
Peridynamic modelling of

deformation field on isotropic

medium

by
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Abstract

Designing light weight structural parts especially in the areas of aerospace, ma-
rine and automotive industries has become a must over the years to reduce energy
consumption of structures and systems. To this end, numerical models enabling re-
alistic and accurate results for deformations, damage initiations and propagations
inside solid mediums constitutes a corner stone for failure prediction since they
provide flexibility in optimization of design constraints such as topology, material
type and reduction of structural weight.

Within the framework of continuum mechanics, classical approaches are well stud-
ied however they include the restriction of local interactions for finite element
methods since classical theory of continuum mechanics assumes that each individ-
ual particle interacts with those locating in their immediate vicinity. Due to the
inherent formulation of classical theory of continuum mechanics, in case of con-
tinuously transferred thermal and mechanical loadings, the governing laws that
they include partial differential equations become undefined in the presence of
discontinuities inside solid mediums. A study in applied mechanics called peridy-
namic theory introduces a new modelling concept of non-local interactions for solid
structures. To be able to avoid undefined equations of associated problems, the
peridynamic theory of non-local continuum mechanics replaces the spatial partial
differentiations with integro-differential equations.

In the content of this study, deformation field of an isotropic plate under the
effect of uni-axial stretching has been investigated by means of this relatively new
approach of non-local continuum mechanics.



Deformasyon alanının çevresel-dinamik teori ile isotrop ortamlar için
modellenmesi

Çağdaş Akalın

MAT, M.Sc. Tez, 2017

Tez Danışmanı: Doç. Dr. Mehmet Yıldız

Anahtar Kelimeler: Bölgesel olmayan süreklilik mekaniği, çevresel-dinamik
modelleme,yapsal elemanlar

Özet

Son yıllarda, havacılık-uzay, denizcilik ve otomotiv endüstrilerinde dinamik yükler
altında çalışan hafif ve mekanik dayanımları yüksek yapısal elemanların geliştirilme-
si ve bu elemanların bulundukları sistemler üzerindeki atalet etkilerinin azaltılarak
enerji tüketimlerinin düşürülmesi konusu bir hayli önem kazanmıştır. Bu bağlamda,
malzeme deformasyonlarının ve hasar oluşumlarının, hassas ve gerçekçi sonuçlar
üretebilen sayısal yöntemlerle modellenmesi yapısal elemanların ağırlık, topoloji
ve malzeme türü gibi tasarımsal sınırlamaların belirlenmesine ve bunların opti-
mizayonuna esneklikle imkan sağladığından gelişmiş mühendislik uygulmalarının
araştırma-geliştirme süreçlerinde önemli bir yer teşkil etmektedir.

Klasik süreklilik mekaniği nazarındaki yaklaşımlarda her biri sonsuz küçüklükte
kabul edilen diferansiyel elemanların sadece onların bitişik komşuluğunda bulu-
nanlarla etkileşim halinde olduklarının kabul edilmesi sonlu elemanlar yönteminin
kullanıldığı saysal yöntemlerde bölgesel etkileşimlerin neden olduğu kısıtlamaları
içlerinde barındırır. Klasik sürüklilik mekaniğininde ısıl ve mekanik yüklerin dağı-
lımlarının tarifinde kullanılan denklemler doğaları gereği kat ortamda çatlak gibi
süreksizlikler barındırmaları halinde tanımsız hale gelirler. Uygulamalı mekanik
alanında görece yeni bir yaklaşm olarak gösterilebilecek olan çevresel-dinamik
modelleme yöntemi sonsuz küçüklükte diferansiyel elemanların lokal olmayan et-
kileşimine izin vermektedir. Lokal süreklilik mekaniğinin yapı içi süreksizlikleriyle
tanımsız hale gelen denklemleri bu yeni modelleme tekniğinde integro-diferansiyel
denklemler ile değiştirilerek tanımsızlık ortadan kaldırılır.

Bölgesel olmayan süreklilik mekaniğinin bu yeni yaklaşımından yararlanlarak, i-
sotrop malzemler üzerinde mekanik kuvvetler nedenli oluşan deformasyon alanı-
nın sayısal yöntemlerle hesaplanması çalışılmıştır.
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Chapter 1

Introduction

1.1 Motivation and Literature Review

Since classical approaches to model mechanical behaviour of materials including

discontinuities utilize from partial differential equations(PDEs) it is required that

the governing equations have to be continuously differentiable through material

domain. As explained in detail in following chapters of this present study, these

PDEs become undefined when the equations of motion derived based on classical

continuum mechanics are applied on a region including discontinues.

Instead of using partial differential equations, a non-local(being an particle-based

method) approach, named as peridynamic theory, in which one of the fundamental

concept of classical mechanics is that of a particle, [6], is considered as cornerstone,

has been introduced by S.A. Silling in [32]. Non-locality of the peridynamic theory

comes from interactions of each particle with others within a pre-defined sub-

domain so that effects of neighbouring particles on subjected particle are applied

through integro-differential equations.

In literature there can be found many research effort regarding analytical solution

and numerical implementation of peridynamic theory. For instance, idealization of

real structures can also be tuned by their one or two-dimensional representatives,

in a sense is that dispersion of stresses along unbounded rod is examined in [36]. In

addition, analytical solutions for simulation of crack initiation and propagations

have been developed and numerical implementations have been proposed in [8]

for KalthoffWinkler experiment. As well as deformation case of a one-dimensional

1



Introduction 2

string, distortion of a membrane type structure that can be approximated as a two-

dimensional body is studied in [37] where numerical simulations for opening-mode

resulting in plane-stress condition. Additionally, simulation of tearing mode are

presented and associated results of discontinuity formations and their propagations

throughout material domain are provided. In the same study, damage simulation

of spherical membrane under the effect of a sharp fragment is presented as well.

Besides, coupling effect of thermo-mechanical interaction for structural deforma-

tions in presence of crack formations and propagations are modelled based upon

Lagrangian formalism in peridynamic theory, [2]. Furthermore, an extensive study

of bond-based peridynamic modelling capturing damage initiation phenomenon in

brittle structures are studied in [14].

In particular, influence function in peridynamic theory brings the effect of neigh-

bouring particles onto each subjected material point thus it terminates locality

concern in classical approach. In this manner, effect of non-locality providing

a function for propagation of waves on structures of different kinds is presented

in [30]. A well-know approach using energy dissipation during propagations of

cracks is based on calculation of J-Integral, in this sense adaptation of J-Integral

on peridynamic theory with explicit derivation scheme is given in [15].

Moreover, time efficiency in numerical analysis for computational work is one of

the fundamental concern, relating to this, efficiency of numerical implementations

for peridynamic theory is analysed and propagation of discontinuities in specific

type of materials are studied in [33].

Furthermore, capability of peridynamic theory on capturing stress-strain fields

on bodies with discontinuities is introduced for conventional laminate compos-

ite plates configured with varying fiber orientation in [43]. The other study for

deformation of non-conventional composite plates with non-ordinary state-based

approach is introduced in [42]. Additionally, one another study by means of non-

ordinary state-based approach in case of quasi-static loading condition has been

proposed in [5] for linear elastic materials.

The study, [12], can be seen as an extensive discussion on peridynamic modelling

for materials whose Poisson’s ratios are different than 1/4, while fundamentals for

generalization of bond-based technique leading to state-based approach in peridy-

namic theory has been introduced together with numerical solutions of well-known

benchmark problems in literature are provided based on explicit solution scheme
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in [27]. Furthermore, extension of peridynamic modelling capturing plastic and

permanent deformations of solid bodies is covered within the frame of state-based

approach establishing a constitutive model between forces and deformations in

[34]. Additionally, generalized approach of peridynamic theory being non-ordinary

state-based modelling was used for solution of deformation problems of solid me-

chanics in [40].

Governing laws of thermodynamics can be applied to derivation scheme for govern-

ing laws of peridynamic theory leading to coupling effects of thermal and mechani-

cal phenomenons for deformations of solid bodies, in this sense numerical solutions

of thermo-mechanical problems based on peridynamic modelling are presented in

[26].

Non-locality of peridynamic theory provides an inherent capability of taking effect

of long-range forces into account for each material point in equations of motion

which is very similar to computational structure in classical molecular-dynamics,

in this sense, comparison of formulations for dynamic effects and governing equa-

tions that are consolidated by computational results have been provided in [31].

Moreover, under the effect of non-locality, analytic solutions for deformation field

of a one-dimensional micro-elastic structure with dispersion relations of different

kinds are presented explicitly with various examples in [41].

As well as coupling of material parameters in classical approach with those that are

in peridynamic modelling, mathematical investigation upon equations of motion

being a integro-differential equation with second-order time derivative for numeri-

cal solutions of benchmark problems are studied in [9]. Moreover, a new proposal

for solution of peridynamic formulation with examples is introduced in [10].

As oppose to crack behaviour in ductile materials, crack branching phenomenon is

more likely observed in brittle structures and capability of peridynamic modelling

on capturing material fragmentation is presented in [13]. Moreover, impact studies

as a result of extreme loadings on material domain within the frame of peridy-

namic modelling are performed in [7]. In one another impact study on damaging

of circular plate with implementation of peridynamic formulation in molecular

dynamic solution algorithm, numerical simulation has been presented in [28].

Heat dissipation models based on peridynamic approach for materials including

discontinuities differ than results of classical continuum approaches, regarding to

this, solutions of both are compared in [3]. As a result, it is emphasized that
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classical outcomes overlap with consequences of peridynamic modelling while limit

of horizon size approaches to zero. Moreover, peridynamics is considered as an

embracing formulation of those that belong to classical theory because of the

fact that peridynamics stresses approaches to classical stress state depending on

smoothness of motion for particles, constitutive equations and non-homogeneities

of material domain in [35].

As a bridge between classical stress formalism and peridynamic pair-wise forces has

been introduced in this present study, introduction of peridynamic equation of mo-

tion in terms of stress tensor can be found in [18] as well. Moreover, improvement

of solution steps for elasticity problems including discontinuities within the frame

of peridynamic modelling that takes long-rage effects of surrounding particles into

account for each subjected particle on material domain has been introduced in [4].

Additionally, application of peridynamic theory for consideration of both thermal

and mechanical effects being a challenging issue for small length scale systems such

as electronic parts is presented in [17].

Specifically, application of both finite element analysis and peridynamic technique

of non-local continuum mechanics are utilized in the modelling of a truss element

and results are compared in [21].

A novel research on a numerical simulation for fragmentation of a isotropic tube

whose damage behaviour under compressive forces are observed in [39] has been

developed by implementation of both peridynamic and FEM algorithms validating

upon experimental results in [19].

1.2 Outline of Thesis

In this study, balance laws for conservation of linear and angular momentums

under the effect of internal stresses and resultant traction vectors are presented in

an explicit manner in Chapter (2).

Afterwards, in Chapter (3), the equations of motion in local theory is obtained

based on Lagrangian formalisms.

In Chapter (4), peridynamic equations of motion is derived for linear micro-elastic

materials, [22], [25] while in the following sections, peridynamic definition of de-

formation is presented, [33].
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Peridynamic parameters leading to bond-constants for three and two-dimensional

isotropic materials are obtained in Chapter (5). Based on peridynamic bond-

constant derived in Chapter (5) for two-dimensional structures, results of numer-

ical simulations pertaining to deformation of an isotropic plate in plane-stress

condition under the effect of uni-axial stretching are presented in Chapter (6) .

Furthermore numerical results that are obtained in MatLab R© Version R2016a are

compared with FEA results in terms of deformation fields.

The present work is finalized in Chapter (7)with remarks based on results obtained

in Chapter (7).

Additionally, Appendix (A) presents vector rotations, tensor transformations and

a general review of derivation for a fourth-order isotropic tensor that is highly

occupied in constitutive relations of applied mechanics. In Appendix (B), classical

constants of deformation are provided under the review of simple body distortions

while in Appendix (C) constitutive relations for different type of structures are

introduced based on fourth-order isotropic tensor derived in Appendix (A) Fur-

thermore, general review on classical definition of deformation tensor is presented

in Appendix (D) for the purpose of establishing relations between components of

finite strains and stresses.



Chapter 2

Background

2.1 Fundamentals of Classical Continuum

Theory of Solids

Property of being continuous for a material medium under consideration disregards

molecular structure and states it as not consisting of gaps or voids. Because of

this hypothetical definition of material domain, theory is referred as theory of

continuous medium or briefly continuum theory, [23].

From classical point of view of continuum mechanics for solids, a well-equilibrated

body in terms of internal forces sustains stabilities of displacements between parti-

cles. Nevertheless, any disturbance against equilibrium condition of internal forces

causes deformations and discontinuities such as cracks due to external forces that

compels body to exceed mechanical endurance limits. These stiffness properties

are prescribed in constitutive relations to be able to relate associated stress and

strain components along desired directions of material domain. In local contin-

uum theory, interactions of subjected particles presented by RVE are restricted by

only neighbouring material points located in their immediate vicinities. Moreover,

stress and strain components occurring on sides of each RVE play a fundamental

role in terms of determining traction forces that acts on subjected particle.

6



Stress in Local Theory 7

2.2 Equilibrium of traction forces

Classical approach regarding interaction of material points dictates locality such

a way that particles which are represented by infinitesimal RVEs interact with

only others in immediate vicinity. In this sense, internal surface forces of RVEs

ordinarily named as tractions appear on oblique-cut surface of RVE as shown in

Figure (2.1) while they are balanced with stress components, σij, of associated

side-faces on tetrahedron that is presented in Figure (2.2).

These stress components appear as a result of balancing forces against traction

exerted on oblique-cut surface of tetrahedron. Therefore, balance forces associated

with their stress components acting on infinitesimal areas, dSi on side-surfaces of

tetrahedron while traction force, t
ej
i , acts on oblique-cut surface area, dSn and

defined as follows.

t
ej
i = σijej (2.1)

where ej are basis vectors of Cartesian co-ordinate system. Also, in relation (2.1),

sub-index, i, indicates surface normal in which associated component of stress

tensor is applied while sub-index j denotes direction of same stress component.

Figure 2.1: Oblique cut of an arbitrary solid body

As shown in Figure (2.1), red arrow represents surface normal while traction force

belonging to oblique-cut is indicated by means of blue arrow. A relation between
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tetrahedron’s side-surface areas and oblique surface area can be expressed as fol-

lows.

dSn (n · ei) = dSn cos (θein ) = dSnni = dSi (2.2)

in which n is normal vector belonging to oblique-cut’s surface while θein represents

angle between principle axes and surface normal, n. On the other hand, ni is

cosine value of this angle.

As a result of applied external forces, solid body can be expected to experience

either a elastic or plastic deformation. From this point of view, stresses emerg-

ing from these applied forces through cross-sectional surface inside body can be

defined.

Now, let us consider a solid body on which external forces come into existence.

Splitting body into two pieces through any arbitrary oblique cut and inspecting

free-body diagram of half part of RVE, one may realize that equivalent force on

former contact surfaces of cut-off plane emerges. These forces applying on side-

surface areas of tetrahedron allow us define stress vector as follows.

t
ej
i = lim

dSj→0

(
fi
dSj

)
(2.3)

where fi is a force along any arbitrary direction and sub-index i indicates surface

normal of an area on which fi is applied. Similarly, traction force on oblique-cut

surface of tetrahedron is defined as

tni = lim
dSn→0

(
fn
dSn

)
(2.4)

The Divergence Theorem [11] which conserves the fluxes of vector field inside a

close surface is given by

˚

V

(
∇ · ~f

)
dV =

"

V

~f · d~S (2.5)

If force vector field is assumed to be divergence-free, namely (∇ · ~f) = 0, then

relation (2.5) can be reduced to

"

V

~f · d~S = 0 (2.6)
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Thus, equilibrium state of all forces affecting on tetrahedron can be expressed

through relation (2.6). In point-wise manner, the left-hand side of relation (2.6)

can be written as a sum of associated dot products. This result implies New-

ton’s third law of motion for equilibrium state which dictates that net force on

tetrahedron has to be equivalent to zero. Therefore,

tni dSn + te1i dS1 + te2i dS2 + te3i dS3 = 0 (2.7)

And according to (2.2), relation (2.7) reads

tni dSn + te1i n1dSn + te2i n2dSn + te3i n3dSn = 0

tni + te1i n1 + te2i n2 + te3i n3 = 0

tni + t
ej
i nj = 0

(2.8)

By invoking the identity given by relation (2.1) into (2.8) equilibrium equation is

obtained as
tni + σijejnj = 0

(2.9)

Figure 2.2: Representation of forces acting on surfaces of tetrahedron
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It can be also shown that traction vector, t(n), is obtained long vector-dyadic dot

product of second-order tensor,σ, and surface normal vector, n, as follows.

tni = σ · n

= (σijej) · (nkek)

= σijnkej · ek = σijnkδjk

= σijnj

(2.10)

Traction vector is applied on an area whose surface normal is defined by n, here-

after n term can be neglected in notation. Therefore three-components of tni in

Cartesian co-ordinates can be written explicitly as follows.

t1 = σ11n1 + σ12n2 + σ13n3

t2 = σ21n1 + σ22n2 + σ23n3

t3 = σ31n1 + σ32n2 + σ33n3

(2.11)

In matrix notation, traction vector and right-hand side of relation (2.10) can be

shown as

tni =


t1

t2

t3

 =


σ11 σ12 σ13

σ21 σ22 σ23

σ31 σ32 σ33



n1

n2

n3

 (2.12)

in which second-order tensor defines Cauchy’s stress components. Moreover trac-

tion vector, t(n), can be decomposed into its normal and shear components.

Additionally, determination of maximum normal and maximum shear stresses that

body can withstand is considered as consequential issue in terms of failure criteria

of structural parts. Disappearance of shear forces results in existence of pure nor-

mal forces on oblique-cut surface or other way around. In this perspective, because

of orthogonality condition between shear and normal forces, traction vector, t(n),

can be mathematically expressed as

(tni )2 =

(
lim
dSn→0

(
~fnormal
dSn

))2

+

(
lim
dSn→0

(
~fshear
dSn

))2

= (tS)2 + (tN)2

(2.13)

or

‖tS‖ =

√
(t(n))

2 − (tN)2
(2.14)
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In case of non-shear force on oblique-cut surface of Cauchy’s tetrahedron, namely

tS = 0, then relation (2.13) is reduced to

tn = tN

tn − tN = 0
(2.15)

By means of relation (2.10), the last line of expression (2.15) can be stated in

component form as

σkink − ni = 0

σkink − σpδkink = 0

nk (σki − σpδki) = 0

(2.16)

or in matrix form
n1

n2

n3



σ11 − σpδ11 σ12 σ13

σ21 σ22 − σpδ22 σ23

σ31 σ32 σ33 − σpδ33

 = 0 (2.17)

Since the first vector is any arbitrary array being different than zero, then deter-

minant of second-order tensor has to be equal to zero. Namely,

∣∣∣σki − σpδki∣∣∣ =

∣∣∣∣∣∣∣∣
σ11 − σpδ11 σ12 σ13

σ21 σ22 − σpδ22 σ23

σ31 σ32 σ33 − σpδ33

∣∣∣∣∣∣∣∣ = 0 (2.18)

which yields to following expression.

−σ3
p + σ2

pI1 + σpI2 − I3 = 0 (2.19)

in which I1, I2 and I3 are named as stress invariants and defined respectively as

I1 = trace(σ) = σii

I2 =
1

2

(
trace(σ)2 − trace(σ2)

)
=

1

2
(σiiσjj − σijσji)

I3 = det(σ) = |σij|

(2.20)

Solution to expression (2.19) results in three principle stress components that are

σp1 , σp2 and σp3 . By means of kinetic equilibrium equations of tetrahedron, it can

be shown that maximum shear stress is equivalent to half of difference in maximum
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and minimum principle stresses. Namely,

τmax = max (τ1, τ2, τ3) (2.21)

where τ1 = (σp2 − σp3) /2, τ2 = (σp1 − σp3) /2 and τ3 = (σp1 − σp2) /2.

2.3 Balance Laws in Local Theory

2.3.1 Conservation of Linear Momentum

Forces acting on infinitesimal area of tetrahedron’s oblique-cut surface have been

inspected in the very beginning of Chapter (2). Resultant vector based on tractions

in addition to body forces, bi, over entire material domain can be expressed as

follows.
~fresultant =

ˆ

V

~ti(σij, ni) · d ~A+

ˆ

V

ρi~bidV (2.22)

in which ti is same traction vector appearing in very left-hand side of relation (2.12)

which is a function of its stress component and its associated surface normal. This

resultant force plays a role in altering linear momentum of entire body in time

domain. Mathematically,
d

dt

ˆ

V

ρi~̇uidV (2.23)

According to Newton’s second law of motion, entire body is accelerated by resul-

tant force as inversely proportional to its inertia being resistance against motion.

Additionally, resultant force is balanced with (2.23) as inertia of entire material

domain remains constant. Therefore,

d

dt

ˆ

V

ρi~̇uidV =

ˆ

A

~ti(σij, ni) · d ~A+

ˆ

V

ρi~bidV (2.24)

By means of Divergence theorem given by (2.5), the first integral on right-hand

side of relation (2.24) can be converted into volume integral and can be expressed

as follows. ˆ

A

(σijnj) · d ~A =

ˆ

V

(∂,jej) · (σij) dV =

ˆ

V

σij,jdV (2.25)
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and balance equation for linear momentum can be obtained as follows.

d

dt

ˆ

V

ρiu̇idV =

ˆ

V

σij,jdV +

ˆ

V

ρibidV

(2.26)

By collecting all terms under a single integral, relation (2.26) can be expressed as

ˆ

V

(
ρi
d

dt
(u̇i)− σij,j − ρibi

)
dV = 0 (2.27)

Since dV is an arbitrary infinitesimal volume being different than zero, integrand

of integral given by relation (2.27) can be directly equalized to zero. Therefore,

ρiüi − σij,j − ρibi = 0 (2.28)

in which spatial derivative of second-order tensor, σij, is σij,j which has unit of force

per volume, [N/m3]. This term can be associated with force densities emerging

from strain energy between interacting particles as limit of horizon in peridynamic

theory approaches to zero. From this point of view, stress statement of a body

including discontinuities reveals importance of peridynamic theory in comparison

to local approaches. Stress field around a crack tip can be obtained through

following expression which is derived based on Airy’s function.

σ =
σ0√

1−
(a
x

)2 (2.29)

in which σ0 is nominal stress applied on cross-sectional area of a two-dimensional

plate including hole in centre. Substitution of relation (2.29) to equations of

motion in local theory following relation is obtained.

ρ(x, t)ü(x, t) = div (σ) + b (x, t) (2.30)

including spatial derivatives because of which stress term becomes infinity at crack

tip position, x = a.
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2.3.2 Conservation of Angular Momentum

Ordinarily, balance of angular momentum leads to symmetry condition for Cauchy’s

stress tensor whose derivation has been introduced at the beginning of Chapter

(2). Based on balance of linear momentum equation for whole entire material

domain inside solid body (2.24), by multiplying both side by distance of rotation

around centre of Cartesian co-ordinate system, y, equation for balance of angular

momentum is obtained as follows. d

dt

ˆ

V

ρi~̇uidV

× ~yk =

ˆ
A

~ti (σij, nj) · d ~A

× ~yk +

ˆ
V

ρi~bidV

× ~yk
(2.31)

Applying explicit form of traction stress vector, ti, which is given by relation (2.10)

to the first integral in the right-hand side of relation (2.31).

ˆ

V

ρiüiei × ykekdV =

ˆ

A

(σijnj × ykek) · d ~A +

ˆ
V

ρibiei × ykekdV

ˆ

V

ρiεiklüiykeldV =

ˆ

A

(εiklσijnjykel) · d ~A +

ˆ
V

ρiεiklbiykeldV

(2.32)

Divergence theorem given by relation (2.5) can be applied to convert area integral

in relation (2.32) to volume integral as follows.

ˆ

A

(εiklσijnjyk) · d ~A =

ˆ

A

(εiklσijyk)nj · d ~A

=

ˆ

V

(∂,jej) · (εiklσijyk) dV

=

ˆ

V

(εiklσij,jyk + εiklσijδkj) eldV

(2.33)

By rearranging all terms in relation (2.32) in an appropriate way and substituting

the result obtained in relation (2.33) into relation (2.32), one may write

ˆ

V

ρiεiklüiykeldV =

ˆ

V

(εiklσij,jyk + εiklσijδkj) eldV +

ˆ

V

ρiεiklbiykeldV

ˆ

V

εiklσikdV =

ˆ

V

εiklyk (ρiüi − σij,j − ρibi) dV
(2.34)
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Because balance of linear momentum has to be satisfied according to relation

(2.28), the left hand-side of expression (2.34) yields to zero. Thus,

εiklσik = 0 (2.35)

Expansion of result obtained in (2.35) yields to following three a set of equation.

ε123σ12 + ε213σ21 = 0

ε132σ13 + ε312σ31 = 0

ε231σ23 + ε321σ32 = 0

(2.36)

According to Levi-Civita permutation symbol given in (A.22), in each line of

these a set of equation, coefficients seen in front of stress components imply skew-

symmetric property in permutation symbol. Therefore,

σ12 − σ21 = 0

σ31 − σ13 = 0

σ23 − σ32 = 0

(2.37)

which dictates symmetry condition that is
(
σ = σT

)
for Cauchy’s stress tensor

that can be also presented in a short-hand notation by using index notation as

follows.

σij = σji (2.38)



Chapter 3

Strain Energy and Equation of

Motion in Local Theory

3.1 Strain energy density function for isotropic

materials

Externally applied forces to linearly elastic isotropic material domain causes energy

accumulation and conversely removing external forces results in release of this

accumulated energy. In this manner, it can be considered that strain energy

density function relates the deformation amount and internal stress components

based on energy stored inside material domain.

As shown in Chapter (2) and Appendix (D), symmetry condition in stress and

strain tensors given by relations (D.38) and (2.38), allows us to express them as

in arrays of six-components. Namely,

σij =
[
σ11 σ22 σ33 σ23 σ13 σ12

]T
(3.1)

and

εij =
[
ε11 ε22 ε33 ε23 ε13 ε12

]T
(3.2)

As explained in Chapter (4), kinetic and potential energies of a body can be

expressed along sum of individual kinetic and potential energies of each particle

16
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in material domain. Namely,

T =
1

2

∞∑
j=1

m(j)
~̇u(j) · ~̇u(j) (3.3)

and

U =
∞∑
j=1

W(j)V(j) −
∞∑
j=1

~u(j)~b(j)V(j) (3.4)

Classically, during a simple unidirectional tensile stretching of an arbitrary body,

energy that emerges from uni-axial deformation of RVE is defined as strain energy

which can be obtained by calculating area under associated stress-strain curve.

By same analogy for uni-axial deformation of a body, strain energy emerging from

arbitrary distortion of an RVE is expressed by

W(j) =
1

2

3∑
m=1

3∑
n=1

σ(j)mnε(j)mn (3.5)

For a single material point denoted by (j), let us write normal and shear strain

components given by relations (D.31) and (D.36) respectively as follows. Consid-

ering condition, i = k, leading to normal strains that is

εik(j) ⇔ εii(j) = ui,i(j) =
∂ui(j)
∂x′i

(3.6)

and condition i 6= k, leading to shear strains that is

γik(j) = ui,k(j) + uk,i(j) =
∂ui(j)
∂x′k

+
∂uk(j)
∂x′i

(3.7)

Based on array representation of stress and strain components given by relations

(3.1) and (3.2) respectively, constitutive equation expressed through relation (A.1)

can be expanded for explicit calculation of strain energy density function as follows.

W(j) =
1

2

3∑
i=1

3∑
k=1

σT ε =
1

2

3∑
i=1

3∑
k=1

(
Cik(j)εk(j)

)
εk(j)

= σ11ε11 + σ22ε22 + σ33ε33 + σ23ε23 + σ13ε13 + σ12ε12

(3.8)
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From constitutive relation given by (C.55) for a linearly elastic isotropic material,

Cauchy’s stress components are explicitly obtained as follows.

σ11 =

(
κ+

4µ

3

)
ε11 +

(
κ− 2µ

3

)
ε22 +

(
κ− 2µ

3

)
ε33

σ22 =

(
κ− 2µ

3

)
ε11 +

(
κ+

4µ

3

)
ε22 +

(
κ− 2µ

3

)
ε33

σ33 =

(
κ− 2µ

3

)
ε11 +

(
κ− 2µ

3

)
ε22 +

(
κ+

4µ

3

)
ε33

σ23 = µε23

σ13 = µε13

σ12 = µε12

(3.9)

Performing calculations in relation (3.8) by using explicit forms of stress compo-

nents given by relation (3.9) yields to

W(j) =
1

2

(
κ+

4µ

3

)
(ε11ε11 + ε22ε22 + ε33ε33) +

1

2

(
κ− 2µ

3

)
(2ε11ε22 + 2ε11ε33 + 2ε22ε33)

+ µ (ε23ε23 + ε13ε13 + ε12ε12)

(3.10)

Invoking explicit forms of strain terms given by relations (3.6) and (3.7) into

relation (3.10), strain energy density function becomes

W(j) =
1

2

(
κ+

4µ

3

)(
u21,1(j) + u22,2(j) + u23,3(j)

)
+

(
κ− 2µ

3

)(
u1,1(j)u2,2(j) + u1,1(j)u3,3(j) + u2,2(j)u3,3(j)

)
+
µ

2

((
u2,3(j) + u3,2(j)

)2
+
(
u1,3(j) + u3,1(j)

)2
+
(
u1,2(j) + u2,1(j)

)2)
(3.11)

Ordinarily, an arbitrary single variable continues function, u(x), can be expressed

based on based on first-degree Taylor expansion as follows.

u(x) =
∞∑
n=0

(x− xi)n

n!

(
∂nu(x)

∂xn

)
(3.12)

Numerically, relation (3.12) can be approximated in a way that original function at

points xi+1 and xi−1 by infinitesimal forward and backward incremental distance,

∆x. In other words,

ui+1(xi+1) ≈ ui(xi) + u′i(xi) (xi+1 − xi) /1! (3.13)
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and

ui−1(xi−1) ≈ ui(xi) + u′i(xi) (xi−1 − xi) /1! (3.14)

in which it is possible to write (xi+1 − xi) = ∆x and (xi−1 − xi) = −∆x. After

multiplying both side of relation (3.14) by ∆x and summing relations (3.13) and

(3.14) side by side, first-order derivative of function, u(x), through central finite

difference is obtained as follows.

u′i(xi) ≈
ui+1(xi+1)− ui−1(xi−1)

2∆x
(3.15)

Second-order mixed partial derivatives of an arbitrary function, u(x, y), can also

be expressed by means of CFD along first-degree derivatives. Namely,

∂2ui,j(xi, yj)

∂xi∂yj
≈ ∂

∂xi

(
∂ui,j(xi, yj)

∂yj

)
=

(∂u/∂yj)i+1,j − (∂u/∂yj)i−1,j
2∆x

(3.16)

in which partial differentials with respect to variable y in numerator can also be

expressed based on CFD in relation (3.16) as follows.

∂ui+1,j(xi+1, yj)

∂yj
≈ ui+1,j+1 − ui+1,j−1

2∆y
(3.17)

and
∂ui−1,j(xi−1, yj)

∂yj
≈ ui−1,j+1 − ui−1,j−1

2∆y
(3.18)

By invoking discretized equivalences of partial derivatives given by relations (3.17)

and (3.18) into relation (3.16), we can expressed second-order mixed partial deriva-

tive as follows.

∂2ui,j(xi, yj)

∂xi∂yj
≈ ui+1,j+1 − ui+1,j−1 − ui−1,j+1 + ui−1,j−1

4∆x∆y
(3.19)

In addition to mixed kind partial, second-order derivative u′′i can be obtained by

using forward and backward second-order Taylor expansions around points xi+1

and xi−1. In other words, forward and backward second-order Taylor expansions

are respectively

ui+1 = ui +
1

1!

(
∂ui
∂x

)
(xi+1 − xi) +

1

2!

(
∂2ui
∂x2

)
(xi+1 − xi)2 (3.20)

and

ui−1 = ui +
1

1!

(
∂ui
∂x

)
(xi−1 − xi) +

1

2!

(
∂2ui
∂x2

)
(xi−1 − xi)2 (3.21)
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By summing relations (3.20) and (3.21) side by side and substituting (xi+1 − xi) =

∆x and (xi−1 − xi) = −∆x in resultant line, we obtain second-order partial deriva-

tive at point xi as
∂

∂x

(
∂ui
∂x

)
≈ ui+1,j − 2ui,j + ui−1,j

(∆x)2
(3.22)

Applying CFD on first-order partial derivatives in strain energy density function

given by (3.11), can be approximated form of the strain energy for material point

(j) and expressed as follows.

W(j) =
1

2

(
κ+

4µ

3

)((
u1(j+l) − u1(j−l)

2∆x1

)2

+

(
u2(j+m) − u2(j−m)

2∆x2

)2

+

(
u3(j+n) − u3(j−n)

2∆x3

)2)
+

(
κ− 2µ

3

)((
u1(j+l) − u1(j−l)

2∆x1

)(
u2(j+m) − u2(j−m)

2∆x2

)
+

(
u1(j+l) − u1(j−l)

2∆x1

)(
u3(j+n) − u3(j−n)

2∆x3

))
+

(
u2(j+m) − u2(j−m)

2∆x2

)(
u3(j+n) − u3(j−n)

2∆x3

))
+
µ

2

(
u2(j+m) − u2(j−m)

2∆x3
+
u3(j+n) − u3(j−n)

2∆x2

)2

+
µ

2

(
u1(j+l) − u1(j−l)

2∆x3
+
u3(j+n) − u3(j−n)

2∆x1

)2

+
µ

2

(
u1(j+l) − u1(j−l)

2∆x2
+
u2(j+m) − u2(j−m)

2∆x1

)2

(3.23)

in which sub-indices (j) = 1, 2, 3, 4, 5, 6 inside brackets stand for material points

around particle (j) while sub-indices outside brackets are for co-ordinate directions,

(x1, x2, x3) as shown in Figure (3.1). Strain energy density function given by

relation (3.23) can be expressed along expansion of squares in bracket of µ, yielding
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to following form.

W(j) =
1

2

(
κ+

4µ

3

)((
u1(j+l) − u1(j−l)

2∆x1

)2

+

(
u2(j+m) − u2(j−m)

2∆x2

)2

+

(
u3(j+n) − u3(j−n)

2∆x3

)2)
+

(
κ− 2µ

3

)((
u1(j+l) − u1(j−l)

2∆x1

)(
u2(j+m) − u2(j−m)

2∆x2

)
+

(
u1(j+l) − u1(j−l)

2∆x1

)(
u3(j+n) − u3(j−n)

2∆x3

)
+

(
u2(j+m) − u2(j−m)

2∆x2

)(
u3(j+n) − u3(j−n)

2∆x3

))
+
µ

2

((
u2(j+m) − u2(j−m)

2∆x3

)2

+

(
u3(j+n) − u3(j−n)

2∆x2

)2

+ 2

(
u2(j+m) − u2(j−m)

2∆x3

)(
u3(j+n) − u3(j−n)

2∆x2

))
+
µ

2

((
u2(j+m) − u2(j−m)

2∆x3

)2

+

(
u3(j+n) − u3(j−n)

2∆x2

)2

+ 2

(
u2(j+m) − u2(j−m)

2∆x3

)(
u3(j+n) − u3(j−n)

2∆x2

))
+
µ

2

((
u2(j+m) − u2(j−m)

2∆x3

)2

+

(
u3(j+n) − u3(j−n)

2∆x2

)2

+ 2

(
u2(j+m) − u2(j−m)

2∆x3

)(
u3(j+n) − u3(j−n)

2∆x2

))

(3.24)

in which the first sub-indices outside brackets indicate directions of displacement

vector, u. As later remarked, strain energy of material particle (j) can be de-

composed into its constituents for each interaction in its immediate vicinity as

illustrated in Figure (3.1).

3.2 Lagrangian formalism for equation of motion

in classical interaction

Interaction of material particles in classical approach is considered as they com-

municate with others that they are only in their immediate vicinity leading to

locality notion. In Figure (3.1), neighbouring particles appearing in green colour

around blue-colour RVE are illustrated.
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Figure 3.1: Local interactions of material particles

As details given in Chapter (4), using Lagrange-Euler equations of motion leads

to determination of displacement field for whole material domain. From this per-

spective, firstly let us write Lagrange-Euler equations of motion.

d

dt

(
∂L

∂u̇(j)

)
− ∂L

∂u(j)
= 0 (3.25)

in which (j) = 1, 2, 3, ..., s, indicates all particles in material domain and L presents

Lagrangian which is given by difference between kinetic an potential energies of

solid body, namely, L = T − U . Total kinetic and potential energies of body can

be expressed as a sum of each particle’s kinetic and potential energies therefore

relations (3.3) and (3.4) can be expressed based on constant volumetric expansion

and density of each RVE as follows.

T =
1

2

∞∑
j=1

(
~̇u(j) · ~̇u(j)

)
ρ(j)∆V(j)

=
1

2

(
. . .+ u̇x1(j) · u̇x1(j) + u̇x2(j) · u̇x2(j) + u̇x3(j) · u̇x3(j) + . . .

)
ρ(j)∆V(j)

(3.26)
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and

U =
∞∑
j=1

1

2
W(j)∆V(j) −

∞∑
j=1

~u(j)~b(j)∆V(j)

=
1

2

(
. . .+ w(j)(j+l) + w(j)(j−l) + w(j)(j+m) + w(j)(j−m) + w(j)(j+n) + w(j)(j−n) + . . .

)
∆V(j)

+
(
. . .+ ux1(j)bx1(j) + ux2(j)bx2(j) + ux3(j)bx3(j) + . . .

)
∆V(j)

(3.27)

As explained while writing relation (4.7), strain energy density function, W(j), is

defined along summation of sub-strain energies, w(j)(i) of interacting particles. At

that point, classical theory differs from peridynamic approach by including only

strain energies in immediate vicinity of particle (j).

In total potential energy relation (3.27), strain energies, w(j)(k+l), w(j)(k−l), w(j)(j+m),

w(j)(j−m), w(j)(j+n) and w(j)(j−n) can be expressed in their explicit form similar to

(3.23). In strain energy density term, w(j)(i), first sub-index inside bracket indi-

cates blue particle in the middle and second sub-indices symbolises green inter-

action particles as shown in Figure (3.1). Strain energies of interacting particles,

(j + l) and (j − l), with particle (j) along x1 direction are w(j)(j+l) and w(j)(j−l)

that are respectively defined as

w(j)(j+l) =
1

2

(
κ+

4µ

3

)(
u1(j+l+1) − u1(j)

2∆x1

)2

+

(
κ− 2µ

3

)((
u1(j+l+1) − u1(j)

2∆x1

)(
u2(j+l+m) − u2(j+l−m)

2∆x2

)
+

(
u1(j+l+1) − u1(j)

2∆x1

)(
u3(j+l+n) − u3(j+l−n)

2∆x3

))
+
µ

2

((
u1(j+l+1) − u1(j)

2∆x2

)2

+ 2

(
u1(j+l+1) − u1(j)

2∆x2

)(
u2(j+l+m) − u2(j+l−m)

2∆x1

))

+
µ

2

((
u1(j+l+1) − u1(j)

2∆x3

)2

+ 2

(
u1(j+l+1) − u1(j)

2∆x3

)(
u3(j+l+n) − u3(j+l−n)

2∆x1

))

(3.28)
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and

w(j)(j−l) =
1

2

(
κ+

4µ

3

)(
u1(j) − u1(j−l−1)

2∆x1

)2

+

(
κ− 2µ

3

)((
u1(j) − u1(j−l−1)

2∆x1

)(
u2(j−l+m) − u2(j−l−m)

2∆x2

)
+

(
u1(j) − u1(j−l−1)

2∆x1

)(
u3(j−l+n) − u3(j−l−n)

2∆x3

))
+
µ

2

((
u1(j) − u1(j−l−1)

2∆x2

)2

+ 2

(
u1(j) − u1(j−l−1)

2∆x2

)(
u2(j−l+m) − u2(j−l−m)

2∆x1

))

+
µ

2

((
u1(j) − u1(j−l−1)

2∆x3

)2

+ 2

(
u1(j) − u1(j−l−1)

2∆x3

)(
u3(j−l+n) − u3(j−l−n)

2∆x1

))

(3.29)

in which second-order powers and multiplications of partial differentials are negligi-

bly small compared to first orders and its second-order power along (x1) direction,

namely,

(
u2,2(j∓l)

)2 � 1 and
(
u3,3(j∓l)

)2 � 1

(
u2,3(j∓l)

)2 � 1 and
(
u3,2(j∓l)

)2 � 1

and

(u2(j+l+m) − u2(j+l−m))/(2∆x2)(u3(j+l+n) − u3(j+l−n))/(2∆x3)� 1

(u3(j+l+n) − u3(j+l−n))/(2∆x2)(u2(j+l+m) − u2(j+l−m))/(2∆x3)� 1

following assumptions are considered as valid,

(
u2,2(j∓l)

)2 ≈ 0 and
(
u3,3(j∓l)

)2 ≈ 0

(
u2,3(j∓l)

)2 ≈ 0 and
(
u3,2(j∓l)

)2 ≈ 0
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and

(u2(j+l+m) − u1(j+l−m))/(2∆x2)(u1(j+l+n) − u1(j+l−n))/(2∆x3) ≈ 0

(u2(j+l+n) − u2(j+l−n))/(2∆x2)(u3(j+l+n) − u3(j+l−n))/(2∆x3) ≈ 0

By means of assumptions made above, similarly, corresponding strain energies of

material particles, (j+m) and (j−m), along (x2) direction, w(j)(j+m) and w(j)(j−m),

are written respectively as

w(j)(j+m) =
1

2

(
κ+

4µ

3

)(
u2(j+m+1) − u2(j)

2∆x2

)2

+

(
κ− 2µ

3

)((
u1(j+m+l) − u1(j+m−l)

2∆x1

)(
u2(j+m+1) − u2(j)

2∆x2

)
+

(
u2(j+m+1) − u2(j+m−1)

2∆x2

)(
u3(j+m+n) − u3(j+m−n)

2∆x3

))
+
µ

2

((
u2(j+m+1) − u2(j)

2∆x1

)2

+ 2

(
u2(j+m+1) − u2(j)

2∆x1

)(
u1(j+m+l) − u1(j+m−l)

2∆x2

))

+
µ

2

((
u2(j+m+1) − u2(j)

2∆x3

)2

+ 2

(
u2(j+m+1) − u2(j)

2∆x3

)(
u1(j+m+n) − u1(j+m−n)

2∆x2

))

(3.30)

and

w(j)(j−m) =
1

2

(
κ+

4µ

3

)(
u2(j) − u2(j−m−1)

2∆x2

)2

+

(
κ− 2µ

3

)((
u1(j−m+l) − u1(j−m−l)

2∆x1

)(
u2(j) − u2(j−m−1)

2∆x2

)
+

(
u2(j) − u2(j−m−1)

2∆x2

)(
u1(j−m+n) − u1(j−m−n)

2∆x3

))
+
µ

2

((
u2(j) − u2(j−m−1)

2∆x1

)2

+ 2

(
u2(j) − u2(j−m−1)

2∆x1

)(
u1(j−m+l) − u1(j−m−l)

2∆x2

))

+
µ

2

((
u2(j) − u2(j−m−1)

2∆x3

)2

+ 2

(
u2(j) − u2(j−m−1)

2∆x3

)(
u1(j−m+n) − u1(j−m−n)

2∆x2

))

(3.31)
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In immediate vicinity of particle (j), strain energies of material points along (x3)

direction, w(j)(j+n) and w(j)(j−n), are given respectively as

w(j)(j+n) =
1

2

(
κ+

4µ

3

)(
u3(j+n+1) − u3(j)

2∆x3

)2

+

(
κ− 2µ

3

)((
u1(j+n+l) − u1(j+n−l)

2∆x1

)(
u3(j+n+1) − u3(j)

2∆x3

)
+

(
u2(j+n+m) − u2(j+n−m)

2∆x2

)(
u3(j+n+1) − u3(j)

2∆x3

))
+
µ

2

((
u3(j+n+1) − u3(j)

2∆x1

)2

+ 2

(
u3(j+n+1) − u3(j)

2∆x1

)(
u1(j+n+l) − u1(j+n−l)

2∆x3

))

+
µ

2

((
u3(j+n+1) − u3(j)

2∆x2

)2

+ 2

(
u3(j+n+1) − u3(j)

2∆x2

)(
u2(j+n+m) − u2(j+n−m)

2∆x3

))

(3.32)

and

w(j)(j−n) =
1

2

(
κ+

4µ

3

)(
u3(j) − u3(j−n−1)

2∆x3

)2

+

(
κ− 2µ

3

)((
u1(j−n+l) − u1(j−n−l)

2∆x1

)(
u3(j) − u3(j−n−1)

2∆x3

)
+

(
u2(j−n+m) − u2(j−n−m)

2∆x2

)(
u3(j) − u3(j−n−1)

2∆x3

))
+
µ

2

((
u3(j) − u3(j−n−1)

2∆x1

)2

+ 2

(
u3(j) − u3(j−n−1)

2∆x1

)(
u1(j−n+l) − u1(j−n−l)

2∆x3

))

+
µ

2

((
u3(j) − u3(j−n−1)

2∆x2

)2

+ 2

(
u3(j) − u3(j−n−1)

2∆x2

)(
u2(j−n+m) − u2(j−n−m)

2∆x3

))

(3.33)

Substitution of six terms for micro-potentials obtained along relations (3.28),

(3.29), (3.30), (3.31), (3.32) and (3.33) into relation (3.27) leads to determina-

tion of motion for each material point, (j), by means of Lagrange-Euler equations

of motion given by relation (3.25) for each co-ordinate direction, (x1), (x2) and

(x3).
d

dt

(
∂L

∂u̇x1(j)

)
− ∂L

∂ux1(j)
= 0 (3.34)
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or in explicit form

d

dt

(
∂

∂u̇x1(j)

(
1

2

(
u̇x1(j) · u̇x1(j)

)
ρ(j)∆V(j)

))
−1

2

(
∂

∂ux1(j)

(
. . .+ w(j+l) + w(j−l) + w(j+m) + w(j−m) + w(j+n) + w(j−n) + . . .

)
∆V(j)

)
V(j)

− ∂

∂ux1(j)

((
. . .+ ux1(j)bx1(j) + ux2(j)bx2(j) + ux3(j)bx3(j) + . . .

)
∆V(j)

)
= 0

(3.35)

or

üx1(j)ρ(j) −
1

2

(
∂w(j+l)

∂ux1(j)
+
∂w(j−l)

∂ux1(j)

)
V(j) − bx1(j)

∂ux1(j)
∂ux1(j)

= 0 (3.36)

Similarly, equations of motion for other principle directions, x2 and x3 can be

written respectively as follows.

üx2(j)ρ(j) −
1

2

(
∂w(j+m)

∂ux2(j)
+
∂w(j−m)

∂ux2(j)

)
V(j) − bx2(j)

∂ux2(j)
∂ux2(j)

= 0 (3.37)

and

üx3(j)ρ(j) −
1

2

(
∂w(j+n)

∂ux3(j)
+
∂w(j−n)

∂ux3(j)

)
V(j) − bx3(j)

∂ux3(j)
∂ux3(j)

= 0 (3.38)

Before associated substitutions, let us treat partial differentiations of local micro-

potentials given through relations (3.28) and (3.29) only and substitute them in

equation of motion given by relation (3.36). Additionally, remaining partial dif-

ferentiations along other directions (x2) and (x3) are performed in the same way

and substituted in (3.37) and (3.38) respectively. In this manner, (3.28) can be

expressed as follows.

∂w(j)(j+l)

∂ux1(j)
=−

(
κ+

4µ

3

)(
u1(j+l+1) − u1(j)

4 (∆x1)
2

)
− 1

2∆x1

(
κ− 2µ

3

)((
u2(j+l+m) − u2(j+l−m)

2∆x2

)
+

(
u3(j+l+n) − u3(j+l−n)

2∆x3

))
+
µ

2

(
−2

(
u1(j+l+1) − u1(j)

4 (∆x2)
2

)
− 2

2∆x2

(
u2(j+l+m) − u2(j+l−m)

2∆x1

))
+
µ

2

(
−2

(
u1(j+l+1) − u1(j)

4 (∆x3)
2

)
− 2

2

2∆x3

(
u3(j+l+n) − u3(j+l−n)

2∆x1

))

(3.39)
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or in a more compact form

∂w(j)(j+l)

∂ux1(j)
=−

(
κ+

4µ

3

)(
u1(j+l+1) − u1(j)

4 (∆x1)
2

)
+

(
κ− 2µ

3

)(
−
u2(j+l+m) − u2(j+l−m)

4∆x1∆x2
−
u3(j+l+n) − u3(j+l−n)

4∆x1∆x3

)
+ µ

(
−
u1(j+l+1) − u1(j)

4 (∆x2)
2 −

u2(j+l+m) − u2(j+l−m)

4∆x1∆x2

)
+ µ

(
−
u1(j+l+1) − u1(j)

4 (∆x3)
2 −

u3(j+l+n) − u3(j+l−n)
4∆x1∆x3

)

(3.40)

By combining all terms, having the same denominators, local micro-potential en-

ergy, w(j)(j+l), belonging to material particle at co-ordinate designated by (j + l)

becomes

∂w(j)(j+l)

∂ux1(j)
=−

(
κ+

4µ

3

)(
u1(j+l+1) − u1(j)

4 (∆x1)
2

)
−
(
κ+

µ

3

)(u2(j+l+m) − u2(j+l−m)

4∆x1∆x2
+
u3(j+l+n) − u3(j+l−n)

4∆x1∆x3

)
− µ

(
u1(j+l+1) − u1(j)

4 (∆x2)
2 +

u1(j+l+1) − u1(j)
4 (∆x3)

2

) (3.41)

Differentiation of other coupling local micro-potential along (x1) direction is per-

formed based on (3.29) and expressed as follows.

∂w(j)(j−l)

∂ux1(j)
=

(
κ+

4µ

3

)(
u1(j) − u1(j−l−1)

4 (∆x1)
2

)
+

1

2∆x1

(
κ− 2µ

3

)(
u2(j−l+m) − u2(j−l−m)

2∆x2
+
u3(j−l+n) − u3(j−l−n)

2∆x3

)
+
µ

2

(
2

(
u1(j) − u1(j−l−1)

4 (∆x2)
2

)
+

2

2∆x2

(
u2(j−l+m) − u2(j−l−m)

2∆x1

))
+
µ

2

(
2

(
u1(j) − u1(j−l−1)

4 (∆x3)
2

)
+

2

2∆x3

(
u3(j−l+n) − u3(j−l−n)

2∆x1

))

(3.42)
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As similar to procedure that is performed while obtaining relation (3.40), expres-

sion given by (3.42) can be treated as follows.

∂w(j)(j−l)

∂ux1(j)
=

(
κ+

4µ

3

)(
u1(j) − u1(j−l−1)

4 (∆x1)
2

)
+

(
κ− 2µ

3

)(
u2(j−l+m) − u2(j−l−m)

4∆x1∆x2
+
u3(j−l+n) − u3(j−l−n)

4∆x1∆x3

)
+ µ

(
u1(j) − u1(j−l−1)

4 (∆x2)
2 +

u2(j−l+m) − u2(j−l−m)

4∆x1∆x2

)
+ µ

(
u1(j) − u1(j−l−1)

4 (∆x3)
2 +

u3(j−l+n) − u3(j−l−n)
4∆x1∆x3

) (3.43)

By rearranging all terms appearing in the right-hand side of relation (3.43), lo-

cal micro-potential energy, w(j)(j−l), belonging to material particle at co-ordinate

designated by (j − l) becomes

∂w(j)(j−l)

∂ux1(j)
=

(
κ+

4µ

3

)(
u1(j) − u1(j−l−1)

4 (∆x1)
2

)
+
(
κ+

µ

3

)(u2(j−l+m) − u2(j−l−m)

4∆x1∆x2
+
u3(j−l+n) − u3(j−l−n)

4∆x1∆x3

)
+ µ

(
u1(j) − u1(j−l−1)

4 (∆x2)
2 +

u1(j) − u1(j−l−1)
4 (∆x3)

2

) (3.44)
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Sum of two partial derivatives, ∂w(j)(j+l)/∂ux1(j) and ∂w(j)(j−l)/∂ux1(j) is obtained

as follows.

∂w(j)(j+l)

∂ux1(j)
+
∂w(j)(j−l)

∂ux1(j)
=−

(
κ+

µ

3

)(u1(j−l−1) − 2u1(j) + u1(j+l+1)

4 (∆x1)
2

)
−
(
κ+

µ

3

)(−u2(j−l+m) + u2(j−l−m) + u2(j+l+m) − u2(j+l−m)

4∆x1∆x2

)
−
(
κ+

µ

3

)(−u3(j−l+n) + u3(j−l−n) + u3(j+l+n) − u3(j+l−n)
4∆x1∆x3

)
− µ

(
u1(j−l−1) − 2u1(j) + u1(j+l+1)

4 (∆x1)
2

)
− µ

(
u1(j−l−1) − 2u1(j) + u1(j+l+1)

4 (∆x2)
2

)
− µ

(
u1(j−l−1) − 2u1(j) + u1(j+l+1)

4 (∆x3)
2

)

(3.45)

Substitution of equivalent terms in discrete form in accordance with relations

(3.19) and (3.22) in the right-hand side of relation (3.45) leads to the following.

∂w(j)(j+l)

∂ux1(j)
+
∂w(j)(j−l)

∂ux1(j)
=−

(
κ+

µ

3

) (
u(j)1,11 + u(j)2,21 + u(j)3,31

)
− µ

(
u(j)1,11 + u(j)1,22 + u(j)1,33

) (3.46)

Additionally, summation of local micro-potentials energies, w(j)(j+m), w(j)(j−m) and

w(j)(j+n), w(j)(j−n), can be obtained in a similar way of relation (3.46) and written

respectively as follows.

∂w(j)(j+m)

∂ux1(j)
+
∂w(j)(j−m)

∂ux1(j)
=−

(
κ+

µ

3

) (
u(j)1,12 + u(j)2,22 + u(j)3,32

)
− µ

(
u(j)2,11 + u(j)2,22 + u(j)2,33

) (3.47)

∂w(j)(j+n)

∂ux1(j)
+
∂w(j)(j−n)

∂ux1(j)
=−

(
κ+

µ

3

) (
u(j)1,13 + u(j)2,23 + u(j)3,33

)
− µ

(
u(j)3,11 + u(j)3,22 + u(j)3,33

) (3.48)
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3.3 Equations of motion in classical theory

The last three equations given through relations (3.46), (3.47) and (3.48) can be

invoked in (3.36), (3.37) and (3.38) respectively hence equations of motion can be

expressed as follows.

üα(j)ρ(j) =− 1

2

((
κ+

µ

3

) (
u(j)1,1α + u(j)2,2α + u(j)3,3α

)
+ µ

(
u(j)α,11 + u(j)α,22 + u(j)α,33

))
V(j) + bα(j)

(3.49)

or in a more compact form, equations of motion can be expressed as

üα(j)ρ(j) = −1

2

((
κ+

µ

3

) (
u(j)β,βα

)
+ µ

(
u(j)α,ββ

))
V(j) + bα(j) (3.50)

in which sub-index, β, that is repeated, implies a summation over co-ordinates,

(x1), (x2) and (x3) while α term stands for free index.

Instead of using displacement related terms, equations of motion can be expressed

as a functions of associated stress components in accordance with relations (C.53)

and (D.25). To this end, relation (2.28) is achieved as follows.

ρα(j)üα(j) −
(
σ(j)αx1,x1 + σ(j)αx2,x2 + σ(j)αx3,x3

)
− ρα(j)bα(j) = 0 (3.51)

or

ρα(j)üα(j) =
1

2

(
∆σ(j)αx1

∆x1
+

∆σ(j)αx2
∆x2

+
∆σ(j)αx3

∆x3

)
+ ρα(j)bα(j) (3.52)

Relation (3.52) can be written in a discrete from based on central finite difference

method given by relation (3.15) thereby three components of equations of motion

can be expressed as follows.

ρx1(j)üx1(j) =
σ(j+l)x1x1 − σ(j−l)x1x1

2∆x1
+
σ(j+m)x1x2 − σ(j−m)x1x2

2∆x2
+
σ(j+n)x1x3 − σ(j−n)x1x3

2∆x3

+ ρx1(j)bx1(j)
(3.53)

ρx2(j)üx2(j) =
σ(j+l)x2x1 − σ(j−l)x2x1

2∆x1
+
σ(j+m)x2x2 − σ(j−m)x2x2

2∆x2
+
σ(j+n)x2x3 − σ(j−n)x2x3

2∆x3

+ ρx2(j)bα(j)
(3.54)
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ρx3(j)üx3(j) =
σ(j+l)x3x1 − σ(j−l)x3x1

2∆x1
+
σ(j+m)x3x2 − σ(j−m)x3x2

2∆x2
+
σ(j+n)x3x3 − σ(j−n)x3x3

2∆x3

+ ρx3(j)bα(j)
(3.55)

in which sub-indices of stress tensor, σ, indicates local neighbours of material point

labelled by (j). Adding and subtracting terms that are σ(j)x1x1 , σ(j)x2x2 and σ(j)x3x3

seen in numerators of relations (3.53), (3.54) and (3.55) respectively enable us to

rewrite equations of motion as follows.

ρx1(j)üx1(j) =

(
σ(j)x1x1 − σ(j−l)x1x1

2∆x1

)
+

(
σ(j+l)x1x1 − σ(j)x1x1

2∆x1

)
+

(
σ(j)x1x1 − σ(j−m)x1x2

2∆x2

)
+

(
σ(j+m)x1x2 − σ(j)x1x1

2∆x2

)
+

(
σ(j)x1x1 − σ(j−n)x1x3

2∆x3

)
+

(
σ(j+n)x1x3 − σ(j)x1x1

2∆x3

)
+ ρx1(j)bx1(j)

(3.56)

ρx2(j)üx2(j) =

(
σ(j)x2x2 − σ(j−l)x2x1

2∆x1

)
+

(
σ(j+l)x2x1 − σ(j)x2x2

2∆x1

)
+

(
σ(j)x2x2 − σ(j−m)x2x2

2∆x2

)
+

(
σ(j+m)x2x2 − σ(j)x2x2

2∆x2

)
+

(
σ(j)x2x2 − σ(j−n)x2x3

2∆x3

)
+

(
σ(j+n)x2x3 − σ(j)x2x2

2∆x3

)
+ ρx2(j)bx2(j)

(3.57)

ρx3(j)üx3(j) =

(
σ(j)x3x3 − σ(j−l)x3x1

2∆x1

)
+

(
σ(j+l)x3x1 − σ(j)x3x3

2∆x1

)
+

(
σ(j)x3x3 − σ(j−m)x3x2

2∆x2

)
+

(
σ(j+m)x3x2 − σ(j)x3x3

2∆x2

)
+

(
σ(j)x3x3 − σ(j−n)x3x3

2∆x3

)
+

(
σ(j+n)x3x3 − σ(j)x3x3

2∆x3

)
+ ρx3(j)bx3(j)

(3.58)



Chapter 4

Fundamentals of Peridynamic

Modelling

4.1 Introduction

As a result of particle interaction, emerging potential energy on an imaginary bond

between interacting particles is attributed to deformation of that bond. This po-

tential energy caused by restoring forces between interacting particles in deformed

state of a body is called micro-potential, being strain energy of a scalar valued

function, w(i)(j), [22].

In peridynamic theory, every particle defined on a body interact with its surround-

ing particles located on a spherical region as illustrated in Figure (4.1). Boundary

of this region which is called horizon of subjected material point painted with

red colour in Figure (4.1) is determined by a radius, δ named as horizon. From

non-local approaches’ point of view, locality is determined by size of horizon.

Within the realm of particle interaction on a body, all neighbouring material points

denoted by sub-index (j) communicate with the subjected particle (i) that are

illustrated by blue and red colour balls respectively in Figure (4.1).

33
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Figure 4.1: Non-Local interactions of material particles

As illustrated in Figure (4.2), micro-potential energy that each particle has does

not have to be necessarily same since horizon of each subjected material point

denoted by (j) are different.

Figure 4.2: Peridynamic deformation vectors and particle horizons

Material points in a body are presented by position vectors in both initial and

deformed states for which orange and green vectors are used in Figure (4.2).
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Mathematically, the prescription that distinguishes micro-potential energies of par-

ticles (i) and (j) is stated as follows.

w(i)(j) 6= w(j)(i) (4.1)

Beside micro-potentials that each particle has alters depending on displacement

vector between interacting particles, it is defined as a function of relative position

vector, ξ = x(j) − x(i), in reference configuration as well because stretch state of

imaginary bond at initial configuration contributes micro-potential energy as well.

To this end, micro-potential energy is written as a function of both relative position

vectors η = y(j) − y(i) and ξ = x(j) − x(i) respectively in deformed and reference

configurations of a body as follows, [25].

w(i)(j) = w(i)(j)(u(1), u(2), u(3), ..., x(1), x(2), x(3), ...) (4.2)

which indicates micro-potential energy on particle (i) that is caused by surrounding

particles (j)s On the other hand, micro-potential energy is expressed with respect

to particle (j) as follows.

w(j)(i) = w(j)(i)(u(1), u(2), u(3), ..., x(1), x(2), x(3), ...). (4.3)

in which u(j)s are vectorial differences of position vectors that are u(i) = y(1) −
x(i), y(2) − x(i), y(3) − x(i), ... including all relative displacement vectors within the

horizon of particle (i).

Relative position vectors in reference configuration are expressed as ξ(i)(j) = x(j)−
x(i) including all associated relative position vectors that can be explicitly listed as

(x(1)−x(i)), (x(2)−x(i)), (x(3)−x(i)), ..., (x(n)−x(i)) with respect to particle labelled

by x(i). On the other hand, relative displacement vector in deformed state of body,

y(j) − y(i) defines deformed state of a bond between each pair of particle.

The micro-potential function can be also presented as a term of relative deforma-

tions since total deformation can be written as y(i) = x(i)+u(i) and y(j) = x(j)+u(j),

[22]. To this end, expression (4.2) and (4.3) can be alternatively written as follows.

w(i)(j) = w(i)(j)(y(1), y(2), y(3), ...) (4.4)
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and

w(j)(i) = w(j)(i)(y(1), y(2), y(3), ...). (4.5)

Alternatively relative position vectors can be expressed as ξ = x′−x and η = y′−y
in undeformed and deformed configurations respectively.

Due to prescribed body forces on particle (i) caused by a potential e.g. gravita-

tional field and restoring forces on bond connecting particle pairs, total potential

energy upon particle (i) can be written as a sum of both and expressed as follows.

U =
∞∑
i=1

W(i)V(i) −
∞∑
i=1

~u(i)~b(i)V(i) (4.6)

in which strain energy density, W(i) accumulated on particle (i) is given by a

summation of micro-potentials arising from interactions of neighbour particles

denoted by (j) with subjected particle (i).

Moreover, strain energy density on pair of particles with subscripts both (i) and (j)

is considered as half of that micro-potential energy on the bond, [33]. Therefore,

strain energy density of particle labelled by (i) and having neighbouring particles

with volume V(j) is given by

W(i) =
1

2

∞∑
j=1

(
w(i)(j)(~u(1), ~u(2), ~u(3), . . .

)
+ w(j)(i)

(
~u(1), ~u(2), ~u(3), . . .)

)
V(j) (4.7)

in which micro-potential strain energy terms, w, are expressed as a function of

relative displacement vector η(i)(j) =
(
u(j) − u(i)

)
only instead since relative po-

sition vector in reference configuration that is ξ(i)(j) =
(
x(j) − x(i)

)
is already an

argument inside u.

Consequently, total potential energy for all particles is obtained by substituting

relation (4.7) in relation (4.6) and expressed as follows.

U =
∞∑
i=1

(
1

2

∞∑
j=1

(
w(i)(j)(~u(1), ~u(2), . . .) + w(j)(i)(~u(1), ~u(2), . . .)

)
V(j)

)
V(i) −

∞∑
i=1

~u(i)~b(i)V(i)

(4.8)
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4.1.1 Hamilton’s Principle

One of the fundamental prescription in classical mechanics is known as principle

of least action or Hamilton’s principle which dictates best possible path a particle

has to follow in its motion from one point to another in space.

Relations determining transitions between accelerations, velocities and co-ordinates

of a system are called equations of motion [6]. Acceleration of a free particle can

be determined if its positions and velocities at each instant of time are known.

Therefore, fundamental functions leading to equations of motion have to be func-

tion of position, velocity and time, in other words, Lagrangian of system that

is expressed as L(q, q̇, t) in which q and q̇ indicate generalized co-ordinates and

generalized velocities respectively while t symbolizes time. Specifically, notion of

generalized co-ordinates of a particle is considered as the minimum number of

co-ordinates by which position of a particle is sufficiently identifiable.

The other consequential parameter that controls motion of a particle in space

is degrees of freedom. For example, if a single mass pendulum problem in two-

dimensional space is taken into account, constrain equation for oscillating mass

would be a path defined by associated circle on which mass moves on. For this

specific problem of motion, one may intuitively expect that system should have

only one degree of freedom. Formally degrees of freedom any arbitrary system has

is determined by a generalized formula as given below.

s = DN − C (4.9)

in which D, N and C indicate number of dimension, particles and constrain equa-

tions respectively. Consequently, Lagrangian of a system becomes L(q1, ..., qs, q̇1, ...,

q̇s, ..., t) in case of defining s degrees of freedom for co-ordinates.

Assuming a particle moves through space from co-ordinate q1 to q2 in an infinites-

imal time interval, dt, then this action is defined by area under co-ordinate-time

curve and denoted by S. The path of this curve can be any that ties these two

co-ordinates. One of these path can be deviate from one another by δq with in-

finitesimal variation δq(t) at same instant of time, t. As a result, infinitesimal

difference in action, δS, can be given by terminating area between these curves.
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As a result of that the best possible least action is achieved as follows.

δS =

ˆ t2

t1

L (q(t) + δq(t), q̇(t) + δq̇(t), t) dt−
ˆ t2

t1

L (q(t), q̇(t), t) dt (4.10)

As a conclusion, the right side of equation (4.10) yields to its following form.

δS =

ˆ t2

t1

δL (q(t), q̇(t), t) dt. (4.11)

According to Taylor expansion for one variable function, e.g. f(x), an expression

for total differential of f(x) that is f(x + dx) − f(x) = (∂f(x)/∂x) dx or df(x)

are obtained. By means of this definition and expanding total differential inside

integral in relation (4.11), we write

δS =

ˆ t2

t1

(
∂L

∂q
dq +

∂L

∂q̇
dq̇

)
dt. (4.12)

Manipulation of the second term in right-hand side of relation (4.12) is needed to

be able to minimize variation in action term, δS. Therefore, we write

d

dt

(
∂L

∂q̇
δq

)
=
∂L

∂q̇

(
d

dt
δq

)
+
d

dt

(
∂L

∂q̇

)
dq (4.13)

or (
∂L

∂q̇

)
δq̇ =

d

dt

(
∂L

∂q̇
δq

)
− d

dt

(
∂L

∂q̇

)
dq (4.14)

and substituting relation (4.14) for the second term in expression (4.12) and rear-

ranging terms in an appropriate way variation, δS is obtained as follows.

δS =

ˆ t2

t1

(
∂L

∂q
dq

)
dt+

ˆ t2

t1

(
d

dt

(
∂L

∂q̇
δq

)
− d

dt

(
∂L

∂q̇

)
dq

)
dt

=

ˆ t2

t1

(
∂L

∂q
dq

)
dt+

ˆ t2

t1

d

(
∂L

∂q̇
δq

)
−
ˆ t2

t1

d

dt

(
∂L

∂q̇

)
dqdt

=

ˆ t2

t1

(
∂L

∂q
dq

)
dt+

(
∂L

∂q̇
δq

) ∣∣∣∣∣
t2

t1

−
ˆ t2

t1

d

dt

(
∂L

∂q̇

)
dqdt

(4.15)

Since all possible paths between two position end up with the same co-ordinates,
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namely δq(t1) = δq(t2), middle integral in relation (4.15) yields to zero. Moreover,

the second proposal that we have at the beginning was to determine the shortest

path that a particle follows by minimizing its action, namely, δS = 0, therefore

the last line of relation (4.15) leads to

ˆ t2

t1

(
∂L

∂q
− d

dt

(
∂L

∂q̇

))
δqdt = 0 (4.16)

4.1.2 Equations of Motion in Non-Local Theory

The only way of satisfying condition given by relation (4.16) is to equal the terms

inside brackets in relation (4.16) to zero.

To this end, Lagrange-Euler equations of motion being a set of differential equa-

tions is obtained as expressed as follows.

d

dt

(
∂L

∂q̇(i)

)
− ∂L

∂q(i)
= 0 (4.17)

where i = 1, 2, 3, ..., s, indicates number of degrees of freedom the particle has.

Displacement of a particle labelled by position vector, ~x(i) in undeformed config-

uration can be denoted by d~x(i) or in short hand notation by ~u(i).

Accordingly, time derivative of displacement vector field, ~u(i), becomes d~x(i)/dt

which is ~̇u(i) in short hand notation.

Additionally, kinetic energy of a particle in motion is given as a scalar product of

forces applied on particle and distance it travels, namely, ~F · d~x(i). To this end,

kinetic energy for each particle is expressed as follows.

T =
∞∑
i=1

m(i)

d~̇u(i)
dt
· d~x(i) =

∞∑
i=1

m(i)d~̇u(i) ·
d~x(i)
dt

=
∞∑
i=1

1

2
m(i)

~̇u(i) · ~̇u(i) (4.18)

Lagrangian of a system, including all particles in a body is defined as a difference

of kinetic and potential energies, L = T − U .
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Furthermore, Lagrangian is written by substituting latest statements of kinetic

and potential energy terms in relation (4.8) as follows.

L = T − U =
∞∑
i=1

1

2
ρ(i)~̇u(i) · ~̇u(i)V(i)−(

∞∑
i=1

(
1

2

∞∑
j=1

(
w(i)(j)(~u(1), ~u(2), ~u(3), ...) + w(j)(i)(~u(1), ~u(2), ~u(3), ...)

)
V(j)

)
V(i)−

∞∑
i=1

~b(i)~u(i)V(i)

)
(4.19)

Lagrange-Euler equations of motion might be modified by making a substitution

in generalized co-ordinates such a way that ~̇q(i) and ~q(i) vectors are substituted by

~̇u(i) and ~u(i) respectively.

Thus, Lagrange-Euler equation is expressed as follows.

d

dt

(
∂L

∂~̇u(i)

)
− ∂L

∂~u(i)
= 0 (4.20)

Before substituting relation (4.19) in Lagrange-Euler equation of motion given

by expression (4.20), let us introduce a set of differentials that are needed while

performing differentiation of Lagrangian seen in expression (4.20).

∂w(i)(j)

(
~u(1), ~u(2), ...

)
∂~̇u(i)

= 0 ,
∂w(j)(i)

(
~u(1), ~u(2), ...

)
∂~̇u(i)

= 0 (4.21)

∂

∂~̇u(i)

(
1

2
ρ(i)~̇u(i) · ~̇u(i)V(i)

)
= ρ(i)~̇u(i)V(i) ,

∂
(
~b(i)~u(i)V(i)

)
∂~̇u(i)

= 0 (4.22)

and

∂

∂~u(i)

(
1

2
ρ(i)~̇u(i) · ~̇u(i)V(i)

)
= 0 ,

∂
(
~b(i)~u(i)V(i)

)
∂~u(i)

= ~b(i)V(i) (4.23)

After performing partial differentials and using results along relations (4.21), (4.22)

and (4.23), relation (4.20) becomes

d

dt

(
∞∑
i=1

ρ(i)~̇u(i)V(i)

)
−
∞∑
i=1

(
−1

2

∞∑
j=1

(
∂w(i)(j)

∂~u(i)
+
∂w(j)(i)

∂~u(i)
V(j)

))
V(i) −

∞∑
i=1

~b(i)V(i) = 0

(4.24)
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or

∞∑
i=1

ρ(i)~̈u(i)V(i) = −1

2

∞∑
i=1

(
∞∑
j=1

∂w(i)(j)

∂~u(i)
V(j) +

∞∑
j=1

∂w(j)(i)

∂~u(i)
V(j)

)
V(i) +

∞∑
i=1

~b(i)V(i)

(4.25)

Since all terms under summation of (i) index, relation (4.25) can be simplified as

follows.

∞∑
i=1

(
ρ(i)~̈u(i) +

1

2

(
∞∑
j=1

∂w(i)(j)

∂~u(i)
V(j)

)
+

1

2

(
∞∑
j=1

∂w(j)(i)

∂~u(i)
V(j)

)
−~b(i)

)
V(i) = 0

(4.26)

As it can be immediately realized that the bracket inside relation (4.26) has to be

zero in order to be able to satisfy itself so that relation (4.26) can be alternatively

expressed as follows.

ρ(i)~̈u(i) +
1

2

(
∞∑
j=1

∂w(i)(j)

∂~u(i)

)
V(j) +

1

2

(
∞∑
j=1

∂w(j)(i)

∂~u(i)

)
V(j) −~b(i) = 0 (4.27)

or

ρ(i)~̈u(i) = −1

2

(
∞∑
j=1

∂w(i)(j)

∂~u(i)

)
V(j) −

1

2

(
∞∑
j=1

∂w(j)(i)

∂~u(i)

)
V(j) +~b(i) (4.28)

Unit analysis that is

(
[kg/m3] [m/s2] =

(
∂w(i)(j)

∂~u(i)

)
[m3] =

(
∂w(j)(i)

∂~u(i)

)
[m3]

)
ac-

quaints us with the right-hand side of relation (4.28) that appears in a unit of

force per unit volume, [N/m3].

Additionally, micro-potential strain energy w(j)(i), has a unit of [J/m6], whose

integration over a defined volume including associated material points yields to

strain energy density, W(i), in a unit of energy per unit volume, [J/m3], for corre-

sponding particle (i). From this point of view, the terms having unit of in force

per unit volume are referred as force density in peridynamic theory.

As it can be intuitively realized that effective force applied on an arbitrary particle

is affected by how much interacting particles are far away from subjected particle.

To this end, force density should be a function of relative position vector in both

initial and deformed states of a body.
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Relative deformation vectors that are considered as deviations with respect to

initial state of relative position vector can be expressed in a way around and they

can be collected for each pair of particles in an array form as follows.

u(j) − u(i) =


u(1) − u(i)
u(2) − u(i)
u(3) − u(i)

...


=


y(1) − y(1) − (x(1) − x(1))
y(2) − y(1) − (x(2) − x(1))
y(3) − y(1) − (x(3) − x(1))

...


(4.29)

Since strain energy on a bond arises from relative position vector, (y′ − y), in

deformed state with respect to relative position vector, ξ, in reference configuration

satisfying relation y′−y = (u′−u)+ξ, we can conclude that micro-potential energy

is expressed as a function of either relative position vector, (y′ − y), in deformed

configuration or relative displacement vector, (u′ − u). Therefore, the statements

that are w(i)(j) = w(i)(j)(y(j)−y(i)) and w(i)(j) = w(i)(j)(u(j)−u(i)) become equivalent,

[22] and [25].

In the scope of bond-based peridynamic, force density between interacting parti-

cles obeys Newton’s third law of motion establishing a balance equation that is

expressed as follows.

~f(i)(j)(u(j) − u(i), x(j) − x(i), t) +~f(j)(i)(u(i) − u(j), x(i) − x(j), t) = 0 (4.30)

or

−~f(i)(j)(u(j) − u(i), x(j) − x(i), t) =~f(j)(i)(u(i) − u(j), x(i) − x(j), t) (4.31)

Moreover, the terms
∂w(i)(j)

∂u(i)
and

∂w(j)(i)

∂u(i)
(4.32)

force per unit volume can be interpreted as force density being a function of ξ and

η, f(η, ξ). To this end, equivalence of terms that are given along relations (4.30)

and (4.32) are expressed as follows.

∂w(i)(j)

∂~u(i)
=~f(i)(j)(u(j) − u(i), x(j) − x(i), t) (4.33)

and
∂w(j)(i)

∂~u(i)
= −~f(j)(i)(u(i) − u(j), x(i) − x(j), t) (4.34)
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which constitute fundamental statement of bond-based peridynamic theory.

In this perspective, force densities have been associated with traction forces of

classical continuum mechanics in [32].

Accordingly, equations of motion in peridynamic theory are obtained for an ar-

bitrary particle, (i), after substituting relations (4.33) and (4.34) in Lagrangian

based expression given by (4.28) as follows.

ρ(i)ü(i) =
1

2

∞∑
j=1

(
f(i)(j)(u(j) − u(i), x(j) − x(i), t)− f(j)(i)(u(i) − u(j), x(i) − x(j), t)

)
V(j) + b(i) (4.35)

By means of a conversion set that is

∞∑
j=1

(·)V(j) ≈
ˆ

V

(·) dV ′ (4.36)

x(i) = x , x(j) = x′ , u(i) = u(x, t) = u , u(j) = u(x′, t) = u′ (4.37)

ρ(i) = ρ(x, t) , b(i) = b(x, t) (4.38)

peridynamic equation of motion can be explicitly expressed in the following form.

ρ(x, t)ü(x, t) =
1

2

ˆ

V

(f(u′ − u, x′ − x, t)− f(u− u′, x− x′, t)) dV ′ + b (x, t) (4.39)

Within the realm of particle interactions, the simplest form of equations of mo-

tion given by relation (4.35) applies to each particle labelled by (i) and deter-

mines whole displacement field for entire material domain. Regarding infinite-

dimensional arrays, state notion has been developed in [34] and represented by

bold and underlined capital letters, namely Y. One of the state notion is the

deformation state that can be interpreted as a function relating relative position

vectors in undeformed deformed configurations.

Moreover, force states can be defined in a similar way to definition of deformation

state given by expression (4.29) and collection of pair-wise forces are symbolized

by another underlined capital letters, namely F. All associated pair-wise forces of
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interacting particles can be collected inside an infinite dimensional array consti-

tuting force state as follows

F
(
x(i), t

)
=

1

2


...

f(i)(j)(u(j) − u(i), x(j) − x(i), t)
...

 (4.40)

and

F
(
x(j), t

)
=

1

2


...

−f(j)(i)(u(i) − u(j), x(i) − x(j), t)
...

 (4.41)

or in short-hand notation their equivalent representation is written as

F
(
x, t
)

=
1

2


...

f(u′ − u, x′ − x, t)
...

 (4.42)

and

F
(
x′, t
)

=
1

2


...

−f(u− u′, x− x′, t)
...

 (4.43)

Applying force states to corresponding relative position vectors in undeformed

configuration yields to force densities. This operation can be seen as decomposition

of force densities into force states and its associated relative position vector in

undeformed configuration. Namely,

F(x(i), t)〈x(j) − x(i)〉 =
1

2
f(i)(j)

(
u(j) − u(i), x(j) − x(i), t

)
(4.44)

and

F(x(j), t)〈x(i) − x(j)〉 = −1

2
f(j)(i)

(
u(i) − u(j), x(i) − x(j), t

)
(4.45)

By substituting relations (4.44) and (4.44) in equations of motion given by ex-

pression (4.39). To this end, peridynamic equations of motion is expressed as

follows.

ρ(i)ü(i) =
∞∑
j=1

(
F
(
x(j), t

) 〈
x(i) − x(j)

〉
− F

(
x(j), t

) 〈
x(i) − x(j)

〉)
V(j) + b(i) (4.46)
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or in integral form,

ρ(x, t)ü(x, t) =
1

2

ˆ

V

(f(u′ − u, x′ − x, t)− f(u− u′, x− x′, t)) dV ′ + b (x, t) (4.47)

Force densities can be replaced with associated states and expressed as follows.

ρ(x, t)ü(x, t) =

ˆ

V

(F (x, t) 〈x′ − x〉 − F (x′, t) 〈x− x′〉) dV ′ + b (x, t) (4.48)

4.1.3 Balance Equations

As other conserved quantities in nature, e.g. energy, momentum of a system in

both linear and rotational point of view has to be in balance. This part consists

of derivation of balance linear and angular momentum equations to establish a

set of constraint relation. Linear momentum of a free-particle in space considered

as particle moves in a linear path while angular momentum designates rotational

momentum of particle around a specified origin of non-linear trajectory.

4.1.3.1 Global Balance of Linear Momentum

Let us start with conservation of linear momentum for a free-particle. Linear

momentum of a particle in space being a well-known notion is defined by scalar

product of velocity vector with mass of the particle, namely, ρ(i)dV u̇(i). In that

sense,integrating result over a volumetric domain, total momentum for a group of

particle can be evaluated as follows.

L =
∞∑
i=1

ρ(i)u̇(i)V(i) (4.49)

or in integral form

L =

ˆ

V

ρ(x, t)u̇(x, t)dV (4.50)

Because of particle interactions and prescribed body forces the left-hand side of

relations (4.46) and (4.47) results in a net force on the particle labelled by (i).

Moreover, this net force by which the particle is accelerated is obtained with time

derivative of linear momentum as well. In other words, F = ∂L/∂t = L̇, in which

F is a force due to alternation in momentum with respect to change in time. Thus,
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the force on a group of particle is written by means of relation (4.49) as follows.

F =
∂L

∂t
=
∞∑
i=1

ρ(i)ü(i)V(i) (4.51)

or in integral form

L̇ = F =

ˆ

V

ρ(x, t)ü(x, t)dV (4.52)

As one may realize that the same force term can be obtained by integrating either

left or right-hand side of relation (4.48) over a volumetric domain V leading to

ˆ

V

ρ(x, t)ü(x, t)dV =

ˆ

V

ˆ

V

(F(x, t) 〈x′ − x〉 − F(x′, t) 〈x− x′〉) dV ′dV +

ˆ

V

b(x, t)dV

(4.53)

or in more compact form

ˆ

V

(ρ(x, t)ü(x, t)− b(x, t)) dV =

ˆ

V

ˆ

V

(F(x, t) 〈x′ − x〉 − F(x′, t) 〈x− x′〉) dV ′dV

(4.54)

which constitutes a condition for conservation of linear momentum.

Global balance equation of linear momentum for entire domain is satisfied if pre-

scription, x⇔ x′, is applied on term F
(
x, t
)〈
x′−x

〉
and substituted in expression

(4.48), leading to termination of force states of interacting particles.

F (x, t) 〈x′ − x〉 = F(x′, t) 〈x− x′〉 (4.55)

Expressing that the second integration appearing in relation (4.53) is performed

on infinitesimal volume, dV , so that linear momentum is conserved and entire

body behaves under effect of prescribed body forces only. As a result, global

conservation of linear momentum is obtained as follows.

ˆ

V

(ρ (x, t) ü (x, t)− b (x, t)) dV = 0. (4.56)
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4.1.3.2 Global Balance of Angular Momentum

Beside satisfying balance of linear momentum, another constrain equation being

balance of angular momentum has to be conserved. If rotation of a group of

particles around a co-ordinate origin whose distance vector to subjected particle

labelled by x(i) is y(x(i), t), then angular momentum over a volumetric domain V

is expressed as follows.

Ho =
∞∑
i=1

ρ(i)y(x(i), t)× u̇(i)V(i) (4.57)

or in integral form

Ho =

ˆ

V

ρ(x, t)y(x, t)× u̇(x, t)dV (4.58)

in which subscript o under H represents origin of co-ordinate system for rotation.

As similar to time derivative of linear momentum, change in angular momentum

with respect to time yields to a net torque on rotating group of particle around

co-ordinate origin.

T =
∂Ho

∂t
=
∞∑
i=1

ρ(i)y(x(i), t)× ü(i)V(i) (4.59)

equivalently

L̇o =

ˆ

V

ρ(x, t)y(x, t)× ü(x, t)dV (4.60)

in which ∂y(x(i), t)/∂t = 0. By applying vector product to both side of relation

(4.48) with y(x(i), t), balance equation for angular momentum is written as follows.

ˆ

V

y(x, t)× (ρ(x, t)ü(x, t)− b(x, t)) dV =

ˆ

V

ˆ

V

y(x, t)× (F(x, t) 〈x′ − x〉 − F(x′, t) 〈x− x′〉) dV ′dV

(4.61)

The same prescription used on conservation equation for linear momentum that is

x⇔ x′ for each particle is applied on terms F
(
x, t
)〈
x′ − x

〉
and y(x, t)⇔ y(x′, t),

as follows.

y(x, t)× F(x′, t) 〈x− x′〉 dV ′dV = y(x′, t)× F(x, t) 〈x′ − x〉 dV dV ′ (4.62)
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Thus, global conservation of angular momentum equation is obtained as

ˆ

V

y(x, t)× (ρ(x, t)ü(x, t)− b(x, t))dV =

ˆ

V

ˆ

V

y(x, t)× F(x, t) 〈x′ − x〉 dV ′dV−

ˆ

V

ˆ

V

y(x′, t)× F(x, t) 〈x′ − x〉 dV dV ′

(4.63)

or in more compact form

ˆ

V

y(x, t)× (ρ(x, t)ü(x, t)− b(x, t))dV =

−
ˆ

V

ˆ

V

(y(x′, t)− y(x, t))× F(x, t
)
〈x′ − x〉 dV dV ′

(4.64)

in which deformation state relating relative position vectors in deformed configura-

tion with undeformed relative position vectors such that y′−y = y(x′, t)−y(x, t) =

Y(x, t) 〈x′ − x〉 can be substituted in conservation of angular momentum equation

and it becomes

ˆ

V

y(x, t)× (ρ(x, t)ü(x, t)− b(x, t))dV = −
ˆ

V

ˆ

V ′

Y(x, t) 〈x′ − x〉 × F(x, t) 〈x′ − x〉 dV ′dV

(4.65)

4.2 Alignments and magnitudes of pair-wise forces

in peridynamic theory

The pair-wise forces are taken into account with formulations based on different

configurations in terms of alignments and magnitudes of pair-wise forces. In this

manner, one of which collocates pair-wise forces in same alignment with equal

magnitudes and opposite directions which is named as bond-based peridynamics

while alignments of pair-wise forces in deformed state become same with different

magnitudes in ordinary state-based peridynamics. On the other hand, formulation
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structured with coupling forces of different magnitudes and alignments is named

as non-ordinary state-based peridynamic, [34].

These three formulations of peridynamic theory are introduced in equations of

motion by associated auxiliary parameters in front of unitary direction vectors of

deformed bonds, [22], [25].

4.2.1 Formulation of bond-based peridynamic

From conservation of linear momentum for all particles over entire domain it is

concluded that following condition has to be satisfied.

ˆ

V

Y(x, t) 〈x′ − x〉 × F(x, t) 〈x′ − x〉 dV ′ = 0 (4.66)

The only way of satisfying condition given by relation (4.66) is that all relative

position vectors in deformed configuration, (y′ − y), and their corresponding force

density vectors have to be in same alignment.

By now, force densities of interacting particles are assumed to be in same alignment

and have magnitudes provided by relations (4.31), (4.33) and (4.34) therefore this

concept of the theory is referred as bond-based peridynamics.

In the scope of bond-based peridynamics, and according to magnitude and align-

ment configurations of force densities as explained above, firstly, following assign-

ments are going to be valid.

F(x, t) 〈x′ − x〉 =
1

2
f(u′ − u, x′ − x, t) (4.67)

and

F(x′, t) 〈x− x′〉 = −1

2
f(u′ − u, x′ − x, t) (4.68)

The pair-wise force function indicated by f(u′−u, x′−x, t) including force densities

that are f(u′−u, x′−x, t) and f(u−u′, x−x′, t), has been defined as a vector-valued

function by S.A Silling in [32].

Furthermore, inherent formulation of bond-based peridynamics has a restriction

for modelling of materials whose Poisson’s ratio, ν, different than 1/4 [34]. In

the framework of bond-based peridynamics, pair-wise forces are recast as multiple



Fundamentals of Peridynamic Modelling 50

of unitary vector in deformed state with bond constant, Cp, defining direction

dependent stiffness properties.

As definition of bond-based peridynamics implies, force densities given by relations

(4.67) and (4.68) are alternatively formulated as follows.

F(x(j), t)
〈
x(k) − x(j)

〉
=

1

2
Cp y(k) − y(j)∣∣y(k) − y(j)∣∣ (4.69)

and

F(x(k), t)
〈
x(j) − x(k)

〉
=

1

2
Cp y(k) − y(j)∣∣y(k) − y(j)∣∣ = −1

2
Cp y(j) − y(k)∣∣y(j) − y(k)∣∣ (4.70)

Invoking relations (4.67) and (4.68) in expression (4.48) provides us with equations

of motion for bond-based peridynamics proposed in [32].

ρ(x, t)ü(x, t) =

ˆ

V

f(u′ − u, x′ − x, t)dV ′ + b(x, t) (4.71)

which can be alternatively expressed by means of substitutions, ξ = x′ − x and

η = u′ − u in relation (4.71) as follows.

ρ(x, t)ü(x, t) =

ˆ

V

f(η, ξ, t)dV ′ + b(x, t) (4.72)

4.2.2 Formulation of ordinary state-based peridynamic

Improvements on formulation of bond-based peridynamics resulted in ordinary

state-based peridynamic approach that avoids material type restriction for those

having Poisson’s ratio different than 1/4, [34].

In this sense, force states in ordinary state-based approach are formulated as

follows.

F(x(j), t)
〈
x(k) − x(j)

〉
=

1

2
Asb(j)(k)

y(k) − y(j)∣∣y(k) − y(j)∣∣ (4.73)

and

F(x(k), t)
〈
x(j) − x(k)

〉
= −1

2
Bsb

(k)(j)

y(j) − y(k)∣∣y(j) − y(k)∣∣ (4.74)
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4.2.3 Stretch Notion in Peridynamic Theory

As opposed to definition of classical stretch which is given by (dx/dX) in classical

theory, peridynamic equivalent of stretch notion is defined by change in magnitude

of relative position vector from reference to deformed configuration. Namely,

s(k)(j) =

∣∣y(j) − y(k)∣∣− ∣∣x(j) − x(k)∣∣∣∣x(j) − x(k)∣∣ (4.75)

or it is also possible to write relation (4.75) in short hand notation as follows.

s =
|y′ − y| − |x′ − x|

|x′ − x|
=
|ξ + η| − |ξ|
|ξ|

(4.76)

Consequently, it can be concluded that stretch in peridynamic theory can be more

likely associated with definition of engineering strain in classical theory of elasticity

which is given by ratio of change in a length element with respect to its initial

magnitude.

4.2.4 Peridynamic pair-wise force interaction

As mentioned at the beginning of Chapter (4), strain energy density which arises

from interactions of associated particles has been defined by summation of micro-

potentials that are functions of both difference in relative displacement vector

η = u(x′, t) − u(x, t) = u′ − u in deformed configuration and relative position

vector ξ = x′ − x in undeformed configuration. The summation representing

strain energy of particle shown by x(i) inside its horizon Hx can be evaluated by

an indefinite integral as follows, [33].

W(x) =
1

2

ˆ

Hx

w(η, ξ) dV ′ (4.77)

in which dV ′ is infinitesimal volume of neighbouring particles, positioned by vector

x′ around particle having position vector x.

Regarding relation between pair-wise forces and micro-potential energy, pair-wise

force function between interacting particles is given by f(0, ξ) in equilibrium or ref-

erence configuration of body when force densities are in balance or no deformation

occurs in body.
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Since all relative position vectors in undeformed configuration are fixed, first-order

Taylor expansion around η = 0 for pair-wise force function inside integral given in

relation (4.72) is written as follows.

f(η, ξ) =
∂f

∂η
(0, ξ)(η − 0) + f(0, ξ) where

∂f

∂η
(0, ξ) =

∂f(η, ξ)

∂η

∣∣∣∣∣
η=0

(4.78)

Writing Taylor expansion for pair-wise force function around η = 0 enables us

to approximates f(η, ξ) when deformation defined by |η| << 1 occur between

particles.

The first term in relation (4.78) is added to pair-wise force function f(0, ξ) in refer-

ence configuration hence f(η, ξ) for deformed configuration of particles is obtained.

Since micro-potential is related with the change in bond length with respect to

reference relative position vector, ξ, pair-wise force function at any state including

reference is defined by gradient of scalar-valued potential field, w(η, ξ) with respect

to η only.

f(η, ξ) =
∂w(η, ξ)

∂η
(4.79)

As stated above, if the condition given by expression (4.79) is satisfied, then ma-

terials is referred as micro-elastic [32]. In this manner, pair-wise force function for

undeformed configuration of body is expressed as follows.

f(0, ξ) =
∂w(η, ξ)

∂η

∣∣∣∣∣
η=0

=
∂w

∂η
(0, ξ) (4.80)

Moreover, pair-wise force function between interacting particles loses its effective-

ness beyond horizon. Accordingly, interaction constraint is mathematically given

by

If |ξ| > δ, then f(η, ξ) = 0 , ∀η (4.81)

Equivalent notation for Newton’s third law of motion given by relation (4.31) has

been named as linear admissibility condition, [32].

After substituting assignments given by expressions (4.67) and (4.68) into relation

(4.31) linear admissibility condition is automatically satisfied. Namely,

f(u′ − u, x′ − x) + f(u− u′, x− x′) = 0 , ∀(u′ − u) , (x′ − x) (4.82)
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leading to

f(η, ξ)− f(η, ξ) = 0 , ∀ η, ξ (4.83)

in which t can be hidden in the argument of f. It is also possible to present

conservation of angular momentum given by expression (4.66) in same notation

used in relation (4.82).

(y′ − y)× f(η, ξ) = 0 or (η + ξ)× f(η, ξ) = 0 , ∀ η, ξ (4.84)

The micro-potential energy, w(η, ξ), between a pair of particles can be expressed as

a function of magnitude in relative position vectors in deformed and undeformed

configurations as proposed in relation (4.4). Namely,

w(η, ξ) = ŵ(|y′ − y| , ξ) (4.85)

Accordingly, pair-wise function can be defined by substituting relation (4.85) in

fundamental definition of pair-wise force function given in expression (4.79) as

follows.

f(η, ξ) =
∂

∂η
ŵ(|y′ − y| , ξ) (4.86)

in which assigning magnitude of relative position vector to y, relation (4.86) can

be alternatively expressed as follows.

f(η, ξ) =
∂

∂η
ŵ(y, ξ). (4.87)

Magnitude of relative position vector y in deformed configuration is presented as

a function of relative displacement vector that is y = y(η). Accordingly, apply-

ing a simple chain rule in differentiation, pair-wise force density function can be

expressed as follows.

f(η, ξ) =
∂

∂η
ŵ(y, ξ) =

∂

∂y
ŵ(y, ξ)

∂y

∂η
(4.88)

In detail, one might expand second power of of relative position vector’s magnitude

in deformed configuration to be able to obtain gradient term for pair-wise force

function, |η + ξ|/(η + ξ).
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For this purpose, magnitude of vector addition |ξ + η| can be expanded over its

second power first as follows.

(|ξ + η|)2 = ξ · ξ + η · η + 2ξ · η (4.89)

Derivative of both hand side of expression (4.89) with respect to η can be written

explicitly as

2 |ξ + η| ∂(|ξ + η|)
∂η

=
∂ξ

∂η
· ξ + ξ · ∂ξ

∂η
+
∂η

∂η
· η + η · ∂η

∂η
+ 2

∂ξ

∂η
· η + 2ξ · ∂η

∂η
(4.90)

Since ξ is not a function of η, partial derivative of ξ with respect to η yields to

zero. Consequently, relation (4.90) is simplified to

∂(|ξ + η|)
∂η

=
ξ + η

|ξ + η|
(4.91)

Substitution of unit vector instead of term ∂(|ξ + η|)/∂η in relation (4.88) leads

to pair-wise force function that has been introduced in [33].

f(η, ξ) =
∂

∂y
ŵ(y, ξ)

∂y

∂η
=

∂

∂y
ŵ(y, ξ)

ξ + η

|ξ + η|
(4.92)

The deformation gradient of scalar-potential field that was offered by Silling and

Askari in [33] can be invoked in relation (4.92) and the pair-wise force function

including thermal effects is expressed as follows.

f(η, ξ) = c (s− α∆T )
ξ + η

|ξ + η|
(4.93)

in which c and α are called as bond constant and coefficient of thermal expansion

respectively while s defines stretch between a pair of material points, introduced

by relation (4.76).

One may establish two different analogies between linearly elastic spring and peri-

dynamic bond. In this manner, energy accumulation on a spring can be described

by area under force-displacement curve defined by dW (x0,∆x) = F · dx while

spring constant, k, is evaluated through k = dF/dx.

First analogy corresponds to statement given by expression (4.87) while relation

(4.93) can be explained by the second analogy.
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Moreover, total change in bond length under the effect of pair-wise forces can be

expressed along η = sξ, hence final length of the bond measures |η + ξ| = (1+s) |ξ|
in deformed state of body.

In Appendix (A) it has been shown that stress terms are derivable from derivatives

of corresponding strain energies with respect to deformation parameters. More-

over, comparison of equations of motion obtained in classical and peridynamic

theories allows us to couple stiffness related terms.

Figure 4.3: Evaluation of micro-potential energy

According to Figure (4.3) based on relation (4.79), strain energy on a bond can

be explicitly evaluated by using s = η/ξ and η = sξ in relation. Namely,

w(η, ξ) =

ηˆ

0

csdη = c

ˆ η

0

η

ξ
dη =

cη2

2ξ
=
cs2ξ

2
(4.94)

Moreover, micro-potential strain energy that is calculated by means of relation

(4.94) can be used to be able to calculate strain energy density for entire material

domain. Alternatively, strain energy density can be evaluated according to relation

(4.77). Namely,

W(x) =
1

2

δˆ

0

cs2ξ

2
4πξ2dξ = cs2πδ4/4 (4.95)

in which a relation between volume and surface area of a spherical geometry, being

dVx′ = d (4πξ3/3) = 4πξ2dξ has been utilized.
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In case of volumetric expansion of a linear isotropic material, classical theory of

elasticity reads strain energy density function given by relation (3.5) as follows.

WIsoExp =
1

2

3∑
m=1

σ(j)mmε(j)mm =
1

2

(
σ(j)11ε(j)11 + σ(j)22ε(j)22 + σ(j)33ε(j)33

)
(4.96)

in which shearing components are excluded since only isotropic expansion case is

under consideration.

Classically, isotropic expansion of material domain can also be expressed along

bulk modulus being volumetric stiffness coefficient of a body. Therefore, a con-

stitutive relation for this specific type of behaviour can be expressed based on

relation (B.10) as follows.

σ̃ = κe (4.97)

in which σ̃ and e are respectively mean stress and dilatation which are defined as

follows.
σ̃ = (σ11 + σ22 + σ33) /3

= σii/3
(4.98)

and
e = ∆V(RV E)/V0,(RV E)

= (1 + ε11) (1 + ε22) (1 + ε33)− ε11ε22ε33
= ε11 + ε22 + ε33 = εii

(4.99)

Thus relation (4.97) can be alternatively expressed for isotropic expansion of a

bulk which is under stress, σ̃ as follows.

3σ̃ = 3κ (4.100)

The Hooke’s law expressed in terms of λ and µ in relation (C.53) has been in-

verted to obtain expression (B.14), representing strain terms as a function of cor-

responding stress components. It is also convenient to express same equation in its

equivalent form with addition of thermal effects for material point (j) as follows.

ε(j)ij =
1

2µ

(
σ(j)ij −

1

3κ

(
κ− 2µ

3

)
δ(j)ijε(j)ii + 3κα∆T(j)δ(j)ij

)
(4.101)

in which by substituting equivalent terms for λ and εii given by relations (B.11)

and (B.13) respectively, expression (B.14) can be verified. Alternatively, dilatation

can be proven by means of strain equality given by relation (4.101). To this end,
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trace of dilatation, ε(j)ij, is written as

trace
(
ε(j)ij

)
= ε(j)ii

=
(
σ(j)ii − 3κε(j)ii + 2µε(j)ii + 9κα∆T(j)

)
/ (2µ)

(4.102)

By leaving σ(j)ii on the left hand side, we write

σ(j)ii = 2µε(j)ii + 3κε(j)ii − 2µε(j)ii − 9κα∆T(j)

= 3κ
(
ε(j)ii − 3α∆T(j)

) (4.103)

or dilatation is obtained as follows.

ε(j)ii = σ(j)ii/(3κ) + 3α∆T(j) (4.104)

Classically, strain energy density given by relation (4.96) in case of isotropic ex-

pansion is obtained as follows based on relation (4.98).

WIsoExp =
1

2
σiiεii =

3

2
κε2ii

(4.105)

Specifically, isotropic expansion of a body can be expressed along ε11 = ε22 = ε33 =

ε. After substitution of them into classical strain energy density function, relation

(4.105) becomes

WIsoExp =
3

2
κ
(
ε211 + ε222 + ε233

)
=

9

2
κε2 (4.106)

As noted at the beginning of Chapter (4), strain term, ε, seen in relation (4.106)

can be replaced by peridynamic stretch, s, since they are equivalent statements.

Furthermore, equating peridynamic strain energy density result from to classical

one, leads to determination of peridynamic bond constant, c, being a function of

material volumetric stiffness. Namely,

c =
18κ

πδ4
(4.107)

in which, κ stands for bulk modulus of body as introduced before. The bond con-

stant derived in relation (4.107) can be invoked in pair-wise force density function

given in (4.93) and by using the explicit form of stretch given by relation (4.76),
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peridynamic response function is obtained as follows.

f(η, ξ) =

(
18κ

πδ4

)(
|y′ − y| − |x′ − x|

|x′ − x|
− α∆T(j)

)
y′ − y
|y′ − y|

(4.108)

The force states given by relations (4.44) and (4.45) can be related with relation

(4.108) as follows.

F(x(i), t)〈x(j) − x(i)〉 =
1

2
f (u′ − u, x′ − x, t)

=

(
9κ

πδ4

)(
|y′ − y| − |x′ − x|

|x′ − x|
− α∆T(j)

)
y′ − y
|y′ − y|

(4.109)

and

F(x(j), t)〈x(i) − x(j)〉 =
1

2
f (u− u′, x− x′, t) =

= −
(

9κ

πδ4

)(
|y′ − y| − |x′ − x|

|x′ − x|
− α∆T(j)

)
y′ − y
|y − y′|

(4.110)

Thus, pairwise force functions for material points x and x′ are obtained as follows.

f(j)(k)
(
u(k) − u(j), x(k) − x(j), t

)
=

=
18κδ

πδ5
∣∣x(k) − x(j)∣∣ (∣∣y(k) − y(j)∣∣− ∣∣x(k) − x(j)∣∣− α ∣∣x(k) − x(j)∣∣∆T(j)) y(k) − y(j)∣∣y(k) − y(j)∣∣

(4.111)

and

f(k)(j)
(
u(j) − u(k), x(j) − x(k), t

)
=

=
−18κδ

πδ5
∣∣x(j) − x(k)∣∣ (∣∣y(j) − y(k)∣∣− ∣∣x(j) − x(k)∣∣− α ∣∣x(j) − x(k)∣∣∆T(j)) y(j) − y(k)∣∣y(j) − y(k)∣∣

(4.112)

in which influence functions related with material points (j) and (k) are defined

respectively as

ω(j)(k)

〈
x(k) − x(j)

〉
=

δ∣∣x(k) − x(j)∣∣ =
δ

ξ
(4.113)
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and

ω(k)(j)

〈
x(j) − x(k)

〉
=

δ∣∣x(j) − x(k)∣∣ =
δ

ξ
(4.114)

In case of any perturbation caused by external forces on material domain distorts

equilibrium condition that is given by f(i)(j) + f(j)(i) = 0 between material points

hence peridynamic equations of motion is expressed as a function of net resultant

pair-wise forces as follows.

ρ(x, t)ü(x, t) =

ˆ
V

f(u′ − u, x′ − x, t)dV ′ + b (x, t) (4.115)

which includes integration of pair-wise forces between material points instead of

spatial derivatives of stress components.



Chapter 5

Formulations of Peridynamic

Modelling for Deformation Fields

5.1 Strain energy and dilatation

Within the frame of bond-based peridynamics, configuring pair-wise forces in equal

magnitude with same alignment and opposite direction in any force state, com-

ponents of equations of motion given along relations (3.56 - 3.58) can be ex-

pressed in a more compact form with the assistance of an appropriate index

notation f(j)(k)βV(k) = σ(j)αβ/2∆α, f(k)(j)βV(k) = σ(k)αβ/2∆α and −f(j)(p)βV(p) =

σ(j)αβ/2∆α, −f(p)(j)βV(p) = σ(p)αβ/2∆α for α, β = x1, x2, x3, by which each term

given inside brackets along relations (3.56 - 3.58) can be transformed into force

densities and restated in accordance with relation (4.115).

As summation convention applies, surrounding particles are summed over indices,

k and p, as k = (j + l) , (j +m) , (j + n) and p = (j − l) , (j −m) , (j − n) respec-

tively according to index notation stated above.

In conjunction with relation (B.12), isotropic expansion or dilatation of associated

material point labelled by (j) with addition of thermal effects can be restated as

follows.

ε(j)ii =
(
σ(j)x1x1 + σ(j)x2x2 + σ(j)x3x3

)
/3κ+ 3α∆T(j) (5.1)

The stress vectors belonging only to material point remarked by (j) are given as

σ(j)αβ = f(j)(k)β ·
(
xβ(k) − xβ(j)

)
V(k) and σ(j)αβ = −f(j)(p)β ·

(
xβ(p) − xβ(j)

)
V(p). To

60
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this end, these stress components appearing in relations (3.53 - 3.55) for α = β =

x1, x2, x3 are expressed respectively as follows.

For the first line of relation (3.56) in the right hand side, we perform following

matchings.

σ(j)x1x1 = f(j)(j+l)x1 ·
(
x1(j+l) − x1(j)

)
V(j+l)

σ(j−l)x1x1 = −f(j−l)(j)x1 ·
(
x1(j) − x1(j−l)

)
V(j−l)

σ(j+l)x1x1 = f(j+l)(j)x1 ·
(
x1(j) − x1(j+l)

)
V(j+l)

σ(j)x1x1 = −f(j)(j−l)x1 ·
(
x1(j−l) − x1(j)

)
V(j−l)

(5.2)

For the second line of relation (3.56) in the right hand side, we perform following

matchings.

σ(j)x1x2 = f(j)(j+m)x2 ·
(
x2(j+m) − x2(j)

)
V(j+m)

σ(j−m)x1x2 = −f(j−m)(j)x2 ·
(
x2(j) − x2(j−m)

)
V(j−m)

σ(j+m)x1x2 = f(j+m)(j)x2 ·
(
x2(j) − x2(j+m)

)
V(j+m)

σ(j)x1x2 = −f(j)(j−m)x2 ·
(
x2(j−m) − x2(j)

)
V(j−m)

(5.3)

For the third line of relation (3.56) in the right hand side, we perform following

matchings.

σ(j)x1x3 = f(j)(j+n)x3 ·
(
x3(j+n) − x3(j)

)
V(j+n)

σ(j−n)x1x3 = −f(j−n)(j)x3 ·
(
x3(j) − x(j−n)

)
V(j−n)

σ(j+n)x1x3 = f(j+n)(j)x3 ·
(
x3(j) − x3(j+n)

)
V(j+n)

σ(j)x1x3 = −f(j)(j−n)x3 ·
(
x3(j−n) − x3(j)

)
V(j−n)

(5.4)

For the first line of relation (3.57) in the right hand side, we perform following

matchings.

σ(j)x2x1 = f(j)(j+l)x1 ·
(
x1(j+l) − x1(j)

)
V(j+l)

σ(j−l)x2x1 = −f(j−l)(j)x1 ·
(
x1(j) − x1(j−l)

)
V(j−l)

σ(j+l)x2x1 = f(j+l)(j)x1 ·
(
x1(j) − x1(j+l)

)
V(j+l)

σ(j)x2x1 = −f(j)(j−l)x1 ·
(
x1(j−l) − x1(j)

)
V(j−l)

(5.5)
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For the second line of relation (3.57) in the right hand side, we perform following

matchings.

σ(j)x2x2 = f(j)(j+m)x2 ·
(
x2(j+m) − x2(j)

)
V(j+m)

σ(j−m)x2x2 = −f(j−m)(j)x2 ·
(
x2(j) − x2(j−m)

)
V(k−m)

σ(j+m)x2x2 = f(j+m)(j)x2 ·
(
x2(j) − x2(j+m)

)
V(j+m)

σ(j)x2x2 = −f(j)(j−m)x2 ·
(
x2(j−m) − x2(j)

)
V(j−m)

(5.6)

For the third line of relation (3.57) in the right hand side, we perform following

matchings.

σ(j)x2x3 = f(j)(j+n)x3 ·
(
x3(j+n) − x3(j)

)
V(j+n)

σ(j−n)x2x3 = −f(j−n)(j)x3 ·
(
x3(j) − x3(j−n)

)
V(k−n)

σ(j+n)x2x3 = f(j+n)(j)x3 ·
(
x3(j) − x3(j+n)

)
V(j+n)

σ(j)x2x3 = −f(j)(j−n)x3 ·
(
x3(j−n) − x3(j)

)
V(j−n)

(5.7)

For the first line of relation (3.58) in the right hand side, we perform following

matchings.

σ(j)x3x1 = f(j)(j+l)x1 ·
(
x1(j+l) − x1(j)

)
V(j+l)

σ(j−l)x3x1 = −f(j−l)(j)x1 ·
(
x1(j) − x1(j−l)

)
V(j−l)

σ(j+l)x3x1 = f(j+l)(j)x1 ·
(
x1(j) − x1(j+l)

)
V(j+l)

σ(j)x3x1 = −f(j)(j−l)x1 ·
(
x1(j−l) − x1(j)

)
V(j−l)

(5.8)

For the second line of relation (3.58) in the right hand side, we perform following

matchings.

σ(j)x3x2 = f(j)(j+m)x2 ·
(
x2(j+m) − x2(j)

)
V(j+m)

σ(j−m)x3x2 = −f(j−m)(j)x2 ·
(
x2(j) − x2(j−m)

)
V(k−m)

σ(j+m)x3x2 = f(j+m)(j)x2 ·
(
x2(j) − x2(j+m)

)
V(j+m)

σ(j)x3x2 = −f(j)(j−m)x2 ·
(
x2(j−m) − x2(j)

)
V(j−m)

(5.9)
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For the third line of relation (3.58) in the right hand side, we perform following

matchings.

σ(j)x3x3 = f(j)(j+n)x3 ·
(
x3(j+n) − x3(j)

)
V(j+n)

σ(j−n)x3x3 = −f(j−n)(j)x3 ·
(
x3(j) − x3(j−n)

)
V(k−n)

σ(j+n)x3x3 = f(j+n)(j)x3 ·
(
x3(j) − x3(j+n)

)
V(j+n)

σ(j)x3x3 = −f(j)(j−n)x3 ·
(
x3(j−n) − x3(j)

)
V(j−n)

(5.10)

Three stress components inside the brackets in relation (5.1) can be obtained with

the combinations of first and fourth lines from above 36 components of stress state.

Therefore, summation
(
σ(j)x1x1 + σ(j)x2x2 + σ(j)x3x3

)
can be expressed as follows.

0.5
(
σ(j)x1x1 + σ(j)x1x1 + σ(j)x2x2 + σ(j)x2x2 + σ(j)x3x3 + σ(j)x3x3

)
=

= 0.5
(
f(j)(j+l)x1 ·

(
x1(j+l) − x1(j)

)
V(j+l) − f(j)(j−l)x1 ·

(
x1(j−l) − x1(j)

)
V(j−l)

)
+ 0.5

(
f(j)(j+m)x2 ·

(
x2(j+m) − x2(j)

)
V(j+m) − f(j)(j−m)x2 ·

(
x2(j−m) − x2(j)

)
V(j−m)

)
+ 0.5

(
f(j)(j+n)x3 ·

(
x3(j+n) − x3(j)

)
V(j+n) − f(j)(j−n)x3 ·

(
x3(j−n) − x3(j)

)
V(j−n)

)
= 0.5

∑
β=x1,x2,x3

( ∑
k=j+l,j+m,j+n,j−l,j−m,j−n

f(j)(k)β ·
(
xβ(k) − xβ(j)

)
V(j)

)
(5.11)

Accordingly, the stress components in relation (5.1) can be replaced with the last

line of relation (5.11). As a conclusion, dilation term can be obtained as follows.

ε(j)ii =

(
1

3K

) ∑
k=j+l,j+m,j+n,j−l,j−m,j−n

0.5f(j)(k) ·
(
x(k) − x(j)

)
V(j) + 3α∆T(j)

(5.12)

The pairwise force function appearing as f(j)(k)β in relation (5.12) can be substi-

tuted for its equivalent form given by relation (4.111). To this end, a discrete

definition for peridynamic dilatation is obtained as follows.

ε(j)ii =

(
3

πδ4

)∑
k

(∣∣y(k) − y(j)∣∣− ∣∣x(k) − x(j)∣∣∣∣x(k) − x(j)∣∣ − α∆T(j)

)
y(k) − y(j)∣∣y(k) − y(j)∣∣

·
(
x(k) − x(j)

)
V(j) + 3α∆T(j)

(5.13)



Formulations of Peridynamic Modelling for Deformation Fields 64

or

ε(j)ii =

(
3

πδ4

)∑
k

(∣∣y(k) − y(j)∣∣− ∣∣x(k) − x(j)∣∣− α ∣∣x(k) − x(j)∣∣∆T(j)) y(k) − y(j)∣∣y(k) − y(j)∣∣
·
(
x(k) − x(j)

)∣∣x(k) − x(j)∣∣ V(j) + 3α∆T(j)

(5.14)

Based on array representation of strain components given by relation (3.2), strain

energy density of corresponding material point is written by means of combinations

of relations (4.101) and (3.5) as follows.

W(j) = 0.5
3∑

m=1

3∑
n=1

σ(j)mnε(j)mn

= 0.5
(
σ(j)x1x1ε(j)x1x1 + σ(j)x2x2ε(j)x2x2 + σ(j)x3x3ε(j)x3x3

)
+
(
σ(j)x2x1ε(j)x2x1 + σ(j)x2x2ε(j)x2x2 + σ(j)x2x3ε(j)x2x3

)
= 0.5

(
σ2
(j)x1x1

2µ
−
(
κ− 2µ

3

)
σ(j)x1x1ε(j)ii

2µ
−

3σ(j)x1x1Kα∆T(j)
2µ

)

+ 0.5

(
σ2
(j)x2x2

2µ
−
(
κ− 2µ

3

)
σ(j)x2x2ε(j)ii

2µ
−

3σ(j)x2x2Kα∆T(j)
2µ

)

+ 0.5

(
σ2
(j)x3x3

2µ
−
(
κ− 2µ

3

)
σ(j)x3x3ε(j)ii

2µ
−

3σ(j)x3x3Kα∆T(j)
2µ

)

+
σ2
(j)x2x3

2µ
+
σ2
(j)x1x3

2µ
+
σ2
(j)x1x2

2µ

(5.15)

or

W(j) =
1

4µ

(
σ2
(j)x1x1

+ σ2
(j)x2x2

+ σ2
(j)x3x3

)
+

1

2µ

(
σ2
(j)x1x2

+ σ2
(j)x1x3

+ σ2
(j)x2x3

)
−
((

κ− 2µ

3

)
ε(j)ii
4µ

+
3κα∆T(j)

4µ

)
3κ
(
ε(j)ii − 3α∆T(j)

)
(5.16)

in which right hand side of relation (4.103) has been substituted for stress terms,

σ(j)ii, therefore strain energy density for material point labelled as (j) is obtained

as follows.

W(j) =
1

4µ

(
σ2
(j)x1x1

+ σ2
(j)x2x2

+ σ2
(j)x3x3

)
+

1

2µ

(
σ2
(j)x1x2

+ σ2
(j)x1x3

+ σ2
(j)x2x3

)
+
κ

2

(
ε(j)ii − 3α∆T(j)

)2 − 3κ2ε2(j)ii
4µ

(5.17)
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The first line of relation (5.17) can be modified in a way that all components of

Cauchy’s stress tensor are explicitly expressed instead. Namely,

W(j) =
1

8µ

(
σ2
(j)x1x1

+ σ2
(j)x1x2

+ σ2
(j)x1x3

+ σ2
(j)x1x1

+ σ2
(j)x1x2

+ σ2
(j)x1x3

)
+

1

8µ

(
σ2
(j)x2x1

+ σ2
(j)x2x2

+ σ2
(j)x2x3

+ σ2
(j)x2x1

+ σ2
(j)x2x2

+ σ2
(j)x2x3

)
+

1

8µ

(
σ2
(j)x3x1

+ σ2
(j)x3x2

+ σ2
(j)x3x3

+ σ2
(j)x3x2

+ σ2
(j)x3x2

+ σ2
(j)x3x3

)
+
K

2

(
ε(j)ii − 3α∆T(j)

)2 − 3κ2ε2(j)ii
4µ

(5.18)

The second-powers of stress components can be replaced with their equivalent

forms of pair-wise force functions given through a set of relations (5.2 - 5.10) in

which stress states are matched with pair-wise forces based on σ(j)αβ = f(j)(k)β∆αV(k)

and σ(j)αβ = −f(j)(p)β∆αV(p) with k = (j + l) , (j +m) , (j + n) and p = (j − l) ,
(j −m) , (j − n) or each stress component are explicitly written in behalf of the

second line in relation (5.18) as follows.

σ(j)x1x1 = f(j)(j+l)x1
(
x1(j+l) − x1(j)

)
V(j+l)

σ(j)x1x2 = f(j)(j+m)x2

(
x2(j+m) − x2(j)

)
V(j+m)

σ(j)x1x3 = f(j)(j+n)x3
(
x3(j+n) − x3(j)

)
V(j+n)

σ(j)x1x1 = −f(j)(j−l)x1
(
x1(j−l) − x1(j)

)
V(j−l)

σ(j)x1x2 = −f(j)(j−m)x2

(
x2(j−m) − x2(j)

)
V(j−m)

σ(j)x1x3 = −f(j)(j−n)x3
(
x3(j−n) − x3(j)

)
V(j−n)

(5.19)

for the third line in (5.18) as

σ(j)x2x1 = f(j)(j+l)x1
(
x1(j+l) − x1(j)

)
V(j+l)

σ(j)x2x2 = f(j)(j+m)x2

(
x2(j+m) − x2(j)

)
V(j+m)

σ(j)x2x3 = f(j)(j+n)x3
(
x3(j+n) − x3(j)

)
V(j+n)

σ(j)x2x1 = −f(j)(j−l)x1
(
x1(j−l) − x1(j)

)
V(j−l)

σ(j)x2x2 = −f(j)(j−m)x2

(
x2(j−m) − x2(j)

)
V(j−m)

σ(j)x2x3 = −f(j)(j−n)x3
(
x3(j−n) − x3(j)

)
V(j−n)

(5.20)
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for the fourth line in (5.18) as

σ(j)x3x1 = f(j)(j+l)x1
(
x1(j+l) − x1(j)

)
V(j+l)

σ(j)x3x2 = f(j)(j+m)x2

(
x2(j+m) − x2(j)

)
V(j+m)

σ(j)x3x3 = f(j)(j+n)x3
(
x3(j+n) − x3(j)

)
V(j+n)

σ(j)x3x1 = −f(j)(j−l)x1
(
x1(j−l) − x1(j)

)
V(j−l)

σ(j)x3x2 = −f(j)(j−m)x2

(
x2(j−m) − x2(j)

)
V(j−m)

σ(j)x3x3 = −f(j)(j−n)x3
(
x3(j−n) − x3(j)

)
V(j−n)

(5.21)

To this end, strain energy density function given by relation (5.18) leads to

W(j) =
κ

2

(
ε(j)ii − 3α∆T(j)

)2 − 3κ2

4µ
ε2(j)ii

+
1

8µ

∑
β=x1,x2,x3

( ∑
k=j+l,j+m,j+n,j−l,j−m,j−n

f 2
(j)(k)β

∣∣xβ(k) − xβ(j)∣∣2 V 2
(k)

) (5.22)

Expanding second power of the terms in the first line of relation (5.22) and as-

signing coefficients in front of terms that are ε(j)ii, ε(j)ii∆T(j) and ∆T 2
(j) to a1, a2

and a3 respectively allow us to write strain energy density function as follows.

W(j) = a1ε
2
(j)ii − a2ε(j)ii∆T(j) + a3∆T

2
(j)

+
1

8µ

∑
β=x1,x2,x3

( ∑
k=j+l,j+m,j+n,j−l,j−m,j−n

f 2
(j)(k)β

∣∣xβ(k) − xβ(j)∣∣2 V 2
(k)

)
(5.23)

in which coefficients a1, a2 and a3 are assigned as

a1 =

(
κ

2
− 3κ2

4µ

)
(5.24)

a2 = 3ακ (5.25)

a3 =
9α2κ

2
(5.26)

Lastly, the terms that are summed over k index in relation (5.23) can be decom-

posed into its components along σ2
(j)x1β

= f 2
(j)(k)β

∣∣xβ(k) − xβ(j)∣∣2 V 2
(k) for α = x1,
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β = x1, x2, x3 and k = (j + l), (j +m), (j + n) as

σ2
(j)x1x1

= f 2
(j)(j+l)x1

(
xx1(j+l) − xx1(j)

)2
V 2
(j+l)

σ2
(j)x1x2

= f 2
(j)(j+m)x2

(
xx2(j+m) − xx2(j)

)2
V 2
(j+m)

σ2
(j)x1x3

= f 2
(j)(j+n)x3

(
xx3(j+n) − xx3(j)

)2
V 2
(j+n)

(5.27)

with σ2
(j)x1β

= f 2
(j)(k)β

∣∣xβ(k) − xβ(j)∣∣2 V 2
(k) for α = x1, β = x1, x2, x3 and k = (j −

l), (j −m), (j − n) as

σ2
(j)x1x1

= f 2
(j)(j−l)x1

(
xx1(j−l) − xx1(j)

)2
V 2
(j−l)

σ2
(j)x1x2

= f 2
(j)(j−m)x2

(
xx2(j−m) − xx2(j)

)2
V 2
(j−m)

σ2
(j)x1x3

= f 2
(j)(j−n)x3

(
xx3(j−n) − xx3(j)

)2
V 2
(j−n)

(5.28)

with σ2
(j)x2β

= f 2
(j)(k)β

∣∣xβ(k) − xβ(j)∣∣2 V 2
(k) for α = x2, β = x1, x2, x3 and k = (j +

l), (j +m), (j + n) as

σ2
(j)x2x1

= f 2
(j)(j+l)x1

(
xx1(j+l) − xx1(j)

)2
V 2
(j+l)

σ2
(j)x2x2

= f 2
(j)(j+m)x2

(
xx2(j+m) − xx2(j)

)2
V 2
(j+m)

σ2
(j)x2x3

= f 2
(j)(j+n)x3

(
xx3(j+m) − xx3(j)

)2
V 2
(j+n)

(5.29)

with σ2
(j)x2β

= f 2
(j)(k)β

∣∣xβ(k) − xβ(j)∣∣2 V 2
(k) for α = x2, β = x1, x2, x3 and k = (j −

l), (j −m), (j − n) as

σ2
(j)x2x1

= f 2
(j)(j−l)x1

(
xx1(j−l) − xx1(j)

)2
V 2
(j−l)

σ2
(j)x2x2

= f 2
(j)(j−m)x2

(
xx2(j−m) − xx2(j)

)2
V 2
(j−m)

σ2
(j)x2x3

= f 2
(j)(j−n)x3

(
xx3(j−n) − xx3(j)

)2
V 2
(j−n)

(5.30)
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with σ2
(j)x3β

= f 2
(j)(k)β

∣∣xβ(k) − xβ(j)∣∣2 V 2
(k) for α = x3, β = x1, x2, x3 and k = (j +

l), (j +m), (j + n) as

σ2
(j)x3x1

= f 2
(j)(j+l)x1

(
xx1(j+l) − xx1(j)

)2
V 2
(j+l)

σ2
(j)x3x2

= f 2
(j)(j+m)x2

(
xx2(j+m) − xx2(j)

)2
V 2
(j+m)

σ2
(j)x3x3

= f 2
(j)(j+n)x3

(
xx3(j+n) − xx3(j)

)2
V 2
(j+n)

(5.31)

with σ2
(j)x3β

= f 2
(j)(k)β

∣∣xβ(k) − xβ(j)∣∣2 V 2
(k) for α = x3, β = x1, x2, x3 and k = (j −

l), (j −m), (j − n) as

σ2
(j)x3x1

= f 2
(j)(j−l)x1

(
xx3(j−l) − xx3(j)

)2
V 2
(j−l)

σ2
(j)x3x2

= f 2
(j)(j−m)x2

(
xx3(j−m) − xx3(j)

)2
V 2
(j−m)

σ2
(j)x3x3

= f 2
(j)(j−n)x3

(
xx3(j−n) − xx3(j)

)2
V 2
(j−n)

(5.32)

Consequently, relation (5.23) can be expressed in component base explicit notation

as the terms in third, fourth and fifth lines are expanded according to those that

are listed through sets of relations along (5.27 - 5.32). Therefore strain energy

density for material point labelled by (j) is written as follows.

W(j) = a1ε
2
(j)ii − a2ε(j)ii∆T(j) + a3∆T

2
(j)

+ f 2
(j)(j+l)x1

(
xx1(j+l) − xx1(j)

)2
V 2
(j+l)/8µ+ f 2

(j)(j+m)x2

(
xx2(j+m) − xx2(j)

)2
V 2
(j+m)/8µ

+ f 2
(j)(j+n)x3

(
xx3(j+n) − xx3(j)

)2
V 2
(j+n)/8µ

+ f 2
(j)(j−l)x1

(
xx1(j−l) − xx1(j)

)2
V 2
(j−l)/8µ+ f 2

(j)(j−m)x2

(
xx2(j−m) − xx2(j)

)2
V 2
(j−m)/8µ

+ f 2
(j)(j−n)x3

(
xx3(j−n) − xx3(j)

)2
V 2
(j−n)/8µ

+ f 2
(j)(j+l)x1

(
xx1(j+l) − xx1(j)

)2
V 2
(j+l)/8µ+ f 2

(j)(j+m)x2

(
xx2(j+m) − xx2(j)

)2
V 2
(j+m)/8µ

+ f 2
(j)(j+n)x3

(
xx3(j+m) − xx3(j)

)2
V 2
(j+n)/8µ

+ f 2
(j)(j−l)x1

(
xx1(j−l) − xx1(j)

)2
V 2
(j−l)/8µ+ f 2

(j)(j−m)x2

(
xx2(j−m) − xx2(j)

)2
V 2
(j−m)/8µ

+ f 2
(j)(j−n)x3

(
xx3(j−n) − xx3(j)

)2
V 2
(j−n)/8µ

+ f 2
(j)(j+l)x1

(
xx1(j+l) − xx1(j)

)2
V 2
(j+l)/8µ+ f 2

(j)(j+m)x2

(
xx2(j+m) − xx2(j)

)2
V 2
(j+m)/8µ

+ f 2
(j)(j+n)x3

(
xx3(j+n) − xx3(j)

)2
V 2
(j+n)/8µ

+ f 2
(j)(j−l)x1

(
xx3(j−l) − xx3(j)

)2
V 2
(j−l)/8µ+ f 2

(j)(j−m)x2

(
xx3(j−m) − xx3(j)

)2
V 2
(j−m)/8µ

+ f 2
(j)(j−n)x3

(
xx3(j−n) − xx3(j)

)2
V 2
(j−n)/8µ

(5.33)
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Furthermore, discrete equivalents of pair-wise forces given by relation (4.111) can

be invoked in expression (5.23) and strain energy density for material point labelled

by (j) is obtained in its general form for its explicit evaluation.

W(j) = a1ε
2
(j)ii − a2ε(j)ii∆T(j) + a3∆T

2
(j) +

1

8µ

∑
β

∑
k

(
18κδ

πδ5
∣∣xβ(k) − xβ(j)∣∣

)2

(∣∣yβ(k) − yβ(j)∣∣− ∣∣xβ(k) − xβ(j)∣∣− α ∣∣xβ(k) − xβ(j)∣∣∆T(j))2( yβ(k) − yβ(j)∣∣yβ(k) − yβ(j)∣∣
)2

∣∣xβ(k) − xβ(j)∣∣2 V 2
(k)

(5.34)

in which k and β stand for (j + l), (j − l), (j + m), (j −m), (j + n), (j − n) and

x1, x2, x3 respectively. By writing the relative position vector in denominator under

summation sign, strain energy density for the material point (j) becomes

W(j) = a1ε
2
(j)ii − a2ε(j)ii∆T(j) + a3∆T

2
(j)

+
1

8µ

(
18κ

πδ4

)2∑
β

∑
k

(∣∣yβ(k) − yβ(j)∣∣− ∣∣xβ(k) − xβ(j)∣∣∣∣xβ(k) − xβ(j)∣∣ − α∆T(j)

)2 ∣∣xβ(k) − xβ(j)∣∣2 V 2
(k)

(5.35)

or

W(j) = a1ε
2
(j)ii − a2ε(j)ii∆T(j) + a3∆T

2
(j)

+
V

8µ

(
18κ

πδ4

)2∑
β

∑
k

(
s(j)(k)β − α∆T(j)

)2 ∣∣xβ(k) − xβ(j)∣∣2 V(k) (5.36)

For the sake of simplicity, terms appearing in front of summation signs in relation

(5.36) can be assigned to a coefficient, b.

b =
V

8µ

(
18κ

πδ4

)2

(5.37)

in which V represents the volume of surrounding material points as a constant

parameter thus it can be taken out of the summation. As a conclusion, strain
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energy density function, W(j), becomes

W(j) = a1ε
2
(j)ii − a2ε(j)ii∆T(j) + a3∆T

2
(j)

+ b
∑
β

∑
k

(∣∣yβ(k) − yβ(j)∣∣− ∣∣xβ(k) − xβ(j)∣∣− α ∣∣xβ(k) − xβ(j)∣∣∆T(j))2∣∣xβ(k) − xβ(j)∣∣2∣∣xβ(k) − xβ(j)∣∣2V(k)
= a1ε

2
(j)ii − a2ε(j)ii∆T(j) + a3∆T

2
(j)

+ b
∑
β

∑
k

(∣∣yβ(k) − yβ(j)∣∣− ∣∣xβ(k) − xβ(j)∣∣− α ∣∣xβ(k) − xβ(j)∣∣∆T(j))2 V(k)
(5.38)

or

W(j) = a1ε
2
(j)ii − a2ε(j)ii∆T(j) + a3∆T

2
(j)

+ b
∑
β

∑
k

(∣∣yβ(k) − yβ(j)∣∣− ∣∣xβ(k) − xβ(j)∣∣− α ∣∣xβ(k) − xβ(j)∣∣∆T(j))2 V(k)
(5.39)

with k and β are for (j + l), (j − l), (j +m), (j −m), (j + n), (j − n) and x1, x2, x3

respectively.

5.1.1 Relating deformation constants with peridynamic

parameters

Deformation parameters in peridynamic theory are determined through equat-

ing definitions of dilatation and strain energy terms in classical and peridynamic

theories since it is supposed that both have to yield same values, [22], [25]

Notation in classical theory to define infinitesimal differential distance between

two material points, dx corresponds to
(
x(k) − x(j)

)
in peridynamics before. On

the other hand, differential distance between these two particles is given classically

by dy and with its peridynamic equivalent,
(
y(k) − y(j)

)
after deformation.

In this manner, distance between two particles in deformed configuration can be

expressed through summation of initial distance and deformation amount between

interacting particles. Namely,

dy = dx+ du+ α∆Tdx =

(
1 +

du

dx
+ α∆T

)
dx = (1 + ε+ α∆T ) dx (5.40)
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or mechanical strain with thermal effect can be expressed as

dy

dx
= 1 + ε+ α∆T (5.41)

leading to

εii =
dy

dx
− 1 =

dy − dx
dx

= ε+ α∆T (5.42)

On the other hand, relative position vector in deformed state of body in peridy-

namic notation with the addition of thermal effect can be expressed as follows.

y(k) − y(j) =
(
x(k) − x(j)

)
+
(
u(k) − u(j)

)
+ α

∣∣x(k) − x(j)∣∣∆T(j)
=

(
1 +

u(k) − u(j)∣∣x(k) − x(j)∣∣ + α∆T(j)

)(
x(k) − x(j)

)
=
(
1 + ζ + α∆T(j)

) (
x(k) − x(j)

)
=
(
1 + ζ + α∆T(j)

)
ξ

(5.43)

or mechanical stretch with thermal effect is expressed as follows.

y(k) − y(j)
x(k) − x(j)

= 1 + ζ + α∆T(j) (5.44)

leading to

ε(j) =
y(k) − y(j)
x(k) − x(j)

− 1 =
y(k) − y(j) −

(
x(k) − x(j)

)
x(k) − x(j)

= ζ + α∆T(j) (5.45)

The parameters that are associating strain energy and dilatation in classical ap-

proach with their peridynamic equivalents can be determined in a way that strain

energy density function expressed by relation (4.106) is equated to the result given

by relation (5.23).

Well know deformation cases that are isotropic expansion and pure shearing dis-

turbance of an infinitesimal RVE are applied to be able to obtain peridynamic

deformation parameters.

5.2 Peridynamic parameters for three-dimensional

structures

Based on deformation case for pure isotropic expansion in which normal and shear-

ing strain components can be summarized through ε(j)x1x1 = ε(j)x2x2 = ε(j)x3x3 =
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ζ + α∆T(j) and γ(j)x1x2 = γ(j)x1x3 = γ(j)x2x3 = 0 in classical continuum mechanics,

Based on this summary, strain energy density function and dilatation term in case

of isotropic expansion are evaluated as follows.

WIsoExp = 0.5
3∑

m=1

3∑
n=1

σ(j)mnε(j)mn =


σx1x1 σx1x2 σx1x3

σx2x1 σx2x2 σx2x3

σx3x1 σx3x2 σx3x3



εx1x1 εx1x2 εx1x3

εx2x1 εx2x2 εx2x3

εx3x1 εx3x2 εx3x3


= 0.5 (σ11εx1x1 + σx2x2εx2x2 + σx3x3εx3x3) + σx1x2εx1x2 + σx1x3εx1x3 + σx2x3εx2x3

(5.46)

Because of stiffness matrix for an isotropic material and strain conditions summa-

rized above for isotropic expansion, relation (5.46) leads to

WIsoExp =

(
κ+

4µ

3

)
εx1x1εx1x1 +

(
κ− 2µ

3

)
εx2x2εx1x1 +

(
κ− 2µ

3

)
εx3x3εx1x1

+

(
κ− 2µ

3

)
εx1x1εx2x2 +

(
κ+

4µ

3

)
εx2x2εx2x2 +

(
κ− 2µ

3

)
εx3x3εx2x2

+

(
κ− 2µ

3

)
εx1x1εx3x3 +

(
κ− 2µ

3

)
εx2x2εx3x3 +

(
κ+

4µ

3

)
εx3x3εx3x3

+ µεx2x3εx2x3 + µεx1x3εx1x3 + µεx1x2εx1x2
(5.47)

or

WIsoExp = K
(
ε2x1x1 + ε2x2x2 + ε2x3x3

)
+ 2κ (εx1x1εx2x2 + εx1x1εx3x3 + εx2x2εx3x3)

+
4µ

3

(
ε2x1x1 + ε2x2x2 + ε2x3x3

)
− 4µ

3
(εx1x1εx2x2 + εx1x1εx3x3 + εx2x2εx3x3)

=
9

2
κζ2

(5.48)

and for isotropic expansion case, dilatation becomes

ε(j)ii = ε(j)x1x1 + ε(j)x2x2 + ε(j)x3x3 = 3
(
ζ + α∆T(j)

)
(5.49)

Exact computation of dilatation and strain energy function can be performed based

on their discrete formulations given by relations (5.14) and (5.39) with addition

of dimensionless influence function, ω(j)(k), that takes the importance of distance



Formulations of Peridynamic Modelling for Deformation Fields 73

effect of interacting particles into account, [22]. Namely,

ε(j)ii = d

ˆ

V

ω(j)(k)

〈
x(k) − x(j)

〉 (∣∣y(k) − y(j)∣∣− ∣∣x(k) − x(j)∣∣− α ∣∣x(k) − x(j)∣∣∆T(j))
y(k) − y(j)∣∣y(k) − y(j)∣∣ · x(k) − x(j)∣∣x(k) − x(j)∣∣dV(k) + 3α∆T(j)

(5.50)

in which d is defined as follows.

d =

(
3

πδ4

)
(5.51)

and strain energy density function, W(j) becomes

W(j) = a1ε
2
(j)ii − a2ε(j)ii∆T(j) + a3∆T

2
(j) + b

ˆ

V

ω(j)(k)

〈
x(k) − x(j)

〉
(∣∣y(k) − y(j)∣∣− ∣∣x(k) − x(j)∣∣− α ∣∣x(k) − x(j)∣∣∆T(j))2 dV(k) (5.52)

in which b and ω(j)(k) that is assigned according to dimensional analysis in strain

energy density are given by respectively as follows.

b =
V

8µ

(
18κ

πδ4

)2

(5.53)

and

ω(j)(k)

〈
x(k) − x(j)

〉
=

δ∣∣x(k) − x(j)∣∣ =
δ

|ξ| (5.54)

Classical equivalence of elongation or shrinkage can be evaluated as multiple of

unitary change by total initial length of directional span and change in temperature

can be added to this change as well.

To this end, deformation amount to which thermal effects are added can be ex-

pressed by means of relation (5.45), in terms of classical stretch parameter ζ as

follows. ∣∣y(k) − y(j)∣∣− ∣∣x(k) − x(j)∣∣ =
(
ζ + α∆T(j)

) ∣∣x(k) − x(j)∣∣
=
(
ζ + α∆T(j)

)
|ξ|

(5.55)

in which α is defined as coefficient of thermal expansion while ∆T(j) stands for

temperature change on material point labelled by (j).
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Figure 5.1: Three-dimensional integration domain for volume of a material
point

Substitutions of relations (5.43), (5.54) and (5.55) in both (5.50) and (5.52) respec-

tively enables calculating dilatation and strain energy density functions in case of

isotropic expansion of a body through following integrations respectively.

ε(j)ii =d3D

ˆ

V

δ

|ξ|
((
ζ + α∆T(j)

)
|ξ| − α∆T(j) |ξ|

) (1 + ζ + α∆T(j)
)
ξ(

1 + ζ + α∆T(j)
)
|ξ|
· ξ
|ξ|
dV(k)

+ 3α∆T(j)
(5.56)

whose evaluation leads to

ε(j)ii,IsoExp =d3D

2πˆ

0

πˆ

0

δˆ

0

δ

|ξ|
((
ζ + α∆T(j)

)
− α∆T(j)

)
|ξ| |ξ|

2 cos (0)

|ξ|2
ξ2 sin (φ) dξdφdθ

+ 3α∆T(j)

= d3Dζδ

2πˆ

0

πˆ

0

δˆ

0

sin (φ) ξ2dξdφdθ + 3α∆T(j) =
4πd3Dδ

4

3
ζ + 3α∆T(j)

(5.57)

Equating results for dilatation in classical approach and peridynamics that are

given by relations (5.49) and (5.57) leads to determination of coefficient d3D which

is

3ζ + 3α∆T(j) =
4πd3Dδ

4

3
ζ + 3α∆T(j)

d3D =
9

4πδ4

(5.58)
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and exact evaluation of strain energy density function based on relation (5.52) by

using definition of dilatation given by relation (5.49) leads to

W(j),IsoExp =a1ε
2
(j)ii − a2ε(j)ii∆T(j) + a3∆T

2
(j)

+ b3D

2πˆ

0

πˆ

0

δˆ

0

δ

|ξ|
((
ζ + α∆T(j)

)
− α∆T(j)

)2
ξ2 sin (φ) dξdφdθ

=a1ε
2
(j)ii − a2ε(j)ii∆T(j) + a3∆T

2
(j) + b3Dδ

2πˆ

0

πˆ

0

δˆ

0

ζ2ξ3 sin (φ) dξdφdθ

=a1
(
3ζ + 3α∆T(j)

)2 − a2 (3ζ + 3α∆T(j)
)

∆T(j) + a3∆T
2
(j) + b3Dπζ

2δ5

(5.59)

Furthermore, following connections can be generated by means of energy coupling

of classical and peridynamic definitions for isotropic expansion of a body.

a1
(
3ζ + 3α∆T(j)

)2 − a2 (3ζ + 3α∆T(j)
)

∆T(j) + a3∆T
2
(j) + b3Dπζ

2δ5 =
9

2
Kζ2

(5.60)

By means of relation (5.60), three lines of equation can be obtained as follows.

(
9a1 + b3Dπδ

5
)
ζ2 =

9

2
κζ2

a1 =
κ

2
− b3Dπδ

5

9

(5.61)

18a1αζ∆T(j) − 3a2ζ∆T(j) = 0

(18a1αζ − 3a2ζ) ∆T(j) = 0

a2 = a1 (6α)

(5.62)

Consequently, parameter a3 can be expressed in terms of other parameter a1 by

substituting result obtained from relation (5.62) as follows.

9a1α
2∆T 2

(j) − 3a2α∆T 2
(j) + a3∆T

2
(j) = 0(

9a1α
2 − 18a1αα + a3

)
∆T 2

(j) = 0

a3 = a1
(
9α2
) (5.63)

The other fundamental type of deformation is pure in-plane shearing effect on

infinitesimal cubic material element for which strain conditions can be abstracted

through γ(j)x1x2 = ζ, γ(j)x1x3 = γ(j)x2x3 = ε(j)x1x1 = ε(j)x2x2 = ε(j)x3x3 = 0 and

∆T(j) = 0. According to classical shear strain energy density function and specific

strain condition for an isotropic body in under the effect pure shearing is appraised
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as follows.

WShear = 0.5

((
κ+

4µ

3

)
εx1x1εx1x1 +

(
κ− 2µ

3

)
εx2x2εx1x1 +

(
κ− 2µ

3

)
εx3x3εx1x1

)
+ 0.5

((
κ− 2µ

3

)
εx1x1εx2x2 +

(
κ+

4µ

3

)
εx2x2εx2x2 +

(
κ− 2µ

3

)
εx3x3εx2x2

)
+ 0.5

((
κ− 2µ

3

)
εx1x1εx3x3 +

(
κ− 2µ

3

)
εx2x2εx3x3 +

(
κ+

4µ

3

)
εx3x3εx3x3

)
+ µεx2x3εx2x3 + µεx1x3εx1x3 + µεx1x2εx1x2

= 0.5µζ2

(5.64)

in which µ stands for shear modulus of medium experiencing pure shear defor-

mation whereas zero dilatation is observed since no volume change occurs during

pure shearing deformation which is proven through appropriate modification of in-

tegration given by expression (5.50) after exclusion of thermoelastic effect during

shearing deformation. Namely,

ε(j)ii =d3D

ˆ

V

δ

|ξ|
(∣∣y(k) − y(j)∣∣− ∣∣x(k) − x(j)∣∣) ∣∣y(k) − y(j)∣∣ ∣∣x(k) − x(j)∣∣ cos (ζ)∣∣y(k) − y(j)∣∣ ∣∣x(k) − x(j)∣∣ dV(k)

(5.65)

in which in-plane shearing deformation, the angle γx1x2 = ζ between relative

position vectors in reference and deformed states that are already defined as(
x(k) − x(j)

)
and

(
y(k) − y(j)

)
respectively causes displacement amounts ξx3 sin (γx1x2)

and ξx3ζ along x2 direction.

By means of polar coordinate representation for position vector between two mate-

rial points in undeformed configuration, coordinate components are written instead

as follows.
ξx1 = ξ sin (φ) cos (θ)

ξx2 = ξ sin (φ) sin (θ)

ξx3 = ξ cos (φ)

(5.66)

To this end, vertical displacement and change in bond length can be determined

for infinitesimal deformation angle ζ through following relations below.

ζξx3 = ξ cos (φ) sin (ζ)

= ζξ cos (φ)
(5.67)

with small angle approximation that is sin (ζ) ≈ ζ. This deformation length along

shearing forces can be converted to deformation amount of relative positions by
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multiplying term ζξx3 with (sin (φ) sin (θ)). Therefore final length of a bond after

deformation of body is expressed as follows.

y(k) − y(j) =
(
x(k) − x(j)

)
+ ζξ cos (φ) sin (φ) sin (θ) (5.68)

or

y(k) − y(j) = (1 + ζ cos (φ) sin (φ) sin (θ)) ξ (5.69)

By substituting of final length for a bond given by relation (5.69) into relation

(5.65), dilatation term with small degree approximation that is cos (ζ) ≈ 1 can be

expressed as follows.

ε(j)ii,Shear = d3D

2πˆ

0

πˆ

0

δˆ

0

δ

|ξ|
ζ |ξ| (ξζ cos (φ) sin (φ) sin (θ)) cos (ζ) ξ2 sin (φ) dξdφdθ

= d3D
δ4

3

πˆ

0

cos (φ) sin2 (φ) dφ

2πˆ

0

sin (θ) dθ = 0

(5.70)

As performed while connecting strain energies in classical with peridynamic results,

evaluation of strain energy density in case of pure in-plane shearing deformation is

calculated by inserting deformed bond length given by relation (5.69) into relation

(5.52).

W(j)PDShear = b3D

2πˆ

0

πˆ

0

δˆ

0

δ

|ξ|
(ξζ cos (φ) sin (φ) sin (θ))2 ξ2 sin (φ) dξdφdθ

= b3D
δ5ζ2

4

2πˆ

0

sin2 (θ) dθ

πˆ

0

sin3 (φ) cos2 (φ) dφ

= b3D
πδ5ζ2

4

(
1

30
cos3 (π) (3 cos (2π)− 7)− 1

30
cos3 (0) (3 cos (0)− 7)

)
=
b3Dπδ

5ζ2

15
(5.71)

in which temperature change terms that are associated with these volumetric al-

ternations are disregarded since neither volumetric expansion nor contraction of

material points are observed during shearing deformation.

By equating results of energy density function from classical and peridynamic

formulations that are given by relations (5.64) and (5.71), the coefficient, b2 is
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obtained as follows.

0.5µζ2 =
b3Dπδ

5ζ2

15

b3D =
15µ

2πδ5

(5.72)

Previously established relations between a1, a2, a3 and b2 along relations (5.61 -

5.63) enable us to determine remaining peridynamic coefficients as follows.

a1 =

(
κ

2
− 5µ

6

)
(5.73)

a2 = α (3κ− 5µ) (5.74)

Consequently, a relation between a1 and a3 is established by means of result ob-

tained from relation (5.62).

a3 = α2

(
9κ

2
− 15µ

2

)
(5.75)

Substitution of peridynamic parameters, a1, a2, a3, b2 and d3 in discrete forms

of dilatation and strain energy density based on relations (5.50) and (5.52) re-

spectively let us rewrite them in a general from for evaluation of differentiation

given by relation (4.92). To this end, direction dependent material constants Cp

in bond-based and Ap, Bp in ordinary state-based peridynamic formulations are

determined as follows.

ε(j)ii =
9

4πδ4

∑
k

ω(j)(k)

〈
x(k) − x(j)

〉 (∣∣y(k) − y(j)∣∣− ∣∣x(k) − x(j)∣∣− α ∣∣x(k) − x(j)∣∣∆T(j))
y(k) − y(j)∣∣y(k) − y(j)∣∣ · x(k) − x(j)∣∣x(k) − x(j)∣∣V(k) + 3α∆T(j)

(5.76)
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and

W(j) =
1

2

(
κ− 5µ

3

)
ε2(j)ii − α (3κ− 5µ) ε(j)ii∆T(j) + α2

(
9κ

2
− 15µ

2

)
∆T 2

(j)

+
15µ

2πδ5

∑
k

ω(j)(k)

〈
x(k) − x(j)

〉 (∣∣y(k) − y(j)∣∣− ∣∣x(k) − x(j)∣∣− α ∣∣x(k) − x(j)∣∣∆T(j))2 V(k)
=

1

2

(
κ− 5µ

3

)(
ε2(j)ii − 6αε(j)ii∆T(j) + 9α2∆T 2

(j)

)
+

15µ

2πδ5

∑
k

ω(j)(k)

〈
x(k) − x(j)

〉 (∣∣y(k) − y(j)∣∣− ∣∣x(k) − x(j)∣∣− α ∣∣x(k) − x(j)∣∣∆T(j))2 V(k)
=

1

2

(
κ− 5µ

3

)(
ε(j)ii − 3α∆T(j)

)2
+

15µ

2πδ5

∑
k

ω(j)(k)

〈
x(k) − x(j)

〉 (∣∣y(k) − y(j)∣∣− ∣∣x(k) − x(j)∣∣− α ∣∣x(k) − x(j)∣∣∆T(j))2 V(k)
(5.77)

Additionally, strain energy density term inside relation (4.92) can also be expressed

in its non-normalized form therefore pairwise force density vector for material point

(j) and surrounding particles (k) are expressed as in the frame of state-based

peridynamics as follows.

f(j)(k)
(
u(k) − u(j), x(k) − x(j), t

)
=
∂w
((
y(k) − y(j)

)
,
(
x(k) − x(j)

))
∂
(∣∣y(k) − y(j)∣∣) y(k) − y(j)∣∣y(k) − y(j)∣∣

=
1

V(j)

∂W
((
y(k) − y(j)

)
,
(
x(k) − x(j)

))
∂
(∣∣y(k) − y(j)∣∣) y(k) − y(j)∣∣y(k) − y(j)∣∣

=
1

V(j)
Asb(j)(k)

y(k) − y(j)∣∣y(k) − y(j)∣∣
(5.78)

and

f(k)(j)
(
u(j) − u(k), x(j) − x(k), t

)
=
∂w
((
y(j) − y(k)

)
,
(
x(j) − x(k)

))
∂
(∣∣y(j) − y(k)∣∣) y(j) − y(k)∣∣y(j) − y(k)∣∣

=
1

V(k)

∂W
((
y(j) − y(k)

)
,
(
x(j) − x(k)

))
∂
(∣∣y(j) − y(k)∣∣) y(j) − y(k)∣∣y(j) − y(k)∣∣

=
1

V(k)
Bsb

(k)(j)

y(j) − y(k)∣∣y(j) − y(k)∣∣
(5.79)

in which partial differentiations given by relations (5.78) and (5.79) are assigned

to bond constants Asb(j)(k) and Bsb
(k)(j) respectively. By this way, bond constant are
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determined by performing associated differentiations as follows.

Asb(j)(k) =
1

2

(
κ− 5µ

3

)
2
(
ε(j)ii − 3α∆T(j)

) ∂ (ε(j)ii − 3α∆T(j)
)

∂
(∣∣y(k) − y(j)∣∣)

+

(
15µ

2πδ5

)∑
j

ω(j)(k)

〈
x(k) − x(j)

〉 ∂ (∣∣y(k) − y(j)∣∣− ∣∣x(k) − x(j)∣∣− α ∣∣x(k) − x(j)∣∣∆T(j))
∂
(∣∣y(k) − y(j)∣∣) V(k)

2
(∣∣y(k) − y(j)∣∣− ∣∣x(k) − x(j)∣∣− α ∣∣x(k) − x(j)∣∣∆T(j))

(5.80)

or

Asb(j)(k) =

(
κ− 5µ

3

)(
ε(j)ii − 3α∆T(j)

) ∂ε(j)ii

∂
(∣∣y(k) − y(j)∣∣)

+

(
30µ

2πδ5

)∑
j

ω(j)(k)

〈
x(k) − x(j)

〉 (∣∣y(k) − y(j)∣∣− ∣∣x(k) − x(j)∣∣− α ∣∣x(k) − x(j)∣∣∆T(j))
(5.81)

and

Bsb
(k)(j) =

1

2

(
κ− 5µ

3

)
2
(
ε(k)ii − 3α∆T(k)

) ∂ (ε(k)ii − 3α∆T(k)
)

∂
(∣∣y(k) − y(j)∣∣)

+

(
15µ

2πδ5

)∑
k

ω(k)(j)

〈
x(j) − x(k)

〉 ∂ (∣∣y(j) − y(k)∣∣− ∣∣x(j) − x(k)∣∣− α ∣∣x(j) − x(k)∣∣∆T(k))
∂
(∣∣y(j) − y(k)∣∣) V(k)

2
(∣∣y(j) − y(k)∣∣− ∣∣x(j) − x(k)∣∣− α ∣∣x(j) − x(k)∣∣∆T(k))

(5.82)

or

Bsb
(k)(j) =

(
κ− 5µ

3

)(
ε(k)ii − 3α∆T(k)

) ∂ε(k)ii

∂
(∣∣y(k) − y(j)∣∣)

+

(
30µ

2πδ5

)∑
k

ω(k)(j)

〈
x(j) − x(k)

〉 (∣∣y(j) − y(k)∣∣− ∣∣x(j) − x(k)∣∣− α ∣∣x(j) − x(k)∣∣∆T(k))
(5.83)

in which dilatations ε(j)ii and ε(k)ii are different and their partial differentials with

respect to magnitudes of relative position vectors |yj − yk| and |yk − yj| respec-

tively are needed in terms of determination of explicit forms of bond constants.
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In that sense, associated differentials are expressed as follows.

∂
(
ε(j)ii − 3α∆T(j)

)
∂
(∣∣y(k) − y(j)∣∣) =

=
9

4πδ4

∑
k

ω(j)(k)

〈
x(k) − x(j)

〉 ∂ (∣∣y(k) − y(j)∣∣− ∣∣x(k) − x(j)∣∣− α ∣∣x(k) − x(j)∣∣∆T(j))
∂
(∣∣y(j) − y(k)∣∣)(

y(k) − y(j)∣∣y(k) − y(j)∣∣ · x(k) − x(j)∣∣x(k) − x(j)∣∣
)
V(j)

(5.84)

yielding to

∂
(
ε(j)ii − 3α∆T(j)

)
∂
(∣∣y(k) − y(j)∣∣) =

9

4πδ4

∑
k

ω(j)(k)

〈
x(k) − x(j)

〉( y(k) − y(j)∣∣y(k) − y(j)∣∣ · x(k) − x(j)∣∣x(k) − x(j)∣∣
)
V(j)

(5.85)

and

∂
(
ε(k)ii − 3α∆T(k)

)
∂
(∣∣y(j) − y(k)∣∣) =

=
9

4πδ4

∑
j

ω(k)(j)

〈
x(j) − x(k)

〉 ∂ (∣∣y(j) − y(k)∣∣− ∣∣x(j) − x(k)∣∣− α ∣∣x(j) − x(k)∣∣∆T(k))
∂
(∣∣y(j) − y(k)∣∣)(

y(j) − y(k)∣∣y(j) − y(k)∣∣ · x(j) − x(k)∣∣x(j) − x(k)∣∣
)
V(k)

(5.86)

yielding to

∂
(
ε(k)ii − 3α∆T(k)

)
∂
(∣∣y(j) − y(k)∣∣) =

9

4πδ4

∑
j

ω(k)(j)

〈
x(j) − x(k)

〉( y(j) − y(k)∣∣y(j) − y(k)∣∣ · x(j) − x(k)∣∣x(j) − x(k)∣∣
)
V(k)

(5.87)

Substitutions of results obtained from partial differentiations of associated dilata-

tions in relations (5.86) and (5.87) into relations (5.81) and (5.83) respectively

enable us to write the change in strain energy densities of subjected particle with

respect to deformed bond length as follows.

Asb(j)(k) =

=

(
κ− 5µ

3

)(
ε(j)ii − 3α∆T(j)

) 9

4πδ4

∑
k

ω(j)(k)

〈
x(k) − x(j)

〉( y(k) − y(j)∣∣y(k) − y(j)∣∣ · x(k) − x(j)∣∣x(k) − x(j)∣∣
)
V(j)

+

(
30µ

2πδ5

)∑
k

ω(j)(k)

〈
x(k) − x(j)

〉 (∣∣y(k) − y(j)∣∣− ∣∣x(k) − x(j)∣∣− α ∣∣x(k) − x(j)∣∣∆T(j))V(j)
(5.88)
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and

Bsb
(k)(j) =

=

(
κ− 5µ

3

)(
ε(k)ii − 3α∆T(k)

) 9

4πδ4

∑
j

ω(k)(j)

〈
x(j) − x(k)

〉( y(j) − y(k)∣∣y(j) − y(k)∣∣ · x(j) − x(k)∣∣x(j) − x(k)∣∣
)
V(k)

+

(
30µ

2πδ5

)∑
j

ω(k)(j)

〈
x(j) − x(k)

〉 (∣∣y(j) − y(k)∣∣− ∣∣x(j) − x(k)∣∣− α ∣∣x(j) − x(k)∣∣∆T(k))V(k)
(5.89)

Bond constants, Asb(j)(k) and Bsb
(k)(j) for a single bond of interacting particles are

determined by terminating summation sign in relations (5.88) and (5.89). In this

way,

Abb(j)(k) =

=

(
κ− 5µ

3

)(
9

4πδ4

)(
ε(j)ii − 3α∆T(j)

)
ω(j)(k)

〈
x(k) − x(j)

〉( y(k) − y(j)∣∣y(k) − y(j)∣∣ · x(k) − x(j)∣∣x(k) − x(j)∣∣
)
V(j)

+

(
30µ

2πδ5

)
ω(j)(k)

〈
x(k) − x(j)

〉 (∣∣y(k) − y(j)∣∣− ∣∣x(k) − x(j)∣∣− α ∣∣x(k) − x(j)∣∣∆T(j))V(j)
(5.90)

and

Bbb
(k)(j) =

=

(
κ− 5µ

3

)(
9

4πδ4

)(
ε(k)ii − 3α∆T(k)

)
ω(k)(j)

〈
x(j) − x(k)

〉( y(j) − y(k)∣∣y(j) − y(k)∣∣ · x(j) − x(k)∣∣x(j) − x(k)∣∣
)
V(k)

+

(
30µ

2πδ5

)
ω(k)(j)

〈
x(j) − x(k)

〉 (∣∣y(j) − y(k)∣∣− ∣∣x(j) − x(k)∣∣− α ∣∣x(j) − x(k)∣∣∆T(k))V(k)
(5.91)

Bond-based formulation of peridynamic theory is obtained as a special case of

state-based approach by means of a prescription is that direction dependent mate-

rial coefficients have to be equal, namely, Abb(j)(k) = Bbb
(k)(j). Since dilatation terms

that are ε(j)ii and ε(j)ii vary, the condition dictating equivalence of bond constants

is only satisfied through following mathematical constraint.

κ =
5µ

3
(5.92)

from which a relation between material constants, λ and µ can be deduced by

means of relation (B.11) leading to

λ = µ (5.93)
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A well-known prescription given by relation (B.17) can be used so as to express

the restriction in bond-based formulation of peridynamics in terms of Poisson’s

ratio which is ν = 1/4.

Direction dependent material parameters or bond constants in bond-based ap-

proach between each couple of particle can be determined through substitution of

relation (5.92) in both (5.90) and (5.91). The influence function given by relation

(5.54) can be utilized for the explicit definition of bond constants. As a conclusion,

bond constants for bond-based approach of peridynamic modelling become equal

and expressed as follows.

Abb(j)(k) =
1

2

(
30µ

πδ5

)
δ

|ξ|
(
|η + ξ| − |ξ| − α |ξ|∆T(j)

)
=

1

2

(
30µ

πδ4

)(
|η + ξ| − |ξ|
|ξ|

− α∆T(j)

)
=

1

2

(
18κ

πδ4

)(
|η + ξ| − |ξ|
|ξ|

− α∆T(j)

)
(5.94)

and

Bbb
(k)(j) =

1

2

(
30µ

πδ5

)
δ

|ξ|
(
|η + ξ| − |ξ| − α |ξ|∆T(k)

)
=

1

2

(
30µ

πδ4

)(
|η + ξ| − |ξ|
|ξ|

− α∆T(j)

)
=

1

2

(
18κ

πδ4

)(
|η + ξ| − |ξ|
|ξ|

− α∆T(j)

)
(5.95)

Even though difference in dilatations, ε(j)ii and ε(k)ii, associated with material

points x(j) and x(k) respectively appear in strain energy and bond constant terms

they have no effect on these because of material constrain provided by κ = 5µ/3

or ν = 1/4.

As a conclusion, pair-wise forces are obtained by inserting related bond constants

in relations (4.69) and (4.70) as follows.

F(x(j), t)
〈
x(k) − x(j)

〉
=

1

2

(
18κ

πδ4

)(
|η + ξ| − |ξ|
|ξ|

− α∆T(j)

)
y(k) − y(j)∣∣y(k) − y(j)∣∣ (5.96)

and

F(x(k), t)
〈
x(j) − x(k)

〉
=

1

2

(
18κ

πδ4

)(
|η + ξ| − |ξ|
|ξ|

− α∆T(j)

)
y(j) − y(k)∣∣y(k) − y(j)∣∣ (5.97)

or in short hand notation, both are represented as follows.

F(x, t) 〈x′ − x〉 =
1

2
Cp
(
s− α∆T(j)

) η + ξ

|η + ξ|
(5.98)
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and

F(x′, t) 〈x− x′〉 = −1

2
Cp
(
s− α∆T(j)

) η + ξ

|η + ξ|
(5.99)

in which bond constant, Cp, is defined as follows.

Cp =

(
18κ

πδ4

)(
s− α∆T(j)

)
(5.100)

5.3 Peridynamic parameters for two-dimensional

structures

Three dimensional structures can be replaced with their two-dimensional represen-

tatives since they provide computational efficiency as long as they give conceivable

result compared to their three-dimensional masks. In that sense, peridynamic pa-

rameters for two-dimensional spaces are derived accordingly.

Classically, it is possible to describe stress-strain relations for planar structures by

means of a constitutive equation that is expressed in a matrix form as
σx1x1

σx2x2

σx1x2

 =


κ2D + µ κ2D − µ 0

. κ2D + µ 0

. . µ



εx1x1

εx2x2

εx1x2

 (5.101)

in which the term associated with bulk modulus differs from its three-dimensional

peer while shear modulus stays as same and they are defined respectively as follows,

[16].

κ2D =
E

2 (1− ν)
(5.102)

and

µ =
E

2 (1 + ν)
(5.103)

As similar to determination of peridynamic parameters for three-dimensional struc-

tures, two fundamental loading cases are considered for a planar body as well.

Plane deformation of a plate in case of pure isotropic expansion results in strain

components that are ε(j)x1x1 = ε(j)x2x2 = ζ+α∆T(j) and ε(j)x1x2 = 0 with dilatation

term that is

ε2D(j)ii = 2ζ + 2α∆T(j) (5.104)
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Classically, strain energy density based on relation (3.5) can be expressed in

conjunction with constitutive equation given relation (5.101) for two-dimensional

structures as follows.

W2D,IsoExp = 0.5
(
σ(j)x1x1ε(j)x1x1 + σx2x2ε(j)x2x2

)
+ σ(j)x1x2ε(j)x1x2

= 0.5
(
ε(j)x1x1 (κ2D + µ) + ε(j)x2x2 (κ2D − µ)

)
ε(j)x1x1

+ 0.5
(
ε(j)x1x1 (κ2D − µ) + ε(j)x2x2 (κ2D + µ)

)
ε(j)x2x2 + µε2(j)x2x2

= 0.5
(
ε(j)x1x1κ2D + ε(j)x1x1µ+ ε(j)x2x2κ2D − ε(j)x2x2µ

)
ε(j)x1x1

+ 0.5
(
ε(j)x1x1κ2D − ε(j)x1x1µ+ ε(j)x2x2κ2D + ε(j)x2x2µ

)
ε(j)x2x2 + µε2(j)x1x2

= 2ε2(j)x1x1κ2D + µε2(j)x1x2 = 2ζ2κ2D
(5.105)

Figure 5.2: Deformation of a plate in case of pure isotropic expansion

Defining deformed bond length of relative position vector is required to invoke it in

dilatation and strain energy density calculations for determination of peridynamic

parameters in two-dimensional analysis as well.

The vector indicating relative position in deformed configuration of the body is

defined according to Figure (5.2) which is the representative deformation of the

medium in case of pure isotropic expansion case. To this end, deformed bond

length is given by

y(k) − y(j) =
(
1 + ζ + α∆T(j)

)
ξ (5.106)
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Figure 5.3: Two-dimensional integration domain for volume of a material
point

Consequently, dilatation of the particle from peridynamic point of view for isotropic

expansion is evaluated according to relation (5.50) with a slight modification on

it as follows.

ε2D,IsoExp(j)ii = d2D

δˆ

0

2πˆ

0

δ

|ξ|
ζξ

(
1 + ζ + α∆T(j)

)
ξ(

1 + ζ + α∆T(j)
)
|ξ|
· ξ
|ξ|
hξdθdξ + 2α∆T(j)

= d2Dhδζ

δˆ

0

2πˆ

0

ξdθdξ + 2α∆T(j)

= πd2Dhδ
3ζ + 2α∆T(j)

(5.107)

in which infinitesimal volume element inside integration is calculated through

hξdθdξ. Moreover, comparison of results provided by relations (5.104) and (5.107)

leads to determination of peridynamic parameter, b2,2D that is

2ζ + 2α∆T(j) = πd2Dhδ
3ζ + 2α∆T(j)

d2D =
2

πhδ3

(5.108)

Moreover, peridynamic strain energy density for isotropic expansion is calculated

through an appropriate modification on relation (5.52) and expressed for two-

dimensional medium with different peridynamic parameters, a1,2D, a2,2D and a3,2D
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as follows.

W2D,Shear(j) = a1,2Dε
2
2D(j)ii − a2,2Dε2D(j)ii∆T(j) + a3,2D∆T 2

(j) + b2D

δˆ

0

2πˆ

0

δ

|ξ|
(ζξ)2 hξdθdξ

(5.109)

Dilatation term given by relation (5.104) is invoked in relation (5.104) for exact

evaluation of strain energy density function for isotropic expansion of planar body.

Therefore, comparison of strain energy densities from classical and peridynamic

results results in

a1,2D (2ζ + 2α∆T )2 − a2,2D (2ζ + 2α∆T ) ∆T(j) + a3,2D∆T 2
(j) +

2

3
b2Dhδ

4ζ2 = 2ζ2κ2D

(5.110)

leads to following a set of equations.

4a1,2D +
2

3
b2Dhδ

4ζ2 = 2κ2D (5.111)

a2,2D = 4αa1,2D (5.112)

and

a3,2D = 4α2a1,2D (5.113)

Figure 5.4: Pure shearing deformation of a plate
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The other fundamental distortion case is pure shear deformation of a two-dimensional

body. Accordingly, strain components of associated deformation are summarized

along γ(j)x1x2 = ζ, ε(j)x1x1 = ε(j)x2x2 = 0 and ∆T(j) = 0 for which dilatation of

body becomes zero according to representative deformation of a planar body that

is illustrated in Figure (5.4).

Therefore, dilatation and strain energy terms are written respectively within the

frame of classical continuum mechanics as follows.

ε2D,Shear(j)ii = 0 (5.114)

and

W2D,Shear(j) = 0.5
2∑

m=1

2∑
n=1

σ(j)mnε(j)mn =

[
σx1x1 σx1x2

σx2x1 σx2x2

][
εx1x1 εx1x2

εx2x1 εx2x2

]
= 0.5 (σx1x1εx1x1 + σx2x2εx2x2) + σx1x2εx1x2

(5.115)

By means of stiffness matrix for two-dimensional isotropic structures, classical

strain energy density in case of in-plane shearing deformation is obtained as follows.

W2D,Shear(j) = 0.5
(
(κ2D + µ) ε2x1x1 + (κ2D − µ) εx2x2εx1x1

)
+ 0.5

(
(κ2D − µ) εx1x1εx2x2 + (κ2D + µ) ε2x2x2

)
+ 0.5µε2x1x2

= 0.5µζ2

(5.116)

According to the distortion case that is illustrated in Figure (5.4), relative position

vector in deformed configuration of material domain is obtained with small degree

approximation that is sin (ζ) ≈ ζ as follows.

y(k) − y(j) = ξ + ξ sin (θ) sin (ζ) cos (θ)

= ξ + ξζ sin (θ) cos (θ) = (1 + ζ sin (θ) cos (θ)) ξ (5.117)

As a consequence, dilatation for a two-dimensional body in case of pure sharing

distortion based on relation (5.50) is obtained with substitution of deformed bond
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length given by relation (5.117) as follows.

ε2D,Shear(j)ii = d2D

δˆ

0

2πˆ

0

δ

|ξ|
ζξ sin (θ) cos (θ)

∣∣y(k) − y(j)∣∣ ∣∣x(k) − x(j)∣∣ cos (ζ)∣∣y(k) − y(j)∣∣ ∣∣x(k) − x(j)∣∣ hξdθdξ

= d2Dhδζ

δˆ

0

ξdξ

2πˆ

0

sin (θ) cos (θ) dθ = 0

(5.118)

Accordingly, peridynamic strain energy density in case of shearing deformation of

a planar body is evaluated with appropriate modifications on relation (5.52) in

which relative position vector defined by relation (5.117) is substituted. Thus,

W2D,Shear(j) = a1,2Dε
2
(j)ii − a2,2Dε(j)ii∆T(j) + a3,2D∆T 2

(j)

+ b2D

δˆ

0

2πˆ

0

δ

|ξ|
(ζξ sin (θ) cos (θ))2 hξdθdξ

= b2Dζ
2hδ

δˆ

0

ξ2dξ

2πˆ

0

sin2 (θ) cos2 (θ) dθ

= b2D

(
πhδ4ζ2

12

)
(5.119)

Accordingly, comparison of results obtained from classical and peridynamic ap-

proaches leads to determination of b2D and express it in terms of shear modulus

µ that is

b2D
πhδ4ζ2

12
= 0.5µζ2

b2D =
6µ

πhδ4

(5.120)

By means of relations along (5.111 - 5.113) remaining peridynamic parameters for

two-dimensional material domain are determined as follows.

a1,2D =
(κ2D

2
− µ

)
(5.121)

a2,2D = α (2κ2D − 4µ) (5.122)

and

a3,2D = α2 (2κ2D − 4µ) (5.123)



Formulations of Peridynamic Modelling for Deformation Fields 90

Generalized and discrete forms of dilatation and strain energy density for a two-

dimensional structure are expressed by means of substitution of associated peri-

dynamic parameters in relation (5.50) as follows.

ε(j)ii =
2

πhδ3

∑
k

ω(j)(k)

〈
x(k) − x(j)

〉 (∣∣y(k) − y(j)∣∣− ∣∣x(k) − x(j)∣∣− α ∣∣x(k) − x(j)∣∣∆T(j))
y(k) − y(j)∣∣y(k) − y(j)∣∣ · x(k) − x(j)∣∣x(k) − x(j)∣∣V(k) + 3α∆T(j)

(5.124)

and

W(j) =
(κ2D

2
− µ

)
ε2(j)ii − α (2κ2D − 4µ) ε(j)ii∆T(j) + α2 (2κ2D − 4µ) ∆T 2

(j)

+
15µ

2πδ5

∑
k

ω(j)(k)

〈
x(k) − x(j)

〉 (∣∣y(k) − y(j)∣∣− ∣∣x(k) − x(j)∣∣− α ∣∣x(k) − x(j)∣∣∆T(j))2 V(k)
=
(κ2D

2
− µ

) (
ε2(j)ii − 4αε(j)ii∆T(j) + 4α2∆T 2

(j)

)
+

15µ

2πδ5

∑
k

ω(j)(k)

〈
x(k) − x(j)

〉 (∣∣y(k) − y(j)∣∣− ∣∣x(k) − x(j)∣∣− α ∣∣x(k) − x(j)∣∣∆T(j))2 V(k)
=

1

2
(κ2D − 2µ)

(
ε(j)ii − 2α∆T(j)

)2
+

6µ

πhδ4

∑
k

ω(j)(k)

〈
x(k) − x(j)

〉 (∣∣y(k) − y(j)∣∣− ∣∣x(k) − x(j)∣∣− α ∣∣x(k) − x(j)∣∣∆T(j))2 V(k)
(5.125)

Differentiation that is with respect to magnitudes of relative position vectors which

are |yk − yj| and |yj − yk| in relation (5.125) leads to determination of bond con-

stants for two-dimensional structures in peridynamic modelling. Namely,

f(j)(k)
(
u(k) − u(j), x(k) − x(j), t

)
=
∂w
((
y(k) − y(j)

)
,
(
x(k) − x(j)

))
∂
(∣∣y(k) − y(j)∣∣) y(k) − y(j)∣∣y(k) − y(j)∣∣

=
1

V(j)

∂W
((
y(k) − y(j)

)
,
(
x(k) − x(j)

))
∂
(∣∣y(k) − y(j)∣∣) y(k) − y(j)∣∣y(k) − y(j)∣∣

=
1

V(j)
Asb,2D(j)(k)

y(k) − y(j)∣∣y(k) − y(j)∣∣
(5.126)
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and

f(k)(j)
(
u(j) − u(k), x(j) − x(k), t

)
=
∂w
((
y(j) − y(k)

)
,
(
x(j) − x(k)

))
∂
(∣∣y(j) − y(k)∣∣) y(j) − y(k)∣∣y(j) − y(k)∣∣

=
1

V(k)

∂W
((
y(j) − y(k)

)
,
(
x(j) − x(k)

))
∂
(∣∣y(j) − y(k)∣∣) y(j) − y(k)∣∣y(j) − y(k)∣∣

=
1

V(k)
Bsb,2D

(k)(j)

y(j) − y(k)∣∣y(j) − y(k)∣∣
(5.127)

in which associated partial differentiations are accordingly expressed as bond con-

stants for two-dimensional structures, [1].

Asb,2D(j)(k) =
1

2
(κ2D − 2µ) 2

(
ε(j)ii − 2α∆T(j)

) ∂ (ε(j)ii − 2α∆T(j)
)

∂
(∣∣y(k) − y(j)∣∣)

+

(
6µ

πhδ4

)∑
k

ω(j)(k)

〈
x(k) − x(j)

〉 ∂ (∣∣y(k) − y(j)∣∣− ∣∣x(k) − x(j)∣∣− α ∣∣x(k) − x(j)∣∣∆T(j))
∂
(∣∣y(k) − y(j)∣∣)

2
(∣∣y(k) − y(j)∣∣− ∣∣x(k) − x(j)∣∣− α ∣∣x(k) − x(j)∣∣∆T(j))

(5.128)

or

Asb,2D(j)(k) = (κ2D − 2µ)
(
ε(j)ii − 2α∆T(j)

) ∂ε(j)ii

∂
(∣∣y(k) − y(j)∣∣)

+

(
12µ

πhδ4

)∑
k

ω(j)(k)

〈
x(k) − x(j)

〉 (∣∣y(k) − y(j)∣∣− ∣∣x(k) − x(j)∣∣− α ∣∣x(k) − x(j)∣∣∆T(j))
(5.129)

and

Bsb,2D
(k)(j) =

1

2
(κ2D − 2µ) 2

(
ε(k)ii − 2α∆T(k)

) ∂ (ε(k)ii − 2α∆T(k)
)

∂
(∣∣y(j) − y(k)∣∣)

+

(
6µ

πhδ4

)∑
k

ω(j)(k)

〈
x(j) − x(k)

〉 ∂ (∣∣y(j) − y(k)∣∣− ∣∣x(j) − x(k)∣∣− α ∣∣x(j) − x(k)∣∣∆T(k))
∂
(∣∣y(j) − y(k)∣∣)

2
(∣∣y(j) − y(k)∣∣− ∣∣x(j) − x(k)∣∣− α ∣∣x(j) − x(k)∣∣∆T(k))

(5.130)

or

Bsb,2D
(k)(j) = (κ2D − 2µ)

(
ε(k)ii − 2α∆T(k)

) ∂ε(k)ii

∂
(∣∣y(j) − y(k)∣∣)

+

(
12µ

πhδ4

)∑
k

ω(j)(k)

〈
x(j) − x(k)

〉 (∣∣y(j) − y(k)∣∣− ∣∣x(j) − x(k)∣∣− α ∣∣x(j) − x(k)∣∣∆T(k))
(5.131)



Formulations of Peridynamic Modelling for Deformation Fields 92

in which dilatation terms being ε(j)ii and ε(k)ii are different. Furthermore, differ-

entiations in the first lines of relations (5.129) and (5.131) are performed as

∂
(
ε(j)ii − 2α∆T(j)

)
∂
(∣∣y(k) − y(j)∣∣) =

=
2

πhδ3

∑
k

ω(j)(k)

〈
x(k) − x(j)

〉 ∂ (∣∣y(k) − y(j)∣∣− ∣∣x(k) − x(j)∣∣− α ∣∣x(k) − x(j)∣∣∆T(k))
∂
(∣∣y(k) − y(j)∣∣)(

y(k) − y(j)∣∣y(k) − y(j)∣∣ · x(k) − x(j)∣∣x(k) − x(j)∣∣
)
V(k)

(5.132)

yielding to

∂ε(j)ii

∂
(∣∣y(k) − y(j)∣∣) =

2

πhδ3

∑
k

ω(j)(k)

〈
x(k) − x(j)

〉( y(k) − y(j)∣∣y(k) − y(j)∣∣ · x(k) − x(j)∣∣x(k) − x(j)∣∣
)
V(j)

(5.133)

and

∂
(
ε(k)ii − 2α∆T(k)

)
∂
(∣∣y(k) − y(j)∣∣) =

=
2

πhδ3

∑
j

ω(k)(j)

〈
x(j) − x(k)

〉 ∂ (∣∣y(j) − y(k)∣∣− ∣∣x(j) − x(k)∣∣− α ∣∣x(j) − x(k)∣∣∆T(k))
∂
(∣∣y(j) − y(k)∣∣)(

y(j) − y(k)∣∣y(j) − y(k)∣∣ · x(j) − x(k)∣∣x(j) − x(k)∣∣
)
V(k)

(5.134)

leading to

∂ε(k)ii

∂
(∣∣y(j) − y(k)∣∣) =

2

πhδ3

∑
j

ω(k)(j)

〈
x(j) − x(k)

〉( y(j) − y(k)∣∣y(j) − y(k)∣∣ · x(j) − x(k)∣∣x(j) − x(k)∣∣
)
V(k)

(5.135)

Bond constants are obtained by means of substitutions of corresponding differ-

entiations given by relations (5.133) and (5.135) in relations (5.128) and (5.130)

respectively.

Asb,2D(j)(k) =

= (κ2D − 2µ)
(
ε(j)ii − 2α∆T(j)

) 2

πhδ3

∑
k

ω(j)(k)

〈
x(k) − x(j)

〉( y(k) − y(j)∣∣y(k) − y(j)∣∣ · x(k) − x(j)∣∣x(k) − x(j)∣∣
)
V(j)

+
12µ

πhδ4

∑
k

ω(j)(k)

〈
x(k) − x(j)

〉 (∣∣y(k) − y(j)∣∣− ∣∣x(k) − x(j)∣∣− α ∣∣x(k) − x(j)∣∣∆T(j))
(5.136)
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and

Bsb,2D
(k)(j) =

= (κ2D − 2µ)
(
ε(k)ii − 2α∆T(k)

) 2

πhδ3

∑
j

ω(k)(j)

〈
x(j) − x(k)

〉( y(j) − y(k)∣∣y(j) − y(k)∣∣ · x(j) − x(k)∣∣x(j) − x(k)∣∣
)
V(k)

+
12µ

πhδ4

∑
k

ω(j)(k)

〈
x(j) − x(k)

〉 (∣∣y(j) − y(k)∣∣− ∣∣x(j) − x(k)∣∣− α ∣∣x(j) − x(k)∣∣∆T(k))
(5.137)

Consequently, Cbb,2D, Asb,2D(j)(k) and Bsb,2D
(k)(j) are defined by excluding summation sign

to be able to write an appropriate expression for only a couple of interacting

particle as follows.

Asb,2D(j)(k) = (κ2D − 2µ)
(
ε(j)ii − 2α∆T(j)

) 2

πhδ3
ω(j)(k)

〈
x(k) − x(j)

〉( y(k) − y(j)∣∣y(k) − y(j)∣∣ · x(k) − x(j)∣∣x(k) − x(j)∣∣
)
V(j)

+
12µ

πhδ4
ω(j)(k)

〈
x(k) − x(j)

〉 (∣∣y(k) − y(j)∣∣− ∣∣x(k) − x(j)∣∣− α ∣∣x(k) − x(j)∣∣∆T(j))
(5.138)

and

Bsb,2D
(k)(j) = (κ2D − 2µ)

(
ε(k)ii − 2α∆T(k)

) 2

πhδ3
ω(k)(j)

〈
x(j) − x(k)

〉( y(j) − y(k)∣∣y(j) − y(k)∣∣ · x(j) − x(k)∣∣x(j) − x(k)∣∣
)
V(k)

+
12µ

πhδ4
ω(j)(k)

〈
x(j) − x(k)

〉 (∣∣y(j) − y(k)∣∣− ∣∣x(j) − x(k)∣∣− α ∣∣x(j) − x(k)∣∣∆T(k))
(5.139)

To be able to provide the condition Abb,2D(j)(k) = Bbb,2D
(k)(j) for bond based approach of

peridynamic modelling, the following material constraint has to be satisfied.

κ2D = 2µ (5.140)

Let us to modify relation (B.10) for a two-dimensional body in the following way.

σii = 2λεkk + 2µεii

= 2 (λ+ µ) εii
(5.141)

for which hydrostatic stress state is expressed as follows.

σii = 2κ2Dεii (5.142)
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As a result, a relation including terms that are λ, µ and κ2D is obtained by equating

relation (5.141) and (5.142) to each others.

κ2D = λ+ µ (5.143)

Relation (C.53) can also be modified to be able to establish a correlation between

stress and strain terms for two-dimensional case. In this manner, associated strain

components can be expressed as follows.

εij = −λδij
2µ

εkk +
σij
2µ

(5.144)

in which dilatation term can be replaced by its equivalent term based on relation

(5.142), therefore strain components are expressed as follows.

εij = − λδij
4µ (λ+ µ)

σii +
σij
2µ

(5.145)

Considering a plate that is subjected to uni-axial stress state, stress components,

ε11 and ε22, can be expressed based on relation (5.145) as follows.

ε11 = − λδ11
4µ (λ+ µ)

σ11 +
σ11
2µ

=
2µ+ λ

4µ (λ+ µ)
σ11 (5.146)

and

ε22 = − λδ22
4µ (λ+ µ)

σ11 +
σ22
2µ

=
λ

4µ (λ+ µ)
σ11 (5.147)

in which trace[σ] = σii = σ11 + σ22 = σ11. Based on relation (5.146), elastic

modulus can be obtained for two-dimensional case as given below.

E =
4µ (λ+ µ)

λ+ 2µ
(5.148)

Moreover, Poisson’s ratio is determined by using relations (5.146) and (5.147) for

two-dimensional case as follows.

ν = −ε22
ε11

= −
− λ

4µ (λ+ µ)
σ11

λ+ 2µ

4µ (λ+ µ)
σ11

=
λ

λ+ 2µ
(5.149)
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accordingly, Lame constant, λ, and shear modulus, µ, can be obtained based on

relation (5.149) as follows.

λ =
2µν

(1− ν)
(5.150)

and

µ =
λ (1− ν)

2ν
(5.151)

Substitution of Lame constant, λ allows us to express shear modulus, µ, as a

function of Poisson’s ratio, ν and elastic modulus, E.Namely,

E =

(
2µν

1− ν
+ µ

)
4µ

2µν

1− ν
+ 2µ

=
(2µν + µ) 4µ

2µ
(5.152)

or

µ =
E

2 (1 + ν)
(5.153)

Equating results obtained in (5.151) and (5.153) to each others leads to write Lame

constant in terms of elastic modulus and Poisson’s ratio as follows.

λ (1− ν)

2ν
=

E

2 (1 + ν)
(5.154)

or

λ =
Eν

(1− ν) (1 + ν)
(5.155)

The material constraint provided by relation (5.140) satisfying condition Abb,2D(j)(k) =

Bbb,2D
(k)(j) for bond based approach can be substituted in relation (5.143) and it leads

to a relation between Lame constant, λ and shear modulus, µ, that is

λ = µ (5.156)

On the other hand, relation (5.143) can be utilized to obtain bulk modulus of a

two-dimensional body as a function of elastic modulus, E and Poisson’s ratio, ν

based on relations (5.153) and (5.155). Namely,

κ2D = λ+ µ =
2Eν + E − Eν
2 (1− ν) (1 + ν)

=
E (1 + ν)

2 (1− ν) (1 + ν)
=

E

2 (1− ν)
(5.157)

By means of relation (5.156), Poisson’s ratio given by relation (5.149) is determined

as ν = 1/3 in the frame of bond-based approach of peridynamic modelling for a

two-dimensional structure. As a conclusion, bond constants provided by relations
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(5.138) and (5.139) become

Abb,2D(j)(k) =
1

2

(
24µ

πhδ4

)
δ

|ξ|
(
|η + ξ| − |ξ| − α |ξ|∆T(j)

)
=

1

2

(
24µ

πhδ3

)(
|η + ξ| − |ξ|
|ξ|

− α∆T(j)

)
=

1

2

(
12κ2D
πhδ3

)(
|η + ξ| − |ξ|
|ξ|

− α∆T(j)

)
(5.158)

and

Bbb,2D
(k)(j) =

1

2

(
24µ

πhδ4

)
δ

|ξ|
(
|η + ξ| − |ξ| − α |ξ|∆T(j)

)
=

1

2

(
24µ

πhδ3

)(
|η + ξ| − |ξ|
|ξ|

− α∆T(j)

)
=

1

2

(
12κ2D
πhδ3

)(
|η + ξ| − |ξ|
|ξ|

− α∆T(j)

)
(5.159)

Accordingly, force states are expressed as follows.

F(x(j), t)
〈
x(k) − x(j)

〉
=

1

2

(
12κ2D
πhδ3

)(
|η + ξ| − |ξ|
|ξ|

− α∆T(j)

)
y(k) − y(j)∣∣y(k) − y(j)∣∣

(5.160)

and

F(x(k), t)
〈
x(j) − x(k)

〉
=

1

2

(
12κ2D
πhδ3

)(
|η + ξ| − |ξ|
|ξ|

− α∆T(j)

)
y(j) − y(k)∣∣y(k) − y(j)∣∣

(5.161)

or in short hand notation

F(x, t) 〈x′ − x〉 =
1

2
Cp

2D

(
s− α∆T(j)

) η + ξ

|η + ξ|
(5.162)

and

F(x′, t) 〈x− x′〉 = −1

2
Cp

2D

(
s− α∆T(j)

) η + ξ

|η + ξ|
(5.163)

in which bond constant, Cp, is defined as follows.

Cp
2D =

(
12κ2D
πhδ3

)(
s− α∆T(j)

)
(5.164)



Chapter 6

Results and Discussion

6.1 Numerical Implementation

For many cases, it can be practical to solve the equations of a system in point-

wise manner however it becomes inappropriate to apply governing equations and

obtain free-body diagram to each element in the system. In this sense, numerical

approaches play important roles to be able to obtain required outputs since they

drastically reduce time and effort that should have been normally spent on.

The integration operator in peridynamic equation of motion given by (4.115) can

be replaced with the summation sign to express that it is going to be be solved

for a finite number of neighbouring particles inside the horizon of each material

point throughout whole material domain.

Under the consideration of finite number of material points within horizon of

subjected particle which has position vector x(j) in initial state, the peridynamic

equation of motion for these materials is written as follows.

ρ(x(j), t)ü(x(j), t) =
N∑
i=1

f(u(k) − u(j), x(k) − x(j), t)dV ′ + b
(
x(j), t

)
(6.1)

97
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6.2 Definition of test case

In this study, displacement-control tensile stretching of square plate whose geo-

metric properties with number of elements and particles that are used in numeri-

cal implementations are introduced in Table ( 6.1) while Young’s modulus, shear

modulus, Poisson’s ratio and material density values for the plate are respectively

192× 1009[Pa], 72× 1009, 7800[kg/m3] and 1/3.

As given in Table (6.1), number of finite elements in ABAQUS and number of

particles in peridynamic model are set to 500. Monitorization of the displacement

Table 6.1: External dimensions of the test material

Body Length Width Depth Number of Number of

[m] [m] [m] elements particles

Thin plate 5.0 ∗ 10−02 5.0 ∗ 10−02 1.0 ∗ 10−04 250000 250000

field pertaining to isotropic plate under the effect of applied boundary conditions

in x1 and x2 directions is performed by means of both bond-based peridynamic

model and ABAQUS, being a FEM solver and accordingly outputs of these two

method are compared based on displacements through mid-line surfaces along

longitudinal and vertical directions.

Z

Y

X

Figure 6.1: Representation of externally applied loads causing uni-axial
stretching of a thin plate

The simulation test is performed under the effect of externally applied forces that

are illustrated in Figure (6.1) in displacement control mode for both peridynamic
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code and FEM solver. Additionally, test speed and number of iterations are set

Table 6.2: Test parameters

Deformation Discrete time Iteration Test speed Elongation Half elongation Strain

[s] No [m/s] [m] [m] [mm/mm]

Plastic 1.3667 ∗ 10−08 1050 40 1.1228 ∗ 10−03 5.6141 ∗ 10−04 0.0225

to 40 [m/s] and 1050 respectively to be able to reach total displacement amount

1.1228 ∗ 10−03[m] causing elastic deformation of the test material with ultimate

strain 0.0225[mm/mm].

6.3 Test parameters

The equation of motion of peridynamic modelling expressed in a discrete form for

numerical solution of any particular problem is given as

ρ(x(j), t)ü(x(j), t) =
N∑
k=1

f(u(k) − u(j), x(k) − x(j), t)dV ′ + b
(
x(j), t

)
(6.2)

in which N number of interacting material points around the subjected particles la-

belled by (j) are located in a circular region encapsulated by the radius of horizon,

δ = 4×
∣∣x(j) − x(k)∣∣.

In the numerical implementation of the peridynamic equation of motion, a stability

condition is required to be able to obtain convergent results. Thus, the numeri-

cal stability condition in the implementation scheme of peridynamic equation of

motion that has been introduced in [33] is given as follows.

∆t <

 2ρ
(
x(j)
)

Cp
2D

∑N
k=1

(
V(k)∣∣x(j) − x(k)∣∣

)


0.5

(6.3)

The smallest time increment is determined as 1.3367×10−8[s] according to stability

stability condition given by relation (6.3).

In the n-th cycle of time integration, peridynamic equation of motion including

pair-wise forces of interacting material points with the horizon of particle (j) can
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be implemented as follows.

ρ(x(j), t)ü
n(x(j), t) = fn(j)(j+1)V(j+1) + fn(j)(j+2)V(j+2) + ...+ fn(j)(j+N)V(j+N) +bn

(
x(j), t

)
(6.4)

in which pair-wise force function and stretch are expressed in compliance with the

numerical method respectively as follows.

fn(j)(k) =
ξn(j)(k) + ηn(j)(k)∣∣∣ξn(j)(k) + ηn(j)(k)

∣∣∣Cp
2Ds

n
(j)(k) (6.5)

and

sn(j)(k) =

∣∣∣yn(j) − yn(k)∣∣∣− ∣∣∣xn−1(j) − x
n−1
(k)

∣∣∣∣∣∣xn−1(j) − x
n−1
(k)

∣∣∣ (6.6)

in which ξ(j)(k) and η(j)(k) are relative position vector in undeformed and relative

deformation vectors of material points (j) in deformed states respectively and can

be expressed as ξ(j)(k) = x(j) − x(k) and η(j)(k) = u(j) − u(k).

Applying displacement amount to the top and bottom edges of the plate illustrated

in Figure (6.1) simultaneously initiates stretches between interacting particles as

a function of relative position and deformation vectors at initial and deformed

configuration according to relation (4.75). Since pair-wise forces are the func-

tion of stretches occurring between interacting particles, change in sn(j)(k) leads to

determination of fn(j)(k) for each material point.

By invoking associated accelerations ün(x(j)) as a result of solution of peridynamic

equation of motion given by (6.4) in previous time step of numerical implementa-

tion leads to the determination of velocities that are calculated through

u̇n+1(x(j), t) = ün(x(j), t)∆t+ u̇n(x(j), t) (6.7)

and displacements which is calculated by means of

un+1(x(j), t) = u̇n(x(j), t)∆t+ un(x(j), t) (6.8)

for each material point in the body. The displacement vectors obtained from

relation (6.8) for each material point are used to calculate the stretches for the

following time step, (n+ 1), until specified number of iteration is reached in peri-

dynamic code.
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In ABAQUS, the same displacement amount which is 5.6141 ∗ 10−04 has been

applied to the top and bottom edges of the plate as illustrated in Figure (6.1).

Furthermore, the both longitudinal and horizontal mid-line nodes for correspond-

ing plots such as position-displacement has been determined in path manager tab

as (250501 : 251001 : 1) and (251 : 501251 : 1002) in ABAQUS.

6.4 Numerical results and validation

The numerical data obtained from ABAQUS are used for comparison of peri-

dynamic modelling results. The deformation fields in ux1 and ux2 throughout

horizontal and vertical mid-lines are selected for validation of peridynamic code

in comparison with ABAQUS outputs.

Figure 6.2: Colour diagrams for displacement field, ux1

The colour diagrams in Figure (6.3) of deformation field along x1 direction pertain-

ing to peridynamic and Abaqus outputs can be compared based on displacement

values along transverse line. To this end, associated plots from both method are

compared in Figure (6.3).
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Figure 6.3: Displacement comparison through horizontal mid-line as a func-
tion of x1

Figure 6.4: Colour diagrams for displacement field, ux2

As similar to comparison of deformation field for ux1 , plots that are used in com-

parison of displacement field in x2 direction along a vertical mid-line is given in

Figure (6.5) based on peridynamics and Abaqus outputs.
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Figure 6.5: Displacement comparison through vertical mid-line as a function
of x2

Total displacement field under uni-axial stretching can also be compared based on

colour diagrams of both method that are given in Figure (6.6).

Figure 6.6: Colour diagrams for resultant displacement field, u
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Based on colour diagrams of resultant displacement field introduced in Figure

(6.6), displacement values along horizontal and vertical mid-lines are compared in

Figures (6.6) and (6.6) respectively.
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Figure 6.7: Resultant displacement comparison through horizontal mid-line
as a function of x1
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Figure 6.8: Resultant displacement comparison through vertical mid-line as
a function of x2



Chapter 7

Conclusion

Even though peridynamic theory fundamentally has been introduced for modelling

of initiations, propagations of discontinuities, its formulations can be utilized to

simulate deformation fields without any discontinuity formation.

In this study, fundamental equations in classical solid mechanics are aimed to be

derived in a comprehensive way. Classical and peridynamic definitions of kinetic

and kinematic relations are compared to be able to establish a bridge between

these two approach.

In Chapter (6), deformation field of an isotropic medium is modelled by means of

a this relatively new approach, peridynamic theory. Results pertaining to peridy-

namic model are compared with outputs of FEA method. Deviations with respect

Table 7.1: Comparisons of results

Points/Deviations Deviation[%] Deviation [%] Deviation [%] Deviation [%]

ux1 along x1 ux2 along x2 u along x1 u along x2

Point 01 2.67 2.77 2.19 0.32

Point 02 5.21 0.46 3.27 0.46

Point 03 3.36 2.99 5.35 2.99

Point 04 2.23 0.16 2.72 0.16

Average 3.37 1.59 3.38 0.98

to outputs of FEA analysis are used to validate peridynamic results in Table (7.1).

Peridynamic outputs for ux1 deviates in average by 3.37% based on displacement

values along horizontal mid-line while deviation in ux2 field reaches up to 1.59% in

average along vertical mid-line. On the other hand, resultant displacement fields
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along horizontal and vertical mid-lines respectively are obtained as 3.38% and

0.98%. To this end, developed code in this study for simulation of displacement

field shows consisting results compared to outputs of FEA analysis.

As a future work, analytical and numerical solution of anisotropic macro-structures

including discontinuities can also be developed for other specific type of topologies

by means of peridynamic theory based on accumulated knowledge throughout this

study.



Appendix A

Background

A.1 Introduction

Linear algebra is highly utilized to be able to solve a system of linear equations

of n number of equations with n number of unknowns. Within the frame of solid

mechanics, rotations of vectors and transformations of matrices can be considered

as practical and efficient mapping operations for vector fields and material prop-

erties between initial and rotated states of material domain and they enable us to

express constitutive relations in compact forms.

Furthermore, a fourth-order isotropic tensor is inherently required to be able to

establish a constitutive relation between stress and strain fields of any arbitrary

states of a three-dimensional material domain. After introducing fundamental

transformation rules for vectors and higher order tensors in index notation, deriva-

tion scheme for fourth-order tensor are presented as well.

A.1.1 Fundamentals of Tensor Transformations

In linear elasticity theory, material response such as deformation against applied

loads are defined by constitutive equations. From the classical point of view, the

responsive behaviour of body is characterized by internal constitution of material

disregarding atomistic structure instead considering it as continuous medium, [23].

From the classical continuum perspective, the constitutive equation that relates

stress and strain is known as Hooke’s law and its generalized state for a linear
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Figure A.1: Equivalent representations of a vector rotation

elastic solid body is given as

σij = Cijklεkl (A.1)

in which Cijkl is named as stiffness matrix including information regarding me-

chanical resistance of material against applied forces in specified directions.

A.1.2 Tensor Transformation

Before studying concept of isotropy, let us introduce tensor transformation which

is a fundamental tool for rotations of associated co-ordinates. By considering an

arbitrary vector a = axei + ayej, defining a point in xy plane, and infinitesimal

rotation of xy plane by δθk about co-ordinate axis z. Then, the same point can

also be defined by using basis vectors of rotated co-ordinates as follows.

a′x = (ax cos δθz + ay sin δθz)e
′
i (A.2)

a′y = (ay cos δθz − ax sin δθz)e
′
j (A.3)

Moreover, relations (A.2) and (A.3), stating components in rotated co-ordinate

system, can also presented in a matrix form as follows.[
a′x

a′y

]
=

[
cos θ sin θ

− sin θ cos θ

][
ax

ay

]
=

[
cos θ cos(90− θ)

cos(90 + θ) cos θ

][
ax

ay

]
(A.4)
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or in index notation we can write it as

a′i = Bijaj (A.5)

in which the first matrix in the right-hand side of relation (A.4) is called as trans-

formation matrix whose inverse is always equal to its transpose, in other words,

BT = B−1. Beside that it is also expressed is a way that components of the trans-

formation matrix are directional cosines of angles between reference and rotated

co-ordinate axes.

For infinitesimal angles, the condition that is sin δθk ' δθk, is always valid, there-

fore the second term in the right-hand side of rellation (A.2) can be approximated

as εijkajδθk which can be defined as cross product of an arbitrary position vector

a with rotation vector δθ, namely, a × δθ. By expressing that in the right-hand

of relation (A.2) sub-index of the first term has the same argument with the sub-

index in the left-hand side, one may write the components of the same vector a in

the basis of rotated co-ordinate system in short-hand notation as

a′ = a+ a× δθ (A.6)

or in index notion

a′i = ai + εijkajδθk (A.7)

In the most general case of transformation around each co-ordinate axes for a

vector, a, can be considered as well. In the reference co-ordinate configuration

which is ordinarily called material co-ordinates, a is presented as

a = a1e1 + a2e2 + a3e3 (A.8)

while in rotated co-ordinate configuration, which is called spatial co-ordinates

representing current state, we express the same vector as

a′ = a′1e
′
1 + a′2e

′
2 + a′3e

′
3 (A.9)

Moreover, a matrix transformation can be defined to be able to rotate xy plane

to x′y′ plane around co-ordinate axis, z around origin and algebraically a sets of
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equations can be expressed as follows,
a′x

a′y

a′z

 =


A11 A12 A13

A21 A22 A23

A31 A32 A33



ax

ay

az

 (A.10)

whose compact form can be expressed as follows with the help of index notation.

a′i = Aijaj (A.11)

in which Aij = cos(ei, e
′
j). As similar to statement of a vector in rotated co-

ordinate system, basis vectors of reference co-ordinate system can also be expressed

by using same transformation matrix that is

e′i = Aijej (A.12)

Furthermore, same vector a can be expressed by primed and un-primed co-ordinate

symbols respectively as

a = a′ie
′
i (A.13)

a = ajej (A.14)

By invoking relation (A.12) into relation (A.13) we write

a = a′iAijej (A.15)

By inspecting relations (A.14) and (A.15), it is realized that inverted form of

relation (A.11) is obtained as follows.

aj = Aija
′
i (A.16)

By invoking relation (A.11) into (A.16) and changing dummy index j by k, vector

aj is expressed as

aj = AijAikak (A.17)

To be able to satisfy the condition given by relation (A.17), tensor multiplication

has to yield into δjk. Namely,

δjk = AijAik (A.18)
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or in matrix notation

I = ATA (A.19)

in which Kronecker-Delta operator, δij is defined as

δij =

1, if i = j

0, otherwise
(A.20)

or in matrix form

I =


1 0 0

0 1 0

0 0 1

 (A.21)

By means of relation (A.19), it is also concluded that inverse of matrix A has

to equal to transpose of itself, in other words, A−1 = AT which is known as

orthogonality or ortho-normality condition for transformation of matrix A.

Another important operator is needed for easiness of vector multiplications of

vector entities. To this end, cross product of vectors in the right-hand side of

relation (A.7) can be stated equivalently as−εkijδθkaj based on Levi-Civita symbol

which is given as permutation of natural numbers yielding to either plus, minus

or zero depending on sequence of successive numbers, in other words

εijk =


+1, if (i,j,k) is (1,2,3), (2,3,1), (3,1,2)

-1, if (i,j,k) is (3,2,1), (1,3,2), (2,1,3)

0, if i=j or j=k or k=i

(A.22)

a′i = ai − εkijδθkaj
= δijaj − εkijδθkaj
= (δij − εkijδθk)aj
= Rijaj

(A.23)

in which R obeys the fact that is R−1 = RT since R is an orthogonal matrix. By

multiplying both side inverse of R, we obtain a′R−1 = RaR−1 or a′R−1 = a and

since R−1 = RT is always valid, equations given by relation (A.23) are inverted

and takes the form of

ai = Rjia
′
j (A.24)



Background 112

Direct generalization of equation (A.23) for transformations second and third-order

tensors can be easily made as follows.

a′ij = RikRjlakl (A.25)

a′ijk = RikRjlRkmaklm (A.26)

Similarly, generalization of relation (A.24) is written by the same analogy that is

established when writing expressions (A.25) and (A.26). Accordingly,

aij = RkiRlja
′
kl (A.27)

aijk = RkiRljRmka
′
klm (A.28)

Specifically, it can also be shown that relation (A.18) is satisfied for R matrix. Let

us consider Rij and Rik and change the dummy indices k to m and l respectively

in each.
RijRik = (δij − δθmεmij)(δik − δθlεlik)

= δijδik − δijδθlεlik − δikδθmεmij + δθmδθlεmijεlik
(A.29)

Since multiplication of infinitesimal angles, δθm and δθl can be approximated as

δθmδθl ' 0. By applying Kronecker-Delta operators on corresponding Levi-Civita

operators and changing dummy index l by m, relation (A.29) is simplified as

RijRik = δjk − δθmεkmj − δθmεjmk (A.30)

Because of the fact that is εjkm = −εkjm according to relation (A.22), expression

(A.30) can be further simplified to

RijRik = δjk (A.31)

Similar procedure can be applied on RjiRki to be able to show that it yields to

δjk. Namely,

RjiRki = (δji − δθmεmji)(δki − δθlεlki)

= δjiδki − δjiδθlεlki − δθmεmjiδki + δθmεmjiδθlεlki

= δjk − θm(εmkj − εmjk) = δjk

(A.32)
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In further, tensor transformation that is εijkRliRmjRnk = εlmn can be proven by

substituting δij − δθkεkij for each R having different dummy indices as follows.

εijkRliRmjRnk = εijk(δli − δθaεali)(δmj − δθbεbmj)(δnk − δθcεcnk)

= εlmn − εijkδθa(δliδmjεcnk + δliδnkεbmj + δmjδnkεali)

= εlmn − δθa(εlmkεcnk + εljnεbmj + εimnεali)

= εlmn − δθa(εlmkεank + εljnεamj + εimnεali)

= εlmn − δθa(εimnεial + εjnlεjam + εklmεkan)

= εlmn − δθa(δmaδnl − δmlδna + δnaδlm − δnmδla + δlaδmn − δlnδma)

= εlmn
(A.33)

in which assumptions that are δθa = δθb = δθc and δθbδθc = δθaδθc = δθaδθc = 0

have been made and contracted epsilon identity εijkεimn = δjmδkn − δjnδkm, is

applied to the fifth line of relation (A.33) as well.

Furthermore, scalar product of two arbitrary vectors in rotated frame of reference

that is given by relation (A.23) can be calculated by means of relation (A.31).

a′ib
′
i = RilRimalbm

= δlmalbm

= ambm = albl

(A.34)

For a given statement aibjk = cijk, recasting relations (A.23) and (A.25), a similar

relation with (A.26) or inverted version of (A.28) can also be obtained.

a′ib
′
jk = RilRjmRknalbmn

c′ijk = RilRjmRknclmn
(A.35)

For arbitrary tensors aik and ajk, according to relation (A.18) apparently operation

aikbjk = cij which is usually known as outer product of two tensors can be written

in general.

Let us consider following outer product of two tensors in rotated frame of reference

and prove it in an appropriate way, utilizing from the rules that have been obtained

so far.

c′ij = a′ikb
′
jk (A.36)
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By means of relation (A.25) and invoking akpblp in ckl we write

c′ij = RikRjkckl = RikRjlakpblp

= RikRjlakpRmlRnpb
′
mn

= RikRnpδjmakpb
′
mn

= RikRnpδjmakpb
′
mn = RikRnpakpb

′
jn

(A.37)

Combining relations (A.36) and (A.37) leads to

a′inb
′
jn = RikRnpakpb

′
jn

0 = (a′in −RikRnpakp)b
′
jn

(A.38)

Finally, it can be concluded that the condition a′in = RikRnpakp has to be satisfied.

This result complies with relation (A.25).

Additionally, relation (A.25) can be generalized for Kronecker-Delta operator and

by means of Rij = δij − εkijδθk we write

δ′ij = RikRjlδkl = RikRjk

= (δik − εmikδθm)(δjk − εnjkδθn)

= δikδjk − δikεnjkδθn − δjkεmikδθm + εmikδθmεnjkδθn

= δij − δθm(εmji − εmij) = δij

(A.39)

Lastly, transformation of Levi-Civita operator from reference to rotated co-ordinate

system is introduced as follows.

ε′ijk = RilRjmRknεlmn

= (δil − δθaεail)(δjm − δθbεbjm)(δkn − δθcεckn)εlmn

= (δilδjmδkn − δilδjmδθcεckn − δilδθbεbjmδkn − δθaεailδjmδkn)εlmn

= εijk − δθa(δilδjmεaknεlmn + δilδknεajmεlmn + δjmδknεailεlmn)

= εijk − δθa(εnakεnij + εmajεmki + εlaiεljk)

= εijk − δθa(δaiδkj − δajδki + δakδji − δaiδjk + δajδik − δakδij
= εijk

(A.40)
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A.2 Isotropic Tensors

Being rotationally invariant of any n-th order tensor leads to an isotropic kind

whose all components are not affected from rotation of co-ordinate system and

stay constant as being in reference frame. Let us present two obvious example for

isotropic tensors to be able to clarify definition of isotropy. As shown in relations

(A.39) and (A.40) respectively, the second-order Kronecker-Delta and third-order

Levi-Civita tensors remain same after their transformation from one to an another

frame of reference.

In this manner, isotropy condition stipulates that the condition aij = a′ij has to be

satisfied. By means of relation (A.25) and combining it with a tensor in rotated

frame of reference we can show that

a′ij = RipRjqapq = aij

= (δip − δθmεmip)(δjq − δθmεmjq)apq
= (δipδip − δipδθmεmjq − δjqθmεmip)apq
= aij − δθm(aiqεmjq + apjεmip) = aij

(A.41)

Following condition might be directly concluded from the last line of relation

(A.41).

aiqεmjq + apjεmip = 0 (A.42)

By multiplying both sides of relation (A.42) by εmik and applying contracted ep-

silon identity we write

εmikεmjqaiq + εmikεmipapj = 0

(δiiδkp − δipδki)apj + (δijδkq − δiqδkj)aiq = 0

δiiakj − aijδki + δijaki − aiiδkj = 0

δiiakj − akj + akj − aiiδkj = 0

δiiakj = δkj

akj = λδkj

aij = λδij

(A.43)

in which λ can be considered as a constant value which implies mean value of

orthogonal component of aij. In other words we can express it as trace(aij)/3 =
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aii/3.

Let us now consider a third-order isotropic tensor aijk and show that it is also

invariant under rotation of co-ordinate system. Then, transformation relation to

be considered becomes a′ijk = RipRjqRkrapqr. To this end, by applying explicit

form of rotation tensor which is in general (δij − δθkεkij) we write

a′ijk = RipRjqRkrapqr

= (δip − δθaεaip)(δjq − δθaεajq)(δkr − δθaεakr)apqr
= (δip − δθaεaip)(δjqδkrapqr − δjqδθaεakrapqr − δkrδθaεajqapqr)

= δipδjqδkrapqr − δipδjqδθaεakr − δipδkrδθaεajqapqr − δjqδkrδθaεaipapqr
= aijk − δθa(δipδjqεakr + δipδkrεajq + δjqδkrεaip)apqr

(A.44)

To be able to satisfy isotropy condition for a third-order tensor aijk, the coefficient

in front of δθa has to be equal to zero. As a consequence , we write

(δipδjqεakr + δipδkrεajq + δjqδkrεaip)apqr = 0
(A.45)

Multiplying relation (A.45) by εait and using contracted epsilon identity first set

of equations are obtained as follows.

(δipδjqεaitεakr + δipδkrεaitεajq + δjqδkrεaitεaip)apqr = 0

(δipδjq(δikδtr − δirδtk) + δipδkr(δijδtq − δiqδtj) + δjqδkr(δiiδtp − δipδti)) apqr = 0

(δipδjqδikδtr − δipδjqδirδtk + δipδkrδijδtq − δipδkrδiqδtj + δjqδkrδiiδtp − δjqδkrδipδti)apqr = 0

(δkpδjqδtr − δrpδjqδtk + δjpδkrδtq − δqpδkrδtj + 3δjqδkrδtp − δjqδkrδtp)apqr = 0

(A.46)

Rearranging the terms in last line of relation (A.46)

(2δjqδkrδtp + δkpδjqδtr + δjpδkrδtq)apqr = (δrpδjqδtk + δqpδkrδtj)apqr

2atjk + akjt + ajtk = arjrδtk + appkδtj
(A.47)

Since t is an arbitrary index, it can be replaced by i, namely, t = i

2aijk + akji + ajik = arjrδik + appkδij (A.48)
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Multiplying both side of relation (A.48) with term that is δjk and rearranging

terms we obtain

2aijkδjk + akjiδjk + ajikδjk = arjrδikδjk + appkδijδjk (A.49)

or

2aijj + ajji + ajij = arir + appi (A.50)

and since q, r and j are dummy indices in the right and left-hand sides respectively,

they can be replaced by the index s, thus relation (A.50) yields to

2aiss + assi + asis = asis + assi (A.51)

To be able to obtain the second and third set of equations, both side of relation

(A.45) are multiplied by entities εajt and εakt respectively. To this end, by applying

contracted epsilon identity to both one may write them down as follows.

(δipδjqδkjδrt − δipδjqδktδrj + δipδkrδjjδqt − δipδkrδjtδqj + δjqδkrδijδpt − δjqδkrδitδpj)apqr = 0

(A.52)

and

(δipδjqδkkδrt − δipδjqδktδrt + δipδkrδjkδqt − δipδkrδjtδqk + δjqδkrδikδpt − δjqδkrδitδpk)apqr = 0

(A.53)

They can be reduced to

2aitk + aikt + atik = airrδkt + appkδit (A.54)

and

2aijt + aitj + atji = airrδjt + arjrδit (A.55)

respectively. Since t is an any arbitrary index in relations (A.54) and (A.55), they

can be replaced by j and k respectively. As a result,

2aijk + aikj + ajik = airrδkj + appkδij (A.56)

2aijk + aikj + akji = airrδjk + arjrδik (A.57)
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Moreover, multiplying both sides of relations (A.56) and (A.57) by δik and δij

respectively leads to

2aijkδik + aikjδik + ajikδik = airrδkjδik + appkδijδik (A.58)

and

2aijkδij + aikjδij + akjiδij = airrδjkδij + arjrδikδij (A.59)

Accordingly, relations (A.58) and (A.59) are reduced to

2akjk + ajkk + akkj = ajkk + appj (A.60)

and

2ajjk + ajkj + akjj = akrr + arkr (A.61)

For the sake of completeness of final results, relations (A.60) and (A.61) can be

presented by using same alphabetic indices appearing in relation (A.51). All in

all, three sets of equations are obtained as

2aiss + assi + asis = asis + assi

2asis + aiss + assi = aiss + assi

2assi + asis + aiss = aiss + asis
(A.62)

It is concluded that these three sets of equations have to satisfy the condition that

is

aiss = asis = assi = 0 (A.63)

Since the right hand side of relations (A.48), (A.56) and (A.57) yield to zero as

deduced from (A.63), it is concluded that

2aijk + akji + ajik = 0

2aijk + aikj + ajik = 0

2aijk + aikj + akji = 0
(A.64)
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By combining first set of relation (A.64) with second and third sets respectively,

following condition is obtained.

akji = aikj = ajik (A.65)

Invoking ajik for akji into the first line of relation (A.64) leads to

aijk = −akji = −aikj = −ajik (A.66)

Due to same cyclic permutation rule defined by Levi-Civita operator given by

relation (A.22), the third-order isotropic tensor can be expressed as a multiple of

εijk through a constant value assigned as µ. Accordingly, we have

aijk = µεijk (A.67)

While constructing isotropic fourth-order tensor, an extra orthogonal term Rls is

needed to add it in relation (A.44) and transformation is expressed as a′ijkl =

RipRjqRkrRlsapqrs. Moreover, isotropy condition requires that fourth-order tensor

has to yield to itself in reference configuration. In this manner, transformation

relation can be proven through

a′ijkl = RipRjqRkrRlsapqrs

= (δip − δθaεaip)(δjq − δθaεajq)(δkr − δθaεakr)(δls − δθaεals)apqrs
= (δipδjq − δipδθaεajq − δjqδθaεaip)(δkrδls − δkrδθaεals − δlsδθaεakr)apqrs
= (δipδjqδkrδls − δipδjqδkrδθaεals − δipδjqδlsδθaεakr − δkrδlsδipδθaεajq − δkrδlsδjqδθaεaip)apqrs
= δipδjqδkrδlsapqrs − δθa(δipδjqδkrεals + δipδjqδlsεakr + δkrδlsδipεajq + δkrδlsδjqεaip)apqrs

= δipδjqδkrδlsapqrs − δθa(δipδjqδkrεals + δipδjqδlsεakr + δkrδlsδipεajq + δkrδlsδjqεaip)apqrs
(A.68)

If isotropy condition, a′ijkl = aijkl holds, it is concluded that

(δipδjqδkrεals + δipδjqδlsεakr + δkrδlsδipεajq + δkrδlsδjqεaip)apqrs = 0 (A.69)

Through a similar procedure when deriving isotropic third-order tensor, all terms
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of relation (A.69) are multiplied by εait, εajt, εakt and εalt respectively and sub-

indices are rearranged in an appropriate way as follows.

0 =aijksεals + aijrlεakr + aiqklεajq + apjklεaip

0 =aijksεalsεait + aijrlεakrεait + aiqklεajqεait + apjklεaipεait

0 =aijks(δliδst − δltδsi) + aijrl(δkiδrt − δktδri) + aiqkl(δjiδqt − δjtδqi) + apjkl(δiiδpt − δitδpi)

0 =aljkt − aijkiδlt + akjtl − aijilδkt + ajtkl − aiiklδjt + 3atjkl − aijklδit
(A.70)

0 =aijksεals + aijrlεakr + aiqklεajq + apjklεaip

0 =aijksεalsεajt + aijrlεakrεajt + aiqklεajqεajt + apjklεaipεajt

0 =aijks(δljδst − δltδsj) + aijrl(δkjδrt − δktδrj) + aiqkl(δjjδqt − δjtδqj) + apjkl(δijδpt − δitδpj)

0 =ailkt − aijkjδlt + aiktl − aijjlδkt + 3aitkl − aijklδjt + atikl − ajjklδit
(A.71)

0 =aijksεals + aijrlεakr + aiqklεajq + apjklεaip

0 =aijksεalsεakt + aijrlεakrεakt + aiqklεajqεakt + apjklεaipεakt

0 =aijks(δlkδst − δltδsk) + aijrl(δkkδrt − δktδrk) + aiqkl(δjkδqt − δjtδqk) + apjkl(δikδpt − δitδpk)

0 =aijlt − aijkkδlt + 3aijtl − aijtl + aitjl − aikklδjt + atjil − akjklδit
(A.72)

0 =aijksεals + aijrlεakr + aiqklεajq + apjklεaip

0 =aijksεalsεalt + aijrlεakrεalt + aiqklεajqεalt + apjklεaipεalt

0 =aijks(δllδst − δltδsl) + aijrl(δklδrt − δktδrl) + aiqkl(δjlδqt − δjtδql) + apjkl(δilδpt − δitδpl)

0 =3aijkt − aijkt + aijtk − aijllδkt + aitkj − ailklδjt + atjki − aljklδit
(A.73)

The last lines of relations (A.70), (A.71), (A.72) and (A.73) can be simplified as

follows.

3atjkl − atjkl + aljkt + akjtl + ajtkl = aijkiδlt + aiiklδjt + aijilδkt

2atjkl + aljkt + akjtl + ajtkl = aijkiδlt + aiiklδjt + aijilδkt (A.74)

ailkt + aiktl + 3aitkl − aitkl + atikl = aijkjδlt + aijjlδkt + ajjklδit

2aitkl + aiktl + ailkt + atikl = aijkjδlt + aijjlδkt + ajjklδit (A.75)
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aijlt + 3aijtl +−aijtl + aitjl + atjil = aijkkδlt + aikklδjt + akjklδit

2aijtl + aijlt + aitjl + atjil = aijkkδlt + aikklδjt + akjklδit (A.76)

3aijkt − aijkt + aijtk + aitkj + atjki = aijllδkt + ailklδjt + aljklδit

2aijkt + aijtk + aitkj + atjki = aijllδkt + ailklδjt + aljklδit (A.77)

Since t, appearing in the left-hand side is an arbitrary index, we can invoke i, j, k

and l respectively to the last lines of above four sets of equations and the tensors

having repeating sub-indices e.g. aiikl, aijil and aijki yield to second-order tensors

and can presented as λδkl, µδjl and νδjk respectively. As a result, following four

sets of equations are obtained as follows.

2aijkl + aljki + akjil + ajikl = νδjkδli + λδklδji + µδjlδki

2aijkl + aikjl + ailkj + ajikl = µδikδlj + νδilδkj + λδklδij

2aijkl + aijlk + aikjl + akjil = λδijδlk + νδilδjk + µδjlδik

2aijkl + aijlk + ailkj + aljki = λδijδkl + µδikδjl + νδjkδil

(A.78)

Possible three combinations of above four sets of equations can be obtained from

pairs of first and second lines and pairs of third and fourth lines. Namely,

2aijkl + aljki + akjil + ajikl + 2aijkl + aikjl + ailkj + ajikl =

= 2(λδijδkl + µδikδjl + νδjkδli)

− 2aijkl − aijlk − aikjl − akjil − 2aijkl − aijlk − ailkj − aljki =

= −2(λδijδkl + µδikδjl + νδjkδli)

akjil = ailkj

(A.79)

from pair of first and third lines and pair of second and fourth lines

2aijkl + aljki + akjil + ajikl + 2aijkl + aijlk + aikjl + akjil =

= 2(λδijδkl + µδikδjl + νδjkδli)

− 2aijkl − aikjl − ailkj − ajikl − 2aijkl − aijlk − ailkj − aljki =

= −2(λδijδkl + µδikδjl + νδjkδli)

aljki = aikjl

(A.80)
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from pair of first and fourth lines and pair of second and third lines

2aijkl + aljki + akjil + ajikl + 2aijkl + aijlk + ailkj + aljki =

= 2(λδijδkl + µδikδjl + νδjkδli)

− 2aijkl − aikjl − ailkj − ajikl − 2aijkl − aijlk − aikjl − akjil =

= −2(λδijδkl + µδikδjl + νδjkδli)

ajikl = aijlk

(A.81)

Last three lines of relations (A.79), (A.80) and (A.81) provide us with alternative

forms of the terms appearing in the left-hand side of relation (A.78). Therefore,

the first line of (A.78) can be expressed as

2aijkl + aikjl + ailkj + aijlk = λδijδkl + µδikδjl + νδilδjk (A.82)

Moreover, remaining two sets of equations which are required to be able to write

isotropic fourth-order tensor can be generated through permutation of indices j,

k and l while keeping the index i fixed.

2aiklj + aijlk + aikjl + ailkj = λδikδjl + µδilδjk + νδijδkl (A.83)

2ailjk + ailkj + aijlk + aikjl = λδilδjk + µδijδkl + νδikδjl (A.84)

As a consequence, summing up (A.82), (A.83) and (A.84) side by side leads to

2(aijkl + aiklj + ailjk) + 3(aikjl + ailkj + aijlk) = (λ+ µ+ ν)(δikδjl + δilδjk + δijδkl)

(A.85)

If a symmetry condition which requires aijkl = aijlk, aiklj = ailkj and ailjk = aikjl

holds, then from relation (A.85), following statement is concluded.

aikjl + ailkj + aijlk =
1

5
(λ+ µ+ ν)(δikδjl + δilδjk + δijδkl) (A.86)

Substitution of the part (aikjl+ailkj +aijlk) into the right hand side of (A.82) gives

2aijkl +
1

5
(λ+ µ+ ν)(δikδjl + δilδjk + δijδkl) = λδijδkl + µδikδjl + νδilδjk

(A.87)
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Rearranging terms in an appropriate way simplifies relation (A.87) as

2aijkl = δijδkl(λ−
1

5
λ− 1

5
µ− 1

5
ν) + δikδjl(µ−

1

5
λ− 1

5
µ− 1

5
ν)

+ δilδjk(ν −
1

5
λ− 1

5
µ− 1

5
ν) (A.88)

or in more compact form, relation (A.88) can be written as follows.

aijkl = αδijδkl + βδikδjl + γδilδjk (A.89)

in which α, β and γ are respectively equal to (4λ − µ − ν)/10, (4µ − λ − ν)/10

and (4ν − λ− µ)/10.



Appendix B

Deformation Constants

B.1 General review on deformation

For the sake of simplicity, let us consider two-dimensional deformation of RVE

introduced in Figure (B.1) and assume that infinitesimal side lengths dx1 and dx2

are same, dx1 = dx2 in un-deformed state. As shown in Figure (B.1), shearing

angle γ is measured by how much top side of RVE is slid by distorting its shape.

Figure B.1: Exaggerated shearing deformation in plane stress condition

Tangent of angle (π/4− γmax/2) can be expressed in two different ways. One way

is to use its geometric definition which is given by the ratio of orthogonal edges

while the other way is to utilize from trigonometric identity for tangent function.

124
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Namely,

tan (π/4− γmax/2) =

dx′2 −
(
∂u2
∂x′2

)
dx′2

dx′1 +

(
∂u1
∂x′1

)
dx′1

=
(1− ε22) dx′2
(1 + ε11) dx′1

≈ (1− νε11)
(1 + ε11)

(B.1)

or equivalently,

tan (π/4− γmax/2) =
tan
(π

4

)
− tan

(γmax
2

)
1 + tan

(π
4

)
tan
(γmax

2

) ≈ 1− γmax/2
1 + γmax/2

(B.2)

By combining relations (B.1) and (B.2), we write

(1− νε11)
(1 + ε11)

=
1− γmax/2
1 + γmax/2 (B.3)

and by further simplification on relation (B.3), we write

γmax = (1 + ν) ε11 (B.4)

in which ν is known as Poisson’s ratio which defines the rate of normalized change

in length along transverse directions with respect to normalized length change

along axial direction, ν = −dεjj/dεii in which i 6= j.

B.2 Decomposition of deformation

According to Figure (B.2.b) presenting exaggerated simple shear and uni-axial ten-

sile deformations, body’s mechanical resistance against shear and tensile stresses

can be expressed based on Hooke’s law given by relation (A.1), and assuming

(σp2 = σp2 = 0) we write

ε11 =
σp1
E

(B.5)
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Figure B.2: Exaggerated pure shear (a) and exaggerated pure tensile (b)
loading of RVE

According to relation (2.21), maximum shear stress, τ1, is expressed as follows.

τ1 =
σp1
2

(B.6)

in which E and G are respectively elastic and shear Modulus values.

γmax =
τ1
G

(B.7)

By substituting relation (B.6) in expression (B.7) we obtain

γmax =
σp1
2G

(B.8)

Invoking relations (B.5) and (B.8) into relation (B.4), shear modulus, G is obtained

as follows.

G =
E

2 (1 + ν)
(B.9)

Moreover, as illustrated in Figure (B.2.b), cubical dilatation (relative variation

of volume) occurs apparently in case of hydrostatic stresses applied on the body.

Namely, setting i = j in relation (C.53) leads to

σii = λδiiεkk + 2µεii

= 3λεkk + 2µεii = (3λ+ 2µ) εii
(B.10)

in which bulk expansion of RVE allows us to assign 3λ+2µ to a three-dimensional

expansion coefficient, κ which is known as bulk modulus of the isotropic medium
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within the scope of homogeneous isotropic linear elasticity. Therefore, bulk mod-

ulus is defined as follows.

κ =
3λ+ 2µ

3
= λ+

2µ

3
(B.11)

Based on relation (B.11), it can be realized that relation (B.10) can be stated in

its equivalent form as follows.

σii = 3κεii (B.12)

with the addition of thermal effects, εii reads

εii =
σ11 + σ22 + σ33

3κ
+ 3α∆T (B.13)

in which εii defines a volumetric stretch or dilatation of representative volume

element while α is defined as coefficient of thermal expansion for body.

Relation (C.53) which gives stress state of an isotropic elastic material body can

be inverted to one that provides strain components. By applying basic algebraic

manipulations on relation (C.53) and using definition of bulk modulus given by

relation (B.10), we obtain

εij =
σij − λδijεkk

2µ
= − λδij

2µ (3λ+ 2µ)
σii +

σij
2µ

(B.14)

Under consideration of one-dimensional stress state of an isotropic elastic body,

the only non-zero component in stress tensor becomes σ11 with remaining stress

components that are zero, namely σii = trace[σ] = σ11+σ22+σ33 = σ11. Therefore,

ε11, ε22 and ε33 are respectively obtained as follows.

ε11 = − λδ11
2µ (3λ+ 2µ)

σ11 +
σ11
2µ

=
λ+ µ

µ (3λ+ 2µ)
σ11 (B.15)

ε22 = ε33 = − λδ22
2µ (3λ+ 2µ)

σ11 = − λ

2µ (3λ+ 2µ)
σ11 (B.16)

Thus, Poison’s ratio for isotropic elastic materials can be recast by using strain

values given by relations (B.15) and (B.16) as follows.

ν = −ε22
ε11

= −ε33
ε11

=
λ

2 (λ+ µ)
(B.17)

In relation (B.15), the coefficient that relates stress component σ11 with strain
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component ε11 is known as modulus of elasticity or Young’ s modulus and denoted

as E. Thus, we conclude that E can also be expressed in terms of λ and µ as well.

E =
(3λ+ 2µ)µ

λ+ µ
(B.18)

By invoking λ = (2µν) / (1− 2ν) derived in relation (B.17) into (B.18), µ can be

expressed in a form that confirms the result obtained in relation (B.9). Namely,

E =

(
6µν

1− 2ν
+ 2µ

)
µ

2µν

1− 2ν
+ µ

=
µ (2µν + 2µ)

µ
= 2µ (1 + ν) (B.19)

or

µ =
E

2 (1 + ν)
(B.20)

Invoking µ = (λ (1− 2ν)) / (2ν) obtained from relation (B.17) in (B.20) and rear-

ranging terms in an appropriate way lead to determination of λ as a function of

modulus of elasticity and Poisson’s ratio.

λ (1− 2ν)

2ν
=

E

2 (1 + ν)
(B.21)

or

λ =
Eν

(1 + ν) (1− 2ν)
(B.22)

Lastly, bulk modulus of an isotropic medium defined by relation (B.11) can be

expressed by substituting the terms λ and µ given by relations (B.9) and (B.20)

respectively in expression (B.11) as follows.

κ =
E

3 (1− 2ν)
(B.23)



Appendix C

Constitutive Relation for Particle

Interaction in Local Theory

C.1 Reduction of fourth-order isotropic tensor

Directional properties of a body that shows mechanically isotropic behaviour can

be defined through a fourth-order tensor given by relation (A.89) whose derivation

has been introduced in Appendix (A.2). The Hooke’s law given by expression

(A.1) constitutes a relation between stress and strain states of a material under

consideration. Moreover, nine components of both stress and strain tensors result

in 92 = 81 components if and only if symmetry condition is applied to both

tensors, accordingly, stiffness matrix is obtained with its 62 = 36 components in

the following way.

σ11

σ22

σ33

σ23

σ13

σ12


=



C1111 C1122 C1133 C1123 C1113 C1112

C2211 C2222 C2233 C2223 C2213 C2212

C3311 C3322 C3333 C3323 C3313 C3312

C2311 C2322 C2333 C2323 C2313 C2312

C1311 C1322 C1333 C1323 C1313 C1312

C1211 C1222 C1233 C1223 C1213 C1212





ε11

ε22

ε33

ε23

ε13

ε12


(C.1)

in which each component of stiffness matrix relates each stress term with associated

strains in directions prescribed by sub-indices. For instance, component C12 relates

strain in the direction of x2 with stress along x1 direction.

129
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For the sake of simplicity in sub-index notation, according to relation (C.1),

Hooke’s law can also be expressed as follows.

σi = Cijεj (C.2)

Inspection of partial derivative of strain energy of RVE given by relation (3.5) with

respect to strain tensor εj leads to further reduction in stiffness tensor. Restating

strain energy given by expression (3.5) and combining it with constitutive relation

introduced by relation (C.2), the following expression is obtained.

∂W = Cijεj∂εj (C.3)

and by performing integration in both side, relation (C.3) becomes

W = Cijεjεj/2

= σijεj/2
(C.4)

Let us evaluate second-order partial derivative of strain energy that will lead to

further simplification on stiffness tensor in the sense that first-order differentia-

tion defines stress state and second-order differential enables us to come up with

reduced stiffness tensor as follows.

∂

∂εk∂εl
(Cijεjεj/2) =

1

2

∂

∂εk

(
Cij

∂εj
∂εl

εi + Cijεj
∂εi
∂εl

)
=

1

2

∂

∂εk
(Cijδjlεi + Cijδilεj)

= (Cijδjlδki + Cijδilδkj) /2

= (Ckl + Clk) /2

(C.5)

C.2 Symmetry for anisotropic materials

In the way of deriving a constitutive relation for isotropic materials, expression

(C.5) leads to Cij, if and only if Ckl or Clk is a symmetric tensor, C = CT .

Symmetry condition for Cij implies that 36 material constants is reduced to 21

independent elastic coefficients and as a result of that constitutive relation for
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anisotropic materials is expressed as follows.

σ1

σ2

σ3

σ4

σ5

σ6


=



C11 C12 C13 C14 C15 C16

. C22 C23 C24 C25 C26

. . C33 C34 C35 C36

. . . C44 C45 C46

. sym . . C55 C56

. . . . . C66





ε1

ε2

ε3

ε4

ε5

ε6


(C.6)

in which [C] is known as stiffness matrix for general anisotropic or triclinic struc-

tures. As introduced before, transformation of any first-order tensor given by

relation (A.5) from reference to a rotated co-ordinate system can be directly gen-

eralized for a fourth-order stiffness tensor, [C]. Accordingly, it is expressed as

follows.

Cijkl = lipljqlkrllsCpqrs (C.7)

in which l terms are called transformation matrices, determining rotational or

directional invariance of mechanical structure with respect to symmetry planes.

By means of defining symmetry planes, number of elastic coefficient can be reduced

for the purpose of obtaining more simpler structure in stiffness matrix, [C], which

includes information regarding directional stiffness properties of material. The

transformation matrix, satisfying orthogonality condition
(
L−1 = LT

)
, also allows

us to determine stress and strain components through any specific directions of

rotated co-ordinate system as explained in [29]. Namely,

σ′ = LTσL (C.8)

and

ε′ = LT εL (C.9)

or in index notation, they are respectively

σ′ij = lipljqσpq (C.10)

and

ε′ij = lipljqεpq (C.11)
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C.3 Symmetry for monoclinic materials

Let us consider a transformation condition which leads to stiffness matrix for

monoclinic structures whose symmetry plane is on z axis. In this sense, orthogonal

transformation matrix becomes

[L]12 =


1 0 0

0 1 0

0 0 −1

 (C.12)

By applying transformation matrix given by relation (C.12) onto relations (C.8)

and (C.9), an expression can be obtained between associated stress and strain

components in rotated co-ordinates respectively as follows.
σ′11 σ′12 σ′13

. σ′22 σ′23

. . σ′33

 =


σ11 σ12 −σ13
. σ22 −σ23
. . σ33

 (C.13)

and similarly, 
ε′11 ε′12 ε′13

. ε′22 ε′23

. . ε′33

 =


ε11 ε12 −ε13
. ε22 −ε23
. . ε33

 (C.14)

From relations (C.13) and (C.14), it can be directly concluded that σ′13 = −σ13,
σ′23 = −σ23 and ε′13 = −ε13, ε′23 = −ε23. Writing the first stress-strain equation by

means of constitutive relation given by expression (C.6) leads to further reduction

in stiffness tensor by symmetry condition defined by a transformation matrix, L.

Explicit form of the first stress-strain relation is

σ11 = C1111ε11 + C1122ε22 + C1133ε33 + C1123ε23 + C1113ε13 + C1112ε12 (C.15)

Stress and strain tensors in reference configuration of a co-ordinate system can

be replaced by corresponding stress and strain components in rotated frame of

reference according to relations (C.13) and (C.14) while stiffness matrix, being

rotational invariant, does not alter. Thus, we write first stress-strain equation

based on constitutive relation for rotated co-ordinate system as follows.

σ′11 = C1111ε
′
11 + C1122ε

′
22 + C1133ε

′
33 + C1123ε

′
23 + C1113ε

′
13 + C1112ε

′
12

= C1111ε11 + C1122ε22 + C1133ε33 − C1123ε23 − C1113ε13 + C1112ε12
(C.16)
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in which we substituted ε′13 = −ε13 and ε′23 = −ε23 in equation (C.16). In further,

since we can write σ11 = σ′11 according to relations (C.13) and (C.14), it allows us

to combine relations (C.15) and (C.16). Therefore,

C1123ε23 + C1113ε13 = −C1123ε23 − C1113ε13 (C.17)

or

2C1123ε23 + 2C1113ε13 = 0 (C.18)

As a result, it is concluded that C1123 = C1113 = 0. Accordingly, this result allows

us make further reduction on Cijkl. The second stress-strain relation from consti-

tutive equation in reference and rotated co-ordinates respectively are expressed as

follows.

σ22 = C2211ε11 + C2222ε22 + C2233ε33 + C2223ε23 + C2213ε13 + C2212ε12 (C.19)

and

σ′22 = C2211ε
′
11 + C2222ε

′
22 + C2233ε

′
33 + C2223ε

′
23 + C2213ε

′
13 + C2212ε

′
12

= C2211ε11 + C2222ε22 + C2233ε33 − C2223ε23 − C2213ε13 + C2212ε12
(C.20)

Combining relations (C.19) and (C.20) leads to

C2223ε23 + C2213ε13 = −C2223ε23 − C2213ε13 (C.21)

or

2C2223ε23 + 2C2213ε13 = 0 (C.22)

concluding that condition C2223 = C2213 = 0 is always valid since all coefficients of

stiffness tensor have to be positive in any case. The fourth relation which defines

a stress-strain pair for remaining normal direction.

σ33 = C3311ε11 + C3322ε22 + C3333ε33 + C3323ε23 + C3313ε13 + C3312ε12 (C.23)

and

σ′33 = C3311ε11 + C3322ε22 + C3333ε33 − C3323ε23 − C3313ε13 + C3312ε12 (C.24)

By considering directionality condition on stress and strain components in the

way that symmetry condition implies σ33 = σ′33, ε23 = −ε′23 and ε13 = −ε′13 based
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on transformation matrix, L. Accordingly, relations (C.23) and (C.24) can be

combined as follows.

C3323ε23 + C3313ε13 = −C3323ε23 − C3313ε13 (C.25)

or

2C3323ε23 + 2C3313ε13 = 0 (C.26)

Therefore, condition C3323 = 0 and C3323 = 0 has to be valid. On the other hand,

shear stress components, σ23 and σ13, do not lead to any further simplification on

elastic coefficients in stiffness matrix. Namely,

σ23 = C2311ε11 + C2322ε22 + C2333ε33 + C2323ε23 + C2313ε13 + C3312ε12 (C.27)

σ′23 = C2311ε11 + C2322ε22 + C2333ε33 − C2323ε23 − C2313ε13 + C3312ε12 (C.28)

or

C2323ε23 + C2313ε13 = C2323ε23 + C2313ε13 (C.29)

As similar to the fourth stress-strain relation, the fifth one also does not provide

any reduction in number of coefficient in stiffness tensor, because of

C1323ε23 + C1313ε13 = C1323ε23 + C1313ε13 (C.30)

Lastly, by proceeding on writing stress-strain relations for σ12 and σ′12, following

relation is obtained.

2C1223ε23 + 2C1213ε13 = 0 (C.31)

which leads to conditions C1223 = 0 and C1213 = 0 that are valid. Invoking asso-

ciated zero coefficients into the stiffness matrix given for an anisotropic material

reduces 21 independent component to 13 that define directional properties for

monoclinic structures as follows.

σ11

σ22

σ33

σ23

σ13

σ12


=



C11 C12 C13 0 0 C16

. C22 C23 0 0 C26

. . C33 0 0 C36

. . . C44 C46 0

. sym . . C55 0

. . . . . C66





ε11

ε22

ε33

ε23

ε13

ε12


(C.32)
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C.4 Symmetry for transversely isotropic

materials

For the case of an orthotropic structure, there are three planes of symmetry defined

by three transformation matrices that are

[L]12 =


1 0 0

0 1 0

0 0 −1

 , [L]13 =


−1 0 0

0 1 0

0 0 1

 , [L]23 =


1 0 0

0 −1 0

0 0 1

 (C.33)

in which superscripts indicate the planes of symmetry for orthotropic structures.

In addition to the symmetry condition of monoclinic structure, applying trans-

formation matrices, [L]13 and [L]23, to elements of constitutive equation given

in (C.32) reduces it further and results in constitutive stress-strain relation for

orthotropic structures.

Specifically, stress component in rotated frame of reference by the second symme-

try plane defined by transformation matrix, [L]13, can be calculated as follows. By

using (C.10), the relations for first three stress components respectively are

σ′11 = L13
1pL

13
1qσpq

= (−δ1p) (−δ1p)σpq = σ11
(C.34)

σ′22 = L13
2pL

13
2qσpq

= (δ2p) (δ2p)σpq = σ22
(C.35)

σ′33 = L13
3pL

13
3qσpq

= (δ3p) (δ3p)σpq = σ33
(C.36)

Beside these, remaining three shear stress components can be expressed as follows.

σ′23 = L13
2pL

13
3qσpq

= (δ2p) (δ3p)σpq = σ23
(C.37)

σ′13 = L13
1pL

13
3qσpq

= (−δ1p) (δ3p)σpq = −σ13
(C.38)
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σ′12 = L13
1pL

13
2qσpq

= (−δ1p) (δ2p)σpq = −σ12
(C.39)

Other than stress tensor, same transformation procedure can be applied to second-

order strain tensor, εij as similar to (13) plane symmetry condition between stress

components. Accordingly, symmetry condition by means of (13) plane leading to

ε′11 = ε11, ε
′
22 = ε22, ε

′
33 = ε33, ε

′
23 = ε23, ε

′
13 = −ε13 and ε′12 = −ε12 is utilized as

well.

In the way of obtaining stiffness tensor for an orthotropic material, number of

elastic coefficients in (C.32) can be further reduced through following transforma-

tions.
C1112 = L13

1pL
13
1pL

13
1pL

13
2pCpqrs

= (−δ1p) (−δ1p) (−δ1p) (δ2p)Cpqrs = −C1112

(C.40)

The only condition that makes relation (C.40) valid is C1112+C1112 = 0. Therefore,

it is concluded that elastic coefficient defined by C1112 is zero, namely, C1112 = 0.

Accordingly, transformation of coefficient C2212 is the following.

C2212 = L13
2pL

13
2pL

13
1pL

13
2pCpqrs

= (δ2p) (δ2p) (−δ1p) (δ2p)Cpqrs = −C2212

(C.41)

Similar to former calculations, C2212 = 0 is obtained. Transformation of coefficients

that are C3312 and C2313 lead to zero, C3312 = 0 and C2313 = 0, as well because of

C3312 = L13
3pL

13
3pL

13
1pL

13
2pCpqrs

= (δ3p) (δ3p) (−δ1p) (δ2p)Cpqrs = −C3312

(C.42)

and
C2313 = L13

2pL
13
3pL

13
1pL

13
3pCpqrs

= (δ2p) (δ3p) (−δ1p) (δ3p)Cpqrs = −C2313

(C.43)

Transformations of remaining elastic coefficients, C1111, C2222, C3333, C2323, C1313,

C1212, C1122, C1133 and C2233 with respect to (13) symmetry plane result in them-

selves. Also, applying transformation matrix [L]23 to stiffness tensor does not

provide further reduction in terms of elastic coefficients. As a result above cal-

culations, following constitutive relation is obtained for an orthotropic structure
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with its symmetric stiffness tensor, having nine non-zero components as follows.

σ11

σ22

σ33

σ23

σ13

σ12


=



C11 C12 C13 0 0 0

. C22 C23 0 0 0

. . C33 0 0 0

. . . C44 0 0

. sym . . C55 0

. . . . . C66





ε11

ε22

ε33

ε23

ε13

ε12


(C.44)

Transversely isotropic materials, having a structure similar to one illustrated in

Figure (C.1) requires application of an additional transformation matrix, which

defines rotational symmetry around one of the axis in Cartesian co-ordinate sys-

tem, to the stiffness tensor given by relation (C.44) and stress-strain tensors.

Figure C.1: Representation of a transversely isotropic structure
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The additional rotation tensor to those given by relation (C.33) is

[L]3 =


cos θ sin θ 0

− sin θ cos θ 0

0 0 1

 (C.45)

in which the superscript 3 indicates rotational symmetry around z axis.

Moreover, by applying transformation matrix given by relation (C.45), stress and

strain states of deformed configuration is obtained for transversely isotropic struc-

tures accordingly. Then, expressing invariance of strain energy density function in

case of elastic deformation inside a continuum medium (W ′ = W ) and equalizing

the coefficients of corresponding strain terms, e.g. (ε′11)
2 = ε11, in undeformed and

deformed states result in constitutive relation for a transversely isotropic structure.

To this end, whole process of derivation of Hooke’s law for a transversely isotropic

structures leads to

σ11

σ22

σ33

σ23

σ13

σ12


=



C11 C12 C13 0 0 0

. C11 C13 0 0 0

. . C33 0 0 0

. . . C44 0 0

. sym . . C44 0

. . . . . (C11 − C12) /2





ε11

ε22

ε33

ε23

ε13

ε12


(C.46)

whose stiffness matrix has five independent elastic coefficients as shown in [20].

C.5 Symmetry for isotropic materials

In addition to the symmetry condition for a transversely isotropic material, ap-

plying rotation matrix, [L]1 , around the co-ordinate axis x provides us with con-

stitutive equation for an isotropic structure. As a result, Hooke’s law for isotropic
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structures is obtained as follows.

σ11

σ22

σ33

σ23

σ13

σ12


=



C11 C12 C12 0 0 0

. C11 C12 0 0 0

. . C11 0 0 0

. . . (C11 − C12) /2 0 0

. sym . . (C11 − C12) /2 0

. . . . . (C11 − C12) /2





ε11

ε22

ε33

ε23

ε13

ε12


(C.47)

whose number of independent elastic coefficients is only two, being C11 and C12.

As concluded in Appendix (A.2), relation (A.89) defines the general form of a

fourth-order isotropic tensor. Based on this, the stiffness tensor, Cijkl, for an

isotropic structure can be obtained by modifying the right-hand side of relation

(A.89) in an appropriate way.

Cijkl = λδijδkl + µδikδjl + κδilδjk (C.48)

in which λ, µ and κ are known as Lame constants which are different from the

coefficients defined at the end of Chapter (A.2). Because of the symmetry con-

dition, Cijkl = Cijlk, proposed when reducing the number of independent elastic

coefficient from 81 to 36, enables us to write

Cijkl = λδijδkl + µδikδjl + κδilδjk

Cijlk = λδijδlk + µδilδjk + κδikδlj
(C.49)

Multiplying both sides of two lines in (C.49) with δjk and subtracting the former

line from the later leads to

Cijjl − Cijlj = (µ− κ) (δilδlj − δilδlj) (C.50)

and owing to the symmetry condition that is Cijjl = Cijlj, it is concluded that

(µ− κ) (δilδlj − δilδkk) = 0 (C.51)
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has to be satisfied. Accordingly, µ = κ becomes valid. So that the forth-order

isotropic stiffness tensor, Cijkl, is obtained as

Cijkl = λδijδkl + µ (δikδjl + δilδjk) (C.52)

and invoking the result, found in (C.52), into (A.1), we obtain the generalized

Hooke’s law for an isotropic medium as

σij = Cijklεkl

= λδijδklεkl + µ (δikδjlεkl + δilδjk) εkl

= λδijδklεkl + µδikδjlεkl + µδilδjkεkl

= λδijεkk + 2µεij

(C.53)

or constitutive relation (C.53) can be expressed in matrix form as follows.

σ11

σ22

σ33

σ23

σ13

σ12


=



λ+ 2µ λ λ 0 0 0

. λ+ 2µ λ 0 0 0

. . λ+ 2µ 0 0 0

. . . µ 0 0

. sym . . µ 0

. . . . . µ





ε11

ε22

ε33

ε23

ε13

ε12


(C.54)

in which µ corresponds to shear modulus whose details are explained in Appendix

(B), thus we write µ = G. By using relations (B.23), (B.20) and (B.22), it can

be shown that terms, λ+ 2µ and λ, are equivalently expressed as κ+ (4µ/3) and

κ − (2µ/3) respectively. Therefore, the constitutive relation (C.54) for isotropic

mediums can be alternatively expressed as follows.

σ11

σ22

σ33

σ23

σ13

σ12


=



κ+ (4µ/3) κ− (2µ/3) κ− (2µ/3) 0 0 0

. κ+ (4µ/3) κ− (2µ/3) 0 0 0

. . κ+ (4µ/3) 0 0 0

. . . µ 0 0

. sym . . µ 0

. . . . . µ





ε11

ε22

ε33

ε23

ε13

ε12


(C.55)



Appendix D

Deformation and Finite Strain

Tensors

D.1 Deformation and Finite Strain Tensors

As a result of applied forces on a solid body, local theory uses infinitesimal elements

for measuring deformation and strain between material particles. By means of

vector addition, deformation vector, u can be equivalently expressed as,

u = b + x′ − x (D.1)

or in component form

ui = bi + x′i − xi (D.2)

in which x expresses position of a material particle in reference configuration while

position vector in deformed state is expressed by x′. Under superimposition of co-

ordinate systems for reference and deformed configurations, vector b is neglected

thus equivalent deformation vector addition is simplified as

ui = x′i − xi (D.3)

whose differentiation with respect to co-ordinates, dx′, of deformed configuration

leads to
∂ui
∂x′j

=
∂x′i
∂x′j
− ∂xi
∂x′j

= δij −
∂xi
∂x′j

(D.4)

141
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which is named as deformation gradient in co-ordinates of deformed configuration

or shortly in spatial co-ordinates. It is also possible to express differentiation

of deformation vector with respect to co-ordinates of reference configuration or

shortly, material co-ordinates, dx.

∂ui
∂xj

=
∂x′i
∂xj
− ∂xi
∂xj

=
∂x′i
∂xj
− δij (D.5)

According to vector transformation rule given in expression (A.11) which relates

position vector of an arbitrary material point in reference configuration with its

position in deformed configuration, relations (D.4) and (D.5) can be rewritten

respectively as follows.

∂ui
∂x′j

= δij −
∂

∂x′j

(
Mijx

′
j

)
= δij −Mij

(
∂x′j
∂x′j

)
= δij −Mij (D.6)

and
∂ui
∂xj

=
∂

∂xj
(Nijxj)− δij = Nij

(
∂xj
∂xj

)
− δij = Nij − δij (D.7)

By comparing relations (D.4) and (D.5) with expressions (D.2) and (2.23) re-

spectively, it can be noted that the second-order tensors are equivalent terms of

material and spatial deformation gradients. Accordingly, they can be represented

in component form as follows.

Mij =
∂xi
∂x′j

=


∂x1/∂x

′
1 ∂x1/∂x

′
2 ∂x1/∂x

′
3

∂x2/∂x
′
1 ∂x2/∂x

′
2 ∂x2/∂x

′
3

∂x3/∂x
′
1 ∂x3/∂x

′
2 ∂x3/∂x

′
3

 (D.8)

and

Nij =
∂x′i
∂xj

=


∂x′1/∂x1 ∂x′1/∂x2 ∂x′1/∂x3

∂x′2/∂x1 ∂x′2/∂x2 ∂x′2/∂x3

∂x′3/∂x1 ∂x′3/∂x2 ∂x′3/∂x3

 (D.9)

The small deformations in classical theory are given by difference in magnitudes

of position vectors in reference and deformed configurations. Because square of

any arbitrary vector can be considered to give its magnitude, taking square of

infinitesimal length elements in both material and spatial co-ordinates, differenc-

ing them from each others leads to infinitesimal strain tensors which constitute

fundamental of small deformation theory in classical continuum mechanics.
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Accordingly, square of infinitesimal length elements in material and spatial co-

ordinates are given respectively in component form as

(dx)2 = (dx · dx) = (dxiei · dxjej) = dxidxjei · ej = dxidxjδij (D.10)

and

(dx′)
2

= (dx′ · dx′) =
(
dx′ie

′
i · dx′je′j

)
= dx′idx

′
je
′
i · e′j = dx′idx

′
jδij (D.11)

Since material co-ordinates can be expressed as a function of spatial co-ordinates

or other way around, namely, xi = xi
(
x′j
)

and x′i = x′i (xj) respectively, total

differentials of infinitesimal length elements in material and spatial co-ordinates

are

dxi =

(
∂xi
∂x′j

)
dx′j (D.12)

and

dx′i =

(
∂x′i
∂xj

)
dxj (D.13)

Substituting equivalent total differentials given by relations (D.12) and (D.13)

respectively in square of infinitesimal length elements leads to

(dx)2 = dxidxjδij =

(
∂xk
∂x′i

)
dx′i

(
∂xk
∂x′j

)
dx′j =

(
∂xk
∂x′i

∂xk
∂x′j

)
dx′idx

′
j

(D.14)

and

(dx′)
2

= dx′idx
′
jδij =

(
∂x′k
∂xi

)
dxi

(
∂x′k
∂xj

)
dxj =

(
∂x′k
∂xi

∂x′k
∂xj

)
dxidxj (D.15)

As it can be intuitively understood, amount of deformation can be measured by

difference between magnitudes of infinitesimal length elements in final and refer-

ence states of a body under consideration.

In other words, by means of relations (D.10) and (D.15), th,s difference can be

expressed as follows.

(dx′)
2 − (dx)2 =

(
∂x′k
∂xi

∂x′k
∂xj

)
dxidxj − δijdxidxj =

(
∂x′k
∂xi

∂x′k
∂xj
− δij

)
dxidxj

(D.16)
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or by using a pair of relations that are (D.11) and (D.14), same difference in

expression (D.16) can be equivalently expressed as

(dx′)
2 − (dx)2 = δijdx

′
idx
′
j −

(
∂xk
∂x′i

∂xk
∂x′j

)
dx′idx

′
j

=

(
δij −

∂xk
∂x′i

∂xk
∂x′j

)
dx′idx

′
j

(D.17)

The terms inside the brackets in relations (D.16) and (D.17) define respectively

Lagrangian (or Green’s) and Eulerian (or Almansi’s) finite strain tensors, [24],

that are expressed in a way that is

lij =
1

2

(
∂x′k
∂xi

∂x′k
∂xj
− δij

)
(D.18)

and

εij =
1

2

(
δij −

∂xk
∂x′i

∂xk
∂x′j

)
(D.19)

Accordingly, difference in square of an infinitesimal length element takes a from

either as

(dx′)
2 − (dx)2 = 2lijdxidxj (D.20)

or

(dx′)
2 − (dx)2 = 2εijdx

′
idx
′
j (D.21)

The relations given by expressions (D.5) and (D.4) can be rearranged in an appro-

priate way and then substituted in Lagrangian and Eulerian descriptions of finite

strain tensors. Moreover, they can be appropriately manipulated and written in

terms of deformation vector between material particles.

Lij =
1

2

((
∂uk
∂xi

+ δki

)(
∂uk
∂xj

+ δkj

)
− δij

)
=

1

2

(
δkiδkj + δki

∂uk
∂xj

+ δkj
∂uk
∂xi

+
∂uk
∂xi

∂uk
∂xj
− δij

)
=

1

2

(
δij +

∂ui
∂xj

+
∂uj
∂xi

+
∂uk
∂xi

∂uk
∂xj
− δij

)
=

1

2

(
∂ui
∂xj

+
∂uj
∂xi

+
∂uk
∂xi

∂uk
∂xj

)
(D.22)
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and

Eij =
1

2

(
δij −

(
δki −

∂uk
∂x′i

+

)(
δkj −

∂uk
∂x′j

))
=

1

2

(
δij − δkiδkj + δki

∂uk
∂x′j

+ δkj
∂uk
∂x′i
− ∂uk
∂x′i

∂uk
∂x′j

)
=

1

2

(
δij − δij +

∂ui
∂x′j

+
∂uj
∂x′i
− ∂uk
∂x′i

∂uk
∂x′j

)
=

1

2

(
∂ui
∂x′j

+
∂uj
∂x′i
− ∂uk
∂x′i

∂uk
∂x′j

)
(D.23)

If deformation gradients are small enough, namely ∂ui/∂xj � 1 and ∂ui/∂x
′
j � 1,

products of differential terms in the last lines of relations (D.22) and (D.23) can be

neglected, thus infinitesimal Lagrangian and Eulerian strain tensors respectively

become

lij =
1

2

(
∂ui
∂xj

+
∂uj
∂xi

)
(D.24)

and

εij =
1

2

(
∂ui
∂x′j

+
∂uj
∂x′i

)
(D.25)

Under consideration of both infinitesimal deformation gradients constituting tiny

strains, no difference between Lagrangian and Eulerian infinitesimal strain tensors

appear. By arbitrary selection, Eulerian infinitesimal strain tensor in explicit

component form reads

εij =



1

2

(
∂u1
∂x′1

+
∂u1
∂x′1

)
1

2

(
∂u1
∂x′2

+
∂u2
∂x′1

)
1

2

(
∂u1
∂x′3

+
∂u3
∂x′1

)

1

2

(
∂u2
∂x′1

+
∂u1
∂x′2

)
1

2

(
∂u2
∂x′2

+
∂u2
∂x′2

)
1

2

(
∂u2
∂x′3

+
∂u3
∂x′2

)

1

2

(
∂u3
∂x′1

+
∂u1
∂x′3

)
1

2

(
∂u3
∂x′2

+
∂u2
∂x′3

)
1

2

(
∂u3
∂x′3

+
∂u3
∂x′3

)


(D.26)

D.2 Geometric Interpretation of Deformation

As partially stated above, strain is a measure of deformation representing displace-

ment between material points relative to reference length.
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Figure D.1: General case of deformation in a two dimensional body

Instead of using three-dimensional strain tensor, interpretation of strain analysis

for two-dimensional geometry can be performed for the sake of simplicity in which

each term can be match with their dimensional equivalents.

Since displacement vectors can be presented as a function of spatial co-ordinates

such a way that are u1(x
′
1, x
′
2) and u2(x

′
1, x
′
2), their total differentials respectively

become

du1(x
′
1, x
′
2) =

(
∂u1
∂x′1

)
dx′1 +

(
∂u1
∂x′2

)
dx′2 (D.27)

and

du2(x
′
1, x
′
2) =

(
∂u2
∂x′1

)
dx′1 +

(
∂u2
∂x′2

)
dx′2 (D.28)

From a classical point of view for strain, let us consider uni-axial elongation of a

bar, basic definition of normal strain is given by change in length of the bar which

is normalized with respect to its initial length. Namely,

εnormal =
lfinal − linitial

linitial
(D.29)

By this interpretation of normal strain, edge length of square element in un-

deformed configuration, a−b, illustrated in Figure (D.1) extends to its final length
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, a′ − b′, definition of normal strain given by relation (D.29) becomes

ε11 =

√(dx′1 +

(
∂u1
∂x′1

)
dx′1

)2

+

((
∂u2
∂x′1

)
dx′1

)2

− dx′1

 1

dx′1

=

√(dx′1)
2 +

(
∂u1
∂x′1

)2

(dx′1)
2 + 2

(
∂u1
∂x′1

)
(dx′1)

2 +

(
∂u2
∂x′1

)2

(dx′1)
2 − dx′1

 1

dx′1

=

√(dx′1)
2 +

(
∂u1
∂x′1

)2

(dx′1)
2 + 2

(
∂u1
∂x′1

)
(dx′1)

2 − dx′1

 1

dx′1

=
1

dx′1

√
(dx′1)

2

(
1 +

∂u1
∂x′1

)2

− dx′1
dx′1

=
∂u1
∂x′1

(D.30)

in which square of partial derivative has been neglected, (∂u2/∂x
′
1)

2 ≈ 0, because

displacement gradients of deformations are small enough, (∂u2/∂x
′
1)� 1.

By generalizing the result obtained in expression (D.30) for other directions, all

normal strain components in index notation are expressed as follows.

εii =

(
∂ui
∂x′i

)
(D.31)

On the other hand, shearing strain of two-dimensional rectangular plate is mea-

sured by how much edges of a rectangle element illustrated in Figure (D.1) deviates

from their initial alignments with respect to co-ordinate axes.

Accordingly, total shear deformity is stated by sum of angles α and β, namely

γ12 = α + β (D.32)

For the purpose of deriving shear components in strain tensor, let us consider

tangent of these angles. Small angle approximation for tangent function allow us

to write the identities that are tanα ≈ α and tan β ≈ β, and based on Figure

(D.1). To this end, shearing strain given by relation (D.32) can be extended as

follows.

tanα =

(
∂u2
∂x′1

)
dx′1

dx′1 +

(
∂u1
∂x′1

)
dx′1

(D.33)
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and

tan β =

(
∂u1
∂x′2

)
dx′2

dx′2 +

(
∂u2
∂x′2

)
dx′2

(D.34)

By approximation of small deformation gradients, (∂u1/∂x
′
1)� 1 and (∂u2/∂x

′
2)�

1, relation (D.32) is reduced to

γ12 = tanα + tan β

≈ α + β

=

(
∂u2
∂x′1

)
+

(
∂u1
∂x′2

) (D.35)

By generalizing the result obtained from relation (D.35) for other directions, all

shearing components becomes

γij =

(
∂ui
∂x′j

)
+

(
∂uj
∂x′i

)
(D.36)

By substituting relations (D.31) and (D.36) into relation (D.26) and rearranging

all terms, infinitesimal strain tensor εij becomes

εij =



∂u1
∂x′1

1

2

(
∂u1
∂x′2

+
∂u2
∂x′1

)
1

2

(
∂u1
∂x′3

+
∂u3
∂x′1

)

1

2

(
∂u2
∂x′1

+
∂u1
∂x′2

)
∂u2
∂x′2

1

2

(
∂u2
∂x′3

+
∂u3
∂x′2

)

1

2

(
∂u3
∂x′1

+
∂u1
∂x′3

)
1

2

(
∂u3
∂x′2

+
∂u2
∂x′3

)
∂u3
∂x′3



=


ε11 γ12/2 γ13/2

γ21/2 ε22 γ23/2

γ31/2 γ32/2 ε33



(D.37)

In implicit form, the infinitesimal strain tensor can be expressed as follows.

εij =


ε11 ε12 ε13

ε21 ε22 ε23

ε31 ε32 ε33

 (D.38)
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in which εij = γij/2.

Moreover, from the explicit form of infinitesimal Eulerian strain tensor given by

relation (D.37), it can be seen that symmetry condition appears because of terms

other than in diagonal. Accordingly, symmetry condition can be expressed as

follows.

ε = εT (D.39)

or based on component notation

εij = εji. (D.40)

Moreover, spatial-partial differential terms appearing in relations (D.27) and (D.28)

constitute deformation tensor which is given as

eij =

(
∂ui
∂x′j

)
(D.41)

The strain tensor based on deformation illustrated in Figure (B.1), can be decom-

posed into symmetric and anti-symmetric parts. Namely,

eij = sym (eij) + anti.sym (eij)

=
1

2
(eij + eji) +

1

2
(eij − eji)

=


ε11 ε12 ε13

ε21 ε22 ε23

ε31 ε32 ε33

+


0 ω12 ω13

−ω21 0 ω23

−ω31 −ω32 0


= εij + ωij

(D.42)

in which ωij corresponds to pure rotational motion of RVE while εij is associated

with pure shear deformation given by relation (D.38).
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