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Abstract

Quantum computing aims to harness and exploit the quantum mechanical phenom-

ena such as superposition, entanglement and contextuality in order to encode and process

information. In this context, quantum walks, which has been suggested as the quantum

counterpart of classical random walks, is an emerging topic in quantum computing that

provides powerful techniques for developing new quantum algorithms, quantum simula-

tion and quantum state transfer. This thesis intends to investigate the properties of quan-

tum walks which may potentially promote further work in such techniques in quantum

computation.

We first propose a novel method for transferring arbitrary unknown qubit state be-

tween two points in space with quantum walk architecture. We determine the cases pro-

viding perfect state transfers over both finite and infinite lattices with different boundary

conditions and we introduce recovery operators assisting the transfer process. Next, by

modeling the incoherent and coherent transport with classical random walks and quantum

walks, respectively, we calculate the transport efficiencies over an explosive percolation

lattice. We show that the minimal correlation between discrete clusters leads to maximal

localizations which originating from random scatterings. These localization effects, how-

ever, are rather small when compared to the supportive effect of the abrupt growth of the

largest cluster on transport efficiency, which eventually allows us to obtain more efficient

transports in case of minimal correlations. We support our results with further calcula-

tions on whether the eigenstates of the systems we study are localized or not. Lastly,

we turn our attention to the spreading dynamics and the coin-position entanglement for

two-dimensional quantum walks under an artificial magnetic fields by introducing Peierls

phases to the system. In particular, we show that the spreading of the quantum walk is

diffusive rather than ballistic when the ratio of the magnetic flux through unit cell - where

the walk takes place - to the flux quantum is an irrational number. On the contrary, the

walk recovers its original ballistic behavior when this ratio is chosen to be a rational num-

ber. Furthermore, we demonstrate that coin-position entanglement is nearly maximum

under an artificial magnetic field, even for large number of steps.
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KUANTUM YÜRÜYÜŞLERİNİN YAYILIM VE TAŞINIM ÖZELLİKLERİ

İskender Yalçınkaya

Fizik, Doktora Tezi, 2016

Tez Danışmanı: Prof. Dr. Zafer Gedik

Özet

Kuantum hesaplamanın temel amacı bilginin kodlanmasında ve işlenmesinde kuan-

tum mekaniğinin süperpozisyon, dolaşıklık ve bağlamsallık gibi özelliklerinden faydalan-

maktır. Klasik rastgele yürüyüşlerin kuantum karşılığı olarak ortaya atılan kuantum yü-

rüyüşleri, yeni kuantum algoritmaları oluşturma, kuantum benzetimi ve kuantum hal ak-

tarımı konularında etkili teknikler sunması bakımından, kuantum hesaplamanın yoğun

olarak ilgi gören konularından biri haline gelmiştir. Bu çalışmanın amacı, bahsedilen bu

teknikleri geliştirip daha ileriye taşıyabilecek kuantum yürüyüşü özelliklerinin araştırıl-

masıdır.

İlk olarak kuantum yürüyüşlerini kullanarak, bilinmeyen bir kübit halini uzayda iki

nokta arasında aktarmak için özgün bir yöntem geliştirdik. Sonlu ve sonsuz örgüler üze-

rinde farklı sınır koşulları kullanarak mükemmel hal aktarımına olanak sağlayan durum-

ları belirledik ve aktarım sürecine yardımcı olan kurtarma işleçlerini tanımladık. Ardın-

dan, eşevresiz ve eşevreli taşınımları sırasıyla klasik rastgele yürüyüş ve kuantum yürü-

yüşü ile modelleyerek, patlayıcı bir perkolasyon örgüsü üzerindeki taşınım verimlerini

hesapladık. Ayrık topaklar arasındaki asgari bir ilintinin, örgü üzerinde rastgele saçılma

kaynaklı azami yerelleşmelere neden olduğunu gösterdik. Buna rağmen, gerçekleşen

bu yerelleşmelerin taşınım verimine olumsuz etkisi, aniden büyüyen en büyük topağın

katkısı yanında çok küçük kaldığından, sonuç olarak asgari ilintilerle standart perkolas-

yona kıyasla daha verimli taşınımlar elde ettik. Sonuçlarımızı, incelediğimiz sistemlerin

özhallerinin yerel veya yaygın olma durumlarını hesaplayarak destekledik. Son olarak,

kuantum yürüyüşü için Peierls fazlarına benzer fazlar tanımlayarak, yapay manyetik alan

etkisi altındaki iki boyutta kuantum yürüyüşlerinin yayılım özelliklerini ve para-konum

dolaşıklığını inceledik. Bilhassa, yürüyüşün gerçekleştiği örgünün birim hücresinden

geçen manyetik akının akı kuantumuna oranı bir irrasyonel sayı ise kuantum yürüyüşünün

doğal balistik yayılma davranışı yerine difüzif bir davranış sergilediğini gösterdik. Bu

oranın bir rasyonel sayı olması durumunda ise yürüyüşün özgün balistik yayılma karak-

teristiğine sahip olduğunu gördük. Ayrıca yapay manyetik alanların varlığında, büyük

adım sayılarında bile konum ve para uzayının neredeyse azami dolaşık kaldığını göster-

dik.
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Chapter 1

INTRODUCTION

1.1 Motivation

One may follow the traces of quantum walks back to Feynman’s checkerboard model in

1940s [1] for a free relativistic spin 1/2 particle moving in one-dimension. In order to

find out the kernel of the path integral, Feynman himself summed over all possible paths

in the discretized space-time, which can be visualized by a particle walking randomly on

a checkerboard. In spite of its undeniable analogy with this very early work, the name

‘Quantum random walk’ was actually coined by Aharonov et al. [2] after nearly five

decades for the model they introduced as a quantum counterpart of the classical random

walk. This new quantum model became prominent with its larger average path length,

and hence, quadratically higher spreading rate than of its classical counterpart [3, 4].

Few years later, Farhi and Guttmann introduced their model [5], today known as the

continuous-time quantum walk, which is a quantum computation technique to reach the

nth level of a decision tree faster than a Markov process.

After these pioneering works, it has been understood that quantum walks are very

useful for developing new efficient quantum algorithms [6], e.g., for solving the element

distinctness problem [7] and for finding a marked element from a set [8]. It was shown

that the number of steps required for reaching a specified vertex of an n-dimensional

hypercube with quantum walks is polynomial in n [9], whereas it is exponential in the

classical counterpart. On the other hand, quantum walks provide a model for universal

quantum computation [10, 11] and supply a fertile framework for simulating other quan-

tum systems such as topological phases [12], Anderson localization [13, 14], nonlinear

δ-kicked quantum systems [15], the breakdown of an electric-field driven system [16],

excitonic energy transfer through the photosynthetic light-harvesting complexes [17] and

the creation of entanglement in bipartite systems [18]. Furthermore, quantum walks are

promising resources for quantum state transfer over various graphs and spin chains [19–

23].
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Today, quantum walks are realized experimentally in various physical systems [18,

24–29]. Particularly, the latest developments in the realization of both quantum walks and

artificial gauge fields by ultracold atomic systems pave the way for further achievements

in quantum simulations and quantum state transfer studies.

1.2 Overview

The second chapter provides the compulsory mathematical tools and concepts for this

thesis. We present the postulates of quantum mechanics for isolated systems both in

vector and density matrix formalism. Following the introduction of qubits and and their

representation on Bloch sphere, we overview discrete-time quantum walks thoroughly

including the entanglement properties and the effect of decoherence.

In the third chapter, we focus on the transfer of qubit states with the quantum walk

architecture. In particular, we propose a novel method to transfer any unknown qubit state

perfectly between two discrete points in space by using discrete-time quantum walks. We

find out the transfer conditions both in finite and infinite position spaces by enhancing the

dynamics of the walk via additional quantum operators. We also investigate the conditions

which result in state revivals and periodicity.

The fourth chapter we investigate coherent transport over a finite square lattice in

which the growth of bond percolation clusters are subjected to an Achlioptas type selec-

tion process, i.e., whether a bond will be placed or not depends on the sizes of clusters

it may potentially connect. Different than the standard percolation where the growth of

discrete clusters are completely random, clusters in this case grow in correlation with one

another. We show that certain values of correlation strength, if chosen in a way to sup-

press the growth of the largest cluster which actually results in an explosive growth later

on, may lead to more efficient transports than in the case of standard percolation, provided

that certain fraction of total possible bonds are present in the lattice. In this case transport

efficiency obeys a power law in the vicinity of bond fraction where effective transport

begins. It turns out that the higher correlation strengths may also reduce the efficiency

as well. We also compare our results with those of the incoherent transport and examine

the spreading of eigenstates of corresponing structures. We demonstrate that structural

differences of discrete clusters due to different correlations result in different localization

properties.

In the fifth chapter, we investigate the spreading properties of discrete-time quantum

walks under an artificial magnetic field. We introduce the Peierls substitution into the

quantum walk formalism in order to imitate the phases acquired by a charged particle

2



moving in a square lattice under perpendicular uniform magnetic field. We classify the

spreading rates as ballistic or diffusive in terms of magnetic flux through unit cell. We

particularly study the cases in which the ratio of magnetic flux to the flux quantum is

an irrational number. We demonstrate the localization properties of quantum walk under

magnetic field. Lastly, we study the effect of magnetic field on the entanglement between

the coin and position spaces and associate these results with the localization effects.

In the last chapter we summarize our objectives and results obtained in this thesis.
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Chapter 2

FUNDAMENTAL CONCEPTS

The purpose of this introductory chapter is to convey the basic concepts and mathemat-

ical machinery required for the description of quantum systems and relevantly, quantum

walks. We will start by introducing the postulates describing the time evolution of isolated

quantum systems. Then, we will present the density matrix formalism of quantum me-

chanics which also covers the open system dynamics. Using these basics, we will then be

able to define the discrete- and continuous-time quantum walks for both closed and open

quantum systems. The notation used throughout this thesis will also be specified here.

This chapter should be considered as a naive presentation of the subject; a sine qua non

for understanding the following chapters. The interested reader may refer to [4, 30–35]

for comprehensive overviews.

2.1 Postulates of quantum mechanics

At the end of the nineteenth century, accumulation of new experimental data which unde-

niably contradicts the predictions of the present theory - today known as classical physics

- forced scientists to develop not just a modified version of the theory but a completely

new one for the description of microscopic phenomena. Indeed, quantum mechanics,

together with the relativity theories, guided the human conception of nature towards a

framework where it is well understood that daily human experiences are inadequate per

se in describing natural phenomena. During the first half of the twentieth century, quan-

tum mechanics has completely been developed by many scientists and it still provides a

solid mathematical structure for new physical theories. Although there are many monu-

mental introductory and advanced level textbooks on quantum mechanics now [36–42],

we will introduce it here once more for the sake of the completeness of this thesis. How-

ever, we will limit the scope of this chapter only to the building blocks of the theory, the

part that is crucial for describing quantum walks and their dynamics.
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2.1.1 Isolated quantum systems

An isolated quantum system does not exchange any information by no means, i.e., mass

and/or energy, with its environment by definition. In other words, it evolves completely

independent of its surrounding. Such systems are characterized by the five postulates

indicated below:

Postulate 1. STATE : An isolated quantum system is completely described by a unit

vector called state that exists in a d-dimensional Hilbert spaceHd.

The Hilbert space is an abstract vector space of complex numbers C, in which a vector is

denoted by a ket |ψ〉. It has the following properties:

i. Let |ψ〉 and |ψ′〉 correspond to different states of a quantum system. A linear combi-

nation a|ψ〉+ b|ψ′〉 is also a state of the system, where a, b ∈ C.

ii. An inner product is defined such that there is a map from each ordered pair of vectors

to complex numbers, 〈ψ|ψ′〉 → C. The state 〈ψ|, called bra, is an element of the vec-

tor spaceH∗ which is dual toH. The inner product is positive semidefinite 〈ψ|ψ〉 > 0

(equality holds for |ψ〉 = 0), linear 〈ψ′′|(a|ψ〉 + b|ψ′〉) = a〈ψ′′|ψ〉 + b〈ψ′′|ψ′〉
and skew symmetric 〈ψ|ψ′〉 = 〈ψ′|ψ〉∗. Two states |ψ〉 and |ψ′〉 are orthogonal if

〈ψ|ψ′〉 = 0.

iii. The quantity |ψ| = 〈ψ|ψ〉1/2 is the norm of the state |ψ〉. A unit, or normalized

vector is a vector with unit norm, |ψ| = 1. Since a quantum state is postulated to

be a unit vector, an overall phase has no physical significance, |eiθ|ψ〉| = |ψ〉. In

general, we can say that a quantum state is only associated with a ‘direction’ in the

space. Therefore, by convention, a unit vector is chosen to be the representative of

the class {c1|ψ〉, c2|ψ〉, . . .} in which vectors differ only by a nonzero complex scalar.

The validity of such selection is ensured by the fact that each vector corresponds to

the same physical state.

iv. The dimension is the maximum number of linearly independent vectors that can be

defined within the vector space. Each state |ψ〉 and its dual 〈ψ| can be written as a

linear combination of d linearly independent vectors in a d-dimensional Hilbert space

as,

|ψ〉 =
d∑

i=1

ci|i〉, 〈ψ| =
d∑

i=1

c∗i 〈i| (2.1)

5



where ci ∈ C are the components and the set of vectors |i〉 constitute a basis for the

Hilbert space Hd. Now, the addition and scalar multiplication can be expressed in

terms of these components as

|ψ〉+ |ψ′〉 =
d∑

i=1

(ci + ci′)|i〉 and a|ψ〉 =
d∑

i=1

aci|i〉, (2.2)

respectively, where a ∈ C. Since the jth component can be obtained by 〈j|ψ〉, we

can write any state in the form

|ψ〉 =
d∑

i=1

|i〉〈i|ψ〉 ≡
(

d∑

i=1

|i〉〈i|
)

|ψ〉. (2.3)

The expression
∑d

i=1 |i〉〈i| = I is the completeness relation corresponding to the

summation of the outer products of basis vectors. The operator I here is the identity

operator.

v. A linearly independent basis can be converted -e.g., by using Gram-Schmidt process -

to an orthonormal basis satisfying 〈i|j〉 = δij . Thus, inner products can be expressed

in terms of the components as

〈ψ|ψ′〉 =
∑

ij

c′ic
∗
j〈j|i〉 =

d∑

i=1

c′ic
∗
i . (2.4)

At this point, let us clarify an important issue explicitly. A vector space should not

change as we change our perspective, or rather formally, it is invariant under rota-

tions. Once we choose an orthonormal basis, we can rotate it to obtain another one

and this way, infinitely many orthonormal bases can be defined in a given vector

space. Now, it is useful to choose one of these - say, in our initial arbitrary perspec-

tive for the vector space - and ‘label’ it in a special way. The formalism we have built

up to now naturally allows us to do such labeling. Assume we chose an orthonormal

basis. We know that any vector can be represented in the form (2.3). In order to see

the form of any basis vector |j〉 in terms of others, we simply replace |ψ〉 by |j〉 in

(2.3) which yields

|j〉 =
d∑

i=1

|i〉〈i|j〉 =
d∑

i=1

δij|i〉. (2.5)

Now, it is clear that the components of the jth basis vector are all zero except the

jth term which is set to one by definition. Therefore, it is convenient to represent

a basis vector as a column vector |j〉 ↔ (0, . . . 0, 1, 0 . . . 0)T where the jth element

6



is equal to one. A quantum state can be represented by column and row vectors (or

state vectors, in general) in this basis as,

|ψ〉 ↔ (c1, c2, . . . , cd)
T , 〈ψ| ↔ (c∗1, c

∗
2, . . . , c

∗
d) , (2.6)

where ci are the components of the vector. We will use the symbol "↔" while rep-

resenting a state in this natural basis throughout the thesis. This natural basis is the

one that we will use throughout the thesis with↔ symbol. The scalar multiplication,

addition, inner product and outer product of vectors in Hd can be written in vector

form as

a|ψ〉 ↔ (ac1, ac2, . . . , acd)
T , (2.7)

|ψ〉+ |ψ′〉 ↔ (c1 + c′1, c2 + c′2, . . . , cd + c′d)
T
, (2.8)

〈ψ|ψ′〉 ↔ c∗1c
′
1 + c∗2c

′
2 + . . .+ c∗dc

′
d, (2.9)

|ψ〉〈ψ′| ↔










c1c
′∗
1 c1c

′∗
2 . . . c1c

′∗
d

c2c
′∗
1 c2c

′∗
2 . . . c2c

′∗
d

...
...

. . .
...

cdc
′∗
1 cdc

′∗
2 . . . cdc

′∗
d










. (2.10)

We also note that the convention |ψ| = 1 results in the normalization of the proba-

bility distribution
∑

i |ci|2 = 1 since |ci|2 gives the probability of being in the state

|i〉.

Postulate 2. OBSERVABLE : Measurable quantities, namely, the observables of a quan-

tum system are associated with Hermitian operators.

In general, an operator X is a linear map from vectors to vectors: |ψ〉 → X|ψ〉 and

X(a|ψ〉 + b|ψ′〉) = aX|ψ〉 + bX|ψ′〉. For a given orthonormal basis, an operator can be

specified by its components 〈i|X|j〉 = Xij which specifies a d× d square matrix:

X ↔










X11 X12 . . . X1d

X21 X22 . . . X2d

...
...

. . .
...

Xd1 Xd2 . . . Xdd










. (2.11)

A Hermitian operator, A, satisfies the property 〈i|A|j〉 = 〈j|A|i〉∗ denoted by A = A†

where A† is the transpose conjugate of A. The eigenvalues of A are real and the eigen-

vectors -or eigenstates- corresponding to different eigenvalues are orthogonal. Therefore,

any state in the Hilbert spaceHd can be written as the linear combination of d eigenstates

of an observable.
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Postulate 3. DYNAMICS : The time evolution of a state is governed by a unitary operator.

If the initial state at time t is |ψ(t)〉, then the final state at time t′ is given as

|ψ(t′)〉 = U(t′, t)|ψ(t)〉. (2.12)

Here, U(t′, t) is a unitary operator which satisfies U † = U−1. Since U corresponds to a

‘rotation’ in the space, the inner products between vectors are preserved, i.e., the norms

remain unchanged. The Schrödinger equation

i~
d

dt
|ψ(t)〉 = H|ψ(t)〉, (2.13)

describes the infinitesimal time evolution for |ψ〉, whereH is a Hermitian operator known

as the Hamiltonian of the quantum system. For a time-independent Hamiltonian, the exact

form of U(t′, t) is

U(t′, t) = exp

[

− i
~
H(t− t′)

]

, (2.14)

which is obtained by solving (2.13). Here, the exponential of any operator is defined as

exp(Ω) ≡
∞∑

n=1

Ωn

n!
. (2.15)

Postulate 4. MEASUREMENT : Measurements on a quantum system are associated with

projection operators in the Hilbert space.

A measurement is a process in which an observer acquires information about the quantum

state. Before measuring an observable A, the quantum state |ψ〉 of the system is assumed

to be in a linear combination of the eigenstates |ψ〉 = ∑i ci|ai〉 of an observable A with

eigenvalues ai. A measurement transforms the state |ψ〉 into one of the eigenstates of

the observable with probability P (ai) = |〈ai|ψ〉|2 = |ci|2 and the observer learns the

value of the corresponding ai. The mathematical equivalent of this measuring process is

a projection operator Ei = |ai〉〈ai|. Therefore, the probability reads as P (ai) = 〈ψ|Ei|ψ〉
and the quantum state just after the measurement becomes

|ψ′〉 = Ei|ψ〉
√

〈ψ|Ei|ψ〉
. (2.16)

Projection operators satisfy the completeness relation
∑

iEi = I . If there are many sys-

tems that are identically prepared in the state |ψ〉, the expectation value of the outcomes -

the average of the outcomes - after the measurement Ei reads

〈ai〉 ≡
∑

i

aiP (ai) =
∑

i

ai〈ψ|Ei|ψ〉 = 〈ψ|A|ψ〉. (2.17)
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Postulate 5. COMPOSITE SYSTEMS : The total Hilbert space of a composite system is

the tensor product of Hilbert spaces of the individual systems.

We encounter the case of a composite system when we try to think of a quantum system

by parts. Let us think now that a given system has two parts, A and B, with Hilbert spaces

HA and HB , respectively. In this case, the total Hilbert space of the total system is given

by the tensor product HT = HA ⊗ HB . If these parts are prepared in the states |ψA〉
and |ψB〉, the state of the total system becomes |ψT 〉 = |ψA〉 ⊗ |ψB〉 ≡ |ψAψB〉. Now,

the basis for HT becomes |i, j〉 ≡ |i〉A|j〉B ≡ |ψA〉|ψB〉 an satisfies the orthonormality

relation 〈i, j|k, l〉 = δikδjl. An operator XA ⊗ YB applies XA on system A and YB on

system B separately as

XA ⊗ YB|ψA〉 ⊗ |ψB〉 = XA|ψA〉 ⊗ YB|ψB〉. (2.18)

In general, for many independent quantum systems numbered as 1, 2, . . . , n in quantum

states |ψ1〉, |ψ2〉, . . . , |ψn〉, the state of the composite system takes the form |ψ1〉⊗ |ψ2〉⊗
· · · ⊗ |ψn〉.

2.1.2 Density matrix formalism

When we try to describe the behavior of a smaller part of a larger system, the postulates

introduced in the previous chapter lose their validity, i.e., the states are not unit vectors,

time evolution is not unitary and the measurements are not represented by orthogonal

projections anymore. The smaller part is called an open quantum system S which is in

interaction with its exterior, namely the environment E. The size of the total system

(S + E) is chosen specific to the problem under consideration. Since there exists no

perfectly isolated system in nature, the investigation of open system dynamics instead

seems to be a more realistic approach and the method used for describing such systems

is, by convention, the density matrix formalism.

The state vector for isolated systems represents an infinite ensemble of identically pre-

pared systems. In reality, of course, it is impossible to prepare systems with such perfec-

tion. In general, all we know is that the system S is prepared in one of a number of states

from the ensemble {|ψ1〉, |ψ2〉, . . . , |ψr〉} with respective probabilities {p1, p2, . . . , pr}.
All the states in this ensemble are normalized with no necessity of mutual orthogonality.

The probabilities satisfy the condition
∑r

i pi = 1. The state of the system in this case is

represented by the density matrix given as

ρ =
∑

i

pi|ψi〉〈ψi|. (2.19)
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This is a summation of the outer products of the states |ψi〉. If a system is described only

by a single state |ψ〉, then it is a pure state and its density matrix is simply ρ = |ψ〉〈ψ|. On

the other hand, a state which is built out of the pure states of an ensemble as in (2.19), is a

mixed state. We note that a mixed state is not a linear combination of pure states because

such combination would just yield another pure state (see Postulate 1 in the previous

chapter). In general, the density matrix satisfies the following properties:

i. It is Hermitian ρ = ρ† since (|ψ〉〈ψ|)† = |ψ〉〈ψ|.

ii. The sum of its diagonal elements, namely the trace, is one, Tr(ρ) = 1.

iii. It is a positive operator, i.e., its eigenvalues are non-negative.

iv. ρ is a pure state, if ρ2 = ρ.

v. It satisfies Tr(ρ2) ≤ 1 where the equality holds if and only if ρ is a pure state.

It is possible to reformulate the postulates of quantum mechanics by using the density ma-

trix formalism. Applying the product rule of derivative to the outer product |ψ(t)〉〈ψ(t)|
and using the Schrödinger equation (2.13) along with its conjugate, dynamical evolution

of a mixed state takes the form

d

dt
ρ(t) =

1

i~
[H, ρ(t)]. (2.20)

Using (2.19), the time evolution of a mixed state becomes

ρ(t′) =
∑

i

pi|ψi(t
′)〉〈ψi(t

′)|

= U(t′, t)

(
∑

i

pi|ψi(t)〉〈ψi(t)|
)

U †(t′, t)

= U(t′, t)ρ(t)U †(t′, t) (2.21)

If the density matrix of a system is ρ before some measurement Mn, then the probability

of obtaining nth outcome is p(n) = Tr
(
MnρM

†
n

)
and the state of the system after the

measurement reads

ρ→ MnρM
†
n

Tr(MnρM
†
n)

(2.22)

where the measurement operators Mn satisfy the completeness relation
∑

nM
†
nMn =

I . We also note that any global phase is automatically eliminated in the density ma-

trix formalism since the density matrix form of any state such as |ψ〉 = eiθ|φ〉 is ρ =

eiθ|φ〉〈φ|e−iθ = |φ〉〈φ|.
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The reduced density matrix

Any information about a system may be acquired by doing measurements and when it

comes to measuring some part of a composite system, it is the the reduced density matrix

that provides the correct measurement statistics. It is, therefore, a very important tool

while describing the composite system dynamics. Assume we have a composite system

which consists of two subsystems A and B with respective Hilbert spaces HA and HB .

We define the reduced density matrix of the subsystem A as

ρA ≡ TrB(ρAB) (2.23)

where TrB is the partial trace operation over the subsystem B. If |a〉 and |a′〉 are two ar-

bitrary states of the subsystemA, and |b〉 and |b′〉 are two arbitrary states of the subsystem

B, then the partial trace operation over B of the composite system AB is defined as

TrB(|a〉〈a′| ⊗ |b〉〈b′|) =
∑

i

(I ⊗ 〈iB|)(|a〉〈a′| ⊗ |b〉〈b′|)(I ⊗ |iB〉)

=
∑

i

|a〉〈a′| ⊗ 〈iB|b〉〈b′|iB〉

= |a〉〈a′|Tr(|b〉〈b′|)
= |a〉〈a′|〈b|b′〉,

where {|iB〉} is the orthonormal basis for the space HB . The reduced density matrix ρA

of a product form state, such as ρAB = ρA ⊗ ρB , simply equals to the density matrix of A

itself since ρA = TrB(ρA ⊗ ρB) = ρATrB(ρB) = ρA. We will see in Sec. 2.4.4 that there

are also states which cannot be written in product form, called entangled states. Let us

give an example of an entangled state and of how we calculate a reduced density matrix of

a composite system. Consider the following state given in both vector and density matrix

forms as

|ψ〉AB =
1√
2
(|0〉A|0〉B + |1〉A|1〉B),

ρAB =
1

2
(|0, 0〉〈0, 0|+ |0, 0〉〈1, 1|+ |1, 1〉〈0, 0|+ |1, 1〉〈1, 1|).

All the terms in ρAB can be rewritten in the same manner so that |0, 0〉〈1, 1| = |0〉〈1| ⊗
|0〉〈1|. Then, the reduced density matrix of the subsystem A can be found by tracing over

the subsystem B:

ρA =
1

2
(|0〉〈0|〈0|0〉+ |0〉〈1|〈0|1〉+ |1〉〈0|〈1|0〉+ |1〉〈1|〈1|1〉)

=
1

2
(|0〉〈0|+ |1〉〈1|)

11



The expression above is a maximally mixed state of one qubit. In the natural basis |0〉 ↔
(1, 0)T and |1〉 ↔ (0, 1)T , the reduced density ρA takes the form

ρA ↔
[

1/2 0

0 1/2

]

.

2.2 Qubits and their geometric representation

A ‘bit’ is the smallest unit of data in classical information systems. It can be found in

either one of the two states 0 or 1. Today’s computers control enormous number of bits

to encode and process data. A qubit (QUantum BIT), on the other hand, is defined as the

quantum counterpart of a ‘bit’ in quantum information systems and quantum information

processing. Unlike the usual bits, it may also possess the superposition of states 0 and 1.

Physically, it is a two-level quantum system, e.g., up and down spin states of an electron

or two polarization states of a photon. Mathematically, it is defined by a unit vector in

two-dimensional Hilbert space spanned by the natural orthonormal basis |0〉 ↔ (1, 0)T

and |1〉 ↔ (0, 1)T . This particular basis is also known as the computational basis. One

way of representing the state of a qubit is

|ψ〉 = α|0〉+ β|1〉, (2.24)

where α and β are complex numbers satisfying the completeness relation |α|2+ |β|2 = 1.

A measurement on the qubit state results in the state |0〉 or |1〉 with probabilities |α|2

and |β|2, respectively. In other words, a measurement destroys the quantum coherence

irreversibly and chooses only one of the two possible states with some probability. There-

fore, it is not possible to obtain the state of a qubit by direct examination. However, such

knowledge is not the main interest in many cases. For example, the supremacy of certain

quantum algorithms over their classical counterparts arises due to the coherent dynamics

governed by unitary operators. In this context, if there exists anything called ‘all informa-

tion’ contained in a qubit, it cannot be treated as a measurable quantity and it may only

be meaningful in terms of coherent dynamics.

Bloch sphere

It is possible to represent all qubit states using a 3-dimensional unit sphere. We see in

(2.24) that a qubit state is parametrized by four real numbers: two coming from α and

two from β. However, one parameter can be eliminated since a global phase has no

physical significance and another elimination may be done by using the normalization

12
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Figure 2.1: The Bloch sphere. A pure qubit state is represented by a Bloch vector |~r| = 1,
whereas for the mixed qubit states |~r| < 1. The length of the vector ~r gives the informa-
tion about how mixed a given state is: The shorter the Bloch vector, the more mixed is the
corresponding state.

condition. Therefore, in the end, only two real parameters should be sufficient to describe

a qubit state in total. In polar representation, a qubit state in (2.24) reads as

|ψ〉 = r1|0〉+ r2e
i(ζ−γ)|1〉 (2.25)

where we ignore the global phase eiγ without any loss of generality. Going back to Carte-

sian coordinates, we have

|ψ〉 = z|0〉+ (x+ iy)|1〉. (2.26)

Since the normalization condition x2+y2+z2 = 1 defines a unit sphere in 3-dimensional

space, (2.26) can be represented by the two parameters θ and φ in spherical coordinates

as

|ψ〉 = cos θ|0〉+ sin θeiφ|1〉 (2.27)

where θ ∈ [0, π] and φ ∈ [0, 2π]. Now, note that for θ = π/2, we have |ψ〉 = eiφ|1〉 which

suggests that it is possible to generate all qubit states within the interval θ ∈ [0, π/2]. In

order to check the opposite states on the lower hemisphere for a given (θ, φ), we substitute

them by (π − θ, π + φ) as in

|φ′〉 = cos (π − θ)|0〉+ sin (π − θ)ei(π+φ)|1〉 (2.28)

= − cos θ|0〉 − sin θeiφ|1〉 = −|ψ〉. (2.29)
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This shows us that the states on the lower hemisphere differ only by a phase of −1 from

the the ones in the upper hemisphere. Therefore, we can map the points on the upper

hemisphere onto the whole sphere by θ → 2θ and the final form of a qubit state in Bloch

sphere representation becomes

|ψ〉 = cos
θ

2
|0〉+ sin

θ

2
eiφ|1〉 (2.30)

where again, θ ∈ [0, π] and φ ∈ [0, 2π]. In density matrix form, (2.30) becomes

ρ = |ψ〉〈ψ| ↔
[

cos2 θ
2

e−iφ sin θ
2
cos θ

2

eiφ sin θ
2
cos θ

2
sin2 θ

2

]

(2.31)

=
1

2

[

1 + cos θ cosφ sin θ − i sinφ sin θ
cosφ sin θ − i sinφ sin θ 1− sin θ

]

(2.32)

Any 2× 2 matrix can be written in the basis of matrices {I, σx, σy, σz}, where σk are the

Pauli matrices

σk =

[

δk3 δk1 − iδk2
δk1 + iδk2 −δk3

]

, (2.33)

with k = 1, 2 and 3. Therefore, decomposing (2.32) in this basis yields

ρ =
1

2
(I + σ1 cosφ sin θ + σ2 sinφ sin θ + σ3 cos θ)

=
1

2
(I + n̂.~σ) (2.34)

where n̂ = (n1, n2, n3) is a 3-dimensional unit vector in spherical coordinates and ~σ =

(σ1, σ2, σ3). We know that each surface point on the Bloch sphere corresponds to a pure

state. Furthermore, we can represent any mixed state ρ by a point inside the Bloch sphere

with a vector ~r as in

ρ =
1

2
(I + ~r.~σ) (2.35)

where |r| < 1. The eigenvalues 1
2
(1 ± |~r|) of ρ are required to be non-negative for it is

known that the density matrices are positive semidefinite, and this non-negativity in the

end, yields |~r| 6 1. Therefore, while the vectors with |~r| = 1 correspond to pure states,

the others with |~r| < 1 correspond to mixed states (see Fig. 2.1).
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2.3 Random walk on the line

Probably the simplest example of a random walk is the motion of a particle on a line in

which the motion is controlled by the tossing of coin. The particle jumps one step right or

one step left as the coin toss results in heads or tails, respectively. A single application of

this process defines a step of the walk and the time evolution is determined by successive

steps. Since the time evolution is probabilistic, we cannot talk about the exact position of

the particle. Instead, we can calculate the probability P of finding the particle at position

n ∈ Z after some steps t. It is well-known that such probability distributions are Binomial

as in the expression

Pn(t) =
1

2t
t!

(
t+n
2

)
!
(
t−n
2

)
!
, (2.36)

valid for n ≤ t and even (n+ t), and zero otherwise. We see in Fig. 2.2 that the spreading

of the distribution is wider for larger number of steps. In order to quantify the spreading

of this distribution, the variance

σ2(t) =

R∑

i=1

Pi(t)(ni − n̄)2 =
〈
n2
〉
− 〈n〉2 (2.37)

can be used, where the summation is taken over the ensemble {n1, n2, . . . , nR} that con-

tains the final positions of the particle forR realizations of the t-step walk. Obviously, Eq.

(2.37) provides the information of how wide the probability is distributed over the line.

The standard deviation σ =
√
σ2 can also be chosen as an equivalent measure for spread-

ing. In the random walk case, the variance can be obtained by using normal distribution

approximation of (2.36) for large values of the t as in

Pn(t) ≃
2√
2πt

e−
n2

2t (2.38)

where the variance is given by σ2 = t. Such spreading dynamics - in which the variance is

linearly proportional to the step number (or equivalently, proportional to time) - are called

diffusive. It is conventional to use this description of spreading dynamics while studying

random walks as will be done in the following sections.

2.4 Discrete-time quantum walks

The first proposal of the discrete-time quantum walk [2] was published with the title

“Quantum random walks” and provided a quantum model outperforming its classical
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Figure 2.2: Probability distribution of the random walk on the line around n = 0 for different
step numbers t. Here, only nonzero values of Pn(t) are drawn.

counterpart in terms of spreading rates. Contrary to the wrong impression created by

their generic names, the analogy between a random walk and a discrete-time quantum

walk is based not on the randomness, but merely on the schematic way in which we ap-

ply the step procedure. Honestly, the quantum model of the walk is not as ‘random’ as

the classical random walk in the context of the dynamics as we will see in the following

sections.

2.4.1 The model

In the discrete-time quantum walk, the position of the particle is associated with a state

vector in the the Hilbert space Hp of infinite dimension which is spanned by the com-

putational basis {|n〉 : n ∈ Z}. In order to build an analogy with the classical random

walk, the motion of the particle should depend on an external degree of freedom, namely

a quantum coin. For the case of walk on a line, this quantum coin can be selected as a

two-level quantum system whose state lives in a two-dimensional Hilbert space H2
c with

the computational basis {|c〉 : c = {0, 1}}. This is actually the well-known qubit state

(2.24). Therefore, the composite system called the walker is described by the quantum

state |c, n〉 in the Hilbert spaceH = Hc ⊗Hp. The translation of the walker is associated

with a unitary shift operator

S =
+∞∑

n=−∞
(|0〉〈0| ⊗ |n− 1〉〈n|+ |1〉〈1| ⊗ |n+ 1〉〈n|) (2.39)

which conditionally shifts the position of the walker in either one of the directions de-

pending on the coin state as follows:

S|0, n〉 = |0, n− 1〉 (2.40)
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S|1, n〉 = |0, n+ 1〉 (2.41)

Here, the choice of which coin state controls which direction is completely arbitrary, i.e.,

we could have equivalently chosen |0〉 for |n〉 → |n+ 1〉 and |1〉 for |n〉 → |n− 1〉. For

further analogy with the classical random walk, a ‘quantum coin’ should be tossed before

each shift operation. Similarly, this tossing process here is associated with a unitary coin

operator C. In the original proposal of the discrete-time quantum walk, it was chosen as

the Hadamard gate

CH =
1√
2
(|0〉〈0|+ |0〉〈1|+ |1〉〈0| − |1〉〈1|)↔ 1√

2

[

1 1

1 −1

]

, (2.42)

which transforms each coin basis into an equiprobable superposition of both. The quan-

tum walk utilizing the Hadamard gate is called the Hadamard walk. In general, the coin

operation can be any unitary operation in SU(2),

C(gen) =

[ √
ρ

√
1− ρeiθ

√
1− ρeiφ −√ρei(θ+φ)

]

. (2.43)

from which Eq. (2.42) can be obtained by choosing ρ = 1/2 and θ = φ = 0. It can also

be seen that ρ and 1 − ρ are the probabilities for moving left and right, respectively. The

parameters θ and φ define the most general unitary operator up to a U(1) phase. Now,

analog to the classical case, a step of the walk is defined by the operator U = S(C ⊗ I)
which is a composition of the coin and shift operators. Note that the coin operator acts

only on the coin space and the shift operator acts on both spaces to move the walker

accordingly. Starting from an initial state |Ψ0〉 for the walker, a t-step quantum walk is

described by

|Ψt〉 =
t

︷ ︸︸ ︷

U.U . . . U = U t|Ψ0〉 (2.44)

which is a sequential application of the step operator U to the initial state |ψ0〉. Let us

examine now a simple two-step walk explicitly that starts with the initial walker state

|Ψ0〉 = |0, 0〉:

Step 1: |Ψ0〉 C⊗I−−→ 1√
2
(|0〉+ |1〉)⊗ |0〉

S−−→ 1√
2
(|0,−1〉+ |1,+1〉) = |Ψ1〉

Step 2: |Ψ1〉 C⊗I−−→ 1
2
[(|0〉+ |1〉)⊗ | − 1〉+ (|0〉 − |1〉)⊗ |+ 1〉]

S−−→ 1
2
[|0,−2〉+ (|0〉+ |1〉)⊗ |0〉 − |1,+2〉] = |Ψ2〉
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We see that after the first step, we find the particle only at positions n = −1 or n = +1

with the same probability. The second step gets the amplitudes coming from n = −1 and

n = +1 superposed at n = 0. This causes the probability at n = 0 to be 0.5 while it is 0.25

at other positions. Although we witnessed a constructive interference with the application

of the shift operator, there will be destructive interference as well in succeeding steps

when the coin operator is applied. For example, at the third step, the coin state associated

with the position n = 0 will transform as (|0〉 + |1〉) C−→ 2|0〉 up to some phase due to

|1〉−|1〉 annihilation. The reason for this is the negative sign introduced by the Hadamard

gate when applied to |1〉. Consequently, more cancellations are expected to take place in

the terms with coin state |1〉. Starting from the third step, this results in an asymmetrical

probability distribution and we expect the probability to accumulate at left since the coin

state |1〉 induces a movement towards right which is displayed in Fig. 2.3(a),(b). Actually,

such cancellations are directly related to the initial condition. If we choose the initial state

as |Ψ0〉 = |1, 0〉, the cancellations occur for the coin state |0〉 and we obtain the mirror

symmetric distribution shown in Fig. 2.3(c). A symmetrical distribution, however, can be

obtained by choosing an initial state of the form

|Ψ0〉 =
1√
2
(|0〉+ i|1〉)⊗ |0〉. (2.45)

Now it is obvious that the extra i in the initial state prevents the |1〉 terms from being

canceled, and thus the resulting distribution gets symmetrical around the starting position

as in Fig. 2.3(d). In general, the state of the walker after t steps is the superposition of

|c, n〉 states as seen below

|Ψt〉 =
∑

c,n

an,c(t)|c, n〉 (2.46)

where an,c(t) are the amplitudes of the corresponding states. The probability of being

found at any position is calculated by summing over the probabilities in the coin space as

in

Pn(t) =
∑

c

|an,c(t)|2. (2.47)

Similar to classical random walk, Pn(t) = 0 if n + t is odd and Pn(t) 6= 0 if n + t is

even. In Fig. 2.4, we numerically calculate the variance (2.37) in each step to find out

the spreading dynamics. We see that the spreading of the discrete-time quantum walk is

quadratically faster than of the classical random walk. Although we only provide a result

for the initial state |ψ0〉 = 1√
2
(|0〉+ i|1〉) here, similar behaviors can be obtained for other

initial states as well.
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Figure 2.3: Probability distributions of the discrete-time quantum walk in the position space
for different initial states and step numbers. (a) t = 3 and |Ψ0〉 = |0, 0〉. In (b), (c) and (d)
t = 100 and initial states are |Ψ0〉 = |0, 0〉, |Ψ0〉 = |1, 0〉 and |Ψ0〉 = 1√

2
[|0〉 + i|1〉] ⊗ |0〉,

respectively. Here, only nonzero values of Pn(t) are drawn.

Let us make a final comment on the randomness of discrete-time quantum walks.

We have seen that a t-step quantum walk always results in the same final state for a

given initial state. In this sense, the time evolution of quantum walks can be classified as

deterministic. When it comes to measuring the position of the walker at the end of the

walk, we obtain probabilistic results which is, indeed, a property that all quantum systems

have in common. On the contrary, the final state of a classical random walk is a random

position from a set of possible positions, and thus, completely probabilistic. Therefore,

the time evolution of the quantum walk cannot be considered as random as in the case of

the classical walk.

2.4.2 Recursion equations

The time evolution of the walk can equivalently be expressed by the recursion equations.

In order to derive them, remember first that nonzero probabilities occur only at either odd

or even labeled positions depending on the step number t. Therefore, nearly one half of

these positions can be thought as receivers and the other half as transmitters to stand for

the incoming and outgoing probability fluxes during a single step. Now, consider that

position n is a transmitter at time t. The projection of the walker’s state on |n〉 is, then,

(I ⊗ |n〉〈n|) |Ψt〉 = |Ψ′
t〉 = [αn(t)|0〉+ βn(t)|1〉]⊗ |n〉 6= 0. (2.48)
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Figure 2.4: The variance of discrete-time quantum walk for the initial state (2.45) is propor-
tional to the square of step number t, which is quadratically faster than that of the classical
random walk. Similar results can be obtained for other initial states. The axes are drawn in
logarithmic scale.

The coefficients in (2.46) are denoted by an,0 ≡ αn and an,1 ≡ βn for clarity. Following

the coin operation CH , the state |Ψ′
t〉 transforms into

(C ⊗ I)|Ψ′
t〉 =

1√
2





left-going
︷ ︸︸ ︷

(αn(t) + βn(t)) |0〉+
right-going

︷ ︸︸ ︷

(αn(t)− βn(t)) |1〉



⊗ |n〉, (2.49)

indicating the outgoing amplitudes from position n once the shift operator is applied. It

is clear that (2.49) is valid for all positions {n + 2k : k ∈ Z}. Now, let us consider the

scenario where n is a receiver this time at again, step number t. Along the step t + 1, the

position n will receive the amplitude αn+1(t)+βn+1(t) from n+1 and αn−1(t)−βn−1(t)

from n− 1 which results in

αn(t+ 1) =
1√
2
[αn+1(t) + βn+1(t)] , (2.50)

βn(t+ 1) =
1√
2
[αn−1(t)− βn−1(t)] . (2.51)

These are the recursion equations for CH that connect the amplitudes between adjacent

steps and are quite useful in numerical simulations in terms of simplicity and efficiency.

Moreover, for the general coin operator in (2.43), recursion equations read as

an,0(t+ 1) = an+1,0(t)
√
ρ+ an+1,1(t)

√

1− ρeiθ, (2.52)

an,1(t+ 1) = an−1,0(t)
√

1− ρeiφ − an−1,1(t)
√
ρei(θ+φ). (2.53)
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(a) (b)

(c) (d)

Figure 2.5: Probability distributions of (a) Hadamard walk with the initial state (2.57), (b)
Grover walk with the initial state |Ψ0〉 = |0〉 ⊗ |0, 0〉, (c) Grover walk with the initial state
(2.58) and (d) DFT walk with the initial state (2.59) in two-dimensions.

2.4.3 Higher dimensions

The position space of the quantum walk we discussed in the previous section can obvi-

ously be interpreted as a line Cartesian space. Such walks are called 1-dimensional quan-

tum walks. By definition, the dimension of the quantum walk is the number of degree of

freedom in the position space. Therefore, a 1-dimensional quantum walk can be extended

to higher dimensions by enlarging the coin and position spaces. For 2-dimensional quan-

tum walk, for instance, the coin space can be chosen as four dimensional with the basis

{|0, 0〉, |0, 1〉, |1, 0〉, |1, 1〉} ≡ {|0〉, |1〉, |2〉, |3〉} while the position space is spanned by

{|n,m〉 | n,m ∈ Z}. The coin can be interpreted as a single 4-level coin or two different

2-level coins. For both cases, the coin operator can be chosen as factorizable

C = CH ⊗ CH =
1

2










1 1 1 1

1 −1 1 −1
1 1 −1 −1
1 −1 −1 1










, (2.54)
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or non-factorizable

CG =
1

2










−1 1 1 1

1 −1 1 1

1 1 −1 1

1 1 1 −1










, CDFT =










1 1 1 1

1 i −1 −i
1 −1 1 −1
1 −i −1 i










, (2.55)

where CG and CDFT are the Grover coin and the discrete Fourier transform (DFT) coin

[43], respectively. The quantum walks which use the Grover coin and the DFT coin as

the coin operators are called the Grover walk and the DFT walk, respectively. When

the position basis |n,m〉 corresponds to the sites of a square lattice, the shift operator is

defined as a single operation that moves the walker in the left down, left up, right down

and right up directions (i.e., towards corners) for respective coin states [44] as in

S =
∑

n,m

|0〉〈0| ⊗ |n− 1, m− 1〉〈n,m|+ |1〉〈1| ⊗ |n− 1, m+ 1〉〈n,m|

+|2〉〈2| ⊗ |n+ 1, m− 1〉〈n,m|+ |3〉〈3| ⊗ |n+ 1, m+ 1〉〈n,m|. (2.56)

Let us discuss now some properties of 2-dimensional walks governed by these coin oper-

ators. In Fig. 2.5(a), we provide the probability distribution of a 2-dimensional Hadamard

walk with the initial state

|Ψ0〉 =
1

2
(|0〉+ i|1〉+ i|2〉 − |3〉)⊗ |0, 0〉. (2.57)

which results in a symmetrical distribution. As discussed before, this symmetry is pro-

vided by the specific choice of the initial state here, i.e., the coefficients i prevent the

cancellation of the terms going in opposite directions. The Grover walk is not able to

spread unless we choose certain initial states such as

|Ψ0〉 =
1

2
(|0〉 − |1〉 − |2〉+ |3〉)⊗ |0, 0〉 (2.58)

which gives the probability distribution in Fig. 2.5(b). Most of the other states that are

initially localized at the origin with different coin states remain localized as the number

of steps increases, which is demonstrated in Fig. 2.5(c). The probability distribution of

the discrete Fourier coin can be seen in Fig. 2.5(d), where we started with the initial state

|Ψ0〉 =
1

2

(

|0〉+ 1− i√
2
|1〉+ |2〉 − 1− i√

2
|3〉
)

⊗ |0, 0〉 (2.59)

Consequently, by looking at Fig. 2.5, we can conclude that the spreading of Grover walk

is the widest one among the others.
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2.4.4 Entanglement

In this chapter, we will briefly introduce the concept of entanglement and one of its well

known measures, von Neumann entropy, among many others recorded in the literature.

Then, we will discuss the entanglement properties between the coin and position states of

the discrete-time quantum walk. Detailed reviews of entanglement and its measures can

be found in [45–50].

Consider a composite quantum system consisting of two parts, A andB. According to

the postulates of quantum mechanics, the Hilbert space of the total system is spanned by

the basis {|ai, bj〉} where {|ai〉} and {|bj〉} are the orthonormal basis states of the Hilbert

spaces of individual parts. A state of this composite system is written, in terms of the

basis states, as

|ψ〉 =
∑

ij

cij |aibj〉. (2.60)

Now, assume that part A is initially prepared in the state |ψA〉 = 1√
2
(|0〉 + |1〉) and B in

the state |ψB〉 = 1√
2
(|0〉 − |1〉). Thus, it is clear that the state of the composite system is

|ψ〉 = |ψA〉 ⊗ |ψB〉 =
1

2
(|0, 0〉 − |0, 1〉+ |1, 0〉 − |1, 1〉), (2.61)

where the coefficients in (2.60) are c00 = 1/2, c01 = −1/2, c10 = 1/2 and c11 = −1/2.

These kinds of states, i.e., the states that can be written as the tensor product of individual

systems, are called seperable states. However, the Hilbert space is huge; and there are

also states which cannot be written as a simple tensor product. For example, the state

|ψ〉 = 1√
2
(|0, 1〉+ |1, 0〉) (2.62)

is also an element of the Hilbert space of the composite system but there is no way of

writing it in tensor product form. The states of this kind are called entangled states. At

first glance, one may think there is something peculiar about it. A local measurement on

system A instantaneously determines the state of B regardless of the distance between

them. This situation contradicts the law that two bodies cannot interact faster than the

speed of light so apparently, the state (2.62) cannot represent a real system. On the other

hand, we know under the guidance of the words of the masters that [51], in a complete

physical theory, every element of the physical reality must have a counterpart. Therefore,

the state given in (2.62) should correspond to some physical reality. In fact, it does. Today,

it has been shown by various experiments that entangled states do exist [52, 53]; however,

they cannot be used to transfer any information faster than light [54, 55].
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Up to now, we have discussed entanglement for pure quantum states. A density ma-

trix ρAB which describes a mixed bipartite system is seperable if and only if it can be

decomposed as [56],

ρAB =
∑

k

pkρ
A
k ⊗ ρBk . (2.63)

The ρAk and ρBk correspond to the density matrices of the systems A and B, respectively.

The weights pk are positive and satisfy
∑

k pk = 1. In order to quantify the entanglement,

there are several measures specific to the situation under consideration and we will be

introducing one of them later on.

Shannon Entropy

Shannon entropy measures the information we have about a classical system [57]. From

a different perspective, it quantifies the amount of source we should use in order to record

the possible outcomes of this system. Think of a 4 sided dice whose sides are labeled by

one of 1, 2, 3 or 4. Let us encode the results with binary numbers each time we throw the

dice: 1→ 00, 2→ 01, 3→ 10 and 4→ 11. If the dice we have is fair, we have no idea of

what the next outcome will be. Therefore, we need at least log24 = 2 binary numbers -or

bits- to encode each outcome. Now, assume that we have a loaded dice instead of a fair

one. After throwing the dice, say 1000 times, we will obtain a probability distribution for

the possible outcomes. We will thus have some information about the system which can

be used to encode the data more efficiently, e.g., the outcomes with higher probabilities

can be encoded by 1 bit instead of 2 bits. In Fig. 2.6 we see such a procedure called

Huffman coding which allows us to encode one outcome only with 1.4 bits on average.

If, for example, we throw the dice 1000 times, we only need 1400 bits instead of 2000

while encoding the data. We see that the less amount of sources we need, the more

information we have about the system; namely, the information we have increases the

predictability of the system. For this reason, Shannon himself defines the unit of certainty

in terms of bits. If we need 2 bits of data instead of 1.4 on average, it means that the

system we are dealing with is more uncertain. In this sense, Shannon entropy can also be

interpreted as a measure of randomness for a given system. For a classical system whose

possible outcomes have probability distribution p1, . . . , pn, the Shannon entropy (or, the

uncertainty of the system) is defined as

H(p1, . . . , pn) = −
∑

i

pilog2pi (2.64)
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Figure 2.6: Huffman coding. There are 4 possible outcomes of a classical system labeled 1,
2, 3 and 4 and each time, the system returns one of these numbers as the result. Avoiding
any loss of information, Huffman coding provides the most efficient method for encoding
these outcomes in terms of classical bits implemented as follows: (a) Write down the possible
outcomes with their corresponding probabilities as nodes. Select two least probable nodes,
3 and 4, and merge them into a single node with a branch. Then add the corresponding
probabilities, 0.1 + 0.05 = 0.15. (b) Repeat the same procedure for two least likely nodes
again, 0.1 + 0.15 = 0.25. (c) Stop the procedure after getting a single node at the top. Label
each edge with 0 or 1 (in any order) for all the levels in the tree. The code (0,10,110 and 111)
for each outcome is the path from the top to that given level. Therefore, the average number
of bits to encode one outcome is 0.75 × 1 + 0.1 × 2 + 0.1 × 3 + 0.05 × 3 = 1.4. Huffman
coding is one of the widely used methods for lossless data compression in computer science.

where we assumed 0.log20 = 0 since zero probability does not correspond to any out-

come. In Fig. 2.7, we see the Shannon entropy of a coin, or any two-level system, with

outcomes {H, T} and corresponding probabilities {p, 1− p}. At p = 0.5, the uncertainty

about the system is maximum, meaning that we should have at least 1 bit to encode the

outcomes. Moreover, the value H(0.1) = 0.469, for example, implies we need only 469

bits to encode the outcomes after tossing the coin for 1000 times.

Von Neumann Entropy

The quantum counterpart of Shannon entropy is the Von Neumann entropy which can be

obtained by replacing the probability distributions with the density matrices:

S(ρ) = −Tr(ρlnρ). (2.65)

In order to get a better insight about the relationship between the Shannon and Von Neu-

mann entropies, let us think of a system that can be found in an ensemble of states

A = {ρ1, . . . , ρr} given by pure or mixed density matrices with probabilities {p1 . . . pr}.
The total state of this system can be written as a single density matrix

ρ =

r∑

i=1

piρi. (2.66)
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Figure 2.7: Shannon entropy of a classical system with two probable outcomes. The p is the
probability of one of the possible outcomes taking place. The cases p = 0 or p = 1 imply that
we know everything about the system since we can predict the next outcome exactly. If we
want to encode the outcome in terms of classical bits, no bits are needed at all since there is
no indeterminacy about the system, i.e., its entropy is zero H(0) = 0 bit. When p = 0.5, we
have the chance of predicting the next outcome with probability 0.5. The indeterminacy about
the system is maximum and we need at least one bit to encode each outcome, i.e., entropy is
maximum H(0.5) = 1 bit.

By plugging (2.66) into (2.65) in terms of its eigenvectors |i〉 and eigenvalues λi, we

obtain

S(ρ) = −
∑

l

〈l|
(
∑

j

λj |j〉〈j|
∑

k

lnλk|k〉〈k|
)

|l〉,

= −
∑

l

∑

jk

λj lnλk〈l|j〉〈j|k〉〈k|l〉,

= −
∑

l

λllnλl. (2.67)

Now let us assume an equivalent scenario in which Alice wants to send a message to Bob

by using two quantum states A = {|0′〉, |1′〉} given as

|0′〉 = cos θ|0〉+ sin θ|1〉,
|1′〉 = sin θ|0〉+ cos θ|1〉,

(2.68)

where the states are created with probabilities {p, 1 − p}. It is clear that for θ = 0, these

states correspond to orthogonal states and for θ = π/4, they correspond to the identical

state. The states |0′〉 and |1′〉 are get closer to each other while θ is increasing in the

interval 0 6 θ 6 π/4. Therefore, the density matrices of both states are written as

ρ0′ ↔
[

cos2 θ cos θ sin θ

cos θ sin θ sin2 θ

]

, ρ1′ ↔
[

sin2 θ cos θ sin θ

cos θ sin θ cos2 θ

]

. (2.69)
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Figure 2.8: Von Neumann entropy of a quantum two-level system. The θ specifies the states
{|0′〉, |1′〉} in (2.68) which are non orthogonal if θ 6= 0. Think of the scenario in which Alice
prepares her qubit in one of the states {|0′〉, |1′〉} with probabilities p and 1− p, respectively,
and sends it to Bob. When θ = 0, i.e., the states are orthogonal and S(ρ) coincides with
H(p), and p = 0.5 Bob’s lack of information about the system is maximum. He describes
each qubit state sent by Alice by the density matrix ρ = p|0〉〈0| + (1 − p)|1〉〈1| and needs
at least S(ρ) = 1 qubit to encode this data. As θ gets larger, Bob manages to encode each
qubit coming from Alice using less than one qubit (S(ρ) < 1) in average because he has more
information about the system now.

Since Bob only knows that the states are selected from a probability distribution, he de-

scribes the system with a density matrix

ρ = pρ0′ + (1− p)ρ1′ =
[

sin2 θ + p cos 2θ cos θ sin θ

cos θ sin θ cos2 θ − p cos 2θ

]

, (2.70)

with the eigenvalues λ± = 1
2

(

1±
√

1 + 4p(p− 1) cos2 2θ
)

. For different values of θ,

Von Neumann entropy S(ρ) = −λ+log2λ+ − λ−logλ− is given in Fig. 2.8. For θ = 0,

Von Neumann entropy is the same as Shannon entropy. It can be seen that S(ρ) decreases

for less orthogonal states, i.e., the amount of information transferred from Alice to Bob

decreases as the states |0′〉 and |1′〉 get more similar. If the two states coincide, it is

obvious that no information is being transferred, and hence, the entropy is zero. Von

Neumann entropy can also be used for pure bipartite systems in all dimensions [58, 59].

The entropy of entanglement for a pure bipartite state ρAB is defined as

E(ρAB) = S(ρA) = (ρB). (2.71)

Here, the reduced density matrices ρA and ρB are obtained by calculating the partial traces

over subsystems B and A, respectively. If ρAB is a separable state, then ρA and ρB are

pure, which results inE(ρAB) = 0. However, the individual systems are mixed in general.

For d-dimensional systems, the maximum value of E(ρAB) becomes log2d.
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Figure 2.9: Coin-position entanglement of one-dimensional quantum walk for two different
initial states.

Entanglement in discrete-time quantum walks

It is known that the shift operator entangles the coin and position spaces starting from

the first step of the walk [60]. Since the step operator is unitary, the state of the total

system ρt = |Ψt〉〈Ψt| remains pure while step number t is increasing. Therefore, we

can use Von Neumann entropy to measure the entanglement between coin and position

spaces. The entropy of entanglement at step number t becomes E(ρt) = S(ρc) where

ρc = Trp(ρt). Here, the partial trace is taken over the position space. Looking at Fig. 2.9,

we see that the position and coin spaces are maximally entangled in the first step. Later

on, the entanglement fluctuates around an asymptote at 0.872. It has been analytically

shown that this asymptotic value is independent of the initial state [61].

2.4.5 Decoherence

A system under decoherence loses its coherent properties in time due to its interaction

with the environment. Kraus representation is one of the widely accepted methods in

describing the dynamics of such systems [42]. In this method, the system (S) under

consideration and its environment (E) are interpreted as different systems coupled to each

other. The total system (S + E), however, is assumed to be an isolated one. Therefore,

after evolving the system and its environment together, we trace out the environment to

obtain the state of the system we consider . Mathematically,

ρs = Tre(UρU
†) (2.72)

where U is the unitary operator evolving the total system. Now, starting with a total initial

state ρ = ρs,0 ⊗ ρe,0 where ρs,0 and ρe,0 = |ǫ0〉〈ǫ0| are the initial states of the system and
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its environment, (2.72) reads as

ρs =
m∑

n=0

〈en|U |ǫ0〉ρs,0〈ǫ0|U †|en〉 =
m∑

n=0

Enρs,0E
†
n (2.73)

where {|en〉 | n = 1, . . . , m} is the basis of the m-dimensional Hilbert space of the

environment and En = 〈en|U |ǫ0〉 are the Kraus operators. They satisfy the condition
∑m

n=0E
†
nEn = I . Choosing a separable initial state is a plausible assumption since all

correlations between the system and its environment are destroyed during experimental

preparation. Here, in order to obtain (2.73) we also assumed that the unitary operator can

be decomposed in terms of linear operators X and Y as U =
∑

i aiXi ⊗ Yi. Moreover,

we assumed that ρe is a pure state since we know it is possible to enlarge the environment

until it becomes a pure state. This method will be used in this section also for describing

the behavior of discrete-time quantum walks under decoherence [62].

For the discrete-time quantum walk, the total Hilbert space consists of three subspaces

HE ⊗ Hc ⊗ Hp: the environment, position and coin spaces. In Kraus representation, a

single step of the walk becomes

ρ(t + 1) =

m∑

n=0

Enρ(t)E
†
n. (2.74)

In order to find out the Kraus operators, let us first discuss the interaction mechanism of

the system S and its environmentE. We know that if there were no decoherence effects in

the environment, the system S would evolve with the unitary step operator U ′ = S(C⊗I)
(see Sec. 2.4.1 for details). However, for the cases where the system interacts with its

environment, we assume that U ′ changes due to the environmental effects in each step.

Therefore, the operator U should affect the system S contingent upon the state of the

environment. Before we introduce decoherence mechanisms for the quantum walk, let us

assume that the environment exists in the state |ei〉, and the operatorAi acts on the system

S with probability pi. We can, then represent the environment by an r-dimensional Hilbert

space spanned by {|ei〉} where it is initially found in the state

|ǫ0〉 =
√
p1|e1〉+ . . .+

√
pr|er〉. (2.75)

We note that in reality, the environment is the entire universe except the system we con-

sider. However, we saw in (2.75) that we do not need to know the exact form of the

environment. We only consider the part of it which effectively affects S. Therefore, there

is no reason for |ǫ0〉 be normalized. We can now write the conditional unitary evolution
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for the total system (S + E) as

U = |e1〉〈e1| ⊗ A1 + . . .+ |er〉〈er| ⊗Ar, (2.76)

where |ei〉〈ei| and Ai act on the environment E and the system S separately. It is clear

that operators |ei〉〈ei| do not alter the environment, i.e., they are just a condition to apply

the Ai properly. Thus, the Kraus operators and one step of the walk become

Ei = 〈ei|U |ǫ0〉 =
√
piAi, (2.77)

ρ(t + 1) =

r∑

i=1

EiρE
†
i =

r∑

i=1

piAiρA
†
i . (2.78)

We may now discuss two types of decoherence taking place in quantum walks.

Coin decoherence

The distinctive properties of isolated quantum walks arise due to the coherent nature of

the their unitary evolution. In other words, the system does not get measured between

adjacent steps. Starting with the initial state |Ψ(0)〉 = 1√
2
(|0〉 + |1〉), assume that we

measure the coin state in each step in the basis {|0〉, |1〉} before applying the shift operator.

Following the measurement, we obtain either |0〉 or |1〉 with equal probabilities and the

shift operator moves the walker to the either one of the two directions accordingly. It

is obvious that this scenario is exactly the same as that of the classical random walk.

As the number of realizations increase, the probability distribution converges to normal

distribution. Now, the effect of environment on the quantum walk can be thought as the

scenario we discussed here. Assume the environment ‘measures’ the coin state with some

probability p or no measurement takes place at all with probability (1 − p). Formally

speaking, this corresponds to an orthonormal projection on the coin state performed with

projection operators D1 = |0〉〈0| and D2 = |1〉〈1| with same probabilities p1 = p2 =

p/2. We also demonstrate the null effect of the environment by D3 = I with probability

p3 = (1 − p). Therefore, the state of the environment in (2.75) and Kraus operators in

(2.77) become

|ǫ0〉 =
√
p|e1〉+

√
p|e2〉+

√

1− p|e3〉, (2.79)

Ei =
√
piAi =

√
piS(C ⊗ I)(Di ⊗ I). (2.80)

The numerical results for the probability distribution of a quantum walk under coin deco-

herence is given in Fig. 2.10(a).
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(a) (b)

Figure 2.10: The probability distributions of discrete-time quantum walk under decoherence
on the line after 100 steps. (a) The coin state is measured in each step with probability p
(coin-decoherence). Only non-zero values of Pn are drawn (b) In each step, the connections
between the nearest neighbors are redefined. The probability of a connection to exist is p. We
see in both situations that a transition from quantum behavior to classical behavior takes place
as we increase p as a decoherence parameter.

Coin-position decoherence

This decoherence scenario utilizes the imperfections in the lattice caused by missing con-

nections between the positions where the walker may exist [63]. In each step, all connec-

tions in the lattice are reconfigured. Therefore, the walker may not be able to jump to any

of the nearest possible positions with some probability p for a given step number. This

probability is p2, p(1− p) and (1− p)2 for the cases where both connections are broken,

only one of them is broken and both exist, respectively. The environment state in (2.75)

becomes

|ǫ0〉 = (1− p)|e1〉+
√

p(1− p)(|e2〉+ |e3〉) + p|e4〉. (2.81)

Different than the coin decoherence which we have discussed in the previous section, we

must redefine the shift operators by considering the broken connections for each environ-

ment basis state. The appropriate choices for the shift operators are

S1 =
∑

n

|0〉〈0| ⊗ |n− 1〉〈n|+ |1〉〈1| ⊗ |n + 1〉〈n|,

S2 =
∑

n

−|1〉〈0| ⊗ |n〉〈n|+ |1〉〈1| ⊗ |n+ 1〉〈n|,

S3 =
∑

n

|0〉〈0| ⊗ |n− 1〉〈n|+ |0〉〈1| ⊗ |n〉〈n|,

S4 =
∑

n

|1〉〈0| ⊗ |n〉〈n|+ |0〉〈1| ⊗ |n〉〈n|.

Here, S1 is the ordinary shift operator. The shift operator S2 (S3) is used when the left

(right) connection is broken and we note that the walker is reflected to the opposite di-
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rection if one of the connections are missing. However, if both connections are missing,

the operator S4 is used and the walker is not able to leave its current position. Once we

write Si, we may also write the operators Ai = Si(C⊗I) which define the time evolution

of the system. We provide numerical results for the probability distribution of a quantum

walk under coin-position decoherence in Fig. 2.10(b).

2.5 Continuous-time quantum walks

The continuous-time quantum walk has first been suggested [5] as a quantum algorithm

which reaches the nth level of a decision tree faster than a continuous-time Markov pro-

cess. In this scheme of quantum walk, there is no coin space at all and the quantum state

evolves with a unitary operator related with the transition matrix. Before we define the

continuous-time quantum walk, it is helpful to start by introducing some basics of the

graph theory.

In discrete mathematics, a graph G = (V,E) is the representation of an object set V

in which some pairs are connected by links E. The degree of any vertex deg(v) is the

number of vertices incident to the vertex v. Geometrically, these objects and the links in

between are represented by vertices (or sites) and edges (or bonds), respectively. There

are various types of graphs some of which are displayed in Fig. 2.11. A graph G can be

specified by the connectivity matrix A that keeps the information about the existence of

bonds in between as follows:

Aij =







1 if i 6= j and i, j connected,

0 otherwise.
(2.82)

An auxiliary matrix called the Laplacian also contains the degree information of each

vertex in its corresponding diagonal elements:

Lij =







deg(vi) if i = j,

−1 if i 6= j and i, j connected,

0 otherwise.

(2.83)

which is simply L = A − D, with D as the degree matrix Dii = deg(vi). Thus, L is

a positive semi-definite matrix, i.e., its eigenvalues are non-negative. The Hamiltonian

which governs the dynamics of the continuous-time quantum walk simply becomes H =

γL which is also closely related with the tight-binding Hamiltonian in condensed matter

physics. The value of γ represents the hopping rate between adjacent sites. A particle
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localized on any site i is interpreted as being in the state |i〉 ↔ (0, . . . , 0, 1, 0, . . . , 0)T

and these states form a complete and orthonormal set over all sites,
∑

i∈N |i〉〈i| = I.

Therefore, starting from an initial state |Ψ0〉, the time evolution is given by

|Ψt〉 = e−iHt|Ψ0〉 (2.84)

where the time t is given in units of [~/Hij]. The probability of finding the particle at

position m after some time t is given by

Pn,m(t) = |〈m|e−iHt|n〉|2, (2.85)

where n denotes the initial position of the particle. In order to define a continuous-time

Markov process, we follow the same procedure as in that of the continuous-time quantum

walk without any coherent properties. In other words, the state vector |Φ〉 contains the

probabilities instead of probability amplitudes and the evolution is given by

|Φt〉 = eTt|Φ0〉 (2.86)

where T = −γL is the transition matrix. The probabilities read as

Pn,m(t) = 〈m|eTt|n〉. (2.87)

In Fig. 2.12, we see the probability distribution of one-dimensional continuous-time quan-

tum walk and the corresponding Markov process for two different hopping rates. We

will see in the following sections that the continuous-time quantum walks and Markov

processes provide a simple but useful model for the coherent and incoherent transport

processes, respectively.
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Figure 2.11: Various examples of graph structures in which a continuous-time quantum walk
can take place. (a) In an n-regular graph each vertex has the same number of neighbors.
(b) In a complete graph each pair of distinct vertices are connected by a unique edge. (c)
A random graph can be constructed by placing edges randomly between vertices. (d) In a
directed graph, all edges have a direction associated with them.

(a) (b)

Figure 2.12: A comparison of the probability distributions of continuous-time quantum walk
(solid) and continuous-time Markov process (dashed) for hopping rates (a) γ = 0.2 and (b)
γ = 0.4.

34



Chapter 3

QUBIT STATE TRANSFER

Quantum state transfer from one location to another is a significant problem for quantum

information processing systems. A quantum computer, which consists of different pro-

cessing units, requires the quantum states to be transferred between its parts. Therefore,

quantum state transfer will be an important part of quantum computer design. There are

various ways of achieving this task depending on the technology at hand [64]. In this

chapter, we consider two related fields of research, quantum state transfer and quantum

walks on one-dimensional graphs.

Quantum communication through a spin chain was first considered by Bose [65] and

since then it has been studied in depth [66–73]. This procedure consists of interacting

spins on a chain, whose dynamics is governed by Heisenberg, XX or XY Hamiltonians.

Perfect state transfer (PST) through a spin chain, in which adjacent spins are coupled by

equal strength, can be achieved only over short distances [19, 20].

The time-evolution of qubit state transfer through a spin chain can be interpreted as a

continuous-time quantum walk and PST is possible over a spin chain of any length with

pre-engineered couplings [19, 20]. Furthermore, this interpretation can be extended to

discrete-time quantum walk with a position-dependent coin operator [21]. PST in quan-

tum walks on various graphs has been studied more specifically for the continuous-time

model [22]. High fidelity transfer of specific quantum states on variants of cycles has

been reported for the discrete-time quantum walk [23] without considering the internal

coin state.

In this chapter, we show the perfect transfer of an unknown qubit state from one site

(A) to another (B) on one-dimensional graphs in discrete-time quantum walk architecture.

We treat the coin as our qubit whose state we aim to transfer. The coin is an internal

degree of freedom of the walker, e.g. polarization, 2-energy levels, angular momenta or

spin, which moves on discrete graph sites. At the end of the walk, we apply one more

coin operator (recovery operator) to achieve PST. The recovery operator is independent

of the initial coin state and it can be determined before the walk once a coin operator is
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chosen. We study the periodicity of each case where PST occurs and show that for all

PST cases the quantum walk is also periodic. Moreover, we show that redefinition of the

shift operator which amounts a change in the directions in which the walker can move,

may lead to PST with appropriate choices of the coin operator.

This chapter is organized as follows. In Sec. 3.1, we present quantum walks on finite

graphs, namely N-lines and N-cycles, via defining two boundary conditions. We also

introduce the spatial and local approaches to the definition of directions for the walker. In

Sec. 3.2, we discuss the transfer of the walker between sitesA and B without considering

the coin state. In Sec. 3.3, we introduce the recovery operator and give a precise definition

of PST for discrete-time quantum walks. In Sec. 3.4 and Sec. 3.5, we obtain the cases

where PST occurs for N-lines and N-cycles

3.1 Quantum walk on finite graphs

The position Hilbert space of the quantum walk described in Sec. 2.4.1 does not necessar-

ily be infinite and it can be restricted to a finite number of sitesN by choosing appropriate

conditions for boundaries. In this case, a different definition for the shift operator is re-

quired. In Fig. 3.1, two boundary conditions for the walk are presented and these are the

ones that we will use throughout the article. In Fig. 3.1(a), the graph with N sites and

reflecting boundaries (N-line) is represented. Self loops at the boundaries indicate that

wave function is reflected after the shift operator is applied, similar to the approach used

by Romanelli et al. for the broken links model [63]. The shift operator is of the form

S =|1〉〈0| ⊗ |1〉〈1|+ |0〉〈1| ⊗ |N〉〈N |+

|0〉〈0| ⊗
N∑

x=2

|x− 1〉〈x|+ |1〉〈1| ⊗
N−1∑

x=1

|x+ 1〉〈x|, (3.1)

where the left (right)-going part at the first (last) site is diverted to the right (left)-going

part at the same site to keep the flux conserved. Thus, the shift operator remains unitary. In

Fig. 3.1(b), the graph with even N sites and periodic boundaries (N-cycle) is represented.

Here, we simply connect the first and the last sites with one more edge.

For the walker, directions of motion can be defined in two ways. In the first one,

which we shall call as spatial approach, the same coin state corresponds to the same

spatial direction at every site. Without loss of generality, one can choose the |0〉 (|1〉) coin

state to correspond the left (right) spatial direction or clockwise (anti-clockwise) rotation.

In the second approach, which we shall call as local approach, we assign two orthogonal

coin states to the two edges of every site in a self-consistent manner. The discussion here
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(a) (b)

Figure 3.1: The position space where the quantum walk takes place with (a) reflecting bound-
ary (N-line) and (b) periodic boundary (N-cycle) conditions (i.e., a 2-regular graph). Outer-
most sites are labeled with A and B. Site A is the initial position of the walker and site B is
the position where we aim to transfer the coin state.

(a)

(b)

+n-n

Figure 3.2: Two different approaches which specify the directions in the position space. (a)
Spatial approach: |0〉 (|1〉) state corresponds to −n (+n) direction for each site. (b) Local

approach: Adjacent edges are labeled by different basis states of the coin space in a self-
consistent manner. Thus, the walker found at site n takes a step towards n+1, and vice versa,
if its coin state is |0〉.

could equivalently be done by redefining the shift operator as well. These approaches are

summarized in Fig. 3.2.

A walk can start with any initial state. We will use only localized initial states of the

form |Ψ0〉 = |ψ0,n〉 ⊗ |n〉, where |ψ0,n〉 = α0,n|0〉 + β0,n|1〉 is the arbitrary initial coin

state. The first and the second indices denote the number of steps and site, respectively.

After t steps, the initially localized state disperses in the position space and the quantum

state of the walker becomes

|Ψ0〉 U t

−→ |Ψt〉 =
∑

x

(αt,n|0〉+ βt,n|1〉)⊗ |n〉. (3.2)

At the end of the walk, the probability of finding the walker at site n is given by summing

the probabilities over the coin states

Px(t) = |αt,n|2 + |βt,n|2. (3.3)
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3.2 State revivals after limited number of steps

For classical random walks, recurrence is defined as the return of the walker to the origin

and characterized by Pólya number [74]. In quantum walk case, the same definition is

used and full-revival of the initial quantum state is not necessary [75, 76]. Here, we

consider the transfer of the walker from site A to site B after limited number of steps

without considering its coin state. In other words, we expect that the condition PB(t) = 1

is fulfilled after t steps where t is an integer comparable with the number of graph sites.

In Fig. 3.3(a), for 4-cycle, we see that the walker appears recursively at site 3 with a

period of 8 steps for 4-cycle. In Fig. 3.3(b), we also observe a recursive behaviour for 4-

line but probability never reaches to 1. It means that it is impossible to transfer the walker

from site 1 to 4 because P4(t) repeats itself in every 22 steps with 0.625 maxima. For 6-

cycle (Fig. 3.3(c)) and 6-line (Fig. 3.3(d)), neither the walker can be transferred within the

given time intervals, nor a recursive behaviour is observed. However, further analysis for

long-time behaviour reveals repetitive patterns which display irregular periodicity [77].

In Fig. 3.3(e), we observe that peak values oscillate with quasi-periods of 2412 and 2698

steps. The maximum value is 0.57 and therefore transfer of the walker is impossible. In

contrast, Fig. 3.3(f) demonstrates that it is quite probable (≈ 0.99) to find the walker at

site 6 with quasi-periods of 6416 and 6016 steps. In this manuscript, we omit this kind

of approximate transfers which appear after very large number of steps because of their

unpredictability and experimental inconvenience. Instead, we consider the cases where

exact transfer of the walker (e.g., Fig. 3.3(b)) is possible in a specific limited time. In Fig.

3.3, we consider the Hadamard walk only for initial coin state |ψ0,A〉 = 1/
√
2[|0〉+ i|1〉].

For PST, we expect to obtain the same behavior for all initial coin states. Thus, we define

our first criterion which we use in our numerical work for PST as follows: For a given

coin operator, the walker has to be transferred to the antipodal site of the graph after a

specific number of steps for all initial coin states. We examine coin operators whether

they satisfy this criterion or not. Once this criterion is satisfied then we examine the final

coin state for its similarity to the initial coin state. A precise definition for PST is given in

the following section.

3.3 Recovery operator and perfect state transfer

The walker is initially localized at site A. We are interested in the perfect transfer of

walker’s coin state from site A to site B. For this purpose we define the fidelity at time t
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(a)

(b)

(c)

(d)

(e)

(�)

Figure 3.3: The probability of finding the walker at the antipodal site B on (a) 4-cycle, (b)
4-line, (c) 6-cycle and (d) 6-line for the Hadamard walk, ρ = 1/2. The initial coin state is
chosen as |ψ0,A〉 = (1/

√
2)[|0〉 + i|1〉] in each case. Long-time behaviors for (e) 6-cycle and

(f) 6-line reveal the recursive behavior of the probability at site B. The lower parts of (e) and
(f) are clipped.

and site B by

ft,B = |〈ΨB|Ψt〉|, (3.4)

where |ΨB〉 = |ψ0,A〉 ⊗ |B〉 and |Ψt〉 is the quantum state of the walker at step number t.

|ψ0,A〉 is the coin state at t = 0 and site A. PST occurs if ft,B = 1. Thus, we are looking

for a class of time evolutions of the form [78]

|ψ0,A〉 ⊗ |A〉 → |ψ0,A〉 ⊗ |B〉. (3.5)

Since we assume that our initial coin state is unknown, for a given coin operator, the

required number of steps to transfer the coin state have to be the same for all |ψ0,A〉’s
(see the criterion in Sec. 3.2). The condition, A = B and ft,B = 1, implies that the

walk is periodic, which means that the initial quantum state is completely recovered after

t steps up to a phase constant. Periodicity has been first discussed by Travaglione and

Milburn [79] for 4-cycle. They have shown the full-revival of the initial quantum state

|Ψ0〉 = |0〉 ⊗ |0〉 after 8 steps with Hadamard coin. Later, Treggenna et al. have extended

this result by showing that, except 7-cycle, all N-cycles with N < 11 manifest periodicity

with appropriate choices of (ρ, θ, φ) in (2.43) for every initial coin state [43]. Dukes has

analysed the periodicity of N-cycles in detail and presented the general conditions for

periodicity [80]. Here, although our main aim is to achieve PST, we will also study the
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(b)(a)

Figure 3.4: Fidelities of the initial coin states on 2-line. 1st and 2nd sites are chosen as A
and B, respectively. The (θb, φb) plane represents the initial coin states on Bloch sphere (Fig.
2.1) and f is the maximum fidelity over time. (a) Identity coin operator is used. Independent
of φb, the coin states θb = 0 and θb = π are transferred perfectly. (b) Hadamard coin operator
is used and no PST is observed within a limited time interval.

periodicity for each case under consideration. We consider a quantum walk to be periodic,

if it is periodic for all initial coin states as in [43].

As we have discussed in Sec. 3.2, for a given number of steps, the walker may appear

at B with probability 1. However, its coin state (|ψt,B〉) can be different from the initial

one (|ψ0,A〉). Since (2.43) includes all possible rotations for a two-dimensional coin, one

can transform |ψt,B〉 to |ψ0,A〉 with suitable parameters, (ρ′,θ′,φ′). Let us denote this coin

operator with primed parameters as CR = C ′ ⊗ I (recovery operator) to distinguish it

from the one which governs the walk. Since the initial coin state is unknown, recovery

operator have to be independent of the initial coin state. We define this condition as our

second criterion for PST as follows: For a given coin operator and graph, there should be

only one recovery operator which transforms the final coin state to the initial coin state.

In Sec. 3.4 and 3.5, we show that all cases which satisfy the first criterion (in Sec. 3.2)

also satisfy the second one. Thus, once we decide on the coin operator which we will use

for the walk, we can also determine the recovery operator which will be applied at the end

of the walk to achieve PST. This PST scheme can be summarized as

|ψ0,A〉 ⊗ |A〉 U t

−→ |ψt,B〉 ⊗ |B〉 CR−−→ |ψ0,A〉 ⊗ |B〉. (3.6)

In our calculations, A and B are chosen as the outermost sites on the graph. These are

1st and N th sites for the N-line, 1st and (N
2
+ 1)th sites for the N-cycle with even N ,

respectively. We do not analyse N-cycles with odd N for PST, since we cannot assign a

unique A and B pair. First we have numerically determined all cases where the walker

is found with probability 1 at B for all coin states (the first criterion) by scanning whole

Bloch sphere shown in Fig. 2.1. We have restricted the graph size to N < 11 if ρ 6= 1.

Without loss of generality, we have also restricted the coin operator to φ = 0 [43]. Then,
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Table 3.1: For the 2-line, these are the cases where the walker is found with probability 1.
The other parameters of the coin operator are chosen as θ = φ = 0.

ρ Steps (t) Site (n) Coin state

1
4

6 2 −β|0〉+ α|1〉
12 1 |ψ0,1〉

1
2

4 2 −β|0〉+ α|1〉
8 1 |ψ0,1〉

3
4

6 1 |ψ0,1〉

we have analytically studied these cases for their aptness to periodicity and PST (the

second criterion), by using (2.53).

For PST, without any knowledge about the initial coin state, one should be able to

transfer all coin states with ft,B = 1. However, an arbitrary coin operator and an arbitrary

graph do not provide quantum walks which allow PST in general. In Fig. 3.4, two specific

examples are demonstrated. These are the numerical analyses of fidelity distributions over

initial coin states for 2-line. In Fig. 3.4(a), it can be seen that only limited number of initial

coin states are transferred perfectly for identity coin operator. In Fig. 3.4(b), Hadamard

coin is used and there is no PST at all. Further analysis for the other coin operators and

graphs give similar results except the 4-cycle which will be explained in Sec. 3.5.

3.4 Perfect state transfer on N-lines

Case: ρ 6= 1

In Table 3.1, the cases where the walker is found with probability 1 on the 2-line are given.

The cases with coin state |ψ0,1〉 manifest periodicity. To achieve a PST, we consider the

other cases where the total state is

|Ψt〉 = [−β|0〉+ α|1〉]⊗ |2〉. (3.7)

After t steps, we apply appropriate recovery operator, (ρ′, θ′, φ′) = (0, 0,−π), on

(3.7). In this way, we obtain the initial coin state and hence PST. Overall process can be

written as

|ψ0,1〉 ⊗ |1〉 CRUt

−−−→ |ψ0,1〉 ⊗ |2〉. (3.8)
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Thus, any coin state can be transferred on 2-line perfectly with appropriate (ρ, t) values

given in Table 3.1. We note that recovery operator is constant for a given coin operator

and it provides PST for all initial coin states. In each PST case, the quantum walk is

periodic. For example, after 4 steps of the walk with ρ = 1/2, if the walker proceeds

4 more steps, the initial quantum state is recovered. There is also a case with ρ = 3/4,

where 2-line is periodic but it does not lead to PST. PST requires the total state to localize

more than one sites in turn and this process naturally gives rise to periodicity.

After applying the recovery operator, we initialize the walker with the initial coin state

at a different site. For example, when ρ = 1/2, if the walker is acted on by sequence of

operations, such as CRU
4CRU

4, it will be initialized on sites 1 and 2 alternatingly. The

sequence of initializations which keeps the initial coin state unchanged, suggest us to

define a new classification for discrete-time quantum walks which we call n-periodicity.

We can define one step of the walk for the example above as U ′ = CRU
4. Then, after

each step, coin state will be conserved and the only change will occur in the position

space. In other words, U ′ is same as that of I ⊗ (|2〉〈1| + |1〉〈2|). Since the walker is

localized on two sites in an alternating manner, the quantum walk under consideration

becomes 2-periodic. In general, the number n gives the total number of sites where initial

coin state is localized during the time evolution. If quantum walk is periodic, we will call

it 1-periodic, i.e., well-known periodicity concept becomes a member of the general n-

periodicity class. Thus, N-line or N-cycle allow maximum N-periodicity. This definition

is useful because it generalizes the periodicity definition so that it includes the PST too.

For ρ 6= 1, reflecting boundaries ensure that there will always be a non-zero proba-

bility for finding the walker at A, independent of t, if there is no destructive interference.

However, the dimension of the position space for 2-line allows the wave function to vanish

at A and gives rise to the cases given in Table 3.1.

Case: ρ = 1

When we restrict the coin operators to ρ = 1, independent of the initial coin state, the

walker is transferred from A to B and B to A at intervals of N steps for all N-lines. In

general, the walker is at the position B or A if t = N(2l − 1) or t = 2Nl steps are taken,

respectively. Here, l ∈ Z+ specifies the number of "one-way trips" of the walker within

the graph. In order to find the coin state of the walker at t, we have derived the total

quantum states

|ΨN(2l−1)〉 = ei(l−1)Θ[−βei(θ+φ)|0〉+ α|1〉]⊗ |N〉, (3.9)
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|Ψ2Nl〉 = eilΘ[α|0〉+ β|1〉]⊗ |1〉, (3.10)

where Θ(θ, φ,N) = (θ + φ)N + µπ and θ, φ are the parameters of the coin operator.

Here, µ is a function which adds the phase π for odd N and it can be defined as µ(N) =

[1−(−1)N ]/2. It is shown in (3.10) that the total state is periodically localized at opposite

sites which agrees with the numerical results. Furthermore, the walk is periodic with a

period of 2Nl steps up to an overall phase. After N steps, we apply recovery operator

(ρ′, θ′, φ′) = (0, 0,−θ−φ−π) for PST. Recovery operator is a function of θ and φ which

means that for all coin operators with ρ = 1, there is always a corresponding recovery

operator. Hence, step operator U ′ = CRU
N makes N-line 2-periodic for ρ = 1.

3.5 Perfect state transfer on N-cycles

Case: ρ 6= 1

For 2-cycle, full evolution can simply be written in matrix form as

Ut ↔
( √

ρ
√
1− ρeiθ

√
1− ρeiφ −√ρei(θ+φ)

)t

⊗
(

0 1

1 0

)t

. (3.11)

In (3.11), we see that, shift operator swaps the position of the walker independent of its

coin state. At t = 1, the total state becomes

|Ψ1〉 =
[

(α
√
ρ+ β

√

1− ρeiθ)|0〉+ (α
√

1− ρeiφ − β√ρei(θ+φ))|1〉
]

⊗ |2〉 (3.12)

Since the coin operator is unitary, CR = C† ⊗ I leads to PST after first step. If we define

one-step as U ′ = (C† ⊗ I)S(C ⊗ I), quantum walk becomes 2-periodic and it keeps the

initial coin state unchanged. In other words, the initial coin state bounces back and forth

between two sites. In contrast to 2-line, 2-cycle allows PST for all coin operators with

the aid of appropriate recovery operators. We note that, if we choose θ = φ = 0, without

any recovery operator, the walk is naturally periodic with a period of 2 steps for ρ ∈ [0, 1]

which generalizes the ρ = 1/2 condition in Ref. [43].

A special case for PST on circles is the 4-cycle. In this case, we achieve PST by using

well-known Hadamard coin operator (in 4 steps) or the biased coin operator ρ = 1/4 (in

6 steps) without any recovery operators. These results are given in table 3.2 and Fig. 3.5.

We see that for each PST case the walk is also periodic. In Ref. [43], it has been already

shown that 4-cycle has a period of 8 steps for ρ = 1/2. We extend this result by showing
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Table 3.2: For the 4-cycle, these are the cases where the walker is found with probability 1.
The other parameters of coin operator are chosen as θ = φ = 0. The overall phase eiπ for
ρ = 1/2 appears if θ = π.

ρ Steps (t) Site (n) Coin state

1
4

6 3 |ψ0,1〉
12 1 |ψ0,1〉

1
2

4 3 (eiπ)|ψ0,1〉
8 1 |ψ0,1〉

3
4

6 1 |ψ0,1〉

that it also has a period of 12 steps for ρ = 1/4 and period of 6 steps for ρ = 3/4.

Figure 3.5: PST on 4-cycle. This is the only case where discrete-time quantum walk allows
PST with Hadamard coin operator or with a biased coin, ρ = 1/4, without any recovery
operators. Black and hollow dots indicate Pn(t) = 1 and Pn(t) = 0, respectively.

Case: ρ = 1

Now, we consider the N-cycles with even N and θ, φ 6= 0. Since the coin operator is

diagonal, |0〉 and |1〉 terms do not mix, and generate propagations in opposite directions.

AfterN/2 steps, we find the walker atB with probability 1. We note that the coin operator

adds the phase ei(θ+φ+π) to the coefficient of |1〉 in each step. Thus, after N/2 steps, the

total state becomes

|ΨN/2〉 = (α|0〉+ βei
NΘ

2 |1〉)⊗ |N
2
+ 1〉, (3.13)

where Θ = θ + φ + π. Without loss of generality, one can choose θ′ = 0 and use the

recovery operator (ρ′, θ′, φ′) = (1, 0,−[NΘ/2] + π) to achieve PST. The step operator

U ′ = CRU
N/2 makes the walk 2-periodic. If N is odd, wave function does not localize at

any site except the initial one. The total state after N steps is

|ΨN〉 = (α|0〉+ βeiNΘ|1〉)⊗ |1〉. (3.14)
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Appropriate choice for the recovery operator can be given as (ρ′, θ′, φ′) = (1, 0,−NΘ+π)

at t = N . The step operator U ′ = CRU
N makes the walk 1-periodic.

We have shown that the coin operator which is restricted to ρ = 1 allows PST on

N-cycles. Although, it has not been indicated in the discussion about N-cycles above,

spatial approach has been used intrinsically, i.e., clockwise rotations correspond to |1〉.
If the walk is driven by the coin operator (ρ, θ, φ) = (0, 0, 0) (the flip coin operator), we

define the directions with the local approach for PST (see Fig. 3.2). When N is odd,

N-cycle is ill-defined since we have to label at least two edges with the same basis state.

Therefore, we consider N-cycles with even N only. If we label all edges as in Fig. 3.2(b),

after N/2 steps, the total state becomes

Lij =







|ψ0,in〉 ⊗ |N2 + 1〉 for even N/2,

αeiφ|0〉+ βeiθ|1〉)⊗ |N
2
+ 1〉 for odd N/2.

(3.15)

Both case have the overall phase ei⌊N/4⌋(θ+φ) where ⌊⌋ is the floor function. The first case

shows that PST is achieved after N/2 steps. Also, it is clear that we can use (ρ′, θ′, φ′) =

(0,−φ,−θ) to recover the second case and make the walk periodic. However, N-lines do

not have the same property, i.e., PST is not possible if we use flip coin operator with local

approach. We can demonstrate this fact by evaluating the first two steps as follows:

|Ψ0〉 = α|0, 1〉+ β|1, 1〉 U−→ α|0, 1〉+ β|1, 2〉 U−→ α|0, 1〉+ β|1, 3〉 U−→ · · · (3.16)

where U involves the flip coin operator. We see that after each step, the first term in the

summation is stuck at site 1 because of the reflecting boundary. For an N-line, after N

steps, the second term will be stuck at site N as well. Thus, neither PST nor periodicity

is possible.
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Chapter 4

COHERENT TRANSPORT OVER

EXPLOSIVE PERCOLATION LATTICES

Coherent transport over complex networks has been a topic of much interest in the re-

cent years [81]. Such processes are often related with the dynamics of excitations over

networks modeled by quantum walks and studied for both variants, namely the discrete-

[3, 82–88] and the continuous-time [89–96] quantum walks. Although the original pro-

posals [2, 5] of either models are mainly aimed to outperform their classical counterparts

in terms of spreading rates, it has been shown later that quantum walks are useful tools

also for developing new quantum algorithms [6], quantum simulations [12–14, 97, 98] and

the universal quantum computation [11]. In the context of coherent transport, they pro-

vide simple models to describe quite significant physical phenomena such as the excitonic

energy transfer through the photosynthetic light-harvesting complexes [17] or breakdown

of an electron system driven by strong electric fields [16].

It is possible to introduce a disorder to a network using the standard percolation model

[99] in which the bonds between sites are either present or missing with some probability

p. A group of connected sites is called a cluster and its size is defined by the number

of these sites in total. For an infinite network, if p is smaller than some critical value pc

(the percolation threshold), there exist small and discrete clusters. However, if p > pc,

small clusters start merging into larger ones and eventually form a single large cluster

comparable to the network in size. This kind of disorder constitutes a source of decoher-

ence for quantum walks and appears in two variants: the static and dynamic percolations.

In the former, the network configuration does not change during propagation, whereas

in the latter, connections between sites do alter in time. Both variants have extensively

been studied so far in the context of transport and spreading properties for discrete- and

continuous-time quantum walks [63, 100–108].

Achlioptas et al. proposed a new percolation model for network construction by

slightly changing the standard one [109]. According to this model, two bond candidates
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are randomly selected each time a new bond is intended to be added. Then, the one lead-

ing to a smaller cluster size is placed as a new bond and the other one is eliminated. This

simple selection rule suppresses the growth of the largest cluster but eventually results

in the abrupt (or so-called explosive) growth of the largest cluster. In contrast with the

standard percolation, the network configuration for a given p depends on the total previ-

ous occupation history. In this sense, the disorder due to explosive percolation cannot be

considered as a fully random process but rather a correlated one.

In this chapter, we are interested in the transport of an excitation along a certain di-

rection over a square lattice where the bond configuration is determined by explosive

percolation statically. We therefore introduce the sites on the left edge of the lattice as

sources and the ones on the right as sinks, where an excitation is created and absorbed,

respectively [105]. In this way, we monitor the survival probability over the lattice in the

long time limit to find out the transport efficiency after starting with an initial state local-

ized on the source sites. In modeling the transport, we use the continuous-time quantum

walk which is also closely related with the tight-binding models in solid state physics. We

compare the transport efficiencies with increasing bond fraction for standard and explo-

sive percolation models to find out whether any model has supremacy over the other.

This chapter is organized as follows. In Sec. 4.1, we overview coherent and incoher-

ent transport over dissipative lattices along with the description of percolation models to

be used. In Sec. 4.2.1, we compare the efficiencies of transport models in case of stan-

dard and explosive percolation disorders. In Sec. 4.2.2, we investigate the spreading of

eigenstates.

4.1 Methods

4.1.1 Coherent and incoherent transport

We consider a square lattice of N sites, which we will denote by L =
√
N , as the envi-

ronment where the transport process takes place. The sites are labeled by positive integers

N = {1, 2, . . . , N}. The information about the existence of bonds in between is held by

the Laplacian matrix L where the non-diagonal elements Lij are −1 if site i and site j are

connected and zero otherwise. The diagonal elements Lii hold the total number of bonds

that belong to the site i. Thus, L is a positive semi-definite matrix, i.e., its eigenvalues

are non-negative. An excitation localized on any site i is interpreted as being in the state

|i〉 and these states form an orthonormal and complete set over all sites, i.e., 〈k|j〉 = δkj

and
∑

i∈N |i〉〈i| = I . A coherent (incoherent) transport is modeled by continuous-time
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quantum (random) walk which is described by the Hamiltonian (transfer matrix) H0 = L

(T0 = −L) [5, 81]. Here, we assume that transition rates are identical and equal to 1 for

all sites. The transition probability from the initial state |ψj〉 at t = 0 to the state |ψk〉 is

pkj(t) = 〈ψk| exp(T0t)|ψj〉 for the incoherent and πkj(t) = |〈ψk| exp (−iH0t)|ψj〉|2 for

the coherent transport, where we assumed ~ = 1.

Once an excitation covers the lattice from one side to another, we understand that it did

get transported over the lattice. In order to keep track of this process, we define the sites at

the left (right) edge of the lattice as the sources (sinks) as in Fig. 4.1 [105]. We will denote

the set of all source and sink sites by S and S ′, respectively. Sources are the only sites

where an excitation can initially be localized and the sinks are abstract representations of

absorption or trapping processes. Thus, a ‘leak’ taking place on the right edge implies that

an excitation, originally localized on the left edge, has been transported along the lattice.

This process can be introduced by a projection operator Γ =
∑

k∈S′ |k〉〈k| perturbing the

HamiltonianH = H0−iΓ or the transfer matrix T = T0−Γ where we choose the leaking

rates to be the same and equal to 1 for all sink sites. In the limit t→∞ and for the initial

state |ψj〉, the total probability of finding the excitation on the lattice, namely the survival

probabilities for coherent and incoherent transports are given as,

Π∞
j =

∑

l

|〈ψj|ΦR
l 〉|2, P∞

j =
∑

k∈N

∑

l

〈k|φ0
l 〉〈φ0

l |ψj〉, (4.1)

where |ΦR
l 〉 and |φ0

l 〉 are the eigenstates of H and T with real and zero eigenvalues, re-

spectively. The initial state |ψj〉 may involve sites only from the set S. In this chapter,

we will denote the complement of survival probabilities by µ which can equally be inter-

preted as the transport efficiency [110] or the percolation probability [86]. By calculating

µ, we will monitor how much information may escape from the lattice.

4.1.2 Calculation of survival probabilities

We calculate the survival probability after starting with the initial state |ψj〉 by summing

the transition probabilities over all lattice sites as

Πj =
∑

k∈N
πkj(t) =

∑

k∈N
〈ψj |eiH

†t|k〉〈k|e−iHt|ψj〉

= 〈ψj|eiH
†te−iHt|ψj〉.

(4.2)

The Hamiltonian H = H0 − iΓ is non-Hermitian and it has N complex eigenvalues

El = ǫl − iγl and E∗
l = ǫl + iγl with respective left |Φl〉 and right 〈Φ̃l| eigenstates.

These eigenstates can be taken as biorthonormal [111] 〈Φ̃l|Φl′〉 = δll′ and complete
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∑N
l=1 |Φl〉〈Φ̃l| = I . Also, they satisfy 〈k|Φl〉∗ = 〈Φ̃l|k〉. Therefore, Eq. (4.2) becomes,

Πj =
N∑

ll′=1

〈ψj |Φl〉〈Φ̃l|eiH
†te−iHt|Φl′〉〈Φ̃l′ |ψj〉. (4.3)

By using the following identities,

e−iHt|Φl′〉 = e−iǫl′ te−γl′ t|Φl′〉,
〈Φ̃l|eiH

†t = 〈Φ̃l|eiǫlte−γlt,
(4.4)

Eq. (4.3) becomes,

Πj =

N∑

ll′=1

〈ψj |Φl〉〈Φ̃l|Φl′〉〈Φ̃l′ |ψj〉eiǫlte−γlte−iǫl′ te−γl′ t

=

N∑

l=1

e−2γlt〈ψj|Φl〉〈Φ̃l|ψj〉 =
N∑

l=1

e−2γlt|〈ψj|Φl〉|2
(4.5)

This provides information on how an excitation decays over the lattice in time. In the

limit t → ∞, we expect Πj to decay exponentially because of the imaginary parts γl if

the lattice is fully connected. However, when some bonds in the lattice are broken, there

exist non imaginary eigenvalues which results in limt→∞Πj(t) 6= 0. Therefore, in Eq.

4.5 only the terms with γl = 0 may remain and we obtain,

Π∞
j = lim

t→∞
Πj(t) =

∑

{l|El∈R}
|〈ψj|Φl〉|2. (4.6)

If we choose an initial state |ψj〉 = 1√
L

∑

i∈S |i〉 which is a superposition of L sites from

the set S, Eq. (4.6) becomes,

Π∞
S =

1

L

∑

{l|El∈R}

∣
∣
∣
∣
∣

∑

i∈S
〈i|Φl〉

∣
∣
∣
∣
∣

2

(4.7)

Similarly, we can calculate the survival probability for the incoherent transport as

Pj =
∑

k∈N
〈k|eTt|ψj〉 =

∑

l

∑

k∈N
e−λlt〈k|φl〉〈φl|ψj〉. (4.8)

where −λl and |φl〉 are the eigenvalues and the corresponding eigenstates of the transfer

matrix T = T0 − Γ. In the t → ∞ limit, only the terms with λl = 0 survive. Therefore,

Eq. (4.8) becomes

P∞
j =

∑

{l|λl=0}

∑

k∈N
〈k|φl〉〈φl|ψj〉 (4.9)
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Figure 4.1: An example of a bond percolation lattice for L = 4. Left (right) edge con-
tains source (sink) sites where an excitation occurs (is absorbed). Dashed lines represent
two randomly selected bond candidates labeled by 1 and 2 with corresponding weights
w1 = 4 × 5 = 20 and w2 = 2 × 3 = 6. According to the best-of-two rule, bond 2 will
be selected and bond 1 discarded for w2 < w1. A wrapping cluster is defined to be the one
connecting the left edge to the right edge. For this example, it lies along the bottom edge of
the lattice and occupies two source sites.

Then, the initial state |ψj〉 = 1
L

∑

i∈S |i〉 yields,

P∞
S =

1

L

∑

{l|λl=0}

∑

k∈N
〈k|φl〉

(
∑

i∈S
〈φl|i〉

)

. (4.10)

4.1.3 Explosive percolation

The standard bond percolation is implemented on a square lattice by first removing all

bonds between the sites and then, randomly adding them one after another. This process

results in random growth of discrete clusters. For infinite lattices, the opposite borders

get connected to each other through one large wrapping cluster after reaching a critical

fraction of bonds pc = 0.5 [112] called the percolation threshold. Here, the bond fraction

p is defined as the ratio of the number of bonds present in lattice to the number of total

possible bonds, p = n/(2L2−L).

In explosive percolation, a similar implementation procedure is followed with slight

modification. Now, in order to add a bond, m random bond candidates are chosen and a

weight is assigned to each of them equal to the product of cluster sizes they may poten-

tially merge. Then, the bond with smallest weight is occupied and the others are discarded

(see Fig. 4.1). In case a bond connects two sites within the same cluster, the corresponding

weight becomes the square of the cluster size. We will see later that this complementary

rule has drastic effects on the results we obtain. This selection rule here, called the best-

of-m product rule [113, 114], systematically suppresses the merging of small discrete
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clusters and consequently avoids the formation of a giant cluster up to some percolation

threshold pc dependent on m [115, 116]. Once the threshold is exceeded, finite discrete

clusters start joining each other much faster than in standard percolation (m = 1) and fi-

nally, this results in an explosive behavior in the growth of the largest cluster. In particular,

m = 2 corresponds to the Achlioptas et al. model [109].

For m > 1, discrete clusters cannot grow in a completely random manner as in stan-

dard percolation case. The shape and size of a given cluster becomes somewhat correlated

with those of other clusters during the growth process. In this context, we interpret m as

the correlation strength since it specifies the number of discrete clusters taken into account

while deciding to add a new bond. We examine the behavior of transport processes for

lattices built by using different m values.

Lastly, we note that a transport process can only take place after a wrapping cluster

is formed. In infinite lattices, this happens just after p = pc. In finite lattices, however,

there is still a chance of having no wrapping clusters when p > pc and, indeed, having

one for p < pc. Consequently, the efficiency of the transport inevitably gets affected by

these finite-size effects.

4.2 Numerical results

We numerically determined all eigenvalues and corresponding eigenvectors of H and T

for each lattice realization to calculate Π∞
j and P∞

j in Eq. (4.1). It is clear that these

quantities depend sensitively on the total number of real and zero eigenvalues. For this

reason, we carefully compared numerical eigenvalues with the exact ones for different

lattice sizes and concluded that L = 7 is the optimal one where there is one-to-one corre-

spondence between the exact and numerical results provided that numerical values smaller

than 1.0 × 10−14 are set to zero. In order to obtain notable quantities for the above men-

tioned static percolation models, we averaged our results over 4× 103 lattice realizations

for each p. From now on, 〈. . .〉 will be used to indicate the ensemble averaged quantities

we have obtained.

4.2.1 Transport efficiency

We choose an initial state which is equiprobably distributed over the source sites as |ψj〉 ≡
|ΨS〉 = κ

∑

i∈S |i〉 where κ = L−1/2 for the coherent transport and κ = L−1 for the

incoherent transport. This state represents our lack of knowledge about the exact position

of the excitation at t = 0. In the limit t→∞, we define the average transport efficiencies
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Figure 4.2: (a) The average transport efficiency of coherent transport 〈µmc 〉 = 1 − 〈Π∞,m
S 〉

vs. bond fraction p for different correlation strengths m after starting with the initial state
|ψS〉. The standard percolation and Achlioptas et al. models [109] correspond to m = 1 and
m = 2, respectively. The inset represents the comparison of m = 1 and m > 1, namely
∆〈µmc 〉 = 〈µ1c〉 − 〈µm>1

c 〉. (b) The average ratio of number of sites in the largest cluster
to total number of sites 〈ζm〉. The inset represents the average bond fraction of having a
wrapping cluster 〈pmw 〉 for different m values, which are also represented in Table 4.1. The
m axis is drawn in the logarithmic scale. (c) The initial growth rate of 〈µmc 〉 which obeys a
power law such that 〈µmc 〉 = 10α|p − pms |β for m 6 8. The axes are drawn in logarithmic
scale. (d) Comparison of the transport efficiencies of coherent and incoherent transports. The
inset shows the differences between the efficiencies of incoherent and coherent transports.
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Figure 4.3: (a) The participation ratios ξl(p) of each eigenstate |Φ0
l 〉 of the Hamiltonian H0

with respect to the fraction of bonds p in the lattice. (b) The participation ratios averaged over
different eigenstates for a given p.

for a given bond fraction p and correlation strength m as

〈µm
c (p)〉 ≡ 1− 〈Π∞,m

S (p)〉, 〈µm
i (p)〉 ≡ 1− 〈P∞,m

S (p)〉, (4.11)

for coherent and incoherent transports, respectively. These quantities are the average

probabilities for the excitation to be trapped in the limit t → ∞. We will use the super-

script m for labeling purposes through the rest of this chapter. Let us also define pma here

as the minimum bond percentage which satisfies 〈µm
c 〉 > 0.01 [86] in order to determine

the effective starting point of the coherent transport.

In Fig. 4.2(a) the change in 〈µm
c 〉 is plotted with respect to p. The differences

∆〈µm
c 〉 ≡ 〈µ1

c〉 − 〈µm>1
c 〉 between the efficiency of the case m = 1 and the efficien-

cies of the cases with larger m are given in its inset. We see that when m > 1, we obtain

transports with partially higher efficiencies than that of the m = 1 once p exceeds certain

values denoted by pmb . Additionally, pma increases and gets fixed for m > 8 (see Table

4.1). The case m = 2 starts to overcome m = 1 at p2b = 0.58 and the maximum peak

occurs at p = 0.64 where ∆〈pmc 〉 ≈ 0.1. Actually, this is the extreme case among the

Table 4.1: Numerical values of some important parameters related to m.

m pma pmb 〈µc(p
m
b )〉 αm βm 〈pmw 〉

1 0.33 n/a n/a 2.3 9.0 0.49
2 0.44 0.58 0.61 3.8 16 0.54
4 0.50 0.61 0.69 5.8 25 0.57
8 0.51 0.69 0.87 6.3 28 0.59
16 0.51 0.76 0.94 n/a n/a 0.62
32 0.51 0.80 0.96 n/a n/a 0.63
84 0.51 0.81 0.97 n/a n/a 0.64
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others, i.e., a two-by-two correlation between discrete clusters contributes the most to the

transport efficiency here unlike the rest of the cases. For increasing values ofm following

m = 2, the positive peak of ∆〈µc〉 decreases in contrast with its increasing negative peak

and pmb shifts towards higher bond percentages. When m = 84, there is almost no contri-

bution to the transport efficiency: 〈µ84
c 〉 can barely exceed the 〈µ1

c〉 after p84b = 0.809. It is

therefore evident that higher correlation strengths are increasingly inhibiting the transport

process.

In Fig. 4.2(b), size of the largest cluster 〈ζm〉 with respect to p is given. The inset

shows the bond fractions 〈pmw 〉 where a wrapping cluster is formed on average. When

p < 0.5, although 〈ζm〉 reduces with increasing m, it tends to remain almost the same for

m > 8 where there is no significant change also in 〈pmw 〉. This result actually explains the

behavior of pam in Fig. 4.2(a): The bond fractions pma where coherent transport effectively

starts are directly related with the size of the largest cluster and average wrapping proba-

bility at pma . When p > 0.5, the ζm decreases for higher m values which is very similar

with the behavior of µm
c . Also, the pmb appear to be very close to the bond fractions where

〈ζm>2 ≈ ζ1〉. Therefore, the comparison of Fig. 4.2(a) and (b) strongly suggests that

independent of m, the transport efficiency is determined by the size of the largest cluster.

Our choice of m = 84 as an upper limit for this chapter is intentional. There can be

maximum 84 bonds in the lattice in total, and hence, all discrete clusters most probably

get correlated with each other as the lattice gets filled with bonds. We have done the

calculations also for m > 84 and obtained quite similar results with the m = 84 case.

Therefore, it can be considered as an upper limit and the transport properties do not change

thereafter.

When we again look at Fig. 4.2(a), we see that the behavior of each 〈µm
c 〉 can be

examined in three successive regions: (i) An initial power-law-like growth in the vicinity

of pma , (ii) an approximately linear behavior and (iii) saturation. In order to quantify the

growth rate in region (i), let us assume that transport process starts at some p = pms

on average where pms . pma . In Fig. 4.2(c), we see that 〈µm
c 〉 obeys a power law such

that 〈µm
c 〉 = 10α(p − pms )

β for p > pms . The αm and βm can be found in Table 4.1

for different m values. We see that the exponent β2 for the Achlioptas et al. model is

approximately twice as large as β1 which is the exponent for the standard percolation

model. The exponent βm keeps increasing with m up to m = 8 with a reducing rate. We

find out that the power law behavior disappears for m > 8 since the linear behavior in

region (ii) starts to gradually dominate the behavior in region (i) as can be seen in Fig.

4.2(a). The reason for this is the suppressed growth of the largest cluster even just after

pma for m > 8.
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We see that the increasing correlation strength tries to prevent the largest cluster from

growing further. Consequently, transport processes become inefficient and the power law

behavior near pam disappears. In order to understand the mechanism behind this, let us

note that when there exists many discrete clusters in the lattice, adding new bonds joining

two discrete clusters is generally favored over adding others that would join the sites of a

single cluster (see Sec. 4.1.3). For example, think of a U-shaped cluster with 4 connected

sites. Let us choose two bond candidates where one of them converts this U-shaped cluster

into a unit square with weight 4 × 4 = 16 and the other connects two discrete clusters of

sizes 3 and 4 with weight 12. Obviously, the one with weight 12 will be occupied even

though the total size of the cluster it forms will be greater than that of the unit square.

Therefore, the rules we have defined for the growth of lattices support the merging of

isolated clusters to form larger ones instead of just ‘feeding’ the present discrete clusters.

This fact, of course, suppresses the wrapping probability but later on, leads to an abrupt

growth of the largest cluster seen in Fig. 4.2(a) and (b) for m = 2 and m = 4. However,

as discrete clusters get more correlated with each other, they are forced to grow in a

more specific way, i.e., they grow as homogeneous as possible in size along the lattice

as we add the bonds are added one by one. There will not be any discrimination among

discrete clusters for becoming the largest one, so, all discrete clusters will remain as large

as possible during the growth of the lattice which eventually results in the suppression

of the explosive behavior. Therefore, in order to obtain the most efficient transports, m

should be kept at an optimal value and in our case, it is m = 2 where discrete clusters are

‘slightly aware’ of each other.

In case of an incoherent transport, the excitation can be interpreted as a classical ran-

dom walker transported with unit efficiency in the limit t→∞, provided that it is initially

localized on one of the sites from the set R (see Fig. 4.1). The reason for this is that the

walker has enough time to find a correct path towards sink sites within the wrapping clus-

ter. However, in the coherent transport case, the walker may not be able to cross the lattice

even if it is initially localized on one of the sites that belong to R. This result originates

from the localization effects due to the random scatterings within the disordered structure

of the wrapping cluster, namely the Anderson localization [117]. In two-dimensions, al-

though the finite size scaling theory suggests that all eigenstates of the system should be

exponentially localized independent of disorder strength in thermodynamic limit [118], it

is an ongoing debate whether there are some delocalized states or not due to the different

nature of disorder in the percolation model [119–121]. For our case, since different m

values provide different growth mechanisms, there are structural differences between the

clusters they form. This may lead to different localization effects which directly affect the
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transport efficiency, especially in finite lattices.

We see in Fig. 4.2(d) that coherent transport is slightly inefficient than incoherent

transport for all m values even though their behaviors with respect to p are almost com-

pletely the same, i.e., most of the eigenstates with large localization lengths in coherent

transport are able to reach the opposite site and get trapped as they do in incoherent case

in the limit t→∞. Yet, it is interesting to see that there exist some localized eigenstates

on average for coherent transport which leads to a decrease in transport efficiency even

for L = 7. The differences between their efficiencies are depicted in the inset of Fig.

4.2(d). The excitations are obliged proceed in zigzag paths along the wrapping clusters

which results in destructive interferences, and hence, a decrease in the efficiency. As we

expect, the difference is higher for bond fractions where the lattice is highly disordered

for each m. When p < 0.4 or p > 0.8, the difference disappears for the lattice transforms

into an ordered structure. The cases where the most and the least differences occur are

m = 1 and m = 2, respectively. This result suggests that, the wrapping clusters formed

by choosing m = 2 are the ‘most zigzaggy ones’ that eventually prevent the excitations

from reaching the sink sites coherently even in the infinite time limit. As we mentioned

earlier, this zigzag pattern of clusters is highly supported by the m = 2 case since the

selection rule itself favors connecting discrete clusters over placing bonds within a single

cluster. Therefore, at a certain bond fraction, the total number of bonds per cluster size

in a given wrapping cluster is the least for m = 2. For m > 2, the difference depicted

in the inset of Fig. 4.2(d) starts to reduce since the probability of connecting two discrete

clusters gets more equal to the probability of adding a bond to an existing cluster. These

results may imply that the amount of correlation between discrete clusters can affect the

localization length of eigenstates of coherent transport.

4.2.2 Localization of eigenstates

In order to gain better insight into the localization effects of coherent transport, we can

examine each eigenstate of H0 to find out whether they are localized or not. Here we

will ignore the trap sites and consider only how disorder affects the eigenstates. Let

|Φ0
l (p)〉 be the lth eigenstate of H0 for bond fraction p. Then, |〈i|Φ0

l (p)〉|2 gives the

probability distribution of the lth state over the sites i ∈ N . The participation ratio

provides information about how much a given probability distribution is spreaded over

the lattice and for our case it can be defined as

ξl(p) =

(
N∑

i

|〈i|Φ0
l (p)〉|4

)−1

. (4.12)
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It estimates the number of sites over which the lth eigenstate is distributed, i.e., for ξl = 1

the distribution is localized on a single site whereas ξ = N indicates a homogeneous

distribution over N sites.

In Fig. 4.3(a), 〈ξl(p)〉 is given for m = 1, 2, 4 and 84. Obviously, when 〈ξl(p)〉 < L,

there is no way for an eigenstate to cover the lattice thoroughly. Moreover, it is rather

unlikely to have an eigenstate satisfying 〈ξl(p)〉 = L since it would require a straight

line-shaped wrapping cluster stretching between the source and trap sites. We have found

for L = 7 that regardless of m, there is a 95% probability of having a cluster sized greater

than 10 in the ensemble average. Therefore, let us safely assume that the eigenstates start

delocalizing effectively and contribute to transport for 〈ξl(p)〉 > 10. It can be seen in

general that all eigenstates are localized for p < 0.2. Some eigenstates for m = 1 and

m = 2 start delocalizing after p = 0.25 and p = 0.4, respectively, which also goes along

with the results of Fig. 4.2(a) (see p1a and p2a). While m is increasing, we observe that the

delocalized states get accumulated above p = 0.5 and support our findings in Fig. 4.2(a)

where the transport efficiency starts increasing effectively for p > 0.5. We also note

that there are some highly delocalized states near l = 49. They appear between nearly

p ∈ [0.75, 1] for m = 1 and m = 84 whereas the same interval becomes p ∈ [0.5, 1] for

m = 2 and m = 4. For m = 2, 4 and 84, the sharp transition to these highly delocalized

states with increasing p suggests that the wrapping cluster is most likely to reach almost

all the sites of the lattice as soon as it is formed (see Table 4.1). We can further deduce

that for m = 1, the wrapping cluster does not instantly cover the whole lattice when it

first appears since the average wrapping probability of m = 1 is smaller than others. We

need to keep adding bonds until p = 0.75 to make the wrapping cluster cover the lattice.

This is one of the main consequences of correlation effects on the transport efficiency.

Lastly, let us examine the average participation ratio of all eigenstates which we define

as ξavg(p) =
1
N

∑N
l=1 ξl(p) shown in Fig. 4.3(b). We see that ξavg increases smoothly for

m = 1 whereas it is suppressed up to p = 0.5 for m = 1, 2 and up to p = 0.7 for

m = 84, i.e., the greater the value of m, the more suppressed is ξavg. This result also

clears up the decrease in efficiency for increasing m values in Fig. 4.2(a). The eigenstates

abruptly delocalize following this suppression and get distributed in the lattice over larger

regions than the ones in them = 1 case. We finally note that the minimum bond fractions

satisfying
〈
ξm>1

avg

〉
>
〈
ξm=1

avg

〉
are almost the same with pmb .
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Chapter 5

SPREADING UNDER AN ARTIFICIAL

MAGNETIC FIELD

A quantum computer was envisioned by Feynman as a device overcoming the difficulty of

simulating quantum mechanical systems with classical computers [122]. Today, ultracold

atomic systems are of great interest for implementing highly controllable analogues of

quantum systems under consideration [123, 124]. One way of creating and controlling

such systems is trapping ultracold neutral atoms in periodic potentials of optical lattices

formed by a laser. Since the atoms are neutral, external electric or magnetic fields, which

are essential for quantum phenomena such as the quantum Hall effect and topological

phases, have no effect on their trajectories. On the other hand, analogous effects can be

implemented into optical lattices artificially to extend their simulation abilities. There

are several proposals [125, 126] and experiments [127–130] focusing on the creation of

tunable artificial gauge fields for ultracold neutral atoms in optical lattices by using atom-

light interaction.

We will consider the discrete-time quantum walk here, which was originally proposed

by Aharonov et al. as a quantum counterpart of the classical random walk, where the

quantum walk leads to ballistic spread of the walker rather than the diffusive one observed

in the classical case [2]. As we have discussed in previous chapters that quantum walks

are useful for developing new quantum algorithms [6], they provide a model for universal

quantum computation [11] and they also supply a fertile framework for simulating various

quantum systems [12–16, 18]. Today, quantum walks can be realized experimentally in

various physical systems including ultracold atoms in optical lattices [18, 24–29]. More-

over, recent experimental studies on optical lattices can allow the realization of quantum

walks under artificial gauge fields. For example, it has been experimentally shown that

the effect of an electric field on a charged particle can be mimicked by quantum walks in a

one-dimensional optical lattice [98]. Also, the proposal by Boada et al. utilizes photonic

circuits for the realization of quantum walks under an artificial magnetic field [131].
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In this chapter we investigate the dynamics of two-dimensional quantum walks on

a square lattice in the presence of an artificial magnetic field. For this purpose, we in-

troduce position- and direction- dependent phases corresponding to the Peierls phases of

the hopping terms between neighboring sites in the Hamiltonian representing a charged

particle under a uniform magnetic field. We can control the propagation of the walker

by changing the magnetic flux Φ through the unit cell. Depending on Φ, we show that

ballistic behavior can be suppressed within a time interval or can be completely broken.

It is known that, classical diffusive behavior in quantum walks is observed when quan-

tum coherence is removed in some way, e.g., by decohering the coin and/or the position

[35]. We show that quantum walk is also diffusive at long times if the magnetic flux ratio

α = Φ/Φ0 (Φ0 being the flux quantum) is an irrational number and the walker remains

highly localized at the origin throughout the walk. Moreover, we demonstrate that when

α is chosen properly the walk stops to propagate and propagates back towards the origin

during a limited time interval. We also analyze the entanglement between the coin and the

position of the walker and show that the well-known asymptotic behavior vanishes when

α 6= 0. We observe that the coin and the position become maximally entangled at specific

steps under the effect of the artificial magnetic field on a long time scale.

This chapter is organized as follows. In Sec. 5.1 we give a very brief overview of

quantum walks and introduce the Peierls model to the formalism. In Sec. 5.2 we compare

the behavior of the quantum walk under rational and irrational α’s and we demonstrate

the localization of the walker. In Sec. 5.3 we examine the effect of the magnetic field on

coin-position entanglement.

5.1 Peierls model in quantum walks

In analogy to the classical random walk, the master equation for the discrete-time quantum

walk is given by |Ψt+1〉 = U |Ψt〉 (see Sec. 2.4.1), where U is a unitary transformation

describing the time evolution of the state vector |Ψt〉 in discrete bipartite coin-position

Hilbert spaceHc⊗Hp spanned by {|0〉, |1〉} and {|n〉 | n ∈ Z}, respectively. The operator

U = S(C ⊗ I) is called a step of the walk and it is composed of a shift operator S and a

coin operator C. The coin operator acts only on the coin space and it can be any unitary

operation in SU(2). In the first proposal of the quantum walk [2], C was chosen as the

Hadamard gate

CH =
1√
2
(|0〉〈0|+ |0〉〈1|+ |1〉〈0| − |1〉〈1|), (5.1)
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which is the one we use throughout this chapter. The conditional shift operator on a line

is

S =
+∞∑

n=−∞
(|0〉〈0| ⊗ |n− 1〉〈n|+ |1〉〈1| ⊗ |n+ 1〉〈n|), (5.2)

which acts on both spaces (coin and position) and it moves the walker to the left (right)

when the coin component is in the state |0〉 (|1〉). If the walk starts with the initial state

|Ψ0〉, after t steps, the final state becomes

|Ψt〉 = U t|Ψ0〉 =
∑

c,n

an,c(t)|c, n〉 (5.3)

where an,c(t) are the site amplitudes and c ∈ {0, 1}. The probability of being found at

any position Pn(t) =
∑

c |an,c(t)|2 is calculated by summing over the probabilities in the

coin space.

In Sec. 2.4.3 we have seen that quantum walks on a line can be extended to higher

dimensions by enlarging the coin and the position spaces. For a two-dimensional quantum

walk, the coin and position spaces are spanned by {|0〉, |1〉, |2〉, |3〉} and {|n,m〉p | n,m ∈
Z}, respectively. When the position basis |n,m〉 corresponds to the position eigenstates

of the walker on a square lattice, the shift operator is defined as a single operation that

moves the walker in the left down, left up, right down and right up directions (i.e., towards

corners) for respective coin states [44]. On the other hand, experimentally, the walker can

step to the nearest neighbors rather than the corners. Therefore, if we want the walker

to be found at the corners in one step, we have to implement the shift operator as two

separate operations, i.e., a shift along one axis followed by a second shift along the other

axis. An alternative method for realization of two-dimensional quantum walks is to use

a single two-level coin instead of a four-level coin [132, 133]. In this scheme, a step is

defined as U = Sy(C⊗I)Sx(C⊗I), where the walker is first shifted along the x direction

followed by a shift along y direction. The Hadamard operator in Eq. (5.1) is chosen as the

coin operator and it is applied before each shift. It has been shown that, with this scheme,

the probability distribution of the Grover walk can be mimicked. This alternate scheme

has advantages over a walk with a four-level coin when experimental aspects for square

lattices are considered. Therefore, in this chapter, we use this alternate scheme.

We consider quantum walks on a square optical lattice with a tunable artificial gauge

field. We label the space coordinates as x = na and y = ma, where a is the lattice

constant. We choose the symmetrical initial state |Ψs
0〉 = |ψ〉 ⊗ |0, 0〉, where both n and

m are defined as zero and |ψ〉 = 1√
2
(|0〉 + i|1〉). We introduce the shift operator in the y
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Figure 5.1: Phases gained by the walker while hopping between neighboring sites in the
y direction. These phases are analogous to those acquired by a charged particle subjected
to a constant external magnetic field in the z direction, in the Landau gauge. Black circles
denote the sites of the square lattice labeled by the integer pairs (n,m). The arrows show two
possible trajectories. The walker gains a total phase of e−i2πα along the smaller paths and
e−i2π(3α) along the larger paths. In general, for an arbitrary closed path, the coefficient of α
gives the number of unit cells enclosed. No phase is gained along the x direction.

direction as

Sy =|0〉〈0| ⊗
∑

n,m

e+i2παn|n,m− 1〉〈n,m|

+|1〉〈1| ⊗
∑

n,m

e−i2παn|n,m+ 1〉〈n,m|
(5.4)

where α ∈ [0, 1] is the tuning parameter and e±i2παn are both site and direction-dependent

phases of hopping terms between neighboring lattice sites. At this point our approach dif-

fers from [98] and [134], where only site-dependent phases on a one-dimensional lattice

are used. When we consider the motion of a charged particle on a square lattice un-

der a uniform magnetic field B = B0ẑ, the appropriate Peierls substitution is given by

[135, 136]

t −→ t exp

(

−i2π
Φ0

∫
r2

r1

A.dl

)

(5.5)

where t is the nearest-neighbor hopping amplitude and Φ0 = h/e ≈ 4.14× 10−15 Wb is

the flux quantum (h and e being the Planck constant and elementary charge, respectively).

Here r1 and r2 denote the initial and final positions of the particle, respectively, and the

integral is evaluated along the line connecting these points. If the vector potential is

chosen as A = B0xŷ (Landau gauge), the transition amplitude along the x direction

remains unaffected while along the y direction it gains a factor of

exp

(

±i2π Φ

Φ0
n

)

(5.6)
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Figure 5.2: (a) Spreading of the walk after a different number of steps t with respect to the
magnetic flux Φ in units of flux quantum Φ0. The symmetrical initial state |Ψs

0〉 is used. Only
one period of variances is drawn within the interval [0, 1]. The vertical axis is rescaled with the
maximum value of the variance for each t. For the rational values of α, sharp peaks become
apparent when the number of steps is increased. (b) Spreading of the walk with respect to the
number of steps for different values of α. When α is the golden ratio G, we used two different
initial conditions. The lower solid line corresponds to the symmetric case used for the other
α values and the upper one is |Ψ0〉 = |0〉 ⊗ |0, 0〉.

when hopping from sitem to m±1. Here Φ = B0a
2 is the magnetic flux through the unit

cell. Therefore, we interpret the phases in Eq. (5.4) as artificial Peierls phases shown in

Fig. 5.1. In this chapter, we consider both rational and irrational flux ratios α = Φ/Φ0 to

find out the effects of the magnetic field on the characteristics of quantum walks such as

the variance, participation ratio, and coin-position entanglement.

5.2 Rational vs irrational flux ratios

We consider the variance σ2
t of the probability distribution,

σ2
t =

∑

n,m

(n2 +m2)P(n,m)(t), (5.7)

as a measure of the spreading. Here, P(n,m)(t) is the probability of the walker being found

at site (n,m) after t steps and we look for how the variance behaves under rational and

irrational magnetic fields. When the flux ratio α is an integer, the original translational

symmetry of the lattice is preserved. Similarly, when it is a rational number such as p/q,

where both p and q are coprime integers, translational symmetry is preserved only if the

unit cell is considered q times as large. However, for irrational α values, the number of

unit cells enclosed by the walker (see Fig. 5.1) is incommensurable with the parameter α.

Therefore, we cannot exploit a rescaling as we did in the rational case. In Fig. 5.2(a), we

show the change of the variance with respect to α for different step numbers. Although the
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(a) (b)

Figure 5.3: (a) Probability distribution of the walk after 100 steps for different flux ratios.
Here G is the golden ratio. (b) Probability of finding the walker in the vicinity of the origin
after t steps: the sum of the probabilities at sites (n,m), where n,m ∈ {−2, 0, 2} with
respect to the number of steps. Since an odd number of steps gives vanishing probability, the
probabilities for only an even number of steps are shown. Data are smoothed out via Gaussian
filtering for simplicity. The inset shows a comparison of the actual data with the filtered data
for α = G.

variance is meaningful for the walks with a large number of steps, we intentionally present

the results for a small number of steps to demonstrate an interesting effect of magnetic

fields on quantum walks. Note that since the variance repeats itself with a period of 1/2

within the interval [0, 1], only one period is drawn for each case. When t = 2, 4, or 8,

for each case there are two maxima at non-zero α values. While the number of steps

is increasing, the maxima move to the left and their positions converge to α = 0 and

α = 1/2. For example, the analytic expression of the variance for two steps is

σ2
2 = 3 + 2 cos2(2πα− π

4
). (5.8)

It is clear that the maximum value of Eq. (5.8) occurs at α = 1/8 and 5/8. It is also

notable that in this case the probability at the origin,

P(0,0)(2) =
1

2
cos2(2πα+

π

4
), (5.9)

becomes zero because of the destructive interference of the incoming amplitudes. In

other words, the walker avoids stepping into the center at the second step as a result of

the applied field. Similarly, maxima for four and eight steps occur at α = 3/100 and

α = 3/400, respectively. Hence, with an appropriate choice of the α, the walk spreads

faster than the case where there is no applied field for a small number of steps. For 20

and 60 steps, spreading of the walk is dramatically reduced by the non zero values of

α except 1/2. However, some peaks occur at the rational values of α and more peaks

become apparent when the number of steps is larger. This happens because the more

steps taken, the more routes that satisfy translational symmetry corresponding to different
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Figure 5.4: (a) Asymptotic values of coin-position entanglement of a quantum walk on a
square lattice with two-level initial coin states |ψ〉c = cos θ

2 |0〉 + eiφ sin θ
2 |1〉 for α = 0. The

figure is symmetrical about φ = π and varies between its maximum≃ 0.903 and minimum≃
0.945. The maximum value is attained for symmetrical initial coin states (θ, φ) = (π/2, π/2)
and (π/2, 3π/2). (b) Time dependence of the entanglement for specific values of the initial
coin state. The asymptotic behavior can be observed explicitly. The insets show that when
α 6= 0, the asymptotic behavior vanishes. For α = G (left inset) and for α = 1/4 (right
inset), after the fourth step, the coin and the position become almost maximally entangled
(SE ≃ 0.99) every two steps.

α values can be followed. Translational symmetry due to any rational number α requires

the walker to take at least a number of steps that is enough to follow a closed path covering

the unit cell rescaled by α appropriately. Therefore, we increase the α resolution of the

walk by increasing the step number and thus the walk becomes more sensitive to the α

values. By counting the number of peaks in Fig. 5.2(a) roughly, we see that while the

system is able to resolve 4 of those symmetries at 20 steps, it can resolve more than 20 if

we increase the step number to 60.

In Fig. 5.2(a) we see that if α = 1/2, the variance is the same as the case where there

is no magnetic flux α = 0 for a large number of steps. Actually, the walk has exactly the

same dynamics for this two case and the same probability distribution is obtained after

each step. The reason is that in the second and each succeeding step, translational sym-

metry is preserved, i.e., in each step the gained phases cancel each other after following

a closed path that covers two unit cells. Hence, there is no net effect of magnetic flux

α = 1/2 on the walk. Note that no components of the wave function interfere with each

other at the first step, i.e., the wave function only spreads towards the nearest corners.

Therefore, the possible effects of the magnetic field occur after the first step for each walk

under our consideration.

In Fig. 5.2(b) we demonstrate that, for two different initial states, the walk spreads

diffusively in a long time range if α is an irrational number and the golden ratio (G =
√
5−1
2

), due to the broken translational symmetry of the lattice. In this case, there is no

64



rescaled unit cell that is commensurable with the original one to obtain a translational

symmetry. In contrast, if α is rational, after few steps, spreading of the walk returns to

its usual ballistic behavior. A remarkable case in which the spreading is nearly stopped

and reversed during steps 35-50 and 50-85, respectively, occurs for α = 21/44. Also,

further simulations show that similar effects as in α = 21/44 can be observed if α is

chosen sufficiently close to 0 or 1/2. In general, we can conjecture that when α is a

rational number, even if the spreading of the walk fluctuates at the beginning, it will

revert to its original ballistic behavior after a finite number of steps. Only irrational α

values permanently suppress the spreading and result in a diffusive behavior.

Figure 5.3(a) demonstrates that whether α is a rational or an irrational number, the

walker tends to be localized around the origin. However, some values of α cause stronger

localization. In Fig. 5.3(b) the sum of probabilities of the walker being found at the origin

and some nearby sites with respect to the number of steps is given. When α is a rational

number, even though the robustness of the localization against step number changes for

different α’s, the probability of finding the particle around the origin converges to zero

while the number of steps is increasing. In contrast, when α = G, the probability does not

converge to zero within the interval [0, 1000] and moreover it increases to approximately

0.3 when t = 1000. Although we examine the sum of probabilities at several sites around

the origin, Fig. 5.3(a) ensures that the significant contribution to this sum comes from the

origin. Therefore, an irrational flux ratio guarantees that the probability is the highest at

the origin in the range up to 1000 steps.

Although our results include only one irrational number (the golden ratio), further

simulations for 1/π, 1/e, 1/
√
2, and 1/ζ(3) show that all of them exhibit diffusive be-

havior on average. As we have mentioned above, the reason is the incommensurability of

the number of unit cells enclosed by the walker and the magnetic flux ratio for each case.

Note that, as shown in Fig. 5.2(b), the walk can exhibit higher spreading rates temporar-

ily, e.g., between t = 250 and 600 for α = G, but on average, spreading fluctuates around

the diffusive trend. However, these temporary deviations from the diffusive spreading can

extend over relatively large time intervals for some irrational numbers. Among our simu-

lations, the only example is α = 1/π, where we observe such a deviation over the interval

from t = 100 to 2000. A possible explanation of this behavior can be given by answering

the question of how well an irrational number can be approximated by the rationals. It

is known that the best rational approximations to an irrational number are found in its

convergents of continued fraction which are represented by ci = [a0, a1, · · · , ai] = pi/qi

[137]. By adding more terms, we obtain better approximations. Since the Peierls phases

can be written as ei2πcie±i2παerr,i where αerr,i = |ci − α|, the phases ei2πci allow vari-

65



ous translational symmetries determined by qi. We also know that if αerr,i is sufficiently

close to 0 or 1/2 , the effects result from e±i2παerr,i cannot be observed for a while (see

α = 21/44 in Fig. 5.2 and α = 1/500 in Fig. 5.5). While the number of steps increases,

the walk continuously tries to catch different translational symmetries required by the

convergents but due to the accumulation of e±i2παerr,i phases, this can never be done com-

pletely, which thereby results in temporary higher spreading rates. Therefore, if the αerr’s

are sufficiently small for a given irrational α, we can expect to observe higher spreading

rates extending over relatively long time intervals. What makes 1/π special is that its con-

vergents have the minimal errors when we compare it with the other irrational numbers

we used. It has the best rational approximations among the others and this can be the rea-

son for the deviations in long ranges. A detailed analysis including a careful comparison

of the convergents of different irrational numbers and the corresponding errors is left to

future research.

5.3 Effect of magnetic fields on entanglement

The shift operator generates entanglement between the coin and the position degrees of

freedom [60, 61, 100] (see Sec. 2.4.4). Since the step operator U is unitary, the density

matrix ρt = |Ψt〉〈Ψt| at any step t will be a pure state. Therefore, it is convenient to use

the von Neumann entropy as a measure of the coin-position entanglement

SE = −
∑

i

λi log2 λi, (5.10)

where the λi’s are the eigenvalues of the reduced density matrix ρc = Trp(ρt) obtained by

tracing out the position degree of freedom (see Sec. 2.1.2 for the details). The asymptotic

behavior of the entanglement in quantum walks on a line and two-dimensional quantum

walks with a four-level coin is already known [60, 61]. Here we demonstrate that a two-

dimensional quantum walk with a two-level coin also exhibits the same behavior for all

initial coin states for α = 0. In Fig. 5.4(a) the dependence of the asymptotic values of

coin-position entanglement on initial coin states is given. It can be seen that entanglement

varies between a maximum of 0.945 and a minimum of 0.903. The maximum value occurs

for the symmetrical initial state |Ψs
0〉. In Fig. 5.4(b) time dependence of coin-position

entanglement for three specific initial coin states is given. For all cases, entanglement

decays to an asymptotic value.

The inset in Fig. 5.4(b) shows the change in coin-position entanglement in the pres-

ence of a magnetic field (for α 6= 0 and α 6= 1/2). For both α = 1/4 and α = G, the
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ratio (thin) N when α = 1/500. Dashed lines represent the behavior of each case when
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asymptotic behavior disappears completely. Although we show only two cases for sim-

plicity, we observe similar behaviors for the other α values. When α = 1/4, the value

SE ≃ 0.99 indicates that the coin and the position are almost maximally entangled in

every odd step after the fourth step. When α = G, we obtain almost maximally entangled

states in a quasi-periodic manner in a long time range again. To gain insight into the cause

of the large values of entanglement, we consider the participation ratio at step number t,

N =

(
∑

n,m

P 2
n,m(t)

)−1

, (5.11)

which can be interpreted as an estimate for the number of sites over which the walker is

distributed. While N = 1 indicates that the walker is completely localized at only one

site, N = d indicates a uniform spreading over d sites. In Fig. 5.5 we compare the coin-

position entanglement and the participation ratio for a small magnetic field. During the

first 10 steps, we see that the entanglement is exactly the same for α = 0 and α = 1/500.

Further simulations for smaller values of α show that the entanglement is the same as the

α = 0 case even for a larger number of steps. This observation suggests that the effects of

the magnetic field start to appear after a sufficient amount of phases has accumulated. Af-

ter about 400 steps, the participation ratio starts to oscillate strongly and we also observe

quasi periodic oscillations in SE , which results in almost maximally entangled states as

in the insets of Fig. 5.4(b). Since strong oscillations in the participation ratio imply the

tendency of the walker to return to the origin, we can conclude that localization of the

walker plays an important role in the large values of coin-position entanglement in the

presence of a magnetic field.
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Chapter 6

CONCLUSION

In this thesis, we have focused on two closely related subjects, namely the spreading

and transport properties of quantum walks for various graph structures and decoherence

models. The main results given in chapters three, four and five are compiled from our

three articles [138–140].

In the third chapter, we have proposed a perfect state transfer scheme for qubit states

by introducing recovery operators in discrete-time quantum walk architecture on N-lines

and N-cycles. We have shown that by using identity or flip coin operator, an unknown

qubit state can be transferred to an arbitrary distance perfectly with the aid of appropriate

recovery operator. The 2-cycle is the only lattice which allows PST for all coin operators

up to N=10. Also, the Hadamard coin and biased coin ρ = 1/4 allow PST on 2-line. We

have shown that the 4-cycle is a special case where PST occurs if the walk is driven by

the Hadamard coin operator or the biased coin operator ρ = 1/4, without any recovery

operators. Moreover, we have introduced new periodic discrete-time QWs on N-lines and

also extended periodicity cases which has already been known for 2-cycle and 4-cycle

[43]. We have shown the strong relation between the periodicity and PST. Since recovery

operators are just additional coin operators and PST occurs after small number of steps

(which is comparable with the lattice size), it seems that the experimental realization of

our scheme is quite feasible with today’s technology.

In the fourth chapter, we have studied the coherent and incoherent transports between

opposite edges of a finite square lattice where the existence of bonds between sites are

determined by either standard or explosive percolation models. Since the explosive per-

colation model provides a disorder source enabling discrete clusters to grow in correlation

with each other, we managed to investigate the possible effects of this correlated disorder

on the transport efficiency. We have shown that the least possible correlation is the most

contributing to the transport efficiency after 58% of bonds are present in the lattice. We

have obtained more efficient transports than that of the standard percolation case with

smaller correlation. As we increased the correlation strength, the transport efficiency
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gradually decreased and reduced below that of the standard percolation case. We have

demonstrated that the effective starting point and the efficiency of any transport process

is directly related to the size of the largest cluster for a given bond fraction. Moreover, we

compared our results with the incoherent transport to see possible localization effects. We

have shown that more correlation causes less localization. Therefore, the least correlation

provides the most efficient transport despite inducing localization the most. We have ex-

plained the possible mechanism behind these localization effects. Lastly, we supported

our findings by explicitly examining the average participation ratio of the eigenstates of

the system, which allows us to decide whether an eigenstate is localized or delocalized

over the lattice. Depending on our results we conjecture that the localization length of the

eigenstates in case of an explosive percolation may be altered by making a change in the

correlation strength between clusters. This conjecture, of course, requires careful analysis

of the localization properties of eigenstates for larger lattices, which we leave as a topic

of further research.

In the fifth chapter, we have studied the spreading properties and coin-position en-

tanglement for the QW on a square lattice under an artificial magnetic field. We have

demonstrated that the presence of such fields increases the spreading for a small number

of steps. Moreover, irrational flux ratios cause a diffusive spreading rather than a ballistic

one even in the long time range because of the broken translational symmetry. This also

causes the probability at the origin to be the highest even for a large number of steps.

For rational flux ratios, ballistic spreading can be suppressed within a limited time range.

However, the walk returns to the original ballistic behavior after a finite number of steps.

We have demonstrated that the coin-position entanglement in a QW on a square lattice

with a single two-level coin exhibits an asymptotic behavior as in the four-level case. We

have also shown that this behavior changes in the presence of an artificial gauge field and

it is possible to keep the coin and the position maximally entangled in a long time range

if the field is chosen appropriately. However, we have not observed any distinguishing

property of irrational or rational magnetic flux ratios while examining the coin-position

entanglement. Finally, we note that our scheme may be realized with today’s technology

and some of our results, especially the ones that require only a few number of steps, may

be verified. We believe that our work can provide a further step towards simulating many-

body quantum systems in gauge fields by engineering the interactions of ultracold atoms

with light.
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[76] M. Štefaňák, T. Kiss, and I. Jex, “Recurrence of biased quantum walks on a line,”

New Journal of Physics, vol. 11, no. 4, p. 043027, 2009.

[77] P. P. Rohde, A. Fedrizzi, and T. C. Ralph, “Entanglement dynamics and quasi-

periodicity in discrete quantum walks,” Journal of Modern Optics, vol. 59, no. 8,

pp. 710–720, 2012.

[78] X. Zhan, H. Qin, Z.-h. Bian, J. Li, and P. Xue, “Perfect state transfer and efficient

quantum routing: A discrete-time quantum-walk approach,” Physical Review A,

vol. 90, p. 012331, 2014.

[79] B. C. Travaglione and G. J. Milburn, “Implementing the quantum random walk,”

Physical Review A, vol. 65, p. 032310, 2002.

[80] P. R. Dukes, “Quantum state revivals in quantum walks on cycles,” Results in

Physics, vol. 4, pp. 189–197, 2014.

[81] O. Mülken and A. Blumen, “Continuous-time quantum walks: Models for coherent

transport on complex networks,” Physics Reports, vol. 502, pp. 37 – 87, 2011.

[82] N. Konno, T. Namiki, T. Soshi, and A. Sudbury, “Absorption problems for quantum

walks in one dimension,” Journal of Physics A: Mathematical and Theoretical,

vol. 36, no. 1, p. 241, 2003.

[83] E. Bach, S. Coppersmith, M. P. Goldschen, R. Joynt, and J. Watrous, “One-

dimensional quantum walks with absorbing boundaries,” Journal of Computer and

System Sciences, vol. 69, no. 4, pp. 562 – 592, 2004.

[84] T. Yamasaki, H. Kobayashi, and H. Imai, “Analysis of absorbing times of quantum

walks,” Physical Review A, vol. 68, p. 012302, 2003.

[85] L. C. Kwek and Setiawan, “One-dimensional quantum walk with a moving bound-

ary,” Physical Review A, vol. 84, p. 032319, 2011.

[86] C. Chandrashekar and T. Busch, “Quantum percolation and transition point of a

directed discrete-time quantum walk,” Scientific reports, vol. 4, 2014.

[87] J. K. Asboth and J. M. Edge, “Edge-state-enhanced transport in a two-dimensional

quantum walk,” Physical Review A, vol. 91, p. 022324, 2015.

76



[88] M. Gönülol, E. Aydıner, Y. Shikano, and O. E. Müstecaplıoğlu, “Survival prob-
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