
EFFICIENT AND SECURE DOCUMENT SIMILARITY

SEARCH OVER CLOUD UTILIZING MAPREDUCE

by Mahmoud Alewiwi

Submitted to the Graduate School of Engineering and

Natural Sciences

in partial fulfillment of the requirements for the degree of

Doctor of Philosophy

Sabanci University

December, 2015



EFFICIENT AND SECURE DOCUMENT SIMILARITY

SEARCH OVER CLOUD UTILIZING MAPREDUCE

APPROVED BY:

Prof.Dr. Erkay SAVAŞ .......................................

(Thesis Supervisor)

Prof.Dr. Yücel SAYGIN .......................................

(Internal Examiner)

Assoc.Prof.Dr. Kemal KILIÇ .......................................

(Internal Examiner)

Asst.Prof.Dr. Selçuk BAKTIR .......................................

(External Examiner)

Asst.Prof.Dr. Ahmet Onur DURAHIM .......................................

(External Examiner)

DATE OF APPROVAL: ........................



© Mahmoud Alewiwi 2015

All Rights Reserved



Acknowledgments

I wish to express my gratitude to my supervisor Erkay Savaş for his

invaluable guidance, support and patience all through my thesis. I am also

grateful to Cengiz Örencik for his guidance and valuable contributions to this

thesis.

Special thanks to my colleague Ayşe Selçuk, for her collaborating in ad-

ministrating the Hadoop framework and her kind suggestions.

I am grateful to all my friends from Cryptography and Information Se-

curity Lab. (i.e., FENS 2001), Sabanci University and Data Security and

Privacy Lab for being very supportive.

I am indebted to the members of the committee of my thesis for reviewing

my thesis and providing very useful feedback.

I am grateful to TÜBİTAK (The Scientific and Technological Research

Council of Turkey), for the support under Grant Number 113E537.

Especially, I would like to thank to my family, wife, and sons for being

patient during my study. I owe acknowledgment to them for their encour-

agement, and love throughout difficult times in my graduate years.

iii



EFFICIENT AND SECURE DOCUMENT SIMILARITY

SEARCH OVER CLOUD UTILIZING MAPREDUCE

Mahmoud Alewiwi

Computer Science and Engineering

Ph.D. Thesis, 2015

Thesis Supervisor: Prof.Dr. Erkay Savaş

Keywords: Similarity, Privacy, Cloud Computing, MapReduce, Hadoop ,

Cryptography, Encryption

Abstract

Document similarity has important real life applications such as finding du-

plicate web sites and identifying plagiarism. While the basic techniques such

as k-similarity algorithms have been long known, overwhelming amount of

data, being collected such as in big data setting, calls for novel algorithms

to find highly similar documents in reasonably short amount of time. In

particular, pairwise comparison of documents sharing a common feature,

necessitates prohibitively high storage and computation power. The wide

spread availability of cloud computing provides users easy access to high

storage and processing power. Furthermore, outsourcing their data to the

cloud guarantees reliability and availability for their data while privacy and

security concerns are not always properly addressed. This leads to the prob-

lem of protecting the privacy of sensitive data against adversaries including

the cloud operator.

Generally, traditional document similarity algorithms tend to compare all

the documents in a data set sharing same terms (words) with query docu-

ment. In our work, we propose a new filtering technique that works on plain-

text data, which decreases the number of comparisons between the query set

iv



and the search set to find highly similar documents. The technique, referred

as ZOLIP algorithm, is efficient and scalable, but does not provide security.

We also design and implement three secure similarity search algorithms

for text documents, namely Secure Sketch Search, Secure Minhash Search

and Secure ZOLIP. The first algorithm utilizes locality sensitive hashing tech-

niques and cosine similarity. While the second algorithm uses the Minhash

Algorithm, the last one uses the encrypted ZOLIP Signature, which is the

secure version of the ZOLIP algorithm.

We utilize the Hadoop distributed file system and the MapReduce parallel

programming model to scale our techniques to big data setting. Our experi-

mental results on real data show that some of the proposed methods perform

better than the previous work in the literature in terms of the number of

joins, and therefore, speed.

v



MAPREDUCE İLE BULUT ÜZERİNDE DOKÜMANLAR

İÇİN

VERİMLİ VE GÜVENLİ BENZERLİK HESAPLAMA

Mahmoud Alewiwi

Bilgisayar Bilimi ve Mühendisliği

Ph.D. tez, 2015

Tez Danışmanı: Prof.Dr. Erkay Savaş

Özet

Dokümanlar arasında benzerlik arama işleminin gerçek hayatta tekrar-

layan web sayfalarını ya da intihalleri bulmak gibi önemli uygulama alanıları

vardır. Her ne kadar k-benzerlik algoritması gibi temel teknikler literatürde

uzun zamandır mevcut olsa da, özellikle çok büyük boyutlardaki verilerle

çalışmanın gerekli olduğu büyük veri uygulamalarında bu tür basit teknikler

yavaş ve yetersiz kalırlar. Özellikle dokümanları ikili olarak bir ortak ter-

imi içeriyor mu diye karşılaştırmak çok yüksek depolama ve hesaplama gücü

gereksinimleri doğurur. Bulut bilişimin hızla yaygınlaşması, kullanıcıların

bu ihtiyaçlarına cevap vermektedir. Veriyi bu tür bulut servis sağlayıcılar

üzerinden paylaşmak, verinin erişilebilirliğini garanti etse de, verinin mahremiyeti

ve gizliliği garanti edilemez. Bu durum, özellikle hassas verilerin mahremiyetini

koruma problemini ortaya çıkarmıştır.

Geleneksel dokümanlar arası benzerlik bulma algoritmaları çoğunlukla

sorgulanan dokümanı veri tabanındaki diğer tüm dokümanlarla karşılaştırmayı

gerektirir. Bizim önerdiğimiz sistemde ise, açık (şifrelenmemiş) metin verileri

üzerinde gerekli olan karşılaştırma sayısını önemli oranda azaltan yeni bir fil-

treleme tekniği kullanımı önerilmiştir. Bu sistem açık veriler üzerindeki ben-

vi



zerlik karşılaştırmalarında verimli olarak çalışmaktadır ve ölçeklenebilirdir,

ancak bir güvenlik sağlamaz.

Bu sistemin yanı sıra, mahremiyeti de sağlayacak üç güvenli benzer-

lik arama algoritması da (Secure Sketch Search, Secure Minhash Search

ve Secure ZOLIP) tasarlanmıştır. Bunlardan ilki dokümanlar arasındaki

kosinüs benzerliğini konum hassasiyetli özütleme (locality sensitive hashing)

teknikleri kullanarak yapar. İkinci yöntem MinHash algoritmalarını kul-

lanırken üçüncüsü ise daha önce açık metinler için tasarladığımız ZOLIP

imzalarının şifrelenmiş hallerini kullanarak benzerlik hesaplaması yapar.

Önerdiğimiz yöntemleri gerçeklerken büyük veriler için de ölçeklenebilir

olması için, Hadoop dağıtık dosya sistemleri ve MapReduce paralel program-

lama modelinden yararlanıyoruz. Gerçek veriler üzeride yaptığımız deneyler,

önerilen yöntemlerin bazılarının literatürde var olan diğer sistemlerden daha

az sayıda birleştirme/karşılaştırma işlemine ihtiyaç duyduğunu, ve dolayısıyla

daha hızlı olduğunu göstermiştir.

vii



Contents

Acknowledgments . . . . . . . . . . . . . . . . . . . . . . . . . . . . iii

Abstract . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . iv

Özet . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . vi

1 INTRODUCTION 1

1.1 Motivations . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2

1.2 Contributions . . . . . . . . . . . . . . . . . . . . . . . . . . . 4

1.3 Outline . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5

2 RELATED WORKS 6

2.1 Related Work on Similarity Search . . . . . . . . . . . . . . . 6

3 PRELIMINARIES 11

3.1 Term Relevancy Score . . . . . . . . . . . . . . . . . . . . . . 11

3.2 Cosine Similarity . . . . . . . . . . . . . . . . . . . . . . . . . 13

3.3 Z -Order Mapping . . . . . . . . . . . . . . . . . . . . . . . . . 14

3.4 Locality Sensitive Hashing (LSH) . . . . . . . . . . . . . . . . 22

3.5 Hadoop and MapReduce Framework . . . . . . . . . . . . . . 23

3.6 Hash-based Message Authentication Code (HMAC) . . . . . . 25

4 EFFICIENT DOCUMENT SIMILARITY SEARCH UTI-

LIZING Z-ORDER PREFIX FILTERING 27

viii



4.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28

4.2 The Proposed Filtering Method . . . . . . . . . . . . . . . . . 30

4.2.1 Phase 1: Near-Duplicate Detection (NDD) . . . . . . . 31

4.2.2 Phase 2: Common Important Terms (CIT) . . . . . . . 35

4.2.3 Phase 3: Join Phase(JP) . . . . . . . . . . . . . . . . . 40

4.2.4 R-S Join . . . . . . . . . . . . . . . . . . . . . . . . . . 42

4.3 Experiments . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42

4.3.1 Setup and Data Description . . . . . . . . . . . . . . . 43

4.3.2 Performance Analysis . . . . . . . . . . . . . . . . . . . 44

4.3.3 Accuracy Analysis . . . . . . . . . . . . . . . . . . . . 48

4.4 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52

5 SECURE DOCUMENT SIMILARITY SEARCH UTILIZ-

ING SECURE SKETCHES 54

5.1 Problem Definition . . . . . . . . . . . . . . . . . . . . . . . . 55

5.2 Secure Similarity Search . . . . . . . . . . . . . . . . . . . . . 57

5.3 Secure Sketch Construction . . . . . . . . . . . . . . . . . . . 58

5.4 Enhanced Security . . . . . . . . . . . . . . . . . . . . . . . . 60

5.5 Security Analysis . . . . . . . . . . . . . . . . . . . . . . . . . 63

5.6 Implementation . . . . . . . . . . . . . . . . . . . . . . . . . . 66

5.7 Similarity Evaluation . . . . . . . . . . . . . . . . . . . . . . . 67

5.8 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 70

6 SECURE DOCUMENT SIMILARITY SEARCH UTILIZ-

ING MINHASH 72

6.1 The Framework . . . . . . . . . . . . . . . . . . . . . . . . . . 73

6.2 Security Model . . . . . . . . . . . . . . . . . . . . . . . . . . 75

6.3 Proposed Method . . . . . . . . . . . . . . . . . . . . . . . . . 76

ix



6.3.1 Secure Index Generation . . . . . . . . . . . . . . . . . 76

6.3.2 Secure Query Generation . . . . . . . . . . . . . . . . . 81

6.3.3 Secure Search . . . . . . . . . . . . . . . . . . . . . . . 83

6.4 Security Analysis . . . . . . . . . . . . . . . . . . . . . . . . . 87

6.5 Experiments . . . . . . . . . . . . . . . . . . . . . . . . . . . . 89

6.6 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 92

7 EFFICIENT, SECURE DOCUMENT SIMILARITY SEARCH

UTILIZING Z-ORDER SPACE FILLING CURVES 94

7.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . 95

7.2 Problem Definition . . . . . . . . . . . . . . . . . . . . . . . . 97

7.3 Secure ZOLIP Similarity Search . . . . . . . . . . . . . . . . . 98

7.3.1 Secure Index and Query Generation . . . . . . . . . . . 98

7.3.2 Secure Search . . . . . . . . . . . . . . . . . . . . . . . 100

7.4 Security Analysis . . . . . . . . . . . . . . . . . . . . . . . . . 104

7.5 Experimental Results . . . . . . . . . . . . . . . . . . . . . . . 105

7.6 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 108

8 CONCLUSION AND FUTURE WORK 109

x



List of Figures

3.1 Z-Order Space Filling . . . . . . . . . . . . . . . . . . . . . . 15

3.2 Data Points on Z-Order Curve . . . . . . . . . . . . . . . . . . 16

3.3 MapReduce Job Execution . . . . . . . . . . . . . . . . . . . . 25

4.1 An Example Execution of ZOLIP Phase 1 . . . . . . . . . . . 34

4.2 An Example Execution of ZOLIP Phase 2 . . . . . . . . . . . 39

4.3 An Example Execution of ZOLIP Phase 3 . . . . . . . . . . . 41

4.4 Performance Comparison between the Proposed Algorithm (ZOLIP)

and the Method by Vernica et al. [1] for k = 10. . . . . . . . . 44

4.5 Effect of Increase in λ on Efficiency for k = 10 . . . . . . . . . 45

4.6 Running Time of Each Phase for λ = 8. . . . . . . . . . . . . . 46

4.7 Running Time of Each Phase for different k where, Query Size

is 10, 000 and λ = 8 . . . . . . . . . . . . . . . . . . . . . . . 46

4.8 Running Times for the Reuters data set for λ = 8. . . . . . . . 47

5.1 Average Accuracy Rate . . . . . . . . . . . . . . . . . . . . . . 68

5.2 Time Complexity for Sketch Similarity Search, |D| = 510, 000 69

5.3 Time Complexity for Encrypted Sketch Similarity Search . . . 69

6.1 The framework . . . . . . . . . . . . . . . . . . . . . . . . . . 73

6.2 Flowchart of secure index generation . . . . . . . . . . . . . . 77

6.3 Average precision rates for k-NN search with different λ and k 91

xi



6.4 Average search time for kNN search with different λ . . . . . . 92

7.1 Flowchart of secure index and query generation . . . . . . . . 99

7.2 Time Complexity . . . . . . . . . . . . . . . . . . . . . . . . . 107

7.3 Average Accuracy Rate . . . . . . . . . . . . . . . . . . . . . . 107

xii



List of Tables

4.1 Average of missed queries of ZOLIP Filtering Algorithm with

k = 2. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50

4.2 Accuracy of the top k documents for ZOLIP Filtering Algo-

rithm with k = 2. . . . . . . . . . . . . . . . . . . . . . . . . . 50

4.3 Accuracy of the top-k documents for ZOLIP Filtering Algo-

rithm with k = 2. . . . . . . . . . . . . . . . . . . . . . . . . . 50

4.4 Accuracy of ZOLIP Filtering Algorithm with Different Values

of k when λ = 8. . . . . . . . . . . . . . . . . . . . . . . . . . 52

4.5 Relative Error on the Sum (RES) for Different Values of k

when λ = 8. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52

5.1 Common Notations . . . . . . . . . . . . . . . . . . . . . . . . 56

7.1 Common Notations . . . . . . . . . . . . . . . . . . . . . . . . 97

xiii



List of Algorithms

1 Near-Dupplicate Detection(NDD) . . . . . . . . . . . . . . . . 32

2 Common Important Terms(CIT) . . . . . . . . . . . . . . . . 36

3 Join Phase . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41

4 Secure Multiplication (E(ab)) . . . . . . . . . . . . . . . . . . 62

5 Enhanced Secure Similarity Search . . . . . . . . . . . . . . . 64

6 Secure Index Generation . . . . . . . . . . . . . . . . . . . . . 81

7 Secure Query Generation . . . . . . . . . . . . . . . . . . . . . 84

xiv



Chapter 1

INTRODUCTION

Big data, referring to not only the huge amount of data being collected, but

also associated opportunities, has big potential for major improvements in

many fields from health care to business management. Therefore, there is

an ever-increasing demand for efficient and scalable tools that can analyze

and process immense amount of, possibly unstructured, data, which keeps

increasing in size and complexity.

Finding similarities (or duplicates) among multiple data items, or docu-

ments, is one of the fundamental operations, which can be extremely chal-

lenging due to the nature of big data. In particular, similarity search on

a huge data set, where the documents are represented as multi-dimensional

feature vectors, necessitates pair-wise comparisons, which requires the com-

putation of a distance metric, and therefore can be very time and resource

consuming, if not infeasible.

However, complexity of establishing such a powerful infrastructure may

be costly or not available especially for small and medium-sized enterprises

(SMEs). Cloud computing offers an ideal solution for this problem. The

currently available cloud services can provide both storage and computation

1



capability for massive volumes of data. This motivates us to find new and

efficient document similarity searching algorithms that can work in big data

setting utilizing cloud computing.

While data outsourcing to cloud is a feasible solution for many organi-

zations the fact that the outsourced data may contain sensitive information

leads to privacy breaches [2, 3]. Secure processing of outsourced data opera-

tions require protection of the confidentiality of both the outsourced data and

the submitted queries. Moreover, it also requires to maintain the confiden-

tiality of the patterns such as different accesses/queries aiming to retrieve

the same data. Encryption of data prior to outsourcing may provide the

confidentiality of the content of the data. However, the classical encryption

methods do not provide even simple operations over the ciphertext.

In our work, we first concentrate on finding similar documents over data

sets in plaintext using an efficient algorithm, which utilizes a new filtering

technique and cosine similarity between two documents. Then, we propose

secure search algorithms that aim to find similar documents without revealing

sensitive data.

1.1 Motivations

While the basic techniques such as k-similarity algorithms have been long

known, overwhelming amount of data, being collected such as in big data

setting, calls for novel algorithms to find highly similar documents in reason-

ably short amount of time. In particular, pairwise comparison of documents’

features, a key operation in calculating document similarity, necessitates pro-

hibitively high storage and computation power.

Finding similarities (or duplicates) among multiple data items, or docu-

2



ments, is one of the fundamental operations, which can be extremely chal-

lenging due to the nature of big data. In particular, similarity search on

a huge data set, where the documents are represented as multi-dimensional

feature vectors, necessitates pair-wise comparisons, which requires the com-

putation of a distance metric, and therefore can be very time and resource

consuming, if not infeasible.

A commonly used technique, known as filtering, decreases the number

of pairwise comparisons by skipping the comparison of two documents if

they are not potentially similar; e.g., they do not share any common feature.

Also, representation, storage, management and processing of documents play

an important role in the performance of a similarity search method. A dis-

tributed file system and a parallel programming model such as MapReduce [4]

are necessary components of a scalable and efficient solution in big data ap-

plications.

From security perspective, secure data mining operations require protec-

tion of the confidentiality of both the outsourced data along with its index

that allows searching capability and the submitted queries. Moreover, it also

requires to maintain the confidentiality of the search and access patterns such

as different accesses/queries aiming the same data. Data encryption before

outsourcing may provide the confidentiality of the content of the data. How-

ever, classical encryption methods do not allow even simple operations over

the ciphertext. In the past few years several solutions have been proposed for

efficient search operations over encrypted data utilizing a searchable index

structure that accurately represents the actual data without revealing the

sensitive information.

3



1.2 Contributions

This thesis focuses on the general problem of detecting the k-most similar

documents for a given (set of) document(s). It presents four novel algorithms:

i) one algorithm for unprotected document sets aiming fast and a scalable

search operation based on filtering and ii) three algorithms for secure search

operation utilizing various encryption techniques. In the first algorithm,

where the search is performed over plaintext data, two cases are considered:

i) finding k-most similar documents for each document within a given data

set (self join), and ii) finding k-most similar documents for each document

in one set from the other set (R-S join), for instance query set and data set.

In secure search algorithms, only R-S join is considered as self join is not

feasible due to the large sizes of data set used in the experiments.

The contributions of this thesis as well as the techniques employed are

summarized as follows:

• We propose an efficient document similarity algorithm that search for

document similarity over plaintext data sets.

• We utilize Z-order and propose a Z-order prefix filtering technique to

enhance the efficiency of the algorithm.

• We utilize term frequency-inverse document frequency (tf-idf) as a term

relevancy score for weight or importance of a term/word of a document.

• We use cosine similarity metric to find similarity between documents

whenever it is possible.

• We also propose several approaches that enable enhanced security prop-

erties such as search and access pattern privacy and document and

query confidentiality.

4



• We propose three secure document similarity search schemes. The first

one is based on secure sketches. The second one is based on locality

sensitive hashing (LSH)(i.e MinHash). The last one uses the Z-order

prefix encrypted using HMAC algorithm. The security properties of

the proposed algorithms are different while some of them provide ac-

cess and search pattern privacy in addition to document and query

confidentiality, the others provide basic security for data and query

privacy.

• For all the above algorithms, we use the MapReduce parallel processing

framework which is a popular computing model for big data applica-

tions in recent times.

1.3 Outline

The thesis is organized as follows: the next chapter (Chapter 2), presents

a literature review on prior work related to document similarity over plain

and encrypted data and indexes. In Chapter 3, we provide the preliminaries

that will be used throughout the thesis. In Chapter 4, we introduce a novel

document similarity search algorithm that is based on Z-order prefix filter-

ing. Chapters 5, 6 and 7 give the details of three different secure document

similarity search algorithms, respectively. In Chapter 5, we explain Secure

Sketch algorithm. In Chapter 6, a secure search algorithm based on a lo-

cality sensitive hash function known as MinHash is explained. And finally,

in Chapter 7 we explain the secure ZOLIP algorithm, which is the secure

version of the algorithm given in Chapter 4. Finally, chapter 8 concludes the

thesis.

5



Chapter 2

RELATED WORKS

This chapter presents a short survey on previous works in the literature re-

lated to document similarity over plaintext and encrypted documents. Effi-

ciency and accuracy of different algorithms are discussed and their advantages

and disadvantages are pointed out.

2.1 Related Work on Similarity Search

In the literature, the problem of set-similarity on a single machine is con-

sidered in several works [5–8]. These works are mainly focused on reducing

the complexity of vector similarity join. Angiulli et al. [9] used the Z-order

space filling curve in order to find the similarity between two high dimen-

sional spatial data sets using Minkowski metrics. This method performs well

for finding close pairs in high dimensional data, but it is not suitable for

text based similarity detection. For text based similarity, as in the case of

document similarity problem, the cosine similarity metric is more suitable

than the Minkowski metric.

Connor and Kumar [10] suggested another technique for the similar doc-

6



ument detection problem. They used a binary search technique to find k-

nearest neighbors (k-NN) within a selected Z hypercube. A popular approach

in other works is adapting filtering techniques that filter out pairs that can-

not surpass a given similarity threshold. Filtering decreases the number of

candidates for the computation of similarity metric and, therefore, the num-

ber of similarity join operations by eliminating the documents that do not

share a common important term with the query.

There are various filtering techniques used in the literature. A prefix

filtering method is suggested by Chaudhuri et al. [7]. The length filtering

method is utilized in the works [5] and [8]. Positional and suffix filters are

proposed by Xiao et al. [11]. Sarawagi and Kirpal [6] proposed a method

called PPJoin+ that utilizes inverted index and uses a Pair-Count algo-

rithm which generates pairs that share certain number of tokens. Arasu

et al. [5] proposed a signature based method, in which the features of docu-

ments are represented by signatures and the similarity among the documents

is calculated using the similarity of the underlying signatures. Zhu et al. [12]

suggested a searching technique based on cosine similarity. They proposed

an algorithm that utilizes a diagonal traversal strategy to filter out unrelated

documents. In this algorithm, the elements in the data set are represented

by binary vectors, meaning that only the existence of terms is considered,

ignoring their frequencies or importance in the data set.

The MapReduce computing model is also considered for the similarity

search problem and this leads to parallel join algorithms for large data sets

that are stored on cloud servers. Elsayed et al. [13] suggested a MapReduce

Model with a Full-Filtering technique. They used a simple filter that finds

only the pairs that share common tokens. The proposed method is composed

of two phases. While the first phase parses and creates the indexes for the

7



terms in each document, the second phase finds the similar pairs that share

these terms. Vernica et al. [1] used the PPJoin+ method [6] in order to

perform the self-join operation. Yang et al. [14] proposed a method that uses

prefix and suffix filters with two phases of MapReduce. Inverted index is used

in [15] combined with prefix filtering. A modified double pass MapReduce

prefix filtering method was proposed by Baraglia et al. [16]. Phan et al. [17]

used Bloom filtering for building similarity pairs, in which each pair should

intersect at least in one position with the arrays generated by the Bloom

filters.

The previous works in the literature of similarity search do not take the

importance of the terms in documents into consideration to the best of our

knowledge (at least to the extent in this work). This affects the seman-

tic similarity between documents (i.e., some documents may have the same

terms but in different contexts). In our algorithm, in order to address this

issue, we utilize a cosine similarity based filtering technique using the relative

importance of terms in documents for finding similar documents.

Over the years, several secure similar document detection methods have

been proposed in the literature. There are two main assumptions on this

topic: similar document detection among two parties and similar document

detection over encrypted cloud data. The core of search over cloud data de-

pends on searchable encryption methods, therefore several different search-

able encryption methods are proposed over the recent years [18,19]

The majority of the works aim similar document detection among two

parties. The parties A and B want to compute the similarity between their

documents a and b respectively, without disclosing a or b. In this approach,

the parties know the data of their own in plaintext form, but do not know

the documents in the other party [20–22]. Jiang et al. [20] proposed a cosine

8



similarity based similar document detection method between two parties.

They propose two approaches one with random matrix multiplication and one

with component-wise homomorphic encryption. An efficient similarity search

method among two parties is proposed by Murugesan et al. [21]. They explore

clustering based solutions that are significantly efficient while providing high

accuracy. Buyukbilen and Bakiras [22] proposed another similar document

detection method between two parties. They generate document fingerprints

using simhash and reduce the problem to a secure XOR operation between

two bit vectors. The secure XOR operation is formulated as a secure two

party computation protocol.

The other important line of research is similar document detection over

encrypted cloud data. This approach is more challenging than the former

one since the cloud cannot access the plaintext version of the data it stores.

Wong et al. [23] propose a SCONEDB (Secure Computation ON Encrypted

DataBase) model, which captures execution and security requirements. They

developed an asymmetric scalar product preserving encryption (ASPE). In

this method the query points and database points are encrypted differently,

which avoids distance recoverability using only the encrypted values. Yao

et al. [24] investigate the secure nearest neighbor problem and rephrased its

definition. Instead of finding the encrypted exact nearest neighbor, server

finds a relevant encrypted partition such that the exact nearest neighbor

is guaranteed to be in that partition. Elmehdwi et al. [25] also consider

the k-NN problem over encrypted data base outsourced to a cloud. This

method can protect the confidentiality of users’ search patterns and access

patterns. The method uses the euclidean distance for finding the similarity

and utilize several subroutines such as secure minimum, secure multiplication

and secure OR operations. Overall, the method provides the same security

9



guarantees with the method proposed in Chapter 5 but considers Euclidean

distance, where cosine similarity is considered in our work. Cosine similarity

is especially useful for high-dimensional spaces. In document similarity, each

term is assigned to a dimension and the documents is characterized by a

vector where the value of each dimension is the corresponding tf-idf score.

Therefore, cosine similarity captures the similarity among two documents

better than the Euclidean similarity.

10



Chapter 3

PRELIMINARIES

To understand the proposed schemes and follow the pertinent discussions

in this thesis, this chapter provides explanations for the following prelimi-

naries: “Term Relevancy Scoring”, “Z -Order Mapping”, “Locality Sensitive

Hashing” and “Hadoop and MapReduce Framework”.

3.1 Term Relevancy Score

We can represent a data object (e.g., a document, an image, a video file, etc.)

as a vector of features, which identifies that data object. In this thesis, we

use documents that are represented by a set of terms (i.e., keywords, words

from human language). More formally, each document di in the data set D

contains a certain number of terms from a global dictionary T , where |T | = δ

is the total number of terms in the dictionary. Each document in the data

set is represented as a vector of term weights derived from the dictionary T .

In our scheme, a component of the term vector for the document di is in fact

the relevance score of the corresponding term tj, which simply indicates the

importance of the term tj in distinguishing di from all the other documents

11



in D.

One of the most commonly used weighting factor in information retrieval

is the tf-idf value of a term in a document [26]. This factor quantifies the

importance of a term in a document and combines two metrics: i) the term

frequency (tf) which is the number of occurrences of the term in a document

(i.e., tfj,i is the number of occurrence of the term tj in the document di)

and ii) the inverse document frequency (idf) which, represents the number

of documents that contain the term tj among the whole document set. In

other words idf is a measure of the rarity of the term tj in document set D.

The tf-idf of a term tj in the document di is calculated as

tf-idfj,i = tfj,i × idfj.

In practice, since a given term usually occurs only in a limited number of

documents, the tf-idf vectors contain many zero elements and thus, tf-idf

values are stored in a sparse vector to optimize the memory usage.

Let S(di, dj) be the similarity function that quantifies the similarity be-

tween two documents, di and dj. Let σ be the threshold of minimum required

similarity for the pair di and dj. The similarity join problem is to find the

candidate dj for the document di such that S(di, dj) ≥ σ. There are different

choices for suitable similarity functions depending on the application domain.

The most commonly used similarity metrics in the literature for the objects

di and dj are described as follows

• Jaccard similarity Sj(di, dj) =
|di ∩ dj|

|di ∪ dj|
,

• Cosine similarity Sc(di, dj) =
di · dj

||di|| · ||dj||
,

• Hamming distance Sh(di, dj) = |(di − dj) ∪ (dj − di)|,

12



which is defined as the size of their symmetric differences.

In the subsequent chapters, we use both cosine similarity and Jaccard simi-

larity (or an approximation of the latter).

3.2 Cosine Similarity

The idea behind using cosine similarity is to take into account tf-idf values

of terms in document comparison operations as the set of words with high

tf-idf values are a determining factor for similarity between two documents.

The cosine similarity can be calculated as

Sc(di, dj) =
di · dj

||di|| · ||dj||
=

δ
∑

t=1
dit × djt

√

δ
∑

t=1
d2

it ×

√

δ
∑

t=1
d2

jt

,

where dit and djt are the weights of the corresponding terms in the documents

di and dj. Without loss of generality, we can assume that di and dj contain

the same number of terms. In case there are different number of terms, we

can always pad the term vector with terms whose tf-idf values are 0. From

the above formula, one can understand that the terms with higher tf-idf

values contribute to the cosine similarity metric significantly more than the

terms with relatively smaller tf-idf values. This observation is the core of our

filtering technique. Example 1 demonstrates the calculation of the similarity

of documents using only the important terms.

Example 1 Let a,b and c be documents represented with tf-idf vectors as

follows abusing the notation,

a = (0, 8, 5, 0.25, 0.125, 0, 0.02, 0, 0, 0.1)

13



b = (0.5, 9, 4, 0, 0, 0.125, 0, 0, 0, 0)

c = (9, 0.2, 7, 0, 0.04, 1, 0.5, 1, 0, 7).

Here, let ā, b̄, c̄ be the projected vectors using only the terms with high tf-idf

values, ignoring the values less than 1. Then we obtain the following term

vectors for the objects a, b, and c, respectively

ā = (0, 8, 5, 0, 0, 0, 0, 0, 0, 0)

b̄ = (0, 9, 4, 0, 0, 0, 0, 0, 0, 0)

c̄ = (9, 0, 7, 0, 0, 1, 0, 1, 0, 7).

Notice that, if we calculate the cosine similarity between each pair of the tf-

idf vectors we see that Sc(ā, b̄) = 0.9888 ≈ Sc(a, b) = 0.9883 and Sc(ā, c̄) =

0.2757 ≈ Sc(a, c) = 0.2936. Therefore, even though the pair (a, c) has more

common terms, we can conclude that the closest pair is (a, b), small the terms

with small tf-idf values have a very low effect on the cosine similarity.

3.3 Z-Order Mapping

Z-order or Morton order is a space filling curve, whose different iterations

can be computed as shown in Figure 3.1. As the number of iterations in-

creases, the space can be filled with higher accuracy. One important property

of Z-order curve is that, it preserves the locality of data points in the space.

Therefore, Z-order is a frequently used approach for mapping multidimen-

sional data into one dimensional space and still supports operations such as

comparison and similarity check after the mapping. Here, we formalize our

terminology for the Z-order curves.

Definition 1 (Iteration on Z-Order Curve) The lth iteration of the Z-

order curve in δ-dimensional space is a set of 2δl

sub-curves, where each sub-

14



(a) Zeroth Iteration
on Z-Order

(b) First Iteration
on Z-Order

(c) Second Iteration
on Z-Order

Figure 3.1: Z-Order Space Filling

curve is composed of points whose coordinates have the same l most significant

bits.

Figure 3.1 illustrates the Z-order sub-curves for different iterations on the

original curve.

Definition 2 (Z-Shape of Order l) A Z-shape of order l in δ-dimensional

space is any of the Z-order sub-curves in an lth iteration of the Z-order curve.

Intuitively, each sub-curve in an iteration on a Z-order curve is a Z-shape.

For instance, the circles labeled as A and B in Figure 3.2 enclose the second

and first order Z-shapes, respectively.

Definition 3 (Z-Value) The Z-value of a data point in the multidimen-

sional space is obtained by interleaving the bits of binary representation of

the data point coordinate values.

Points in the δ-dimensional space are represented with scalars (i.e., Z-value),

which preserve their locality in such a way that similarity and comparison

between points can be calculated. For instance, the point (110, 001) in the Z-

shape of order 2 in Figure 3.2 is mapped to Z-value of 101001. In summary,

15



000 001 010 011 100 101 110 111

000

001

010

011

100

101

110

111 A
B

Figure 3.2: Data Points on Z-Order Curve

the Z-value of a point in multidimensional space is simply a scalar that can

be used in various applications. In the literature [10, 27, 28], the Z-value is

used to find the k-nearest neighbors in spatial data sets.

A document represented by a vector of tf-idf values can be viewed as a

point in the multidimensional space of terms. Then, the Z-order mapping

can be used to map a document into one dimensional space by preserving

the locality of the document in the multidimensional space. Consequently, it

will be possible to compute the similarity of documents using their Z-values.

For instance, in the two-dimensional space in Figure 3.2 (i.e., δ = 2), the

circle A denotes a Z-shape of the second order while the one denoted by B

is a Z-shape of the first order. The points in the Z-shape A are (000, 110),

(000, 111), (001, 110), and (001, 111). Their corresponding Z-values, namely

(010100), (010101), (010110), and (010111), have the same prefix of (0101).

Similarly, the Z-values of the points in B share the prefix (01). From this, we

16



can conclude that the points on a Z-shape of larger order (i.e., which share

a longer prefix) are closer. The common prefix in Z-values of the points

can be used to calculate the similarity of documents (i.e., closeness in the

multidimensional space), where the coordinates of the points are the tf-idf

values of the corresponding terms in the documents.

The next example demonstrates a technique that uses the Z-order map-

ping to obtain the most important terms in a document. Let λ · δ be the

number of prefix bits shared in the same Z-shape, where δ is the number of

terms in the dictionary T (i.e., the dimension of the document space) and λ

is an accuracy parameter chosen appropriately.

Example 2 Recall that in Example 1, we have the following term vectors

for three documents, where δ = 10

a = (0, 8, 5, 0.25, 0.125, 0, 0.02, 0, 0, 0.1)

b = (0.5, 9, 4, 0, 0, 0.125, 0, 0, 0, 0)

c = (9, 0.2, 7, 0, 0.04, 1, 0.5, 1, 0, 7).

In order to represent all the tf-idf values, we need four and three bits to

represent their integer and fractional parts, respectively. Thus, we need 7

bits in total for the tf-idf values. However, by setting λ = 3 at the expense

of losing precision, we get the prefix values of the term vectors shown in the

following table.

17



Doc a

Z-Order itera-

tion

t1 t2 t3 t4 t5 t6 t7 t8 t9 t10

1st iteration pre-

fix

0 1 0 0 0 0 0 0 0 0

2nd iteration

prefix

0 0 1 0 0 0 0 0 0 0

3rd iteration pre-

fix

0 0 0 0 0 0 0 0 0 0

Doc b

Z-Order itera-

tion

t1 t2 t3 t4 t5 t6 t7 t8 t9 t10

1st iteration pre-

fix

0 1 0 0 0 0 0 0 0 0

2nd iteration

prefix

0 0 1 0 0 0 0 0 0 0

3rd iteration pre-

fix

0 0 0 0 0 0 0 0 0 0

Doc c

Z-Order itera-

tion

t1 t2 t3 t4 t5 t6 t7 t8 t9 t10

1st iteration pre-

fix

1 0 0 0 0 0 0 0 0 0

2nd iteration

prefix

0 0 1 0 0 0 0 0 0 1

3rd iteration pre-

fix

0 0 1 0 0 0 0 0 0 1

Notice that documents a and b have the same prefix for all three iterations.

18



This is natural since a and b are very similar as shown in Example 1.

In Chapter 4, we first develop an efficient method to find similar docu-

ments such that, cosine similarity between two documents is computed only

if they are in the same Z-shape of the λ-th order; i.e., having the same λδ bits

as prefix in their Z values. On the other hand, this method, which eliminates

the need of calculating the cosine similarity between many dissimilar docu-

ment pairs and therefore yields a very efficient implementation, can only be

applicable in cases where highly similar documents exist. If the data set does

not contain sufficiently many (i.e., k) highly similar documents, it is required

to also consider the documents that do not reside in the same Z-shape of λ

order.

For similar documents that do not reside in the same Z-shape of the de-

sired order, we propose a slightly different method, in which only documents

that contain common important terms (i.e., that have high tf-idf values) will

be compared. In other words, if two documents contain at least one im-

portant term in common, their cosine similarity is calculated, otherwise the

computation is skipped.

Definition 4 (l-th Iteration Projection) Let di = (di1
, . . . , diδ

) be a doc-

ument represented in δ-dimensional space of term tf-idf values. Let also dl
ij

denote the most significant l-bits of the values dij
for j = 1, . . . , δ. Then

we can define the projection of the vector di to l-th iteration on the Z-order

curve as

d̄l
ij

=















dij
, if dl

ij
> 0

0, otherwise,

for j ∈ {1, . . . , δ}.

19



The projection takes already a sparse vector di and generates an expectedly

much sparser vector of term tf-idf values, d̄i. We check the new vector, having

only the important terms as non-zero elements, to see whether it represents

the document with a sufficiently high accuracy.

In the proposed method, we start with 1-st iteration projection d̄i

1
of

document, for which we try to find similar documents, and compute the

similarity, Sc(di, d̄
1
i ). If the similarity is larger than a predefined similarity

threshold σ, namely Sc(di, d̄
1
i ) > σ, then we use 1-st iteration projections of

the two documents to decide to compute their cosine similarities.

If Sc(di, d̄
1
i ) < σ, then we use a higher level projection d̄i

l
with l > 1,

where l is the minimum value that satisfies the threshold σ. Then, we com-

pute Sc(di, dj) of two documents di and dj only if d̄l
i and d̄l

j have at least

one common non-zero term. The following example illustrates the proposed

technique.

Example 3 Let the threshold and the precision parameters be set as, σ =

0.8 and λ = 3, respectively. Also let the data set has the following three

documents with δ = 13,

a = (0, 27, 17, 0, 5, 9, 0, 11, 6, 11, 0, 13, 14)

b = (0, 27, 21, 0, 0, 0, 15, 0, 5, 0, 0, 6, 10)

c = (0, 0, 0, 29, 0, 0, 16, 0, 0, 0, 4, 0, 5).

Using the first and second iteration projections, we can obtain the following

vectors for the document a,

ā1 = (0, 27, 17, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0)

ā2 = (0, 27, 17, 0, 0, 9, 0, 11, 0, 11, 0, 13, 14)

20



The corresponding cosine similarities are computed as

Sc(a, ā
1) = 0.7590,

Sc(a, ā
2) = 0.8955.

As can be observed, the second iteration projection ā2 satisfies the given

threshold. Therefore, documents whose 2nd iteration projections do not share

any term with ā2 (i.e., that have a zero tf-idf score for the corresponding terms

that appear in ā2), will be filtered out and their cosine similarities will not be

computed. Note that, ā2 has seven nonzero terms as opposed to nine nonzero

terms in the original vector a, which potentially eliminates unnecessary sim-

ilarity comparisons.

Here, Sc(b, a) is computed since b̄2 and ā2 have common terms. However,

Sc(c, a) is not computed since ā2 and c̄2 do not share any common term.

Although a and c have a common term (i.e., the last term), it is omitted due

to its low tf-idf value in c. Indeed, the document b is much closer to a as the

following cosine similarities of the original documents indicate

Sc(a, b) = 0.8045,

Sc(a, c) = 0.0493.

The selected λ value which is used to improve the accuracy is a data set

dependent, and should be determined experimentally. The methods that are

briefly introduced in this section, will be formalized in Chapter 4.

21



3.4 Locality Sensitive Hashing (LSH)

The main principle of locality sensitive hashing is to represent arbitrary

length features of data items in constant sized sets that are called signatures.

The idea is to hash each feature set Fi into a constant size (and preferably

small) signature that can represent the similarity accurately. Signatures pro-

vide an approximation for measuring the similarity between two data items

and the accuracy of the approximation is directly related with the length

of the signatures such that, the longer the signature the more accurate the

result. However, while very small signatures are sufficient for detection of

either almost identical or totally unrelated stuff, relatively longer signatures

are required for similarities in between.

The goal of LSH functions is that, for inputs with high similarity, the hash

functions should provide the same output with high probability and provide

different output with high probability otherwise. Note that, this principle is

completely different from the principle of cryptographic hash functions, where

finding two different inputs that provide the same output is very difficult.

The signatures are represented as sets. A well known metric for repre-

senting the similarity between two sets is the Jaccard similarity.

Definition 5 (Jaccard Similarity) Let A and B be two sets, the Jaccard

similarity of A and B is defined as in Equation (3.1).

Js(A,B) =
|A ∩B|

|A ∪B|
. (3.1)

The elements of signatures are constructed using MinHash functions [29]

which is defined as follows.

22



Definition 6 (MinHash) : Let ∆ be a set of elements, P be a permutation

on ∆ and P [i] be the ith element in the permutation P . MinHash of a set

D ⊆ ∆ under permutation P is defined as:

hP (D) = min({i|1 ≤ i ≤ |∆| ∧ P [i] ∈ D})

Each data element signature is generated by λ MinHash functions each

applied with a different randomly chosen permutation. The resulting signa-

ture for a data set element D is:

Sig(D) = {hP1(D), . . . , hPλ
(D)}, (3.2)

where hPj
is the MinHash Function under permutation Pj.

The MinHash functions are used while generating the signatures since

there is a perfect correlation between the Jaccard similarity and MinHash

functions. The probability that MinHash functions provide the same output

for two inputs A and B is equal to the Jaccard similarity between A and B

as shown in the Equation (3.3).

Pr[h(A) = h(B)] = Js(A,B) =
|A ∩B|

|A ∪B|
. (3.3)

As MinHash functions with different permutations provide independent ex-

periments, using longer signatures (i.e., larger λ) provides more accurate

results.

3.5 Hadoop and MapReduce Framework

Currently, the MapReduce programming model became a common model

for parallel processing. MapReduce employs a parallel execution and coor-

23



dination model that can be used to manage large-scale computations over

massive data sets [29, 30]. The Hadoop framework [31] is a well known and

widely used MapReduce parallel processing framework. It works on a clus-

ter of computers called cloud. The Hadoop framework works utilizing the

MapReduce programing modeling.

The Hadoop framework contains two main parts, namely Hadoop Dis-

tributed File System (HDFS) and NextGen MapReduce (YARN). The files

are stored in the HDFS, which is a special distributed file system. YARN

or MapReduce 2.0 is a system that facilitates writing arbitrary distributed

processing frameworks and applications of large data sets.

Data replication is one of the key factors that improves the effectiveness of

the Hadoop framework, that survives node failures while utilizing huge num-

ber of cluster nodes for data intensive computations. The MapReduce model

is successfully implemented in the Hadoop framework as the details of the

network communication, process management, interprocess communication,

efficient massive data movement and fault tolerance are transparent to the

user. Typically, a developer needs to provide only configuration parameters

and several high-level routines.

The Hadoop framework is used by most of the major actors including

Google, Yahoo and IBM, largely for applications involving search engines

and large-scale data processing (e.g., big data applications).

The MapReduce model is based on two functions, Map and Reduce. The

Map function is responsible for assigning a list of data items, represented

as key-value pairs to cluster nodes. The Map function receives key-value

pairs, and sends the result as intermediate data to the reducer. The Reducer

function gets the mapped data and applies the processing operation. It

receives the intermediate data as a key and a list of values as (key,[values]).

24



Reducer Reducer Reducer

DFS

Shuffle

Mapper Mapper Mapper

DFS

Figure 3.3: MapReduce Job Execution

The signature of these two functions are

map:(k1,v1)→ [(k2,v2)]

reduce:(k2,[v2])→[(k3,v3)].

The shuffling process, between the Map and Reduce functions as illustrated

in Figure 3.3, is responsible for designating all keys with the same value to the

same computation node. The reducer do the desired operations for records

sharing a common property and send the final result to user. Figure 3.3

shows the working principle of MapReduce.

3.6 Hash-based Message Authentication Code

(HMAC)

Hash-based message authentication code known as HMAC is one of the pop-

ular deterministic hashing functions used in cryptography [32]. It is used for

constructing a fixed size message authentication code using a secret cryp-

tographic key. The cryptographic strength of the HMAC depends upon

the cryptographic strength of the underlying construction (e.g. a crypto-

graphic hash function), the lengths of its output, and the secret key. In

25



Chapters 6 and 7, we use SHA-based HMAC functions for the document

signatures. HMAC function can be calculated using the following formula

HMAK(K,m) = H((K ⊕ opad)||H((K ⊕ ipad||m)),

where H can be a cryptographic hash function, opad is the outer padding,

ipad is the inner padding, K is a secret key appropriately padded, and m is

the message, data or document.

26



Chapter 4

EFFICIENT DOCUMENT

SIMILARITY SEARCH

UTILIZING Z-ORDER

PREFIX FILTERING

This chapter proposes a new, efficient document similarity search algorithm [33].

The algorithm uses a new document filtering technique utilizing the prefixes

obtained via Z-order space-filling curves as explained previously. The pre-

fix in this algorithm filters the documents that do not share only important

terms. The subsequent sections in this chapter describe the algorithm and

present comparison with another technique in the literature. The proposed

algorithm shows a desired improvement in the time performance. Last sec-

tion contains accuracy evaluation for the new algorithm.

27



4.1 Introduction

There is an ever-increasing demand for efficient and scalable tools that can

analyze and process immense amount of, possibly unstructured, data, which

keeps increasing in size and complexity. Finding similarities (or duplicates)

among multiple data items, or documents, is one of the fundamental oper-

ations, which can be extremely challenging due to the nature of big data.

In particular, similarity search on a huge data set, where the documents are

represented as multi-dimensional feature vectors, necessitates pair-wise com-

parisons, which requires the computation of a distance metric, and therefore

can be very time and resource consuming, if not infeasible.

A commonly used technique, known as filtering, decreases the number

of pairwise comparisons by skipping the comparison of two documents if

they are not potentially similar; e.g., they do not share any common feature.

Also, representation, storage, management and processing of documents play

an important role in the performance of a similarity search method. A dis-

tributed file system and a parallel programming model such as MapReduce [4]

are necessary components of a scalable and efficient solution in big data ap-

plications.

This work focuses on the general problem of detecting the k-most similar

documents for each document within a given data set (henceforth self join),

and between two arbitrary sets of documents (R-S join), namely query set

and data set. The problem is formalized as follows.

Definition 7 (R-S Join Top-k Set Similarity) Let D be a set of docu-

ments {d1, . . . , dn}, di ∈ D. Let Q be a set of query documents {q1, . . . , qm},

qj ∈ Q. Then R-S top-k set similarity is defined as:

∀qj ∈ Q, top-k(qj,D) = {dj1, . . . , djk},

28



where dji is the ith nearest record to qj in D.

Definition 8 (Self Join Top-k Set Similarity) Let D be a set of docu-

ments {d1, . . . , dn}, di ∈ D. Then self join top-k set similarity is defined

as:

∀dj ∈ D, top-k(dj,D) = {dj1, . . . , djk},

where dji 6= dj is the ith nearest record to dj in D.

Intuitively, the self join case is the generalization of the R-S join case such

that Q = D.

The trivial solution for the set similarity problem, for two sets of items

Q and D, is to compare each element in Q with each element in D. This

solution has O(δmn) complexity, where m and n are the number of elements

in Q and D respectively, and δ is the number of dimensions (i.e., features)

in Q and D. Recent trends and research are concerned about computing set

similarity-join algorithms in an efficient and high performance manner, hence

new set similarity-join algorithms that reduce the number of comparisons are

proposed.

Current research mainly adapts filtering techniques that filter out pairs

that have similarity below a given threshold. Clearly, the adopted filtering

technique plays the utmost role in the efficiency as well as the effectiveness

of a similarity search algorithm. In this work, we propose a new cosine simi-

larity based filtering technique to improve the performance of the similarity

calculation.

In our solution, we suggest a new Z-order based filtering technique in

order to eliminate dissimilar documents before performing the costly op-

eration of calculating the cosine similarity. Documents in a data set are

represented as points on Z-order space filling curves on multidimensional

29



space of documents’ features. A projection based on the most important

features of documents is utilized to filter out dissimilar documents that do

not share common important features. The proposed method also filters out

documents that only share features of low importance, which have very little

effect on the similarity between the data objects. The technique provides a

remarkable improvement, especially on finding highly similar documents very

quickly. And finally, we describe the algorithms to implement the proposed

technique as parallel programs that can take advantage of the Hadoop [31]

MapReduce parallel programming framework.

The rest of the chapter is organized as follows. The details of the pro-

posed Z-order with Lambda Iteration Prefix (ZOLIP) filtering algorithm are

explained in Section 4.2. Section 4.3 presents the experimental results that

show the accuracy and the efficiency of the proposed method. Finally, the

conclusions are provided in Section 4.4.

4.2 The Proposed Filtering Method

In this section we explain the proposed techniques of the Z-order with Lambda

Iteration Prefix (ZOLIP) filtering algorithm. The algorithm has three phases.

In the first phase, the ZOLIP algorithm considers the document vectors that

lie on the same Z-shape of λ order in the Z-order curve. In other words, this

phase is designed to find highly similar (i.e., near duplicate) documents in

the data set. If this phase cannot find k documents, the second phase consid-

ers the documents that are on different Z-shapes. In the second phase, the

algorithm finds the most important terms in the queried document such that

any document that does not contain any of those important terms, cannot

be in the top k similar list of the queried document. Then the similarities

30



with the documents sharing important terms are calculated. Finally, the last

phase performs the actual join operations such that the outputs of the first

and the second phases are combined and sorted to find the top k similar list

of the queried document.

4.2.1 Phase 1: Near-Duplicate Detection (NDD)

Initially, the first phase reads each document record that is composed of a

key/value pair. While the key represents a unique document id, the value

holds a vector which contains the tf-idf values of the terms of the correspond-

ing document. Instead of the classical vectors, sparse vector representation

is used for improving the performance and easing memory requirements as

most of the vector elements are zero.

Sparse vector is a data structure that stores only the none-zero entries

together with corresponding index values. We assume that the number of

dimensions (δ), the number of iterations on the curve (λ) and the maximum

tf-idf value (µ) in the whole data set are publicly known and passed as a

configuration parameter to the map function in the proposed method, which

is described in Algorithm 1. Note that, the operations over sparse vectors

are optimized even though the algorithm descriptions are given in classical

forms. For instance, the for loop in Steps 4-6 in Algorithm 1 is only executed

for non-zero tf-idf values.

The map function in Algorithm 1 receives the tf-idf scores of each doc-

ument in the data set D, its id, docId, the maximum tf-idf value µ, the

dimension δ, and the precision λ for tf-idf values.

The “bitLength” function (Step 2) returns the bit length of the binary

representation for the maximum tf-idf value (µ). Then, the method goes

over the coordinate values and normalizes them so that they are represented

31



Algorithm 1 Near-Dupplicate Detection(NDD)

1: procedure Map(docId, d, µ, δ, λ)
2: γ ← bitLength(µ)
3: ZOLIP ← null
4: for j = 1 to δ do
5: d[j]← Normalize(d[j], γ)
6: end for
7: for l = 1 to λ do
8: for j = 1 to δ do
9: bit← getBit(d[j], l)

10: ZOLIP ← ZOLIP ||bit
11: end for
12: end for
13: sendToReducer(ZOLIP, 〈docId : d〉)
14: end procedure

. listDOC contains the documents with the same ZOLIP key
15: procedure Reduce(ZOLIP , {〈docId : d〉} )
16: for all di ∈ listDOC do . for each document in listDOC
17: ksimi ← null
18: for all docj ∈ listDOC and i 6= j do
19: ksimi ← findTKSD() . compute similarity and sort
20: end for

21: end for
22: return ∀i (〈docIdi : d〉 , 〈{〈ksimi,Sc〉}, (yes/no)〉)
23: end procedure

32



with the number of bits used for the maximum tf-idf value (Step 5). The

“Normalize” function gets the bit length of each coordinate tf-idf value and

finds the difference (dif) between the number of bits of the maximum tf-idf

and the tf-idf of the current coordinate, and pads (dif)-many zero bits to the

left of the actual coordinate value to make all the tf-idf values represented

with the same number of bits.

Then, the map function extracts the bits of the normalized tf-idf value of

each term starting from the most significant bit using the function “getBit”

(Step 9), which returns the l-th most significant bit. This operation will be

repeated for each of the λ bits of the tf-idf scores. At each iteration, the

mapper interleaves the extracted bit and concatenates it to a ZOLIP key

(Step 10), which is a sparse vector that represents the none-zero bits in the

Z-value.

The key/value pair sent to the reducer is composed of the ZOLIP key

and the list of document identifiers and their tf-idf scores as in

(ZOLIPkey, 〈docId : d〉).

All the documents that have the same ZOLIP key are grouped by the shuffle

process and sent to the reducer instances.

The reducers receive the list of documents that have the same ZOLIP key

and calculates the cosine similarity between these records to find the top-k

similar documents for each document. The function “findTKSD” (which

stands for “find top-k similar documents”) calculates the similarity between

documents and sorts the documents depending on their similarity. Then, it

selects the top-k similar documents and saves them in a sorted list “ksimi”.

Figure 4.1 illustrates an example, in which the mapper creates the ZOLIP

keys Z1, for documents “a” and “b” and Z2 for document “c”. Then, it passes

the key value pairs to the reducer. The reducer receives the documents with

33



λ = 3

ID Coordinates Key Value Key Value ID {docs/sim/(y/n)}

M
ap

G
ro

u
p

b
y

K
ey

R
ed

u
ce

d

c

.

.

.

.

b

a 0, 8, 5,..,0.1

0.5, 9,..,0

. . .

. . .

. . .

. . .

9, 0.25,..,7

. . .

Z1

Z1

. .

. .

. .

. .

Z2

. .

a:0,8,5..

b:0.5,9..

. . .

. . .

. . .

. . .

c:9,0.25..

. . .

a:0,8,5..

b:0.5,9..

. . .

. . .

. . .

. . .

c:9,0.25..

. . .

Z1

Z1

. .

. .

. .

. .

Z2

. .

a {b:../0.9849/(y/n)}

b {a:../0.9849/(y/n)}..

..

..

..

..

..

..

..

..

Figure 4.1: An Example Execution of ZOLIP Phase 1

the same ZOLIP key, and compares these documents to find the top-k similar

documents.

The reduce function returns the records in the format

(〈docIdi : d〉 , 〈{〈ksimi,Sc〉}, (yes/no)〉).

Here, the first element is the key of the record (i.e., the identifier of the doc-

ument that we intent to find its k-similar documents). The second element,

which is the value of the record, contains two parts. The first part is a list

that contains the top k-similar document identifiers with their correspond-

ing similarity values as (Sc). The second part (i.e., (yes/no)) is an indicator

that shows whether the top-k similar documents are found or not. If k sim-

ilar documents are found in this step, no further search is applied for this

document. Otherwise, further search in a different Z-shape is required.

Algorithm 1 represents the pseudo code based on the MapReduce pro-

gramming model. The algorithm can be used both for self-join and R-S join

operations. Algorithm 1 is described for self-join operation, in which we

find k similar documents for every document in the data set. In R-S join

operation, documents should be labeled as query documents and data set

34



documents. Consequently, in Step 16 of Algorithm 1 only documents in the

query set should be considered while Step 18 should use the documents in

the data set.

The NDD phase is expected to find k similar documents for a relatively

large number of documents without further computations needed for them.

While this reduces the overall complexity of the top-k similarity search, fur-

ther computation is needed for the documents, for which k similar documents

are not found. To this end, we propose a method based on common important

terms to complete the computation for the remaining part of the database.

4.2.2 Phase 2: Common Important Terms (CIT)

Some documents, although similar, may reside in different Z-shapes. In or-

der to calculate the similarity between two such documents, we stipulate that

they share at least one important (i.e., high tf-idf valued) term. We, there-

fore, propose utilizing only the most important terms to eliminate similarity

computation for the distant documents. Note that the probability of two

documents, that do not share any important term, being in the top-k similar

documents of each other is very low.

The common important terms (CIT) phase contains two mapper and one

reducer functions. The first mapper function reads the output of the NDD

phase to check the (yes/no) value for a document. If k similar documents

are not found for the document, the second phase, common important terms

(CIT), utilizes the l-th iteration projection in Z order curves to determine

the important terms in the document that will be used to filter out dissimilar

documents.

The first mapper (the procedure MAP1() in Algorithm 2) computes the

projection d̄1
i of document di, which contains tf-idf values of the most impor-

35



Algorithm 2 Common Important Terms(CIT)

1: procedure Map1(docId, 〈{〈ksimilar,Sc〉}, (yes/no)〉 , λ, µ)
2: . this mapper reads the output of phase 1
3: if (yes/no) = no then
4: d̄0

i ← createEmptyV ec()
5: sim← 0
6: for l = 1 to λ AND sim < σ do
7: . λ is the number of bits in tf-idf scores
8: d̄l

i ← Project(di, l)
9: sim← Sc(di, d̄

l
i)

10: end for
11: for j = 1 to δ do
12: if d̄l

ij 6= 0 then

13: term← d̄l
ij

14: sendToReducer(term, 〈Q : docId, di〉)
15: end if
16: end for
17: end if
18: end procedure

19: procedure Map2(docId, di)) . It reads the data set documents and
functions exactly as the first mapper.

20: sendToReducer(term, 〈D : docId, di〉)
21: end procedure

36



22: procedure Reduce(term,{〈(Q/D) : docId, di〉})
. Documents will be partitioned into query and data sets

23: QList← null
24: DList← null
25: for all di do
26: if di is a query document then
27: addQList(di)
28: else
29: addDList(di)
30: end if
31: end for
32: for all di ∈ Qlist do
33: candidatesi ← null
34: for all dj ∈ Dlist do
35: candidatesi ← docIdDj

36: end for
37: for dj ∈ candidatesi do
38: return (〈docIdi : docIdj〉 ,Sc(di, dj))
39: end for
40: end for
41: end procedure

37



tant terms in the document. Then, the similarity between d̄1
i and the original

vector di will be calculated. If the similarity threshold is satisfied, namely

Sc(di, d̄
1
i ) ≥ σ, the terms in d̄1

i are sent to the reducer. Otherwise, a higher

degree projection d̄l
i is calculated to satisfy the threshold.

Here, MAP1() creates a key-value pair for each important term, in which

the term is used as a key, and the vector di and the document id are con-

sidered as the value of the pair. In other words, the original record for the

document is replicated as many times as the number of important terms in

the projection d̄l
i. In order to distinguish the documents in the query set

from the documents in the data set (the latter will be processed by the sec-

ond mapper MAP2() function), a prefix “Q:” is added in the value part of

the pair. The resulting record is of the format, (term, 〈Q : docId : di〉).

Using the setting given in Example 3, Figure 4.2 illustrates an example

execution of the CIT algorithm steps for finding similar documents that have

common important terms. Note that, in the mapper stage, the term indices

that are exposed to the reducer correspond only to the terms with high

importance (i.e., the terms that appear in ā2).

The second mapper, (the procedure MAP2() in Algorithm 2), performs

the same operations as the first mapper, but this time on the data set docu-

ments, with the only difference that, the prefix “D:” is added instead of “Q:”.

The resulting record format is of the form (term,〈D : docID : di〉). As in the

case of the document in the query set, MAP2() creates as many new records

as the number of important terms for the corresponding document.

The reducer in this phase receives the key value pairs from the first and

the second mappers. Then, it partitions the records into two sets, Qlist and

Dlist, depending on whether the document is in the query or in the data set.

The first mapper returns the important terms in the query documents com-

38



λ = 3

ID {docs/sim/(y/n)}

ID Coordinates

TermValue TermValue di,dj S(di,dj)

O
ri

gi
n
al

R
ec

or
d
s

P
h
as

e
1

ou
tp

u
t

M
ap

2
M

ap
1

G
ro

u
p

b
y

K
ey

R
ed

u
ce

a{(0, 27,17,..)}/n

Q:a:..

Q:a:..

Q:a:..

b (0,27,21,0,0,..)

c(0, 0, 0, 29, 0,..)

2

D:b:..

3

D:b:..

13

5

4

3

2

D:c:..

2

2

3

3

5

13

4 D:c:..

Q:a:..

D:c:..

D:b:..

Q:a:..

D:b:..

Q:a:.. a,b

a,g

a,h

..

0.80

0.73

0.76

..

Figure 4.2: An Example Execution of ZOLIP Phase 2

bined with their coordinates, while the second mapper returns the important

terms in data set documents combined with their coordinates. The reducer

creates two partitions. The partition can easily be done by checking the pre-

fixes in the value part, Q and D. Consequently, for every document in the

query and data set, the reducer stores them in Qlist and Dlist, respectively.

The last stage of the reducer calculates the similarity between di ∈ Qlist

and dj ∈ Dlist. Then, the identifiers of di and dj are combined to form a key

for the pair in which the value is Sc(di,dj). Consequently, the final output

of this phase is of the form, (〈docIdi : docIdj〉, Sc(di,dj)), where di and dj

represent the documents in the query set and the data set, respectively.

Figure 4.2 visualizes all the steps on the setting from Example 3.

39



4.2.3 Phase 3: Join Phase(JP)

In the join phase (steps are described in Algorithm 3), in order to find the

actual top-k similar documents, the join operation is applied on the results

from the first and the second phases. This phase contains two mappers. The

first mapper receives the output from the first phase and sends one key-value

pair to the reducer for each document in the list ksimi, in which docId is the

key and the tf-idf score vector of the document in ksimi is the value. Thus,

the output of the first mapper is of the form, (docIdQ,〈docIdD : Sc〉).

The second mapper also works in a similar way. It receives the pair,

where the key is the similar document identifiers 〈docIdD, docIdQ〉 and the

value is the corresponding similarity. The mapper parses the docIdQ and

docIdD. After this step, it exposes the docIdQ as a key and Sc prefixed with

docIdD as a value. The output of this mapper is also of the form, (docIdQ,

〈docIdD : Sc〉).

The last step in the algorithm is to get all the candidate documents and

select the top-k similar documents among them. The reducer receives the

docIdQ key from the previous mappers and a list of documents that con-

tain the same key (i.e term) as the value. Here, the list is sorted and the

first k documents with the highest similarity values are considered as the

top-k similar documents. The final result of this reducer is of the form,

(docIdQ, {〈docIdD : Sc〉}). Figure 4.3 visualizes the Join phase of the out-

puts of Examples 2 and 3, where the details are given in Algorithm 3.

40



λ = 3

di,dj S

DocIDdocs/S/(y/n) Key Value Key Value DocID {docs/sim}

P
h
as

e
2

ou
tp

u
t

P
h
as

e
1

ou
tp

u
t

M
ap

2
M

ap
1

G
ro

u
p

b
y

K
ey

R
ed

u
ce

a {b:../0.78} / n

b {f:../0.82}/n

a,c

a,d

b,d

0.8

0.7

0.76

a b:../0.78

b f:../0.82

a c:../0.8

a d:../0.7

b d:../0.76

a b:../0.78

a c:../0.8

a d:../0.7

b f:../0.82

b d:../0.76

a c:../0.8, b:..78

b f:../0.82, d:../76

Figure 4.3: An Example Execution of ZOLIP Phase 3

Algorithm 3 Join Phase

procedure Map1(docId, 〈〈ksim,Sc〉 , (yes, no)〉)
. this mapper will reads phase 1 output

docIdQ← docId
for all docIdD ∈ ksim do

sendToReducer(docIdQ, 〈docIdD : Sc〉)
end for

end procedure
procedure Map2(〈docIdQ : docIdD〉 ,Sc))

. this mapper will reads phase 2 output
sendToReducer(docIdQ, 〈docIdD : Sc〉)

end procedure
procedure Reduce(docIdQ, {〈docIdD,Sc〉})

topK ← Sort(docIdD,Sc)
expose(docIdQ,topKSimilar)

end procedure

41



4.2.4 R-S Join

The R-S join is used to find k most similar documents for a batch of query

documents, which are not a part of the data set. The algorithms given above

are described mostly for self join operation that finds top k similar documents

for every document from the same data set. In order to adapt the proposed

algorithms for R-S join operations, we need to label documents with “Q:”

and “D:”. Also, several simple modifications are necessary to the algorithm

steps. As the modifications are only minor and straightforward, we do not

include separate algorithms for R-S join operations.

The time complexity of the R-S join depends on the number of documents

in the query set and an R-S join usually requires much less time than the

self join since the number of the queried documents is expected to be much

lower than the number of documents in the data set. We analyze the effect

of the query size by testing the algorithm on queries with various number of

documents in the next section.

4.3 Experiments

In this section, we first describe the system model and the data sets used in

our experiments. Then, we compare the proposed method with the method

by Vernica et al. [1]. The proposed method is tested with different param-

eter settings to show its efficiency and scalability in the big data context.

Finally, we discuss the accuracy of our method and the effect of increasing λ

parameter on its accuracy and efficiency.

42



4.3.1 Setup and Data Description

We used the Cloudera CDH4 installation with a 3-node cluster: Two nodes

with Xeon processor E5-1650 3.5 GHz of 12 cores, 15.6 GB of RAM and 1 TB

hard disk; and one node with Core i7 3.07 GHz of 8 cores, 15.7 GB of RAM

and 0.5 TB hard disk.On each node, Ubuntu 12.04 LTS, 64 -bit operating

system is installed and Java 1.6 JVM is used. We used the default Cloudera

DFS block size (i.e., 128 MB), so the data is partitioned into 128 MB blocks

and a mapper is assigned to each block. As the system is assumed to have

no a priori knowledge about the size of the queries, no additional partition

is applied before assigning data blocks to mappers. Note that, the data and

the query sets are stored in different data blocks in the DFS.

The outputs of the mappers are sent to the reducer directly without any

additional combiner function. Note that, query elements labeled with “Q” are

compared with data elements labeled with “D”. As the types of the outputs of

query and data mappers are different, aggregate calculations using combiner

operation after mapping are not possible.

In our experiments, we used primarily the Enron data set [34] which is

a data set of real e-mail files. The data set consists of 510, 000 e-mail files,

which is equivalent to a total of 2, 686, 224 KB data. The size of the files are

ranged from 4 KB to 2 MB. First, the data is cleaned from the mail headers

and stop words. The terms are stemmed to their roots using the snowball

stemmer included in the Lucene [35], which is an open source library for

information retrieval. We, then, calculated the tf-idf values of each term

in each file. Finally, we created the sparse vectors of tf-idf values, which

represent the documents. For the Enron data set, the resulted sparse vectors

have 30, 000 dimensions (i.e., terms) with an average density of 160/30, 000.

The density is defined as the ratio of the number of terms with non-zero

43



1000 10000 510000 (SJ)
0

1,000

2,000

3,000

4,000

5,000

num of query records

ti
m

e
(s

)

λ = 8
Vernica et al.

Figure 4.4: Performance Comparison between the Proposed Algorithm (ZOLIP)
and the Method by Vernica et al. [1] for k = 10.

scores over the total number of terms in the data set [14].

Additionally, to observe the performance of the algorithm on a different

data set, we used the Reuters data set [36], which consists of 20, 000 news

records of 28 MB, with a dictionary size of 136 terms.

4.3.2 Performance Analysis

The performance of our algorithm is compared with the performance of the

algorithm proposed by Vernica et al. [1]. Figure 4.4 shows the absolute

running times of our implementations of the two algorithms for various query

set sizes on the Enron data set for top 10 results (i.e., k = 10). As the size

of the Enron data set is very large, which is overwhelming for a small three-

node Hadoop cluster used in the experiments, the Java heap memory suffers

from the huge amount of joins for the algorithm in [1]. Hence, the timing

results for the self join case for Vernica’s method is omitted in our work. A

possible solution for this problem is to use a larger cluster with more nodes.

We conducted different experiments to observe the effects of different

44



1000 10000 510000 (SJ)

400

600

800

1,000

1,200

1,400

num of query records

ti
m

e
(s

)

λ = 4
λ = 6
λ = 8

Figure 4.5: Effect of Increase in λ on Efficiency for k = 10

parameter settings on the performance of the proposed method. The per-

formance of the method for different values of λ is illustrated in Figure 4.5.

Figure 4.5 demonstrates that for small values of λ the effect of query size is

very low. However, for λ ≥ 8 search time drastically increases as query size

increases, which is due to the significant increase in the number of join op-

erations (i.e., similarity calculation between a pair of documents). A trivial

remedy to decrease the computation time is to utilize a stronger cluster with

more nodes.

Figure 4.6 shows the running times of each phase, namely NDD, CIT and

JP, for different query set sizes. We observed that, the running time of the

CIT phase increases with the number of queried documents which is expected

as this phase is the main part of the algorithm where all the documents that

share a common important term is compared. The NDD phase is constant

with the number of queried documents. Although the complexity of this

phase is linear with respect to the dictionary size (δ), it performs constant

as we use a static data set. We also analyze the effect of the increase in

k on the efficiency of the method and illustrate the results in Figure 4.7.

As the figure illustrates, k does not have a major effect on the similarity

45



1000 10000 510000 (SJ)

0

200

400

600

800

1,000

1,200

num of query records

ti
m

e
(s

)

NDD
CIT
JP

Figure 4.6: Running Time of Each Phase for λ = 8.

k = 2 k = 5 k = 10

50

100

150

200

250

300

num of query records

ti
m

e
(s

)

NDD
CIT
JP

Figure 4.7: Running Time of Each Phase for different k where, Query Size is
10, 000 and λ = 8

search time. The reason for that, independent of k, given a query document

our algorithm calculates the similarity scores with all other documents that

share an important term with the query document and then selects the top

k results. However, if the first phase (NDD) succeeds in finding k or more

results then the second phase is not executed; hence the algorithm may

perform better for small values of k.

Generally, from our experiments we observed that the similarity of the

documents that are returned from the first phase (i.e., near duplicate detec-

46



1000 10000 20000 (SJ)

0

50

100

150

200

250

num of query records

ti
m

e
(s

)

NDD
CIT
JP

Figure 4.8: Running Times for the Reuters data set for λ = 8.

tion phase) with the query documents (i.e., Sc(q, di)) are over 80 %. However,

this similarity depends on the nature of the data set used as well as the pa-

rameter setting of λ.

The Enron data set is composed of e-mails, which tend to contain du-

plicate parts, e.g., e-mails written using a common template, which may be

advantageous for the first phase (NDD) of our algorithm. Therefore, we also

analyzed the performance of our algorithm using the RCV1 (Reuters Corpus

Volume 1) data set, which is a corpus of news wire stories that is made avail-

able by Reuters, Ltd. [36]. This data set has about 20, 000 data elements

which is much smaller than the Enron data set. The running times of each

phase are demonstrated for the Reuters data set in Figure 4.8.

From Figure 4.8, it can be observed that although the Reuters data set is

much smaller than the Enron data set, the search times are almost equivalent

(cf. the running time for the Enron data set in Figure 4.6). This is due to

the fact that, there are only a few near duplicate documents in the Reuters

data set. While in the Enron data set, 12% (120 out of 1000 queries) of the

search operations can be addressed using only the NDD phase using k = 2,

this value reduces to 1.1% (11 out of 1000 queries) in the Reuters data set.

47



4.3.3 Accuracy Analysis

In this section, we analyze the accuracy of our algorithm and the trade-off

between performance and accuracy. We define the accuracy of our method

using the so-called ground truth, where the k-most similar document output

of the proposed scheme is compared with the actual k-most documents calcu-

lated using the full tf-idf scores in the data set. The ratio of the cardinality

of the intersection of both sets to k is defined as the accuracy rate of the

algorithm. The corresponding accuracy rate of Vernica’s [1] algorithm is 1.0

as they used the PPJoin and PPJoinn+ [11], which is an exact similarity

searching algorithm.

The parameter λ determines the accuracy rate of the proposed method.

Let emax be the number of bits required to represent the maximum tf-idf

value in the data set and in the query set. In the proposed method during

filtering, each tf-idf value is represented by only the most significant λ bits.

Therefore, the tf-idf values that are less than 2emin , where emin = emax − λ,

are considered as zero in the ZOLIP filtering algorithm.

Generally, we have two types of errors that lead to loss of accuracy. In

the first type, all the terms of a document have tf-idf values less than 2emin .

Since the terms are all filtered out, no similar document can be found for the

documents with very low tf-idf values. In the second type, as the terms can

only be partially represented after the filtering, there can be inaccuracies in

the returned k-similar matches.

Let Nge be the number of documents in the query set that have at least

one non-zero tf-idf value in the λ-th iteration of Z-order (i.e., having at least

one term with tf-idf value greater than 2emin − 1). As those documents have

at least one important term that is represented after the filtering, they are

free of the errors of the first type. Therefore, we can formulate the rate of

48



the documents, for which no similar documents can be found (i.e., type 1

error) as:

ErrT ype1
=
|Q| − Nge

|Q|
, (4.1)

where |Q| is the number of documents in the query. Note that, as λ in-

creases, more documents are represented in the λ-th iteration on Z-order,

which increases the accuracy.

In the second type of error, the results are not exactly the same as the

actual k-similar documents in the ground truth. There are again two possible

causes for those errors. In the first case, the first phase (NDD) outputs

more than k documents. The matches found are, indeed, highly similar to

the queried document as they are detected in the Near Duplicate Detection

phase. However, the ordering can be different than the actual one in the

ground truth and hence, we will miss some of the actual documents among

the topmost k documents. Note that, such an error does not occur if NDD

phase outputs less than or equal to k results.

The second case are related to the type-1 errors. There may be some

documents in the data set that should actually be in the k similar list of

a query, but missed in our method due to their low tf-idf scores. As the

proposed method is a filtering technique, the final result can only be an

approximation to the actual result given in the ground truth.

We tested the accuracy of the method using queries of 10, 000 documents

compared with the Enron data set of 510, 000 documents. Table 4.1 shows the

average number of missed queries (i.e., type-1 error) for the cases of λ = 4, 6

and 8. Note that, the error rate significantly decreases as λ increases.

Table 4.2 shows the average accuracy of the method for the queries that

returns a result, which are the types of queries, for which type-1 error does

not occur.

49



λ 4 6 8
Missed Queries 4309 2466 895
Average of Missed Queries 43% 25% 9%

Table 4.1: Average of missed queries of ZOLIP Filtering Algorithm with k = 2.

λ 4 6 8
# Queries with Inaccurate Top k 11 144 327
Accuracy 99% 98% 96%

Table 4.2: Accuracy of the top k documents for ZOLIP Filtering Algorithm with
k = 2.

We noticed that, none of the documents for which no similar documents

is found, has a term that contains a tf-idf value that appears in the λ-th it-

eration Z-order. Therefore, the results confirm the formula in Equation (4.1)

for average type-1 error rate.

The same accuracy analysis are also performed for the Reuters data set

for λ = 4, 6 and 8 with k=10, and 10, 000 documents, where the results are

provided in Table 4.3.

λ 4 6 8
Average of Missed Queries 13% 12.5% 11%
Accuracy 99% 98% 96%

Table 4.3: Accuracy of the top-k documents for ZOLIP Filtering Algorithm with
k = 2.

The average type-1 error rate can be decreased by increasing the value

of Nge, which can be achieved by increasing λ. However, the increase in λ,

deteriorates the performance of the method as documents that do not contain

important terms would also be compared with the queried documents.

In order to decrease type-1 error rate for the query documents that do

50



not have any representation in the λ-th iteration Z-order, we boost the term

with the highest tf-idf value so that document can now be represented in

the λ-th iteration Z-order. A similar approach is adopted also for the second

case of type-2 errors by boosting the tf-idf values of documents that cannot

be represented.

Let B be the boosting factor and let ti,max be the maximum tf-idf value

of document i. Then, B is defined as B = 2emin/ti,max. Note that, only the

term with the maximum tf-idf value is boosted and all the other values re-

main the same. We tested the effectiveness of the proposed boosting method

using λ = 8. While the original method has 895 false matches over 10, 000

queries, the boosted method has 891 false matches which provides only a

slight improvement in the number of missed queries. However, the search

time is almost doubled. The reason for this degradation in performance is

that, the documents that do not initially appear in the λ levels, (i.e., all the

tf-idf values are very small) appear in the boosted version, which significantly

increases the required number of comparisons.

Generally, in any data set, it is difficult to find the similarity for the

documents that do not contain keywords with sufficiently high tf-idf values

by using the cosine similarity techniques. For such a document, the Jaccard

similarity metric may perform better than the cosine similarity based ap-

proaches. The proposed ZOLIP method provides efficient and very accurate

results especially in data sets that contain longer documents with several

important terms.

We also consider the effect of the increase in k on the accuracy of the

method. We applied the ZOLIP filtering algorithm with λ = 8 and we set

k = 10 to check if it reduces the accuracy of our filtering algorithm. The

increase in k does not affect the accuracy in any significant manner, as shown

51



in Table 4.4.

k 2 5 10
wrong k-Similar 327 384 433
Accuracy 96% 95.6% 95.2%

Table 4.4: Accuracy of ZOLIP Filtering Algorithm with Different Values of k

when λ = 8.

We also measured the accuracy of the method using Relative Error on

the Sum of distances(RES) [37] metric. Let Sq,k, be the top-k similar result

from a query q. And let also Gq,k be the ground truth of the top-k similar

documents, then RES is defined as

RES(q, Sq,k) =

∑

x∈Sq,k

Sc(q, x)

∑

y∈Gq,k

Sc(q, y)
− 1.

RES is calculated for the Enron data set with 10, 000 queries, using λ = 8,

and k = 2, 5, 10. Table 4.5 shows the relative error values after removing the

queries with type-1 error from the calculations.

k 2 5 10
RES 0.0262 0.0216 0.0178

Table 4.5: Relative Error on the Sum (RES) for Different Values of k when λ = 8.

4.4 Conclusion

In this chapter, we propose an efficient filtering method based on the Z-

order prefix that can be used in document similarity algorithms with cosine

similarity metric. The algorithm provides effective and efficient results. In

52



particular, it is very fast in returning highly similar documents. We demon-

strate that our method performs much better than the algorithm in [1] for the

cases, where the density of the vectors is relatively high. This is especially

true when the variance in the tf-idf values are high. This is a general obser-

vation in data sets, in which majority of the documents can be represented

accurately with only several terms of relatively high tf-idf values.

On the other hand, our algorithm have some limitations for documents, all

of whose terms have very low tf-idf values. The documents with terms of very

low tf-idf values, however, imply that they cannot be accurately represented

by a particular subset of terms. Therefore, a filtering based on important

terms do not produce accurate results for those kinds of documents. Instead,

we propose to use a hybrid filtering method based on the Jaccard similarity

metric for documents with no important terms while our filtering technique

can be used for the documents with at least several important terms.

The proposed method provides results with very high accuracy if the ac-

curacy parameter λ is set to a large value. However, for relatively small

values of λ, the search time significantly decreases while still satisfying rea-

sonable accuracy. There is a trade off between accuracy and efficiency, hence

the accuracy parameter λ should be set according to the requirements of the

application and the data set. For instance, in finding highly similar docu-

ments in applications such as duplicate web site and plagiarism detection, a

relatively small values of λ can produce results with high accuracy.

53



Chapter 5

SECURE DOCUMENT

SIMILARITY SEARCH

UTILIZING SECURE

SKETCHES

This work considers the problem of detecting the identifiers of the most

similar documents within an encrypted data set for a given query document,

without revealing the features (i.e. terms) of neither the data set elements

nor the query document [38]. In order to apply secure search, a metadata

called sketch is used. The sketches can hide the feature information of the

underlying data but still preserve similarity properties. Prior to outsourcing,

a sketch per data set entry is generated by the data owner, and the search is

applied over the sketches without using the encrypted data itself.

We provide two approaches with different privacy guarantees. The first

one uses the sketches as is and provide very efficient search capability. While

this method can perfectly hide the features of both documents and the query,

54



search and access patterns are allowed to leak. Although these patterns are

also allowed to leak in the majority of the other works in the literature,

they may leak considerable sensitive information especially in the existence

of some background knowledge [39]. Hence, we also propose an approach

with enhanced security properties such that both search and access patterns

are hidden in addition to the document and query features. The approach

with enhanced security requires encrypted sketches, which utilizes costly ho-

momorphic encryption techniques.

The rest of the work is organized as follows. Problem definition is given

in Section 5.1. An introduction to our algorithm and the approaches used in

this chapter is described in Section 5.2. Our secure sketch constructions are

provided in Section 5.3. Enhanced security search described in Section 5.4.

Security analysis are given in Section 5.5 Section 5.6 provides the imple-

mentation details of the algorithm utilizing map reduce computation model

over the Hadoop distributed file system (HDFS) and Section 5.7 shows the

experimental results. Finally, Section 5.8 concludes the work.

5.1 Problem Definition

In this section, we formalize the secure similarity search problem and provide

the definitions and tools that are used throughout the chapter. The com-

mon notations that are used extensively in this chapter are summarized in

Table 5.1.

Definition 9 (Secure k-Similarity Search (SSS)) Let D be the outsourced

data set and d1, . . . , dn be the n records in D and Q =< q1, . . . , qm > be a

query with m features (i.e., attributes). Further let Esk be an encryption

method with key sk. Then, secure similarity search (SSS) protocol is defined

55



Table 5.1: Common Notations

D data set.
Q query set.
di ith document in the data set.
qi ith query document in the query set.
Sk(di) secure sketch for document di

λ size of the sketch.
δ number of terms in the data set.
vi random vectors of {−1, 1}

with δ elements.
dcos, dham cosine and hamming distances.
⊕S secure xor operation

as:

SSS(Esk(D), Esk(Q))→< d′
1, . . . , d

′
k >,

where d′
i is the identifier of the ith nearest record to Q in D.

Definition 10 (Data Confidentiality) Given a k-similar document pro-

tocol, let D be the data set outsourced to the cloud. An SSS protocol provides

data confidentiality if the contents of the documents di ∈ D are not revealed

to the cloud server.

Definition 11 (Query Privacy) Given an SSS protocol, let Q be a query

that its similar documents are searched for. An SSS protocol provides query

privacy if the features of Q are not revealed to the cloud server.

Definition 12 (Similarity Pattern Privacy) Given an SSS protocol, let

Q and Q′ be two queries that their similar documents are searched for. An

SSS protocol provides similarity pattern privacy if it is not possible for an

adversary, including the cloud, to detect whether the queries contain a subset

of common features or not.

56



Definition 13 (Access Pattern Privacy) Given an SSS protocol, let Q

be a query that its similar documents are searched for. An SSS protocol

provides access pattern privacy if access records corresponding to the k most

similar documents of Q is not revealed to any party other than the owner of

the query.

5.2 Secure Similarity Search

In this section, we present our secure search scheme based on locality sensi-

tive hash (LSH) functions. We consider the data outsourcing scenario, where

the data is outsourced to an honest but curious cloud server. As the data

may contain sensitive information, a secure metadata called sketch is gener-

ated using the original data and only the metadata (i.e., secure sketches) is

shared with the cloud. We construct two different search schemes. The first

one shares the sketches with the cloud in the plain form hence all the cal-

culations can be performed very efficiently. But this scheme may leak some

valuable information such as the access pattern. The second approach shares

encrypted sketches. While this scheme provides very high level of privacy,

the computation cost is significantly higher due to bit-wise homomorphic

encryption operations.

In the first scheme, there are three entities namely: data owner, multiple

users and an honest but curious cloud server. In the case of the second scheme

that uses encrypted sketches, in addition to those three entities there is also a

second honest but curious server that we call proxy. Initially, the data owner

encrypts the data and creates searchable sketches and then, outsources the

sketches to the cloud. Given a query, the cloud server calculates the list of

similar documents (with the help of the proxy in the second approach) and

57



returns a list of the identifiers of the most similar documents.

5.3 Secure Sketch Construction

The aim of using sketches is to represent documents by small, constant length

binary vectors. While the sketches obfuscate the content (i.e., features) of

the documents, it is still possible to estimate the similarity of the underlying

documents from the sketches only [29]. The sketches are generated using the

principle of locality sensitive hashing (LSH). In LSH functions, different from

the cryptographic hash functions, similar inputs provide the same output

with high probability and dissimilar items provide different outputs with

high probability.

Our method is based on the cosine distance between document pairs. We

represent each document feature set as a point on spaces that have multiple

dimensions such that each feature is represented by an axis and the tf-idf

score of that feature is its value in that axis. The cosine distance between

two points is the angle that the vectors to those points make. Note that, in-

dependent from the number of dimensions (i.e., features), the cosine distance

will be in the range 0 to 180.

Suppose we have two vectors x and y and pick a random hyperplane

through the origin. The hyperplane intersects the plane of x and y in a line.

Consider a vector v that is normal to the hyperplane. Either x and y will

be on different sides, which means vx and vy have different signs, or they

will be on the same side, meaning vx and vy have the same sign. Since the

hyperplane is chosen randomly, with θ/180 probability vx and vy will have

different signs, where θ is the angle between x and y. Note that, the higher

the similarity of two vectors (i.e., smaller θ), the higher the probability that

58



they have the same sign, which is in parallel with the principle of LSH.

Let the size of the feature list which is the number of all the possible

keywords in the data set, be δ. In the construction of the sketches, first a

collection of λ vectors, (v1, . . . , vλ), with δ dimensions are chosen, where the

elements of the vectors are randomly chosen as either +1 or −1. Given a

document vector di, the inner product of di with each vector vj is calculated

and the elements of the sketch of di are set according to the signs of those

inner products. The sketch of di, which is a binary vector that is denoted as

Sk(di) = {si1, . . . , siλ}, is constructed as follows:

Sk(di) = {si1, . . . , siλ},

sij =















1 if divj ≥ 0,

0 otherwise.

Note that, ∀k ∈ {1, . . . , λ} and ∀di, dj ∈ D,

prob (Sk(di)[k] = Sk(dj)[k]) = 1−
dcos(di, dj)

180
.

This implies that, if di = dj then Sk(di) = Sk(dj) and the number

of common sketch elements gets higher as the cosine distance between the

corresponding documents gets smaller.

Then, we formally define the similarity (S) of two documents di, dj as

follows:

S(di, dj) = λ− dham(Sk(di), Sk(dj)), (5.1)

where dham denotes the hamming distance.

This approach successfully hides the information of features and their

corresponding scores. However, the generation of sketches is a determinis-

59



tic operation. Therefore, the server may identify if a document is queried

multiple times or may learn the identifiers of the documents in a query’s

similar document list. Those are the similarity pattern and access pattern

information respectively. This approach is very efficient and can especially

be used in scenarios, where the response time is crucial but the leakage of

search and access patterns may be acceptable. Indeed, most of the works in

the literature of secure search, allows the leakage of these two patterns for

efficiency concerns.

The next section explains the construction of encrypted sketches, which

also hides the search and access patterns but performs slower due to the

complex bit-wise homomorphic encryption operations.

5.4 Enhanced Security

The secure sketches obfuscates the information of the features in the docu-

ments since each bit of a sketch in calculated by multiplying the document

feature vector with a random vector and then reducing the result to a single

bit by just using its sign. However, the sketch construction is a deterministic

operation. Therefore, the same collection of λ random vectors is used in the

construction of the sketches for all documents in the data set. Determinis-

tic construction reveals the similarity pattern, namely server can learn if the

same feature vector is queried before. Moreover, since the sketches are stored

in plain in the server, the server can learn the identifiers of the documents

that are similar with the queried document, which is the access pattern.

In order to hide both search and access patterns, we encrypt the sketches.

However, since the server should apply a similarity search operation, an ho-

momorphic encryption method is used. Homomorphic encryption methods

60



can perform some operations over the encrypted data without knowing the

private key. We use the Paillier encryption [40] as the underlying homomor-

phic encryption method. It provides two homomorphic properties, addition

and constant multiplication on field ZN as:

E(a+ b) = E(a) · E(b) mod N2

E(ab) = E(a)b mod N2

As shown in Equation 5.1, the similarity between two sketches is calcu-

lated using the hamming distance.

Hence, in the case of encrypted sketches, the server calculates the en-

crypted similarity using the encrypted hamming distance between the two

encrypted sketches. Note that, hamming distance is just the summation of

the bits of the xor of two binary input vectors. A secure xor operation that

works over encrypted input vectors is explained as follows.

Secure XOR (⊕S)

Note that, XOR operation can be calculated by addition and multiplica-

tion operation as:

a⊕ b = a+ b− 2(ab).

Hence a secure xor on modulo N , denoted with ⊕S, can be calculated as:

E(a)⊕S E(b) = E(a⊕ b)

= E(a) · E(b) · E(ab)N−2. (5.2)

While Paillier encryption provides homomorphic addition, homomorphic

multiplication of two ciphers is not trivial. Homomorphic multiplication with

Paillier requires a second party, that has the decryption key. Although, this

61



second server knows the Paillier private key, it does not need to be trusted

as long as the two servers not collude. Algorithm 4 shows the secure multi-

plication method. The server randomizes the two multiplication parameters

by homomorphically adding a random number and sends the randomized pa-

rameters to the second server. The second server (i.e., proxy) decrypts and

multiplies the given two values. Then, it encrypts the results and sends them

back to the first server. Finally, the first server homomorphically subtracts

(i.e., multiply with modular inverse) the blinding factor of the random values

and gets the encrypted multiplication result.

Algorithm 4 Secure Multiplication (E(ab))

procedure P1(a,b)
pick random r1, r2 mod N
a′ = E(a)× E(r1) = E(a+ r1)
b′ = E(b)× E(r2) = E(b+ r2)

end procedure
procedure P2(a′, b′)

D(a′) = a+ r1

D(b′) = b+ r2

h = D(a′)×D(b′) mod N
. h = ab+ br1 + ar2 + r1r2 mod N

h′ = E(h)
send h′ to P1

end procedure
procedure P1(h′)

E(ab) = h′ × E(a)N−r2 × E(b)N−r1 × E(r1r2)
N−1 mod N2

end procedure

The cosine similarity value can be calculated by using secure xor and

homomorphic addition operations over the sketches. Each element (i.e., bit)

of the sketches are first encrypted with the Paillier encryption method, us-

ing the public key kp as E(Sk(di)) = {E(Sk(di)[1]), . . . , E(Sk(di)[λ])}. The

hamming distance between two encrypted sketches is calculated by first cal-

culating xor of each sketch bit and then applying summation over the results,

62



as shown in equation (5.3).

E(dham(Sk(di), Sk(dj))) =

=
λ

∑

k=1

E(Sk(di)[k])⊕S E(Sk(dj)[k]). (5.3)

Given the encrypted document sketches Sk = {E(Sk(d1)), . . . , E(Sk(d|D|))}

and a query sketch E(Sk(q)), the server finds the encrypted hamming dis-

tance between the query and each other document. Calculating hamming

distance requires calculating secure xor (⊕S) between encrypted sketches,

which is performed with the participation of the proxy. The encrypted scores

are then shuffled by a random permutation given by the user. This shuffling

hides the correlation of the scores with the actual identifiers from the proxy.

Since the users choose a random permutation at each query, it is not possi-

ble for the proxy to apply any kind of inference attack. The list of shuffled

encrypted scores is then sent to the proxy, which decrypts and sends to the

user. The user applies the permutation back and learns the actual document

identifiers with the minimum hamming distance (i.e., maximum similarity).

The secure similarity search method is described in Algorithm 5.

5.5 Security Analysis

In this section, we provide the formal definitions and proofs that the proposed

scheme is secure.

In the proposed method, both the document and the query sketches are

generated in an identical procedure, hence the definitions data confidentiality

and query privacy are equivalent for this method.

The secure sketch method (without encryption), provides data confiden-

63



Algorithm 5 Enhanced Secure Similarity Search

SERVER:
Require: Sk : encrypted document sketches
E(Sk(q)): query sketch, p: random permutation
for all E(Sk(di)) ∈ Sk do

dham = 0
for j = 1→ λ do

dham[j]+ = E(Sk(di)[j])⊕S E(Sk(q)[j]
end for
S(q, di) = dham

end for
shuffle encrypted scores S(q, di) ∈ S with random permutation p
send shuffled encrypted scores S to proxy
PROXY:

Require: S: shuffled encrypted scores
Decrypt each score in S
send scores to user
USER:
apply permutation p on the scores to map with real identifiers
sort scores to find identifiers with min hamming distance

64



tiality. Each sketch element sij is just the sign (positive or negative) of the

inner product of document feature list di, with a random vector vj. The

random vectors are secret information, hence not revealed to the server. The

only information leaked from a query or document sketch is the informa-

tion of divj ≥ 0 or not, where vj is random and not known by the server.

Therefore, sij is also random and does not reveal any information about the

content of di.

This method somehow leaks the similarity pattern. Two sketches that

are generated with the same feature lists (i.e., di = dj ) will be the same due

to the deterministic sketch generation operation. However, it is important to

note that, identical sketches do not necessarily imply identical feature lists.

di = dj =⇒ Sk(di) = Sk(dj), but

Sk(di) = Sk(dj) 6=⇒ di = dj.

But if two sketches have high number of common elements, then the prob-

ability that, the two underlying feature lists also have common elements, is

high.

Similarly, the access pattern is also leaked. Since the server can calculate

the similarity score between the query and the documents, the information

of the k most similar documents of the query is revealed.

The enhanced method proposed in Section 5.4 provides both similarity

and access pattern privacy in addition to the data confidentiality and query

privacy. Note that, in the method with encrypted sketches, each element is

encrypted with a semantically secure encryption method, which means each

encrypted sketch bit is indistinguishable from a random number. Therefore,

it is not possible to distinguish queries with identical feature sets, hence

65



similarity pattern is protected.

In the encrypted sketch method, the server works only on the encrypted

values so cannot learn anything about the scores. Therefore, access pattern

is not leaked to the server. The proxy has the decryption key and calculates

the scores, but in each query, the server shuffles the encrypted score list with

a random permutation given by the user before sending to the proxy. Since

users pick a different random permutation at each query, access pattern is

also not revealed to the proxy.

5.6 Implementation

We utilize the MapReduce computing model and the Hadoop framework in

our implementation. We developed two MapReduce phases in our approach.

While the first phase calculates the secure xor operation between the query

sketch and data set sketches, the second phase sums up the results to calculate

the hamming distance.

There are two mappers in the first phase: one for the query and one for the

data set elements. Both mappers read the sketches and generate key - value

pairs by assigning an index to each encrypted sketch bit as key and encrypted

bit as value. The only difference between mappers is that, query and data

set elements are distinguished by a prefix “Q:” and “D:” respectively. The

output of the mappers is in the format < index,D/Q : dj, E(Sj[p]) >, where

p is the index of the encrypted sketch bit of document ζ and D/Q is the prefix

that represents query or data set element. The reducer of the first phase gets

the output of the mappers and combines the values (i.e., encrypted bits) that

have the same key. Then, it calculates the secure xor operation as explained

in equation (5.2). The result of this operation returns the encrypted xor of

66



two encrypted sketch bits, in the format;

<< q, dj >,E(Sq[p]⊕ Sj[p]) > .

The second phase calculates the encrypted hamming distance between the

sketches using the output of the first phase. This phase has only a reducer

without a map function. For each document in the data set, the reducer

collects the keys that have the same query-document pair (i.e having the same

q, dj) and then homomorphically calculates the sum of all the encrypted xor

outputs. The result of the summation is the encrypted hamming distance.

Note that, the smaller the distance, the higher the cosine similarity.

5.7 Similarity Evaluation

In this section, we evaluated the accuracy and computation costs of the

secure similarity search methods. The Paillier cryptosystem is used and the

proposed methods are implemented in Java language. The experiments are

conducted on Cloudera CDH4 with a cluster of 3 nodes. Two nodes with

Xeon processor E5-1650 3.5 GHz with 12 cores 15.6 GB of RAM and 1 TB

hard disk and one node with Core i7 3.07 GHz with 8 cores, 15.7 GB of RAM

and 0.5 TB hard disk. On each node, Ubuntu 12.04 LTS, 64 -bit operating

system is installed and Java 1.6 JVM is used.

The Enron data set [34] is used to evaluate our system which is a col-

lection of 510, 000 real e-mail files. The size each file changes from 4 KB to

2 MB. First, the data is cleaned from the mail headers and stop words. The

terms are stemmed to their roots using the snowball stemmer included in

the Lucene [35] library. We then, calculated the tf-idf values of each term in

each file and created the sparse vectors that represent the documents and the

67



200 300 400 500

0.58

0.6

0.62

0.64

Sketch Size (λ)

A
cc

u
ra

cy

Figure 5.1: Average Accuracy Rate

corresponding tf-idf values. Finally the sketches are generated using these

sparse vectors and outsourced to the cloud.

The sketching method used in our protocol provides an estimation for

the similarity. The accuracy of the method is measured by comparing the

size of the intersection set of the top-k results returns from our protocol and

the actual top-k results for different values of k that ranges from 5 to 20.

Note that, the accuracy of the method increases as the size of the sketches

increase. However, this also immediately increases the computation costs.

Fortunately, as Figure 5.1 shows, the accuracy is high even for moderate

sketch sizes.

We evaluated the computation costs of both sketch search and encrypted

sketch search methods. As expected, the sketch search is very efficient. The

computation of k most similar documents of a query among the whole data

set of size 510, 000 documents is in the order of seconds as shown in Figure 5.2.

We also evaluated the computation costs for the enhanced security case.

In this case each sketch bit is encrypted with the Paillier encryption for 512-

bit key size. As can be observed from Figure 5.3, the running time grows

68



200 300 400 500

100

150

200

250

300

Sketch Size (λ)

ti
m

e
(s

)

Figure 5.2: Time Complexity for Sketch Similarity Search, |D| = 510, 000

1,000 1,500 2,000 2,500 3,000

10

20

30

40

50

num of data records (|D|)

ti
m

e
(m

)

λ = 152
λ = 304
λ = 512

Figure 5.3: Time Complexity for Encrypted Sketch Similarity Search

linearly with sketch size and data set size. However, the requested number of

similar items k, has no effect on the running time. The method sorts all the

documents according to its relevancy with the query document and returns

the top k results.

Most of the works in the literature consider the problem of similar docu-

ment detection among two parties, where one party compares its plain data

with the encrypted data of the second party. However, this problem is not

suitable for the data outsourcing scenario that we consider. The only work

that provides equivalent security properties with our work is the secure k-

69



nearest neighbor search, by Elmehdwi et al. [25]. That work also considers

the data outsourcing scenario with hiding search and access pattern but for

a structured data set for attributes with numeric values. They also uti-

lize two servers similar to our approach but finds Euclidean distance in-

stead of the cosine distance we consider. The protocol in [25] is bounded by

O(n∗ (l+m+k ∗ l ∗ log2 n) encryption and exponentiation operations, where

n is the data set size, m is the number of attributes, l is the domain size (in

bits) of Euclidean distance in data set and k is the number of top similar

items. Our protocol does λ secure XOR operations and λ− 1 homomorphic

addition operations per each data record comparison. Each secure XOR has

1 exponentiation and 2 multiplication operations (i.e., constant) hence, the

protocol is bounded by O(n∗λ) where, λ is constant. Since our protocol is in-

dependent from k and the number of features, it outperforms [25], especially

for large values of k.

5.8 Conclusion

In this chapter, we address the secure similar document detection problem

for cosine similarity, using locality sensitive hash functions. Our approach is

based on creating a fixed length sketch per each document. We considered

two different security levels. The basic method uses plain sketches and pro-

vides a very efficient implementation. The other method enjoys an enhanced

security protection by using encrypted sketches, where each sketch element

is encrypted with Paillier encryption method. The security analysis of both

methods are provided and the efficiency and effectiveness of the method is

demonstrated through extensive set of experiments. Generally,the First level

shows some applicability for using the algorithm in the mean time, while the

70



other secure algorithm shows good theoretical accuracy, unfortunately it still

inapplicable in the present.

71



Chapter 6

SECURE DOCUMENT

SIMILARITY SEARCH

UTILIZING MINHASH

In this chapter, we adapt an existing secure searchable indexing method to

k-nearest neighbor (k-NN) for documents. Throughout the chapter we refer

the method also as a method for finding top-k similar documents or document

similarity search. In the method, the document similarity search is handled

in a privacy-preserving manner. The method uses locality sensitive hashing

(LSH) together with homomorphic encryption to construct a searchable index

that allows secure search operations while the actual data itself is protected

using symmetric encryption against an adversary including especially the

cloud storage. More specifically, the proposed method provides data and

query confidentiality.

The method is implemented using MapReduce parallel programming frame-

work on a Hadoop cluster of three computers. The implementation results

show that it can effectively be used in moderate sized data sets and it is

72



scalable for much larger data sets provided that the number of computers in

the Hadoop cluster is increased.

6.1 The Framework

We consider a data outsourcing scenario that consists of three entities: data

owner, two non-colluding semi-honest servers and query users. The big pic-

ture for the interactions between the entities is illustrated in Figure 6.1.

Figure 6.1: The framework

Data Owner is a person or organization that owns a data set and wants

to outsource the database functionalities along with the data to the cloud.

Since the data may contain sensitive information, it is encrypted prior to

its outsourcing to the cloud. Beside the encrypted data, a searchable index

is also generated by the data owner for enabling secure search operations

and shared with the cloud. It is important to note that, searchable index

and encrypted data are outsourced to two different non-colluding servers as

explained subsequently.

73



Cloud Server is a party that offers storage and computational services.

We assume the cloud servers are semi-honest (i.e., honest but curious), a

common model for cloud environment. In our settings we utilize two non-

colluding servers: file server and search server.

The search server takes a query from a user, applies the requested search

operation over the secure index and returns encrypted intermediate results

to the file server. Then, the file server decrypts and sorts them and send the

final results to the user. The aim of using two non-colluding servers is to

hide the correlation between the queries and final results. The search server

learns the queries, but not what they match with. Similarly, the file server

learns the requested data but not the query itself.

Users are the authorized entities that have the right to query the cloud

data. A user employs certain cryptographic techniques to protect the query

confidentiality. A query generated in this manner is then sent to the search

server. The user receives the search results from the file server.

We can formalize the secure operations over the encrypted data as follows.

Let D be a database with n data records and F be the set of all features

(terms or words), which are included in data entries or queries. There are

five main phases in the method, namely: Setup, Trapdoor Generation, Index

Generation, Query Generation and Search.

1. Setup (ψ): Given a security parameter (ψ), it generates a symmetric

key and a public key pair as K = {Kid, (Kpub, Kpr)}.

2. Trapdoor Generation(∆): Given a list of terms ∆ (i.e., dictionary), it

generates a set of random permutations of ∆ as T = {P1, . . . , Pλ},

where λ is a precision parameter.

3. Index Generation (K,D): Given a database (D), a secure searchable in-

74



dex I that represents each entry in D is generated by using the features

of the entries in D and the key K.

4. Query Generation(T , F ): Given the trapdoors T and a set of features

to be queried, it generates a secure query Q for the given features that

does not reveal the corresponding features.

5. Search(I, Q): The given query Q is compared with the searchable index

I and the encrypted matching entries from D are returned.

6.2 Security Model

In this section, we analyze the security of the proposed scheme in passive

adversary model as it is a common adversarial model considered in secure

data outsourcing scenario [41]. We assume the adversary is anyone on the

search server side (e.g., a database administrator) as it is the entity that has

the access to the secure index and secure queries and may try to extract

any sensitive information that may be leaked from them. In this model, the

server is considered honest but curious; i.e., it implements all storage and

processing functions correctly, but learns from any information leak.

The main privacy requirements that need to be satisfied are data and

privacy confidentiality, whose intuitive definitions are given in Definitions 14

and 15. The privacy can further be extended to hide some side information

such as pattern confidentiality. Violation of pattern confidentiality may cause

the system be subject to some adversarial analysis [39]. Although pattern

confidentiality can be provided with oblivious RAM techniques [42] [43], due

to efficiency concerns, we allow to leak that information in this work.

75



Definition 14 (Data Confidentiality) A secure search operation provides

data confidentiality if the outsourced data (i.e., encrypted data and searchable

meta-data) does not leak the information of the actual content or features of

the data set elements.

Definition 15 (Query Confidentiality) A secure search operation pro-

vides query confidentiality if the given query does not leak the information of

the actual queried terms or features.

6.3 Proposed Method

This section provides the details of our proposed scheme for the document

similarity search method. Secure search over encrypted data is possible via

a secure searchable index generated by data owner. The search index is then

sent to the cloud server together with the actual encrypted data. While it is

still possible to search for the desired documents, secure index prevents the

cloud service provider (i.e. search server) from learning sensitive information

about the actual data (see Figure 6.1).

6.3.1 Secure Index Generation

In our document similarity searching algorithm, we utilize the bucketiza-

tion technique developed by Kuzu et. al. [44]. Bucketization is a partitioning

technique which distributes each object (e.g., documents in our case) into a

constant number of buckets according to the outputs of the MinHash func-

tions (i.e., signatures). Due to the principle of locality in MinHash functions,

the probability of two documents be assigned to the same bucket is the same

as their Jaccard similarity.

76



The main idea of our work is to create a signature based on MinHash func-

tions to represent each document in the data set. The signatures are used to

compare the corresponding documents. The proposed method for construct-

ing the secure index consists of three phases, namely: feature extraction,

bucket index construction and bucket index encryption. These phases, as

illustrated in Figure 6.2 and explained in the subsequent sections, are per-

formed the data owner.

Documents

Feature
Extraction

Bucket Construction

Signatures

Min
Hashing

Bucket
ization

Bucket
Enc.

Secure
Index

Search

Figure 6.2: Flowchart of secure index generation

Feature Extraction

For each data element Di ∈ D feature set Fi = {f 1
i , . . . , f

y
i } is extracted. In

the case of documents of text data, which are used for k-NN search, each

feature is composed of pairs f j
i = (wij, rsij), where wij is the word j in doc-

ument i, and rsij is the relevancy score of the term in the corresponding

document. In this work, the tf-idf value is used for relevancy scoring. This

relevancy score is then used to rank the results of the queries in the search

process. Since relevancy scores (rsij) are sensitive information, they are up-

77



loaded to the cloud only after encryption. There is a family of cryptographic

algorithms, known as homomorphic cryptosystems, that allow certain oper-

ations to be performed over the encrypted data (ciphertext) and generates

an encrypted result which, when decrypted, matches the result of operations

performed on the plaintext. In order to take advantage of these homomorphic

properties, we use Paillier encryption [40], which is a well known additive ho-

momorphic encryption method. The relevancy scores are encrypted with the

Paillier scheme and all the numerical calculations on the server are performed

over these encrypted values thanks to its homomorphic properties.

In a feature set Fi, there can be several terms with very low relevancy

scores. Representing all those terms with low importance has an adverse

effect on the accuracy of the method, since they may obstruct terms with

high relevancy score in the signature. Therefore, we select only the terms with

tf-idf values higher than a predefined threshold σ (i.e., only the important

terms are used). In the case, where there is no or only very few terms with

tf-idf values higher than σ, we select tmin terms with the highest relevancy

scores.

Bucket Index construction

In the bucket index construction there are two phases. First, using the feature

sets and the MinHash functions, a constant length signature is generated for

each data set entry. Each feature set is hashed with λ MinHash functions,

where each function is under a random permutation Pj of the set of all

possible features ∆. Let Fi be the feature list of document Di ∈ D, then the

signature of Di is calculated as

Sig(Di) = {hP1
(Fi), . . . , hPλ

(Fi)}. (6.1)

78



The signatures are sets of λ elements. An important property of signatures

is that, the similarity between signatures of two data items represents the

similarity of the underlying feature sets of the corresponding data items as

discussed in Section 3.4.

After the generation of signatures, each data item is distributed to λ

different bucket according to their signatures. Let Bi
k be the bucket identifier

for the ith MinHash with output k, the content vector V Bi
k is defined as:

(id(Dj), rsjk) ∈ VBi
k
iff Dj ∈ B

i
k. (6.2)

Note that, independent of the number of its features, each data element

is mapped to exactly λ different buckets, but the total number of different

buckets depends on the set of features ∆, the feature set of each data element

(Fi) and the randomly chosen MinHash functions.

Bucket Index Encryption

Both the bucket identifiers and the bucket content vectors contain some sen-

sitive information, which need to be protected prior to outsourcing. The

bucket identifier represents the MinHash function used and its output. This

may reveal some important information of the input feature set such as the

terms it does not contain and one term that it definitely contains. Therefore,

bucket and query contents should be protected using a cryptographic primi-

tive. However, the server also needs to be able to match the queried encrypted

buckets to the buckets stored in the server. This requirement necessitates

using a deterministic cryptographic scheme for protecting the bucket iden-

tifiers. HMAC functions can be considered as cryptographic hash functions

that take a secret key as input besides the message. We use HMAC functions

79



to hide the information that can leak from bucket identifiers. As the process

is deterministic comparison of buckets is still possible. The HMAC secret key

(Kid) is not revealed to the server, hence it is secure against any brute-force

attack. The encrypted bucket identifier is denoted as

πBi
k

= HMACKid
(Bi

k). (6.3)

On the other hand, the bucket content vector stores the document iden-

tifiers and relevancy scores of the data elements, which are mapped to that

bucket. In order to get the score of a document, it is required to map the

bucket elements with the same document identifier. Therefore, the docu-

ment identifiers are again hashed with a cryptographic hash function that

is denoted as H(id(Di)). For the relevance scores, we use additive homo-

morphic encryption methods that permit homomorphic addition operation

over the encrypted data without requiring decryption. More specifically, we

use the Paillier encryption scheme [40], which is a very efficient additive ho-

momorphic encryption technique. Formally, Paillier encryption satisfies the

following fundamental homomorphic property,

E(m1, r1) · E(m2, r2) = E(m1 +m2, r3),

where m1 and m2 are two messages and ri values are random numbers.

A public encryption key (Kpub) for the Paillier cryptosystem is used for

encrypting each bucket element before outsourcing the data to the server.

The result of the encryption bucket contents is a list of pairs as

πBi
k

= {(H(id(Dj)), EKpub
(rsjk)}∀id(Dj) ∈ B

i
k. (6.4)

80



Paillier encryption provides semantic security against chosen plain text

attacks, which means multiple encryptions of the same message result in

different ciphertexts, which cannot be linked. The secure index generation

method is summarized in Algorithm 6.

Algorithm 6 Secure Index Generation

Require: ∆: set of possible keywords, D: database, h: MinHash function,
Ψ: security parameter

Ensure: I: Secure index for D
1: Kid, Kpub, Kpriv ← Setup(Ψ)
2: L ← ∅ . L: Bucket Identifier List
3: for all Di ∈ D do
4: Fi ← extract features of Di

5: Sig(Di)← {hP1
(Fi), . . . , hPλ

(Fi)}
6: for j = 1→ λ do
7: Bj

k ← Sig(Di)[j − 1]
8: if Bj

k /∈ L then
9: add Bj

k to L
10: create V

B
j

k
as an empty vector

11: end if
12: add (H(id(Di)), EKpub

(rsik) to V
B

j

k

13: end for
14: end for
15: for all Bj

k ∈ L do
16: π

B
j

k
← HMACKid

(Bj
k)

17: add (π
B

j

k
,V

B
j

k
) to secure index I

18: end for
19: return I

Finally, the data owner outsources the secure index I to the cloud server.

6.3.2 Secure Query Generation

This section explains the query generation process using trapdoors. As in

the case of the index generation phase, we compute a signature for each

document in the query. For sake of simplicity, we assume that the query is a

81



document as we search for k most similar documents to the document. The

queried document is indeed represented as a set of terms that have different

tf-idf scores.

Secure query generation is very similar to the index generation process.

As in the flowchart given in Figure 6.2, after feature extraction MinHash

functions are applied on the query terms which create a query signature. Let

the set of query terms be Fq, then the query signature is calculated as

Sig(Fq) = {hP1
(Fq), . . . , hPλ

(Fq)}.

Using query signature Sig(Fq), the λ buckets corresponding to the query are

determined. The bucket identifiers are then hidden with the HMAC function

used in the index generation phase as

πi = HMACKid
(Bi), (6.5)

using the same key Kid of Equation (6.3).

The list of λ bucket identifiers is the secure query. Note that, the same

set of λ MinHash functions are used both in index and query generations.

Therefore, authenticated users need to know the permutations generated in

index generation for MinHash functions. The set of permutations, which is

referred as the trapdoor, is shared with all authenticated users, but hidden

from the both non-colluding cloud servers.

In k-NN search, the tf-idf values of the terms in the query document are

also used in the query generation phase. Recall that, output of a MinHash

function, which determines the corresponding bucket identifier, is one of the

terms in the query set. Therefore, tf-idf value of the output term is used in

the query together with the bucket identifier. However, tf-idf values are also

82



sensitive information that may reveal the corresponding term. In order to

hide the tf-idf values in secure queries, we apply an order preserving hashing

(hop) to each tf-idf value such that if x > y then hop(x) > hop(y). The order

preserving function used in the protocol is defined as,

hop(x) = MSBζ(rx+ r2),

where r and r2 are two random numbers (r2 < r) and MSBζ is a function

that returns the most significant ζ bits of the given input. While the same

random r is used for all λ calls of hop for a given query, r2 is randomly

chosen in each call of the function. If a deterministic function were used

for hiding the tf-idf scores, for different MinHash functions that produce the

same output, the corresponding scores would also be the same. This would

eventually reveal that matching buckets contain data elements, which contain

the same term. In order to avoid such leakage, we use a randomized order

preserving function that outputs different, but close values for the same input

with high probability.

The extracted ζ bit values are combined with HMACed bucket identifiers,

resulting a vector of λ pairs as

Vq = {(π1, hop(rsπ1
), . . . , (πλ, hop(rsπλ

))}.

Algorithm 7 describes the process of query generation.

6.3.3 Secure Search

Search over the encrypted data is in fact performed over the secure index

stored on the search server. As briefly mentioned previously, two non-

colluding servers are employed in the search process, namely search server

83



Algorithm 7 Secure Query Generation

Require: F : feature set of keywords to be queried, h: λ MinHash functions,
Kid: HMAC key

Ensure: Vq: Secure query
1: for all Dq ∈ Q do
2: Find Sig(F ) for Dq as in Algorithm 6
3: Generate an odd random r
4: for i = 1 to λ do
5: πi ← HMACKid

(Sig(F )[i])
6: Generate random r2 < r
7: rsπi

← score of Sig(F )[i]
8: hop(rsπi

)←MSBζ(rrπi
+ r2)

9: set Vq[i]← (πi, hop(rsπi
))

10: end for
11: end for
12: return Vq

and file server. While the search server stores the secure index generated by

the data owner as explained in Section 6.3.1, the file server stores the actual

encrypted data elements and knows the private key Kpriv for the homomor-

phic encryption (i.e., Paillier cryptosystem) used to encrypt the relevancy

scores. A user generates a secure query as explained in Section 6.3.2 and

submits it to the search server. The search server works homomorphically

on the secure index and calculates encrypted, unsorted relevancy scores for

the list of the matching results. The encrypted results are then sent to the

file server that possesses the private key of the homomorphic encryption. It

decrypts and sorts the relevancy score list of the matching data items and

sends those encrypted, top matching data items to the user.

Recall that, a secure query is of the form of bucket identifiers protected by

HMAC function. The search server retrieves the buckets given in the query

and homomorphically sums the encrypted scores of each document depending

on their HMACed document identifiers. The query also contains relevancy

84



scores, which are first multiplied with the scores of data items in the secure

index and then the homomorphic summation of the results is calculated.

For finding the scores of the same document in different buckets and

summing their relevancy scores, the MapReduce computation framework is

used. The search algorithm consists of two MapReduce phases. The first

phase joins the query elements with the secure index elements. Multiplying

randomized query scores with homomorphically encrypted index scores is

also handled in this phase.

The second phase is responsible for homomorphically summing the scores

of each document from different buckets. While the first phase consists of

two mappers (query and index) and one reducer, the second phase consists

of one mapper and one reducer.

In the first phase, the first mapper (i.e., query mapper) reads the given

query vectors Vq, which contains the HMACed bucket identifiers and the cor-

responding relevancy scores as described in Section 6.3.2. Then, the mapper

redirects each bucket id as a key and the corresponding relevancy score as a

value prefixed with ‘Q :’ to the reducer as

< Dq, Vq >←−< πi, < Q : πi, hop(rsπi
) >> .

The prefix ‘Q :’ is used to distinguish the pair from those that come from

the secure index.

The second mapper (i.e., index mapper) reads each bucket id and their

contents from the secure index. This mapper extracts the bucket id as a key

and the HMACed data items’ ids inside that bucket with their corresponding

scores as value. Then, for each data item id in the bucket, a replication of

the bucket id is created as a key and its corresponding encrypted score is

included as value. This pair is then redirected to the reducer. This time the

85



values are prefixed with ‘D :’ to distinguish them from query bucket records

as follows

< πi, Vj >←−< πi, < D : H(id(Dj)), EKpub
(rsij) >> .

The reducer of the first phase receives the elements within the same bucket

(i.e., query elements and secure index elements), and adds them into two

vectors such that documents prefixed with ‘Q :’ are mapped to the query

vector VQ, and documents prefixed with ‘D :’ are mapped to the data vector

VD. Then, the randomized scores in the query vector (i.e., hop(rsπi
)) are

homomorphically multiplied with the scores of the data items in the data

vector. The output of the first phase combines the data item id pairs (i.e.,

query element id and index element id) as key, and the relevancy scores (e.g.,

encrypted multiplication results) as value. The output of this phase is in the

following format:

<< Q,H(id(Dj)) >, hop(rsπi
)× EKpub

(rsij) > .

In the second phase, the aggregated encrypted score is calculated by sum-

ming the resulting encrypted relevancy scores of the same pairs. In order to

calculate the sum, the mapper only redirects all the key value pairs that

come from the previous phase as they are, without any modification. After

the shuffling process, the reducer receives the records that have the same key

(i.e., with the same data item identifier), and the encrypted relevancy scores

for each bucket. Utilizing homomorphic properties of Paillier encryption, en-

crypted aggregated relevancy score (rsAgg) of each data item is calculated.

86



The final output of the reducer is in the following format

<< Q,H(id(Dj)) >,EKpub
(rsAggj

) > .

This list of pairs with encrypted scores are then sent to the file server, which

decrypts and sorts the accumulated relevancy scores. Then the final results

with the highest relevancy scores are sent to the user.

6.4 Security Analysis

In the proposed method, all the actual data items that are stored in the file

server are encrypted with a semantically secure symmetric encryption scheme

(e.g., AES with CBC and CTR modes) prior to outsourcing. Therefore, an

adversary can learn no information using the encrypted data elements. How-

ever, meta-data called the secure index, that is used for applying secure

search operation, is also outsourced together with the encrypted data. The

secure index is a number of buckets where each bucket stores a list of pairs

H(id(Di)), EKpub
(rsi) that are mapped to that bucket. Here, H(id(Di)) is

a hashed pseudo identifier for a data element Di and EKpub
(rsi) is the cor-

responding relevancy score which is encrypted with the Paillier encryption

scheme. Since the relevancy scores are also encrypted with a semantically

secure encryption method, the encrypted values are indistinguishable from

random numbers and hence do not reveal any information. The only infor-

mation that an adversary may use for an attack is the pseudo identifiers of

the data items.

During the secure index generation process, each data item is mapped

to exactly λ different buckets. Therefore, it is not possible to make any

statistical analysis using the number of occurrences of a pseudo identifier. On

87



the other hand, each bucket corresponds to a single feature/term. Therefore,

the number of data item identifiers in each bucket is correlated with the

frequency of the corresponding feature in the whole data set. With high

probability, buckets that correspond to a feature that occurs in larger number

of data elements have larger number of identifiers. However, each feature may

correspond to several (at most λ but can be fewer) different buckets and it

is hard to distinguish feature - bucket identifier correspondence. Moreover,

the secure index and the actual encrypted data elements are stored in two

different and non-colluding servers. The search server, which is the adversary

for our security model, can only access the secure index and therefore cannot

learn the mapping between the actual encrypted data items and their pseudo

identifiers. The proposed method provides data confidentiality as defined in

Section 6.2 since the adversary cannot learn the features of the data items

using the secure index.

In order to enhance the security, a possible patch can be applied to also

hide the actual number of data identifiers in each bucket. This can be done by

adding a number of dummy pseudo identifiers to buckets with fewer number

of elements to perturb the cardinality statistics of the buckets. The relevance

scores of the dummy identifiers should be set to random encryptions of zero,

hence they will be automatically omitted in the top list of relevancy in the file

server side after being sorted based on their relevancy scores. Another impor-

tant point is that each of the dummy identifiers must be assigned to exactly

λ different buckets to make them indistinguishable from genuine identifiers.

Note that, inclusion of extra dummy elements will increase the computation

cost of search operation as aggregated score should also be calculated for

dummy elements using homomorphic addition of encrypted relevancy scores.

Also the communication between search server and file server will increase as

88



the encrypted scores of dummy identifiers will also be sent. Another possible

solution to hide this leakage is to include all data element identifiers in the

data set to all the buckets. The corresponding relevance scores will be set

to the encryption of zero if the data item does not originally map to that

bucket. However, this will drastically increase both the computation and

communication costs between the two servers, and hence being impractical.

A search query, independent of the query type, is a list of λ bucket iden-

tifiers. The information leaked to the search server from a query is that the

query contains the features that correspond to the buckets given in the query.

However, as explained for data confidentiality, the bucket identifiers and the

corresponding list of data item pseudo identifiers do not reveal the actual

features. Therefore, the proposed scheme provides query confidentiality.

The queries are generated in a deterministic manner hence different queries

that search for the same set of features will be the same. This leaks the so

called search pattern such that the frequency of the buckets accessed is leaked

to the search server. A query randomization method that hides the search

pattern is proposed and analyzed in [45]. The same approach can also bu

used in this setting with the cost of increasing the storage requirements as

the approach requires utilizing higher number of buckets.

6.5 Experiments

In order to assess the performance of the proposed scheme, we build a small

cluster of 3 nodes and Cloudera CDH4 for cluster management. The cluster

have two nodes with Xeon processor E5-1650 3.5 GHz with 12 cores 15.6 GB

of RAM and 1 TB hard disk and one node with Core i7 3.07 GHz with

8 cores, 15.7 GB of RAM and 0.5 TB hard disk. On each node, Ubuntu

89



12.04 LTS, 64 -bit operating system is installed and Java 1.6 JVM is used.

In our experiments, we used the Enron data set [34] for evaluating the

text based operations of the proposed method. This data set contains a

collection of 517, 000 real e-mail files. The size of each file changes from

4 KB to 2 MB. Although the actual data set size is about 200 GB, the size of

the secure index is very small since only the information of bucket identifiers

and corresponding data element identifier and score pairs are stored.

Initially, the entire data set is processed to determine the features of

each data item in what is known as the feature extraction phase. First, the

data set is cleaned from the mail headers and stop words. The terms are

stemmed to their roots using Snowball stemmer, which is a string processing

programming language included in the Lucene [35] library. The tf-idf values

of each term in each e-mail file are then calculated and stored on sparse

vectors. After the feature extraction phase, secure index is generated as

explained in Section 6.3.

For the accuracy experiments we consider two metrics namely precision

and recall. Intuitively, precision is the ratio of correctly found matches over

the total number of returned matches and recall is the ratio of correctly found

matches over the total number of expected results (i.e., the ground truth).

Both precision and recall are real numbers between 0 and 1, where a higher

value means better accuracy.

We assume that the server receives several search requests at any time

which is in line with the big data context. Therefore instead of processing

each query individually, we group 200 individual queries and process a bulk

search for all. Bulk search operations have a great positive effect on the

throughput of the system as the distributed file systems and parallel pro-

graming models do not benefit relatively small number of such operations.

90



300 350 400 450 500

0.2

0.4

0.6

0.8

λ

P
re

ci
si

on
R

at
e

k = 30
k = 20
k = 10

Figure 6.3: Average precision rates for k-NN search with different λ and k

As the number of terms in queries is significantly many (as a document in

a query can contain many words with relatively high tf-idf scores), a larger

value of λ needs to be used in order to satisfy an equivalent level of accuracy.

Furthermore, both precision and recall metrics are equivalent as the number

of returned matches and the number of actual matches are both equal to k.

We therefore used a single metric, namely precision, to evaluate the accuracy

of the k-NN search method. The accuracy of k-NN search in our experiments

is illustrated in Figure 6.3 for different values of k and λ.

Figure 6.3 demonstrates that increase in λ has a positive effect on accu-

racy as expected due to the properties of locality sensitive hash functions.

Similarly, increase in k has also a positive effect on the accuracy. The pro-

posed method can find the most similar data items (i.e., nearest neighbors)

to the queried item, but possibly in a different order with respect to the ac-

tual results. Therefore, for small values of k, some of the actual most similar

matches may not fall in the top k slots and leads to a negative effect on the

accuracy. However, for relatively larger values of k, most of the top matching

data items are usually accommodated in the top k slot and thus leads to high

91



300 350 400 450 500

200

300

400

λ

S
ea

rc
h

T
im

e
(s

)

Figure 6.4: Average search time for kNN search with different λ

accuracy rates.

The execution times of k-NN search for different values of λ and k are

illustrated in Figure 6.4.

6.6 Conclusion

In this work, we addressed the problem of applying an existing privacy-

preserving technique for secure document similarity search operation on en-

crypted cloud data. We utilized the secure similarity search method based

MinHash functions. We developed an implementation of the proposed secure

search algorithm for the Hadoop distributed file system and the MapReduce

programming model. We tested the implementation in a three-node Hadoop

cluster with the Enron email data set and demonstrate the effectiveness and

scalability of the system.

Although the timing results are high the proposed method is still promis-

ing in the sense that the method can scale to larger data sets with more

documents provided that more computing nodes in the cluster are available.

92



In addition, as more computation power at a reasonable cost will be avail-

able in the future, more secure solutions as proposed in this chapter will be

feasible.

93



Chapter 7

EFFICIENT, SECURE

DOCUMENT SIMILARITY

SEARCH UTILIZING

Z-ORDER SPACE FILLING

CURVES

In this chapter, we propose another secure document similarity search method

in a scenario where a database of documents is hosted by a semi-trusted cloud

server. Users submit their queries consisting of documents to the cloud, which

performs a search operation over the database index and returns the most

similar documents to those in the queries. As queries, database and database

index are protected by a symmetric encryption technique, we provide data,

query and index confidentiality. The method is amenable to parallel comput-

ing technologies where database is kept in a distributed file system. Thus, it

is scalable to large databases, which makes it a good candidate for big data

94



applications. The experimental results show that proposed method intro-

duces no significant overhead to execution times. However, the effectiveness

of the method is deteriorated due to the trade off between security and accu-

racy. To remedy this, we propose several techniques to improve the accuracy

by allowing local computation in the user side and modifying database index

construction.

7.1 Introduction

Recently, cloud computing became a popular technology for relatively in-

expensive, robust and reliable storage and computation. Providing efficient

and fast computing power at low cost, it compels parties, who are unwilling

to invest their limited budget in hardware, to outsource their data and ap-

plications to cloud services. However, the cloud service providers are usually

considered as semi-trusted entities that may try to learn from the stored

data.

Processing and/or analyzing data over relational databases is an impor-

tant problem that has extensively been considered in the literature for a

long time. However, the security implications had been disregarded, to a

large extent, until recently as data outsourcing was not a common practice.

Therefore, with the increasing use of and reliance on cloud, it is now a ne-

cessity to provide techniques for privacy-preserving processing of data, prior

to outsourcing. Similarity search is one of the foremost problems need to be

addressed when private and/or sensitive data are outsourced to cloud.

More specifically, contents and features (e.g. words) of documents, which

are outsourced, can be private and need to be protected from the cloud service

(the cloud henceforth), which can be done by encryption. On the other hand,

95



conventional encryption usually hinders any operation on documents, includ-

ing similarity search, in which documents with similar features are searched.

Therefore, secure and searchable metadata (e.g. index) for the documents

are constructed, which do not leak information about the document contents

and features by itself.

An important requirement of secure search operations is that it has to

scale to massive data/document sets to be expedient in big data applications,

which are the current focus of interest in industry as well as academia.

This chapter considers the problem of determining the most similar doc-

uments in an encrypted data set given a query document, without revealing

the features (i.e. terms, words) of neither the data set elements nor the query

document. Search for similar documents is implemented using a signature

called ZOLIP key which is computed using the document features and their

importance for the document. The essence of the ZOLIP key is that similar

documents, having the same important features, have significant portions of

the key in common. Prior to outsourcing, a ZOLIP key per data set entry is

generated and encrypted by the data owner. Then the search is applied over

encrypted ZOLIP keys without using the encrypted data itself.

The proposed method does not protect search pattern privacy, as ZOLIP

keys are generated deterministically. Therefore, features of same importance

levels can be linked across queries leading to information leak, which can be

exploited given background information and known statistical properties of

the data set. Guaranteeing search pattern privacy is generally considered

as a difficult problem, which can be detrimental for scalability of the solu-

tion. Therefore, we only provide a simpler, but scalable solution for big data

applications.

The work here can be considered as an extension of our work in [33], which

96



provides no security, but focuses on fast and scalable document similarity

search solutions. Based on the same theoretical foundation, here we provide

a simple technique to secure documents as well queries.

7.2 Problem Definition

In this section we formulate the problem and present the definitions related

to our proposal for document similarity search operation used throughout

the chapter. The notation used in the chapter is listed in Table 7.1.

Table 7.1: Common Notations

D data set.
Q query set.
di ith document in the data set.
qi ith query document in the query set.
Zi ZOLIP key for document di

λ number of Z-order iterations.
δ number of terms in the data set.
vi random vectors of δ elements.
ζ size of signature groups derived from

ZOLIP key

Note that we adopt the terminology and definitions introduced in [33],

which also proposes a document similarity search method, but without any

security properties.

Definition 16 (Secure Similarity Search) Let D be the outsourced data

set and d1, . . . , dn be the n records in D and Q =< q1, . . . , qm > be a query

with m documents. Further let Sige(di) be an encryption for document having

the signature Zi. Also, Sige(D) and Sige(Q) stand for set of signatures for

the data set and the query, respectively. Then, the secure similarity search

97



(SSS) protocol is defined as:

SSS(Sige(D), Sige(Q))→< d11, . . . , d1k, . . . , dm1, . . . , dmk >,

where dij is the identifier of the jth nearest document in D to qi ∈ Q.

Definition 17 (Data Confidentiality) Given a k-similar document pro-

tocol, let D be the data set outsourced to the cloud. An SSS protocol provides

data confidentiality if the contents of the documents di ∈ D are not revealed

to the cloud server.

Definition 18 (Query Confidentiality) Given a k-similar document pro-

tocol, let Q be the set of documents in a query. An SSS protocol provides query

confidentiality if the contents of the documents qi ∈ Q are not revealed to the

cloud server.

7.3 Secure ZOLIP Similarity Search

In this section we present the secure version of the ZOLIP algorithm intro-

duced in [33]. Secure similarity search is performed using secure search index

generated by the owner of the data, which is the set of encrypted document

signatures. Data set is also encrypted and uploaded to the cloud along with

the secure search index. This way, the cloud owner is prevented from access-

ing document and query contents, while it is still possible to perform search

for similar documents.

7.3.1 Secure Index and Query Generation

The main idea of our work is to create signatures to represent document in

the data set, which are used to compare documents and determine their sim-

98



ilarity. We use ZOLIP keys as document signatures, introduced by Alewiwi,

et al. [33] which are, simply speaking, just bit vectors. The proposed method

consists of two main phases, feature extraction and secure ZOLIP key con-

struction as shown on the left hand side of Figure 7.1.

Documents

Feature
Extraction

Index Generation

Signatures

ZOLIP
Key Con-
struction

Encrypted
Signatures

MapReduce
Search.

Secure
Query
Gen.

Secure Search

Figure 7.1: Flowchart of secure index and query generation

In document similarity, features are words in documents and the feature

extraction phase processes documents and determines the words and their

tf-idf values. As a result, we obtain a sparse vector for each document, in

which non-zero values are tf-idf scores for the corresponding words in the

document. In the second phase, the ZOLIP key is first constructed by bit-

wise interleaving the tf-idf values of important words for the corresponding

document and the resulting bit sequence is stored in a sparse vector.

Let Zi = {b1 . . . bδλ} be the ZOLIP key for document di, where δ is the

number of terms in the dataset and λ is the number of Z-Order iterations.

We partition the ZOLIP key into groups or chunks, each of which contains

99



ζ consecutive bits. Then, the ZOLIP key can be written as

Zi = {Z1 . . . Zd δ·λ
ζ

e},

where Zi is a chunk of ζ consecutive bits.

In order to prevent signatures from revealing any information about the

document, its content, the words they contain and their tf-idf scores we

use a deterministic encryption scheme on signature chunks, Zi. For fast

computation and short outputs, we use an HMAC function, which takes a

secret key Ki and the signature chunk Zi for i = 1 . . . d δ·λ
ζ
e, and returns a

ciphertext block. Consequently, the secure signature of document di is given

as

Sige(di) = {HMAC(K1, Zi,1), . . . ,HMAC(Kd δ·λ
ζ

e, Zi,d δ·λ
ζ

e)}

We use a different HMAC keys for each chunk and a chunk with all-0

bits are ignored. Note also that document id’s are also encrypted. Finally,

the encrypted documents and their encrypted ids and signatures sent to the

cloud.

In the secure query generation operation (see Figure 7.1), the same steps

are applied to obtain encrypted signatures for the documents in the query. In

the next section we describe the document similarity search in more detail.

7.3.2 Secure Search

The secure search operation is composed of three map reduce phases. The

first phase tries to find duplicate and/or near duplicate documents (i.e. two

documents with exactly the same important terms should have the same

ZOLIP key), and it contains two mappers and one reducer.

The first mapper reads and parses the secure index (i.e. the set of en-

100



crypted signatures Sige(di) for the entire data set), then it passes the follow-

ing key-value pair

< E(di), Sige(di) >→< Sige(di), D : E(di) >

to the reducer. Here, Sige(di) serves as the key and D : E(di) as the value,

where E(di) is the encrypted document id and the prefix “D” is used to

distinguish the index from the query.

The second mapper reads the secure signatures in the query in a similar

manner. Its output has the same format, except for the fact that the value

part is prefixed with “Q”

< E(di), Sige(qi) >→< Sige(di), Q : E(qi) > .

The reducer of the first phase receives documents sharing the same en-

crypted signature. It groups the documents prefixed with “Q” and documents

prefixed with “D” into two separate sets. For each document in the “Q” set,

it tries to find k similar documents from the “D” set; an operation which

may not be always successful.

If the reducer finds sufficient number of similar documents (i.e. k similar

or near duplicate documents), it returns the encrypted document id as the

key and, as the value, the original encrypted document signature concate-

nated with the list of documents having the same signature as the query

document. The suffix “Y ” is added to the value part indicating that the

search is successful and the desired number of similar documents are found.

The main aim of attaching “Y ” to the result is to avoid the next phase, which

is executed only if the first phase falls short of finding k similar documents.

In the first phase is not successful, the search result contains the prefix

101



“N” to signal that we need to move to the next phase. Consequently, the

reducer output of the first phase has the following form

< E(di), < Sige(di), {E(dj)}, (Y/N) >> .

The second phase is also composed of two mappers and one reducer. The

main aim of this phase is to find the documents having signature chunks in

common. The first mapper reads the original encrypted signatures, while

the second mapper reads the output of the first phase. The first mapper

parses chunks of signature values (i.e. HMAC(Kl, Zl) for l = 1, 2, . . . , d δ·λ
ζ
e),

and then sends chunks as key and encrypted document ids as values to the

reducer. The resulting mapper output has the following form

< E : (di), HMAC(Kl, Zl,1) >→

< HMAC(Kl, Zl,1), D : E(di) > .

The second mapper in this phase reads the output of the first phase and

checks if there are documents not having k similar documents. It parses

the signatures Sige(di) of the encrypted documents with insufficient number

of similar documents and obtains signature chunks HMAC(Kl, Zi,l) for l =

1, 2, . . . , d δ·λ
ζ
e. It then forms the pairs

< HMAC(Kl, Zi,l), Q : E(di) >

and sends them to the reducer.

Documents having the same encrypted signature chunks indicate that

they share some parts of the ZOLIP key and thus possibly sharing some

important terms. Generally, higher number of common signature parts point

102



out that the documents are very similar. Upon receiving the outputs of the

mappers, the reducer creates two lists; the query list for encrypted signature

chunks from the query documents and the data set list for those of documents

in the dataset. For each matching chunks from the query list and the data

set list, the reducer forms the following pair

<< E(di), E(dj) >, 1 >,

where the encrypted ids of documents containing the same encrypted chunk

are taken as the key and the integer “1” as the value of the pair.

The last phase is responsible for joining the results of the first and second

phases. Again, this phase has two mappers and one reducer. The first

mapper reads the first phase output, parses the record values with “Y ” and

extracts encrypted document ids. It then concatenates the encrypted query

document id with all the encrypted document ids as a key. The value of this

mapper is another literal value “dδ · λ/ζe′′ (i.e. identical ZOLIP keys as all

signature chunks match). The result of this mapper will have the form

<< E(di), E(dj) >, dδ · λ/ζe > .

The second mapper reads the output of the second phase and redirects it

without any modification to the reducer. In the last step, the reducer of the

last phase reads the pairs of the encrypted document ids. Then for each pair,

the algorithm finds the sum of the value parts from the previous mappers

and outputs them in the form

<< E(di), E(dj) >, sum > .

103



The user is sent the output of the last phase sorted depending on the sum

parts of the pair. Here, the value sum for < E(di), E(dj) > gives the number

of common signature chunks in two documents.

7.4 Security Analysis

The actual documents stored in the cloud are assumed to be encrypted with

a semantically secure symmetric encryption scheme (e.g., AES) prior to out-

sourcing. Therefore, the cloud and any adversary that captures them do not

learn much information from the ciphertexts as the secret key is not avail-

able to them. However the secure index, composed of encrypted signatures

and needed for secure search operation, is also outsourced together with the

encrypted documents. The encrypted signatures consist of HMACed ZOLIP

key chunks for documents. The signatures do not give any information about

the terms in the corresponding ZOLIP keys as long as the universal dictionary

is shuffled using a random permutation.

Documents having common signature chunks indicate that they possibly

share terms. As the ZOLIP key is grouped as chunks before encryption there

can be false positives, namely documents having common signature may not

share the corresponding terms with certain probability, which depends on the

chunk size. The larger chunk size increases this probability while decreasing

the accuracy due to the increasing number of false positives. False positives

serve as randomizing effect on the secure index as well as on the queries.

This makes the adversary’s job harder as it is difficult to know whether a

document contains a term or not for certain.

In summary, the proposed method provides data confidentiality, since the

adversary can learn neither the terms a document contains nor their scores.

104



However, the secure index and queries can give partial information about the

documents such as an idea about the approximate number of important terms

it contains. An adversary, therefore, can differentiate between documents

with many important terms and those with fewer number of important terms.

The queries are generated in a deterministic manner, hence queries con-

taining the same documents can easily be identified. Hence, so called search

pattern is leaked. The proposed method provides only fundamental security

properties, namely data, index and query confidentiality.

7.5 Experimental Results

In order to assess the performance of the proposed scheme, we build a small

cluster of 3 nodes and Cloudera CDH4 for cluster management. The cluster

has two nodes with Xeon processor E5-1650 3.5 GHz with 12 cores 15.6 GB of

RAM and 1 TB hard disk and one node with Core i7 3.07 GHz with 8 cores,

15.7 GB of RAM and 0.5 TB hard disk. On each node, Ubuntu 12.04 LTS,

64 -bit operating system is installed and Java 1.6 JVM is used.

In our experiments, we used the Enron data set [34] for evaluating the

proposed method. This data set contains a collection of 517, 000 real e-mail

files. The size of each file changes from 4 KB to 2 MB. Although the actual

data set size is about 200 GB, the size of the secure index is very small as

only the signatures for ZOLIP key chunks with non-zero values are stored.

We selected Z-order iteration level λ = 8 and similarity level k = 10.

We performed the experiments using unencrypted signature chunks as only

bit string comparisons are needed independent of whether we use encrypted

or unencrypted chunks. As the comparison of bit strings constitutes only a

small portion of the overall execution time and no encryption operation is

105



performed in the server side, we did not actually use the HMACed ZOLIP

key. Also, we report only the experimental results for the search operation in

the server side excluding the operations such as feature extraction and query

construction.

Initially, the data is processed in what referred as the feature extraction

phase (see Figure 7.1). In feature extraction, first the data is cleaned from

the mail headers and stop words. The terms are stemmed to their roots using

the snowball stemmer included in the Lucene [35] library. The tf-idf values

of each term in each file are then calculated and stored on sparse vectors.

After the feature extraction phase, secure index and queries are generated as

explained in Section 7.3.1.

The performance and accuracy of the algorithms are measured for differ-

ent values of ζ in our experiments. First, we measured the performance of the

algorithm by measuring the execution time using different ζ values to detect

the effect of increasing ζ over the performance. In our experiments we used

ζ = {2, 3, 4} and employed queries of 1,000 documents assuming that a typi-

cal cloud server receives multiple search requests from many users. Figure 7.2

shows the effect of changing the ζ value on the overall execution time of the

search operation in the server side. The figure shows that larger ζ values

slightly improve the time performance as the number of comparisons of sig-

nature chunks is decreased. When compared with the timing results in [33],

which provides a document similarity search algorithm without any security,

the execution times are comparable for similar experimental settings. On

the other hand, the communication complexity is negatively affected as the

query sizes increase due to encryption of the ZOLIP key.

We also depicted the accuracy of the proposed in Figure 7.3, which shows

that larger values of ζ deteriorate the accuracy. This result is expected as

106



the increasing sizes of signature chunks lead to increase in false positives.

Also, the larger chunk sizes will result in documents for which we cannot

find sufficient number of similar documents.

2 2.5 3 3.5 4
350

355

360

365

370

Size of Signature Chunk (ζ)

T
im

e(
s)

Figure 7.2: Time Complexity

2 2.5 3 3.5 4

0.4

0.45

0.5

0.55

0.6

0.65

Size of Signature Chunk (ζ)

A
cc

u
ra

cy

Figure 7.3: Average Accuracy Rate

As seen from the figures, large values of ζ have a significantly negative

effect on accuracy and slight improvement in time performance. Also, from

security point of view large values of ζ has certain advantages as they increase

false positive rates leading to less partial information leak. Therefore, we

107



can conclude that there is a trade off between accuracy and security. A

decision for picking the correct ζ depends on the application requirements.

Nevertheless, the experimental results clearly show that only small values of

ζ leads to reasonable accuracy levels.

To increase accuracy, we propose to use larger values of k than specified

in the query and return all documents found after the search to the user.

Then, local computation at user side will become a necessity as the num-

ber of returned documents exceeds the specified k. Also, the user needs to

remove the false positives, namely dissimilar documents. Some client side

computation is acceptable and sometimes desirable from security point of

view as long as the computation requirements are not prohibitively high.

7.6 Conclusion

We present the secure version of a previously proposed document similarity

search method by Alewiwi et al [33]. The method is almost as fast and ef-

ficient as the original method in [33], while there is a trade off between the

security and accuracy. While we can improve the accuracy of the method by

adjusting the chunk size of the document signatures, the original version will

always be better as we introduce additional false positives due to encryption.

As a remedy, the accuracy can further be improved if the algorithm returns

more documents than requested to the user that, in turn performs additional

processing over a limited number of documents. This is acceptable if local

computation is feasible at the user side. Lastly, the method also increases

the query and index sizes, due to the encryption of small chunks of docu-

ment signatures individually. On the other hand, both query and index sizes

remain at acceptable levels as document signatures are sparse bit vectors.

108



Chapter 8

CONCLUSION AND

FUTURE WORK

In this thesis, we addressed the secure document similarity problem in the

scenario that document set is outsourced to a honest but curious cloud server.

We targeted applications involving processing of big data, for which any

solution must be efficient and scalable. Therefore, all proposed solutions

feature algorithms that are amenable to parallel computation, hence scalable.

We used the MapReduce parallel programming model due to its simplic-

ity for our parallel implementation of the proposed algorithms. As a parallel

computation platform, we utilized Hadoop framework thanks to its accessibil-

ity and relative ease of use and maintenance. Using MapReduce and Hadoop,

we demonstrated that our algorithms can scale to large sizes of data sets. We

proposed four different solutions for document similarity search: while the

first one provides no security, the other three solutions provide protection,

however, with different security properties. The last solution, in fact, is a

secure version of the first one.

We first proposed an efficient filtering technique for document similarity

109



search in Chapter 4. The solution does not provide any security and fo-

cuses on efficiency and scalability of the similarity search operation. As we

used cosine similarity metric to compare documents based on the terms and

their tf-idf values, we obtained good accuracy results. The proposed filter-

ing technique prevents the computation of cosine similarity of two dissimilar

documents, and focusing only on potentially similar documents. The exper-

imental results obtained using two known data sets demonstrate that the

method is promising for big data applications. Although it has limitations

for documents with no important terms, future research can remedy this by

using hybrid solutions.

For secure document similarity search, we developed three algorithms.

The first solution, covered in Chapter 5, considers two different security lev-

els. The basic method uses plain sketches and the other method offers an

enhanced security protection by using encrypted sketches, where each sketch

element is encrypted with the Paillier encryption method. The first algorithm

providing a basic level security is a feasible solution in many applications,

while the other more secure algorithm shows good theoretical accuracy. Un-

fortunately, our experimental results demonstrate that the more secure ver-

sion is not practical due to its heavy computational requirements.

In Chapter 6, we adapted an existing privacy-preserving multi-keyword

search technique for secure document similarity search problem on outsourced

data. More specifically, we utilized MinHash functions, which are used in

the literature [45] [46] for secure multi-keyword search operations in simi-

lar settings. The proposed algorithms offer better security properties if two

non-colluding servers implementing cloud operations are available. The ex-

perimental results are promising as far as execution times and accuracy are

concerned. In addition, they also show that it is possible to reconcile effi-

110



ciency and effectiveness of the search method and advanced security features,

at least for moderately large data sets.

The last method given in Chapter 7, is in fact, a secure version of the

algorithm introduced in Chapter 4. To preserve efficiency and scalability

of the original algorithm, the new algorithm offers only basic protection of

document, index, and query privacy, allowing search and access patterns to

leak. The initial experimental results demonstrate that the secure algorithm

has acceptable computational complexity (at least comparable to that of

the original scheme). Nevertheless, it is also clear that the accuracy of the

method should be improved. We suggest a solution to improve the accuracy,

but the matter calls for much deeper treatment, which we recommend for

future research.

As final remarks, secure document search operation is a challenging re-

search area that features interesting problems, especially in the cloud setting

of outsourced data. It is a difficult problem as there is usually a trade off be-

tween either security and computational efficiency or security and accuracy.

While advanced encryption algorithms can improve accuracy in addition to

security, they are usually not amenable to fast implementations for big data

applications. In this thesis, we proposed scalable solutions, which provide

promising results for data sets of moderate size. Reconciling accuracy and

security with computational efficiency for even larger data sets is the subject

of future research.

111



Bibliography

[1] R. Vernica, M. J. Carey, and C. Li, “Efficient parallel set-similarity joins

using mapreduce,” in Proceedings of the 2010 ACM SIGMOD Interna-

tional Conference on Management of Data, SIGMOD ’10, (New York,

NY, USA), pp. 495–506, ACM, 2010.

[2] T. Jung, X. Mao, X. Li, S. Tang, W. Gong, and L. Zhang, “Privacy-

preserving data aggregation without secure channel: Multivariate poly-

nomial evaluation,” in Proceedings of the IEEE INFOCOM 2013, Turin,

Italy, April 14-19, 2013, pp. 2634–2642, 2013.

[3] Y. Yang, H. Li, W. Liu, H. Yao, and M. Wen, “Secure dynamic

searchable symmetric encryption with constant document update cost,”

in Global Communications Conference (GLOBECOM), 2014 IEEE,

pp. 775–780, Dec 2014.

[4] J. Dean and S. Ghemawat, “Mapreduce: Simplified data processing on

large clusters,” Commun. ACM, vol. 51, pp. 107–113, Jan. 2008.

[5] A. Arasu, V. Ganti, and R. Kaushik, “Efficient exact set-similarity

joins,” in Proceedings of the 32Nd International Conference on Very

Large Data Bases, VLDB ’06, pp. 918–929, VLDB Endowment, 2006.

112



[6] S. Sarawagi and A. Kirpal, “Efficient set joins on similarity predicates,”

in Proceedings of the 2004 ACM SIGMOD International Conference on

Management of Data, SIGMOD ’04, (New York, NY, USA), pp. 743–

754, ACM, 2004.

[7] S. Chaudhuri, V. Ganti, and R. Kaushik, “A primitive operator for sim-

ilarity joins in data cleaning,” in Proceedings of the 22Nd International

Conference on Data Engineering, ICDE ’06, (Washington, DC, USA),

pp. 5–, IEEE Computer Society, 2006.

[8] R. J. Bayardo, Y. Ma, and R. Srikant, “Scaling up all pairs similarity

search,” in Proceedings of the 16th International Conference on World

Wide Web, WWW ’07, (New York, NY, USA), pp. 131–140, ACM, 2007.

[9] F. Angiulli and C. Pizzuti, “An approximate algorithm for top-k closest

pairs join query in large high dimensional data,” Data and Knowledge

Engineering, vol. 53, no. 3, pp. 263–281, 2005.

[10] M. Connor and P. Kumar, “Fast construction of k-nearest neighbor

graphs for point clouds,” Visualization and Computer Graphics, IEEE

Transactions on, vol. 16, no. 4, pp. 599–608, 2010.

[11] C. Xiao, W. Wang, X. Lin, and J. X. Yu, “Efficient similarity joins

for near duplicate detection,” in Proceedings of the 17th International

Conference on World Wide Web, WWW ’08, (New York, NY, USA),

pp. 131–140, ACM, 2008.

[12] S. Zhu, J. Wu, H. Xiong, and G. Xia, “Scaling up top-k cosine similarity

search,” Data and Knowledge Engineering, vol. 70, no. 1, pp. 60–83,

2011.

113



[13] T. Elsayed, J. Lin, and D. W. Oard, “Pairwise document similarity

in large collections with mapreduce,” in Proceedings of the 46th An-

nual Meeting of the Association for Computational Linguistics on Hu-

man Language Technologies: Short Papers, HLT-Short ’08, (Strouds-

burg, PA, USA), pp. 265–268, Association for Computational Linguis-

tics, 2008.

[14] B. Yang, J. Myung, S.-g. Lee, and D. Lee, “A mapreduce-based fil-

tering algorithm for vector similarity join,” in Proceedings of the 7th

International Conference on Ubiquitous Information Management and

Communication, ICUIMC ’13, (New York, NY, USA), pp. 71:1–71:5,

ACM, 2013.

[15] R. Li, L. Ju, Z. Peng, Z. Yu, and C. Wang, “Batch text similarity search

with mapreduce.,” in APWeb (X. Du, W. Fan, J. W. 0001, Z. Peng, and

M. A. Sharaf, eds.), vol. 6612 of Lecture Notes in Computer Science,

pp. 412–423, Springer, 2011.

[16] R. Baraglia, G. De Francisci Morales, and C. Lucchese, “Document sim-

ilarity self-join with mapreduce,” in Data Mining (ICDM), 2010 IEEE

10th International Conference on, pp. 731–736, Dec 2010.

[17] T.-C. Phan, L. d’Orazio, and P. Rigaux, “Toward intersection filter-

based optimization for joins in mapreduce,” in Cloud-I’13, pp. 2–2, 2013.

[18] Y.-C. Chang and M. Mitzenmacher, “Privacy preserving keyword

searches on remote encrypted data,” in Applied Cryptography and Net-

work Security, pp. 442–455, Springer, 2005.

[19] R. Curtmola, J. Garay, S. Kamara, and R. Ostrovsky, “Searchable sym-

metric encryption: improved definitions and efficient constructions,” in

114



Proceedings of the 13th ACM conference on Computer and communica-

tions security, pp. 79–88, ACM, 2006.

[20] W. Jiang, M. Murugesan, C. Clifton, and L. Si, “Similar document de-

tection with limited information disclosure,” in Data Engineering, 2008.

ICDE 2008. IEEE 24th International Conference on, pp. 735–743, IEEE,

2008.

[21] M. Murugesan, W. Jiang, C. Clifton, L. Si, and J. Vaidya, “Effi-

cient privacy-preserving similar document detection,” The VLDB Jour-

nalâĂŤThe International Journal on Very Large Data Bases, vol. 19,

no. 4, pp. 457–475, 2010.

[22] S. Buyrukbilen and S. Bakiras, “Secure similar document detection with

simhash,” in Secure Data Management, Lecture Notes in Computer Sci-

ence, pp. 61–75, 2014.

[23] W. K. Wong, D. W.-l. Cheung, B. Kao, and N. Mamoulis, “Secure knn

computation on encrypted databases,” in Proceedings of the 2009 ACM

SIGMOD International Conference on Management of Data, SIGMOD

’09, pp. 139–152, 2009.

[24] F. Li and X. Xiao, “Secure nearest neighbor revisited,” 2014 IEEE

30th International Conference on Data Engineering, vol. 0, pp. 733–744,

2013.

[25] Y. Elmehdwi, B. K. Samanthula, and W. Jiang, “Secure k-nearest neigh-

bor query over encrypted data in outsourced environments,” CoRR,

vol. abs/1307.4824, 2013.

115



[26] C. D. Manning, P. Raghavan, and H. Schütze, Introduction to Infor-

mation Retrieval. New York, NY, USA: Cambridge University Press,

2008.

[27] C. Zhang, F. Li, and J. Jestes, “Efficient parallel knn joins for large

data in mapreduce,” in Proceedings of the 15th International Conference

on Extending Database Technology, EDBT ’12, (New York, NY, USA),

pp. 38–49, ACM, 2012.

[28] Y. Tao, K. Yi, C. Sheng, and P. Kalnis, “Efficient and accurate nearest

neighbor and closest pair search in high-dimensional space,” ACM Trans.

Database Syst., vol. 35, pp. 20:1–20:46, July 2010.

[29] A. Rajaraman and J. D. Ullman, Mining of massive datasets. Cam-

bridge: Cambridge University Press, 2012.

[30] R. A. Brown, “Hadoop at home: Large-scale computing at a small col-

lege,” SIGCSE Bull., vol. 41, pp. 106–110, Mar. 2009.

[31] “Apache Hadoop.” http://hadoop.apache.org.

[32] M. Bellare, R. Canetti, and H. Krawczyk, “Message authentication using

hash functions- the hmac construction,” CryptoBytes, vol. 2, 1996.

[33] M. Alewiwi, C. Orencik, and E. Savas, “Efficient top-k similarity doc-

ument search utilizing distributed file systems and cosine similarity,”

Cluster Computing, pp. 1–18, 2015.

[34] “Enron Dataset.” http://www.cs.cmu.edu/∼./enron/.

[35] “Lucene.” http://lucene.apache.org/.

116



[36] D. D. Lewis, Y. Yang, T. G. Rose, and F. Li, “RCV1: A new benchmark

collection for text categorization research,” J. Mach. Learn. Res., vol. 5,

pp. 361–397, Dec. 2004.

[37] F. Falchi, R. Perego, C. Lucchese, F. Rabitti, and S. Orlando, “A metric

cache for similarity search,” in In LSDS-IR, 2008.

[38] C. Örencik, M. Alewiwi, and E. Savas, “Secure sketch search for docu-

ment similarity,” in 2015 IEEE TrustCom/BigDataSE/ISPA, Helsinki,

Finland, August 20-22, 2015, Volume 1, pp. 1102–1107, IEEE, 2015.

[39] M. S. Islam, M. Kuzu, and M. Kantarcioglu, “Access pattern disclo-

sure on searchable encryption: Ramification, attack and mitigation,”

in 19th Annual Network and Distributed System Security Symposium,

NDSS 2012, San Diego, California, USA, February 5-8, 2012, 2012.

[40] P. Paillier, “Public-key cryptosystems based on composite degree resid-

uosity classes,” in ADVANCES IN CRYPTOLOGY - EUROCRYPT

1999, pp. 223–238, Springer-Verlag, 1999.

[41] B. Hore, S. Mehrotra, M. Canim, and M. Kantarcioglu, “Secure mul-

tidimensional range queries over outsourced data,” The VLDB Jour-

nalâĂŤThe International Journal on Very Large Data Bases, vol. 21,

no. 3, pp. 333–358, 2012.

[42] P. Williams, R. Sion, and B. Carbunar, “Building castles out of mud:

Practical access pattern privacy and correctness on untrusted storage,”

in Proceedings of the 15th ACM Conference on Computer and Commu-

nications Security, CCS ’08, (New York, NY, USA), pp. 139–148, ACM,

2008.

117



[43] M. Franz, P. Williams, B. Carbunar, S. Katzenbeisser, A. Peter, R. Sion,

and M. Sotakova, “Oblivious outsourced storage with delegation,” in

Financial Cryptography and Data Security (G. Danezis, ed.), vol. 7035

of Lecture Notes in Computer Science, pp. 127–140, Springer Berlin

Heidelberg, 2012.

[44] M. Kuzu, M. Islam, and M. Kantarcioglu, “Efficient similarity search

over encrypted data,” in Data Engineering (ICDE), 2012 IEEE 28th

International Conference on, pp. 1156–1167, April 2012.

[45] C. Orencik, A. Selcuk, E. Savas, and M. Kantarcioglu, “Multi-keyword

search over encrypted data with scoring and search pattern obfuscation,”

International Journal of Information Security, 2015.

[46] C. Orencik and E. Savas, “An efficient privacy-preserving multi-keyword

search over encrypted cloud data with ranking,” Distributed and Parallel

Databases, vol. 32, no. 1, pp. 119–160, 2014.

118


	Acknowledgments
	Abstract
	Özet
	INTRODUCTION
	Motivations
	Contributions
	Outline

	RELATED WORKS
	Related Work on Similarity Search

	PRELIMINARIES
	Term Relevancy Score
	Cosine Similarity
	Z-Order Mapping
	Locality Sensitive Hashing (LSH)
	Hadoop and MapReduce Framework
	Hash-based Message Authentication Code (HMAC)

	EFFICIENT DOCUMENT SIMILARITY SEARCH UTILIZING Z-ORDER PREFIX FILTERING
	Introduction
	The Proposed Filtering Method
	Phase 1: Near-Duplicate Detection (NDD)
	Phase 2: Common Important Terms (CIT)
	Phase 3: Join Phase(JP)
	R-S Join

	Experiments
	Setup and Data Description
	Performance Analysis
	Accuracy Analysis 

	Conclusion

	SECURE DOCUMENT SIMILARITY SEARCH UTILIZING SECURE SKETCHES
	Problem Definition
	Secure Similarity Search
	Secure Sketch Construction
	Enhanced Security
	Security Analysis
	Implementation
	Similarity Evaluation
	Conclusion

	SECURE DOCUMENT SIMILARITY SEARCH UTILIZING MINHASH
	The Framework
	Security Model
	Proposed Method
	Secure Index Generation
	Secure Query Generation
	Secure Search

	Security Analysis
	Experiments
	Conclusion

	EFFICIENT, SECURE DOCUMENT SIMILARITY SEARCH UTILIZING Z-ORDER SPACE FILLING CURVES
	Introduction
	Problem Definition
	Secure ZOLIP Similarity Search
	Secure Index and Query Generation
	Secure Search

	Security Analysis
	Experimental Results
	Conclusion

	CONCLUSION AND FUTURE WORK

