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Abstract

Brain Computer Interface (BCI) systems aim to generate alternative communication

pathways for people with disabilities by extracting information directly from the brain.

Increasing interest in this field of study has enabled patients to use electroencephalog-

raphy (EEG) in controlling word processing software such as the P300 speller and

prostheses using motor imagery through EEG. Despite achieving successful real-time

implementations in these applications, Brain Computer interfaces are subject to errors

when interpreting the user’s intent. One way of reducing this is by using the Error

Related Potential (ErrP). These are signals generated by a person when an error occurs

in a BCI system. The knowledge that an error has occurred in a BCI could perhaps

be used in strengthening the decision making process of the BCI. Our work aims to

understand the effect of different types of user involvement has on ErrP waveforms and

classification performance in P300 and motor imagery based BCI experiments. Par-

ticularly, we collect data in three different settings for both P300 and motor imagery

based BCIs and provide an analysis of this data using signal processing and machine

learning techniques. We also show how results obtained from the motor imagery based

experiments can be used as a basis for a BCI system where motor imagery and Error



Related Potentials are classified simultaneously. Furthermore, preliminary experiments

have been done to classify motor imagery and ErrP in this joint motor imagery and

ErrP detection system. We have also investigated the effect of changes in trial frequency

on ErrP classification performance in motor imagery based BCI systems.
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Özet

Beyin bilgisayar arayüzü (BBA) sistemleri, beyinden belli sinyalleri toplayarak en-

gelliler için alternatif bir haberleşme yöntemi sağlamayı hedefler. Bu alana ilginin

artmasıyla beraber hastaların elektroensefalografi (EEG) sinyalleriyle P300 heceleyici

gibi kelime işleyen ve hayali motor hareketleri kullanarak protez kontrol eden sistem-

ler kullanmaları mümkün olmuştur. Bu uygulamaların gerçek zamanlı kullanmasında

başarılar elde edilse de, beyin bilgisayar arayüzlerinin kullanıcının niyetini yorumla-

ması hatalı olabilmektedir. Bu hataları azaltmanın bir yolu hataya ilişkin potansiyelleri

(ErrP) kullanmaktır. ErrP, BBA sistemlerinde bir hata meydana geldiğinde beyinde

üretilen sinyaldir. BBA’da bir hata oluştuğunun bilgisi BBA’nın karar alma mekaniz-

masını güçlendirmekte kullanılabilir. Bizim çalışmamızın amacı, farklı kullanıcı katılım

düzeneklerinin ErrP dalgalarına ve BBA deneylerinde sınıflandırma performansına olan

etkilerini anlamaktır. Bu amaçla, P300 ve hayali motor tabanlı BBA’lar için üç farklı

düzenekte veri topladık, ve sinyal işleme ve makine öğrenme teknikleri kullanarak bu

verileri analiz ettik. Ayrıca, hayali motor deneylerinden elde edilen sonuçların hayali

motor ve ErrP sinyallerinin aynı anda sınıflandırıldığı BBA sistemi için bir temel olarak

kullanabileceğini gösterdik. Bunun yanında, hayali motor ve ErrP sinyallerinin eş za-



manlı kaydedilerek sınıflandırmaları amacıyla ön deneyler yaptık. Son olarak deneme

frekansındaki değişimin, hayali motor tabanlı BBA sistemlerindeki ErrP sınıflandırma

performansı üzerine etkisini inceledik.
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Chapter 1

Introduction

The prospect of using electrical activity recorded from the brain as an alternative

means of communication for humans has been gaining research interest over the past

decades [2]. One of the main motivating factors that drives this effort is an increasing

desire to help people that have lost the ability to communicate effectively, such as

stroke patients and patients suffering from amyotrophic lateral sclerosis (ALS). Nearly

15 million people worldwide suffer from stroke [3] and over the past 50 years, 1 to 7 of

every 100,000 adults worldwide is estimated to have ALS at any given time [4].

The physically disabled currently benefit from a wide range of solutions. Physi-

cal rehabilitation for example, is a very common way of helping patients restore vital

movements in their body. Physical rehabilitation can be challenging on the patient and

sometimes, it might not produce desired results. This has researchers to question the

effectiveness of physical rehabilitation on disabled patients. One study [5] found no or

insufficient evidence on the basis of functional outcome for various physical rehabilita-

tion protocols. In a way, Brain Computer Interfaces (BCI) become relevant because

these systems aim to extract useful information directly from human brain activity

and then use this information to ease communication and rehabilitation for disabled

patients.

We can define a now Brain Computer Interface as a system that provides alternate

communication and control channels for the human brain that are independent of regu-

lar channels such as peripheral nerves and muscles [6]. In that sense, when a patient has
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difficulty controlling their muscles for any reason, the BCI can be used to bypass the

neural connection and directly infer what the person is trying to do. This can done by

recording brain activities and interpreting these activities using state-of-the-art tech-

nology. Figure 1.1 shows a typical BCI system. Electrical activity from the brain is

recorded from a user using special electronic devices. These signals are preprocessed

using various signal processing techniques after which task relevant features can be ex-

tracted and classified using machine learning techniques. The classification result can

be presented as an output to the user via a feedback mechanism, typically visually or

auditory.

Data acquisition

EEG Amplifier A/D Converter

Feedback

Signal Processing

Digital Filtering Feature Extraction
Communication 

Algorithm
Task Classification

Figure 1.1: An illustration of a typical BCI system

Recording high quality brain signals is important in BCI research. Given the com-

plex nature of the human brain involving millions of neural activity, it is important

to extract brain signals with a signal-to-noise ratio that is as high as possible. The

best way of doing this is by using invasive methods. Invasive methods are methods of

recording brain activity from electrodes implanted beneath the skull through a surgical

operation. These methods produce signals with high signal-to-noise ratios due to their

proximity to the surface of the brain. However, these methods are inconvenient because

of the surgery that is required to plant these electrodes. Other methods that avoid this

problem exist and are known as non-invasive methods. in contrast to invasive meth-

ods, non-invasive methods record brain activity with sensors located outside the scalp.

These methods are more convenient but come with at a cost of reduced signal-to-noise
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ratio.

A popular way of recording brain signals is electroencephalography (EEG). EEG

is so popular not only because it is non-invasive and cheap, several studies have also

shown that there is a link between recorded EEG and mental tasks [7, 8]. The existence

of such links has opened up numerous research opportunities in a collaborative effort

between fields such as engineering and neuroscience.

1.1 Scope and Motivation

The central focus of this thesis is a special type of EEG potential known as the

error related potential (ErrP). Knowledge of EEG helps to provide a good perspective

on why ErrPs are important. In BCIs, EEG signals are usually preprocessed to suit

computational requirements. Following this, certain features of the data are extracted

to make decisions. These features vary for different experiments. In relation to this

case, it has been found that subjects produce a certain potential in response to an

error when using a BCI system. This error can be an error made by the BCI by

incorrectly interpreting the subject’s intent, or it could even come from a realization

from the subject that they had in fact committed an error. The presence of error related

potentials can be useful in updating classifiers so similar occurrences can be prevented

in the future. Figure 1.2 shows a typical BCI that uses error related potentials. In this

setting, features are extracted for the BCI task and ErrP classification. The output

of the ErrP classifier and task classifier are used to continuously update the decision

making process of the BCI.
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EEG Amplifier A/D Converter

Data acquisition

Feedback
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Algorithm

ErrP Classification

Task Classification

Figure 1.2: An illustration of a BCI system integrated that uses error related potentials.

Based on the nature of error related potentials, a new direction for the BCI group in

our institution is finding ways to improve the current BCI systems – motor imagery and

P300 based BCIs – by using these potentials. Before that, we wanted to understand

the nature of these potentials in different contexts and analyze the performance of ErrP

classification for these contexts.

Once that is achieved, the second step will be the integration of error related poten-

tials into the systems and devising strategies upon which they can be used to improve

performance.

1.2 Contributions

We propose an analysis of error related potentials in P300 and motor imagery based

BCI protocols with the aim of eventually using the knowledge gained to improve per-

formance in these protocols. Our analysis is motivated by answering the following

questions.

1. How do different contexts affect error related potentials in P300 based BCIs?

2. How do different contexts affect error related potentials in motor imagery based

BCIs?
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3. Can we classify motor imagery and error related potentials in a single joint ex-

periment?

In this thesis, we design three different protocols in both P300 and motor imagery

based Brain Computer Interfaces. These protocols represent three different contexts:

Observe – where a subject does not have control on the BCI, Control – where a subject

presses keys on the keyboard to control the BCI, and EEG – where a subject uses

their brain signals to control the BCI. We compute the waveforms generated by these

protocols for both P300 and motor imagery based BCIs and provide analyses of these

waveforms. Another contribution we provide is a performance analysis of ErrP in all

protocols for four different classifiers; Support Vector Machines, Linear Discriminant

Analysis, Decision Tree, and Gaussian Mixture Model. Additionally, we analyze how

error related potentials differ across P300 and motor imagery based experiments.

One more contribution of this thesis is the analysis of the effect of changes in fre-

quency of trials on classification performance of four different classifiers, namely Support

Vector Machines, Linear Discriminant Analysis, Decision Tree, and Gaussian Mixture

Model. This analysis provides information on the robustness of these classifiers to

changes in EEG.

The final contribution of this thesis is the design, implementation, and analysis of a

system that classifies motor imagery and error related potentials in a single experiment.

1.3 Outline

The thesis is organized as follows.

In Chapter 2, we provide background information on BCI systems, EEG signals

such as sensorimotor rhythms and error related potentials, classification methods and

adaptation in Brain Computer Interfaces.

In Chapter 3 we describe the three protocols we have designed for ErrP analysis in

P300 based BCIs. We provide feature extraction and classification techniques used in

this work. We end the chapter by presenting the results we have obtained.
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Chapter 4 presents three protocols designed to analyze ErrP in motor imagery based

BCIs. Feature extraction and classification techniques are provided and the results

related to this work follows.

In Chapter 5, we first describe two preliminary studies we have done. The first

is a study of three different motor imagery protocols designed to analyze how ErrP

performance is affected by changes in the frequency of trials. The second is a study

on two subjects to determine motor imagery performance on our designed interface.

Results of these preliminary studies are also presented in this chapter. A description of

the joint motor imagery and ErrP detection system is then presented and the chapter

ends by providing the results obtained in this work.

Chapter 6 provides a summary of the results obtained in Chapters 3, 4 and 5. It

also includes suggestions for possible research directions that can be taken based on the

work that has been done in this thesis.
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Chapter 2

Background

This chapter provides background information and literature review on concepts

such as BCI systems, EEG signals, and signal processing techniques used in this area.

One of the main forces that drive research on Brain Computer Interfaces is the

prospect of finding solutions that improve the lives of people with different neurological

disorders [9, 10, 11]. It offers a way to help stroke patients regain control of their limbs

[12, 13]. It seeks a way to help patients suffering from ALS send an email without the

assistance of another person [14]. It also offers a way to help people that have lost their

ability to speak to still communicate with the outside world [15].

To accomplish this, understanding the fundamental aspects that govern brain ac-

tivity is important. This is why numerous research efforts have been made to have a

better understanding of the human brain. By doing so, scientists had hoped to discover

components of human brain activity that can be directly translated into certain actions

by the user. Mapping signal components to their corresponding actions enables the

BCI to determine what a person is trying to do just by observing their brain activity.

Brain signal acquisition can be classified into two different categories; invasive and

noninvasive [2]. Invasive methods involve placing sensors under the skull. This method

produces signals of very high quality but the cost of doing so is high for two reasons.

The first reason is that a brain surgery is needed to implant these sensors while the

second reason is that these sensors can only last a limited amount of time [16]. Non-

invasive methods on the other hand measure brain activity from the surface of the scalp.
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This method is very cheap relative to the invasive methods but the trade off is that

the quality of the signal is much lower compared to the invasive methods. Examples of

non-invasive methods include magnetoencephalography (MEG) [17], positron emission

tomography (PET) [18] and functional magnetic resonance imaging (fMRI) [19], and

electroencephalography (EEG) [20].

BCI research has already shown that this form of communication is possible. In

1973, Vidal. et al. successfully used Visual Evoked Potentials (VEP) recorded over the

visual cortex to infer the direction of a user’s gaze [21]. Seven years later, Birbaumer

et al. showed that it was possible for users to modulate their Slow Cortical Potentials

to move cursors on a computer screen [22].

2.1 BCI System

Figure 2.1 gives a general idea an EEG based BCI setup. EEG signals recorded

from the scalp are first processed by the EEG Amplifier. This amplifies the EEG signal

and also to gets rid of DC and unnecessary high frequency components from the signal.

The next step is converting the signal from analog form to a digital form that can be

processed by a computing device, typically a computer.

Figure 2.2 shows raw EEG signals recorded from FC1, FC2, C1, C2, Cz, Fz, and

CPz electrodes. It should be noted that most of the time, the signals are preprocessed

to get rid of certain frequency components before features can be extracted. The nature

of the signal processing techniques performed in this case depends on the type of BCI

application used.
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Figure 2.1: A basic EEG based BCI setup. A user sits in front of a computer screen

and performs a series of tasks. During this period, EEG signals are recorded from the

scalp and fed into the EEG amplifier. Amplified EEG signals are recorded and stored

using special BCI software. During an experiment, feedback is usually presented to the

user either visually or acoustically.

After preprocessing, the next step in a BCI application is determining what char-

acteristics of the signal are useful in representing the activity the subject is expected

to perform. This is known as feature extraction. For example, in a motor imagery

based BCI, a subject is required to imagine moving their left or right arm. While they

perform this imagination, the power of the signal changes within a specific frequency

region. In this case, the feature of interest is the spectral power of the EEG signal [23].

Over the course of an experiment, a subject typically performs some predetermined

tasks repeatedly. By the end of the experiment, features corresponding to these different

tasks can be collected and a classifier can be trained to distinguish between these tasks

based on the features extracted.
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Figure 2.2: Real time raw EEG signals recorded by the ActiView software.

2.2 EEG Signals

Electroencephalography (EEG) is a non-invasive method of measuring brain activity

with the use of special electrodes made of Silver (Ag) or Silver Chloride (AgCl) [24]. A

cap is first systematically placed on the subject’s head. This cap has many holes on it

representing the points where electrodes are placed and kept in place. Before placing

these electrodes, a special gel (see Figure 2.4) is applied on the surface of the skin. This

gel acts as a conductor between the electrode and the surface of the skin, and also helps

stabilize the signal [25].
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Figure 2.3: The electrodes used to record surface electrical activity of the brain.
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Figure 2.4: Gel is first put on the surface of a subject’s head before electrodes are

placed. It is used to ensure the conductivity between the scalp and the electrodes.

In our work, electrodes have been placed according to the International 10-20 system

[26], a proposition by the American EEG Society [20].
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Figure 2.5: The standard 10-20 system showing electrode placement locations.

2.2.1 Sensorimotor Rhythms

Since the 1930s, it has been known that certain events, such as motor imagery, cause

a desynchronization of upper alpha and lower beta activity in EEG [27]. This effect is

known Event Related Desynchronizion (ERD). Pfurtscheller et al. later discovered that

ERD occurred around 2 seconds prior to the execution of a certain movement, which

is subsequently accompanied by a synchronization of the upper alpha and lower beta

brain activity [28]. The desynchronization and subsequent synchronization of brain

activity was observed to be bounded to the sensorimotor areas of the brain, which is
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located around the regions of the C3 and C4 electrodes.

Following this discovery, ERD and ERS have been used in a wide variety of appli-

cations over the following years. One of the earliest and groundbreaking applications

of the ERD and ERS is motor imagery. In motor imagery, users are asked to imagine

different kinds of movements such as left arm movements, right arm movements, and

even right foot movements. Based on the corresponding EEG data, the BCI is able to

classify what movement the user intends to do with a high degree of accuracy.

Another application of motor imagery is a study conducted by Wolpaw and his team

in 1991 where motor imagery was successfully used to to move a cursor to a target on

a screen in a BCI system [29]. In this experiment, 8-12 Hz mu rhythm is used to move

a cursor at the middle of a screen to a target located at either the top or the bottom

of the screen. The feature used in this case is the amplitude of the mu rhythm. Larger

mu amplitudes translated into an upward cursor movement and lower mu amplitudes

translated into downward cursor movements. The mu amplitude is calculated by taking

the square root of the power and then expressed in volts. This expression is compared

to 5 different voltage ranges already predetermined by the operator. The result of this

comparison produces 5 possible cursor movements, measured in a number of steps.

By 2004, Wolpaw et al. had succeeded in improving the system by accommodating

two dimensional cursor control movements [30]. In this case, cursor movements depends

on the result of a weighted linear combination of mu and beta amplitudes. To maximize

performance, the weights are updated after every trial by using information obtained

from trials that have already been performed.

Motor imagery applies to other parts of the body as well. For example, sensorimotor

rhythms have also been shown to be applicable in a brain switch paradigm that involves

foot motor imagery [31]. Similarly, a study has shown that it is possible to distinguish

motor imagery related to the left hand, right hand, foot and tongue [32].

2.2.2 Event Related Potential

Event Related Potentials (ERP) are positive or negative deflections in the EEG

signal in response to certain psychological events [33]. ERPs can occur either before,
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during, or after the psychological event. For similar events, ERPs usually occur at

similar times [18].

In a study performed by Walter [34], it has been discovered that when subjects

attempt to press a button right after seeing a target, negative deflections of large

amplitudes can be observed moments before the subject actually press the button.

This deflection is called the Contingent Negative Variation (CNV). CNV can be seen

as an indicator that a subject is mentally preparing to execute a particular task. This

is not to say that these deflections are easy to detect. In fact, the amplitudes of event

related potentials can be very small in comparison to the background noise of the EEG

signal. Because of this, multiple recordings of ERPs may need to be averaged if they

are to be detected with a reasonable degree of accuracy.

Another well known ERP is called the P300, or P3 in short. It is a deflection

that occurs 300ms after a subject experiences either a visual or auditory stimulus that

that occur unexpectedly [34, 35, 36]. What is interesting about this signal is that the

degree to which EEG deflects depends on how unexpected the stimulus is to the user.

Following this discovery, several interfaces have been designed to enable users to use

BCI by observing certain unpredictable stimuli and generating P300 signals as a result.

This concept of paying attention while observing an unpredictable event is also known

as the oddball paradigm [9].

In most P300-based BCI experiments, users are presented with a series of different

visual, auditory, or haptic stimuli, each of which represents a different kind of output.

By focusing on any one of these stimuli, users are able to generate a P300 signal in

response to that stimulus, which can be detected by the BCI. Detecting P300 signals

enables the BCI to make predictions about the user’s selection based on their brain

activity.

One example of an oddball paradigm is the P300 speller initially developed by

Donchin et al. [9]. The interface of a P300 speller is usually a 6 x 6 matrix consisting

of letters, digits, or even symbols. Columns and rows of this matrix continuously flash

in succession with the objective that the user selects a character from this matrix by

simply staring at the letter and counting the number of times it flashes. Since the user
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has no idea when their desired letter flashes, they generate a P300 signal whenever that

letter flashes.

The intention of the user can be determined by analyzing the response generated

by each flashing row and column. The row and column corresponding to the highest

P300 component is selected and the product of their intersection is the letter selected

by the classifier [37].

2.2.3 Error Related Potentials

Error related potentials are special kinds of ERPs that occurs when a user realizes

a mistake in the output of a BCI that could be either as a result of the user or a

misclassification on the part of the BCI. The first kind of ErrP occurring when a user

performs an error and realizes it immediately is known as Response ErrP. The second

type of ErrP that occurs as a result of a wrong output by the BCI is known as feedback

ErrP [38].

Error related potentials typically have two deflection components. The first compo-

nent is a negative deflection, also known as error related negativity (ERN), that occurs

100 ms after the user reacts to an error made either by themselves or by the BCI. This

negative deflection occurs in the fronto central part of the brain. The second component

is a positive deflection, also known as error positivity Pe, that occurs between 200ms

and 500ms after the user realizes an error. This deflection occurs in the parietal region.

All components of the ErrP can be recorded from the FCz, Cz, and Fz channels.

In a recent study by Chavarriaga et al. [1], it has been proposed that error related

potentials could be used in learning an optimal decision making process in a classi-

fier. This can be performed by decreasing the likelihood of the BCI repeating such a

decision in the context that the error was performed. This idea is commonly known

as Reinforcement Learning [39, 40]. Additionally, Chavarriaga and his colleagues tried

to examine whether similar ErrPs are generated by users when they only observe the

performance of the BCI via a monitor. In this study, users clearly have no control over

the events presented on the BCI.

The protocol goes as follows; the user sits in front of a computer screen and monitors
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the movement of a moving cursor, which is a green square. The cursor is designed to

move towards a target, which is a colored square located at either the left or the right of

the cursor. The objective is for the cursor to reach the target by moving in the desired

direction in a series of steps. During these movements, there is a a probability, Perr,

that the cursor will move in the opposite direction and it is expected that when the

user observes such a movement, they will produce an ErrP. Chavarriaga et al. were able

to show that it was possible to detect the ErrP in such a scenario. The bold waveform

in Figure 2.6 shows the overall average waveform of the error minus correct responses

obtained in their work. It can be seen that the ErrP has two positive deflections at

200ms and 300ms and a negative deflection at 250 ms.

Figure 2.6: The overall average waveform of the error minus correct responses obtained

from the work of Chavarriaga et al. [1].

In another work by Pierre W. Ferrez et al. [38], ErrP has also been successfully

detected, but this time, rather than the user observing all events on a monitor, they

have control of the movements. In their experiment, users pressed keys on a keyboard

to move a robot towards a certain side of a room, which could be either to the left or
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to the right. In this experiment, there is a certain probability that the robot moves in

a direction that is opposite to the one intended by the user.

Recent work on ErrP includes a study by Iturrate et al. where latency correction

of ErrP recorded from previous experiments has been shown to reduce BCI calibration

time by 50% [41]. This is performed by computing a latency variation parameter, dEi,Ej
,

which is a shift that results in a maximum cross correlation between data collected from

a previous experiment Ei and a current experiment Ej. Data collected from previous

experiments are shifted according to this parameter and combined with a few samples

recorded from a more recent experiment to train a classifier. Using this process has

shown that BCI calibration time can be reduced significantly with data obtained from

previous experiments.

ErrP has also been shown to be related to empathic attributes such as motivation,

emotion, attention levels, and anxiety in a protocol that involves 2 steps [42]. First,

empathic trait scores were obtained for each participant based on answers provided on

a questionnaire. Second, the participants performed a gambling experiment to generate

error related potentials. Results obtained in this study have shown a significant inverse

correlation between ErrP amplitude and personal distress scores.

Error related potentials have also been detected in P300 based BCI systems as well.

In 2010, Bernardo et al. attempted an online detection of ErrP in P300 spellers with

roughly 60% accuracy [43]. In their experiment, they first implemented a P300 speller

that used a generic algorithm in order to detect the P300 signals, and then included an

automatic error-correction system that is based on the detection of ErrPs from a single

sweep of data. In their case, it is shown that it is in fact possible to not only detect

ErrP, but that it is also theoretically possible to use that information to improve the

performance of a P300 speller. A similar piece of work has also shown that an error

correction system based on ErrPs can increase information transfer rates in P300 based

BCIs for both healthy and motor impaired subjects [44].

Zeyl et al. have shown that ErrP and P300 scores can be used in P300 based BCIs

simultaneously. In their first work, ErrP and P300 scores generated by a bidirectional

stepwise linear discriminant analysis [45] are fed into a random forest error detector
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with 100 decision trees [46]. Results of this work indicate that using P300 scores alone

provides better classifier adaptation in comparison to results obtained when ErrP and

P300 scores are combined. However, one year later, another study from the same

group showed that ErrP scores can provide better results when combined with P300

scores obtained from a real-time Bayesian dynamic framework [47]. Bayesian dynamic

stopping is a mechanism where rows and columns in a P300 speller repeatedly flash until

a confidence criterion is reached and it has already been shown to improve performance

in P300 spellers [48]. This approach builds on Zeyl’s previous work by combining P300

scores generated through this Bayesian dynamic stopping framework and ErrP scores

generated by a random forest error detector as in the previous study. Results have

shown an improvement in the speed and accuracy of the system.

Variation in error related potentials have also been shown to be affected by at-

tributes such as intolerance of uncertainty [49]. Intolerance of uncertainty is a natural

predisposition to feel threatened by uncertain events. Other works in this context have

also shown that ErrP is more pronounced in subjects who are more emotionally respon-

sive to errors such as those with anxiety disorder [50], obsessive compulsive disorder

[51], and pathological worry [52].

2.3 Classification Methods

2.3.1 Linear Discriminant Analysis

Linear Discriminant Analysis is a classification method that uses hyperplanes con-

structed from a linear combination of the features of each class to separate the classes.

It is assumed that the classes are represented by a normal distribution. The aim is to

construct a feature y that is a linear combination of the data x and effectively compress

all classification related information into one feature. This can be done by finding a

plane where the two classes are separated the most. This decision boundary can be

written as

y = w1x+ w0 (2.1)
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such that any data point x satisfying y > 0 is classified into say Class 1, and that

which satisfies y < 0 is classified into Class 2.

2.3.2 Support Vector Machines

Support Vector Machines is quite similar to LDA in the sense that the aim is to

separate classes by using hyperplanes. The main difference between SVM and LDA

is that while LDA generates the hyperplane by using posterior probabilities, SVM

generates a hyperplane that maximizes the distance between the hyperplane and the

data points. Hence, SVM can also be referred to as a Maximum Margin Classifier. If

the hyperplane is represented as shown in equation 2.1, then finding such a hyperplane

is equivalent to solving the following optimization problem [53].

minimize
x

J (w,w0) =
1

2
||w||2

subject to yi(w
Txi + w0) ≥ 1, i = 1, . . . , N.

(2.2)

where yi is an indicator function such that yi = +1 for Class 1 and yi = −1 for

Class 2.

2.3.3 Gaussian Mixture Models

The Gaussian distribution is arguably the most common probability distribution

used in BCI applications. Despite its many analytical properties, it could have short-

comings when it comes to real datasets [54]. That is not to say that Gaussian distri-

butions are not useful in such cases. In fact, by using a linear superposition of two or

more Gaussian distributions, it can be possible to more accurately capture the statisti-

cal properties of some real datasets. Mathematically, the superposition of Np Gaussian

densities, or a mixture of Gaussians, can be written in the following form.

p(x) =

Np∑
k=1

πkN (x|µk,Σk) (2.3)

Each Gaussian distribution comprising the mixture is known as a component with

each component having its own mean µk, covariance Σk, and mixing coefficient πk. The
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mixing coefficients determine the weight of each Gaussian mixture and are normalized

such that,

Np∑
k=1

πk = 1 (2.4)

In this thesis, it is assumed that the prototypes to be used have equal mixing

coefficients such that

p(x) =
1

Np

Np∑
k=1

N (x|µk,Σk) (2.5)

If each class k is modeled by using Np components, then the activity aik of the ith

prototype of class Ck for a specific data point x can be written as,

aik(x) = |Σk|−
1
2 exp(−1

2
(x− µi

k)TΣ−1k (x− µi
k)) (2.6)

where the constant terms have been dropped for convenience. This approach is the

same as that used by [55]. Based on this, the posterior probability of each class Ck

becomes,

ykk(x) = p(x|Ck) =
ak(x)

A(x)
=

∑Np

i=1 a
i
k(x)∑K

k=1

∑Np

i=1 a
i
k(x)

(2.7)

where aik(x) is the activity of class Ck and A(x) represents the total activity of the

network. yk(x) can be viewed as the responsibility that class Ck takes in explaining the

data x. The class producing the highest level of activity for any given data is selected

as the response of the classifier. In this work, the covariance matrices are assumed to

be diagonal.

The means of the Gaussian components will have to be initialized before the classifier

can be trained. This can be achieved with the help of a clustering algorithm, k-means

for example, after which the covariance matrix can also be initialized in the following

form.

Σk =
1

|Sk|
∑
x∈Sk

(x− µi∗
k )(x− µi∗

k )T (2.8)
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where Sk represents the set of samples that belong to class Ck, |Sk| represents the

cardinality of Sk, and i∗ represents the prototype that is closest in distance to x.

During training, the estimates of µk and Σk are improved for every data sample

trained on the classifier. This is performed through a stochastic gradient descent

algorithm that minimizes the mean square error of the class posterior probability,

E = Σk(yk − tk)2, where tk is the target vector for class Ck. The target vector takes a

form of 1-of-c, i.e, the target vector for the correct class is (1, 0) and that of the error

class is (0, 1). The gradient of the mean square error is then,

∆µi
k(x) = α

∂E

∂µi
k

(x) = α
aik(x)

A(x)

(x− µi
k)

Σk

ek(x) (2.9)

and then,

∆Σi
k(x) = β

∂E

∂Σi
k

(x) = β
aik(x)

A(x)

(x− µi
k)2

(Σk)3
ek(x) (2.10)

ek(x) = (tk(x)− yk(x))−
∑
j

yj(x)(tj(x)− yj(x)) (2.11)

Here, α and β are the learning rates. When all means and covariance matrices

are updated, the covariance matrices of all prototypes for each class are averaged,

resulting in the common-class covariance matrix. This helps improve the performance

and robustness of the classifier.

2.4 Adaptation in Brain Computer Interfaces

2.4.1 Nonstationarity in EEG

Statistical properties of EEG signals change over time [56]. This nonstationarity has

been studied in detail by Kaplan et al. [57] and it has also been shown to be deterrent

to BCI performance over the course of an experiment [58]. This is because a classifier

trained optimally at any given time becomes suboptimal when the conditions under

which it is trained have changed.
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Kaplan et al. emphasized that the signal processing techniques used to filter and

extract information from EEG rely on one basic assumption: the assumption that EEG

signals are stationary. However, that is not the case. In most cases, nonstationarities

can be eliminated or even ignored. This can be done by smoothing or averaging the

signal. This approach makes data from relevant electrodes more distinct from their

neighboring electrodes. This procedure might result in loss of useful information. In

some sense, one fundamental question is how to reliably maintain the optimality of

a classifier during an experiment even when the statistical nature of the EEG signals

change.

One answer to this question is adaptation in BCI systems. Adaptation seeks to

reconcile the issue of an ever-changing EEG signal by adapting the classifier to these

changes based on new information.

2.4.2 P300 Based BCI

Section 2.2.2 introduced the P300 speller that enables users to type letters using

EEG. Despite research efforts that yield high performances, there is still room for im-

provement. One major challenge researchers face is the high number of flashes required

before a confident selection can be made. This makes the decision making process very

long and tiring over the course of an experiment. For example, in one study, each

character had been flashed 15 times [59].

Various studies aimed at adapting P300 based BCIs have been done. Most of these

studies fall into two categories of adaptation:

1. Adaptation based on statistical properties of EEG [60, 61, 62].

2. Adaptation based on new information, usually in the form of a feedback, such as

the use of error related potentials [63, 64, 65].

By tracking statistical properties of EEG and identifying the changes that occur

over time, it is in principle possible to update a classifier accordingly. A study by

Y. Li et al. for example, has shown that a self-training SVM classifier can not only

improve performance in P300 BCIs, but it can also reduce the effort required to train
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the classifier [66]. In another study, two classifiers - BLDA and FLDA - have been

adapted to nonstationarities in EEG data simultaneously in a collaborative adaptation

process [67]. The basic idea in this co-training approach is that new data are classified

by both classifiers. The labels produced by these two classifiers may not necessarily

be identical and to take advantage of this, each classifier is updated by using the label

produced by the other classifier, rather than its own. This in principle enables both

classifiers to learn not only from EEG but also from each other. This approach has

shown promising results in comparison with other approaches used in the literature.

Adaptation based on new information is most commonly seen in the form of error

related potentials. This approach attracts researchers because it addresses some core

issues posed by the adaptation process that is based on statistical properties of EEG.

Adaptation can be performed by using the labels produced by the classifier from the

test data and this has been shown to have an improved performance when compared

to a system where no such information is used [68, 69]. However, such a label may

be incorrect and adapting the classifier with wrong information is undesirable. ErrP

detection is attractive because in case of perfect detection, the wrong labels may easily

be be identified.

In a recent study, ErrP has been detected online in the context of a P300 speller

[64]. In their setup, a currently selected letter is ignored if an error related potential is

detected. Otherwise, it is assumed to be true and the experiment proceeds. Training

the ErrP classifier involved the same setup with a slight difference when it comes to the

feedback. During training, 20% of the feedback provided is incorrect. This in effect,

implies that 20% of the data contains error related potentials. The results of this study

indicated that it is possible to detect error related potentials online in a P300 speller

paradigm.

Two years later, this was taken one step further [65]. In this work, ErrP detection

is used to make an educated guess on what the actual intention might be. The exper-

imental setup in this work incorporated an online correction procedure that replaces

a current selection with the second best guess of the classifier in the event that an

ErrP has been detected. Their study has been able to show that as long as a subject
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remains engaged in the experiment, online correction can improve the performance of

P300 spellers.

The focus of this thesis is an investigation of the detectability of ErrP in different

BCI protocols. In particular, we wanted to understand how ErrP detection is affected

in three different P300 speller protocols.

1. When a subject merely observes the interface and recognizes when the system

makes an error.

2. When a subject actively determines the letters to be selected by pressing keys on

a keyboard, and then observing whether the displayed letter was in fact the one

they had selected or not.

3. When a subject actively uses EEG to spell letters during the experiment.

2.4.3 Motor Imagery Based BCI

There have been various studies on motor imagery based BCI systems. Even though

these studies report quite high accuracy rates for motor imagery classification, it is be-

lieved that there is still room for improvement. In 2004, Vidaurre et al. worked on

designing a Quadratic Discriminant Analysis (QDA) classifier whose covariance matri-

ces are updated after every trial [68]. Each experiment starts with an initial classifier

that has been trained with data collected from over 1620 trials. After every trial,

the information matrix of the classifier is updated with a coefficient determined by an

optimization process. Their work was able to show that the information matrix did

indeed change over time and that an improvement in performance is possible with their

adaptation process in motor imagery based BCI.

Four years later, Vidaurre et al. introduced co-adaptive learning, a concept that is

one step ahead of adaptive learning [70]. In contrast to adaptation where a classifier

changes with respect to the changes in the user’s EEG, co-adaptation enables the subject

to learn from the performance of the classifier and adapt to it as well. In this case, the

learning capacity of a user is acknowledged and the classifier is designed in order to
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benefit from their capacity. This can be achieved by splitting the adaptation process

into three levels, each level accompanied by an increased dependency on the user’s

EEG. The results of this experiment showed that 10 out of 14 users have been able

to improve their BCI performance and that the number of users previously unable to

control a BCI decreased from 25% to 12.5%.

Other ways of adaptation in motor imagery based BCI have also been investigated.

For example, McFarland and his colleagues were able to show that two adaptation

procedures, adaptation of feature weights and adaptive normalization, are able to im-

prove BCI performance [71]. Feature weights were assigned based on a predetermined

training set, which could either be the first session, the current session, the preceding

session, or all sessions combined. Adaptive normalization involved normalizing the EEG

data before feature extraction with the aim of reducing the effect of nonstationarity.

Their work was able to show that for these two techniques, BCI performance could be

improved.

The essence of adaptation is primarily the use of new information in order to help

make better decisions by designed classifiers. Error related potentials become become

relevant because they provide new information that can be useful in the adaptation

process. Ricardo Chavarriaga and his colleagues detected ErrP signals during a BCI

experiment in 2010 [1]. Their work reports the discovery of ErrP waveforms consistent

with those reported by previous studies. They have also showed that classification

performance of ErrP was dependent on the frequency of errors in the BCI.

In another study, Ferrez et al. investigated the possibility of simultaneously de-

tecting ErrP while classifying motor imagery in real time [72]. The protocol used to

perform this task provided a one second interval that was used for motor imagery

classification and then a 400ms window to be used in detecting the presence of error

related potentials. If ErrPs were detected, the intended movement would be canceled,

else nothing would be done. Their results showed that some subjects were able to

achieve satisfactory motor imagery performance while maintaining a high level of ErrP

detectability.

In this thesis, we analyzed the detectability of error related potentials within the
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context of a motor imagery BCI. Given that various studies have shown that the nature

of the ErrP could change depending on context, we wanted to understand these dif-

ferences. We wanted to investigate how a change in context affects ErrP detectability.

For this, we used three different protocols.

1. When a subject merely observes the interface and recognizes when the system

makes an error.

2. When a subject actively presses a key to initiate the movement of a ball on

the screen, and then observing whether the ball in fact did move in the desired

direction or not.

3. When a subject actively uses EEG to move a ball using motor imagery in an

experiment.
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Chapter 3

Analysis of ErrP in P300 based

Brain Computer Interfaces

This chapter focuses on investigating the nature and detectability of error related

potentials across three different types of P300 based BCI protocols. For simplicity, give

name these protocols as follows.

1. P300 Observe: The BCI automatically spells out words while the user monitors

its performance.

2. P300 Control: The subject is required to type words using the keyboard while

monitoring the response of the computer when the key is pressed.

3. P300 EEG: The subject uses EEG to spell words during an experiment.

One interesting property of these three protocols is that they can also be seen as

three different forms of user engagement. In some sense, one aim of this study is to see

whether user engagement type can be used as a basis for explaining the results obtained

in these experiments.

The P300 system used in this work was originally developed by Amcalar [25] in the

BCI Lab of Sabancı University. It features a 6x6 matrix filled with 26 letters, digits 1 to

9, and an underscore representing the space bar key. This interface has been modified

in three different ways corresponding to the three P300 based BCI protocols.
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3.1 Experimental Description

We analyze error related potentials in P300-based BCIs using a setup similar the

setup used by Yılmaz [69]. It is an updated version of the SU-BCI P300 stimulus

interface with the added capacity of detecting error related potentials if and when they

exist. The interface starts with a main page (see Figure 3.1) where subject-specific and

experiment-specific information are entered.

Figure 3.1: The main page of the P300 related experiments where experiment-specific

settings are entered.

Each of the three different protocols have a similar structure; a target phase, a

selection phase, and a feedback phase.

1. A target phase, where the letter to be typed is shown in grey color. This gives

the subject an opportunity to know where the letter is located before flashing

begins. The target phase lasts for one second at the beginning of every trial and

is identical for all protocols.
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Figure 3.2: Target Phase of P300 based BCI experiments. Subjects are shown a random

letter for one second.

2. A selection phase, when a letter is selected by the BCI as rows and columns flash

randomly on the screen. This phase differs between all three protocols and these

differences shall be discussed in the corresponding sections.

Figure 3.3: Selection Phase of P300 based BCI experiments. Rows and columns ran-

domly flash during this phase.
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3. A feedback phase, where the letter selected by the BCI is presented in green color.

This phase is identical for all three protocols as well.

Figure 3.4: Feedback Phase of P300 based BCI experiments. A feedback is presented

to the subjects and they are instructed to notice if it is the same as the letter presented

during the target phase.

Each protocol is divided into 3 runs, each containing 100 trials (letters to be typed)

with a 5 minute rest between each run. The characters typed during each run consist

of a repetition of the sentence “THE QUICK BROWN FOX JUMPS OVER THE LA

ZY DOG ” until 100 characters are exhausted. During experiments, the feedback is

always programmed to be 70% correct.

3.1.1 Data Processing

ErrP has been shown to be detectable with EEG recorded from the FCz and Cz

electrodes [73, 74, 75] so we use these electrodes in our experiments as well. We record

EEG from 8 different electrodes, Fz, FCz, FC1, FC2 Cz, C1, C2, and CPz, sampled

at 2048 Hz. Electrodes apart from FCz and Cz are used as referencing electrodes. We

reference each electrode by subtracting from it the mean of data collected from the four

adjacent electrodes, that is, top, bottom, left, and right. Following this, data from the
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FCz and Cz electrodes are downsampled to 64 Hz and then passed through a band pass

filter with cutoff frequencies 1-10Hz. The epochs corresponding to the feedback phase

are extracted and categorized into two; error and correct samples. Each epoch contains

64 samples and is used as feature for the classification process.

3.1.2 Classification

The first two runs of each experiment are used as a training set and the last run as

a testing set. The classifier trained on the training set is now tested on the testing set

and this process is performed 100 times to obtain robust results. In this thesis, four

different classifiers have been investigated; SVM, LDA, Decision Tree, and a Gaussian

Mixture Model classifier.

3.2 P300 Observe

3.2.1 Experimental Description

This experiment aims to understand the detectability and nature of error related

potentials generated in the context of a P300 based BCI when a subject only observes

the performance of the BCI. During the selection phase, the subject is instructed to do

nothing. This is ensured by flashing each row and column only once for a period of 25

ms with an interstimulus interval of 25 ms. In a practical P300 based BCI, these time

intervals are too small. However, it is not relevant in this piece of work because P300

detection is not considered.
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3.2.2 Results

Table 3.1 provides ErrP classification results for four different classifiers – SVM,

LDA, Decision Tree, and GMM – for the Observe protocol of the P300 based BCI

experiments. Results are provided for FCz and Cz electrodes for all subjects. For

each electrode, correct classification percentage is provided for both correct and error

samples.

Classifier Subject
FCz Cz

Correct(%) Error(%) Correct(%) Error(%)

SVM

Subject 1 69.71 64.88 69.45 54.00

Subject 2 69.64 66.44 70.28 55.00

Subject 3 73.88 60.05 75.50 63.66

Subject 4 73.75 64.10 61.85 54.22

Subject 5 75.19 66.15 76.17 67.36

LDA

Subject 1 73.30 53.77 73.07 55.22

Subject 2 75.40 56.44 73.92 57.00

Subject 3 71.04 54.77 75.26 57.72

Subject 4 73.87 58.63 72.82 54.52

Subject 5 75.14 62.84 75.46 60.78

Decision Tree

Subject 1 76.16 65.72 74.14 64.11

Subject 2 75.85 63.61 75.42 64.61

Subject 3 73.88 64.44 75.02 64.66

Subject 4 74.31 65.31 74.29 64.00

Subject 5 74.53 64.52 75.39 65.00

GMM

Subject 1 69.64 63.66 68.09 62.16

Subject 2 69.71 63.83 68.80 63.72

Subject 3 65.45 59.94 70.85 64.22

Subject 4 65.73 60.15 59.17 51.47

Subject 5 68.29 63.21 70.12 65.89
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Classifier Subject
FCz Cz

Correct(%) Error(%) Correct(%) Error(%)

Table 3.1: ErrP classification results for SVM, LDA, Decision Tree and GMM classifiers

across all subjects for the Observe protocol in P300 based BCI experiments. For each

electrode, the accuracy of classifying correct and error samples are presented.

3.3 P300 Control

3.3.1 Experimental Description

This experiment investigates the nature and detectability of error related potentials

in the context of a P300 based BCI when a subject selects a letter by pressing keys on a

keyboard. During the selection phase, the subject is instructed to press the letter they

have seen in the target phase on the keyboard. In addition to this, no flashes occur in

the selection phase of this experiment.

3.3.2 Results

Table 3.2 provides ErrP classification results for four different classifiers; SVM, LDA,

Decision Tree, and GMM in the Control protocol of the P300 based BCI experiments.

Results include classification performance for both correct and error samples for FCz

and Cz electrodes.

Classifier Subject
FCz Cz

Correct(%) Error(%) Correct(%) Error(%)

SVM

Subject 1 75.19 64.89 72.80 60.84

Subject 2 73.07 61.89 75.48 63.94

Subject 3 73.69 64.38 74.33 65.90

Subject 4 70.00 59.52 69.76 66.47

Subject 5 73.37 63.40 74.35 65.65
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Classifier Subject
FCz Cz

Correct(%) Error(%) Correct(%) Error(%)

LDA

Subject 1 74.82 60.15 74.04 58.63

Subject 2 72.95 58.36 73.78 58.47

Subject 3 73.05 60.42 70.07 58.66

Subject 4 72.58 58.09 72.33 58.19

Subject 5 72.10 58.50 73.65 59.45

Decision Tree

Subject 1 75.34 67.10 76.43 65.42

Subject 2 74.24 65.21 74.07 66.47

Subject 3 75.51 69.81 75.10 66.14

Subject 4 74.20 67.28 73.56 67.52

Subject 5 73.85 67.60 76.22 66.40

GMM

Subject 1 63.60 63.48 62.10 61.48

Subject 2 64.39 61.30 59.62 59.62

Subject 3 68.28 61.84 65.05 63.20

Subject 4 66.61 61.87 70.76 59.38

Subject 5 64.43 59.82 68.75 63.75

Table 3.2: ErrP classification results for SVM, LDA, Decision Tree and GMM classifiers

across all subjects for the Control protocol in P300 based BCI experiments. For each

electrode, the accuracy of classifying correct and error samples are presented.

3.4 P300 EEG

In this protocol, the selection phase is designed such that each row and column

flashes twice with each flash lasting 25 ms. The interstimulus interval is also set to

25 ms. During this phase, the subject is instructed to count the number of times the

target letter flashes and is told that the BCI determines the target letter based on their

EEG signals. In fact, the letter outputs are generated randomly with a specified error

probability of 30%. Following this, the subject is instructed to observe whether the
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letter presented during the feedback phase is the same as the target letter. We evaluate

ErrP classification performance on four different classifiers; SVM, LDA, Decision Tree,

and GMM.

3.4.1 Results

ErrP classification results for the EEG protocol of the P300 based BCI experiments

are presented in Table 3.3. Results are provided for four different classifiers for all

subjects. Additionally, classification performances are calculated for both correct and

error samples over FCz and Cz electrodes.

Classifier Subject
FCz Cz

Correct(%) Error(%) Correct(%) Error(%)

SVM

Subject 1 79.87 71.58 74.43 62.88

Subject 2 80.00 72.56 79.51 69.37

Subject 3 79.85 71.65 74.39 65.10

Subject 4 74.78 65.25 71.19 64.65

Subject 5 77.56 69.05 75.56 68.40

LDA

Subject 1 78.02 66.41 74.36 60.76

Subject 2 79.02 64.68 77.34 60.37

Subject 3 77.46 68.10 74.82 60.55

Subject 4 75.34 61.00 74.39 63.35

Subject 5 78.02 63.65 74.56 61.55

Decision Tree

Subject 1 78.48 70.11 76.31 68.00

Subject 2 77.19 70.06 76.36 66.75

Subject 3 78.17 70.75 73.95 67.60

Subject 4 76.19 68.80 74.82 65.80

Subject 5 74.31 65.40 75.46 67.60
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Classifier Subject
FCz Cz

Correct(%) Error(%) Correct(%) Error(%)

GMM

Subject 1 76.46 69.41 71.43 67.05

Subject 2 73.00 64.68 70.65 66.06

Subject 3 74.65 65.55 71.34 65.11

Subject 4 66.65 64.15 63.26 62.30

Subject 5 69.70 63.65 69.26 66.10

Table 3.3: ErrP classification results for SVM, LDA, Decision Tree and GMM classifiers

across all subjects for the EEG protocol in P300 based BCI experiments. For each

electrode, the accuracy of classifying correct and error samples are presented.

3.5 Discussion

3.5.1 Waveform analysis

Figure 3.5 shows average waveforms computed for FCz and Cz electrodes for all

three protocols. Blue lines correspond to the average correct waveform across all sub-

jects. Red lines correspond to the average error waveforms across all subjects. Yellow

waveforms are the overall error-minus-correct waveforms computed by taking the dif-

ference between the blue and red waveforms. The first column represents waveforms

calculated from the FCz electrode and the second column represents that from the Cz

electrode. From top to bottom, the rows correspond to results obtained for the Observe,

Control, and EEG protocols.
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Figure 3.5: Average waveforms over all subjects for correct (blue), error (red) and error-

minus-correct (yellow) samples for all three protocols. First column represents results

obtained from the FCz electrode and the second column represents results obtained

from the Cz electrode. Top row represents results for the Observe protocol, while the

middle row represents the Control protocol and the bottom row represents the EEG

protocol.

Figure 3.6 shows the mean error minus correct waveforms for all three protocols

conducted. We have observed that the waveforms of all three protocols look similar

and are consistent with the waveform obtained by Schmidt et. al. [76]. The similarities

between the three waveforms were tested by first aligning the signals using a cross

correlation procedure and then the correlation between each pairwise combination of

error minus correct waveforms presented in Figure 3.6 is computed. The correlation

coefficient between the waveforms of EEG and Observe is ρ = 0.26. For the waveforms

of EEG and Control, the correlation coefficient is ρ = 0.37 and the correlation coefficient

between the waveforms of Observe and Control is ρ = 0.62.
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Figure 3.6: This figure shows the mean error minus correct waveforms for all three

protocols as recorded from the FCz electrode. Blue represents EEG protocol, red

represents Observe protocol and yellow represents Control protocol.

ErrPs generated in these P300 based protocols seem to have different waveforms

compared to the motor imagery based BCI experiments described in the literature.

They exhibit a wide negative deflection followed by a wide positive deflection. For the

EEG protocol, the first negative deflection starts at around 200ms and the positive

deflection at 450ms which is different from other protocols. Negative deflection starts

at 450ms and ends at 550ms for Observe and it is from 500ms to 600ms for Control.

Similar waveforms have also been reported by Spüler et. al. [77]. Latency analysis

shows that waveforms produced by Control and Observe have a phase difference of

50 ms which is statistically significant with p-values much less than 0.01. A statis-

tically significant phase difference has been observed between the waveforms of EEG

and Observe protocols with very low p-values as well. The mean latency between the

waveforms of EEG and Observe has been observed to be 300ms. The phase difference

between EEG and Control has also been observed to be statistically significant with

very low p-values and a mean difference of 250ms.
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Experiment Type Max. Negative Deflection(µV ) Max. Positive Deflection(µV )

Observe -9.19 (±2.09) 10.19(±1.84)

Control -7.73 (±1.58) 6.60(±1.50)

EEG -13.63 (±1.81) 13.25 (±2.22)

Table 3.4: Maximum positive and negative deflections for the average error-minus-

correct waveforms obtained for all three protocols.

3.5.2 Performance analysis

Results have shown that error related potentials can be detected with accuracies

above 50% in all protocols and for all classifiers. In addition to this, we sought to further

understand the performance of each classifier in comparison with the other classifiers

used. For this to be relevant, we decided to treat this problem as if it were an online

classification problem by doing two things. First, we select the electrode with the best

performance in the training session for each subject. Second, we use the classification

results of the selected electrode during the testing session as the actual performance of

the classifier. This, we believe, gives a better reflection of what would have happened

if such an experiment were performed online. The results of this procedure can be seen

in Figure 3.7.
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Figure 3.7: This figure presents mean accuracies obtained over all subjects and in all

three protocols for four different classifiers; SVM, LDA, Decision Tree and GMM.

Figure 3.7 shows the mean classification results across all subjects for all four clas-

sifiers used. Decision Tree and SVM classifiers perform best and LDA performs with

the lowest accuracy. GMM classifier also seems to perform relatively better compared

to the LDA classifier. Indeed, a t-test performed on the mean accuracies between all

classifiers indicate that the difference between the performances of the SVM and De-

cision Tree classifier is not significant (p = 0.92 for EEG, p = 0.44 for Observe, and

p = 0.10 for Control). The difference between the performances of the LDA and GMM

classifier is not significant for EEG(p = 0.27) but significant for Observe(p << 0.01)

and Control(p << 0.01). All other combinations provide a significant difference with

very low p-values.

Across experiments, Table 3.5 provides the results of a MANOVA test on the average

classifier performances of each pairwise combination of the three protocols.
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PPPPPPPPPPPPPP
Protocols

Classifiers
SVM LDA Decision Tree GMM

Observe, Control << 0.01 0.27 << 0.01 0.11

Observe, EEG << 0.01 << 0.01 << 0.01 0.09

EEG, Control << 0.01 << 0.01 << 0.01 << 0.01

Table 3.5: MANOVA test results for pairwise combinations of the three protocols in

the P300 based experiments.

Classifier Subject Preferred Electrode
Performance

Correct(%) Error(%)

SVM

Subject 1 FCz 69 64

Subject 2 FCz 69 66

Subject 3 Cz 75 63

Subject 4 FCz 73 64

Subject 5 Cz 76 67

LDA

Subject 1 Cz 73 55

Subject 2 Cz 73 57

Subject 3 Cz 75 57

Subject 4 FCz 73 58

Subject 5 FCz 75 62

Decision Tree

Subject 1 FCz 76 65

Subject 2 Cz 75 64

Subject 3 Cz 75 64

Subject 4 FCz 74 65

Subject 5 Cz 75 65
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Classifier Subject Preferred Electrode
Performance

Correct(%) Error(%)

GMM

Subject 1 FCz 69 63

Subject 2 FCz 69 63

Subject 3 Cz 70 64

Subject 4 FCz 65 60

Subject 5 Cz 70 65

Table 3.6: Optimal electrodes and ErrP classification performance of these electrodes

for all subjects and classifiers in the Observe protocol of P300 based BCIs.

Classifier Subject Preferred Electrode
Performance

Correct(%) Error(%)

SVM

Subject 1 FCz 75 64

Subject 2 Cz 75 63

Subject 3 Cz 74 65

Subject 4 Cz 69 66

Subject 5 Cz 74 65

LDA

Subject 1 FCz 74 60

Subject 2 Cz 73 58

Subject 3 Cz 70 58

Subject 4 FCz 72 58

Subject 5 Cz 73 59

Decision Tree

Subject 1 FCz 75 67

Subject 2 Cz 74 66

Subject 3 Cz 75 66

Subject 4 FCz 74 67

Subject 5 FCz 73 67
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Classifier Subject Preferred Electrode
Performance

Correct(%) Error(%)

GMM

Subject 1 FCz 63 63

Subject 2 FCz 64 61

Subject 3 Cz 65 63

Subject 4 FCz 66 61

Subject 5 Cz 68 63

Table 3.7: Optimal electrodes and ErrP classification performance of these electrodes

for all subjects and classifiers in the Control protocol of P300 based BCIs.

Classifier Subject Preferred Electrode
Performance

Correct(%) Error(%)

SVM

Subject 1 FCz 79 71

Subject 2 FCz 80 72

Subject 3 FCz 79 71

Subject 4 FCz 74 65

Subject 5 FCz 77 69

LDA

Subject 1 FCz 78 66

Subject 2 FCz 79 64

Subject 3 FCz 77 68

Subject 4 Cz 74 63

Subject 5 FCz 78 63

Decision Tree

Subject 1 FCz 78 70

Subject 2 FCz 77 70

Subject 3 FCz 78 70

Subject 4 FCz 76 68

Subject 5 Cz 75 67
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Classifier Subject Preferred Electrode
Performance

Correct(%) Error(%)

GMM

Subject 1 FCz 76 69

Subject 2 Cz 72 66

Subject 3 FCz 74 65

Subject 4 FCz 66 64

Subject 5 Cz 69 66

Table 3.8: Optimal electrodes and ErrP classification performance of these electrodes

for all subjects and classifiers in the EEG protocol of P300 based BCIs.

3.6 Summary

In this chapter, three P300 based BCI protocols have been been used to detect

error related potentials. Our analysis show differences in ErrP waveforms across these

three protocols. We have also tested the performances of ErrP classification using

four different classifiers; SVM, LDA, GMM and Decision Tree classifiers. We observe

that ErrP generated by EEG – which represents the highest level of user engagement

among all three protocols – occurs much earlier than ErrP generated in other protocols.

Our results also indicate that EEG protocol seems to have higher ErrP classification

performance on average compared to other protocols. Figure 3.7 and Table 3.5 indicate

that the difference in classification performance between EEG and the other protocols

– Observe and Control – is statistically significant. These results suggest that ErrP

waveforms and classification results are sensitive to user engagement in P300 based

Brain Computer Interfaces.

45



Chapter 4

Analysis of ErrP in Motor Imagery

based Brain Computer Interfaces

The movement of a limb or even the contraction of a single muscle can cause changes

in brain activity around the cortex [37]. Even more so, mentally preparing for a move-

ment or imagining such a movement has been shown to induce changes in sensorimotor

rhythms (SMR). These rhythms, or oscillations, occur in the somatosensory and motor

areas of the brain and are divided into five frequency bands. The delta band for fre-

quencies less than 4 Hz, theta band for frequencies within the range of 4-7 Hz, alpha

band for frequencies within the range of 8-12 Hz, beta band for frequencies within the

range of 12-30 Hz, and the gamma band for frequencies above 30 Hz.

Sensorimotor rhythms can either increase (Event Related Synchronization, ERS) or

decrease (Event Related Desynchronization, ERD) during the preparation or imagina-

tion of a movement. By capturing the ERD/ERS in the EEG and mapping them to a

corresponding activity, left vs right hand motor imagery for example, it can be possible

to train a classifier that is able to distinguish between the different movements. The

alpha and beta bands are most frequently used in motor imagery classification.

This part of the thesis investigates the nature and detectability of error related

potentials across three different motor imagery protocols described as follows.

1. MI Observe: The BCI automatically moves a ball on the screen while the user

monitors its performance.
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2. MI Control: The user presses a key on the keyboard to move a ball on the screen

while noticing the response of the computer when the key is pressed.

3. MI EEG: The subject uses EEG to move a ball on the screen.

These three protocols can also be considered as a representation of three different

forms of engagement for the user. One benefit that can be derived from this observation

is if, after data analysis, user engagement enables us to explain the results obtained in

each motor imagery based BCI protocol.

4.1 Processing Preexisting BCI Datasets

The first dataset used in testing our algorithms for error related potentials in the

case of motor imagery based BCI has been collected by Millan and his colleagues [78].

Their study is based on the ability of detecting error related potentials in a motor

imagery based BCI setting where the subject has no control of the system. This is

similar to the Observe protocol we design in our experiments.

4.1.1 Experimental Description

In the experiment conducted by Millan et al., a cursor appears at the center of a

screen with a target appearing either to the left or to the right of the cursor [1]. In a

series of steps in either direction, the cursor attempts to reach the target during the

course of a trial which lasts 2000 ms. The user has no control over these events but

is instructed to observe whether the cursor moves in the desired direction, which is

towards the target. For each step that the cursor makes, there is a probability Perr of

the cursor moving in the opposite direction.

4.1.2 Results

Table 4.1 presents two sets of results; results obtained with ‘Our Code’ which is

our implementation of the Gaussian Mixture Model Classifier described in Millan’s

paper (see subsection 2.3.3). Following this are results presented in Millan’s paper
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indicated by ‘Millan’s Code’. The similarity of our results with those reported in

Millan’s paper provides a basis for using the GMM classifier we have designed in the

our ErrP experiments.

Subject Our Code Millan’s Code

Correct(%) Error(%) Correct(%) Error(%)

Subject 1 85 75 85 76

Subject 2 79 62 73 65

Subject 3 85 73 82 69

Subject 4 65 60 70 58

Subject 5 79 64 74 58

Subject 6 65 52 68 51

Table 4.1: ErrP classification results obtained by Millan et. al. [1] and the results we

have obtained using our codes on the same data.

4.2 Designed Interface for MI ErrP

The entire system is written in C# and designed with the aid of Visual Studio. The

system has two interfaces; a start menu and the actual experimental interface. The

start menu, as seen in Figure 4.1, is used to acquire user information to keep a record.

The start menu is also the same as seen in [79]. Following this, the train button is

pressed and the main interface appears on the screen.
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Figure 4.1: The Start Menu of the Motor imagery related experiments.

The entire experiment is set up to include 3 runs, each of which contains the same

number of trials. These trials are all identical in nature and can be split into three

parts of chronological order.

1. A Resting Phase, where the subject can relax and prepare for the task at hand.

This segment is brief and lasts 2 seconds. During this phase, the ball is blank and

colored green.

Figure 4.2: The Resting Phase of the Motor Imagery related experiments.
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2. A Stimulus Phase, where the ball turns yellow and a white arrow appears on top

of the ball pointing either to the left or to the right. The direction pointed by the

arrow represents the direction of correct movement.

Figure 4.3: The Stimulus Phase of the Motor Imagery related experiments.

3. A Feedback Phase, where the the ball moves one step either to the right or to

the left, and the subject is instructed to observe whether the ball moves in the

correct direction or not. The ball moves in the correct direction with a certain

probability Pcorr. During this phase, the ball turns back to its original state of

being blank with a green color.

1 Second3 Seconds2 Seconds

Resting Phase Stimulus Phase Feedback

Figure 4.4: One trial in the motor imagery based BCI experiments.
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4.2.1 Data Processing

In these series of experiments, ErrPs are classified using EEG recorded from the

FCz and Cz electrodes. To do this, data is collected in 8 different electrodes, namely,

Fz, FCz, FC1, FC2, Cz, C1, C2, and CPz. Electrodes other than FCz and Cz are

used for referencing. This is done by subtracting from an electrode the mean of data

collected from the four adjacent electrodes, similar to the procedure in Chapter 3. After

referencing, data from the FCz and Cz electrodes are downsampled to 64 Hz and then

passed through a band pass filter with cutoff frequencies of 1-10 Hz. The sections of

the data corresponding to the feedback phase were then obtained and categorized into

two; error and correct samples. These are used as features in the classification process.

4.2.2 Classification

The first two runs of each experiment were used as a training set and the last

run as a testing set. The optimal classifier is then tested on the testing set and this

process is performed 100 times for robust results. In this thesis, four different classifiers

were investigated for ErrPs; SVM, LDA, Decision Tree, and a Gaussian Mixture Model

classifier.

4.3 Motor Imagery Observe

4.3.1 Experimental Description

In this protocol, the stimulus phase lasts only one second. This is to ensure that the

subject does not have enough time to use motor imagery. During the stimulus phase,

the subject is instructed to notice the direction the arrow points to and observe if the

ball moves in the right direction during the feedback phase.

4.3.2 Results

Results in Table 4.2 were obtained based on the description provided in subsec-

tion 4.2.2.
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Classifier Subject
FCz Cz

Correct(%) Error(%) Correct(%) Error(%)

SVM

Subject 1 83.18 76.41 74.30 63.47

Subject 2 82.72 75.30 81.40 73.55

Subject 3 77.06 61.00 74.97 63.17

Subject 4 77.92 71.00 74.10 66.05

Subject 5 78.51 73.61 70.82 63.04

LDA

Subject 1 80.83 69.88 74.65 57.94

Subject 2 81.77 71.15 80.42 69.35

Subject 3 75.06 58.05 72.13 56.58

Subject 4 79.20 67.60 75.65 61.15

Subject 5 78.79 69.28 77.07 63.42

Decision Tree

Subject 1 79.25 69.94 77.20 67.74

Subject 2 79.17 70.20 77.87 70.70

Subject 3 74.53 67.11 75.34 66.11

Subject 4 79.70 74.30 75.23 65.37

Subject 5 76.41 68.76 74.79 65.52

GMM

Subject 1 72.44 67.17 71.60 67.11

Subject 2 71.75 63.00 77.22 73.95

Subject 3 69.27 58.41 70.00 66.70

Subject 4 74.07 70.40 66.87 62.90

Subject 5 65.92 62.95 60.30 54.76

Table 4.2: ErrP classification results for SVM, LDA, Decision Tree and GMM classi-

fiers across all subjects for the Observe protocol. For each electrode, the accuracy of

classifying correct and error samples are presented.
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4.4 Motor Imagery Control

4.4.1 Experimental Description

In this protocol, the duration of the stimulus phase is indefinite but subjects were

advised to move the ball as quickly as possible. They do so by pressing the key ’A’ to

move the ball left and the key ’L’ to move the ball right. The subject is instructed to

press the key corresponding to the correct direction during the stimulus phase and to

observe if the ball moves in the right direction during the feedback phase.

4.4.2 Results

Results in Table 4.3 were obtained based on the description provided in subsec-

tion 4.2.2.

Classifier Subject
FCz Cz

Correct(%) Error(%) Correct(%) Error(%)

SVM

Subject 1 81.45 76.85 78.45 70.10

Subject 2 80.09 74.21 76.17 64.36

Subject 3 78.85 67.27 79.33 68.11

Subject 4 82.95 75.94 75.85 63.50

Subject 5 83.59 76.75 80.40 68.50

LDA

Subject 1 81.02 68.40 78.77 67.50

Subject 2 78.17 63.94 73.60 60.94

Subject 3 77.11 61.50 77.16 61.44

Subject 4 82.26 71.44 74.59 56.33

Subject 5 83.77 68.75 79.84 63.15

Decision Tree

Subject 1 77.47 70.40 76.85 69.80

Subject 2 78.90 68.84 77.14 67.42

Subject 3 75.85 67.33 77.07 67.55

Subject 4 78.66 67.77 75.00 65.11

Subject 5 84.11 74.50 81.34 67.62
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Classifier Subject
FCz Cz

Correct(%) Error(%) Correct(%) Error(%)

GMM

Subject 1 72.30 66.75 70.15 65.20

Subject 2 75.92 68.36 73.34 64.84

Subject 3 71.26 65.83 71.33 65.16

Subject 4 72.42 65.88 68.80 64.05

Subject 5 79.97 69.06 74.45 69.00

Table 4.3: ErrP classification results for SVM, LDA, Decision Tree and GMM classi-

fiers across all subjects for the Control protocol. For each electrode, the accuracy of

classifying correct and error samples are presented.

4.5 Motor Imagery EEG

4.5.1 Experimental Description

In this protocol, the stimulus phase lasts 3 seconds. During this time, the subject

is instructed to use motor imagery to move the ball to either the left or to the right

direction by imagining the respective arm movement. The users are told the movement

direction is decided by the BCI system based on their EEG data, whereas in fact it is

set randomly with a fixed probability of error. Following this, they are instructed to

observe if the ball moves in the right direction.

4.5.2 Results

Results of the EEG protocol are provided in Table 4.4
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Classifier Subject
FCz Cz

Correct(%) Error(%) Correct(%) Error(%)

SVM

Subject 1 78.57 68.88 69.16 59.11

Subject 2 82.43 74.05 79.73 71.82

Subject 3 76.06 64.17 74.04 60.41

Subject 4 80.95 71.35 73.09 63.23

Subject 5 76.97 71.76 70.23 65.00

LDA

Subject 1 76.40 62.38 76.50 61.44

Subject 2 81.21 70.70 77.82 61.25

Subject 3 76.37 60.88 76.97 60.41

Subject 4 79.27 67.76 76.88 58.64

Subject 5 76.84 69.61 75.71 62.95

Decision Tree

Subject 1 77.71 64.94 76.38 66.16

Subject 2 81.46 74.58 77.56 70.58

Subject 3 75.76 64.23 77.11 68.52

Subject 4 77.16 67.52 76.41 64.23

Subject 5 77.53 68.57 74.15 67.09

GMM

Subject 1 70.28 63.61 63.97 62.16

Subject 2 79.65 70.52 75.41 68.35

Subject 3 70.97 64.17 66.81 60.29

Subject 4 73.74 70.05 65.79 62.88

Subject 5 66.30 64.09 60.05 54.42

Table 4.4: ErrP classification results for SVM, LDA, Decision Tree and GMM classifiers

across all subjects for the EEG protocol. For each electrode, the accuracy of classifying

correct and error samples are presented.
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4.6 Discussion

4.6.1 Waveform analysis

Figure 4.5 shows the overall mean waveform for correct, error, and error minus

correct samples. Blue lines represent average waveforms for correct samples, red lines

represent average waveforms for error samples, and yellow waveforms represent the

difference between the average error and average correct waveforms. The top row

contains results obtained from the Observe protocol, the middle row is for the Control

protocol, and the bottom row is for the EEG protocol. From left to right, the columns

represent results for the FCz and Cz electrodes respectively.

Figure 4.5: This figure presents overall avegrage waveforms computed for correct (blue),

error (red), and error-minus-correct (yellow) samples for two different electrodes and

for all three protocols. From top to bottom, the rows are arranged in the following

order: Observe, Control, EEG. The left column represents data from the FCz electrode

and the right column represents data from the Cz electrode.

Figure 4.6 shows the mean error minus correct waveforms for all three protocols con-

ducted. We have observed that the waveforms of all three protocols look similar and are

consistent with the waveform obtained by Chavarriaga et. al. [1] (see Figure 2.6). The
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similarities between the three waveforms were tested by first aligning the signals using a

cross correlation procedure and then the correlation between each pairwise combination

of error minus correct waveforms in Figure 4.6 is calculated. The correlation coefficient

computed between the waveforms of EEG and Observe is ρ = 0.77, ρ = 0.71 for the

waveforms of EEG and Control, and ρ = 0.88 for the waveforms between Observe and

Control.

Figure 4.6: This figure shows the mean error minus correct waveforms for all three

protocols recorded from the FCz electrode. Blue waveforms represent the EEG protocol,

red represents Observe protocol and yello represents the Control protocol.

In terms of the shape of the ErrPs, it can be seen that there is a small positive

deflection at around 200 ms after feedback, followed by a negative deflection at 250 ms,

another positive deflection at 300 ms followed by a prolonged negative deflection at 400

ms. This is consistent with results obtained by Ferrez et. al. [38]. Similar waveforms

have also been reported by Spüler et. al. [80], Chavarriaga et. al. [78], and Kim et. al.

[81]. Latency analysis shows that waveforms produced by Control and Observe have

no phase difference. A statistically nonsignificant (p = 0.64) phase difference of 15 ms

exists between Observe and EEG protocols (p = 0.59) as well as Control and EEG

protocols (p = 0.28).
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The average maximum positive and negative deflections for all protocols based on

Figure 4.6 are shown in Table 4.5. Pairwise statistical significance tests show that all

peak amplitudes are statistically significant with p << 0.05.

Experiment Type Max. Negative Deflection(µV ) Max. Positive Deflection(µV )

Observe -48.06 (±5.61) 51.52 (±5.11)

Control -29.44 (±3.40) 32.28 (±3.52)

EEG -44.69 (±6.92) 24.70 (±6.67)

Table 4.5: Maximum positive and negative deflections computed from the waveforms

provided in Figure 4.6.

4.6.2 Performance analysis

The offline classification results obtained in the previous section shows an above-

chance level (50%) accuracy for all classifiers and subjects. To compare classifiers across

experiments, we used the same method as used in subsection 3.5.2 and the results are

presented in Figure 4.7. Classifier accuracies for all the optimal electrodes are contained

in Tables 4.7, 4.8, and 4.9.
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Figure 4.7: Average ErrP classification results over all subjects for all three protocols.

Classifiers used include SVM, LDA, Decision Tree and GMM.

Figure 4.7 shows the mean classification results across subjects for each classifier.

Observation indicates that SVM and Decision Tree classifiers perform better then LDA

and GMM classifiers for all three protocols. Indeed, a t-test performed on the mean

accuracies between all classifiers indicate that the difference between the performance

of the SVM and Decision Tree classifier is not significant (p = 0.35 for EEG, p = 0.57

for Observe, and p = 0.41 for Control). The difference between the performance of

the LDA and GMM classifier is not significant either (p = 0.34 for EEG, p = 0.50 for

Observe, and p = 0.58 for Control), while all other combinations provide a significant

difference with p << 0.01.

Across experiments, Table 3.5 provides the results of a MANOVA test on the average

classifier performances of each pairwise combination of the three protocols.
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PPPPPPPPPPPPPP
Protocols

Classifiers
SVM LDA Decision Tree GMM

Observe, Control << 0.01 0.21 0.62 0.07

Observe, EEG << 0.01 << 0.01 0.91 << 0.01

EEG, Control << 0.01 0.01 0.77 0.32

Table 4.6: MANOVA test results for pairwise combinations of the three protocols in

the motor imagery based experiments.

Classifier Subject Preferred Electrode
Performance

Correct(%) Error(%)

SVM

Subject 1 FCz 83 73

Subject 2 FCz 82 73

Subject 3 Cz 74 63

Subject 4 FCz 77 71

Subject 5 FCz 78 71

LDA

Subject 1 FCz 80 69

Subject 2 FCz 81 71

Subject 3 FCz 75 58

Subject 4 FCz 79 67

Subject 5 FCz 78 69

Decision Tree

Subject 1 FCz 79 70

Subject 2 FCz 78 72

Subject 3 Cz 71 71

Subject 4 Cz 73 70

Subject 5 FCz 76 69
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Classifier Subject Preferred Electrode
Performance

Correct(%) Error(%)

GMM

Subject 1 FCz 72 67

Subject 2 Cz 77 73

Subject 3 Cz 70 66

Subject 4 FCz 74 70

Subject 5 FCz 65 62

Table 4.7: Optimal electrodes and ErrP classification performance of these electrodes

for all subjects and classifiers in the Observe protocol of motor imagery based BCIs.

Classifier Subject Preferred Electrode
Performance

Correct(%) Error(%)

SVM

Subject 1 FCz 81 76

Subject 2 FCz 80 74

Subject 3 Cz 79 68

Subject 4 FCz 82 75

Subject 5 FCz 83 76

LDA

Subject 1 FCz 81 68

Subject 2 FCz 78 63

Subject 3 FCz 77 61

Subject 4 FCz 82 71

Subject 5 FCz 83 68

Decision Tree

Subject 1 Cz 80 72

Subject 2 Cz 79 70

Subject 3 FCz 75 67

Subject 4 FCz 82 74

Subject 5 FCz 84 74
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Classifier Subject Preferred Electrode
Performance

Correct(%) Error(%)

GMM

Subject 1 FCz 72 66

Subject 2 FCz 75 68

Subject 3 FCz 71 65

Subject 4 FCz 72 65

Subject 5 FCz 79 69

Table 4.8: Optimal electrodes and ErrP classification performance of these electrodes

for all subjects and classifiers in the Control protocol of motor imagery based BCIs.

Classifier Subject Preferred Electrode
Performance

Correct(%) Error(%)

SVM

Subject 1 FCz 78 70

Subject 2 FCz 71 76

Subject 3 FCz 76 66

Subject 4 FCz 80 75

Subject 5 FCz 76 73

LDA

Subject 1 FCz 76 62

Subject 2 FCz 81 70

Subject 3 FCz 76 60

Subject 4 FCz 79 67

Subject 5 FCz 76 69

Decision Tree

Subject 1 Cz 76 66

Subject 2 FCz 83 74

Subject 3 Cz 77 65

Subject 4 FCz 80 70

Subject 5 Cz 79 71
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Classifier Subject Preferred Electrode
Performance

Correct(%) Error(%)

GMM

Subject 1 FCz 70 63

Subject 2 FCz 79 70

Subject 3 FCz 70 64

Subject 4 FCz 73 70

Subject 5 FCz 66 64

Table 4.9: Optimal electrodes and ErrP classification performance of these electrodes

for all subjects and classifiers in the EEG protocol of motor imagery based BCIs.

4.7 ErrP across P300 and motor imagery based BCI

experiments

Analyzing error related potentials generated during P300 and motor imagery based

BCI experiments simultaneously can be potentially interesting. Figure 4.8 shows the

average error minus correct (difference) ErrP waveforms for both P300 and motor im-

agery based BCI experiments on the same plot for all three protocols. The blue line

shows the difference waveform for motor imagery experiments scaled down by a factor of

4. The red line shows the difference waveform for P300 based BCI experiments without

scaling. Since these averaged signals have been obtained from the same set of subjects,

there seems to be an observable difference in ErrP waveforms generated between P300

and motor imagery based experiments. In the case of Observe and Control, waveforms

generated from P300 and motor imagery based BCIs have a large negative deflection

at around 400 ms. In the case of EEG, ErrP waveforms in the motor imagery case also

has a negative peak at 400 ms whereas the ErrP waveform in the P300 case appears

to be quite different. Another interesting observation is that waveforms generated in

motor imagery based experiments have multiple positive and negative peaks in quick

succession, while transition between peaks in P300 based waveforms seem to be much

slower.
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Figure 4.8: Average error minus correct ErrP waveforms for P300 and motor imagery

based BCI experiments for all three protocols. Blue lines show the difference waveform

for motor imagery experiments scaled down by a factor of 4. Red lines show the

difference waveform for P300 based BCI experiments without scaling.

One more thing that could be potentially interesting is the consistency of ErrP sig-

nals with time for P300 and motor imagery based experiments. To analyze this, the

average difference waveforms have been computed for all 3 runs separately and analyzed

for all three protocols – Observe, Control, and EEG – in P300 and motor imagery based

experiments. Figures 4.9 and 4.10 present these difference waveforms for motor imagery

and P300 based experiments respectively. Blue lines represent difference waveforms ob-

tained in the first runs, red lines correspond to waveforms obtained in the second runs,

and yellow lines correspond to waveforms obtained in the third runs. An interesting

result of this analysis is that for all motor imagery based BCI protocols, ErrP wave-

forms appear to be consistent as time passes. In contrast for P300 based experiments,

there seem to be observable differences between the three waveforms obtained for any

particular protocol. This consistency could perhaps explain why better classification

results have been obtained in motor imagery based BCI protocols in comparison to the

results obtained in P300 based experiments. These observations seem to indicate that
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time does not have a dominant effect on stationarity of ErrP signals involved in our

experiment.

Based on these results; one question that stands out is; to what extent does time

have an effect on EEG nonstationarity? Additionally, what factors have a significant

effect on nonstationarity in EEG and how can these factors be measured?

Figure 4.9: Difference waveforms of all three runs in motor imagery based experiments

for all protocols. Blue lines represent difference waveforms obtained in the first runs, red

lines correspond to waveforms obtained in the second runs, and yellow lines correspond

to waveforms obtained in the third runs.
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Figure 4.10: Difference waveforms of all three runs in P300 based experiments for all

protocols. Blue lines represent difference waveforms obtained in the first runs, red lines

correspond to waveforms obtained in the second runs, and yellow lines correspond to

waveforms obtained in the third runs.

4.8 Summary

This chapter investigates error related potentials in three different motor imagery

based BCI protocols; Observe, Control, and EEG. These protocols represent different

contexts or user engagement levels. Analysis on all three protocols indicate that context

has little or no effect on ErrP waveforms both in terms of latency and peak amplitudes.

In fact, context also has little or no effect on ErrP classification performance as indicated

by statistical significance tests performed on these results. These results are different

from results obtained in Chapter 3 which leads us to believe that other factors need to

be considered when determining how ErrP is affected in different contexts.

ErrP analysis across P300 and motor imagery based BCI experiments have also

been conducted. ErrP waveforms generated in these experiments appear to differ sig-

nificantly. The consistency of error related potentials have also been analyzed over
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time for these two sets of experiments. It has been observed that while error related

potentials generated for all motor imagery based BCI protocols remain consistent over

time, the same cannot be said for the P300 based BCI experiments.
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Chapter 5

Analysis and Design of a Joint

Motor Imagery and ErrP-detection

System

The initial problem we attempted to take on is finding a useful way of using ErrP to

improve the performance of BCI systems. Two available options were motor imagery

and P300 based BCI setups that have already been designed. Incorporating ErrP

detection in both of these systems present different challenges.

For both systems, the first thing we wanted to focus on was the ability to detect the

ErrP with a sufficient degree of accuracy – above the chance level of 50%. The second

part of the problem is that given that an error related potential has been detected,

how can this information be used to update a preexisting classifier? In the case of

the motor imagery based BCI involving a binary classification problem, solving this

problem is very easy. Assuming perfect ErrP detection, the presence of an error related

potential means the user intended to move the cursor in one direction while the BCI

misinterpreted this action and moved the cursor in the other direction. This information

can be useful in adapting a classifier to minimize similar mistakes in the future.

In the case of a P300 based BCI however, we no longer have two choices but thirty-

six. The consequence of this is that when an ErrP is been detected for any given trial,

what we know with certainty is that the letter selected by the BCI is incorrect. If that
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is the case, what is the true label? There are now thirty-five other options to choose

from, instead of just one as in the case of the motor imagery based BCI. The multitude

of these options is not the only challenging factor in this case. It is also the fact that

how this information can be used to update the classifier is not very clear.

Based on the challenges with adaptation of P300 based BCIs, we decided to focus on

ErrP based motor imagery BCI adaptation. This is a much simpler and straightforward.

More importantly, working on it could potentially provide a better idea of what can be

done when dealing with the P300 based BCI as well.

To do this, we develop a single motor imagery based BCI protocol that also accom-

modates the ability to detect error related potentials. The first step towards this goal is

classifying the motor imagery and ErrP signals independently using the same interface.

This leads to two preliminary experiments; a first set of experiments that only tested

the detectability of ErrP in the system and a second set of experiments that only tested

the performance of the motor imagery aspect of the system.

5.1 Detection of error related potentials

5.1.1 Design of Error Detection System

In this experiment, we aim to maximize the number of error related potentials that

can be detected while minimizing the duration of an experiment as much as possible.

While ErrP detection in Chapter 4 focused on errp analysis for various user engagement

levels, this work investigates how errp detection is affected by the frequency of trials.

To do this, three different paradigms have been designed.

1. One Step Protocol: In this setup, each trial starts with a green ball located

in the middle of the screen. On either side of the ball, there is one target, a

white dot, at the other end of the screen. When the Start button is clicked, the

first trial begins with a 3 second rest period followed by a one second stimulus

period. During this period, the ball turns yellow and an arrow appears pointing

in the direction the ball is expected to move. This is followed by a feedback phase
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during which the ball moves to an adjacent target. The BCI is programmed to

move the ball in the wrong direction 30% of the time. This protocol has 12 trials

per minute.

Figure 5.1: Interface of the one step protocol.

2. Three Step Protocol: In this setup, each trial starts with a green ball located in

the middle of the screen. On either side of the ball, there are three targets, white

dots, located equidistant from each other. When the Start button is clicked, the

first trial begins with a 3 second rest period. This time, after the resting stage,

the ball moves three times, with a one second resting period after each feedback

phase. The BCI here is also programmed to move the ball in the wrong direction

30% of the time. This protocol generates about 16 trials per minute.
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Figure 5.2: Interface of the three step protocol.

3. Six Step Protocol: In this setup, each trial starts with a green ball located in

the middle of the screen. On either side of the ball, there are six targets, white

dots, located equidistant from each other. When the Start button is clicked, the

first trial begins with a 3 second rest period. This time, after the resting stage,

the ball moves six times, with a one second resting period after each feedback

phase. The BCI here is also programmed to move the ball in the wrong direction

30% of the time during the feedback phase. This protocol generates about 18

trials per minute.
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Figure 5.3: Interface of the six step protocol.

5.1.2 Results

Classification for all protocols were tested using four different classifiers; SVM, LDA,

Decision Trees and Gaussian Mixture Model classifier. The results are shown in tables

5.1, 5.2, and 5.3. It can be observed that above chance accuracy has been achieved for

all subjects in all classifiers.

Classifier Subject
FCz Cz

Correct(%) Error(%) Correct(%) Error(%)

SVM
Subject 1 82 71 84 74

Subject 2 82 64 82 71

LDA
Subject 1 82 64 84 68

Subject 2 82 52 83 56

Decision Tree
Subject 1 83 66 86 74

Subject 2 84 60 81 64

GMM
Subject 1 73 64 80 68

Subject 2 78 67 74 69

72



Classifier Subject
FCz Cz

Correct(%) Error(%) Correct(%) Error(%)

Table 5.1: ErrP classification results for SVM, LDA, Decision Tree and GMM classifiers

across all subjects for the one step protocol.

Classifier Subject
FCz Cz

Correct(%) Error(%) Correct(%) Error(%)

SVM
Subject 1 86 78 85 77

Subject 2 86 74 80 76

LDA
Subject 1 82 71 83 71

Subject 2 88 61 87 60

Decision Tree
Subject 1 85 76 82 75

Subject 2 86 72 85 68

GMM
Subject 1 80 71 79 71

Subject 2 73 65 73 60

Table 5.2: ErrP classification results for SVM, LDA, Decision Tree and GMM classifiers

across all subjects for the three step protocol.

Classifier Subject
FCz Cz

Correct(%) Error(%) Correct(%) Error(%)

SVM
Subject 1 88 66 83 59

Subject 2 75 64 77 66

LDA
Subject 1 90 58 90 56

Subject 2 76 58 74 60

Decision Tree
Subject 1 89 72 87 67

Subject 2 76 70 76 66

GMM
Subject 1 82 70 80 71

Subject 2 69 65 70 68
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Classifier Subject
FCz Cz

Correct(%) Error(%) Correct(%) Error(%)

Table 5.3: ErrP classification results for SVM, LDA, Decision Tree and GMM classifiers

across all subjects for the six step protocol.

To compare the performances of different settings, we use a similar approach as used

in subsection 3.5.2. The accuracies of the best performing electrodes in the training

session are used as shown in tables 5.5, 5.6, and 5.7. The result of this analysis is shown

in Figure 5.4. The blue line represents classification results for the One Step protocol,

the red line is the results of the Three Step protocol, and the green line is the results

of the Six Step protocol.

Figure 5.4: Average ErrP classification performance over all subjects for all three pro-

tocols. Classifiers used include SVM, LDA, Decision Tree and GMM classifiers.

Results presented in Figure 5.4 indicate that variations in performance is dependent

on the classifier used. Indeed, MANOVA test performed for each classifier on the

accuracies obtained for each protocol seems to confirm that observation. Table 5.4

confirms that SVM and LDA are volatile to changes in error frequency, Decision Tree

is less volatile, while GMM seems to be robust to these changes.
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Classifier p-value Decision

SVM p << 0.01 Significant

LDA p << 0.01 Significant

Decision Tree p = 0.39 Not Significant

GMM p = 0.90 Not Significant

Table 5.4: MANOVA test results for testing the significance of the difference between

the accuracies obtained for the one step, three step, and six step protocols. This test

is performed for four different classifiers; SVM, LDA, GMM, and Decision Tree.

Classifier Subject Preferred Electrode
Performance

Correct(%) Error(%)

SVM
Subject 1 Cz 84 74

Subject 2 Cz 82 71

LDA
Subject 1 Cz 84 68

Subject 2 Cz 83 56

Decision Tree
Subject 1 Cz 86 74

Subject 2 Cz 81 64

GMM
Subject 1 Cz 80 68

Subject 2 Cz 74 69

Table 5.5: Optimal electrodes and their performances for all subjects and classifiers in

the one step protocol.

Classifier Subject Preferred Electrode
Performance

Correct(%) Error(%)

SVM
Subject 1 FCz 86 78

Subject 2 Cz 80 76

LDA
Subject 1 Cz 83 71

Subject 2 FCz 88 61
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Classifier Subject Preferred Electrode
Performance

Correct(%) Error(%)

Decision Tree
Subject 1 FCz 85 76

Subject 2 FCz 86 72

GMM
Subject 1 Cz 79 71

Subject 2 FCz 73 65

Table 5.6: Optimal electrodes and their performances for all subjects and classifiers in

the three step protocol.

Classifier Subject Preferred Electrode
Performance

Correct(%) Error(%)

SVM
Subject 1 FCz 88 66

Subject 2 Cz 77 66

LDA
Subject 1 FCz 90 58

Subject 2 Cz 74 60

Decision Tree
Subject 1 FCz 89 72

Subject 2 FCz 76 70

GMM
Subject 1 Cz 80 71

Subject 2 Cz 70 68

Table 5.7: Optimal electrodes and their performances for all subjects and classifiers in

the six step protocol.
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5.2 Motor Imagery Classification

5.2.1 Interface Design and Data Processing

The interface for testing motor imagery is similar to the one used in Chapter 4.

However note that EEG signals were not processed for MI classification in Chapter 4.

The stimulus time was set to 6 seconds to accommodate motor imagery (see Figure 5.5)

and during feedback, the ball always moves in the direction of the arrow to eliminate

the effect of errors in the system.

1 Second6 Seconds2 Seconds

Resting Phase Stimulus Phase Feedback

Figure 5.5: One trial in the preliminary motor imagery experiments.

The experiment was performed on 2 subjects and was split into 3 runs of 66 trials

each, making a total of 198 trials. 5 minute breaks are provided between every run.

The first two runs serve as the training set while the last run serves as the testing set.

For motor imagery, data were collected from 7 electrodes; C3, Cz, C4, FC1, FC2, CP1,

and CP2 electrodes at 2048 Hz. This was then downsampled to 128Hz. Each electrode

was referenced with signals collected from the adjacent top, bottom, left, and right

electrodes as shown in Figure 5.6. Spectral powers were calculated for all trials within

three frequency bands; alpha, α, 8-13Hz, beta σ, 14-18Hz, and beta, β, 19-24Hz. The

mean power over these three bands for all three channels were used as features in an

SVM classifier [79].
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Figure 5.6: Electrodes used in the joint motor imagery and ErrP detection protocol.

Blue colors represent electrodes used in classification and yellow represents electrodes

used for referencing.

5.2.2 Results

Table 5.8 presents motor imagery classification results obtained for two subjects in

the motor imagery experiment described in section 5.2. Both results are above 70%

which is considered to be satisfactory in motor imagery based BCIs.
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Subject No Accuracy(%)

1 76

2 74

Table 5.8: Subject performance in motor imagery experiments.

5.3 Joint Motor Imagery and ErrP Detection

Results obtained in section 5.1 and section 5.2 have shown that it is possible to in-

dependently detect error related potentials and classify motor imagery on the interfaces

we have designed. This provides a strong basis to attempt a joint classification of error

related potentials and motor imagery in a single joint experiment. This preliminary

work is presented in the following sections and has been tested on two subjects, neither

of whom has participated in the previously described preliminary works.

5.3.1 Interface Design and Data Processing

The six step protocol as described in section 5.1 was chosen for the joint detection of

ErrP and motor imagery. The stimulus time has also been set to 6 seconds as performed

in the motor imagery case (see section 5.2).

The overall experiment contains 3 runs of 100 trials each with a 5 minute break in

between each run. All run contains 100 9-second trials (see Figure 5.5). For each trial,

the direction of the arrow is randomly chosen with equal probability for both sides.

Motor imagery classification is performed offline so at the end of each trial, the ball

moves in the wrong direction with a predetermined probability of 30%.

EEG was collected from 22 electrodes as shown in Figure 5.5. 7 electrodes – FC1,

FC2, CP1, CP2, C3, C4 and Cz – were used for motor imagery classification and 2

electrodes – FCz and Cz – were used for ErrP classification. The rest were used for

referencing these electrodes. Motor imagery classification was performed with the EEG

collected in the 6-second stimulus phases and ErrP classification were performed with

the EEG collected in the feedback phases. The same techniques used in chapter 4 and

chapter 3 for motor imagery and ErrP classification.
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5.4 Results

Table 5.9 shows the motor imagery classificatiom accuracy obtained in the joint

motor imagery and ErrP detection protocol. Table 5.10 shows the classification results

obtained from FCz and Cz electrodes for all classifiers.

Subject No Accuracy(%)

1 68

2 62

Table 5.9: Motor imagery performance in the joint motor imagery and ErrP detection

experiments.

Classifier FCz Cz

Subject Correct(%) Error(%) Correct(%) Error(%)

LDA
Subject 1 78 61 78 58

Subject 2 74 62 73 61

SVM
Subject 1 77 69 76 68

Subject 2 76 67 75 66

Decision Tree
Subject 1 78 66 75 62

Subject 2 74 69 76 69

GMM
Subject 1 68 65 68 63

Subject 2 68 66 72 69

Table 5.10: ErrP classification results in the joint motor imagery and ErrP detection

experiments.

Figure 5.7 also shows the error-minus-correct waveform averaged over all subjects

over a period of 1 second. It starts with a positive peak right before the 200ms mark.

This is followed by a negative deflection at around 250ms and then followed by another

positive deflection at 300ms. The final negative deflection occurs at 400ms after feed-

back. This waveform is similar to the waveform obtained in the motor imagery EEG
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protocol in shape but smaller in scale. A maximum peak of 1.88µV and a maximum

negative peak of -2.95µV can also be observed from the figure.

Figure 5.7: Error minus correct waveform averaged over all subjects for the FCz elec-

trode.

Figure 5.8 shows the average classification performance over all subjects for four

classifiers in the motor imagery EEG (blue line) and joint motor imagery and ErrP

detection (red line) protocols. T-tests indicate significant differences (p << 0.01) for

LDA, SVM and Decision Tree classifiers and a nonsignificant difference for the GMM

classifier (p = 0.29).
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Figure 5.8: ErrP classification performance for LDA, SVM, Decision Tree, and GMM

classifiers averaged over all subjects for motor imagery EEG (blue) and the joint motor

imagery and ErrP detection (red) protocols.

Motor imagery results appear to be significantly lower when compared to results

obtained in section 5.2. Similarly, ErrP classification results also appear to be lower

when compared to the MI-EEG protocol. This could be due many reasons. In both

cases, the joint motor imagery and ErrP detection system lasts much longer than either

the motor imagery or MI-EEG protocols. Because of this reduced performance due to

fatigue is very likely. Another factor is that for different subjects have been used across

protocols. In fact, since only two subjects have participated in both the motor imagery

and joint system, more subjects are needed to draw a firm conclusion.

5.5 Summary

In this chapter, three sets of preliminary studies have been conducted. The first is a

study of how ErrP classification is affected by the frequency of trials in an experiment.

The second is a study that tests motor imagery classification performance in our de-

signed interface. In the third study, a BCI system that jointly classifies motor imagery
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and error related potentials was tested.

Results of the first study shows that the effect of trial frequency on ErrP classifica-

tion seems to be dependent on the classifier used. In the second study, motor imagery

has been classified with accuracies comparable to those available in the literature. For

the third study, results based on two subjects indicate that it can be possible to detect

motor imagery and error related potentials simultaneously. It has also been observed

that for both ErrP and motor imagery, average classification results seem to be de-

creased when compared to those obtained in the first and second preliminary studies.
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Chapter 6

Conclusion and Future Work

6.1 Conclusion

In this thesis, we have analyzed error related potentials in P300 and motor imagery

based BCI experiments. In particular, we have analyzed the effect of different types

of user engagement on ErrP waveform and classification performance. In addition, we

have made preliminary studies that analyze the effect of changes in frequency of trials

on ErrP classification performance in motor imagery based protocols. We have also

proposed and implemented a joint motor imagery and ErrP classification system.

Chapter 3 investigated error related potentials in the context of three P300 based

BCI protocols. In this work, we confirm the presence of ErrP in three different P300

based BCI protocols and have shown that ErrP waveforms are consistent with findings

reported in the literature. We have also observed that significant differences in ErrP

waveforms and that differences in ErrP classification results existed across different

protocols

We have also observed differences in terms of latencies and peak amplitudes across

different protocols. Little difference exists between latencies and peaks of Observe

and Control protocols (p = 0.49) however, significantly higher peaks were observed

(p << 0.05) for EEG protocols. For EEG protocol which represents the highest user

engagement level, ErrP seems to be generated much earlier. Additionally for all clas-

sifiers, the average ErrP performance is higher in EEG and statistically significant for
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SVM and Decision Tree classifiers. We therefore conclude that ErrP waveforms are

sensitive to the type of protocol and classification procedure used in a P300 based BCI.

In this case, we believe user engagement has a positive effect on the performance of

ErrP classification.

When comparing classifier performances across all three protocols, it was observed

that two classifiers, SVM and Decision Tree, produced consistently better results for all

experiments than the other classifiers, that LDA produces the lowest performance, and

that GMM performing somewhere in between. This leads us to conclude that SVM and

Decision Tree classifiers could be better suited for data of this form. This makes sense

because SVM and Decision Tree classifiers have greater flexibility compared to LDA

when working with data with an unknown probabilistic model. We believe this makes

them more effective in classifying ErrPs since data for each subject can have different

distributions. This could perhaps also explain the performance of LDA classifiers since

they assume a normal distribution of data samples. Ideally, GMM classifiers should

have performances comparable to SVM and Decision Tree classifiers since they have

the benefit of modelling a wide range of distributions. We believe lower performance of

these classifiers is a result of EEG nonstationarity.

Chapter 4 looked into error related potentials in three motor imagery based BCI

protocols. We confirm their presence in all three protocols and we have shown that

they are in accordance with findings reported in previous works. In contrast to the case

of the P300 based BCI, we have discovered that different protocols contribute to little

or no differences in the nature and classification performance of ErrPs.

Statistically significant differences were observed in terms of latencies and peak am-

plitudes but no evidence was found that these differences contribute to classification

performance. Statistical tests performed on ErrP accuracies over all three protocols

show that no significant differences exist for all four classifiers (ρ > 0.10 for all pairwise

combination of the three protocols). This leads us to the interesting conclusion that

in a motor imagery based BCI, ErrP waveform can be slightly affected by the protocol

used, but this impact is not sufficient enough to affect the classification accuracy for

any of the four classifiers used in this work. We also hypothesize that the difficulty
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of an experiment also plays an important role. All subjects reported P300 based BCI

experiments were much more difficult than the motor imagery experiments. We there-

fore conclude that the effect of subject engagement on ErrP classification performance

depends on experiment difficulty.

Comparison of classifier performances across all three protocols have lead to similar

results as in the case of the P300 based BCI. Highest classification accuracies come

from SVM and Decision Tree classifiers and lowest performance is produced by LDA.

This provides more evidence in favor of the conclusion that higher performances are

provided by classifiers that are more flexible to changes in the nature ErrP.

We have also analyzed how error related potentials change across P300 and motor

imagery based BCI experiments. Results of this analysis indicate that ErrP waveforms

differ significantly across these experiments. The consistency of ErrP waveforms also

appears to be dependent on the type of experiment. For motor imagery based ex-

periments, ErrP waveforms appear to be consistent across the three runs for all three

protocols. In contrast, there appears to be high variability in ErrP waveforms generated

through the three runs of all P300 based BCI protocols. These results seem to suggest

that time alone has little or no short term effect on EEG stationarity and that other

factors dependent on the type of BCI application affect EEG stationarity over time.

In chapter 5, a series of preliminary studies was conducted to test the feasibility of

classifying motor imagery and error related potentials in a single experiment.

In the first study, we designed three sets of experiments to determine the effect

of small changes in trial frequency on ErrP classification performance. These three

experiments are; the one step protocol with a trial frequency of 12 trials/min, the three

step protocol with a trial frequency of 16 trials/min, and the six step protocol with a

trial frequency 18 trials/min. Our results indicate that the effect on ErrP classification

performance depends on the classifier. We have observed SVM and LDA classifiers are

more sensitive to changes in trial frequency and Decision Tree and GMM classifiers are

more robust to changes in trial frequency.

In the second study, we designed a motor imagery classification experiment based

on the interface of the six step protocol. Results were collected from two subjects over
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200 trials and satisfactory classification accuracies over 70% were achieved for both

subjects. The first two studies provide a strong foundation for conducting the third

study in this chapter.

The third study implements a system where motor imagery and ErrP are classified

in a single experiment. This experiment has 300 trials and was conducted on two

subjects. Results of this experiment indicated that motor imagery and ErrPs can be

classified simultaneously in a single experiment. It has also been observed that motor

imagery performance is decreased in this protocol. We believe this is due to fatigue

induced because of the longer trial periods.

We also conclude from the analysis of the results presented in figures 5.4 and 5.8

that GMM classifiers are more robust to changes in experiment parameters compared to

other classifiers. In Figure 5.4, results are presented for three different trial frequencies

and Figure 5.8, results are presented for two different lengths of stimulus phase in the

motor imagery experiments.

6.2 Future Work

In this thesis, we have designed three different settings in P300 and motor imagery

based BCIs and we have analyzed how these different settings affect error related po-

tentials. One major result of this study is that in all cases, ErrP is classified with

an above chance level. However, these results are obtained through offline analysis.

Hence, one potential line of study following this work is implementing and analyzing

these experiments in an online BCI system.

This work extracted one feature from the FCz and Cz electrodes in all ErrP clas-

sification experiments. This can be followed up by an investigation of other possible

features and feature combinations that include electrodes outside the anterior cingulate

cortex.

This work can also be improved by developing adaptation techniques that use error

related potentials and analyzing how these techniques perform with respect to different

contexts. These can be applied to both P300 and motor imagery based Brain Computer
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Interfaces.

We have also conducted a preliminary study on the joint detection of motor imagery

and error related potentials. Collecting samples of motor imagery and ErrP simulta-

neously came at a cost of increased experiment time of 33% and a decrease in motor

imagery performance. More work can be done in finding ways of reducing this time and

improving motor imagery performance. Another direction can also be an implementa-

tion and analysis of a system that detects P300 and error related potentials in a P300

speller.

If the effect of user engagement on ErrP waveform and classification performance

depend on other factors, such as task difficulty or geometrical nature of the BCI ap-

plication, a potential future work can be a comparison of results for P300 and motor

imagery based BCI experiments with the same level of difficulty.

Results of motor imagery based BCI protocols indicate that ErrP waveforms are

similar across protocols and are consistent within protocols. An interesting application

of this knowledge can be the use of data trained on one protocol and tested on another

protocol. The result of this analysis could also increase understanding of the extent to

which these protocols are similar, or how they differ.
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