . Note that the last accepted block will receive λ for the accepted
capacity under both uniform and pay-as-bid pricing rules.

An issue arises when more than one GenCo bids the price λ: How to assign the re-
maining demand? As Figure 1.2 illustrates with two such GenCos (G1 and G2), two
rationing policies can be used:

1. Random rationing: All remaining demand is assigned to one of these GenCos, cho-
sen randomly. This is illustrated in the left plot of Figure 1.2, where GenCo G2 was
chosen.

2. Equal rationing: Remaining demand is shared equally between these GenCos. This
is illustrated in the right plot of Figure 1.2.
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Figure 1.2: Random rationing policy (left) versus Equal rationing policy (right)

1.1.4.2 With Transmission Network

As we mentioned earlier, uniform and pay-as-bid pricing do not take the transmission
network structure into consideration. Even though uniform pricing is the most com-
mon method to set prices in electricity markets, it may lead to infeasible solutions due
to network constraints [105]. Therefore in a constrained network, a viable pricing method
should also provide some economic signal to reflect the charge due to the physical con-
straints. This is what is done in the “Nodal Pricing” approach. Nodal pricing and Loca-
tional Marginal Pricing (LMP) can be used interchangeably.

The ISO handles physical constraints by considering congestion cost in calculating
price of electricity at different locations. Nodal price at node-i (λi) corresponds to the
minimum cost of fulfilling the demand for one additional unit of power (MWh) at that
particular location. Transmission grid congestion is managed by the inclusion of con-
gestion components, marginal generation cost, and cost of marginal losses in λs. Hence
without loss of generality, we can say that nodal pricing is an extension of uniform pricing
when we have more than one node.

In order to implement nodal pricing, an ISO may employ two methods: AC-OPF and
DC-OPF. In practice, AC-OPF problems are typically approximated by more tractable
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DC-OPF problems that focus exclusively on real power constraints in the linearized form.
DC-OPF problem is solved by ISO in order to maximize customers’ welfare (mini-

mizing cost of in demand electricity) and determines each GenCo’s production, voltage
angle3, and λi on each node. For the sake of numerical stability, it is customary to consider
all parameters and data in per unit (pu) terms so that parameters and decision variables
become dimensionless. The solution is then converted back into International System (SI)
units. Sun et al. [96] show how conversion in both ways are possible. In this respect, a
node is selected as the reference so that the voltage angles of the other nodes would be
calculated based on voltage angle of the reference node which is zero (θreference = 0)4.

The DC-OPF problem formulation is given as follows:

MinimizePi,θi z =
∑
i

biPi (1.1)

subject to Pi −Di =
∑
ij∈BR

yij (θi − θj) (λi) ∀i (1.2)

Pi ≤ Pmax
i (φhighi ) ∀i (1.3)

Pi ≥ 0 (φlowi ) ∀i (1.4)

|yij (θi − θj) | ≤ Fmax
ij ∀ij ∈ BR (1.5)

Here, Pi denotes the power injected by GenCo-i (in pu), Pmax
i the maximum capacity of

GenCo-i (in pu), bi the bid that GenCo-i submits to the ISO, Di demand at node i (in pu),
θi the voltage angle at node i (in pu),BR set of all available distinct transmission lines, yij
the negative of the susceptance of the line (1 / reactance of the line) connecting node i to
node j (in pu), and Fmax

ij the maximum flow allowed in the transmission line connecting
node i to node j (in pu).

Eq.(1.1) is the ISO’s objective function which minimizes the cost of produced elec-
tricity. Eq.(1.2) is the flow balance constraint which ensures that extra power in each node
will flow into the transmission lines to the connected nodes. Eq.(1.3) controls the maxi-

3Phase angle between two voltages which exist at the ends of a transmission line
4Without loss of generality, hereafter, we assume that base voltage (V0) is 10 kVs and base apparent

power (S0) is 100 MVAs, therefore, base impedance is 1(ohms)
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mum capacity of each GenCo and Eq.(1.5) limits the maximum allowed flow in each line
of the transmission grid. The variable provided in the parentheses next to each equation
denotes the dual variable of the corresponding constraint. The resulting λi yields the price
of one unit of electricity at node i. In the presented formulation, the ISO does not consider
any security criteria 5.

In this thesis, a pool-based day-ahead market is considered when ISO exercises DC-
OPF, uniform, and pay-as-bid pricing rules to study each pricing rule’s impact on the
strategic bidding behavior of GenCos, as well as market performance.

1.2 Modeling of Electricity Markets

In the literature, three different market modeling trends are followed based on differ-
ent research questions: optimization models, equilibrium models and simulation models.
Optimization models can either focus on profit maximization of single GenCo or wel-
fare maximization, while equilibrium models represent the overall market behavior taking
into consideration competition among all participants. Perfect competition relates to price
taking behavior whereas imperfect competition requires some kind of strategic company
behavior ranging from classic Bertrand and Cournot competition to mathematically more
demanding models such as Supply Function Equilibria (SFE) and Conjectural Models
(CV). Simulation models are alternative to equilibrium models when the problem under
consideration is too complex to be addressed within a formal equilibrium framework.

One advantage of analytical methods in equilibrium models is the straightforward
derivation of equilibrium point under the conditions that each market participant tries to
maximize its own profit. On the other hand, the expected outcomes of these models are
not implementable and not necessarily observed in practice due to strict simplification
assumptions in the analytical models [24]. One of these simplifying assumptions is asso-
ciated with the length and the characterization of the considered time period for modeling.
Most current approaches, e.g., Cournot modeling of players ([86], [59]), conjectural vari-

5Security criteria ensure that in the presence of problem to one or a collection of generators, other
GenCos can collectively support system’s demand.
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ation ([87], [29]) and Equilibrium Problem with Equilibrium Constraints (EPEC) [88] are
limited to observing the system during a fixed length and a very short time horizon. These
models implicitly assume that behavior of GenCos do not change over time. In addi-
tion, analytical methods mostly do not consider the physical limitations of transmission
lines ([86, 87, 88, 93]); Ruiz et al. [88] admit that representing the network with such
limitations makes their proposed analytical approach intractable.

On the other hand, Simulation models are capable of capturing the dynamic behavior
of the GenCos and other participants in the real-life market. If a GenCo changes its
bidding strategy, the other GenCos may detect the new behavior after several failures,
and will eventually adapt with the new environment and conditions. Many studies have
investigated agent-based modeling of electricity markets ([94, 13, 105]). Recently, Li
and Shi [66] claim that Agent-based modeling and simulation is a viable approach which
provide realistic insights for the complex interactions among various market players.

In the following subsections, we describe each modeling approach briefly and enu-
merate their advantages and disadvantages.

1.2.1 Single Firm Optimization Models

With optimization models for a single firm, research mostly concentrates on the maxi-
mization of profit. However, the electricity price which is necessary to calculate the profit
can be considered as either fixed and determined by the regulator from outside or a func-
tion of the demand.

1.2.1.1 Exogenous Price

The price clearing process is assumed to be independent of the GenCo’s decisions.

• Deterministic price:
Gross and Finlay [45]: The best offer of each generation unit consists of bidding its
marginal cost.

• Stochastic price:
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1. Rajaraman et al. [84] describe and solve the self-commitment problem of a
generation firm in the presence of exogenous price uncertainty. The schedul-
ing problem for each generating unit can be treated independently. The prob-
lem is solved using backward Dynamic Programming.

2. Fleten et al. ([37], [38]) address the medium-term risk management prob-
lem of GenCos that participate in the Nord Pool. They propose a stochastic
programming model coordinating physical generation resources and hedging
through the forward market. They model risk aversion by means of penalizing
risk.

3. Unger [101] improves Fleten et al. [38] by explicitly measuring conditional
value at risk (CVarR).

4. Pereira et al. [82] used benders decomposition to break the resulting large-
scale problem into financial master problem and an operational sub-problem
and both are solved by using Linear Programming (LP).

1.2.1.2 Price-demand Function

In the microeconomic theory, Varian [103] in 1992 shows that the behavior of a profit
seeker firm when a given demand curve and supply curve of the rest of competitors taken
into consideration is described by leader-in-price model.

• Deterministic:

1. Garcı́a et al. [40], addressed short-term schedule of thermal units in order
to supply the electricity demand when linear residual-demand function is as-
sumed. When market revenue is a quadratic function of firm’s total output,
they proposed a piecewise linearization procedure which enabled them to use
Mixed Integer Linear Programming (MILP).

2. Baı́llo et al. [6] develop a MILP-based model focusing on the problem of
one firm with significant hydro-resources. Their model supports non-concave
market revenue functions.
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• Stochastic:

1. Anderson and Philpott [2] do not formulate the problem of optimal production
but rather the problem of constructing the optimal offer curve of a generation
firm. This approach constitutes an interesting starting point for the develop-
ment of new models that convert the offer curve into a profitable risk hedging
mechanism against short-term uncertainties in the marketplace.

2. Baillo [5] advances the Anderson and Philpott [2] approach by incorporating
a detailed modeling of the generating system which implies that offer curves
of different hours are not independent.

1.2.2 Multiple-Firm Models (Strategic Interaction)

Several equilibrium models have been proposed to investigate markets that exhibit oligopolis-
tic behavior, such as an emerging deregulated electricity market, which vary in terms
of competition and market assumptions. Some of the most popular models include the
Cournot, Bertrand, and Supply Function competition, while other approaches, such as the
Stackelberg competition and the conjectural variations method, have also been used for
electricity market analysis.

1.2.2.1 Cournot Competition

In Cournot competition, GenCos compete in quantity strategies and price will be specified
through inverse price-demand function.

Pros:

• It allows a realistic modelling of electricity markets with a low level of computa-
tional complexity.

• It is well established in the microeconomics literature to analyze electricity markets;
Cournot models are often encountered in the technical literature as they adequately
represent producer behavior in real-world markets.
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Cons:

• Each GenCo assumes that their production can affect the market clearing price; but
it is not reflected on other players’ production.

• GenCos have common knowledge about each other’s cost function.

• The model is highly sensitive to the demand elasticity. Under the Cournot approach,
GenCos’ strategies are expressed in terms of quantities, but not in terms of offer
curves. Hence, equilibrium prices are determined only by the demand function be-
ing therefore highly sensitive to demand representation and usually higher to those
observed in reality.

1.2.2.2 Bertrand Competition

In the Bertrand model, prices are considered as strategic decision variables, instead of
quantities. Bertrand model assumes that all GenCos can produce as much output as re-
quired to meet demand which is not applicable in every electricity market. In addition, a
supplier cannot bid a lower price with the aim of increasing its output, since the marginal
cost of generation is increasing as the output increases.

1.2.2.3 Supply function equilibrium (SFE)

Supply-curve bidding allows a GenCo to adapt better to changing conditions, such as
electricity market. At the equilibrium point of the supply function game each player
determines its optimum supply-curve bid that maximizes its profit based on how the other
players will adjust their output to changes in market prices, anticipating their strategies.
Klemperer and Meyer [60] have shown that price and quantity in any SFE are bounded by
the Cournot and Bertrand outcomes.

Some studies show that there is a unique symmetric linear SFE for a market with linear
demand and identical marginal cost curves if the range of demand is unbounded. If de-
mand is bounded, as in real electricity markets where the load demand cannot be infinite,
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a continuum of equilibria exists, ranging from the highest prices of Cournot solutions to
perfectly-competitive prices.

Pros:

• SFE models provide a realistic representation of electricity markets through gaming
in both price and quantity.

• The SFE prices are not very sensitive to their demand-dependency as in Cournot
competition, and the price predictions are more reliable.

• In contrast to the Cournot models, the SFE model offers the possibility of develop-
ing insights into the bidding behavior.

Cons:

• They are less advantageous in terms of computational complexity; SFE models turn
out to be a set of differential equations (while Cournot models are a set of algebraic
equations).

• In the presence of multiple SFE solutions, it is not clear which one is more qualified
to represent GenCos’ strategic behavior.

• Except for very simple versions of the SFE model, existence and uniqueness of a
solution are very difficult to prove.

• Closed-form expressions of a solution are rarely obtained.

• Transmission constraints are only considered in extremely simplified versions of
the SFE.

1.2.2.4 Conjectural Variation (CV)

The conjectural variation approach is used to estimate the strategic behavior of market
players maximizing their profits while taking into account the reactions of their rivals
with different levels of competition.
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It can be shown that traditional market structures and game theoretical bidding strate-
gies, such as perfect competition, Cournot, Stackelberg and monopoly, are special cases
in the CV strategies and different Nash equilibria might be obtained corresponding to
different CVs held by individual GenCo.

Pros:

• The CV models, like SFE models, overcome the demand elasticity issue in the
Cournot equilibrium.

• The CV parameters allow representing different levels of competition in the market.

Cons:

• There are some arguments against CV models concerning the consistency of the
conjectures and the possibility of multiple equilibria.

• Knowing all conjectural variation parameters of all rivals are essential which makes
this method very hard to utilize in real electricity markets due to the number of
players.

Ruiz et al. [88] find it intractable to represent the transmission network in the CV mod-
els and ask for a numerical approach instead of an analytical one if the network structure
needs to be described.

1.2.2.5 Stackelberg and Multi-leader-follower Games

The Stackelberg model has been proposed in 1934 to investigate non-cooperative games.
In Stackelberg game, a leader dominating the market acts strategically while followers
observe leader’s choice and act accordingly. An extension of the Stackelberg game is the
multi-leader-follower game, in which two or more leaders act strategically and compete
with each other. In the case of the electricity pool market, the ISO is considered to be a
follower while the GenCos are represented by multiple leaders.

Microeconomics suggests that the Stackelberg equilibrium may fit better than other
oligopolistic models with the long-term investment-decision problem due to its sequential
decision-making process.
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The Stackelberg model of Ventosa et al. [106] is developed with a Mathematical Pro-
gramming Equilibrium Constraints (MPEC) formulation due to the fact that there is only
one leader firm. In contrast, the Stackelberg-based model of Murphy and Murphy and
Smeers [76] is an Equilibrium Problem with Equilibrium Constraints (EPEC) because
multiple leaders may exist. Chen et al. [18] investigate the ability of the largest producer
in an electricity market to manipulate both the electricity and emission allowances mar-
kets to its advantage. They model their problem as a Stackelberg games and solve it by
MPEC. Leyffer and Munson [65] describe practical approaches for solving EPECs and
apply these techniques to several medium-sized multi-leader-follower game models.

1.2.3 Simulation Models

Simulation models are alternative to equilibrium models when the problem under consid-
eration is too complex to be addressed within a formal equilibrium framework. Simulation
models typically represent each agent’s strategic decision dynamics by a set of sequen-
tial rules that can range from scheduling generation units to constructing offer curves that
include a reaction to previous offers submitted by competitors. The major advantage of
a simulation approach lies in the flexibility it provides to implement almost any kind of
strategic behavior.

1.2.3.1 Equilibrium Models

In many cases, simulation models are closely related to one of the families of equilibrium
models. For example, when in a simulation model GenCos are assumed to take their
decisions in the form of quantities, the Cournot equilibrium model may be used to support
the adequacy of this approach. In this class of simulation models, market players follow
certain rules without learning, and the resulting equilibrium under new set of conditions
is observed. Song et al. [93] introduce a simulation model when GenCos try to find the
CV parameters by following certain formula and bidding optimally by using CV method.
In each iteration, GenCos try to minimize their perceptual errors about other rivals’ levels
of competition.
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1.2.3.2 Agent-based models

In the agent-based models, modeling intelligence is necessary to some extent as the agents
should be able to make decisions and act autonomous. In the real-world, GenCos need to
learn in order to survive in the unknown market. Learning is helping GenCos to acquire
and reinforce useful information to exhibit better performance in the future. Learning in
the electricity market is important since the act of bidding and participating in the market
is repetitive.

In current economic theory, the problem of learning is short-circuited by the impo-
sition of a rational expectations assumption [100]. To the greatest extent, Game-based
models suffer from absence of (dynamic) learning modelling for GenCos which can lead
to inaccuracy in general conclusions [108]. However, Agent-based modelling provides
enough flexibility to study effect of learning on strategic behavior of GenCos.

In the literature of electricity markets, different methodologies have been used to sim-
ulate learning; but researchers have put more emphasis on the reinforcement learning,
particularly Q-learning. Q-learning is a specific type of reinforcement learning which
can be used to find an optimal action-selection policy for a finite Markov decision pro-
cess. An acceptable performance in accuracy together with ease of implementation and
convergence, makes Q-learning a plausible choice for researchers.

Krause et al. ([62, 63]) investigate strategic behavior of GenCos using a generic Q-
learning framework. They compare the resulting equilibrium with Nash equilibrium and
conclude that existence of several Nash equilibria can effect cognitive ability of Gen-
Cos. Krause and Andersson [61] analyze various congestion management mechanisms
using agent-based modeling when GenCos learn based on Q-learning mechanism. Con-
currently, researchers try to enhance performance of Q-learning by employing different
algorithms which produces variants of learning mechanisms. For instance, Bakirtzis and
Tellidou ([7], [99]) and Wang [108] combine generic Q-learning with Simulated Anneal-
ing to tune exploration and exploitation rates. In their method, exploration rate decreases
from a high value at beginning to a minimum as time progresses; contrarily, exploitation
increases to a maximum value at the end of simulation run. Using simulated annealing in
Q-Learning is a remedy for slow convergence issue.
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Roth-Erev learning (Erev and Roth ([85], [32])) is a simpler version of reinforcement
learning when n player are playing j pure strategies. Roth-Erev has just one state for each
player unlike Q-learning that can have multiple state/action. By using one state for each
player, they can avoid curse of dimensionality and infer faster from collected data. Veit
et al. [105] use Roth-Erev method to examine effect of different congestion management
mechanisms on German electricity market. Li and Shi [66] employ Roth-Erev learning
method in an agent-based simulation method to investigate the effect of forecasting and
wind penetration level on wind GenCos’ net earnings.

1.3 Contributions

Some of the shortcomings in the literature have led us to identify open research questions
that investigate the strategic behavior of GenCos. Considering its effect on public welfare,
we narrow down our focus on identifying and investigating the existence of collusion. The
research area has merely been involved particularly with this issue. In this endeavor, we
are motivated with the following research questions:

• Under what conditions may collusive states exist?

• Does any pricing strategy effect competition in electricity markets?

• How can rationing policies assist ISOs in promoting competition?

• Which pricing strategy is more competition friendly and which one is more open to
abuse of market power?

• What are the effects of risk aversion on GenCos’ bid prices, profits and learning
behavior?

In an attempt to answer such questions, we aim to shed light on corruptive market
structures and conditions promoting collusion in order to help the system operators (ISOs)
find defects and recognize collusion effectively.

In particular, we strive to contribute to the literature by achieving the following tasks:
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• Develop a flexible agent-based simulation model to characterize the evolution of
the dynamic electricity market under transmission grid constraints.

• Present a large-scale numerical analysis with a wide range of parameter combina-
tions.

• Find patterns in the strategic bidding behavior of GenCos.

• Compare behavior of GenCos under different market-clearing mechanisms.

• Study the effects of risk aversion on GenCos’ bid prices, profits and learning be-
havior by using a mean-variance approach.

• Analyze collusive strategy by considering the physical network structure and iden-
tify the properties of such states.

• Analyze if the ISO can prevent collusion and how.

1.4 Thesis Outline

Figure 1.3 summarizes introduction section. The scope of this dissertation is limited to
green nodes. Contributions are organized inside pink round-rectangles. A vector-based
version of Figure 1.3 is available at http://APresenter.com/detail.faces?
id=1275532714 that allows zooming and panning inside mind-map diagram to inspect
details.

The thesis is organized as follows:

• In Chapter 2, we use a game-theoretic model to represent the market clearance
mechanism involving the independent system operator and the generation compa-
nies in order to characterize the sufficient conditions that make it possible for the
generators to engage in collusive behavior. We embed these conditions into a bi-
level optimization problem where the objectives of the independent systems oper-
ator are conflicting with those of the generators. We develop an algorithm for the
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Figure 1.3: Overview of the thesis

bi-level problem to show that the optimal behavior of generators are collusive when
sufficient conditions exist. We present numerical examples to illustrate our findings.

• In Chapter 3, we investigate the strategic behavior of power generation companies
under different market-clearing mechanisms by an agent-based simulation model
which integrates a game-theoretical understanding of the auction mechanism in the
electricity market and generation companies’ learning mechanism. We present re-
sults of our simulation experiments using various cases representing different mar-
ket settings. Convergence to Nash equilibria or to similar states in terms of payoff
are studied under different parameter settings. Furthermore, we investigate level of
competition under different pricing rules and rationing policies of the regulator. Fi-
nally, effect of capacity withholding, risk attitude on strategic behavior of GenCos
will be examined.
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• Chapter 4 summarizes and concludes this research work. Also, some suggestions
for further research are provided.

• The Appendixes at the end present some mathematical analysis about boundary
conditions of presented learning algorithm. Moreover, the detailed information of
each case study is presented at the end of Appendixes.
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Chapter 2

Determining Collusion Opportunities

The primal goal of deregulated electricity markets is to attain affordable electricity prices
through a competitive market which leads to maximum social welfare. However, design-
ing a fully competitive market is extremely challenging. To achieve this goal, any kind of
collusion (explicit or tacit) among competitors should be eliminated. Naturally, the law
already forbids explicit collusion [17], but recognizing tacit collusion is not an easy task
for the ISO.

The ISO may develop prohibitive policies when they have the potential to identify
collusion in the market. In this respect, the extent and magnitude of collusion in the
market shall be used as a measure to understand if the market is sufficiently collusion-
free. On the other hand, knowing the existence of a possibly collusive market can be
advantageous for the GenCos with the likelihood of higher marginal profit.

We use a game-theoretic approach to understand the market clearing process in an
electricity market where GenCos first bid prices to the ISO and the ISO clears the mar-
ket based on received bids. The clearing process is modeled as a multi-leader-follower
problem as the decision of the follower (the ISO) is a function of the multiple leaders’
(GenCos) bids. The market-clearing process is modeled as a bi-level optimization prob-
lem integrated with transmission network constraints such as the capacity of transmission
lines. We develop an optimization-based method to identify the existence of collusion in a
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deregulated market. We also propose a heuristic approach to detect collusion in a market
where sufficient conditions exist.

Although preventive mechanisms were developed for decades to attain a more conspiracy-
free electricity market, the progress was not enough due to the oligopolistic nature which
facilitates collusion. Lean et al. [64] measure how effective antitrust conduct remedies are
in improving the performance against collusion in an oligopolistic industry such as the
electricity market.

Strategic behavior of GenCos in an oligopoly market can be modeled based on a
variety of assumptions; well-known models in the literature include Cournot, Bertrand,
Supply Function Equilibrium, Conjectural Variation, and Stackelberg. Dixon et al. [31]
conduct an experimental study to identify more beneficial strategic behaviors for play-
ers in GenCos’ game (collusive, Cournot, and Stackelberg). Bernheim and Whinston [9]
study the effect of multi-market contact in the framework of repeated competition; but
they neglect the effect of network constraints on GenCos’ strategic behaviors.

Liu and Hobbs [69] introduce a framework for modeling tacit collusion in which Gen-
Cos collectively maximize a Nash bargaining objective function in their study on a com-
petitive pool-based electricity market operated by the ISO. To the best of our knowledge,
this is the first study that considers network congestion in modeling tacit collusion; they
propose MPEC and EPEC models. Although EPEC models are versatile, they are widely
known for two issues. First, an equilibrium may not exist; second, it is hard to com-
pute. Therefore, some heuristic algorithms are proposed to solve these models. Besides,
the numerical solution of EPECs is a novel area with only few numerical studies [65].
We present an alternative formulation which is relatively easier to work with and can be
handled with linear programming through some assumptions.

2.1 The ISO’s Decision Problem

We consider a strategic bidding problem on a generic trading floor which can be exem-
plified by the day-ahead in a deregulated electricity market with transmission network
constraints. As described in Section 1.1.2, the electricity grid consists of several nodes
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connected to each other by transmission lines. Each node operates independent from the
others, representing a GenCo, a LSE, or a combination of both. For simplicity and without
loss of generality, we suppose each node to have one GenCo and one demand center.

The ISO undertakes the daily operation of the transmission grid under a two-level
settlement system using nodal pricing (DC-OPF implementation). Network congestion is
managed by the inclusion of congestion components in λs.

We consider the following assumptions:

1) All GenCos are major players with power to affect other GenCos’ strategic behaviors,

2) Price of electricity is capped by the ISO similar to [11, 99, 7, 68], and

3) Production cost and capacity of each GenCo are known to the problem solver.

The problem (1.1)-(1.5) is a linear optimization problem as we assume a DC repre-
sentation of the transmission network. We adopt the matrix representation of the DC-OPF
problem in Sun et al. [96] considering node 1 as the reference (Hence, θ1 = 0). Then, the
matrix form of the formulation becomes

Minimize ATx (2.1)

subject to CT
eqx = beq (2.2)

CT
iqx ≥ biq (2.3)

where

AT =
[
b1 . . . bn 0 . . . 0

]
1×(2n−1)

(2.4)

x =
[
P1 . . . Pn θ2 . . . θn

]T
(2n−1)×1

CT
eq =

[
I Y T

r

]
n×(2n−1)

beq =
[
D1 . . . Dn

]T
n×1
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Yr =


y21 −

∑
k 6=2 yk2 y23 . . . y2n

y31 y32 −
∑

k 6=3 yk3 . . . y3n

...
...

... . . . ...
yn1 yn2 yn3 . . . −

∑
k 6=n ykn


(n−1)×n

CT
iq =


Ot −DAr

−Ot DAr

Ip Op

−Ip −Op


(2m+2n)×(2n−1)

biq =
[
Fmax Fmax Om Pmax

]T
(2m+2n)×1

Fmax =
[
−Fmax

BI1
−Fmax

BI2
. . . −Fmax

BIm

]T
m×1

Pmax =
[
−Pmax

1 −Pmax
2 . . . −Pmax

n

]T
n×1

Om =
[

0 . . . 0
]T
n×1

with Ot denoting a m × n zero matrix, Op denoting an n × (n − 1) zero matrix, and Ip
a n × n identity matrix. To define DAr in CT

iq, we define BI as the list of all distinct
transmission lines (kl ∈ BR) constituting the network, lexicographically sorted from
lower to higher numbered nodes such that BIm denotes the mth transmission line in BI .
Ar with entries 1 and −1 is defined as

Ar =


J(2, BI1) . . . J(n,BI1)

J(2, BI2) . . . J(n,BI2)
... . . . ...

J(2, BIm) . . . J(n,BIm)


m×(n−1)
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where

J(i, BIk) =



+1, if BIk takes the form

ij ∈ BR for some node j > i

−1, if BIk takes the form

ji ∈ BR for some node i > j

0, otherwise

for all nodes i = 1, . . . , n and all branches k = 1, . . . ,m. D is a m ×m diagonal matrix
whose diagonal entries correspond to ykl values of all transmission lines kl ∈ BR.

By solving the DC-OPF problem, the ISO determines the production amount (dis-
patched power Pi) for each GenCo and the corresponding nodal price (λi) at each node
(i = 1, . . . , n). λs can be obtained either as the shadow prices of constraint set (1.2) or by
solving the dual of problem (2.1)-(2.3):

Maximize w = bTeqL+ bTiqT (2.5)

subject to CeqL+ CiqT ≤ A (2.6)

TPmax ≤ 0 (2.7)

where

L =
[
λ1 λ2 . . . λn

]T
n×1

, (2.8)

T =
[
N1 N2 . . . N2m+2n

]T
(2m+2n)×1

, (2.9)

TPmax = {Ni|2m+ n ≤ i ≤ 2m+ 2n}.

GenCo-i calculates its profit (ri) as
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ri = Pi(λi − ci) (2.10)

where ci is the pu-adjusted production cost ($/h) of electricity by GenCo-i, and (λi − ci)
is the profit from producing one unit of power at GenCo-i.

2.2 A Game-Theoretic Understanding of Collusion

The electricity market has a hierarchical structure with GenCos bidding to the ISO and
the ISO clearing the market by solving the DC-OPF problem. For instance, in a real day-
ahead market, the ISO periodically clears the market every hour (or every half an hour).
In each period, the ISO determines assigned power of each GenCo and electricity price
of each node; then, GenCos calculate their profit based on the locational marginal prices,
assigned power and their generation cost according to Eq. (2.10).

As a result, the market clearance process in each period can be modeled as a non-
cooperative single-stage game G with finite number of players (F = {GenCo-1, . . . ,
GenCo-n}), strategy (action) space of B = (B1 × . . .×Bn) where Bi denotes the fea-
sible strategy space corresponding to possible bids of GenCo-i, and vector of all GenCos
payoffs; that is, r = (r1, . . . , rn) where ri denotes payoff function of GenCo-i. Thus, the
normal-form representation of G is denoted by the triplet (F ,B, r).

In each iteration, collection of submitted bids (b1 ∈ B1, . . . , bn ∈ Bn) defines the
“state” of the game as we assume all other parameters required to solve the ISO’s decision
making problem, DC-OPF, are known.

In our context, a bidding strategy N = (bN1 , . . . , b
N
n) is called a Nash equilibrium if

any GenCo-i cannot make a better payoff than the payoff of the Nash equilibrium (rNi ) by
choosing another bid (bi ∈ Bi) as long as the other GenCos are not changing their bids,
i.e.

(rN1 , . . . , r
N
i , . . . , r

N
n ) ≥ (rN1 , . . . , ri, . . . , r

N
n ), i ∈ {1, . . . , n}. (2.11)
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The clearance process is repeated indefinitely many times. It is acceptable to model
the interaction in the electricity market as an infinite game. As a result we define G(∞, δ)
as infinitely repeated simultaneous-move stage game G with discount factor of δ1.

Using this modelling approach, in our first and foremost result, we shall make use of
Folk Theorem [39] that proves the possibility of collusion under a set of given conditions
under an infinitely repeated game.

Let Nj ∈ B constitute the jth Nash equilibrium where Nj = (b
Nj

1 , . . . , b
Nj
n ) and bNj

i ∈
Bi,∀ i. Suppose N = {N1, . . . ,Nm} is the set of all Nash equilibria and rNj

i denotes the
payoff of GenCo-i at Nj . Also define r∗i = max{rN1

i , . . . , r
Nm
i } as the maximum payoff

of GenCo-i under any Nash equilibrium.

Theorem 1 (Folk Theorem) For a finite static game of complete information G, let (rN1 ,

. . . , rNn ) denote the payoff profile for a Nash equilibrium, and (r1, . . . , rn) denote any

other feasible payoff profile. If ri > rNi for every player i and δ is sufficiently close to one,

there exists a subgame-perfect Nash equilibrium of the infinitely repeated game G(∞, δ)
that achieves (r1, . . . , rn) as the average payoff profile.

In our problem context, Folk Theorem implies that GenCos prefer to collude when
value of losses in the long run is expected to be higher than the gains in the short term
when one of the GenCos abandon collusion.

Under the existence of multiple collusive states satisfying Folk Theorem, one may ask
which collusive state is more attractive for GenCos to play. There are several answers to
this question; however, one attractive alternative can be a state where the minimum payoff
is maximized.

Definition 2 (The Most Collusive State) A state is called the Most Collusive State, if its

minimum payoff over all GenCos is greater or equal than the minimum payoff for all

GenCos in all other collusive states.

We characterize the existence of collusion by identifying the profitability of a col-
lusive state over all Nash equilibria. Considering the infinitely repeated game, when a

1The discount factor can be defined as δ = (1 − p)/(1 + ι), where ι ∈ [0; 1] is an interest rate and
p ∈ [0; 1] represents a probability that the repeated game will end in the next time period.
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GenCo unilaterally deviates from a collusive state for the higher short term profit, others
learn about the deviation at the next iteration and play a specific Nash equilibrium strategy
where all players are punished with lower payoffs. Yet, the effect of punishment is not the
same on all GenCos; therefore, distinguishing between low and high punishment effects
seems necessary for characterizing collusion. For this purpose, we define two types of
collusive states: weak and strong. Weak collusion is more general than strong collusion
since the minimum determined payoff of each GenCo is lower. On the other hand, weak
collusion does not correspond to an equilibrium state while strong collusion can be iden-
tified as a stable equilibrium state because GenCos are punished severely if they deviate
from a strong collusive state.

In this respect, we first formally define both versions of the collusive states along with
the sufficiency conditions for their existence. Then, we develop a bi-level mathematical
model representing the decision making process of one iteration of the game when a weak
collusive state exists.

Definition 3 (Strong Collusive Equilibrium (SCE)) A state SCE ∈ B but SCE 6∈ N

with

rSCEi > r∗i ≥ 0, ∀i (2.12)

constitutes a Strong Collusive Equilibrium where rSCEi is the payoff of the GenCo-i in

SCE.

As it is apparent from Definition 3, the payoffs of all GenCos under a SCE state need
to be positive. So, any state with a payoff of zero for even one GenCo can not be a SCE

for sure.

Proposition 4 (SCE necessary condition) Under SCE, the nodal price of electricity at

node-i is bi − φlowi − φ
high
i which is bigger than generation cost at node-i.

Proof. From definition of SCE, we know that rSCEi > r∗i ≥ 0⇒ rSCEi = Pi(λi− ci) > 0.
Therefore, all GenCos should have positive power assignments (Pi > 0). When all the
assigned powers are positive, the corresponding dual constraint λi + φlowi + φhighi = bi.
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Also to attain a positive rSCEi , λi should be greater than ci for all GenCos. By combining
previous sentences, we have λi = bi− φlowi − φ

high
i > ci which is the necessary condition

for SCE. �

This equilibrium is denoted as strong because all GenCos benefit from this type of
collusion and hence they have no incentive to deviate. If a GenCo deviates, the game
will move to a specific Nash equilibrium which is inferior with respect to payoffs for all
GenCos.

Some interesting properties of SCE states can be identified when the number of strate-
gies for each GenCo is finite.

Corollary 5 In the neighborhood 2 of a SCE state, no Nash equilibrium exists.

Proof. Suppose Nj ∈ N is a Nash equilibrium in the neighborhood of a SCE state.
From definition of SCE, rSCEi > r∗i ≥ r

Nj

i for all GenCos. However, this contradicts the
definition of a static Nash equilibrium; therefore, Nj cannot constitute a Nash equilibrium.

�

From Corollary 5, one can easily claim that neighborhoods of Nash states can be
excluded from the search for a SCE state. Thus, the search space can be narrowed down
to a smaller subspace.

Corollary 6 There exists at least one state H ∈ B in the neighborhood of a SCE state

such that at least one GenCo makes higher profit under H than it does in the SCE.

Proof. Suppose there is no such state H and SCE offers better payoffs for all GenCos than
all of its neighborhoods. Then, no GenCo has incentive to deviate from SCE. This implies
that SCE is a Nash equilibrium which contradicts the definition of SCE. Thus, there is
always at least one state H in the neighborhood of SCE which provides better payoffs to
at least one GenCo, i.e. rHi > rSCEi > r∗i , ∃i. �

Table 2.1 shows an example illustrating the existence of a SCE in an electricity market
with two GenCos. Here, state (b1 = 20, b2 = 30) is the only pure Nash equilibrium while

2We define state A as the neighborhood of state B if and only if A is different from B for only one
GenCo’s strategy.
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state (b1 = 30, b2 = 40) has better payoff for both GenCos; hence, it is a SCE. We observe
that (b1 = 30, b2 = 20) satisfies the definition of state H in Corollary 6.

Table 2.1: Payoff tables of two GenCos in an electricity market with collusion

B1\B2 20 30 40 50
20 (700, 0) (4000, 700) (6000, 0) (6000, 0)
30 (350, 2500) (4000, 700) (6000, 1500) (6000, 0)
40 (0, 6000) (0, 6000) (0, 6000) (5000, 0)
50 (0, 6000) (0, 6000) (0, 6000) (0, 6000)

We now, try to exploit the sufficiency conditions for existence of a SCE. For checking
the existence of a SCE, the proposition requires the existence of at least one “best Nash
equilibrium” as defined next.

Definition 7 (The Best Nash Equilibrium) A Nash equilibrium N∗ ∈ N is called the

best Nash equilibrium when rN
∗

i = r∗i , ∀i.

In existence of unique pure Nash equilibrium, the only Nash equilibrium is trivially the
best Nash equilibrium.

Proposition 8 (SCE sufficiency condition) Suppose N∗ = (be1, . . . , b
e
n) is a best Nash

equilibrium with a DC-OPF optimal power dispatch xe = (P e
1 , . . . , P

e
n). If there exists at

least two GenCos (i and j) who can increase the nodal prices (λ
′
i > λei , ∀ i) by increasing

their bids (b
′
i > bei and b

′
j > bej), while xe is still optimal, then (be1, . . . , b

′
i, . . . , b

′
j, . . . , b

e
n)

constitutes a SCE.

Proof. When only one GenCo deviates from an initial Nash equilibrium N∗ by increasing
its bid, the new state is in the neighborhood of N∗. From Corollary 5, such a state cannot
constitute a SCE. Therefore, at least two GenCos need to collaborate in an attempt to
increase all nodal prices.

Let σ denote a 2n × 1 column vector with at least two positive elements σi and σj
for i, j ∈ [1, . . . , n]. Increasing the coefficients of Eq. (2.4) from a Nash state (Ae) to
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Ae + σ such that xe is still optimal and λj > bej , ∀j ∈ [1, . . . , n] means r′j > rej by
Eq.(2.10). First, the new bids cannot constitute a Nash as the initial state N∗ is a best
Nash equilibrium itself. Second, since derived state is not in the neighborhood of N∗, it
constitutes a SCE by Definition 3. �

Next, we expand the notion of a “collusive state” by defining a weaker condition than
the one required for SCE. We will use this weaker condition later to characterize the
solution space for optimization.

Definition 9 (Weak Collusive State (WCS)) A state WCS ∈ B but WCS 6∈ N with

rWCS
i ≥ r∗i ,∀i (2.13)

constitutes a Weak Collusive State where rWCS
i is the payoff of GenCo-i in WCS.

A WCS implies that a GenCo that has no incentive to stay in collusion may deviate
from the collusive state with an effort to increase its payoff in short term before the game
goes to a specific Nash equilibrium. In response, other GenCos are inclined to move to a
specific Nash equilibrium following a grim trigger strategy. For instance, consider a WCS

where rWCS
i′ = r∗i′ = 0 for a particular GenCo-i′. Since the profit of GenCo-i′ is zero,

it has no incentive to stay in equilibrium, and it may exploit chances of better payoffs by
deviating. When a WCS is abandoned by at least one such GenCo, all GenCos move to a
particular Nash to prevent further losses. Certainly, these short term profits have no effect
on long-term profit of GenCo-i′ as r∗i′ = 0 under all Nash equilibria.

Proposition 10 (WCS sufficiency condition) Suppose N∗ = (be1, . . . , b
e
n) is a best Nash

equilibrium with a DC-OPF optimal solution xe = (P e
1 , . . . , P

e
n). If xe is still optimal

when bei = λei increases to b′i for at least one GenCo-iwith P e
i > 0 then (b

′
1, . . . , b

′
i, . . . , b

′
n)

where b
′
j ≥ bej , ∀ j ∈ {1, . . . , n} and ∃i b′i > bei constitutes a WCS.

Proof. If xe, DC-OPF optimal solution for N∗, stays optimal when coefficients in Ae (Eq.
(2.4)) increase from bei to b′i for GenCo-i with bei = λei , then λ′i (nodal price of GenCo-i
after bidding b′i) has to increase to b′i > bei . Otherwise, xe changes since GenCo-i will not
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be a given Pi > 0 any longer. Therefore, r′i − rei = P e
i (λ

′
i − λei ) > 0 for GenCo-i by

Eq.(2.10).
The rest of the nodal prices are either larger (because GenCo-i may have participated

in providing electricity in those nodes) or equal for all winning bids. To prove the afore-
mentioned statement, we examine the changes in GenCos’ payoffs in three different cases:
GenCos with losing bids (Pi = 0), GenCos with winning bids with an allocated power
less than their production capacity (0 < Pi < Pmax

i ), and GenCos that could sell out their
entire production capacity (0 < Pi = Pmax

i ).
Recall that the corresponding dual variables for Pi ≤ Pmax

i and Pi ≥ 0 are φhighi and
φlowi , respectively.

• Pi = 0: The payoff trivially stays at zero (r
′
i = ri = 0) under any scenario even if

λ
′
i < λi.

• 0 < Pi < Pmax
i : In this case λi = bi implies that λi + φlowi + φhighi = bi. As

0 < Pi < Pmax
i , φlowi = φhighi = 0. By increasing bi to b′i then λ′i = b

′
i ≥ bi = λi

since 0 < Pi < Pmax
i . λi > bi implies that b′i will stay the same as bi when λi 6= bi.

Also φlowi = φhighi = 0 since 0 < Pi < Pmax
i . Thus, λi + φlowi + φhighi = bi = b

′
i ⇒

λi = bi = b
′
i and this contradicts the assumption.

• Pi = Pmax
i : In this case λi = bi implies that bi to b′i ≥ bi. We have λ′i + φhighi =

b
′
i and since φhighi ≤ 0 then λ

′
i = b

′
i − φhighi ≥ bi = λi. λi > bi implies that

λi + φhighi = bi = λ
′
i + φhigh

′

i . When price of electricity in other nodes are higher
λ
′
j ≥ λj then adding one unit of power to capacity of cheaper GenCo-i can increase

the customers’ welfare z∗ more. Since z∗′ ≥ z∗ then φhigh
′

i ≤ φhighi ⇒ λ
′
i ≥ λi.

Therefore, all GenCos’ payoffs are (at least) as good as those under N∗ (r′j ≥ rej ∀j).
Finally, because (b

′
1, . . . , b

′
i, . . . , b

′
n) provides a better payoff profile than (the best Nash)

N∗, it could not be a Nash equilibrium and it constitutes a WCS by Definition 9. �
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2.3 A Bi-level Mathematical Model for Collusion

Bi-level programming problems are hierarchical optimization problems combining deci-
sions of at least two decision makers: the leader and the follower. They are commonly
used to model hierarchical games (Weber and Overbye [112], Hu and Ralph [51]), in par-
ticular, for finding the equilibrium in Stackelberg games. Bi-level programming problems
are special cases of multi-level programming problems.

A collusive state (SCE or WCS) of GenCos can be characterized with a mathematical
model in the form of a multi-objective non-linear bi-level optimization problem where
GenCos choose their bids at the leader level and the ISO makes decisions on nodal prices
and assigned powers in the follower level. The strategic bidding problem with embedded
collusion can be prescribed as follows:

Maximize{b1,...,bn} (r1, r2, . . . , rn) (2.14)

subject to ri ≥ r∗i ∀i (2.15)

Minimize{P1,...,Pn,θ1,...,θn} A
Tx (2.16)

subject to CT
eqx = beq (L) (2.17)

CT
iqx ≥ biq (T ) (2.18)

bi ∈ Bi ∀i (2.19)

where ri = Pi(λi − ci). The objective function (2.14) maximizes the payoffs for all
GenCos. Constraint set (2.15) characterizes a payoff profile under a collusive state where
payoff of each GenCo is better than any payoff it can obtain under any Nash equilibrium.
(2.16)-(2.18) represent the ISO’s DC-OPF problem. The corresponding dual variables
for constraint sets of (2.17) and (2.18) are shown in parenthesis which were previously
defined in Eq. (2.8) and (2.9), respectively.

The resulting problem is multi-objective; but we can first simplify this function as
maximize ω = mini{ri} based on Definition 2. In this respect ω can be used as a thresh-
old value for the payoffs while representing the most collusive state through (2.14)-(2.19).
This threshold guarantees that minimum received payoff of all GenCos is greater than ω.
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Farahi and Ansari [36] present a similar approach to convert a multi-objective problem
into a single objective. The formulation becomes:

Maximize{b1,...,bn} ω (2.20)

subject to ω ≤ ri ∀i (2.21)

ri ≥ r∗i ∀i (2.22)

Minimize{P1,...,Pn,θ1,...,θn} A
Tx (2.23)

subject to CT
eqx = beq (2.24)

CT
iqx ≥ biq (2.25)

bi ∈ Bi ∀i (2.26)

Problem (2.20)-(2.26) is still a bi-level optimization problem and solving a bi-level
problem can be challenging since the basic theory of bi-level optimization does not al-
low cooperation between the upper level and the lower level decision-makers (Candler
and Norton [15]). A single level optimization problem can be derived by exploiting the
following proposition together with the strong duality theorem.

Proposition 11 Problem (2.23)-(2.25) always has a bounded feasible solution if and only

if the feasible region is not empty.

Proof. As Pi is always bounded by the capacity Pmax
i , and bi is a finite number (ci ≤ bi ≤

bcapi <∞), biPi is finite for all GenCos. Although, θi are unbounded ∀ i, their coefficients
in (2.23) are 0. Hence,

∑
i biPi <∞. �

Remark 12 (strong duality theorem) If the primal problem has finite optimal solution,

then the dual also has an optimal solution with an objective value equal to that of a primal

optimal solution [102].

The problem in the follower level (DC-OPF) can be rewritten as a system of equations
whose feasible solution would be an optimal solution to DC-OPF. In this respect, we
resort to the equality of the optimal objective function values of a primal-dual pair. This

37



is only attained when the feasibility conditions of primal problem (2.28)-(2.29) and the
corresponding dual problem are satisfied simultaneously. Recently, Singh [92] use the
same approach to solve a bi-level quadratic-linear programming problem. As a result, a
feasible solution to the system of equations

ATx = bTeqL+ bTiqT (2.27)

CT
eqx = beq (2.28)

CT
iqx ≥ biq (2.29)

CeqL+ CiqT ≤ A (2.30)

TPmax ≤ 0 (2.31)

corresponds to the optimal solution of (2.23)-(2.25). Replacing the second-level problem
with the above system of equations converts the bi-level programming problem into a
single-level problem as follows:

WCP :Maximize{b1,...,bn} : ω

subject to ω ≤ Piλi − Pici ∀i

Piλi − Pici ≥ rNi ∀i

ATx = bTeqL+ bTiqT

CT
eqx = beq

CT
iqx ≥ biq

CeqL+ CiqT ≤ A

TPmax ≤ 0

bi ∈ Bi ∀i (2.32)
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We also substitute constraint (2.32) with

ci ≤ bi ≤ bCapi ∀i (2.33)

in order to solve WCP with less computational effort. In (2.33), we suppose that each bid
of GenCo-i is greater or equal than the production cost (ci) of that GenCo and is capped
by a specific price cap bCapi which is exogenously determined.

In order to solve WCP, we should first tackle the nonlinearity in (2.27) since bi and
Pi both are decision variables. In this respect, we make use of the following important
results from the theory of linear programming as in Vanderbei [102]:

Remark 13 The feasible region of the linear program has at least one vertex and at most

finite vertices if it is non empty.

Remark 14 If there exists an optimal solution to the linear program, it must be at least

one of the vertex of the feasible region.

Let S = {(L, T,A)|CeqL+CiqT −A ≤ 0, TPmax ≤ 0} denote the set of all vertices of
the dual problem of (2.23)-(2.25) represented with the feasible solution space described
by (2.30)-(2.31). Hence, the optimal solution to WCP is in S. We obtain all vertices
of S using linear algebra as S = {S1, S2, . . . , Sn}. For a given Sv = (Lv, Tv, Av) with
λi ∈ Lv ≥ bi ∈ Av, we obtain a system of linear equations:

Av
Tx = bTeqLv + bTiqTv (2.34)

CT
eqx = beq (2.35)

CT
iqx ≥ biq (2.36)

CeqLv + CiqTv ≤ Av (2.37)

TPmax ≤ 0 (2.38)

which can be solved for x. For a given x (including Pi, ∀i), the corresponding payoff
profile can be calculated from (2.10). Accordingly, we may define S = {(Lv, Tv, Av) ∈
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S|ri ≥ r∗i ∀i} as the subset of these vertices that satisfies WCS condition. Sv ∈ S and
Sv 6= ∅ implies a WCS.

For Sv 6= ∅, the optimal solution is {Av|ωSv
≥ ωSz

,∀Sz ∈ S} where ωSv
=

mini{Piλi − Pici|Sv}.

Proposition 15 In the existence of a SCE, the optimal solution to WCP corresponds to a

SCE state.

Proof. Even though in WCP a weak collusion is modeled by forcing ri ≥ r∗i as a
constraint, any SCE is feasible solution for WCP since SCE ⊂ WCS. Moreover,
ωSCE = min{rSCEi > r∗i |∀ i} ≥ ωWCS = min{rWCS

i ≥ r∗i |∀ i}; therefore, by in-
creasing the threshold through maximizing objective function we obtain ω → ωSCE . �

Last but not the least, finding all vertices of a polytope/polyhedron is very difficult,
even impossible, for large-scale problems [58]. Next, we present a heuristic algorithm to
solve the large-scale instances of WCP in a more efficient compact search space.

2.4 Proposed Algorithm

The algorithm relies on exploiting the sufficiency conditions for WCSs and SCEs provided
in Proposition 8 and Proposition 10. In order to implement the algorithm for a given set
of GenCos,

• all Nash equilibria should be known, and

• at least one Nash equilibrium should have the same payoff profile as r∗.

If there is no such equilibrium, the algorithm is not applicable.
All Nash equilibria can be computed with the algorithm proposed in Li et al. [68]. By

determining all Nash equilibria, one may calculate r∗i of each GenCo, and in consequence,
r∗ can be found. If there is a unique Nash equilibrium, the second condition is trivially
satisfied; otherwise, we need to check all Nash equilibria to find one with the same payoff
profile as r∗. If there is any, using Proposition 8 and Proposition 10, the algorithm finds
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the most collusive state as in Definition 2. Ruiz et al. [88] proposed a mixed-integer linear
programming problem formulation to select meaningful equilibria; one may resort to their
algorithm in order to find all Nash equilibria to initialize Algorithm 1.

The algorithm finds WCS and SCE in B regardless of whether the bids (bi) are con-
tinuous or discrete. To switch from the continuous case to the discreet case, a resolution
parameter (∆) is used in the algorithm. ∆ can be interpreted as the difference between
two consecutive bids or accepted accuracy of monetary unit. It is worth noting that the
accuracy is increased as ∆→ 0; therefore, ∆ is zero for continuous bid prices.

The algorithm begins searching the solution space from the best Nash equilibrium
(N∗). In line 8, we maximize the bids such that b′i ≤ bcapi . It searches over all possible
subsets of the GenCos (Gm) sorted in descending order based on their cardinality to find
σGm by which the minimum payoff of GenCos in the subset Gm can be improved. In the
presence of such σGm on subset Gm, we find at least oneWCS based on Proposition 10.
Based on Proposition 8, if the condition on line 9 holds for the subset G1, the algorithm
finds at least one collusive state as in Definition 3 since the subset G1 includes all the
GenCos. However, not finding any σG1 > 0 at the beginning does not mean the problem
does not have any SCE; sometimes, the combined WCS may result in a SCE. Lines 22-28
find out whether the resulting strategy is a WCS or SCE.

2.5 Numerical Examples

In order to illustrate the algorithm, we present two examples: one with a unique Nash
equilibrium and another one with multiple Nash equilibria. Recognizing the existence of
collusive states in the examples, we also discuss possible actions for the ISO to cope with
and avoid collusion in these markets.

2.5.1 Case 1: An electricity market with a unique Nash equilibrium

The transmission network has five nodes with six transmission lines. The properties of
transmission lines are given in Table 4.3. The network structure along with generation
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Algorithm 1 Finding SCE and WCS

1: σ
′

=
−→
0

2: Find all Nash equilibria N = {N1, N2, . . . , Nm}
3: Find N∗ ∈ N with same payoff profile as r∗.
4: if N∗ exists then
5: Solve DC-OPF for N∗ and find xe
6: for m = 1 to m < 2n do
7: Consider mth subset of GenCos (Gm)
8: maximize σGm

such that xe stays optimal when b′i = {bi + σGm
|σGm

≤ bcapi −
bi}, i ∈ Gm

9: if σGm
≥ ∆ then

10: if ∆ > 0 then
11: σGm

= bσGm

∆ c∆
12: end if
13: for i = 1 to n do
14: if i ∈ Gm then
15: bi = bi + σGm

16: end if
17: end for
18: Calculate λi at each node (i = 1, . . . , n)
19: Calculate ri and ω = mini{ri}
20: end if
21: end for
22: if (ri > r∗i , ∀ i) then
23: SCE is found
24: else
25: if (∃ i, ri > r∗i ) then
26: WCS is found
27: end if
28: end if
29: end if
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Table 2.2: Transmission Line Properties in Case 1

Src (k)/ Dst (l) ykl Fmax
kl

{1/2, 1/3, 3/4, 4/5} 4 No Limit
2/4 4 150
2/5 4 100

Table 2.3: Parameters of GenCos in Case 1

ID Pmax
i ci Bi

GenCo-1 300 20 {20, 30, 40, 50}
GenCo-2 300 20 {20, 30, 40, 50}
GenCo-5 250 30 {40}

capacities and demand load data are shown in Fig.2 and Table 4.4, respectively. Node
3 is the reference bus in this system. GenCo-1 and GenCo-2 can bid any value between
their marginal cost of $20/MW and price cap of $50/MW with increments of $10/MW
(hence ∆ = 10) whereas GenCo-5 can only bid $40/MW. Knowing that GenCo-5 has no
alternative bid to change the state of the game, we ignore GenCo-5 in our calculations.

Figure 2.1: Transmission Network in Case 1

Table 2.4 shows the payoffs in the stage game for all possible bidding strategies. The
execution of the algorithm on Case 1 can be explained step by step as follows:

1. N∗ = (b1 = 20, b2 = 30) is the only Nash equilibrium and it is trivially the best
Nash equilibrium.

2. xe = (P e
1 = 300, P e

2 = 78.57) is the DC-OPF optimal solution for N∗.
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3. From Table 2.5, we observe σG1 = 10 = ∆ as the maximum permissible increase
in the bid price for both GenCo-1 and GenCo-2; therefore, (b1 = 30, b2 = 40)

constitutes a SCE.

4. From (b1 = 30, b2 = 40), the algorithm (from line 6 to 21) will try all the other
subsets of GenCos to find another σGm which preserves the optimality of xe. The
subset {GenCo− 1} lets xe to stay optimal when σGm = 9.9; however, 9.9 < ∆.

5. The algorithm terminates where (b1 = 30, b2 = 40) is discovered as a SCE state.

Table 2.4: Payoff profile of GenCo-1 and GenCo-2

B1\B2 20 30 40 50
20 (857.14, 0) (3428.57, 785.71) (6000, 0) (6000, 0)
30 (416.67, 2500) (3428.57, 785.71) (6000, 1571.43) (6000, 0)
40 (0, 6000) (0, 6000) (0, 6000) (5000, 0)
50 (0, 6000) (0, 6000) (0, 6000) (0, 7500)

Table 2.5: Dispatched power of GenCo-1 and GenCo-2

B1\B2 20 30 40 50
20 (300, 78.57) xe = (300, 78.57) (300, 0) (300, 0)
30 (41.67, 300) (300, 78.57) (300, 78.57) (300, 0)
40 (0, 300) (0, 300) (0, 300) (250, 0)
50 (0, 300) (0, 300) (0, 300) (0, 250)

GenCos may inevitably engage into a collusion at a SCE state. Yet, the ISO may
prevent this collusion through some actions that change the market configuration as sug-
gested bellow:

1. Establishment of a new subsidized GenCo: Establishing a new generator at node 4
with a maximum capacity of 65MW (Pmax

4 = 65) will cause collusion to break.
The difference in total payoffs in each hour is

∑
i(r

SCE
i − r∗i ) = 1778.58 which is

20.24% of the total payoffs in SCE. Thus, by buying electricity from a new GenCo
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Table 2.6: Parameters of GenCos in Case 2

ID Pmax
i ci Bi

GenCo-1 139 20 {20, 25, 30, 35, 40, 45, 50}
GenCo-2 527 20 {20, 25, 30, 35, 40, 45, 50}
GenCo-5 560 30 {30, 35, 40, 45, 50}

at node 4 with Pmax
4 ≥ 65MW under $27/MW the ISO would improve customers’

welfare as well as breaking collusion of GenCo-1, GenCo-2 and GenCo-5.

2. Modifying the transmission network configuration: Relieving congestion can break
collusion, however it does not necessarily increase customer’s welfare. For instance,
relieving congestion of all transmission lines breaks the collusion; but, the total
payoffs of all GenCos (

∑
i r
∗
i ) will be $12000/h. On the other hand, by decreasing

the capacity of transmission line from node 2 to node 4 to 55 (pu), the ISO can
isolate the GenCos with market power and save about $602 in each hour in addition
to breaking collusion.

3. Introducing a price cap at some nodes: Collusion may be prevented easily by lim-
iting the price of electricity at some nodes. Table 2.4 shows that an upper bound
on GenCo-2 at $30/MW shrinks the payoff table and excludes the collusive state.
Note, however that this solution may not always be viable due to regulations.

2.5.2 Case 2: An electricity market with multiple Nash equilibria

We illustrate the algorithm on another case in which there exist multiple Nash equilibria
and two best Nash equilibria as in Definition 7. The transmission network has five nodes
with six transmission lines. The network structure along with generation capacities and
demand load data are given in Fig.2.2 and Table 2.6, respectively. Node 3 is assumed as
the reference bus. All GenCos can bid any value between their marginal cost and a price
cap of $50/MW with increments of $5/MW (hence ∆ = 5).

According to Table 2.7 where the resulting payoff profiles of all possible bidding
scenarios are seen, four pure Nash equilibrium (shown in bold characters) exists. Among
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Figure 2.2: transmission network of case 2

these, N∗1 = (b1 = 25, b2 = 35, b5 = 35) and N∗2 = (b1 = 30, b2 = 35, b5 = 35) have the
payoff profile of r∗, so they are the best Nash equilibria. The execution of the algorithm
on this example can be explained step by step as follows:

1. N∗1 = (b1 = 25, b2 = 35, b5 = 35) is one of the best Nash equilibria and xe =

(P e
1 = 139, P e

2 = 374, P e
5 = 11) is the DC-OPF optimal solution of N∗1 .

2. The maximum permissible increase for all GenCos is σG1 = 3∆ = 15. Therefore,
(b1 = 40, b2 = 50, b5 = 50) constitutes a SCE.

3. From (b1 = 40, b2 = 50, b5 = 50), the algorithm will try all the other combinations
of GenCos to find another σGm which satisfies the optimality condition of xe. The
subset {GenCo − 1} lets xe to stay optimal when σGm = 5; therefore, it leads to
(b1 = 45, b2 = 50, b5 = 50).

4. The algorithm terminates where SCE = (b1 = 45, b2 = 50, b5 = 50) is discovered.

Similar to Case 1, we may list alternative courses of actions for the ISO to avoid the
collusion between GenCos as follows:

1. Establishments of a new subsidized GenCo: Establishing two generators at node 3
and node 4 with maximum capacity of 262MW (Pmax

3 = Pmax
4 = 262) will break

collusion. The difference of total payments in each hour is
∑

i(r
SCE
i −r∗i ) = 15610.

Thus, the ISO could be confident that buying at least 262MW electricity from each
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Table 2.7: Profit profile of (r1, r2, r5)
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new GenCo at node 3 and 4 under $29.79/MW improves customers’ welfare as well
as breaking collusion.

2. Investment on the transmission network to relieve congestion: Adding a transmis-
sion line between node 3 and node 5 with Fmax

35 = 50 disrupts the collusive equilib-
rium. The new market will not have any pure Nash equilibrium. Hence, collusion
does not exist according to Definition 3 and Definition 9.

3. Introducing a price cap at some nodes: Setting bcap5 = 35 breaks the collusion;
however, forcing GenCo-5 to bids under price cap may cause him to leave this node.
In the long-term, node 5 may suffer from lack of domestic generator and thus, may
become highly dependent on power import. Consequently, satisfying demand of
node 5 will be harder when congestion occurs.

2.6 Remarks

We study the existence and identification of collusion among GenCos in a deregulated
(oligopolistic) electricity market when transmission network constraints are under con-
sideration within the market clearance mechanism of the ISO. Firstly, we examine char-
acteristics of collusion based on market parameters and strategic behaviors of GenCos.
Strategic behavior of GenCos is modeled within an infinite horizon game. Then, we
develop a bi-level mathematical programming problem to model the market clearance
mechanism of the ISO where the behavior of GenCos and network constraints are con-
sidered. The problem has multiple non-linear objective functions where GenCos compete
at the leader level and the optimal power flow is determined at the follower level. Using
linear programming theory and the methods in multi-objective optimization, the prob-
lem is simplified to a constrained optimization problem with a linear objective function.
An optimization-based approach is proposed to solve the problem. In our computational
study, we present case studies which indicate how collusion can be detrimental for the
end consumers disrupting the competition. Based on the cases, we also discuss alterna-
tive courses of action for the ISO to cope with and avoid collusion.
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Chapter 3

Strategic Bidding Behavior of Power Generation
Companies

Focus of this chapter is on the day-ahead market in where GenCos compete for the next
day supply of an inelastic load demand. In the day-ahead market’s auction, each GenCo
bids the minimum acceptable unit price of electricity for itself. Based on the predeter-
mined market-clearing mechanism including a pricing rule, the ISO specifies the unit
price of electricity (market clearance price) and each GenCo’s assigned power. Our par-
ticular focus in this chapter is the effect of various factors such as pricing rules on the
strategic bidding behavior of GenCos.

First, we analyze the effect of different pricing rules using an agent-based simulation
model. We simulate a repetitive auction process where GenCos employ reinforcement
learning to learn from the history of their own actions to bid a more profitable price. We
compare the outcomes of the simulation model with the Nash equilibrium of the single-
stage game between the GenCos. Then, we extend the bid to price and available capacity.
Finally, we consider risk sensitivity factor in bidding process of GenCos when ISO con-
siders transmission lines’ constraints. By analyzing the results of our simulation experi-
ments, we aim to answer the following questions:

• Market-cleaning mechanisms:
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– How does different market-clearing mechanisms affect the strategic bidding
behavior of GenCos in the presence of learning?

– How should GenCos exploit available information (that is, realized profit at
each iteration) to increase earnings in the future?

– Which pricing rule is more competition-friendly?

• Capacity withholding:

– Is there any benefits for GenCos to not offer their full generation capacity to
the ISO?

– As the GenCos repetitively bidding, can they find and maintain a strategy with
capacity withholding?

– What can the ISO do to hinder GenCos to keep their generation capacity?

• Risk-sensitivity:

– How can risk affect GenCos behavior and payoffs?

– How can a GenCo compete with others when GenCos do not share any infor-
mation?

– In sharp competition with other powerful GenCos, how should a GenCo be-
have?

3.1 Related Work

The related literature of current chapter can be divided in to three categories: learning and
game-theory, applications of agent-based simulation, and analysis of pricing rules.

3.1.1 Learning and Game-theory

Due to repetitive nature of auctions in the electricity markets, GenCos are expected to
learn by gathering new information in each repetition of the auction and improve their
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performance over time. In this respect, analyzing GenCos’ behavior without a learning
mechanism would lead to inaccurate results. Even in the early years of game-theory,
researchers have been interested in learning models. Exhibiting convergence to Nash
equilibrium in the presence of learning has attracted a lot of attention from the game-
theory modelers as well as energy-economics community.

Aumann [3] claims that Nash equilibrium concept is one of the most applied concepts
in economics; yet, it is not crystal clear under what condition players might be expected
to play a Nash equilibrium. Mailath [71] discusses various justifications that have been
advanced for equilibrium analysis and points out learning as the least problematic justifi-
cation. Also, Mailath notes that convergence to Nash equilibria is a necessary condition
in the evolutionary dynamics for any reasonable model of social learning when the num-
ber of players is large enough. Kalai and Lehrer [56] show that under some simplifying
assumptions, rational learning leads to Nash equilibrium.

Hart and Mas-Colell [47] propose “reinforcement” models in which all players can
lead to an equilibrium of the stage game. Their learning procedure, unlike the “regret-
matching” procedure [48], does not need to observe all past payoffs, and players do not
need to know their own payoff function.

Wang and Sandholm [109] state that even agents with non-conflicting interests may
not be able to learn an optimal coordination policy in the presence of multiple Nash equi-
libria. As a solution, these authors propose a new learning mechanism based on reinforce-
ment learning that converges to an optimal Nash equilibrium with probability one in any
team Markov game.

3.1.2 Agent-based Simulation of Electricity Markets

Although analytical models can be employed to study learning mechanisms, the expected
outcomes of these models are not necessarily observed in practice due to strict simplify-
ing assumptions [26]. A widely accepted alternative tool is Agent-based Modeling and
Simulation; it can provide better understanding of real-life markets especially when ana-
lytical models show poor tractability in investigating complicated problems. Li and Shi
[66] claim that agent-based modeling and simulation is a viable approach which provide
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realistic insights for the complex interactions among various market players.
In the previous studies with agent-based approaches Reinforcement Learning has been

adopted to simulate the intelligence of the players in the electricity markets ([108], [62],
[66]) as it is expected that agents should be agile and be able to respond to new oppor-
tunities and threats. Reinforcement Learning includes the temporal difference algorithm
proposed by Sutton [97] and the Q-learning of Watkins ([110], [111]). These algorithms
have been extensively used in many other applications such as industrial control, time
sequence prediction [52], and robot soccer competition [90]. Erev and Roth [32] have
shown that models based on reinforcement learning outperform the equilibrium predic-
tions in certain games.

Existence of multiple Nash equilibria can disrupt GenCos’ learning process in such a
way that the long-run equilibrium is not necessarily achieved. Krause et al. [62] study a
day-ahead market where GenCos learn by reinforcement learning. It turns out that these
authors’ simulation does not converge in the existence of multiple Nash equilibria. The
GenCos’ strategies pendulate between those Nash equilibria. The oscillation between
different Nash equilibria in the reinforcement learning process can be overcome by mak-
ing better use of collected information. To this end, Wang [108] used the SA-Q-learning
algorithm with Metropolis criterion.

Naghibi-Sistani et al. [77] apply Q-learning for agents’ bidding in a pool-based power
market with uniform pricing. They show that a participant with reinforcement learning
capability could ultimately learn the optimal policy and could adapt himself to unknown
parameters in the environment. The authors also find that under reinforcement learning,
bids can converge and stay in the Nash equilibrium for a two-participant case. Never-
theless, these authors have not studied pricing rules other than uniform pricing and their
impact on convergence.

3.1.3 Pricing Rules

Selecting a pricing rule is a vital decision for the ISO as it is likely to affect GenCos’
strategic bidding behavior. By using agent-based simulation, Yu et al. [115] show that
flaw in the regulations can be captured and exploited by GenCos even without having to
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know others’ historical bidding data. Thus, researchers investigate the characteristics of
pricing rules to improve the functionality of underlying markets.

Uniform pricing is believed to be a rational choice for the ISO since it provides suf-
ficient incentives to bidding GenCos to reveal their true cost [79] while it is also accused
for the high price volatility [74]. On the other hand, pay-as-bid pricing results in a flat
supply function which is a remedy for price volatility. However, pay-as-bid pricing also
assists powerful players that have information about market-clearing price in obtaining
higher profits [113].

Xiong et al. [114] compare uniform and pay-as-bid pricing rules using agent-based
simulation and show that pay-as-bid results in lower market prices and price volatility.
They also claim that demand side response has less effect on market prices with pay-as-
bid policy. Bakirtzis and Tellidou [7] show that high price levels are due to exercised
market power with both uniform and pay-as-bid policies. Azadeh et al. [4] study three
different pricing rules (uniform, pay-as-bid, and Vickrey) by using Principal Component
Analysis (PCA). They conclude pay-as-bid pricing rule with one permissible step to be
the best pricing rule.

Sugianto and Liao [95] use agent-based modeling approach to investigate the impact
of different auction pricing rules on the market performance. They conclude that the pay-
as-bid pricing rule can complicate the way bidders learn and react to each other’s strategy.
Also, their results suggest that Vickrey pricing provides a balance between managing the
total cost and its stability in the presence of unequal GenCo market shares.

In addition to the pricing rule, we also discuss another aspect of the market-clearing
mechanism, the “rationing policy”. The rationing policy determines the allocation of
the remaining demand at the market cleaning price when multiple GenCos’ (the marginal
GenCos) bids coincide at that price. This possibility arises due to the discrete nature of bid
price and quantity. Rationing rule is especially important when the bid prices are likely to
accumulate at certain values. Holmberg [50] and the references therein discuss rationing
rules to break ties between multiple bids at the market clearing price in general multi-
unit auctions. In auctions where all bids are cleared simultaneously, standard practice is
pro-rata rationing where the same percentage of bid is accepted for each marginal bidder.
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In continuous trading, priority can be given to marginal bids that arrive early. Madlener
and Kaufmann [70] describe the rationing rules employed in European power exchanges.
For instance, in case of a supply surplus at the market clearing price, APX and OMEL
exchanges distribute the demanded quantity in proportion to the bid quantities. Borzen,
EEX and EXAA exchanges, on the other hand, prioritize according to the size of bid
or time of submission. Different from these, we propose a rationing policy where the
priority ordering of marginal GenCos is randomly determined (random rationing), and
another policy where the remaining demand is equally distributed to marginal GenCos
(equal rationing). We are not aware of any other work that models rationing policies in
electricity markets.

3.2 Simulation Process

In our agent based simulation model, agents represent the GenCos that are expected to
satisfy demand on the transmission grid. GenCos submit bids sequentially for each hour
of the next 24 hours to the ISO. The bidding process is synchronic for all GenCos, and
each iteration in the simulation corresponds to the auction of an hour in the day-ahead-
market. The simulation is run for a finite number of iterations (maxt). At the end of each
iteration/bid, each GenCo-i calculates its payoff ri.

In the simulation model, we assume that

• The demand is inelastic and constant, i.e., it does not change from one hour to the
next.

• GenCos participate only in the day-ahead market (but not in the futures or real-time
markets).

• No line or generation outage is experienced.

• GenCos do not change their technology that would alter Pmax
i and ci.

• Capacity withholding is not allowed; each GenCo offers its maximum capacity (we
will relax this assumption later).
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• GenCos do not share information with each other; they are not aware of others’
production costs, available bids and submitted bids.

In essence, the bidding process of GenCos is a decision-making problem with incom-
plete information as each GenCo is only aware of its own cost and bids. Each GenCo
determines what to bid through a Q-learning mechanism (to be explained) based on his-
torical payoff information from its own bids in the previous iterations. Thus, the profit at
an iteration affects the GenCo’s subsequent bid decisions.

We model GenCos’ learning mechanism by reinforcement learning. We improve the
standard Q-learning mechanism by making the two following parameters time-dependent:

• Recency rate (αit ∈ [0, 1]) determines the weight given by GenCo-i to the most
recent observed outcome (profit).

• Exploration parameter (εit ∈ [0, 1]) measures the tendency of GenCo-i at iteration
t to explore, i.e., to use a randomly selected bid rather than using its best identified
bid.

Recall that GenCo-i has a set of bids (Bi) to choose from. For each bid, the Q-value
in the learning algorithm denoted by Qij corresponds to the average realized profit of
GenCo-i when jth bid from Bi is used in the previous iterations. Initially, all Q-values
are zero. At the end of each iteration t, based on the observed payoff ri, the Q-value of
the submitted bid is updated as follows

Qij = (1− αit)Qij + αit(ri). (3.1)

A high α-value represents a GenCo that is primarily concerned about the most recent
outcomes it experienced, and is less affected by the earlier ones. In our modified Q-
learning algorithm, αit starts from a high value (αi0) at the beginning and diminishes
linearly over iterations to a lower value of (αi0

10
). In this respect, we use a linear decreasing

function of time for αit as

αit =

(
1− t

maxt

)
(αi0) +

(
t

maxt

)(αi0
10

)
. (3.2)
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We use a descending recency rate because GenCo is assumed to become less sensitive to
individual recent observations over time due to gained experience.

We refer to the bid price that maximizes the Qij value as b∗i corresponding to GenCo-
i’s “best identified bid”. In the proposed Q-learning algorithm, at iteration t, GenCo-i
either selects b∗i (with prob 1 − εit) or explores by choosing a random bid from Bi (with
with probability εit). Therefore, with lower ε, the GenCo explores less and sticks to its best
identified bid more often. We assume that GenCos explore more in initial iterations using
random bids, but they are more likely to use their best identified bid in latter iterations.
To represent such behavior, the exploration parameter (εit) decreases linearly from the
base value of εi0 (when t = 0) to almost zero at iteration number dmaxtεi0

8(1−εi0)
e. Afterwards,

exploration is minimum and exploitation is maximum.
Our Q-learning algorithm is presented in Algorithm 2. In line 2, Q-values are set to

zero for initialization. In lines (7 - 11), GenCo determines its price bid to the ISO. This
decision is governed by the Q-learning parameters. Following the market clearance by
the ISO in line 12, GenCo-i will update the Q-value of the selected bid in line 13.

Algorithm 2 The simulation model with the proposed Q-learning algorithm for each
GenCo-i.

1: t← 1
2: Qij ← 0 ∀j
3: repeat
4: R← Random Number ∈ [0, 1]

5: εit ← max{0.001, 1− (1− εi0)
(

1 + 8t
maxt

)
}

6: αit = (1− t
maxt

)(αi0) + (αi0/10)( t
maxt

)
7: if R > εit then
8: bi ← Select Best bid (b∗i )
9: else

10: bi ← Select a bid randomly from Bi

11: end if
12: ri ← CLEARMARKET({bi : ∀i})
13: Qij ← (1− αit)Qij + αit(ri)
14: t← t+ 1
15: until (t < maxt)
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The increasing exploitation of the best identified bid cancels out the effect of GenCos’
random choices at early iterations. Therefore, the Q-value of the best identified bid b∗i for
each GenCo-i converges to the profit (ri) of GenCo-i at equilibrium state in the long-run.

3.3 Nash Equilibrium

We assume that GenCos start bidding with no information about the potential profit of
each bid in their set of bids, and the possible bids of other GenCos. Throughout the
iterations GenCos collect information on the outcomes of their own bids but not those of
competitors. With the simulation analysis, we expect to understand if the market reaches
a Nash equilibrium. In this respect, each iteration of the simulation corresponds to a stage
of the multi-stage game.

The market clearance process for an hour in the day-ahead market can be modeled
as a non-cooperative single-stage game G with finite number of players, F = {GenCo-
1, . . . , GenCo-n}, an action space of B = (B1 × . . .×Bn) and a vector of payoffs
r = (r1, . . . , rn). Thus, the normal-form representation of G is denoted by the triplet
(F ,B, r). In each iteration, collection of submitted bids (b1 ∈ B1, . . . , bn ∈ Bn) defines
the “state” of the game.

When random rationing policy is used (under both uniform and pay-as-bid pricing),
the same set of bids from GenCos can lead to different power dispatches, leading to dif-
ferent profit vectors. This is because of the ISO’s random choice among the GenCos that
submit the same bid at the market-clearing price. Therefore, in random rationing policy,
we calculate average payoff of each GenCo with respect to probability of each realized
profit for a given state. The vector of average payoffs will be used to identify Nash equi-
libria.

In our context, a bidding strategy N = (bN1 , . . . , b
N
n ) is called a Nash equilibrium if

any GenCo-i cannot make a better payoff than the payoff of the Nash equilibrium (rNi )

by choosing another bid as long as the other GenCos are not changing their bids, i.e.

(rN1 , . . . , r
N
i , . . . , r

N
n ) ≥ (rN1 , . . . , ri, . . . , r

N
n ), i ∈ {1, . . . , n}. (3.3)
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We also define S = (bS1 , . . . , b
S
n) as a semi-Nash state if

(rS1 , . . . , r
S
n) = (rN1 , . . . , r

N
n ) ∃j such that bSj 6= bNj .

A semi-Nash state is defined with respect to a particular Nash equilibrium. If one of the
GenCos (say, GenCo-i) in a Nash equilibrium can change its bid without affecting the
payoff of any GenCo including itself, we refer to the resulting state as a semi-Nash. A
semi-Nash state is not a Nash equilibrium because at least one of the GenCos (other than
GenCo-i) can increase its payoff by deviating from this state. During our experimental
simulations, however, such a GenCo may or may not realize this profitable deviation
opportunity. Hence, the simulation may end up converging to a semi-Nash state just as it
may converge to a Nash equilibrium.

3.4 Computational Experiments

We conduct simulation experiments on four case studies. In each case study, GenCos are
subject to challenges due to a variety of environmental settings. The underlying charac-
teristics of the case studies can be summarized as follows:

• Case 1: A public GenCo and a private GenCo compete in a limited competition
market where the public GenCo always bids its generation cost.

• Case 2: Two private GenCos and a public GenCo participate in a competitive market
where only private GenCos are learning agents.

• Case 3: The public GenCo in Case 2 is replaced with a GenCo that can learn.

• Case 4: Three active GenCos compete to satisfy demand of a single node. As the
demand can be satisfied to a great extent by any one of three GenCos, competition
between GenCos is tight.

The details of the case studies are presented in Appendix A. Table 3.1 reports the number
of Nash equilibria and semi-Nash states under each pricing rule.
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Table 3.1: Number of Nash equilibria and semi-Nash states in case studies

Case Active Uniform Pricing Pay-as-bid Pricing DC-OPF Pricing
Study GenCos Nash semi-Nash Nash semi-Nash Nash semi-Nash
Case 1 1 1 0 1 0 1 0
Case 2 2 3 1 3 1 1 0
Case 3 3 6 4 3 2 2 3
Case 4 3 3 10 3 7 3 15

In what follows, we first use case 1 to illustrate how our Q-learning algorithm operates.
Next, using cases 2, 3 and 4 we study whether our simulations converge to theoretical
Nash equilibria and/or semi-Nash states. Finally, we discuss which pricing rule is more
competition-friendly.

To describe the behavior of the only learning agent (private GenCo) in Case 1, we
limit the public GenCo to offer one price; therefore, the described Q-learning algorithm
does not apply to this GenCo.

Figure 3.1 shows the evolution of expected profits (Q-values) for the private GenCo
for each bid option throughout the iterations. Each bid option is shown with a different
line style. The results clearly indicate one outcome: The private GenCo gradually learns
to bid higher prices to the ISO as it discovers along iterations that the public company
cannot fulfill the demand. Eventually, the private GenCo reaches the maximum Q-value
of 2700 by bidding 40. In fact, this bid, along with the fixed bid of the public GenCo
correspond to the unique Nash equilibrium of the stage game. The bid also happens to be
the optimal one for the private GenCo. We observed this result to hold true independent
of the pricing rule and rationing policy in Case 1.

3.4.1 Convergence to Nash Equilibria and Semi-Nash States

We first intend to compare the state converged at the end of simulation experiments
against game-theoretic expectations. Each simulation run is terminated after 2000 itera-
tions (maxt = 2000), and it is replicated for 30 times. The initial values of the Q-learning
parameters (αi0 and εi0) are same for all GenCos as we suppose that they are subject to
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Figure 3.1: Evolution of Q-values of the private GenCo over iterations

similar learning mechanisms.
We are interested in whether the simulation will converge to a Nash equilibrium, a

semi-Nash state or neither. We define “convergence frequency to a state” as the fraction of
time the state is reached at the end of the simulation over 30 replications. We examine the
convergence frequency under different values of αi0 and εi0 ranging from 0 to 1.00 with
increments of 0.02 for each (corresponding to 2601 parameter combinations, or settings).
Table 3.2 displays convergence frequency to Nash equilibria under different pricing rules
and rationing policies for each case in our experimental study. The lighter a point on
charts, the higher the Nash convergence frequency of the corresponding setting.

Overall, we observe that the frequency of convergence to Nash equilibria decreases
as the complexity of the case increases (from Case 2 to Case 4). This is because the
number of states is substantially higher in the more complex cases. In all case studies,
GenCos converge to Nash equilibria more frequently when εi0 ∈ [0.7, 0.9], and they fail
to converge when εi0 < 0.1; convergence frequencies tend to decline as one moves left
in any of the charts. In fact, in Appendix B, we show very low exploration to disrupt
learning. Furthermore, we observe a high-convergence zone around εi0 ≈ 0.9 for any αi0;
this is due to the shape of the linear decay function of εit.

An important difference between the equal and random rationing policies is seen in
the figures: Under equal rationing, the regions of high and low convergence are clearly
separated from each other whereas we do not observe such separation under random ra-
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Table 3.2: Convergence frequency to Nash equilibria
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tioning. Recall from the definition of rationing policies that the random rationing policy
of the ISO introduces another stochastic event to the decision-making process of GenCos
when the ISO chooses the winner arbitrarily among GenCos with the same bid. Imposing
more randomness to the system disrupts the learning process of GenCos, by blurring the
link between successful bids and high profits. Thus, the ISO can use a random rationing
policy in cases where it needs to interfere with GenCos’ learning. This can be the case,
for instance, when collusion opportunities [33] are present for GenCos.

The figures also allow comparing the effectiveness of changing the pricing rule and
changing the rationing policy in convergence to Nash equilibria. We observe the result of
the comparison to be case-dependent: While the rationing policy change is more influen-
tial in Case 2, pricing rule is more important in Case 4. In Case 3, on the other hand, both
factors seem to be influential.

Under DC-OPF pricing, settings with a high convergence frequency create a distinc-
tive wedge shape extending from αi0 ≈ 0.04 and εi0 ≈ 0.9 to αi0 ≈ 1 and εi0 ≈ 0.9 while
it is curved around αi0 ≈ 0.1 and εi0 ≈ 0.4. This observation suggests that GenCos with
low tendency to explore while giving sufficient importance to the last observed outcome
are more likely to converge to Nash equilibria especially in Case 2 and Case 3.

Table 3.3 summarizes the observations from Table 3.2 by presenting the average (over
different parameter settings) observed convergence frequencies to Nash equilibrium un-
der different pricing rules and rationing policies. Convergence frequency is high for the
simple case (Case 1) and relatively low for the more complex ones (say, Case 4). Uni-
form pricing causes higher convergence frequency to Nash equilibrium than pay-as-bid
for most cases (except Case 3, under equal rationing). For Case 1, we observe no impact
of either the pricing rule or the rationing policy on the behavior of the private GenCo.

Differences are clearer when one also includes convergence to semi-Nash states. Table
3.4 presents the convergence frequency to semi-Nash states and to either Nash or semi-
Nash states (in parentheses). That latter frequency is observed to be higher under uniform
than under pay-as-bid pricing rule and higher under random than under equal rationing
policy. Overall, we shall claim that simulations with learning agents do converge to Nash
equilibria, or a state that has identical payoffs with a particular Nash equilibrium (a semi-
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Table 3.3: Average convergence frequency to Nash equilibria

Case Uniform Uniform Pay-as-bid Pay-as-bid
DC-OPF

Study Equal Random Equal Random
Case1 0.8242 0.8242 0.8242 0.8242 0.8242
Case2 0.8396 0.7096 0.8396 0.7049 0.7865
Case3 0.5776 0.6230 0.6673 0.6133 0.4443
Case4 0.4848 0.4891 0.2906 0.3269 0.5246

Nash state) for the majority of instances.

Table 3.4: Convergence frequency to semi-Nash* states

Case Uniform Uniform Pay-as-bid Pay-as-bid
DC-OPF

Study Equal rat. Random rat. Equal rat. Random rat.
Case 2 0.1081 (0.9477) 0.2683 (0.9779) 0.1081 (0.9477) 0.2722 (0.9771) N/A (0.7865)
Case 3 0.1864 (0.7640) 0.2748 (0.8978) 0.0845 (0.7518) 0.2517 (0.8650) 0.2253 (0.6696)
Case 4 0.4369 (0.9217) 0.4367 (0.9258) 0.3314 (0.6220) 0.3430 (0.6699) 0.4418 (0.9664)
* Values inside parentheses indicate the summation of convergence frequencies to Nash
equilibria and semi-Nash states.

3.4.2 Competition Analysis

We are interested in the relation between the bids and the cost of GenCo-i. As it is
associated with the level of competition in the market. In a highly competitive market,
GenCos are likely to cut their bids, leading to a smaller difference between the offered
bid and the generation cost [79]. In general, uniform pricing is known to provide more
incentive to bidders (GenCos in our case) to bid a closer price to their cost than pay-as-bid
pricing does.

To study this relation, we define ∆k
i = b

(k)∗
i − Ci for GenCo-i in replication k. For a

given parameter setting (εi0 and αi0), we calculate the average ∆k
i over all N GenCos and

30 replications as ∆ =
∑

k

∑
i ∆k

i

30×N .
Figure 3.2 presents the difference in ∆ between the two pricing rules and the two

rationing policies for Case 3 (as an example). For instance, Figure 3.2(A) shows the
difference in ∆ between equal and random rationing, under uniform pricing. All indicated
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Figure 3.2: Difference in ∆ between the two pricing rules and the two rationing policies
for Case 3

difference values are found to be positive with the only exceptions marked with darker
shades. These exceptions, where the ∆ difference is negative, are found in the rightmost
side of Figure 3.2(A), and in a few islands in the middle of Figure 3.2(C). Thus, uniform
pricing is found to be more successful in making GenCos bid closer bids to their costs for
almost all parameter settings. Likewise, equal rationing is observed to be more successful
than random rationing. These observations are summarized in Table 3.5 which provides
the average ∆ values (∆) over all parameter combinations. Uniform pricing and random
rationing together lead to the lowest ∆ values. Hence, an ISO can use this combination to
stimulate higher competition among GenCos in the market.
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Table 3.5: ∆ comparison

Case Uniform Pay-as-bid Uniform Pay-as-bid
DC-OPF

Study Equal rat. Equal rat. Random rat. Random rat.
Case 1 27.510 27.510 27.510 27.510 27.510
Case 2 21.244 21.244 10.896 10.915 20.592
Case 3 26.247 37.176 12.781 22.107 40.680
Case 4 19.209 27.696 19.110 26.969 19.753

3.4.3 Profit Analysis

We observe uniform pricing to achieve lower bid prices than pay-as-bid. However, this
difference does not necessarily lead to lower GenCo profits under uniform pricing be-
cause of the difference in payment mechanisms. To acknowledge the difference, we
compare GenCos’ total profits under different market clearing mechanisms. This anal-
ysis is important because higher GenCos profits indicates that the market fails to provide
affordable electricity for consumers. For a given parameter setting (αi0, εi0), we first
calculate the average profit of each GenCo-i over 2000 iterations and 30 replications as
ri =

∑30
k=1

∑maxt
t=1 rkit

30×maxt . Next, we calculate GenCo-i’s average profit over all parameter set-
tings. These are reported for all GenCos over Case 2, Case 3, and Case 4 in Table 3.6,
Table 3.7, and Table 3.8, respectively. We observe clearly that switching from uniform to
pay-as-bid pricing rule decreases GenCos’ total profits, regardless of the rationing policy.
For Case 2, the effect is more tangible because GenCo-2 has only one bid price which is
equal to its generation cost.

Table 3.6: GenCos’ profits under different market-clearing mechanisms

Case Study 2
Uniform Uniform Pay-as-bid Pay-as-bid

DC-OPF
Equal rat. Random rat. Equal rat. Random rat.

GenCo-1 1944.07 1966.18 1944.07 1965.28 1007.61
GenCo-2 4647.61 3542.70 0.00 0.00 1060.85
GenCo-5 571.73 172.90 571.73 172.04 2264.00
Total 7163.40 5681.78 2515.79 2137.32 4332.47
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Table 3.7: GenCos’ profits under different market-clearing mechanisms

Case Study 3
Uniform Uniform Pay-as-bid Pay-as-bid

DC-OPF
Equal rat. Random rat. Equal rat. Random rat.

GenCo-1 3393.48 2822.74 2709.80 2504.06 5085.20
GenCo-2 3434.35 2829.77 2756.82 2517.76 1844.68
GenCo-5 755.65 275.91 893.53 332.77 2233.11
Total 7583.48 5928.43 6360.15 5354.60 9162.99

Table 3.8: GenCos’ profits under different market-clearing mechanisms

Case Study 4
Uniform Uniform Pay-as-bid Pay-as-bid

DC-OPF
Equal rat. Random rat. Equal rat. Random rat.

GenCo-2 5273.27 5318.39 5505.16 5422.45 4962.80
GenCo-3 14783.93 14796.97 12757.13 12454.59 15900.05
GenCo-4 439.73 421.12 336.70 335.89 375.96
Total 20496.93 20536.48 18598.98 18212.93 21238.81

We shall also investigate the profit difference between the market-clearance mecha-
nisms statistically using 2601 parameter settings (αi0, εi0) as the samples (see Figure 3.3).
For each case study and each rationing policy, we test whether the difference of the me-
dian profits between uniform pricing and pay-as-bid pricing is zero or positive while the
difference is calculated by subtracting the profit under pay-as-bid pricing from that under
uniform pricing.

Figure 3.4 shows the histograms for the three case studies. Kolmogorov-Smirnov
normality test (Figure 3.5) confirms that none of them are normally distributed; hence, we
use a nonparametric Sample Sign test that doesn’t assume normality or symmetric data.

We observe almost all differences to be positive, indicating higher GenCo profits under
uniform pricing for almost all parameter settings. In fact, the median profit difference is
found to be statistically higher than zero (Nonparametric Sign Test with p−values around
0.0000). In addition, in Case 2 and Case 3, the profit difference between the pricing rules
under equal rationing is observed to be more pronounced from the one under random
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Figure 3.3: The resulting profit matrices are reshaped to vectors

Figure 3.4: Histogram plot of profit differences between uniform and pay-as-bid pricing
where TXY denotes the difference vector under rationing policy X (E represents Equal
and R represents Random) in Case Y

rationing. Finally we observe the profit distribution among GenCos to be quite differ-
ent under the DC-OPF rule compared to those under the other clearance mechanisms.
This result highlights the role of locational marginal pricing in DC-OPF, which takes the
transmission grid structure and constraints into accounts in determining local electricity
prices.

Figure 3.6 demonstrates GenCos’ total profit under each pricing rule and rationing
policy for each initial setting. This detailed figure confirms that GenCos learning param-
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Figure 3.5: Kolmogorov-Smirnov normality test for Case 3 (up) and Case 4 (down)

eters are influential to GenCos’ behaviors and achieved payoffs. Also, by focusing on
Nash and semi-Nash states in Figure 3.7, we observe that most of Nash equilibria have
low total profit.

However, the converged state, apart from being Nash state or not, is not the only
influential factor on total profit; for instance, one may notice that convergence to Nash or
semi-Nash results in a different average total profit over 2000 iterations with respect to
initial settings (αi0, εi0), especially in Case 2 under DC-OPF pricing rule. There is only
one Nash equilibrium, and no any semi-Nash state; however, total average profit is higher
when εi0 ≥ 0.9.

For this peculiar case, GenCo-2 benefits from high exploration rate of other GenCos,
and therefore, GenCo-2 can keep the total profit high. Meanwhile, GenCos with market
power cannot obtain a decent profit because of the same reason. Now, if we decrease
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Table 3.9: Mean test results for 2601 different values for initial settings

Sample size Below Equal Above P-value Median
TE3 2601 53 0 2548 0.0000 1206
TR3 2601 189 1 2411 0.0000 371.9
TE4 2601 93 0 2508 0.0000 1341
TR4 2601 76 0 2525 0.0000 1766

εi0 to a value around 0.6, GenCo-2 loses this opportunity and ends up with no profit that
decreases the total profit. But, other GenCos will obtain better expected profits. The
difference between high and low exploration rates has been depicted in Figure 3.8. In
Figure 3.8, the vertical axes is the expected payoff and horizontal axes shows iterations.
Bids evolve during time and the expected payoff corresponding to each bid is drawn with
different color.

3.5 Effect of Capacity Withholding

One of the general assumptions in the simulation model speculate that GenCos bid for
their entire production capacity. However, it is possible to modify the simulated bidding
process in such a way GenCos may withhold their production capacities to some extent.
We presume zero salvage value for the idle capacity; there is no future market or real-time
market that GenCos can participate with the remaining capacity.

We aim to examine whether GenCos would rather lose their selling opportunity than
participating in the market with full capacity. If some GenCos withhold their capacity,
prices may increase which may harm consumers. Capacity withholding also may reduce
the revenue of the GenCo if the price does not increase significantly. Therefore, we aim
to answer the following questions:

1. Are there any benefits for GenCos to not offer their full generation capacity?

2. As the GenCos repetitively bidding, can they find and maintain a strategy with
capacity withholding?

69



Figure 3.6: Total profit profile under each setting of Case 2, Case 3, and Case 4

3. What can the ISO do to hinder GenCos to keep their generation capacity?
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Figure 3.7: Covering settings that converge to a non-Nash or non-semi-Nash states

3.5.1 Simulation’s Configuration

In order to keep the simulation setting manageable while relaxing the full capacity bid
assumption, we allow each GenCo to bid 80% of generation capacity as an alternative. As
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Figure 3.8: Effect of low and high exploration rates on Q-values of different GenCos in
Case 2 with DC-OPF pricing

a result, each bid now becomes a price-capacity pair; therefore, the notation of bid can be
extend to Gi = (bi, Pi) to include both GenCo-i’s bid price bi and offered capacity Pi. For
the sake of simplicity, multi-market interaction is ignored; therefore, we are still focusing
on a day-ahead market and unsold capacity will be unused. ISO clears the market with
uniform pricing rule.

We also define υ as a measure to evaluate robustness of decisions when GenCos with-
hold their capacity. To this end, first, we define Ns as the number of time strategy s is
observed. We sort strategies in decreasing order of their frequency (Ns values). υ is de-
fined as

∑30
i=0

(
iN{i}

)
where N{0} is the number of times that we observe the most visited
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strategy in 30 runs. The highest value of υ is observed when all strategies are visited
equally and in this case υmax =

∑30
i=0(i) = 30×31

2
= 465 and the lowest value (υmin) is 0.

Figure 3.9 illustrates two scenarios when two unique strategies are observed with dif-
ferent ratios at the end of 30 replications. Labels in horizontal axis are the weights of
corresponding bars. The robustness of decisions in the left plot is higher since 2/3 of
times simulation converged to a particular state.
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Figure 3.9: Variability of converged strategy in two different scenarios

3.5.2 Modified Case Study 1 with Capacity Withholding

As a case study, we select an extension of Case 1 where public GenCo (GenCo-1) can
offer either 100MWh or 80MWh for its only bid ($20 per MWh). However, private
GenCo (GenCo-3) can submit various prices with 100MWh and 80MWh. The aggre-
gate demand is concentrated in Node 2 (100MWh). The list of possible offers ($ per
MWh) for both companies are given in Table 4.2 along with their production capacities
and production costs are available Table 3.10.

The public GenCo is better of with 80% of the capacity while the private GenCo can
increase the cleared-price by bidding higher values. Indeed, the expected behavior is ob-
served in the simulation. By running the simulation 30 times when (αi0 = 0.1, εi0 = 0.9),
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Table 3.10: GenCos’ Parameters in the modified Case Study 1

ID Pmax
i ci Bi

1 {80, 100} 10 {20}
3 {80, 100} 10 {20, 50, 90, 120}

we obtained G1 = ($20, 80MWh) and G3 = ($120, 80MWh) as the converged bids at
the end of simulation for all the replications.

We also observe more variability on Q-values since a fixed offer (bid, power) will
have more options against (at lease two-fold) that even some of which might be infeasible
to fulfill the demand. This issue indicates that simulation time span (maxt) has to be
extended to alleviate convergence problem.

In Figure 3.10, we repeat the same experiment under various (αi0, εi0). Settings cor-
respond to dark blue regions withhold capacity at its maximum permissible level (80%).
Interestingly, GenCos’ decisions in these dark blue regions show more robustness as well.

Figure 3.10: Average offered capacity percentage (left) and variability in reached strategy
(right)

If we change the ISO pricing strategy to pay-as-bid, the public GenCo has no incentive
to share the demand. Therefore, it will offer its total generation capacity to the ISO. On
the other hand, private GenCo will lose the market if it offers any price above $20 per
MWh; so, the private GenCo will go for full capacity exactly with $20 per MWh.

Uniform pricing strategy will lead to same results as DC-OPF. This behavior is ex-
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Table 3.11: GenCos’ parameters in Case 2 with Capacity withholding

ID Pmax
i ci Bi

1 {240, 300} 20 {20, 30, 40, 50}
2 {240, 300} 20 {20}
5 {200, 250} 30 {30, 40, 50}

pected since in the absence of congestion, DC-OPF gives similar prices as uniform pricing
at all nodes [116].

3.5.3 Case Study 2 with Capacity withholding

We now have three GenCos: GenCo-1 and GenCo-2 with the lowest generation cost of
$20 per MWh and GenCo-5 with $30 per MWh.

After running the simulation for 30 replications, GenCos converge to the following
strategies at the end of simulation:

1. GenCo-1 (b1 = 30, P1 = 240): Because generation cost imposes GenCo-1 to offer
a price above 20, it turns out to be exactly 30. By offering $30, GenCo-1 guaran-
tees its winning as production cost of GenCo-5 is $30. However, if it offers all its
generation capacity, GenCo-5 will not have any chance to win; therefore, the price
of electricity will be $30. By presenting 240MWh instead of 300MWh, GenCo-1
together with GenCo-2 keep 20MWh extra demand for GenCo-5 to increase the
market price of electricity for its benefit.

2. GenCo-2 (b2 = 20, P2 = 240): GenCo-2 should offer $20 since it has no other
choice. However, GenCo-2 shall not offer 300MWh since GenCo-5 does not have
any chance to increase the market-cleared price. It needs both GenCo-1 and GenCo-
2 keep some of their generation capacity.

3. GenCo-5 (b5 = 50, P5 = 200): GenCo-5 shall not offer $30 since its generation
cost is 30. Bidding above $30, which is above GenCo-1s bid, causes the remaining
demand ((D = 500) − (P1 + P2 = 480) = 20MWh) to be allocated to GenCo-5.
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Since the assigned power to GenCo-5 is fixed, it is better to bid as high price as
possible to increase the marginal profit per MWh.

In Figure 3.11, we repeat this experiment with various (αi0, εi0). GenCos withhold
capacity around 80.20% when (αi0, εi0) is chosen from dark regions. Similar to Figure
3.10, GenCos’ decisions in dark regions are more robustness.

Figure 3.11: Average offered capacity percentage (left) and variability in reached strategy
(right)

The results exhibit the key role of market-cleared price in GenCos’ coordination.
Market-cleared price carries necessary information to GenCos which can assist them in
adjusting themselves with others. Although unused capacity is assumed to be lost, the re-
sults confirm the profitability of capacity withholding. This means participating in other
consecutive markets (e.g., future market) to sell unused capacity may motivate GenCos to
withhold capacity even more.

3.6 Effect of Risk

Electricity markets are oligopolies and electricity demand is often considered inelastic
in the short term with respect to price. In addition, transmission line constraints and the
relative locations of electricity demand and supply can provide market power to individual
GenCos. Due to all these reasons, GenCos can bid strategically above their marginal costs
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and obtain positive profit. This possibility, and the importance of the power sector for the
economy has triggered a wave of research into GenCos’ strategic bidding behavior [See,
for example, 24, 67].

Although convergence to a Nash equilibrium is an important theoretical question, it
has been somewhat over-emphasized in academic literature [91]. Electricity market liter-
ature has a shortage of works that focus on the level and variability of GenCos’ profits,
which motivates studies on the effect of risk aversion. Literature that addresses GenCo
behavior assumes risk-neutral decision makers whose objective is to maximize expected
profit only. In reality, however, GenCos are exposed to increased levels of risk due to fluc-
tuations in hourly prices and dispatched power quantities. Thus, they may act risk-averse
in bidding. Dahlgren et al. [23] provide an early review of risk assessment methods in
energy trading. We study the effect of GenCo’s risk aversion on bidding behavior and
profits. To this end, we adopt a model where risk is captured through the variance of past
realized profits.

A number of researchers have formulated stochastic programming models to develop
bidding strategies under the supply and price risks that GenCos face. For example, Ni
et al. [78] consider the bidding risk of a producer that owns hydro, thermal and pumped-
storage units. The authors illustrate how profit variability can be reduced through the risk
management algorithm they introduce. Morales et al. [72] develop a stochastic program-
ming model to addresses the supply and price uncertainties in the day-ahead, adjustment
and balancing markets that a wind producer faces. Cabero et al. [14] modeled the market
risk management problem in an oligopolistic market where network structure is ignored.
They solve resulted equilibrium problem with Bender decomposition.

Conejo et al. [20] address the self-scheduling problem of a power producer. The au-
thors consider the trade-off between maximizing profit and minimizing risk by taking into
account the variance of the market-clearing price in the day-ahead market. Dicorato et al.
[30] study a similar problem with a convex optimization model where risk aversion in
captured through a constraint on the conditional value-at-risk (CVaR) of daily profit.

The aforementioned papers assume price-taking GenCos operating under perfect com-
petition. Ventosa et al. [107]’s survey cites Batlle et al. [8] as the only work that addresses
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risk management of firms under imperfect competition. Batlle et al. [8] develop a Monte
Carlo simulation model to capture hydro production and demand risks in electricity mar-
kets under Cournot competition. The authors use risk measures such as value-at-risk
(VaR) and profit-at-risk (PaR). Gountis and Bakirtzis [44], similar to our study, consider
a competitive market with network constraints. The authors solve a bi-level optimization
problem in which competing GenCos submit linear supply functions at the first stage, and
the ISO determines the dispatch in the second stage. Each GenCo holds a probabilistic
view of competitor behavior and system load. Expected profits are characterized with
Monte Carlo simulations, whereas the optimal bidding strategy is found through Genetic
Algorithms. The authors illustrate how risk aversion affects GenCos’ bidding strategy.
Caruso et al. [16] consider both a pool and a bilateral-contract structure. Expected profits
are determined through a Monte Carlo simulation, and risk is quantified through VaR and
CVaR.

Another stream of risk-related papers are those that address the generation portfolio
selection problem of a single GenCo. For instance, Fleten et al. [38] present a stochas-
tic programming model for an integrated portfolio selection and scheduling problem for
a risk-averse hydro producer participating in the Nord Pool. Gielis [42] discuss the ef-
fect of risk aversion on power plant investment decisions using agent-based simulation
and Monte Carlo approaches on the EMLab-Generation model. The author compares re-
sults under CVaR, and two utility approaches: constant absolute risk aversion (CARA)
and constant relative risk aversion. Vehviläinen and Keppo [104] develop a Monte-Carlo
simulation to optimize a power portfolio composed of physical and financial assets.

The major contributions of our work can be summarized as follows.

• Building on Krause et al. [62], we develop a flexible agent-based simulation model
to characterize the evolution of the dynamic electricity market under transmission
grid constraints. In particular, we extend the learning model of Krause et al. [62]
and Krause et al. [63] by considering time-dependent learning model parameters,
similar to Esmaeili Aliabadi et al. [34]

• Using a mean-variance approach, we study the effects of risk aversion on GenCos’
bid prices, profits and learning behavior.
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• Different from most studies in literature, we present a large-scale numerical analysis
with a wide range of parameter combinations.

3.7 Model with Risk-Averse GenCos

In this model, GenCos are allowed to be risk-averse, where each GenCo maximizes its
expected utility. This risk-averse model encompasses the risk-neutral model of Section 3.2
as a special case. The utility of bid price alternative bij to GenCo-i is increasing in its
Q-value Qij , and decreasing in the standard deviation of past realized profits from that
alternative (which are recorded in the set Hij). Accordingly, GenCo-i’s best identified bid
price is determined as

b∗i = Max
bij

{
Qr
ij

}
(3.4)

where Qr
ij = (1− βi)Qij − βi

√∑
rij∈Hij

(rij −Qij)2

|Hij| − 1
. (3.5)

Parameter β ∈ {0, 1} denotes the risk aversion level of the GenCo where β = 0

corresponds to the risk-neutral case and higher β values correspond to more risk-aversion.
Note that risk aversion does not affect how the Q-value associated with each bid price
alternative is updated; the update is still based on profits as given in Equation (3.1).

3.8 Simulation Study with Risk-Averse GenCos

To address risk aversion, two modifications are made in the simulation algorithm. First,
the best identified bid price alternative is now determined based on the risk-modified Qr-
values as shown in Equation (3.4). Second, the initial η iterations of the simulation are
defined as the risk ignorance periods. During these iterations, the variance component of
Equation (3.4) is ignored in GenCo-i’s best bid price determination as there are only a few
observations in initial iterations to support meaningful variance calculations. Therefore,
we set η = maxt/2.
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We study the effects of risk aversion on GenCos’ bid prices and profits using a new
case study, Case 4. All reported results are averages over 30 random runs. The number
of iterations in each run is 2000. The initial Q-learning parameters are εi0 = 0.85 and
αi0 = 0.15 for all GenCos. Note that this structure provides GenCo-3 advantage due to
zero generation cost, whereas GenCo-4 is at an unfavorable position with a relatively high
generation cost.

3.8.1 Identical Risk Aversion Level

For this analysis, we assume all three GenCos to have the same risk aversion level. We
initially focus on the picture at the end of the simulation, that is, at iteration number 2000.
Figure 3.12(a) provides the best identified bid price at the end of the simulation for each
GenCo, averaged over 30 runs. The horizontal axis depicts the identical risk aversion
level β. Figure 3.12(b) presents the corresponding profit values.
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Figure 3.12: End-of-simulation results (a) The best identified bid prices (b) Profits

From Figure 3.12(a), we observe the best bid prices of GenCo-3 and GenCo-4 to be
quite stable for different risk aversion levels. GenCo-3 mostly bids 9. It ventures into
bidding 18 only for relatively small β values. GenCo-4 bids its maximum price of 45 for
any β value except zero. GenCo-2, on the other hand, responds to different levels of risk
aversion. In fact, the profit results observed in Figure 3.12(a) are driven by the changes
in GenCo-2’s bid price b2. As β increases from 0.00 to around 0.38, b2 increases. When
risk-neutral, GenCo-2 usually bids 20, but as it becomes risk-averse, it tries higher bid
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prices such as 30 or 40 more frequently. These higher bid prices lead to higher profits
not only for GenCo-2 itself, but also for its rival GenCo-3 as well. In fact, both GenCos’
individual profits, and also the total profit of all GenCos are maximized at β = 0.38.
Thus, we observe that some level of risk aversion in the market can benefit all GenCos.

After reaching a maximum at β values around 0.38, GenCo-2’s average bid decreases
for higher risk aversion levels. In fact, for β ∈ [0.74, 0.82], GenCo-2 becomes excessively
concerned about the variability in profits and bids its marginal cost 10 more frequently.
For even higher β values, GenCo-2 only bids 10, resulting in zero profits. Such low bids
by GenCo-2 causes a significant reduction in the profit of rival GenCo-3 as well. For
sufficiently high β values, both GenCo-2 and GenCo-3 submit their marginal generation
costs to minimize the variability in their profits. GenCo-4, meanwhile, is observed to
obtain zero profit at the end of the simulation independent of its risk aversion level.
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Figure 3.13: Simulation averages (a) The best identified bid prices (b) Profits

We have discussed the end-of-simulation results when each GenCo-i bids its best
identified price b∗i as of iteration 2000. While these converged results are of interest,
they do not necessarily represent what has happened throughout the 2000 iterations of
the simulation, especially in the initial iterations where the most of learning takes place.
Figures 3.13(a) and (b) provide the average bid prices and profit values over all 2000 it-
erations of the simulation, again averaged over 30 runs. A comparison between Figure
3.12 and Figure 3.13 illustrate the effects of GenCo learning and strategic interaction over
time.

The similarities in shapes indicate strong convergence in bid prices. The differences in
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bid prices point to changes in GenCo bidding behavior over time. In particular, the effect
of risk aversion on GenCo-2’s bids become sharper over iterations. GenCo-3 bids higher
prices than 9, and GenCo-4 bids lower prices than 45 throughout the iterations. Accord-
ingly, GenCos’ profits converge to more extreme levels at the end of the simulation. For
β < 0.74, the competing GenCos, GenCo-2 and GenCo-3, achieve higher profits at the
end of the simulation than in the initial iterations. For higher β values however, the ex-
treme risk aversion of GenCo-2 causes a reduction in both GenCos’ profits. Meanwhile,
as expected, GenCo-4’s profits converge to zero over iterations. All these observations un-
derscore the importance of risk aversion on GenCo bidding behavior and resulting profit
levels in an environment shaped by dynamic learning and competition.

Figure 3.14 presents the corresponding DC-OPF optimal solution value, ΣbiPi, and
total payment to GenCos, Σ(LMP )iPi as a function of the identical risk aversion level.
Comparing the end-of-simulation and simulation-average results, we make the following
two observations:

• DC-OPF optimal value: Under almost all risk aversion levels, the end-of-simulation
DC-OPF objective function value is lower than the simulation-average value. The
ISO’s auction mechanism seems to be successful in driving GenCos’ bid prices
down throughout the simulation. Note that the difference becomes larger for β >

0.74.

• Total payment to GenCos: For β < 0.45, the total payment to GenCos (hence,
their total profit) is higher at the end of the simulation than the average payment
during simulation. As long as the GenCos are not very risk-averse, they collectively
learn to obtain better profits over time. For β > 0.45, however, the observation is
reversed; risk-averse behavior of GenCo-2 causes a reduction in total GenCo profits.
This reduction is especially acute for β > 0.74, where GenCo profits are adversely
affected by extreme price competition.

This analysis sheds light onto the effect of risk aversion level on GenCos’ bids and
profits. Overall, while some level of risk aversion can be beneficial to GenCos’ total
profits, high levels of risk aversion is observed to degrade profits due to extreme price
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Figure 3.14: DC-OPF objective value and total payments to GenCos (Presenting both
end-of-simulation and simulation-average results)

competition. Another important observation shows that the ISO is optimizing wrong cri-
terion. We suggest ISO to optimize (minimize)

∑
i(LMPi×Pi) instead of

∑
i(bi×Pi) or

change its payment strategy from paying nodal price of LMPi to bid price bi per MWh

to winning bids.

3.8.2 Differing Risk Aversion Levels

We analyze the effects of changes in the risk aversion levels of individual GenCos, focus-
ing initially on GenCo-2. Figure 3.15 presents the average profits and average bid prices
of each GenCo at a separate column, as a function of β2 (in the y axis) and the other
two β values (in the x axis, assumed equal to each other) over the whole simulation run.
If β2 increases, while keeping β3 and β4 constant, we observe the profit of GenCo-2 to
decrease. This is expected as this GenCo now bids lower prices. Interestingly, GenCo-
3’s profit also decreases due to increased competition. GenCo-4’s average profit, too, is
reduced for most instances. The only exception with GenCo-2 occurs for very high β2

values where GenCo-2 bids its minimum price 10 most of the time. In this case, GenCo-4
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has a chance to make some profit only if β4 is relatively low (the northwest corner of the
graph). Figure 3.16 presents the end-of-simulation version of the same analysis.

GenCo-2 GenCo-3 GenCo-4

r i
b i

Figure 3.15: Bid prices and profits as a function of β2 vs. β3 = β4, simulation average

GenCo-2 GenCo-3 GenCo-4

r∗ i
b∗ i

Figure 3.16: Bid prices and profits as a function of β2 vs. β3 = β4 at the end of simulation

Next, we investigate the effects of a simultaneous increase in β3 and β4, while keeping
β2 fixed, for example, at zero. When the competitor GenCos become more risk-averse,
they might be expected to reduce their bid prices, leading to a decrease in GenCo-2’s
profit. Our simulation, however, yields the opposite outcome. As β3 and β4 increase, we
observe GenCo-2 to increase its bid price, leading to an increase in its profit. The key
to understanding this counterintuitive result is GenCo-4’s behavior. GenCo-4 simply bids
its highest price alternative of 45. For this price, this GenCo is assigned no dispatch and
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receives zero profit. If GenCo-4 bids one of the lower prices, there is a slight chance
that it will be assigned some dispatch and some profit. When this happens, however, the
variability in profit also increases which is not desirable for a risk-averse GenCo.

Figure 3.17 illustrates the average bid price and profit level of each GenCo-i (in a
column) over the simulation as a function of its own βi (in the y axis) and the other
GenCos’ β values (in the x axis). The leftmost column is the same as that of Figure 3.15.
The middle column, for example, illustrates GenCo-3’s average bid price and profit as a
function of β3, and (β2 = β4). We observe that GenCo-3’s profit depends mostly on the
risk aversion level of the other GenCos, particularly that of GenCo-2, than its own β3.
For instance, GenCo-3 bids high prices only if its risk aversion level is low. Otherwise,
this GenCo sticks to the advantageous bid price of 9. Given this b3, GenCo-3’s profit
level becomes a function of b2, which decreases if β2 increases. Note the emergence
of β = 0.38 as a critical value again in this graph. GenCo-3 profits, in particular, are
maximized when the other β values are around β2 = β4 = 0.38. GenCo-4 makes a much
lower profit compared to GenCos 2 and 3. GenCo-4’s profit is maximized when β4 is
at intermediate values, while β2 and β3 are relatively low; that is, when the other two
GenCos’ risk aversion level is low and consequently they do not engage in intense price
competition.

Figure 3.18 presents the corresponding graphs at the end of simulation. Compared to
the simulation-average values, we observe GenCo-2’s and GenCo-3’s profits to be higher.
GenCo-4’s end-of-simulation profit, on the other hand, has converged to zero independent
of its own risk aversion level.

3.8.3 Learning Dynamics

To understand the effects of learning dynamics, next, we drill further down into the details
of the learning model. This discussion illustrates how the learning, strategic interaction
and risk aversion components of our model interact with each other. Figure 3.19 presents
how the three GenCo’s Qr-values, hence the best identified bid prices, change over it-
erations for a given risk profile (β2, β3, β4). The figure on left presents the case of the
risk profile (0, 0, 0), corresponding to the bottom left corner of the relevant graph in Fig-

85



GenCo-2 GenCo-3 GenCo-4
r i

b i

Figure 3.17: Bid prices and profits as a function of risk aversion levels, simulation average

GenCo-2 GenCo-3 GenCo-4
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Figure 3.18: Bid prices and profits as a function of risk aversion levels at the end of
simulation

ure 3.16. The figure on right presents the case of the risk profile (0, 1, 1). Recall that our
model ignores the effect of risk during the so-called risk ignorance periods; the risk model
kicks in after iteration 1000. In fact, iteration 1000 is indicated with a dashed vertical line
at each graph.

When all GenCos are risk-neutral (Figure 3.19(a)), we observe the best identified bid
prices of GenCo-2 and GenCo-3 to take some time to converge, due possibly to the tight
competition between these two GenCos. The best identified bid price emerges as 20 for
GenCo-2 and 9 for GenCo-3. Once this equilibrium between GenCos 2 and 3 is reached,
GenCo-4’s bids become irrelevant as it is driven out of the market.

When GenCo-2 is risk-neutral but GenCos 3 and 4 are extremely risk-averse (Fig-
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ure 3.19(b)), the best identified bid price for GenCo-2 changes from 20 to 30 once risk
aversion kicks in. For GenCo-3, 9 arises as the best identified bid price. Recall that
bidding 9 brings in a decent profit to GenCo-3 while not having the profit variability dis-
advantage of the higher bid prices.

Risk Profile (0, 0, 0) 
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Figure 3.19: Qr-value evolution graphs (a) Risk profile (0, 0, 0), (b) Risk profile (0, 1, 1)

3.9 Effects of the Q-Learning Parameters

We study the effects of the Q-learning parameters ε and α on GenCos’ profits. Because
these two parameters are defined as time-decaying, we analyze the effect of their initial
values ε0 and α0. A comprehensive simulation study is conducted using the network
structure of Case 4, which has three learning GenCos. We report the results focusing on
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one of the GenCos (the GenCo-i), while referring to the other two GenCos as the rivals.
For all simulation runs, maxt = 2000 and η = 1000 values are used.

GenCo-i is assumed to be risk neutral. For this GenCo, results are reported under 21
x 21 = 441 parameter combinations of (εi0, αi0), where each of the two parameters range
between 0 and 1, with an increment size of 0.05.

For a given (εi0, αi0) combination of GenCo-i, we speak of different scenarios char-
acterizing the parameters of the two rival GenCos (GenCo-j where j 6= i). Each of the two
rival GenCos’ parameters are chosen from the following sets: (α−j0 ∈ {0, 0.2, 0.8}, β−j0 ∈
{0, 0.4, 0.8}, ε−j0 ∈ {0.2, 0.4, 0.8}). Thus, 33×33 = 729 scenarios are considered. In each
scenario, the same stream of random numbers are used, and the results are averaged over
10 simulation runs. GenCo-i is assumed to have no information about the parameters of
its two competitors; hence, it believes all scenarios to be equally likely. Consequently,
for each (εi0, αi0) combination of GenCo-i, the average Q-value (Qi) and the average
cumulative profit (CPi) over all 729 scenarios are reported. All in all, this comprehen-
sive simulation study required the DC-OPF problem to be solved 19,289,340,000 times (3
GenCo-i × 441 combinations × 729 scenarios × 10 runs × 2000 iterations). The study
took around 2000 hours on an Intel Core i7 @ 3.2GHz computer with 24GB RAM.

Figure 3.20 presents the results where each column corresponds to a GenCo-i. Graphs
in the first row illustrate GenCo-i’s expected profit, that is, the Q-value of the best iden-
tified bid at the end of the simulation; whereas those in the second row illustrate the
cumulative profit (CP) throughout the simulation. First, αi0 is observed not to have a
major impact on profit results unless its value is very low. That is, the profits are robust
to the initial value of recency rate alpha as long as some updating of Q-values occur.
The exploration parameter εi0, on the other hand, is seen to have a significant impact on
profits. The direction of this impact, however, is ambiguous. For GenCo-2, high explo-
ration levels lead to better profits. For GenCo-3, this is true for the end-of-simulation
profit; yet, the cumulative profit first increases then decreases with the exploration param-
eter. For GenCo-4, profit is uniformly increasing in the exploration parameter. Recall
that GenCo-4 is at a disadvantageous position compared to the other GenCos. As sug-
gested in Figure 3.20, this GenCo can maximize its expected profit by acting as randomly
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as possible (corresponding to ε40 = 1), thereby disrupting the learning of the other two
GenCos.

We compare the end-of-simulation expected profit (the first row graph) and the cumu-
lative profit over the simulation (the second row graph) for each GenCo-i. For GenCos
2 and 4, these two graphs exhibit overall parallel results. That is, (εi0, αi0) combinations
that yield the highest expected profit at the end of the simulation also happen to provide
the highest cumulative profit throughout the simulation. For GenCo-3, however, we ob-
serve significant differences. This GenCo can identify better profit opportunities at the
end of the simulation by exploring excessively, however, this comes at a cost of achieving
a lower cumulative profit. Overall, the only parameter that has a major profit impact at the
end of the simulation turn out to be the exploration parameter of GenCo-2: High values
of this parameter is observed to significantly increase the expected profit of GenCo-2.

Figure 3.20: Qi (first row) and CPi (second row) for different (αi0, εi0) combinations
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3.10 Results

We study the effect of the ISO’s market-clearing mechanism and risk aversion on the
bidding behavior of GenCos in an electricity market. We compare the results under two
well-known pricing rules, uniform and pay-as-bid pricing, as well as under equal and
random rationing policies. Learning is modeled through a modified Q-learning algorithm
with time-decaying parameters and risk aversion is captured as aversion to variability
in profits. Given GenCos’ bids, to determine locational marginal prices and GenCos’
power dispatches, the ISO solves a DC-OPF problem that considers the physical network
characteristics.

We implement the simulation model on four case studies representing different levels
of market complexity. Results are reported under all possible combinations of the two key
learning-model parameters.

Our simulation results indicate that under most parameter settings the market does
converge to either a Nash equilibrium or a state that has identical payoffs with a particular
Nash Equilibrium (a semi-Nash state, as we define it). The convergence frequency to
Nash Equilibria is found to be lower for more complex cases. Another important result
is about the level of competition in the market, which we measure through the difference
between the best identified bid and production cost for each GenCo. Uniform pricing with
random rationing policy is observed to be the most successful in making GenCos submit
closer bids to their production costs, hence in promoting competition among GenCos.
In particular, the random rationing policy is seen to be effective in disrupting GenCos’
learning process, which can be instrumental if the ISO needs to prevent GenCos’ learning
towards, for instance, a collusive equilibrium.

Another major finding is that some level of risk aversion may indeed be beneficial for
GenCos’ total profits compared to the risk-neutral case. On the other hand, high levels
of risk aversion is shown to intensify price competition and degrade profits. We illustrate
how altering the risk aversion level of even one GenCo can trigger changes in the bidding
behavior and profit levels of all GenCos through learning and market interaction among
GenCos.
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Our findings highlight the importance of what static game-theoretical models fail to
capture: Dynamics of the interaction between competing GenCos that learn from experi-
ence. One should be cautious in using such models to investigate a dynamic markets such
as the day-ahead electricity market. In addition, we illustrate the role of risk aversion in
shaping GenCo behavior and market evolution. This aspect is overlooked in most electric
market studies, game-theoretical or agent-based simulation alike.

The agent-based simulation model that we developed for this study is a detailed and
versatile one. We plan to extend this model to address further questions on strategic
interactions in electricity markets. One future research direction is the study of GenCos’
collusive behavior (i.e., studying GenCos’ bidding behavior in existence of SCE states by
using agent-based simulation). Another can be on the effects of a second market (e.g.,
futures market). One may also use a more sophisticated measure of risk such as CVaR.
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Chapter 4

Conclusion

In this dissertation, the bidding behavior of power generation companies (GenCos) is stud-
ied using an agent-based simulation model. GenCos are modeled as agents that bid prices
repeatedly for each hour of the day-ahead market. Learning is modeled through a mod-
ified Q-learning algorithm with time-decaying parameters, and risk aversion is captured
as aversion to variability in profits. Given GenCos’ bids, to determine nodal prices and
GenCos’ power dispatches, the ISO solves a pricing problem that considers the physical
network characteristics.

4.1 Original Contribution

The contribution of the present work is threefold:

• We study the existence and identification of collusion among GenCos in a dereg-
ulated (oligopolistic) electricity market when transmission network constraints are
under consideration within the market clearance mechanism of the ISO. We exam-
ine characteristics of collusion based on market parameters and strategic behaviors
of GenCos. Strategic behavior of GenCos is modeled within an infinite horizon
game. We develop a bi-level mathematical programming problem to model the
market clearance mechanism of the ISO where the behavior of GenCos and net-
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work constraints are considered. The problem has multiple non-linear objective
functions where GenCos compete at the leader level and the optimal power flow is
determined at the follower level. Using linear programming theory and the methods
in multi-objective optimization, the problem is simplified to a constrained optimiza-
tion problem with a linear objective function. An optimization-based approach is
proposed to solve the problem. In our computational study, we present case studies
which indicate how collusion can be detrimental for the end consumers disrupting
the competition. Based on the cases, we also discuss alternative courses of action
for the ISO to cope with and avoid collusion.

• In the next chapter, we study the effect of the ISO’s market-clearing mechanism
and risk aversion on the bidding behavior of GenCos in an electricity market. We
compare the results under two well-known pricing rules, uniform and pay-as-bid
pricing, as well as under equal and random rationing policies. We implement
the simulation model on four case studies representing different levels of market
complexity. Results are reported under all possible combinations of the two key
learning-model parameters. Our simulation results indicate that under most param-
eter settings the market does converge to either a Nash equilibrium or a state that
has identical payoffs with a particular Nash Equilibrium (a semi-Nash state, as we
define it). The convergence frequency to Nash Equilibria is found to be lower for
more complex cases. Another important result is about the level of competition in
the market, which we measure through the difference between the best identified
bid and production cost for each GenCo. Uniform pricing with random rationing
policy is observed to be the most successful in making GenCos submit closer bids
to their production costs, hence in promoting competition among GenCos. In par-
ticular, the random rationing policy is seen to be effective in disrupting GenCos’
learning process, which can be instrumental if the ISO needs to prevent GenCos’
learning towards, for instance, a collusive equilibrium.

The next major finding is that some level of risk aversion may indeed be beneficial
for GenCos’ total profits compared to the risk-neutral case. On the other hand, high
levels of risk aversion is shown to intensify price competition and degrade profits.
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We illustrate how altering the risk aversion level of even one GenCo can trigger
changes in the bidding behavior and profit levels of all GenCos through learning
and market interaction among GenCos.

• The results when GenCos are capable of withholding capacity exhibit the key role
of market-cleared price in GenCos’ coordination. Market-cleared price carries nec-
essary information to GenCos which can assist them in adjusting themselves with
others. Although unused capacity is assumed to be lost, the results confirm the
profitability of capacity withholding. This means participating in other consecu-
tive markets (e.g., future market) to sell unused capacity may motivate GenCos to
withhold capacity even more.

Our findings highlight the importance of what static game-theoretical models fail to cap-
ture: Dynamics of the interaction between competing GenCos that learn from experience.
One should be cautious in using such models to investigate a dynamic markets such as the
day-ahead electricity market. In addition, we illustrate the role of risk aversion in shaping
GenCo behavior and market evolution. This aspect is overlooked in most electric market
studies, game-theoretical or agent-based simulation alike.

Our results have important regulatory and managerial implications. Effects of market-
clearing mechanism and risk aversion would be a particularly important concern for mar-
kets that have a number of relatively small GenCos at key grid positions. The ISOs may
use simulation models such as ours for the purpose of customizing their market-clearing
mechanisms based on the risk aversion levels (related to firm size and financial status etc.)
and learning capabilities (related to human resources and access to information etc.) of
the GenCos in their markets.

4.2 Future Work

In order to focus on the strategic level questions, as it is customary in related literature,
we considered only a simplistic power system in this thesis. This work can definitely be
extended to address more complex networks, or more operational-level problems. The
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goal is to strike a good balance between capturing practical system details and avoiding
expositional complexity.

Although the agent-based simulation model that we developed for this thesis is a de-
tailed and versatile one, we plan to extend this model to address further questions on
strategic interactions in electricity markets. One future research direction is the study
of GenCos’ collusive behavior. Another can be on the effects of a second market. One
may also use a more sophisticated measure of risk such as CVaR. Likewise, a different
learning model can be used; or our Q-learning model can be extended to achieve better
performance. For instance, a GenCo may improve its profit by “tracking and reacting to”
Q-values that decrease. Alternatively, the power dispatch results in each period can be
used in Q-value updates.
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Appendix

A Details of case studies

A.1 Case 1: Public GenCo versus Private GenCo

The simplified transmission grid is illustrated in Figure 4.1. Node 1 represents the pub-
lic GenCo company and Node 3 represents the private one while Node 2 represents a
load/demand center. The properties of transmission lines are shown in Table 4.1; the first
column Src(k)/Dst(l) shows the source and the destination nodes of transmission line;
the second column depicts the value of ykl of the line k to l and the last column shows the
maximum flow on the line. The public GenCo benefits from subsidies to keep the price of
energy as low as possible. As a result, it offers a bid price which is equal to its production
cost (C1). The list of possible offers ($ per MW) for both companies are given in Table
4.2 along with their production capacities and production costs.

Figure 4.1: The transmission grid for Case 1
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Table 4.1: Transmission line properties

Src (k)/ Dst (l) ykl Fmax
kl

1/2 4 20
2/3 4 No Limit

Table 4.2: Parameters of the GenCos

ID Pmax
i Ci Bi

1 110 10 {10}
3 100 10 {10, 20, 30, 40}

A.2 Case 2: Two GenCos as Learning Agents

In the second case study, we have a five-node transmission grid governing the power
market. The properties of transmission lines are given in Table 4.3. The network structure
along with generation capacities and demand load data are given in Fig.4.2 and Table 4.4,
respectively. Node 3 is the reference bus in this system (i.e. the voltage angle of reference
bus is zero in DC-OPF). Node 1 and Node 5 are the GenCos that benefit from learning.

Figure 4.2: The network for Case 2 and Case 3
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Table 4.3: Transmission line properties in Case 2

Src (k)/ Dst (l) ykl Fmax
kl

{1/2, 1/3, 2/4, 3/4, 4/5} 4 No Limit
2/5 4 100

Table 4.4: Parameters of GenCos in Case 2

ID Pmax
i Ci Bi

1 300 20 {20, 30, 40, 50}
2 300 20 {20}
5 250 30 {30, 40, 50}

A.3 Case 3: Three GenCos behaving as active agents

If we change the second case study’s bid alternatives for b2 from {20} to {20, 30, 40, 50}
the system would have multiple Nash equilibria. Table 4.5 shows all possible outcomes
under DC-OPF pricing: light-gray cells are the best responses of the GenCo-2 to the
action of GenCo-1, bold-text cells are the best responses of the GenCo-1 to the action
of the GenCo-2, and italic-text cells are the best responses of the GenCo-5 to the given
action of GenCo-1 and GenCo-2. The intersection of all best responses are highlighted in
dark-gray; they represent the Nash equilibria.

A.4 Case 4: Three active GenCos with a centralized demand node

In this case, we have created a small market with three GenCos; Fig.4.3 shows structure
of undertaken market. The second GenCo benefits from wind power technology; this is
why, production cost is negligible in Table 4.6. Thus, GenCo-2 can offer a lower price to
the ISO (cost of not fulfilling promised demand is considered in the price of electricity).

B Boundary analysis of the proposed method

To keep tracking the evolution of Q-values over iterations, we modify the Q-value and
payoff notations. Q(t)

ij stands for the Q-value of bij at iteration t. Also, the received payoff
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Table 4.5: Profit of each policy {r1, r2, r5} - Rows: B1, Columns: B2 and separated tables:
B5

b5 = 30 20 30 40 50
20 (428.57, 0, 0) (3000, 785.71, 0) (3000, 0, 0) (3000, 0, 0)
30 (0, 3000, 0) (0, 3000, 0) (2500, 0, 0) (2500, 0, 0)
40 (0, 3000, 0) (0, 3000, 0) (0, 5000, 2500) (5000, 0, 2500)
50 (0, 3000, 0) (0, 3000, 0) (0, 5000, 2500) (0, 7500, 5000)

b5 = 40 20 30 40 50
20 (857.14, 0, 1214.29) (3428.57, 785.71, 1214.29) (6000, 1571.43, 1214.29) (6000, 0, 2000)
30 (416.67, 2500, 1583.33) (3428.57, 785.71, 1214.29) (6000, 1571.43, 1214.29) (6000, 0, 2000)
40 (0, 6000, 2000) (0, 6000, 2000) (0, 6000, 2000) (5000, 0, 2500)
50 (0, 6000, 2000) (0, 6000, 2000) (0, 6000, 2000) (0, 7500, 5000)

b5 = 50 20 30 40 50
20 (1285.71, 0, 2428.57) (3857.14, 785.71, 2428.57) (6428.57, 1571.43, 2428.57) (9000, 0, 4000)
30 (416.67, 2000, 3166.67) (3857.14, 785.71, 2428.57) (6428.57, 1571.43, 2428.57) (9000, 2357.14, 2428.57)
40 (833.33, 5500, 3166.67) (833.33, 5500, 3166.67) (6428.57, 1571.43, 2428.57) (9000, 2357.14, 2428.57)
50 (0, 9000, 4000) (0, 9000, 4000) (0, 9000, 4000) (0, 9000, 4000)

Table 4.6: GenCos bidding sets and costs

ID Pmax
i Ci Bi

2 1200 10 {10, 20, 30, 40}
3 800 0 {9, 18, 20}
4 1000 15 {15, 25, 35, 45}
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Figure 4.3: Structure of market

of GenCo-i at iteration t is r(t)
i .

B.1 Conventional Q-learning

by using mathematical induction we know,

Q
(n)
ij = (1− αi)Q(n−1)

ij + αir
(n)
i ;Q

(0)
ij = 0

when t = 1⇒ Q
(1)
ij = (1− αi)Q(0)

ij + αir
(1)
i

when t = 2⇒ Q
(2)
ij = (1− αi)Q(1)

ij + αir
(2)
i = αir

(2)
i − (α2

i − αi)r
(1)
i
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The closed form is as follow.

Q
(n)
ij = (αi)

n∑
t=1

r
(t)
i (1− αi)(n−t) (B.1)

Boundary Condition 1.

When αi = 1 ⇒ Q
(n)
ij = r

(n)
i from Eq.(B.1) by setting αi = 1 just for t = n we get 1

from (1− αi)n−t = 00 = 1.

Boundary Condition 2.

When εi = 0. ε parameter determines how much exploration should be done. Therefore,
if εi = 0 then the GenCo only selects bij corresponds to Q(1)

ij (by assuming positive r(1)
i ),

because all other Q(1)
iJ = Q

(0)
iJ = 0 when J 6= j.

Q
(n)
ij = r

(1)
i (1− αi)n

((
1

1− αi

)n
− 1

)
(B.2)

= r
(1)
i (1− (1− αi)n) = r

(1)
i − (1− αi)nr(1)

i

So, if we assume to conduct experiment up to infinity (maxt =∞) then limn→∞Q
(n)
ij =

r
(1)
i . Therefore, GenCos cannot make more profit per iteration by increasing the number

of iterations.

Boundary Condition 3.

Finally, if αi = 0 then Q(n)
ij = 0 from Eq.(B.1).

B.2 Q-learning with variable learning rate

The closed form of Q-values in presence of variable learning rate is as follows.

Q
(n)
ij =

n∑
t=0

αitr
(t)
i Πn

t̂=t+1(1− αit̂) (B.3)
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Also, we have αit = αi0 − t
n
(αi0 − αi0

10
) = αi0 − 9tαi0

10n
. Because in each iteration, Q(n)

ij is
a convex combination of non-negative ris, Q(n)

ij is non-negative.

Boundary Condition 4.

if ε = 0 then from Eq.(B.3) we get following equation.

Q
(n)
ij = r

(1)
i

n∑
t=0

αitΠ
n
t̂=t+1(1− αit̂) (B.4)

because r(n)
i = r

(1)
i . In this situation Q

(n)
ij is not only affected by r

(1)
i but is also a

function of maximum number of iterations and the initial learning rate. We refer to
f(n) =

∑n
t=0 αitΠ

n
t̂=t+1

(1 − αit̂) as learning function when αit = αi0 − 9tαi0

10n
. Fig.4.4

depicts the evolution of f(n) over different n, considering different αi0.

Figure 4.4: effect of f(n) for different αi0 over different n

Proposition 16 (Bounded Learning Function) f(n) is an increasing bounded function

that converges to a number between [0, 1].

Proof. we know that f(n) =
∑n

t=0 αi0TtΠ
n
t̂=t+1

(1− αi0Tt̂) when Tt = 1− 9t
10n
∈ [1, 0.1]

is a scale parameter and decreasing. Therefore, f(n) ≥ 0 and f(n) = 0 when αi0 = 0
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which means no learning employed. However, we also need to find an upper bound for
f(n). The most dramatic increase in f(n) happens when αi0 = 1. Hence,

f(n)|αi0=1 =
n∑
t=0

TtΠ
n
t̂=t+1(1− Tt̂)

=

(
9

10n

)n+1

Γ(n+ 1)
n∑
t=0

(1− 9t
10n

)(
9

10n

)t+1
Γ(t+ 1)

= −
9(n+ 1)

(
1− 9(n+1)

10n

) (
9

10n

)n+1
Γ(n+ 1)

(−n+ 9)( 9
10n

)n+2Γ(n+ 2)
= 1

Thus, f(n) is a bounded function |f(n)| ≤ 1. Also, from definition of f(n) we know,
f(n + 1) − f(n) = αin+1(1 − f(n)) and when f(n) ≤ 1 therefore, f(n + 1) ≥ f(n)

hence f(n) is an increasing sequence.
By using the Bolzano-Weistrass theorem, f(n) converges to some point such as f ′ ∈

[0, 1]. �

By using Proposition.16, Q(n)
ij ≤ r

(1)
i . Also, Q(n)

ij = r
(1)
i when αi0 = 1 for every n > 0

and Q(n)
ij = 0 when αi0 = 0.

Proposition 17 (Continuity of Q-value function) for every ε > 0 there exists δα > 0 such

that |αi0 − 1| < δα then
∣∣∣Q(n)

ij − r
(1)
i

∣∣∣ < ε

Proof. By assuming n as real number, f(n) is a continuous function, Q(n)
ij = r

(1)
i f(n)

is also continuous and by definition of continuous function, we can find such an interval.
Therefore, by increasing (n) a GenCo cannot make better profit than r(1)

i . �

Thus, by checking our algorithm, one can comprehend by choosing εi0 < 8
9

there
exists t ∈ [1,maxt] such that εit̂ = 0 when t̂ ≥ t. Thus, conducting simulation for more
iterations than t won’t help GenCo-i to gain more profit per iteration than the best bid at
time t (see Fig.4.5).
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Learning of GenCos - Exploration parameter 

• Linear decaying function with different 𝑖0 over time

22

𝜖𝑖0 = 1

𝜖𝑖0 = 0.95

𝜖𝑖0 = 0.88𝜖𝑖0 = 0.5

𝜖 𝑖
𝑡

Figure 4.5: Linear decaying function with different εi0 over time

Boundary Condition 5.

Contrary to Boundary Condition 1, Q(n)
ij 6= r

(n)
i when αi0 = 1 because α-value changes

during iterations. Hence, the historical payoff information from GenCo-i’s bids in previ-
ous iterations are considered when αit is a monotone decreasing sequence (αit > αit̂ for t <
t̂).
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