
LOW POWER MOTION ESTIMATION BASED FRAME RATE UP-CONVERSION

HARDWARE DESIGNS

by

TEVFĠK ZAFER ÖZCAN

Submitted to the Graduate School of Engineering and Natural Sciences

in partial fulfillment of

the requirements for the degree of

Master of Science

Sabancı University

August 2011

LOW POWER MOTION ESTIMATION BASED FRAME RATE UP-CONVERSION

HARDWARE DESIGNS

APPROVED BY

Assist. Prof. Dr. Ġlker HAMZAOĞLU ………………………..

(Thesis Supervisor)

Assoc. Prof. Dr. Ayhan BOZKURT ………………………..

Assoc. Prof. Dr. Meriç ÖZCAN ………………………..

Assist. Prof. Dr. Hakan ERDOĞAN ………………………..

Dr. Mustafa PARLAK ………………………..

DATE OF APPROVAL: ………………………..

© Tevfik Zafer Özcan 2011

All Rights Reserved

IV

LOW POWER MOTION ESTIMATION BASED FRAME RATE UP-CONVERSION

HARDWARE DESIGNS

Tevfik Zafer ÖZCAN

EE, MS Thesis, 2011

Thesis Supervisor: Assist. Prof. Dr. Ġlker HAMZAOĞLU

Keywords: Frame rate up conversion, true motion estimation, adaptive motion estimation,

motion compensation, hardware architecture.

Abstract

Recently flat panel high definition television (HDTV) displays with 100 Hz, 120 Hz and

240 Hz picture rates are introduced. However, video materials are captured and broadcast in

different temporal resolutions ranging from 24 Hz to 60 Hz. In order to display these video

formats correctly on high picture rate displays, new frames should be generated and inserted

into the original video sequence to increase its frame rate. Therefore, frame rate up-

conversion (FRUC) has become a necessity. Motion compensated FRUC (MC-FRUC)

algorithms provide better quality results than non-motion compensated FRUC algorithms.

These MC-FRUC algorithms consist of two main stages, motion estimation (ME) and motion

compensated interpolation (MCI). In ME, motion vectors (MV) are calculated between

successive frames, and in MCI this MV data is used to generate a new frame that is inserted

between two successive frames, thus doubling the frame rate. In addition to these two main

steps, intermediate steps such as refinement of the MV field by various algorithms like motion

vector smoothing and bilateral ME refinement may be used to improve the quality of the

interpolated video.

In this thesis, a perfect absolute difference technique for block matching ME hardware

is proposed. The proposed technique reduces the power consumption of a full search ME

hardware by 2.2% on a XC2VP30-7 FPGA without any PSNR loss. In addition, a global

motion estimation (GME) algorithm and its hardware implementation are proposed. The

proposed GME algorithm increases PSNR of 3D recursive search ME algorithm by 2.5% and

its hardware implementation is capable of processing 341 720p frames per second. An

adaptive technique for GME, which reduces the energy consumption of the GME hardware by

14.37% on a XC6VLX75T FPGA with a 0.17% PSNR loss, is also proposed. Furthermore, an

early termination technique for the adaptive bilateral motion estimation (ABIME) algorithm is

proposed. The proposed technique reduces the energy consumption of the ABIME hardware

by 29% with a 0.04% PSNR loss on a XC6VLX75T FPGA. In addition, an efficient weighted

coefficient overlapped block motion compensation (WC-OBMC) hardware which reduces the

dynamic power consumption of the reference WC-OBMC hardware by 22% is proposed. The

proposed hardware is capable of processing 57 720p frames per second on a XC6VLX75T

FPGA. Finally, the ABIME hardware is implemented on a Xilinx ML605 FPGA board.

V

DÜġÜK GÜÇ TÜKETĠMLĠ HAREKET TAHMĠNĠNE DAYALI ÇERÇEVE HIZI

ARTIRIMI DONANIM TASARIMLARI

Tevfik Zafer ÖZCAN

EE, Yüksek Lisans Tezi, 2011

Tez DanıĢmanı: Yard. Doç. Dr. Ġlker HAMZAOĞLU

Anahtar Kelimeler: Çerçeve hızı artırımı, gerçek hareket tahmini, uyarlanır hareket tahmini,

hareket dengeleme, donanım tasarımı.

ÖZET

Video ve ekran teknolojilerindeki ilerlemeler sayesinde, yakın zamanda 100 Hz, 120 Hz

ve 240 Hz görüntü hızlarına sahip düz ekran Yüksek Çözünürlüklü Televizyon (YÇT)

ekranları piyasaya çıkarıldı. Fakat video görüntüleri 24 Hz'den 60 Hz'e değiĢen farklı

zamansal çözünürlüklerde kaydedilmekte ve yayınlanmaktadır. Bu farklı video

çözünürlüklerini yüksek görüntü hızlı ekranlarda doğru bir Ģekilde görüntülemek için, yeni

çerçeveler oluĢturulmalı ve görüntü hızını artırabilmek için video dizinine eklenmelidir. Bu

nedenle Çerçeve Hızı Artırımı (ÇHA) bir ihtiyaç olmuĢtur. Hareket Tahminine (HT) dayalı

ÇHA algoritmaları, HT dayalı olmayan ÇHA algoritmalarına oranla daha yüksek kaliteli

sonuçlar vermektedir. HT dayalı ÇHA algoritmaları iki temel adımdan oluĢur, Hareket

Tahmini ve Hareket Dengeleme ile Aradeğerleme (HDA). HT’de ardıĢık çerçeveler

arasındaki Hareket Vektörleri (HV) hesaplanır. HDA adımında bu HV bilgisi kullanılarak

yeni çerçeve oluĢturulur ve orijinal çerçeveler arasına yerleĢtirilir. Bu iki temel adıma ek

olarak oluĢturulan çerçevenin kalitesini artıracak ara adımlar da uygulanabilir. Bu ara adımlar

genellikle HV alanını iyileĢtirme, HV Düzleme ve Çift Yönlü HT ĠyileĢtirmesi gibi çeĢitli

algoritmaları içerir.

 Bu tezde, blok eĢleĢtirme HT donanımı için hatasız mutlak değer tahmin tekniği

önerildi. Önerilen teknik bir Tam Arama HT Donanımı’nın XC2VP30-7 FPGA’sında güç

tüketimini PSNR kaybı olmaksızın % 2.2 azalttı. Buna ek olarak bir Global Hareket Tahmini

(GHT) algoritması ve donanımı önerildi. GHT algoritması 3 Boyutlu Özyineli Arama (3BÖA)

algoritmasının PSNR değerini %2.5 artırırken önerilen donanım saniyede 341 720p çerçeve

iĢleyebilmektedir. Ayrıca GHT için uyarlanır bir teknik önerildi ve bu teknik %0.17 PSNR

kaybıyla donanımın XC6VLX75T FPGA’sında enerji tüketimini %14.37 azalttı. Ayrıca

Uyarlanır Çift Yönlü Hareket Tahmini (UÇYHT) Donanımı için bir erken sonlandırma

tekniği önerildi. Önerilen teknik donanımın XC6VLX75T FPGA’sında enerji tüketimini

%0.04 lük bir PSNR kaybıyla % 29 azalttı. Ayrıca Ağırlıklı Katsayılı ÇakıĢmıĢ Blok Hareket

Dengeleme (AK-ÇBHD) algoritması için verimli bir donanım önerildi. Önerilen verimli

donanım referans donanımının XC6VLX75T FPGA’sında güç tüketimini %22 azalttı ve

saniyede 57 720p çerçeve iĢleyebilmektedir. Son olarak, UÇYHT donanımı Xilinx ML605

FPGA kartında çalıĢtırıldı.

VI

Acknowledgements

First and foremost I would like to thank my advisor Dr. Ġlker Hamzaoğlu for his

invaluable guidance and support throughout my study. I appreciate very much for his

suggestions, detailed reviews, invaluable advices and life lessons. I particularly want to thank

him for his confidence and belief in me during my study. He has been a great mentor to me

and I feel privileged to be his student.

I am sincerely grateful to my thesis committee members, Dr. Ayhan Bozkurt, Dr. Meriç

Özcan, Dr. Hakan Erdoğan and Dr. Mustafa Parlak, for their invaluable feedback.

I would like to thank to all members of System-on-Chip Design and Testing Lab, Yusuf

Adıbelli, Serkan Yalıman, Kadir Akın, Aydın Aysu and Onur Can Ulusel who have been

greatly supportive during my study. I also would like to thank Defne Kocaoğlu who was

always there for me and provided me with endless motivation.

I would also like to express my deepest gratitude for my beloved family, NeĢe and

Ahmet Özcan, who always believed in me, and always tried their best to make things easier

for me.

Finally I would like to acknowledge Sabancı University and TÜBĠTAK for supporting

me throughout my graduate education.

VII

TABLE OF CONTENTS

Abstract ... IV

ÖZET .. V

Acknowledgements ... VI

TABLE OF CONTENTS .. VII

LIST OF FIGURES ... IX

LIST OF TABLES .. XI

LIST OF ABBREVIATIONS ... XII

1 INTRODUCTION ... 1

 1.1 Thesis Contribution .. 4

2 A PERFECT ABSOLUTE DIFFERENCE PREDICTION METHOD FOR

BLOCK MATCHING MOTION ESTIMATION HARDWARE 8

 2.1 Absolute Difference Prediction Technique .. 8

 2.2 Perfect Absolute Difference Prediction Method .. 13

3 GLOBAL MOTION ESTIMATION ALGORITHM AND HARDWARE 15

 3.1 Global Motion Estimation Algorithm .. 15

 3.2 Global Motion Estimation Hardware ... 20

4 EARLY TERMINATED ADAPTIVE BILATERAL MOTION

ESTIMATION ALGORITHM AND HARDWARE ... 24

 4.1 Bilateral Motion Estimation Algorithm and Hardware 24

 4.2 Early Terminated Adaptive Bilateral Motion Estimation Algorithm

and Hardware .. 28

5 AN EFFICIENT WEIGHTED COEFFICIENT OVERLAPPED BLOCK

MOTION COMPENSATION HARDWARE ... 33

 5.1 Weighted Coefficient Overlapped Block Motion Compensation

Algorithm and Hardware .. 33

 5.2 An Efficient Weighted Coefficient Overlapped Block Motion

VIII

Compensation Hardware .. 42

6 ADAPTIVE BILATERAL MOTION ESTIMATION HARDWARE

IMPLEMENTATION ON AN FPGA BOARD ... 46

 6.1 XILINX ML605 FPGA Board ... 46

 6.2 Adaptive Bilateral Motion Estimation Hardware Implementation 47

7 CONCLUSION AND FUTURE WORK .. 49

Bibliography .. 51

IX

LIST OF FIGURES

Figure 1.1 : An Example FRUC System .. 1

Figure 1.2 : Effect of Picture Repetition. .. 2

Figure 1.3 : Generation of Even Numbered Frames ... 6

Figure 1.4 : Comparison of Even Numbered Frames ... 7

Figure 2.1 : Full Search ME ... 9

Figure 2.2 : Comparison Prediction Hardwares ... 10

Figure 3.1 : Candidate Search Locations Set for 3DRS 16

Figure 3.2 : Blocks Used for GME ... 17

Figure 3.3 : PSNR Comparison of the Proposed Techniques 19

Figure 3.4 : Number of SAD Calculations Comparison 19

Figure 3.5 : 3DRS Motion Estimation Hardware ... 20

Figure 3.6 : GME Hardware ... 22

Figure 4.1 : Hole and Overlapping Regions ... 24

Figure 4.2 : Bilateral Motion Estimation .. 25

Figure 4.3 : Bilateral ME as a Refinement Step ... 25

Figure 4.4 : ABIME Hardware ... 27

Figure 4.5 : PSNR Comparison of Proposed Techniques 30

Figure 4.6 : SAD Calculation Comparison of Proposed Techniques 30

Figure 5.1 : Overlapping Regions in OBMC .. 34

Figure 5.2 : Block Overlapping for the First Quarter of Block B 36

Figure 5.3 : Overlapping Blocks for WC-OBMC .. 37

Figure 5.4 : Top-level Block Diagram of WC-OBMC Hardware 39

X

Figure 5.5 : Data Re-use ... 40

Figure 5.6 : Data Hit ... 41

Figure 5.7 : Data Miss .. 41

Figure 5.8 : Top-level Block Diagram of Proposed WC-OBMC Hardware 44

Figure 6.1 : Block Diagram of Xilinx ML605 FPGA Board 46

Figure 6.2 : Block Diagram of MicroBlaze Processor Sub-System 47

Figure 6.3 : Board Implementation of ABIME Hardware 48

XI

LIST OF TABLES

Table 2.1 : Average PSNR and Bit Rate for Several Video Sequences 12

Table 2.2 : Comparison of Motion Estimation Hardware Architectures 14

Table 3.1 : PSNR Comparison of the Proposed Techniques 18

Table 3.2 : Number of SAD Calculations Comparison 18

Table 3.3 : Area and Performance Comparison of the Proposed Techniques ... 23

Table 3.4 : Power and Energy Consumptions of the Proposed Techniques 23

Table 4.1 : Number of Updated Vectors at Level 3 and 4 and Number of

These Vectors Also Updated at Lower Levels .. 28

Table 4.2 : PSNR Comparison of Proposed Techniques 29

Table 4.3 : SAD Calculation Comparison of Proposed Techniques 29

Table 4.4 : Area and Performance Comparison of Proposed Techniques 32

Table 4.5 : Power and Energy Consumptions of Proposed Techniques 32

Table 5.1 : Simulation Results for OBMC Algorithms 38

Table 5.2 : Comparison of Hardware Architectures .. 45

XII

LIST OF ABBREVIATIONS

3DRS : 3-D Recursive Search

ABIME : Adaptive Bilateral Motion Estimation

AD : Absolute Difference

AGME : Adaptive Global Motion Estimation

BIME : Bilateral Motion Estimation

BM : Block Matching

BRAM : Block RAM

BSW : Bilateral Search Window

CB : Current Block

CF : Current Frame

ET-ABIME: Early Terminated Adaptive Bilateral Motion Estimation

FRUC : Frame Rate Up-Conversion

FS : Full Search

GME : Global Motion Estimation

GMV : Global Motion Vector

HD : High Definition

LFSR : Linear Feedback Shift Register

MB : Macro Block

MC-FAVG : Motion Compensated Field Averaging

MC-FRUC : Motion Compensated Frame Rate Up-Conversion

MCI : Motion Compensated Interpolation

ME : Motion Estimation

MSE : Mean Squared Error

MV : Motion Vector

OBMC : Overlapped Block Motion Compensation

PE : Processing Element

PF : Previous Frame

PSNR : Peak Signal-to-Noise Ratio

XIII

SAD : Sum of Absolute Differences

SD : Standard Definition

SW : Search Window

VCD : Value Change Dump

 WC-OBMC: Weighted Coefficient Overlapped Block Motion Compensation

1

Chapter 1

INTRODUCTION

Recently flat panel high definition television (HDTV) displays with 100 Hz, 120 Hz and

240 Hz picture rates are introduced. However, video materials are captured and broadcast in

different temporal resolutions ranging from 24 Hz to 60 Hz. In order to display these video

formats correctly on high picture rate displays, new frames should be generated and inserted

into the original video sequence to increase its frame rate. Therefore, frame rate up-

conversion (FRUC) has become a necessity [1]. An example FRUC scheme in which the

frame rate of the input video sequence is multiplied by 4 is shown in Fig. 1.1.

Figure 1.1: An Example FRUC System

The existing FRUC algorithms are mainly classified into two types [2]. First class of

algorithms do not take motion of the objects into account, like frame repetition (FR) [3] or

linear interpolation (LI) [4]. These algorithms are easy to implement without a significant

computational cost. However, at high spatial and temporal resolutions, these algorithms

produce visual artifacts [5] like motion judder (if the difference between input and output

2

frame rate is below 30 Hz) and motion blur (for higher differences). Fig. 1.2 shows the effect

of these two situations [1].

In Fig. 1.2(a) the original sequence is shown, where the linear motion of an object is

illustrated as a straight line for 3 frames. In Fig. 1.2(b), the case where the motion of the

object is recorded by a 24 frames per second (fps) camera and displayed on a 60 Hz display is

shown. When picture repetition is applied, some frames will be displayed two times and some

will be displayed three times. This is called a 2-3 pull down [6]. In this case the viewer will

experience an irregular or jerky motion which is called motion judder. On the other hand, in

Fig. 1.2(c), the case where a 50 Hz video is displayed on a 100 Hz display using picture

repetition is shown. In this case, the viewer will experience a smooth motion, as the difference

between input and output frame rates is higher than 30 Hz. However, the object will be

perceived in both positions moving in parallel simultaneously, which will result in a double or

blurred object. This is called motion blur.

 (a) (b) (c)

Figure 1.2: Effect of Picture Repetition (a) Original sequence (b) Picture repetition from

24 Hz to 60 Hz (c) Picture repetition from 50 Hz to 100 Hz.

Second class of FRUC algorithms take the motion of objects into account to reduce

these artifacts and construct higher quality interpolated frames [2]. These Motion

Compensated Frame Rate Up-Conversion (MC-FRUC) algorithms consist of two main stages,

Motion Estimation (ME) and Motion Compensated Interpolation (MCI). In ME, a Motion

Vector (MV) is calculated between successive frames, and in the MCI step this MV data from

the previous step is used to generate a new frame to be inserted between the initial two

successive frames, thus doubling the frame rate. This operation can be repeated to further

increase the frame rate. In addition to the two main steps, there may be intermediate steps to

improve the quality of the interpolated video output. These intermediate steps generally

3

involve refinement of the MV field by various algorithms like Motion Vector Smoothing and

Bilateral ME Refinement.

Among several ME algorithms, Block Matching (BM) is the most preferred method.

BM divides the frames of video sequences into NxN pixel blocks and tries to find the best

matching block according to a cost function from previous frames inside a given search range.

The most common cost function is Sum of Absolute Differences (SAD), because of its low

computational cost. There are various BM algorithms proposed in the literature. Full Search

(FS) algorithm has the best performance as it exhaustively searches every location in the

given search range [1]. However, its computational complexity is very high, especially for

HD videos. On the other hand, many fast block matching algorithms are available [7-10],

which have much less computational complexity while producing acceptable quality results.

When motion vectors are generated for FRUC applications, it is important that the vectors

represent real motion of the objects which is called the true motion [1]. Although, these

algorithms find the best SAD match which is sufficient for video compression, this does not

guarantee that those vectors represent the true motion of the objects. Therefore, generally,

these algorithms perform poorly when used in frame rate up-conversion applications.

There are several ME algorithms [11-15] which aim to extract the true motion

information between the frames of video sequences. These algorithms depend on two

assumptions. The objects are larger than blocks so that neighbors of a block should have

similar motions, and motions are continuous and spread through a duration of time so that

blocks in successive frames of a video sequence should have similar motions. A recursive

search algorithm takes advantage of these assumptions, and for the current block evaluates the

motion vectors of spatial and temporal neighboring blocks instead of doing an exhaustive or

static patterned search. 3-D Recursive Search (3DRS) [11] is one of the best implementations

of these assumptions, and produces a smooth and accurate motion vector field suitable for

MC-FRUC applications.

The MVs are obtained by ME process which assumes that objects move along the

motion trajectory. However, during this process holes and overlapped areas may be produced

in the interpolated frames due to no motion trajectory passing through and multiple motion

trajectories passing through, respectively [16]. This degrades the quality of generated frames.

This problem can be solved by median filtering overlapped pixels [17], and using spatial

interpolation methods for holes [18], or prediction methods by analyzing MV fields for

covered and uncovered regions [16][19]. However, these methods require complex operations

and give unsatisfactory results in cases of non-static backgrounds and camera motions.

4

Bilateral ME (BIME) algorithms are recently proposed to avoid holes and overlapped areas in

interpolated frames more effectively [20]-[23]. BIME algorithms construct a MV field for the

interpolated frame and do not produce any overlapped areas or holes during interpolation.

BIME algorithms can be used as a refinement step after ME [20].

MVs obtained by ME are used for MCI in ME based FRUC algorithms. BM ME

assumes that all the pixels in a block have the same motion since a single MV is found for

each block. However, the parts of several objects that move in different directions can be in

the same block or MVs obtained by ME may not represent the true motion of the objects

because of ME errors [24]. In these cases, block based MCI produces blocking artifacts or

block boundary discontinuities which reduce the resulting video quality both in terms of

subjective and objective metrics. Overlapped Block Motion Compensation (OBMC) is used to

avoid these blocking artifacts and increase the resulting video quality in ME based FRUC [25]

and in video compression [26]. OBMC determines the motion of each pixel in a block by

considering the MV of the block itself and the MVs of the neighboring blocks. OBMC is

performed by increasing the size of the blocks in the interpolated frame during frame

interpolation.

1.1 Thesis Contribution

In this thesis, we first propose a perfect absolute difference prediction (P-ADP) method

based on the comparison prediction technique proposed in [27]. P-ADP method corrects the

incorrect predictions in the same clock cycle. Since the clock period of the ME hardware is

long enough to perform two subtractions in one clock cycle, if the prediction is incorrect, the

correct subtraction is done by changing the select inputs of the multiplexers in the same clock

cycle. The proposed technique reduces the average dynamic power consumption of the 256

processing element (PE) fixed block size ME hardware proposed in [28] by 2.2% without any

PSNR loss on a XC2VP30-7 FPGA.

Then, we propose a Global Motion Estimation (GME) algorithm and its hardware

implementation. In order to improve the performance of the 3DRS algorithm [29], a method

for including the effect of camera motions which are independent from the movements of the

objects is developed. The proposed GME algorithm finds a global motion vector (GMV) for a

frame by performing ME using FS algorithm on a set of blocks in this frame, and it uses this

GMV as an additional candidate MV for 3DRS ME. The proposed algorithm results in a 2.5%

5

PSNR increase on average. We also propose an Adaptive GME algorithm (AGME) and its

hardware architecture. The adaptive technique checks the validity of the GMV and the

presence of global motions by using the statistics of selected MVs during ME with 3DRS and

if GME is not necessary it is disabled adaptively. The proposed adaptive technique reduces

the energy consumption of the GME hardware by 14.37% with a PSNR loss of 0.17% on

average on a XC6VLX75T FPGA. The proposed hardware is capable of processing 341 720p

frames per second.

In addition, we propose an early termination technique for the adaptive bilateral motion

estimation (ABIME) algorithm proposed in [30]. The proposed early terminated ABIME (ET-

ABIME) algorithm exploits the spiral search pattern to adaptively change the size of Bilateral

Search Window (BSW) of a MB based on the success of BIME vector refinement process for

the neighboring spatial and temporal MBs. The proposed technique reduces the energy

consumption of the ABIME hardware by 29% with a PSNR loss of 0.04% on a XC6VLX75T

FPGA.

We also propose an efficient WC-OBMC hardware based on the reference hardware

presented in [31]. The proposed hardware reduces redundant operations done in the reference

hardware by using the prior information about the MVs of the interpolated block and its

neighboring blocks and adaptively changes the processing flow based on this data. The

proposed hardware also uses a pipelining technique to increase the throughput of the reference

hardware. The proposed hardware reduces the dynamic power consumption of the reference

hardware by 22% and it is capable of processing 57 720p frames per second.

Finally, the proposed ABIME hardware in [30] is implemented on a ML605 FPGA

board which is a state-of-the-art Xilinx board. In the FPGA implementation, we used the

ABIME hardware as a slave peripheral and MicroBlaze processor as a master. We also

implemented a software running on MicroBlaze processor. Using this software, inputs are

transferred to the hardware from a host computer, the outputs of the hardware are sent to the

host computer and also displayed on a monitor.

In this thesis, the performances of FRUC algorithms are evaluated as follows. Every

even numbered frame is omitted from the sequence and ME is employed between odd frames.

Then, MCI step is applied using these MVs to re-synthesize the even numbered frames as

shown in Fig. 1.3. After all even numbered frames are generated, the original even numbered

frames and interpolated even numbered frames are compared as shown in Fig. 1.4. The

comparison is done using Mean Squared Error (MSE) metric by calculating the differences of

each pixel at the same locations in the original and interpolated frames and summing the

6

squares of these values as shown in Equation (1.1). After all MSEs for all even numbered

frames are found, the corresponding Peak Signal-to-Noise (PSNR) ratios are found as shown

in Equation (1.2). PSNR is a widely used objective evaluation metric for evaluating the

quality of video sequences.

(1.1)

where N and M denote the frame height and width respectively, I is the interpolated frame and

O is the original frame.

(1.2)

where MAX is the maximum value of a pixel. If pixels are represented by 8 bits, then MAX is

255.

Figure 1.3: Generation of Even Numbered Frames

7

Figure 1.4: Comparison of Even Numbered Frames

The rest of the thesis is organized as follows. In Chapter 2, a perfect absolute difference

prediction method for block matching motion estimation hardware is presented. In Chapter 3,

a global motion estimation algorithm and its hardware architecture are presented. In addition,

an adaptive technique for GME is presented. Chapter 4 explains the early terminated adaptive

bilateral motion estimation algorithm and its hardware implementation. In Chapter 5, an

efficient weighted coefficient overlapped block motion compensation hardware

implementation is presented. In Chapter 6, board implementation of bilateral motion

estimation hardware is explained. Finally, Chapter 7 concludes this thesis.

8

Chapter 2

A PERFECT ABSOLUTE DIFFERENCE PREDICTION METHOD FOR BLOCK

MATCHING MOTION ESTIMATION HARDWARE

2.1 Absolute Difference Prediction Technique

The block based ME methods use Block Matching (BM) Algorithms, which divide the

frames of video sequences into NxN pixel blocks and try to find the best matching block

according to a cost function from previous frames inside a given search range. The most

common cost function is Sum of Absolute Differences (SAD) shown in Equation (2.1),

because of its low computational complexity. The pixels inside a block are assumed to

have the same MV, which is assigned to by BM algorithms.

 (2.1)

Full Search (FS) algorithm is based on computing SADs at all possible locations in a

given search window. It takes a block in the current frame n, whose top left pixel is at

position and compares it to every block in the previous frame, n-1, inside a pre-defined

search area which is also centered at . The motion trajectory connecting the best

matching block (with the minimum SAD) in the previous frame with the current block

is assigned as the Motion Vector V of . This process is illustrated in Fig. 2.1 [1]. The

definition of full search is given in Equations (2.2) and (2.3), where C denotes the candidate

motion vectors pointing to possible search locations inside the search area SA, N and M

denotes width and height of SA respectively, V denotes the selected MV.

 (2.2)

9

 (2.3)

FS guarantees finding the minimum SAD value inside a given search range. However, it

is not designed to extract the true motion of the objects between frames and it is

computationally expensive as it exhaustively evaluates every possible MV candidate.

Figure 2.1: Full Search ME

BM ME hardware architectures perform absolute difference (AD) operations for

calculating SAD values [28, 32, 33]. The number of AD operations performed by BM ME

algorithms is very high. For example, FS algorithm performs 103,809,024 AD operations for

finding motion vectors of a CIF (352x288) frame in a [-16, 15] search range. Using larger

frame sizes, larger search ranges or multiple reference frames significantly increases the

number of AD operations performed.

Therefore a comparison prediction (CP) technique for reducing the power consumption

of BM ME hardware by reducing the power consumption of absolute difference operations is

proposed in [27]. CP technique replaces the 8-bit comparator in AD hardware with a few

gates. CP technique can easily be used in all BM ME hardware.

10

The proposed technique is applied to the 256 processing element (PE) fixed block size

ME hardware proposed in [28]. This ME hardware implements full search algorithm with a

zigzag search flow in a [-16, +15] search range. It finds the search location in the search

window (SW) that best matches the 16x16 current Macroblock (MB) based on SAD criterion.

While the SW is searched for the current MB, each PE stores a current MB pixel and

calculates the AD with corresponding pixels in the SW. ADs calculated by the 256 PEs for a

search location are added by a pipelined adder tree in order to calculate the SAD value of this

search location. After the SAD values for all search locations in the SW are calculated, the

search process for the current MB finishes.

(a)

(c)

(b)

(d)

Figure 2.2: (a) AD Hardware, (b) Reset based ADP Hardware (c) Enable based ADP

Hardware (d) Perfect ADP Hardware

11

Proposed technique reduces the average dynamic power consumption of this ME

hardware by 6.1% with a 0.01% Peak Signal-to-Noise Ratio (PSNR) loss and by 9.3% with

0.04% PSNR loss on a XC2VP30-7 FPGA.

The AD hardware used in the 256 PE fixed block size ME hardware is shown in Fig. 2.2

(a). It includes an 8-bit comparator, two 8-bit 2to1 multiplexers, an 8-bit subtractor, and an 8-

bit register. AD hardware compares the 8-bit current MB pixel with the 8-bit SW pixel and

subtracts the smaller one from the larger one. The result of the comparison is used to select

the proper pixels for subtraction so that result of subtraction is always positive.

The proposed CP technique avoids the comparison in the AD hardware by predicting

the comparison result using the previous subtraction result. As shown in Fig. 2.2 (b) and (c),

the proposed technique stores an initial prediction in a D Flip-Flop (DFF), and updates it after

each incorrect prediction. The initial prediction predicts that current MB pixel will be

subtracted from the SW pixel. If the sign bit of the subtraction result is 0, the prediction is

correct and the DFF is not updated. If the sign bit of the subtraction result is 1, the prediction

is incorrect and the prediction in the DFF is reversed. This new prediction is used for

predicting the comparison results for the following pixels.

When the comparison prediction is incorrect, the result of the subtraction operation is

different from the absolute difference of the two input pixels. This causes PSNR loss. Since

the pixels in the SW usually have high spatial correlation, CP technique has very high

prediction accuracy. Therefore, it causes very small PSNR loss. The accuracy of the

comparison prediction is determined on 5 video sequences each with 80 frames. The results

show that the proposed CP technique correctly predicts the results of 90.1% of the

comparisons performed by the PEs.

When there is an incorrect prediction, the larger pixel value is subtracted from the

smaller one and the subtraction result is negative. Using this negative value for SAD

calculation will result in an incorrect SAD. In order to reduce the impact of this negative

value on the SAD and therefore reduce the impact of using incorrect predictions on the PSNR

obtained by ME, four different methods; reset based AD prediction (R-ADP), enable based

AD prediction (E-ADP), R-ADP used with a checkerboard pattern (CR-ADP) and E-ADP

used with a checkerboard pattern (CE-ADP) are proposed in [27].

As shown in Fig. 2.2 (b), R-ADP method uses the sign bit of the subtraction result as a

reset signal for the 8-bit register used for storing the absolute difference result. When an

incorrect prediction is done, this 8-bit register is set to 0. Therefore, instead of a negative

value, 0 is used for SAD calculation. Since the SW pixels have high spatial correlation, in

12

case of consecutive incorrect comparison predictions, it is likely that the current MB pixel

value is close to the SW pixel values. Therefore, predicting absolute difference as 0 will have

a small impact on SAD.

As shown in Fig. 2.2 (c), E-ADP method uses the inverse of the sign bit of subtraction

result as an enable signal for the 8-bit register used for storing absolute difference result.

When an incorrect prediction is done, this 8-bit register is disabled. Therefore, instead of a

negative value, previous absolute difference is used for SAD calculation. In case of

consecutive incorrect comparison predictions, predicting absolute differences as 0 may cause

the SAD to be smaller than it should be and this SAD value may incorrectly be selected as the

minimum SAD. E-ADP method avoids this by using the previous absolute difference in case

of incorrect comparison prediction. In addition, since E-ADP method keeps previous AD

value in the 8-bit register, it does not consume dynamic power for setting the 8-bit register to

0.

CR-ADP method applies the R-ADP method to 128 of the 256 PEs in the PE array. CE-

ADP method applies the E-ADP method to 128 of the 256 PEs in the PE array. In both CR-

ADP and CE-ADP methods, the 128 PEs are determined by a checkerboard pattern. The

Comparison

Prediction

Accuracy

Quantization

Parameter

Absolute

Difference

Proposed Methods

R-ADP CR-ADP E-ADP CE-ADP

Bit

Rate
PSNR

Bit

Rate
PSNR

Bit

Rate
PSNR

Bit

Rate
PSNR

Bit

Rate
PSNR

V
id

eo
 S

eq
u

en
ce

s

Foreman

(288x352)
90.9%

25

30

35

1753

804

398

38.916

35.588

32.252

2088

1016

534

38.893

35.466

31.920

1800

837

417

38.909

35.556

32.147

1814

1023

525

38.902

35.474

31.968

2070

833

411

38.910

35.563

32.197

Mobile

(288x352)
86.5%

25

30

35

9440

6647

4444

38.226

33.146

28.074

9382

6692

4496

38.216

33.130

28.036

9331

6602

4376

38.221

33.140

28.069

9487

6557

4481

38.216

33.139

28.048

9338

6566

4383

38.225

33.141

28.071

Mother &

Daughter

(288x352)

91.3%

25

30

35

2149

1198

658

39.972

36.496

32.966

2217

1248

663

39.942

36.437

32.829

2170

1200

660

39.966

36.480

32.861

2163

1203

699

39.948

36.459

32.834

2150

1214

662

39.967

36.462

32.901

Akiyo

(288x352)
93.3%

25

30

35

2219

1447

955

41.193

37.336

35.183

2258

1495

903

41.166

37.254

35.006

2211

1415

955

41.183

37.299

35.128

2329

1444

955

41.180

37.279

35.100

2257

1422

898

41.186

37.300

35.174

Paris

(288x352)
89.6%

25

30

35

6102

4126

2716

38.703

34.155

29.395

6288

4268

2817

38.678

34.129

29.357

6243

4136

2719

38.690

34.145

29.388

6170

4221

2775

38.689

34.139

29.363

6121

4178

2718

38.695

34.145

29.390

Average PSNR

 Loss

25

30

35

─

0%

0%

0%

─

0.06%

0.17%

0.44%

─

0.02%

0.06%

0.17%

─

0.04%

0.13%

0.34%

─

0.01%

0.06%

0.08%

Table 2.1: Average PSNR and Bit Rate for Several Video Sequences

13

proposed R-ADP, E-ADP, CR-ADP, CE-ADP methods are integrated to H.264 JM reference

encoder software version 14.2. The average PSNR (dB) and bit rate (Kbps) obtained by these

methods for several video sequences for 16x16 fixed block size full search motion estimation

in a [-16, 15] search range with zigzag search flow are given in Table 2.1.

2.2 Perfect Absolute Difference Prediction Method

In this thesis, we propose perfect ADP (P-ADP) technique. As shown in Fig. 2.2 (d), P-

ADP method corrects the incorrect predictions in the same clock cycle. Since the clock period

of the ME hardware is long enough to perform two subtractions in one clock cycle, if the

prediction is incorrect, the correct subtraction is done by changing the select inputs of the

multiplexers in the same clock cycle. The predicted absolute difference is calculated before

the negative edge of the clock. In order to detect the incorrect prediction, the sign bit of the

prediction is stored in a negative edge triggered DFF. When the clock is low, if the output of

this DFF is 1, the select inputs of the multiplexers are corrected by an XOR operation with the

current incorrect prediction, and the correct prediction is stored in the DFF. Therefore, if the

prediction is correct, the absolute difference is calculated with one subtraction operation. If

the prediction is incorrect, the absolute difference is calculated with two subtraction

operations. Since 90.1% of the absolute differences are calculated with one subtraction

operation, P-ADP method reduces the average dynamic power consumption of the ME

hardware with no PSNR loss.

The proposed P-ADP method is implemented in Verilog HDL and this hardware

implementation is integrated to the 256 PE ME hardware. The resulting Verilog RTL codes

are synthesized to a XC2VP30-7 FPGA using Precision RTL 2005b and mapped to the same

FPGA using ISE 8.2i. The ME hardware implementations are verified with post place & route

simulations using Modelsim 6.1c.

The power consumptions of the ME hardware are estimated using Xilinx XPower tool.

In order to estimate the dynamic power consumption of a ME hardware, timing simulation of

the placed & routed netlist of that ME hardware is done at 50 MHz for a full frame of the

Foreman video sequence using Mentor Graphics ModelSim 6.1c and the signal activities are

stored in a Value Change Dump (VCD) file. This VCD file is used for estimating the dynamic

power consumption of that ME hardware.

14

AD

Proposed Methods

R-ADP CR-ADP E-ADP CE-ADP P-ADP

value value
%

red.
value

%

red.
value

%

red.
value

%

red.
value

%

red.

A
r
e
a
 Slices 9353 8628 8 8934 4 8542 9 9039 3 8885 5

LUTs 16145 14353 11 15210 6 14217 12 15261 5 14621 9

DFFs 7377 7633 -3 7505 -2 7633 -3 7505 -2 7893 -6

Average

Dynamic Power

(mW)

775.90 713.39 8.1 729.57 6.0 704.09 9.3 728.77 6.1 758.36 2.2

Table 2.2: Comparison of Motion Estimation Hardware Architectures

The area and power consumptions of ME hardware with standard AD and ME hardware

with proposed methods are given in Table 2.2. The ME hardware with R-ADP, E-ADP, CR-

ADP, CE-ADP and P-ADP methods use 8%, 9%, 4%, 3% and 5% less slices than the ME

hardware with standard AD. The ME hardware with R-ADP, E-ADP, CR-ADP, CE-ADP and

P-ADP methods have 8.1%, 9.3%, 6.0%, 6.1% and 2.2% less dynamic power consumption

than the ME hardware with standard AD.

R-ADP and E-ADP methods reduce the dynamic power consumption and area of the

ME hardware more than the CR-ADP and CE-ADP methods. However, R-ADP and E-ADP

methods have a PSNR loss of 0.06% and 0.04% respectively, whereas CR-ADP and CE-ADP

methods have a PSNR loss of 0.02% and 0.01% respectively. The P-ADP method reduces the

dynamic power consumption less than the other methods, but it obtains the same PSNR as the

full search algorithm. Therefore, one of these five methods can be used for ME depending on

performance and power consumption requirement of the video compression or video

enhancement application.

15

Chapter 3

GLOBAL MOTION ESTIMATION ALGORITHM AND HARDWARE

3.1 Global Motion Estimation Algorithm

The physical three-dimensional motion projected onto two-dimensional space is

referred to as true motion. The ability to track true motion by observing changes in luminance

intensity is critical to many video applications such as FRUC [24]. Different from the other

motion estimation algorithms like FS, a true motion estimation algorithm should also take

other measures into account like spatio-temporal consistency of the MV field around objects.

This is based on two assumptions. Objects are larger than blocks so that MV field around a

block should be smooth and objects have inertia, i.e. object motions are spread through time

to several frames. Therefore, motions of the objects can also be tracked by analyzing previous

frames.

There are several true motion estimation algorithms in the literature [11-15] that check

the spatio-temporal consistency around blocks to obtain the true motion of the object

containing that block. Three Dimensional Recursive Search (3DRS) [11] is one of the best

implementations of these two assumptions. Instead of evaluating all possible candidate

locations in a search window, 3-D recursive search algorithm uses spatial and temporal

predictions to select only a few candidate vectors from the 3-D neighborhood (spatial and

temporal neighbors) of the current block, thus reducing computational complexity of ME

which is the most computationally expensive part of MC-FRUC and also resulting in a

smooth and accurate true MV field.

There are two problems with the first assumption in 3DRS. First, because of the

processing order of the blocks (starting from top-left block and ending with the bottom-right

block), not all of the spatial neighboring blocks of the current block (CB) are available, e.g.

the blocks to the right of the CB and the blocks that are below the CB. This problem is solved

16

with the second assumption. Since the motion of the object continues over several frames,

instead of the motion vectors of the spatial neighboring blocks that are not yet calculated the

motion vectors of the corresponding temporal neighboring blocks are used.

Second, all vectors are zero or undefined at initialization. Therefore, the motion vector

of the object cannot be found in any of the neighboring blocks in the first frame. This problem

is solved by adding random update vectors from a pre-defined set of noise vectors, filling the

MV field with not accurate but possible motion data. In [29], it is proposed to use the

candidate set shown in Equation (3.1) and illustrated in Fig 3.1. Squares marked as S are

vectors taken from spatial neighbors and square marked as T is the vector taken from the

previous frame. CB denotes the current block.

Figure 3.1: Candidate Search Locations Set for 3DRS

 (3.1)

where the update vectors and are randomly selected from the following

update set:

 (3.2)

17

In order to improve the performance of the 3DRS algorithm [29], a method for

including the effect of camera motions which are independent from the movements of the

objects is developed in this thesis. For this purpose a Global Motion Vector (GMV) is added

to the candidate set of 3DRS algorithm. FS algorithm is used to find the GMV because of its

suitability for hardware implementation. The proposed Global Motion Estimation (GME)

algorithm performs ME using FS algorithm on a set of blocks in a frame. As shown for a

1280x720 size frame in Fig 3.2, these blocks are selected from the blocks that are close to the

edges since they are more likely to belong to the background. After ME is performed on these

selected blocks, average MVs are calculated for each edge. Then, GMV is calculated by

finding the median of these 4 MVs and averaging the median two values. One GMV is found

for each frame and used as an additional candidate in 3DRS ME algorithm for the following

frame in time.

Considering that the camera movements might be continuous for several frames and

there might not be any camera movements between the frames, performing GME between

every frame can result in redundant operations. In order to avoid these redundant operations, a

technique for detecting the necessity of the GME is also proposed. After GME is performed

on the first frame in time, if the GMV is selected more than 1/8 of the blocks in the frame

during ME with 3DRS, it is assumed that the GMV is still valid. Therefore, GME is not

performed again and the current GMV is used in the next frame. In addition, the {0, 0} vector

Figure 3.2: Blocks Used for GME (1280x720 Resolution)

18

Video Resolution

FR LI 3DRS GME AGME

PSNR (dB) PSNR (dB) PSNR (dB) PSNR (dB)
PSNR

Diff. (%)
PSNR (dB)

PSNR

Diff. (%)

Mobile 352 x 288 20.6415 25.2320 24.5158 26.1554 6.69% 26.1770 6.78%

Foreman 352 x 288 26.2470 29.8586 30.5020 31.3653 2.83% 31.4403 3.08%

Spiderman 720 x 576 21.6702 23.6874 23.9321 23.8181 -0.48% 23.9591 0.11%

Irobot 720 x 576 21.6651 23.4856 24.3188 24.4581 0.57% 24.3753 0.23%

Gladiator 720 x 576 19.9773 22.0586 23.4640 23.1621 -1.29% 23.1284 -1.43%

ParkJoy 1280 x 720 18.2158 20.1119 22.5827 24.1018 6.73% 23.9542 6.07%

SthmlPan 1280 x 720 21.9768 23.9610 33.1125 33.9925 2.66% 34.0646 2.88%

NewMobCal 1280 x 720 26.1470 29.7561 31.8369 32.8922 3.31% 32.9302 3.43%

ParkJoy 1920x1080 18.2866 20.1520 23.3245 24.5479 5.25% 24.0730 3.21%

CrowdRun 1920x1080 21.5343 24.2368 26.3229 26.4787 0.59% 26.4757 0.58%

DucksTakeOff 1920x1080 26.3352 29.4377 29.5996 29.8033 0.69% 29.7990 0.67%

Average

2.50%

2.33%

Table 3.1: PSNR Comparison of the Proposed Techniques

Video Resolution

3DRS GME AGME

Number of SAD

Calculations

Number of SAD

Calculations

Number of SAD

Calculations
Reduction (%)

Mobile 352 x 288 57024 12118272 586560 -95.16%

Foreman 352 x 288 57024 12118272 1078080 -91.10%

Spiderman 720 x 576 233280 13557504 929472 -93.14%

Irobot 720 x 576 233280 13557504 659136 -95.14%

Gladiator 720 x 576 233280 13557504 929472 -93.14%

ParkJoy 1280 x 720 518400 20360192 14110464 -30.70%

SthmlPan 1280 x 720 518400 20360192 8892160 -56.33%

NewMobCal 1280 x 720 518400 20360192 14110464 -30.70%

ParkJoy 1920x1080 1157760 21212672 15577472 -26.57%

CrowdRun 1920x1080 1157760 21212672 2732416 -87.12%

DucksTakeOff 1920x1080 1157760 21212672 2732416 -87.12%

Average

-71.47%

Table 3.2: Number of SAD Calculations Comparison

19

Figure 3.3: PSNR Comparison of the Proposed Techniques

Figure 3.4: Number of SAD Calculations Comparison

is added to the candidate set of 3DRS and if this vector is selected more than 1/8 of the blocks

in the frame during ME with 3DRS, it is assumed that there is no global motion present.

20

22

24

26

28

30

32

34

36
P

SN
R

 (
d

B
)

3DRS

GME

AGME

0

5.000.000

10.000.000

15.000.000

20.000.000

25.000.000

N
u

m
b

e
r

o
f

SA
D

 C
al

cu
la

ti
o

n
s

3DRS

GME

AGME

20

Therefore, GME is not performed. Using these two techniques, an adaptive GME (AGME)

algorithm is developed.

The performance and computational cost comparison of the proposed GME and AGME

algorithms with 3DRS algorithm is shown in Tables 3.1 and 3.2, and Figures 3.3 and 3.4. In

addition, Table 3.1 shows that motion compensated frame rate up conversion techniques give

better performance than frame repetition (FR) and linear interpolation (LI) techniques. The

proposed GME algorithm increases PSNR of 3DRS algorithm by 2.50% on average. AGME

algorithm reduces the computational load of GME algorithm by 71.47% at the expense of an

average PSNR loss of 0.17%.

3.2 Global Motion Estimation Hardware

For performance and power consumption comparison, efficient hardware architectures

for implementing 3DRS, GME and AGME algorithms are proposed. The 3DRS ME hardware

Figure 3.5: 3DRS Motion Estimation Hardware

21

is shown in Fig 3.5. It consists of control unit, MV array, MV selector, 256 PE array, LFSR

module and the data arrays for reference and current frames. When the hardware starts

processing the first frame, since the MV array is empty, it is filled by the MVs generated

using the LFSR. After the MV array is initialized with random MVs, the processing of the

following frame starts. Control unit sends the position of the current block to the MV array.

Using this information MV array reads the MVs that will be used during ME, updates the

ones which will be updated and forms the candidate MVs. At the same time, the current block

is written to current block data array. Then, the reference block for the current candidate MV

is written to the reference block data array. When both the current and the reference blocks

are ready, SAD calculation is performed using the 256 PE array and the result is sent to the

MV selector. For each candidate MV, new data for the reference block is written to the

reference block data array. After SAD value of each candidate MV is found, MV selector

selects the MV with the smallest SAD and stores it in the MV array. This process is repeated

for all the blocks.

The GME hardware is shown in Fig 3.6. It consists of the 3DRS ME hardware, a global

motion estimation module and a BRAM array to store the search window used during FS.

GME module checks the position of the current block. If this block is one of the sampling

blocks shown in Fig 3.2, it generates a signal indicating that GME is enabled and sends this

signal to the relevant parts of the hardware. This enable signal indicates that for that block, FS

will be performed on a [-32, +32] search range. In that case, the necessary search window is

written to the BRAM array. Then, for each search location starting from the upper left corner

to the lower right corner, the reference block array is filled in a zigzag pattern. While the FS

ME is performed for the current block, at the same time, the 3DRS ME for the current block

is performed. The MV found by FS ME is sent to the GME module, and it is added to the

register of the edge the current block belongs to. For the blocks that are not used for GME,

only 3DRS ME is performed. After the ME is completed for all the blocks in a frame, GMV is

calculated using the information stored in the GME module and used in the ME of the

following frame.

In the AGME hardware, while ME is done using 3DRS, the number of times GMV is

selected and the number of times {0, 0} vector is selected are stored. Using this information,

GME module decides if GME will be performed or not, and generates the GME enable signal.

If GME is not enabled, the hardware only performs ME with 3DRS and the GMV is not

updated.

22

Figure 3.6: GME Hardware

The proposed 3DRS, GME and AGME hardware architectures are implemented in

Verilog HDL. The resulting Verilog RTL codes are synthesized to a Xilinx XC6LVX75T

Virtex-6 FPGA using Synopsys Synplify Pro and mapped to the same FPGA using Xilinx ISE

11.4. The ME hardware implementations are verified with post place & route simulations

using Modelsim 6.1c. The performance and the area usage of these hardware are shown in

Table 3.3. The power consumptions of these ME hardware are estimated using Xilinx XPower

tool and shown in Table 3.4. In order to estimate the dynamic power consumption of a ME

hardware, timing simulation of the placed & routed netlist of that ME hardware is done at 50

MHz for the even frames of first 11 frames of the NewMobCal video sequence using Mentor

Graphics ModelSim 6.1c, and the signal activities are stored in a Value Change Dump (VCD)

file. This VCD file is used for estimating the dynamic power consumption of that ME

hardware. The results show that the AGME hardware has 14.37% less energy consumption

than the GME hardware.

23

 3DRS Hardware GME Hardware AGME Hardware

LUTs 7999 9324 9286

Slices 2160 2504 2546

BRAMs 4 24 24

Frequency (MHz) 280 210 210

Table 3.3: Area and Performance Comparison of the Proposed Techniques

3DRS Hardware GME Hardware AGME Hardware Reduction

Average Power Consumption per Frame (mW) 107.495 158.830 144.762

Execution Time per Frame (msec) 7.073 12.442 11.661

Average Energy Consumption per Frame (mJ) 0.760 1.976 1.692 14.37%

Table 3.4: Power and Energy Consumptions of the Proposed Techniques

24

Chapter 4

EARLY TERMINATED ADAPTIVE BILATERAL MOTION ESTIMATION

ALGORITHM AND HARDWARE

4.1 Bilateral Motion Estimation Algorithm and Hardware

One of the potential problems with BM algorithms for FRUC is the possible hole and

overlapped areas in the interpolated frames. Since a new frame is generated by interpolation

between previous frame (PF) and current frame (CF) based on motion vectors (MV) and these

vectors are obtained by ME which assumes that objects move along the motion trajectory,

holes and overlapped areas may be produced in the interpolated frames due to no motion

trajectory passing through and multiple motion trajectories passing through, respectively [16].

This degrades the quality of generated frames as shown in Fig 4.1. This problem can be

solved by median filtering overlapped pixels [17], using spatial interpolation methods for

holes [18], or prediction methods by analyzing MV fields for covered and uncovered regions

[16][19]. However, these methods have high computational complexity and give

Figure 4.1: (a) Hole and Overlapping Regions (b) Frame Generated by Bilateral ME

25

unsatisfactory results, especially in cases of non-static backgrounds and camera motions. To

overcome this problem more efficiently, Bilateral Motion Estimation (Bi-ME) methods are

proposed [20]-[23], which construct a MV field from the viewpoint of the to-be-interpolated

frame, and therefore do not produce any overlapped areas or holes during interpolation.

In other ME algorithms, an NxN size block from CF, CB, is kept stationary and a match

for this CB is searched inside a search window in PF. In Bi-ME, an imaginary frame is

assumed to exist which will be the intermediate frame after it is interpolated, and ME is

performed from the viewpoint of this frame. Therefore, the block inside the to-be-interpolated

frame is kept stationary and a match for this block is tried to be found both in CF and PF at

symmetric locations to each other. The trajectory connecting two symmetric blocks in CF and

PF always passes through the stationary block inside the to-be-interpolated frame. When the

best match is found, the trajectory between two symmetric blocks is assigned as the MV to the

block that will be interpolated. The Bi-ME process is shown in Fig. 4.2.

Figure 4.2: Bilateral Motion Estimation

Motion

Estimation
Refinement MCI

Initial

MV Field

Bilateral

MV Field

Interpolated

Frame

Previous

Frame

Current

Frame

Figure 4.3: Bilateral ME as a Refinement Step

26

Bi-ME, when used exclusively as the ME step, does not yield acceptable results for

MC-FRUC applications due to its lack of true motion estimation capability. It is proposed in

[27] that Bi-ME can be used as a refinement step to a ME algorithm as shown in Figure 4.3.

An adaptive bilateral motion estimation (ABIME) algorithm and its hardware

implementation are proposed in [30]. The proposed ABIME algorithm refines the motion

vector field between successive frames by employing a spiral search pattern and by adaptively

assigning weights to candidate search locations. The ABIME algorithm searches the best SAD

match in the Bilateral Search Window (BSW) starting from the center and evaluates the

candidate search locations by assigning weights. It conserves the true motion property of the

motion vector field by favoring the candidate search locations near the center where the initial

MV points to.

The proposed ABIME algorithm refines MVs found by a true ME algorithm to improve

the FRUC quality. The search process is performed by calculating the SAD between the

16x16 current MB and 16x16 reference MB at each candidate search location in their

respective BSWs. After the SAD value for a search location is calculated, current MB and

reference MB moved symmetrically in the current frame (CF) BSW and the reference frame

(RF) BSW.

 The block diagram of the proposed ABIME hardware is shown in Fig. 4.4. The

hardware is composed of 16 BRAMs, 2 Vertical Rotators, 2 Horizontal Splitters, 2 Horizontal

Shifters, PE Array, Control Unit, Adder Tree and Comparator & MV Updater. The hardware

finds refined MV of a 16x16 MB using the proposed adaptive Bi-ME algorithm in a [-4, 4]

pixel search range. Its latency is 9 clock cycles; 1 cycle for Control Unit, 1 cycle for

synchronous read from memory, 1 cycle for Vertical Rotator, 4 cycles for Adder Tree and 2

cycles for Comparator & MV Updater. The Control Unit generates the required address and

control signals to compute the weighted sum of bilateral absolute difference (WSBAD) values

of candidate search locations in BSWs in RF and CF. After the WSBAD value of a search

location is calculated, Comparator & MV Updater compares this WSBAD value with the

minimum WSBAD value in order to determine the search location that produces minimum

WSBAD value and the corresponding refined MV.

 In conventional BM ME algorithms, current macroblock (MB) pixels do not change

during the search process of a MB, only the reference MB pixels change for each search

location. However, in Bi-ME algorithms, both current MB pixels and reference MB pixels

change during the search process. This increases control overhead and memory accesses. The

proposed all connected 256 processing element (PE) systolic array, ladder type memory

27

Figure 4.4: ABIME Hardware

organization, symmetric data placement in memory and data alignment techniques reduce the

amount of memory accesses by enabling high amounts of data reuse.

28

4.2 Early Terminated Adaptive Bilateral Motion Estimation Algorithm and Hardware

In this thesis, we propose an early termination technique for reducing the computational

complexity of the ABIME algorithm. The proposed early terminated ABIME (ET-ABIME)

algorithm exploits the spiral search pattern to adaptively change the size of BSW of a MB

based on the success of BIME vector refinement process for the neighboring spatial and

temporal MBs. Our experiments showed that the success of BIME vector refinement for a MB

is correlated with the success of BIME vector refinement for the neighboring MBs. Therefore,

in order to determine the size of BSW of the current MB, the proposed technique checks the

number of its spatial and temporal neighboring MBs whose MVs are updated by the ABIME

algorithm. If the MVs of at least 5 out of 9 spatial and temporal neighboring MBs of the

current MB are updated by the ABIME algorithm, it uses a [-4, +4] BSW for the current MB.

Otherwise, it uses a [-2, +2] BSW for the current MB. As shown in Table 4.1, our

experiments also showed that 83.27% of the MVs updated at the 3rd and 4th levels of the

spiral search pattern are also updated at the lower levels. Therefore, when the proposed

technique decides to use a [-4, +4] BSW for the current MB, ABIME is performed on the 3rd

and 4th levels of the BSW only if the initial MV is updated in any of the lower levels.

Video Resolution

Number of MVs

Updated at 3rd or 4th

Levels

Number of These

MVs also Updated at

Lower Levels

%

Football 352 x 240 435 339 77.93%

Mobile 352 x 288 6 5 83.33%

Foreman 352 x 288 52 39 75.00%

Spiderman 720 x 576 4383 4310 98.33%

Irobot 720 x 576 2220 2036 91.71%

Gladiator 720 x 576 3960 3835 96.84%

ParkJoy 1280 x 720 4027 3814 94.71%

SthmlPan 1280 x 720 470 298 63.40%

NewMobCal 1280 x 720 4 3 75.00%

DucksTakeOff 1280 x 720 216 165 76.39%

Average

83.27%

Table 4.1: Number of Updated Vectors at Level 3 and 4 and Number of These Vectors

Also Updated at Lower Levels

29

Resolution 3DRS

3DRS+

BIME

[20]

3DRS+

EBIME

[22]

3DRS+

ABIME

[30]

3DRS+

ET-ABIME

[proposed]

Bi-ME Search

Range
- - -4,+4 -4,+4 -4,+4 Adaptive

Football 352x240 20.56 21.79 22.03 21.67 21.58

Mobile 352x288 27.74 26.29 26.43 28.07 28.07

Foreman 352x288 31.85 33.42 33.65 33.19 33.13

Spiderman 720x576 23.98 24.59 24.25 24.41 24.32

Irobot 720x576 24.33 24.55 24.43 24.92 24.77

Gladiator 720x576 22.90 24.77 23.10 24.06 24.25

ParkJoy 1280x720 24.10 24.61 24.81 24.76 24.71

SthlmPan 1280x720 34.00 34.13 34.06 34.73 34.61

NewMobCal 1280x720 33.70 33.85 33.79 34.76 34.76

Table 4.2: PSNR Comparison of Proposed Techniques

 Resolution
EBIME

[22]

BIME[20]

ABIME
ET-ABIME

Diff. (%)

ET-ABIME

vs. ABIME

Football 352x240 4,949,343 1,309,770 554,778 -57.64%

Mobile 352x288 5,973,345 1,571,724 592,452 -62.31%

Foreman 352x288 5,973,345 1,571,724 540,932 -65.58%

Spiderman 720x576 25,080,111 6,429,780 4,295,900 -33.19%

Irobot 720x576 25,080,111 6,429,780 2,625,756 -59.16%

Gladiator 720x576 25,080,111 6,429,780 3,640,252 -43.38%

ParkJoy 1280x720 56,165,319 14,288,400 6,814,696 -52.31%

SthlmPan 1280x720 56,165,319 14,288,400 4,601,856 -67.79%

NewMobCal 1280x720 56,165,319 14,288,400 4,908,624 -65.65%

Average -56%

Table 4.3: SAD Calculation Comparison of Proposed Techniques

PSNR and computational load comparison of ABIME and ET-ABIME techniques and

previously proposed bilateral motion estimation algorithms are shown in Tables 4.2 and 4.3.

The comparison of ABIME and ET-ABIME techniques is also shown in Figures 4.5 and 4.6.

30

Figure 4.5: PSNR Comparison of Proposed Techniques

Figure 4.6: SAD Calculation Comparison of Proposed Techniques

The results show that the proposed ET-ABIME algorithm produces better PSNR results for all

video sequences than basic 3DRS algorithm. For 4 of 9 video sequences either ABIME or ET-

ABIME provides better quality than both BIME and EBIME algorithms. For the 2 of the 12

video sequences BIME provides the best quality but our proposed ET-ABIME algorithm

20

22

24

26

28

30

32

34

36
P

SN
R

 (
d

B
)

ABIME

ET-ABIME

0

2.000.000

4.000.000

6.000.000

8.000.000

10.000.000

12.000.000

14.000.000

16.000.000

N
u

m
b

e
r

o
f

SA
D

 C
al

cu
la

ti
o

n
s

ABIME

ET-ABIME

31

provides on the average 0.24 dB better quality than Bi-ME. For the 3 video sequences

EBIME provides the best quality. However, as shown in Table 4.3, EBIME is more than 8

times computationally intensive than ET-ABIME algorithm. On the average, ET-ABIME

produces 0.03% less PSNR than ABIME. But, it performs 56.33% less SAD calculations than

ABIME.

We also integrated the proposed early termination technique to ABIME hardware. This

is done by adding one BRAM to the ABIME hardware to store the information whether the

MVs of the blocks are updated by ABIME algorithm or not, and by modifying the control unit

shown in Fig. 4.4 to determine the size of the BSW based on this information. The ET-

ABIME hardware consumes less energy than the ABIME hardware by both adaptively

reducing the size of the BSW and using the early termination technique. In addition, when a [-

2, +2] BSW is used, only the data in the BRAMs required for a [-2, +2] BSW are updated.

Therefore, the switching activity in the BRAMs are reduced which further reduces the energy

consumption.

The proposed ET-ABIME hardware architecture is implemented in Verilog HDL. The

Verilog RTL codes are synthesized to a Xilinx XC6VLX75T FPGA using Synopsys Synplify

Pro and mapped to the same FPGA using Xilinx ISE 11.4. The hardware implementations are

verified with post place & route simulations using Mentor Graphics Modelsim 6.1c.

As shown in Table 4.4, the performances and areas of the ABIME and ET-ABIME

hardware implementations are almost the same. The ABIME hardware consumes 4320 slices

(14067 LUTs and 6869 DFFs), which is 37% of all slices of a XC6VLX75T FPGA. PE array

consumes 2376 slices (8192 LUTs), one Vertical Rotator consumes 316 slices (1024 LUTs),

one Horizontal Splitter consumes 70 slices (128 LUTs), one Horizontal Shifter consumes 159

slices (243 LUTs), Adder Tree consumes 883 slices (1927 LUTs) and the remaining slices are

used for Comparator & MV Updater, Control Unit and multiplexers before address ports of

the BRAMs. In addition, 9216 bits on-chip memory is used for storing CF BSW and RF

BSW. These 9216 bits are stored in 16 BRAMs.

The power consumptions of the ABIME and ET-ABIME hardware are estimated using

Xilinx XPower tool. In order to estimate the dynamic power consumption of a BIME

hardware, timing simulation of the placed & routed netlist of that BIME hardware is done at

50 MHz for the even numbered frames of the first 11 frames of the SthlmPan video sequence

using Mentor Graphics ModelSim 6.1c and the signal activities are stored in a Value Change

Dump (VCD) file. This VCD file is used for estimating the dynamic power consumption of

32

that BIME hardware. As shown in Table 4.5, the proposed early termination technique

reduced the energy consumption of the ABIME hardware by 29.37%.

 ABIME Hardware ET-ABIME Hardware

LUTs 14067 13919

Slices 4320 4441

BRAMs 16 17

Frequency (MHz) 240 220

Table 4.4: Area and Performance Comparison of Proposed Techniques

ABIME Hardware ET-ABIME Hardware

Average Power Consumption per Frame (mW) 192.056 165.706

Execution Time per Frame (msec) 20.452 16.741

Average Energy Consumption per Frame (mJ) 3.928 2.774

Reduction in Energy Consumption (%)

29.37%

Table 4.5: Power and Energy Consumptions of Proposed Techniques

33

Chapter 5

 AN EFFICIENT WEIGHTED COEFFICIENT OVERLAPPED BLOCK MOTION

COMPENSATION HARDWARE

5.1 Weighted Coefficient Overlapped Block Motion Compensation Algorithm and

Hardware

Motion Compensated Field Averaging (MC-FAVG) [1] is the most basic MCI method.

MC-FAVG algorithm combines two adjacent frames linearly. Each block in the PF is shifted

towards the CF according to the value of its MV, and similarly each block in the CF is shifted

towards PF along its motion trajectory. The algorithm is shown in Equation (5.1)

(5.1)

where denotes the intensity value of the pixel at location in frame n, α denotes the

up-conversion ratio (0.5 for doubling the frame rate), and is the MV associated with that

pixel.

The block based ME uses the assumption that all the pixels in a block have the same

motion as there exists a single motion vector for each block. However, different parts of

objects that move in different directions can be in the same block or MV field generated by

the ME step may not represent the correct motion of the objects due to ME errors. In these

cases, conventional block based interpolation may produce blocking artifacts or block

boundary discontinuities that reduce the quality of the video both in subjective and objective

metrics.

Overlapped Block Motion Compensation [25] is developed in order to avoid these

blocking artifacts and increase the quality of the resulting frame in MC-FRUC. It is also used

in video compression standards such as H.263 [26]. The main idea of OBMC is based on

34

determining the motion of each pixel in a block by considering the motion vector of the block

itself and the motion vectors of its neighboring blocks.

A simple OBMC technique is implemented in [20]. It employs OBMC during the

interpolation stage by enlarging every NxN block in the to-be-interpolated frame to (N+2w) x

(N+2w) block which form overlapped areas of width w in every block as shown in Fig 5.1.

The purpose of this operation is having a smooth transition between adjacent blocks. The

pixels at the corners of an NxN block are located in the overlapped area of the 4 neighboring

blocks. The intensities of these pixels are calculated by averaging the intensity values

generated by the motion vectors of each respective block. The intensities of the pixels that are

located at the side boundaries of the interpolated block are calculated by averaging the

intensity values generated by the motion vectors of the interpolated block and the adjacent

block. The remaining interpolation is done by only using the motion vector of the to-be-

interpolated block.

For example, in Fig 5.1, OBMC is not applied to the pixels in R1 region as these pixels

belong to a single block. The pixels that are located in R2 regions should be interpolated by

taking motion vectors of both adjacent blocks into account, as these pixels belong to both

blocks. The pixels in R3 region are in the overlapped area of 4 neighboring blocks, therefore

the interpolations of these pixels are performed by using 4 different motion vectors.

Figure 5.1: Overlapping Regions in OBMC

35

The interpolation of the block B is defined as in Equations (5.2), (5.3) and (5.4) where

the neighboring blocks are Ni= 1, 2… 8, refers to the motion vector of the block B at

position and denote the motion compensated field averaging for pixel at

using motion vector V of block B.

1. For R1:

 (5.2)

2. For R2:

where Ni {N2, N4, N5, N7}. (5.3)

3. For R3:

(5.4)

where Sk is the sum of the MC-FAVG results for the neighboring blocks overlapped

with B in R3 and defined as:

(5.5)

A sinusoidal OBMC algorithm is proposed in [20]. In sinusoidal OBMC algorithm, NxN

blocks are enlarged to 2N x 2N blocks as shown in Fig. 5.2. In the figure, the dashed lines

show the enlarged versions of the blocks. Therefore, each pixel in an interpolated block is

located in the overlapped area of the interpolated block and its 3 neighboring blocks. For

example, the neighboring blocks N1, N2 and N4 are used for interpolation of the first quarter

of block B. The other 3 quarters of block B are interpolated similarly using the appropriate

neighboring blocks.

36

In [20], the coefficients of the pixels are determined by a sinusoidal function. We used

the following sinusoidal equation

 (5.6)

 where c denotes the coefficient of a pixel in the interpolated block and x is determined by the

distance of the position of this pixel to the center of the interpolated block. As shown in Fig.

5.2, the coefficient of the pixel that is closest to the center of the interpolated block is given

the largest weight. The coefficients of the pixels in the interpolated block are then reduced

according to the sinusoidal function towards the boundaries of the interpolated block. In the

figure, the coefficients of the pixels in the interpolated block are represented by a dashed line

which is between 1 and 0.5, while the coefficients of the pixels in the enlarged neighboring

block are represented by a straight line which is between 0 and 0.5.

Figure 5.2: Block Overlapping for the First Quarter of Block B

Since there are 3 overlapping neighboring blocks for each quarter of the interpolated

block, the coefficients are determined individually between the interpolated block and one of

its neighboring blocks. For the vertical and horizontal neighbors, the coefficients are

determined by the distances in x and y directions, and for the diagonal neighbor, the

coefficients are calculated using the data obtained from horizontal and vertical neighbors.

37

Figure 5.3: Overlapping Blocks for WC-OBMC

In [31], a novel OBMC algorithm, WC-OBMC, which has both lower computational

complexity and higher PSNR results is proposed. In WC-OBMC algorithm, same as

sinusoidal OBMC algorithm, NxN blocks are enlarged to 2N x 2N blocks. Therefore, an

interpolated block has 4 quarter areas, and each pixel in a quarter is located in the overlapped

area of the interpolated block and its vertical, horizontal and diagonal neighboring blocks.

After the MCFA results for the interpolated pixel are computed for each motion vector, the

interpolated pixel is calculated by weighted averaging of these values.

Unlike sinusoidal OBMC algorithm, in WC-OBMC algorithm, the coefficients of the

pixels in the interpolated block and in the enlarged neighboring blocks are constant for each

block. Because of this, WC-OBMC has lower computational complexity and is easier to

implement than sinusoidal OBMC. For each quarter, the weight of the interpolated block is

determined as 5/8 and the weights of the neighboring blocks are determined as 1/8 in order to

implement the division with shift operations.

The computations required for each pixel in block B in Fig. 5.3 are shown in (5.7), (5.8),

(5.9) and (5.10).

For 1Qp


:

 (5.7)

For 2Qp


:

 (5.8)

38

For 3Qp


:

 (5.9)

For 4Qp


:

(5.10)

The basic OBMC [20], sinusoidal OBMC [21], and WC-OBMC algorithms are

implemented in C in [31]. For the basic OBMC algorithm NxN blocks are enlarged to (N +

N/2) x (N + N/2) blocks, and the adaptive technique for determining the coefficients used in

sinusoidal OBMC is not implemented. Table 5.1 shows the simulation results for three

1280x720 HD video sequences. The results show that basic OBMC algorithm performs better

than MCFA with no OBMC algorithm. Sinusoidal OBMC algorithm performs better than

basic OBMC algorithm. However, it has high computational complexity. WC-OBMC

algorithm, in addition to its low computational complexity, produces better PSNR results than

both the basic OBMC and sinusoidal OBMC algorithms.

NewMobCal

PSNR (dB)

ParkJoy

SthlmPan

MCFA 33.69 24.19 34.15

Basic OBMC 33.80 24.45 34.23

Sinusoidal OBMC 33.80 24.48 34.24

WC-OBMC 33.87 24.60 34.29

Table 5.1: Simulation Results for OBMC Algorithms

A hardware architecture for WC-OBMC algorithm is also proposed in [31]. The block

diagram of this WC-OBMC hardware is shown in Fig. 5.4. This hardware is composed of 3

BRAMs which store the motion vectors, the current frame and the reference frame,

Accumulator, Frame Address Generator, Frame Border Detector, Motion Vector Address

Generator, MV Splitter and Control Unit.

The current and reference frames are stored in off-chip SRAM. Since off-chip SRAM

access has higher access time and consumes more power than BRAM access, 2 BRAMs are

used to store 80x80 current frame pixels and 80x80 reference frame pixels for the interpolated

block. The horizontal and vertical components of MVs for each block are assumed to be

previously found by a ME algorithm and stored in a BRAM. The interpolated frame is

39

Figure 5.4: Top-level Block Diagram of WC-OBMC Hardware

generated by applying WC-OBMC algorithm to each pixel in all the blocks, and stored in off-

chip SRAM. For each pixel, the corresponding motion vectors are accessed, and these motion

vectors are used to determine the location of the pixels that will be used from the current and

reference frames.

The motion vector address generator generates the addresses for the MVs of the

interpolated block and its neighboring blocks. It decides which MVs will be accessed by using

the block and pixel position provided by the control unit. Since some of the neighboring

blocks do not exist at the borders of a frame, the inputs from the frame border detector are

used to check if the neighbors of the interpolated block exist or not. If a neighboring block

does not exist, the MV of the interpolated block is used instead of the MV of the neighboring

block. The motion vector address generator module sends the address of the required MV to

the BRAM containing the MV.

 The MV read from the BRAM is split into its x and y components and these

components are expanded to 16 bits by the motion vector splitter. The MV is stored in a

buffer in the motion vector splitter, because it may be required for two cycles. The MV

components are sent to the frame address generator and they are combined with the current

40

Figure 5.5: Data re-use

block and pixel position for calculating the addresses of the required pixels in both current

and reference frames. The calculated addresses are sent to the frame1 and frame2 BRAMs.

 The BRAMs for current and reference frames store 80x80 pixels each. Since [-64, +64]

pixels search window is generally enough to obtain high quality results for FRUC and only

half of the values of motion vectors are used for interpolation, 80x80 pixel BRAMs store all

the pixels needed for a specific block. Since the off-chip SRAM is accessed by a 32 bit data

bus and each pixel is 8 bits, in each cycle 4 pixels are read from SRAM and written to

BRAM. Storing 80x80 pixels in the BRAMs allows large amount of data re-use. A BRAM

consists of 5x5 blocks, 16x16 pixels each. The block that will be interpolated, shown as the

white block in Fig. 5.5, is located at the center of the 80x80 pixels. After the interpolation of a

block is finished, for the next block, only 5x1 blocks will be read from the off-chip SRAM

and written to BRAMs in place of the blocks that are not needed. The 5x4 blocks (80x64

pixels) in the BRAMs will be re-used for the next block. The replaced blocks are shown as the

dark grey blocks in Fig. 5.5. As an exception, all the blocks (80x80 pixels) will be replaced

for the first blocks in each row of the interpolated frame.

 Fig. 5.5 also shows the data layout in the 80x80 pixels BRAM and the block

replacements during the interpolation of the consecutive blocks. The numbers in Fig. 5.5

represent the order of the columns in the original frames. As a result of this data re-use

scheme, orders of the columns in the BRAMs are not always the same. Therefore, frame

address generator maps the positions of the required pixels to the corresponding addresses of

the BRAMs.

 Since the required pixel positions in the BRAMs are determined with respect to position

of the interpolated block in the BRAM, the interpolated block position is provided to the

41

frame address generator. The frame address generator calculates the horizontal and vertical

positions of the required pixels using the position of the interpolated block in the BRAM and

the corresponding MV components. Since the interpolated block is not always located at the

center of the BRAM, in some cases the calculated horizontal position might point to a

location where no data is available.

 Therefore, the calculated position is checked to determine whether an out of bounds

condition occurred or not. If an out of bounds occurs, the horizontal position is adjusted so

that it maps to the physical address of the required pixel. For example, in the third step in Fig.

5.5, if the required pixel is in the column 4, the calculated position will point to the right of

the interpolated block where there is no data available, while the required pixel is in the first

column of the BRAM. Therefore, the horizontal position is adjusted in order to map it to the

first column of the BRAM and the address of the required pixel is calculated using this

adjusted horizontal position.

 As it can be seen in Fig. 5.5, in the final step, the layout of the blocks in the BRAM

returns to the initial state where the interpolated block is located at the center of the BRAM.

This rotating data order allows using the same flow for each row of blocks in a frame.

 Since 4 consecutive pixels are accessed in one cycle from a BRAM, data hit and data

miss occur. Every address location contains 4 pixels. When the required 4 pixels are located

in the same address location, data hit occurs as shown in Fig. 5.6. On the other hand, when the

motion vector value does not allow accessing all required 4 pixels from a single address

location, data miss occurs as shown in Fig. 5.7. In this case, one more clock cycle is required

to access the next address line. A control signal indicating whether a data miss occurred or not

Figure 5.6: Data Hit

Figure 5.7: Data Miss

42

is generated by frame address generator, and sent to the relevant modules. Depending on this

signal, the control unit changes the state machine dynamically in order to complete the data

access and motion vector splitter decides whether to use the previously accessed MV or

currently accessed MV. When data miss occurs, the addresses are calculated using the

previous MV stored in motion vector splitter and sent to the BRAMs.

 After the pixels are read from BRAMs, the accumulator splits each input from the

BRAMs into 4 pixels. After the pixels are separated, the coefficients for multiplications are

determined using the state information. The accumulator also checks for data miss using the

frame address information, and if data miss occurs, it selects the requested input pixels and

performs multiplication and accumulation only for these selected pixels. After all the required

pixels are read and processed by the accumulator, the resulting pixel values are put into 32 bit

words containing 4 8-bit pixels and sent to the output of the OBMC hardware. The OBMC

hardware generates 4 pixels in at most 11 and at least 7 clock cycles depending on whether

data hit or miss occurred.

 The WC-OBMC hardware architecture is implemented in Verilog HDL. The Verilog

RTL codes are synthesized and mapped to an 8 million gate FPGA implemented in 0.15 µm

CMOS technology. The WC-OBMC hardware consumes 922 slices (1692 LUTs), which

corresponds to 6% of the slices of the same FPGA. In addition, 12 BRAMs are used to store

motion vectors, current and reference frame data.

 Since 4 pixel output is generated between 7 and 11 clock cycles, the hardware requires

1,612,800 clock cycles in best case and 2,534,400 clock cycles in worst case for a 1280x720

HD frame. The hardware is simulated to generate first 5 odd frames of the ParkJoy sequence

and the simulation results show that the hardware generates a 1280x720 HD frame in

2,266,525 clock cycles on average without considering memory loadings. Since FPGA

implementation works at 61 MHz, it is capable of processing 26 1280x720 HD frames per

second.

5.2 An Efficient Weighted Coefficient Overlapped Block Motion Compensation

Hardware

 In this thesis, we propose an efficient hardware architecture for the WC-OBMC

algorithm by modifying the reference hardware architecture proposed in [31]. The proposed

hardware avoids the redundant memory accesses and arithmetic operations done in the

43

reference hardware by using the prior information about the MVs of the interpolated block

and its neighboring blocks. In the WC-OBMC algorithm, the positions of the required pixels

for interpolation are determined using the MV of the interpolated block and the MVs of three

neighboring blocks for each quarter of the interpolated block. The reference hardware uses all

of these four MVs in a pre-defined order in the state machine with their corresponding

coefficients. If any of these four MVs point to the same pixel position, the same pixel is

accessed again and used for accumulation with the coefficient of its own MV. In the proposed

hardware, this pre-defined processing order is replaced with an adaptive scheme. The MVs

used for each quarter of the interpolated block are compared. If there are same MVs among

the MVs used for a certain quarter, the pixel pointed by those same MVs is only accessed

once and the coefficient of that pixel is adjusted in the accumulation stage. For example, if the

MVs of the interpolated block and two of its neighboring blocks are identical, the coefficient

corresponding to this MV is set to 7/8 while the other coefficient remains as 1/8, and only two

memory accesses are done to the BRAMs which store the frames instead of four memory

accesses. This avoids redundant memory accesses and arithmetic operations.

 The block diagram of the proposed WC-OBMC hardware is shown in Fig. 5.8. The

Motion Vector Address Generator and Motion Vector Splitter modules are removed from the

reference hardware, and Motion Vector Buffer and Coefficient Decider modules are added.

The motion vector buffer generates addresses for the MVs of the interpolated block and its

neighboring blocks at the beginning of interpolation and stores the MVs in a buffer for further

use. The motion vector buffer uses inputs from frame border detector which checks if the

neighbors of the interpolated block exist or not. If a neighboring block does not exist, the MV

of the interpolated block is used instead of the MV of the neighboring block. After all the

required MVs are stored in the buffer, it compares the MVs of each quarter and sends the

result of the comparisons to coefficient decider.

 The coefficient decider determines how many distinct MVs exist for each quarter of the

interpolated block and sends this information to the control unit. It generates two output

vectors, the index of the MV in the motion vector buffer and the corresponding coefficient for

each distinct MV, and sends them to the motion vector buffer. The control unit adaptively sets

the number of states required for the interpolation of each quarter of the interpolated block.

The motion vector buffer extends the x and y components of the distinct MVs to 16 bits and

sends them to the frame address generator.

44

 Figure 5.8: Top-level Block Diagram of Proposed WC-OBMC Hardware

 The frame address generator calculates the addresses using the MV, current block and

pixel position information. The calculated addresses are sent to the frame1 and frame2

BRAMs. A pipeline stage is implemented in frame address generator. This increases the clock

frequency with an overhead of one clock cycle for each output generated for 4 pixels. Since

the same data layout with the reference hardware is used, there is data re-use and data hit or

miss occur. Therefore, the frame address generator sends a control signal to motion vector

buffer and control unit to indicate whether a data miss occurred or not. When data miss

occurs, the motion vector buffer provides the same MV for another clock cycle and the

control unit adjusts the state machine to complete the data access.

 After the pixels are read from BRAMs, the accumulator splits each input from the

BRAMs into 4 pixels. The motion vector buffer provides the corresponding coefficients for

the pixels to the accumulator. The accumulator checks whether data miss occurred or not

using the frame address information, and if data miss occurred, it selects the requested input

pixels and performs multiplication and accumulation only for these selected pixels. After all

the required pixels are processed by the accumulator, the resulting pixel values are put into 32

bit words containing 4 8-bit pixels and sent to the output of the OBMC hardware.

45

 The proposed hardware architecture is implemented in Verilog HDL. The Verilog RTL

codes are synthesized and mapped to an 8 million gate FPGA implemented in 0.15 µm CMOS

technology. The architecture occupies 998 slices (1875 LUTs), which corresponds to 7% of

the same FPGA. In addition, 12 BRAMs are used to store motion vectors, current and

reference frame data. The hardware is simulated to generate first 5 odd frames of the ParkJoy

sequence and the simulation results show that the hardware generates a 1280x720 HD frame

in 1,984,594 clock cycles on average without considering memory loadings. Since FPGA

implementation works at 113 MHz, it is capable of processing 57 1280x720 HD frames per

second.

 The power consumptions of both WC-OBMC hardware implementations on the same

FPGA are estimated at 50 MHz using a gate level power estimation tool. In order to estimate

the power consumption of a WC-OBMC hardware, timing simulation of its placed and routed

netlist is done. ParkJoy frame is used as input for timing simulations and the signal activities

are stored in VCD files. These VCD files are used for estimating the power consumptions of

WC-OBMC hardware implementations using this power estimation tool.

 The performance, area and power consumption comparison of the WC-OBMC

hardware implementations are shown in Table 5.2. The proposed hardware is faster than the

reference hardware, but its area is larger than the reference hardware. The proposed hardware

has 22% less power consumption than the reference hardware.

Area

Maximum Clock

Frequency (MHz)

Execution Time

(clock cycles

per frame)

Performance

(1280x720 fps)

Power

Consumption (mW)

Reference Hardware
922 (Slices)

1692 (LUTs)
61 2,266,525 26 108.22

Efficient Hardware
998 (Slices)

1875 (LUTs)
113 1,984,594 57 84.09

Table 5.2: Comparison of Hardware Architectures

46

Chapter 6

 ADAPTIVE BILATERAL MOTION ESTIMATION HARDWARE

IMPLEMENTATION ON AN FPGA BOARD

6.1 XILINX ML605 FPGA Board

In this thesis, the ABIME hardware proposed in [30] is implemented on a ML605

FPGA board which is a state-of-the-art Xilinx board. As seen in Fig 6.1, the board is

composed of a Virtex 6 XC6VLX240T FPGA, 512 MB DDR RAM and 32 MB Flash

memory and interfaces such as UART and DVI. The board also has MicroBlaze support as

shown in Fig 6.2.

Figure 6.1: Block Diagram of Xilinx ML605 FPGA Board

47

Figure 6.2: Block Diagram of MicroBlaze Processor Sub-System

6.2 Adaptive Bilateral Motion Estimation Hardware Implementation

Since the board was not previously used for any hardware implementation, we first

implemented a basic image processing application, contrast enhancement hardware, in order

to observe the process of the hardware implementation on the board. Using the experience

gained from this preliminary work, a method for implementing the ABIME hardware is

proposed.

A software running on MicroBlaze processor is developed to transfer the inputs of the

ABIME hardware from a host computer in an appropriate order and to gather the outputs of

the hardware for sending them back to the host computer and displaying the resulting frame

on a monitor. The ABIME hardware is added as a peripheral to a bus where the MicroBlaze

processor is the master. For this purpose the ABIME hardware is modified to be a slave

peripheral for this data bus and 4 software accessible registers are added to the hardware. 2 of

these registers are used by the software running on MicroBlaze for writing the inputs to the

hardware and the other 2 are used for gathering the outputs and the status information from

the hardware.

The software gets 2 input frames and the MVs found by 3DRS ME algorithm from the

host computer using the UART interface and writes them to a DDR RAM. Then, it loads the

48

BRAMs of the ABIME hardware with the pixels in two BSWs. After the ABIME hardware

generates the done signal, the software reads the MV updated by the ABIME hardware and

writes it to the DDR RAM. This process is repeated for all the MBs. After all the MBs are

processed, the software runs an interpolation algorithm with the updated MVs and writes the

interpolated frame to the DDR RAM. Finally, the interpolated frame is displayed on a monitor

using the DVI interface of the FPGA board as shown in Fig. 6.3.

Figure 6.3: Board Implementation of ABIME Hardware

49

Chapter 7

CONCLUSION AND FUTURE WORK

In this thesis, we first proposed a perfect absolute difference prediction (P-ADP)

method based on the comparison prediction technique proposed in [27]. P-ADP method

corrects the incorrect predictions in the same clock cycle. Since the clock period of the ME

hardware is long enough to perform two subtractions in one clock cycle, if the prediction is

incorrect, the correct subtraction is done by changing the select inputs of the multiplexers in

the same clock cycle. The proposed technique reduces the average dynamic power

consumption of the 256 processing element (PE) fixed block size ME hardware proposed in

[28] by 2.2% without any PSNR loss on a XC2VP30-7 FPGA.

Then, we proposed a Global Motion Estimation (GME) algorithm and its hardware

implementation. In order to improve the performance of the 3DRS algorithm [29], a method

for including the effect of camera motions which are independent from the movements of the

objects is developed. The proposed GME algorithm finds a global motion vector (GMV) for a

frame by performing ME using FS algorithm on a set of blocks in this frame, and it uses this

GMV as an additional candidate MV for 3DRS ME. The proposed algorithm results in a 2.5%

PSNR increase on average. We also proposed an Adaptive GME algorithm (AGME) and its

hardware architecture. The adaptive technique checks the validity of the GMV and the

presence of global motions by using the statistics of selected MVs during ME with 3DRS and

if GME is not necessary it is disabled adaptively. The proposed adaptive technique reduces

the energy consumption of the GME hardware by 14.37% with a PSNR loss of 0.17% on

average on a XC6VLX75T FPGA. The proposed hardware is capable of processing 341 720p

frames per second.

In addition, we proposed an early termination technique for the adaptive bilateral

motion estimation (ABIME) implementation proposed in [30]. The proposed early terminated

ABIME (ET-ABIME) algorithm exploits the spiral search pattern to adaptively change the

50

size of Bilateral Search Window (BSW) of a MB based on the success of BIME vector

refinement process for the neighboring spatial and temporal MBs. The proposed technique

reduces the energy consumption of the ABIME hardware by 29% with a PSNR loss of 0.04%

on a XC6VLX75T FPGA.

We also proposed an efficient WC-OBMC hardware based on the reference hardware

implemented in [31]. The proposed hardware reduces redundant operations done in the

reference hardware by using the prior information about the MVs of the interpolated block

and its neighboring blocks and adaptively changes the processing flow based on this data. The

proposed hardware also uses a pipelining technique to increase the throughput of the reference

hardware. The proposed hardware reduces the dynamic power consumption of the reference

hardware by 22% and it is capable of processing 57 720p frames per second.

Finally, we implemented the ABIME hardware proposed in [30] on a ML605 FPGA

board which is a state-of-the-art Xilinx board. In the FPGA implementation, we used the

ABIME hardware as a slave peripheral and MicroBlaze processor as a master. We also

implemented a software running on MicroBlaze processor. Using this software, inputs are

transferred to the hardware from a host computer, the outputs of the hardware are sent to the

host computer and also displayed on a monitor.

As future work, a complete FRUC hardware can be developed by integrating the

proposed hardware architectures, and it can be implemented on the ML605 FPGA board.

51

BIBLIOGRAPHY

[1] G. de Haan, Video Processing for Multimedia Systems. Univ. Press Eindhoven, ISBN

90-9014015-8, 2001.

[2] O. A. Ojo and G. de Haan, “Robust Motion-Compensated Video Upconversion,” IEEE

Trans. Consum. Electron., vol. 43, no. 4, pp. 1045-1056, Nov. 1997.

[3] M. Tekalp, Digital video processing. Englewood Cliffs, NJ: Prentice Hall, 1995.

[4] N. Netravali and J. D. Robbins, “Motion-adaptive interpolation of television frames,”

Proc. Picture Coding Symp., p. 115, June 1981.

[5] K. A. Bugwadia, E. D. Petajan, and N. N. Puri, “Progressive-Scan Rate Up-Conversion

of 24/30 Source Materials for HDTV,” IEEE Trans. Consum. Electron., vol. 42, no.3, pp.

312-321, Aug. 1996.

[6] K. A. Bugwadia, E. D. Petajan, N. N. Puri, “Progressive-Scan Rate Up-Conversion of

24/30 Hz Source Materials for HDTV,” IEEE Trans. Consum. Electron., vol. 42, no. 3, pp.

312-321, Aug. 1996.

[7] T. Koga, K.Iinuma, and T. Ishiguro, “Motion compensated interframe coding for video

conferencing,” Proc. NTC, pp. G5.3.1-G5.3.5, Dec. 1981.

[8] A. Puri, H. M. Hang, and D. L. Schilling, “An efficient block matching algorithm for

motion compensated coding,” Proc. IEEE ICASSP, pp. 1063-1066, Apr. 1987.

[9] R. Li, B. Zeng, and M.L. Liou, “A new three-step search algorithm for block motion

estimation,” IEEE Trans. Circuits Syst. Video Technol., vol. 4, no.4, pp. 438–442, Aug. 1994.

[10] L. M. Po and W. C. Ma, “A novel four-step search algorithm for fast block motion

estimation,” IEEE Trans. Circuits Syst. Video Technol., vol. 6, no.3, pp. 313–317, June 1996.

[11] G. de Haan, P. W. A. C. Biezen, H. Huijgen, and O. A. Ojo, “True-motion estimation

with 3-D recursive search block matching,” IEEE Trans. Circuits Syst. Video Technol., vol. 3,

no. 5, pp. 368-379, Oct. 1993.

[12] F. Dufaux and F. Moscheni, “Motion Estimation Techniques for Digital TV: A Review

and a New Contribution,” Proceedings of the IEEE, vol. 83, no. 6, pp. 858–876, 1995.

[13] M. T. Orchard, “Predictive Motion-Field Segmentation for Image Sequence Coding,”

IEEE Trans. Circuits Syst. Video Technol., vol. 3, no. 1, pp. 54–70, 1993.

[14] V. Seferidis and M. Ghanbari, “Generalized Block-Matching Motion Estimation Using

Quad-Tree Structured Spatial Decomposition,” IEEE Proc.-Vis. Image Signal Process, vol.

141, no. 6, pp. 446–452, 1994.

[15] Y-K. Chen and S.Y. Kung, “Rate optimization by true motion estimation,” Proc. of

IEEE Workshop on Multimedia Signal Processing, pp. 187-194, June 1997.

52

[16] B.-W. Jeon, G.-I. Lee, S.-H. Lee, and R.-H. Park, “Coarse-to-fine frame interpolation

for frame rate up-conversion using pyramid structure,” IEEE Trans. Consum. Electron., vol.

49, no.3, pp. 499-508, Aug. 2003.

[17] T.Y. Kuo and C.-C.J. Kuo, “Motion-compensated interpolation for low-bit-rate video

quality enhancement,” SPIE Visual Communications and Image Processing, vol. 3460, pp.

277-288, July 1998.

[18] A. Kaup and T. Aach, “Efficient prediction of uncovered background in interframe

coding using spatial extrapolation,” ICASSP, vol. 5, pp. 501- 504, 1994.

[19] R. J. Schutten and G. D. Haan, “Real-time 2–3 pull-down elimination applying motion

estimation/compensation in a programmable device,” IEEE Trans. Consum.Electron., vol. 44,

no. 3, pp. 501–504, Aug. 1998.

[20] B-T. Choi, S-H. Lee, and S-J. Ko, “New frame rate up-conversion using bi-directional

motion estimation,” IEEE Trans. Consum. Electron., vol.46, no.3, pp. 603-609, Aug. 2000.

[21] B-D. Choi, J-W. Han, C-S. Kim, and S-J. Ko, “Motion-compensated frame interpolation

using bilateral motion estimation and adaptive overlapped block motion compensation,” IEEE

Trans. Circuits Syst. Video Technol., vol. 17, no. 4, pp. 407-416, Apr. 2007.

[22] S-J. Kang, K-R. Cho, and Y. H. Kim, “Motion compensated frame rate up-conversion

using extended bilateral motion estimation,” IEEE Trans. Consum. Electron., vol. 53, no.4,

pp. 1759-1767, Nov. 2007.

[23] S-J. Kang, D-G. Yoo, S-K. Lee, and Y. H. Kim, “Multiframe-based bilateral motion

estimation with emphasis on stationary caption processing for frame rate up-conversion,”

IEEE Trans. Consum. Electron., vol. 54, no.4, pp. 1830-1838, Nov. 2008.

[24] S.-C. Tai, Y.-R. Chen, Z.-B. Huang, C.-C. Wang, “A Multi-Pass True Motion

Estimation Scheme With Motion Vector Propagation for Frame Rate Up-Conversion

Applications”, IEEE/OSA J. Disp. Technol., vol. 4, no. 2, pp. 188-197, June 2008.

[25] M. Orchard and G. Sullivan, “Overlapped block motion compensation: An estimation-

theoretic approach”, IEEE Trans. Image Processing, vol. 3, pp. 693–699, May 1994.

[26] ITU-T, Draft ITU-T Recommendation H.263, “Video Coding for Low Bit Rate

Communication,” 1997.

[27] A. Akın, O. C. Ulusel, T. Z. Ozcan, G. Sayılar, I. Hamzaoglu, “A Novel Power

Reduction Technique for Block Matching Motion Estimation Hardware”, Int. Conference on

Field Programmable Logic and Applications, Sep. 2011.

[28] C. Kalaycioglu, O. C. Ulusel, and I. Hamzaoglu, “Low Power Techniques for Motion

Estimation Hardware”, Int. Conference on Field Programmable Logic and Applications, Aug.

2009.

[29] G. de Haan, “Progress in motion estimation for consumer video format conversion,”

IEEE Trans. Consum. Electron., vol. 46, no. 3, pp. 449-459, Aug. 2000.

53

[30] A. Akin, M. Cetin, B. Erbagci, O. Karakaya, I. Hamzaoglu, “An Adaptive Bilateral

Motion Estimation Algorithm and its Hardware Architecture”, IEEE/IFIP International

Conference on VLSI and System-on-Chip, Sep. 2010.

[31] T. Z. Özcan, Ç. Çakır, M. Çetin, I. Hamzaoglu, “An Overlapped Block Motion

Compensation Hardware for Frame Rate Conversion”, Euromicro Conference on Digital

System Design, Sep. 2011.

[32] W. M. Chao, C. W. Hsu, Y. C. Chang, and L. G. Chen, “A Novel Motion Estimator

Supporting Diamond Search and Fast Full Search,” IEEE ISCAS, May 2002.

[33] O. Tasdizen, A. Akin, H. Kukner, and I. Hamzaoglu, “Dynamically Variable Step

Search Motion Estimation Algorithm and a Dynamically Reconfigurable Hardware for Its

Implementation,” IEEE Trans. on Consumer Electronics, vol. 55, no. 3, Aug. 2009.

http://icproxy.sabanciuniv.edu:2132/search/searchresult.jsp?searchWithin=Authors:.QT.Akin,%20A..QT.&newsearch=partialPref
http://icproxy.sabanciuniv.edu:2132/search/searchresult.jsp?searchWithin=Authors:.QT.%20Cetin,%20M..QT.&newsearch=partialPref
http://icproxy.sabanciuniv.edu:2132/search/searchresult.jsp?searchWithin=Authors:.QT.%20Erbagci,%20B..QT.&newsearch=partialPref
http://icproxy.sabanciuniv.edu:2132/search/searchresult.jsp?searchWithin=Authors:.QT.%20Karakaya,%20O..QT.&newsearch=partialPref
http://icproxy.sabanciuniv.edu:2132/search/searchresult.jsp?searchWithin=Authors:.QT.%20Hamzaoglu,%20I..QT.&newsearch=partialPref

