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Abstract

Reverberation is an effect caused by echoes from objects when an audio wave trav-

els from an audio source to a listener. This channel effect can be modeled by a finite

impulse response filter which is called a room impulse response (RIR) in case of speech

recordings in a room. Reverberation especially with a long filter causes high degrada-

tion in recorded speech signals and may affect applications such as Automatic Speech

Recognition (ASR), hands-free teleconferencing and many others significantly. It may

even cause ASR performance to decrease even in a system trained using a database

with reverberated speech. If the reverberation environment is known, the echoes can

be removed using simple methods. However, in most of the cases, it is unknown and

the process needs to be done blind, without knowing the reverberation environment.

In the literature, this problem is called the blind dereverberation problem. Although,

there are several methods proposed to solve the blind dereverberation problem, due to

the difficulty caused by not knowing the signal and the filter, the echoes are hard to

remove completely from speech signals. This thesis aims to compare some of these ex-

isting methods such as Laplacian based weighted prediction error (L-WPE), Gaussian

weighted prediction error (G-WPE), NMF based temporal spectral modeling (NMF+N-



CTF), delayed linear prediction (DLP) and proposes a new method that we call sparsity

penalized weighted least squares (SPWLS). In our experiments, we obtained the best

results with L-WPE followed by G-WPE methods, whereas the new SPWLS method

initialized with G-WPE method obtained slightly better signal-to-noise ratio and per-

ceptual quality values when the room impulse responses are long.
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Tek Kanallı Ses Sinyallerinin Ekodan Arındırma Yöntemlerinin Karşılaştırması

Deha Deniz Türköz

EE, Yüksek Lisans Tezi, 2016

Tez Danışmanı: Hakan Erdoğan

Anahtar Kelimeler: Tek kanal, Yankılanmadan Arındırma, Ağırlıklı öngörü Hatası,

Ertelemeli Lineer öngörü, modele dayalı sinyal işleme

Özet

Yankılanma bir ses dalgasının, ses kaynağından dinleyiciye ulaşırken etraftaki objel-

erden yansıması ile oluşur. Bu kanal etkisi ya da diğer ismiyle oda dürtü cevabı (RIR),

sonlu dürtü cevaplı bir filtre kullanılarak modellenebilir. Yankılanma, özellikle uzun

bir filtreyle yankılanma, kayıt altına alınmış ses dosyalarında büyük bozulmalara sebep

olmaktadır ve otomatik konuşma tanıma (OKT), dokunmasız telekonferans ve benz-

eri uygulamaları önemli ölçüde etkilemektedir. Hatta, OKT uygulaması, yankılanmış

verilerden eğitilmiş olsa bile başarım kaybı yaşanır. Eğer oda dürtü cevabı biliniy-

orsa, yankının zarar verici etkisi kolayca kaldırılabilir. Ancak çoğu zaman bu bilgi

bilinmemektedir ve işlem kör olarak yapılmak zorundadır. Litaratürde bu problem

kör yankıdan arındırma problemi olarak bilinmektedir. Bu problemi çözmek amacıyla

önerilen bazı metotlar olmasına rağmen, bu metotlar hem temiz sinyal hem de filtrenin

bilinmemesi sebebiyle zorlaşan problemi tamamen çözmeyi başaramamışlardır. Bu tez,

bu konuyu çözmek amacıyla önerilmiş olan Laplace tabanlı ağırlıklı kestirim hatası

(L-WPE), Gauss tabanlı ağırlıklı kestirim hatası (G-WPE), negatif olmayan matris

ayrıştırma (NMF) tabanlı zaman-frekans analizi (NMF+N-CTF), gecikmeli doğrusal ke-

stirim yöntemi (DLP) gibi metotları karşılaştırmayı hedeflemekte ve ek olarak seyreklik



düzenlemeli ağırlıklı en küşük kareler (SPWLS) ismiyle yeni bir metot önermektedir.

Deneylerimizde görülen en iyi sonuçlar genelde L-WPE metoduna sonrasında da G-

WPE metoduna; uzun oda dürtü cevabına sahip sinyaller için ise işaret gürültü oranı

(SNR) ve algısal konuşma kalitesi ölçütü açısından yeni önerilen G-WPE metoduyla

ilklendirilmiş SPWLS metoduna aittir.
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Chapter 1

Introduction

This thesis compares the test results of several blind-dereverberation methods for

single channel speech signals.

1.1 Problem Definition and Motivation

Reverberation is an effect caused by echoes received from blocking objects when

an audio wave travels from an audio source to a listener. Reverberation on speech

signals degrades applications such as Automatic Speech Recognition (ASR), hands-

free teleconferencing and many more significantly. It may cause ASR performance to

decrease even in a system trained using a database with reverberated speech [1, 2]. If

reverberation environment is known, reverberation problem can be solved with a simple

deconvolution operation due to the linear time invariant (LTI) structure of reverberation

behaviour. However, if both clean (or anechoic) signal and reverberation environment is

unknown, then the problem gets harder to solve. There are some significant approaches

that suggest how to remove undesirable and detrimental reverberation effects from a

speech signal.

One of the traditional methods is based on using the power spectral domain and

spectral modeling [3], [4]. Power spectral techniques are generally based on suppression

of the energy of the echo in the power spectral domain. These kind of algorithms are

computationally faster as compared to the time-domain algorithms and since they do

not make use of the phase information, they may be more robust. However, ignoring

1



phase information may hurt the accuracy of these algorithms [5], [6].

Another group of methods that are called linear prediction based dereverberation

techniques, predicts the current samples of the signal from past samples to estimate

the inverse of the room impulse response. Linear prediction (LP) [7], delayed linear

prediction (DLP) [8], [9], and variance-normalized delayed linear prediction (NDLP)

[10] are some of the examples which operate in the time-domain and in fact they give

accurate results for late reverberation reduction. Late reverberant parts are known to

be tardy parts of the reverberant components which are the most detrimental parts for

ASR applications. However, time domain methods often has a huge computational cost

because of having gigantic matrices to solve in their algorithms. To increase run time

efficiency, authors in [11] propose direct application of short-time Fourier transform

(STFT) to develop algorithms. They work fast and eliminate echo, although they may

not be as accurate as time domain methods as mentioned in [10],[12].

Another popular method is utilizing inverse filtering technique to acquire the room

impulse response [12], [13], [14]. Some inverse filter techniques use skewness, the scale

for the symmetry, or kurtosis, the measure of being heavy-tailed or light-tailed com-

pared to normal distribution, as the design criteria of the prediction residual [15], [16].

Disadvantages of these kind of algorithms are their non-compatibility with real-life

noises and also room transfer function fluctuations may occur [17].

There are also methods based on the sparsity of clean speech spectrogram as [18],[19].

These methods model the dereverberation problem as an optimization problem. The

optimization problem does not yield a closed form solution and iterative algorithms are

applied to find the approximate solution. These algorithms are proven to be fast but

their robustness is open to debate.

To summarize, blind-dereverberation on speech signals is a problem that is hard to

be solved. Especially for single-channel speech signals, there are few algorithms which

work satisfactorily and none of them can solve dereverberation problem completely.

Thus, we suggest to compare the existing algorithms for blind speech dereverberation

using multiple metrics and propose a new algorithm. We compare delayed linear pre-

diction (DLP), Laplacian based weighted prediction error (L-WPE), Gaussian based

2



weighted prediction error (G-WPE), non-negative matrix factorization based spectral-

temporal modeling (NMF and N-CTF) and we propose a new method that we call

sparsity penalized weighted least squares (SPWLS).

1.2 Contributions and Organization of the Thesis

In this thesis we compare the existing single channel blind-dereverberation tech-

niques and we propose a new approach. As discussed, there are very few resources

related to the solution of single-channel blind-dereverberation.

Organization of the thesis is as follows: In Chapter 2 background on dereverbera-

tion problem and preliminaries are provided. Chapter 3 contains blind-dereverberation

methods, their formulations and algorithms. In Chapter 4 we present numerical results

and finally in Chapter 5, discussion of the results and suggestion on future works are

presented.
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Chapter 2

Background

In this chapter, basic background information for the blind-dereverberation problem

will be provided. First, general model of reverberation process and statistic nature of

speech will be presented. Secondly, room impulse response (RIR) model, features and

generating RIR will be explained in details. In preliminaries section, important con-

cepts such as non-negative matrix factorization, linear predictive coding, pseudo inverse,

Toeplitz matrix and Tikhonov regularization utilized in this thesis will be introduced

briefly.

2.1 Speech and reverberation modeling

2.1.1 Features of speech

Speech is a signal that is created through air and human vocal system which consists

of the lungs, trachea, larynx, pharyngeal cavity, oral cavity and nasal cavity as shown

in Figure 2.1. Vocal tract can be basically modeled as an all-pole filter in discrete time

as given in Equation 2.1 and input to the vocal tract is called a glottal signal which can

be approximated as white noise or an impulse train depending on the type of sound

produced. Simply, speech is assumed to be produced by filtering the glottal signal with

the following all-pole filter:

V (z) =
G

1−
∑N

k=1 αkz
−k
, (2.1)

4



Figure 2.1: Human Vocal System

where G and αk (reflection coefficients) depend on vocal track movements. Speech

signals have a non-stationary structure due to fast changes in vocal tract which results

in time-varying all-pole filters. To form a model and utilize statistical properties, speech

signal is divided into small time segments and we assume the signal in each time segment

is stationary. Such signals are sometimes said to be quasi-stationary.

To analyze speech, one of the most used tools is short-time Fourier transformation

(STFT). This transformation divides speech signal into overlapping segments called

frames. It windows each time segment with a “Hamming Window” (other windows

such as Hann, Kaiser etc. can be used as well) and calculates discrete Fourier transform

(DFT) of these frames.

X(n, k) =
N∑
m=0

x[nL+m]w[m]e−j2πk/Nn (2.2)

where L is the frame shift, N is the frame size, and X(n, k) is the discrete time short-

time Fourier coefficients of the speech signal x[m] at frame n.
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STFT of a given signal is mostly interpreted as a matrix which has complex Discrete

Fourier Transform (DFT) coefficients at its columns. Each column represents frequency

information of each time segment or frame.

As discussed above, speech is not a stationary signal which means its properties are

changing with respect to time. Hence, there is not much meaning to take speech signal

as a whole. Thus, we use time dependent Fourier coefficients (i.e., STFT results) to

observe the spectro-temporal variations of the speech signal.

Spectrogram is a visual representation of the spectrum of frequencies in the speech

as they vary with time. It contains information about frequency content as a function of

time, and the signal’s time-varying power spectral density (PSD) is shown as intensity

values in a 2D-image. Spectrogram matrix, S(n, k), is calculated as follows:

S(n, k) = log |X(n, k)|2. (2.3)

Also, spectrogram might be interpreted as a 3D-image with intensity bars for PSD

values. Aim of the spectrogram is to show fast changing harmonics and their intensity

values (amplitude values). As the human speech has high energy mostly between 300Hz

- 3000Hz, other signals which interfere with the speech can be distinguished easily from

the spectrogram if these signals have different frequency content outside this interval.

Figure 2.2: Spectrogram of a Flute Signal

6



Figure 2.3: Spectrogram of a Speech Signal

2.1.2 Reverberation model

Reverberation is the persistence of sound after a sound is produced [20]. It occurs

in consequence of reflections of sound through walls or objects. It can highly reduce

the intelligibility of speech, degrade speech quality, and affect the performance of auto-

mated systems. Therefore, reverberation effect needs to be removed to improve these

kind of applications. Process of removing echo from sound is called dereverberation.

Dereverberation can be thought as pre-processing of speech signal. To eliminate echo,

reverberation process must be modeled properly. In this case, room can be modeled as

a filter called a room impulse response. Anechoic (or clean) speech signal is the input

of this filter and as a result of this filtering operation we get the reverberated signal.

Reverberation is usually modeled with an FIR filter as

x(t) =
N∑
τ=0

h(τ)s(t− τ) (2.4)

where x(t) is the reverberated signal, h(t) is the reverberation filter which is an FIR

filter and s(t) is the anechoic or clean signal. As seen from the Equation 2.4 reverberated

signal is equal to the convolution of anechoic signal and a room impulse response filter.

Most of the time, both s(t) and h(t)’s are unknowns and they should be estimated

from reverberated signal x(t) to eliminate echo. Estimating room impulse response and

7



Figure 2.4: Block Diagram of Reverberation

s(t) from known x(t) is called blind dereverberation. It is not an easy task to do due to

having one equation and two unknowns. Most of the time, more than one microphone

(multi-channel) is used to solve blind dereverberation problems [10]. On the other hand,

in this thesis we will focus on single microphone case.

Figure 2.5: Reverberation effect on spectrogram

Reverberation effect on a speech signal can be seen in Figure 2.5 which contains

spectrogram of a clean and reverberated (or echoed) signal. It can be seen that, original

signal is more sparse as compared to echoed signal. Since speech signal is reflected

through walls, a high intensity spectral content of the speech at a time continues to

survive longer than the original one.

2.1.3 Room impulse response

In the literature, the FIR filter modeling the reverberations in a room, is called

the room impulse response (RIR). The length of the RIR depends on many variables

such as room size, room temperature, room shape, microphone’s distance to the speech

8



source, absorption of sound due to materials used in room etc. To measure RIR in

a room, a known signal, an impulse for example might be sent and then recorded

with a microphone. As a consequence of linear and time-invariant (LTI) nature of RIR,

anechoic signal can be estimated with a simple deconvolution operation if RIR is known.

However, there is not always an opportunity to measure RIR this way. We may not

have enough information about the room or microphone might be moving or room may

have temperature fluctuations. Thus, we need more robust solutions to retrieve signal

by removing the RIR effect.

One method to predict room impulse response is “inverse filtering” [10], [12]. In this

case, inverse RIR is estimated to solve reverberation problem by simply predicting the

filter coefficients which will be investigated in detail in Chapter 3. Other methods can

be an iterative algorithm, which updates the filter and anechoic signals in each itera-

tions according to well-determined constraints. There are also spectrum enhancement

methods as [6],[21]. These kind of methods do not keep the phase information of signal

and this process is more robust to microphone movements compared to inverse filtering

methods. On the other hand, spectral enhancement method decreases the accuracy of

the dereverberation process. Before investigating these algorithms in detail, we need to

review important features of a RIR to understand it properly.

One of the significant properties of the RIR is reverberation time, RT60. It is

defined as the time required for reflected signal to drop by 60 dB level. It is a significant

measure for dereverberation process, since RT60 indicates the length of the room impulse

response. There are plenty of papers to estimate RT60 as in [21],[22],[23],[24]. However,

this is not the main subject of this work.

Usually, room impulse response is divided into two as; early reverberation and late

reverberation which is shown in Figure 2.6. Since, speech intelligibility is mostly affected

by late reverberations, methods based on delayed linear prediction focus on eliminating

late reverberations [10], [11] and they represent the reverberation process as:

x(t) =

Lh−1∑
τ=0

h(τ)s(t− τ) + n(t), (2.5)
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Figure 2.6: Room impulse response in time domain

x(t) = d(t) + r(t) + n(t). (2.6)

A single-channel reverberation process can be represented as in Equation 2.5 where

x(t) is the reverberated signal, h(t) is the room impulse response and Lh the length

of room impulse response. In 2.6, d(t) is the desired signal which is equal to the sum

of early reverberant and anechoic signal, n(t) is additive noise and r(t) represents late

reverberant signal. d(t) and r(t) are represented as:

d(t) =
D−1∑
τ=0

h(τ)s(t− τ), (2.7)

and

r(t) =

Lh−1∑
τ=D

h(τ)s(t− τ), (2.8)

where D is the sample length which divides room impulse response as early and late

in Equation (2.8) and (2.7). First D samples are the early reverberant and the rest

until Lh−1 is the late reverberation part. More details are presented in Delayed Linear

Prediction (DLP) section of Chapter 3.
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2.2 Preliminaries

2.2.1 Solving dereverberation as an optimization problem

In this section, we assume we know the room impulse response and try to estimate

the clean signal from the reverberated signal. Consider a reverberated signal without

additive noise

x(t) = s(t) ∗ h(t) (2.9)

where x(t) is the reverberated signal, h(t) is the room impulse response (RIR), s(t)

is the anechoic signal in time domain and ∗ symbol represents convolution. We can

convert this equation into matrix form as in the following:

x = Hs (2.10)

whereH is a Lx×Ls matrix, x is Lx×1 and s is Ls×1 size vector with Lx = Ls+Lh−1.

Here H is called the convolution matrix and x and s are the vectors corresponding to

the signal samples from beginning to end. The effect of multiplying with H is the same

as convolving with the filter h. The convolution matrix is the following

H =



h0 0 0 . . . 0

h1 h0 0 . . . 0

h2 h1 h0 . . . 0
...

...
...

...
...

hLh−1 hLh−2 hLh−3 . . . 0

0 hLh−1 hLh−2 . . .
...

0 0 hLh−1 . . .
...

...
...

...
. . .

...

0 0 0 . . . hLh−1



.

One can solve the following “regularized” least-squares optimization problem for a

solution:

arg min
s
‖x−Hs‖2

2 + λ‖s‖2
2. (2.11)
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This approach is useful when x is noisy. Solution to the above minimization problem

is given explicitly by

s = (HTH + λI)
−1

HT .x (2.12)

Note that, If this process is accomplished in complex domain for example after STFT

is applied, then instead of transpose, conjugate transpose must be used.

If s is sparse, then the following optimization problem is more appropriate:

arg min
s
‖x−Hs‖2

2 + λ‖s‖1 (2.13)

where ‖s‖1 is the `1 norm of s vector. Solution of this problem cannot be explicitly

written. This problem is numerically solved with an iterative algorithm. The underlying

reason is that ‖s‖1 is not a differentiable function. In the literature this problem is

referred to as Lasso Problem (Least Absolute Shrinkage and Selection Operator) [25].

Lasso problem is a large and hard-problem to be solved, but it is convex [26],[27].

There are some fast algorithm suggestions such as [28]; ISTA [29], [30], [31]; FISTA

[32]; SALSA [33], [34]. We investigate ISTA further in Chapter 3.

2.2.2 Linear prediction

Linear prediction involves predicting a sample in a signal from its past samples. If

we write the linear prediction equation for the whole signal, we obtain:

y(t) =

p∑
k=1

αky(t− k) + e(t) (2.14)

where y(t) is the signal to be predicted, αk are prediction coefficients and e(t) is the

prediction error or residual at time t. sample. This formula sums up linear prediction

of y(t) from past p samples of y(t) and then, the problem becomes determination of

αk’s to minimize e(t). Denote α = [α1, α2, ..., αp]
T . We convert (2.14) to matrix form

as follows:

y = Yα + e, (2.15)
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arg min
α
‖y −Yα‖pp (2.16)

where Y is the convolution matrix which consists of y’s past samples and ‖.‖p denotes

the p-norm. By setting p to 2, Equation 2.16 becomes a least-squares problem

arg min
α
‖y −Yα‖2

2 (2.17)

and its explicit solution is

YTYα = YTy. (2.18)

This form is also known as Yule-Walker Method [35]. R = YTY is an auto-

correlation matrix which is a symmetric Toeplitz matrix [36]. A Toeplitz matrix has

constant diagonals, so we can re-write Equation 2.18 as


R0 R1 R2 . . . RN−1

R1 R0 R1 . . . RN−2

...
...

...
. . .

...

RN−1 RN−2 RN−3 . . . R0




α1

α2

...

αN

 =


R1

R2

...

RN .

 (2.19)

Linear systems with Toeplitz matrices can be solved fast and without a need to

store the whole matrix in memory. One such algorithm is Levinson-Durbin Algorithm

which can be used to solve Toeplitz systems.

2.2.3 Non-negative matrix factorization

Non-negative matrix factorization (NMF) is a common tool which is used for de-

composing a nonnegative V matrix as production of two matrices B and G with non-

negative entries.

V ≈ BG (2.20)

where B is called basis or dictionary matrix and G is called weight or gains matrix.

This problem can be perceived as an optimization problem as follows:

min
B,G

C(V,BG) (2.21)
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where C is the cost function for measuring the distance between V and BG. Columns

of B are called basis vectors and generally number of them are smaller than the size of

V in order to create a low-rank approximation of V.

Iterative algorithms are utilized to solve Equation 2.21 since there is no unique so-

lution in general for this problem. Solution of Equation 2.21 depends on the distance

formulation. There are three popular iterative methods to formulate distance func-

tion between V and BG which are Euclidean Distance, Kullback-Leibler distance and

Itakuro-Saito distance methods. Their formulation differs in regularization of B or G

matrices.

Euclidean Distance Formulation calculates B and G as follows:

min
B,G
‖V −BG‖2

2 (2.22)

where,

B←− B⊗ VGT

BGGT
(2.23)

G←− G⊗ BTV

BTBG
(2.24)

where the operation ⊗ is element-wise multiplication and division is element-wise divi-

sions. B and G matrices are updated until a local minimum is found. Initial values of B

and G matrices can be given either supervised or unsupervised as positive randomized

matrices.

Kullback-Leibler Divergence Formulation calculates B and G as follows [37]:

min
B,G

DKL( V‖BG ). (2.25)

where,

B←− B⊗
V
BG

GT

1GT
, (2.26)

G←− G⊗
BTV
BG

GT

BT1
(2.27)
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where “1” is the matrix of ones which has the same size of V and DKL is the generalized

Kullback-Leibler divergence between V and BG and defined as:

DKL(p, q) =
∑
i

{pi log
pi
qi
− pi + qi}.

Itakura-Saito Divergence Formulation calculates B and G as follows [38]:

min
B,G

DIS( V‖BG ), (2.28)

where,

B←− B⊗
V

(BG)2
GT

1
BG

GT
(2.29)

and

G←− G⊗
BT V

(BG)2

BT 1
BG

(2.30)

where (.)2 is an element-wise operation and DIS is the Itakura-Saito Divergence between

V and BG matrices and defined as:

DIS(p, q) =
∑
i

{pi
qi
− log

pi
qi
− 1}.

NMF is a non-convex algorithm and have multiple local minima. As a result of this,

multiple B and G matrices can be found for the same V matrix. To acquire better

solutions for B and G matrices, supervised methods can be utilized.

NMF is a common model used in speech processing, deep learning, clustering, and

computer vision. In audio processing, it was used for audio source separation [39, 40],

blind-dereverberation [6] and speech denoising.
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Chapter 3

Blind Dereverberation Methods

In this chapter, we denote x(t), s(t), h(t) time-domain signals as xt, st, ht respec-

tively. STFT-domain signals notations will be xn,k, sn,k and hn,k instead of x(n, k),

s(n, k) and h(n, k) respectively.

3.1 Delayed linear prediction (DLP)

As discussed in 2.1.2 reverberated signal, xt, can be formulated as convolution of

RIR, ht, and clean signal st as

xt =

Lh−1∑
τ=0

hτ st−τ (3.1)

where, Lh is the sample length of room impulse response (RIR). Then, L-length vectors

s̄t, h̄ and x̄t are defined as s̄t = [st, ..., st−L+1]T and h̄ = [h0, h1, . . . , hLh−1, 0, . . . , 0]T

and x̄t = [xt, xt−1, ..., xt−L+1]T respectively.

Delayed linear prediction (DLP) is a method based on estimating inverse filter co-

efficients from reverberated microphone signal. With the inverse filter coefficients and

reverberated signal, one can reach dereverberated signal with a simple filtering opera-

tion. In matrix form, reverberation can be formulated as

xt = h̄T s̄t. (3.2)

By using an inverse filter wt of length Lw, we can approximately obtain a derever-
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berated signal ŝt as:

ŝt =
Lw−1∑
k=0

wkxt−k. (3.3)

Actual inverse filter is of infinite length since ht is an FIR filter, but an FIR inverse

filter would be an approximate inverse filter.

In Section 2.1.2 we talked about dividing room impulse response (RIR) into early

and late reverberation parts. Assume zero noise for calculations, then

dt =
D−1∑
k=0

hkst−k, (3.4)

rt =

Lh−1∑
k=D

hkst−k (3.5)

where samples from D to Lh − 1 of h, is the late reverberation part and samples from

1 to D− 1 of h is early reverberation part. dt is the desired signal which contains early

reverberations and original signal. Simply, we are trying to eliminate rt to remove most

detrimental parts of echo. We can write xt as follows:

xt = dt + rt (3.6)

In vector form, dereverberated signal can be written as:

xt = dt + h̄l
T
s̄t−D (3.7)

where h̄l = [hD, hD+1, ... , hLh−1, 0, ... , 0]T and h̄e = [h0, h1, ... , hD−1, 0, ... , 0]T .

Let’s assume we can find a c̄ = [c1, c2, ..., cLc , 0, . . . , 0], such that rt ≈ c̄T x̄t−D. Then,

xt = dt + c̄T x̄t−D (3.8)

where c̄ are called regression coefficients. Then desired signal d̄t becomes

dt = xt − c̄T x̄t−D (3.9)

which means desired signal can be estimated by only using reverberated signal and its

past samples.
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Actually, in the DLP method, c̄ is found by self delayed linear prediction of xt from

its delayed samples x̄t−D. So, we find c̄ as the prediction coefficients that minimizes

the norm of the difference xt− c̄T x̄t−D. The idea is that the self-prediction that can be

achieved by delayed samples will remove the late reverberant components in x(t).

We mentioned in Equation 3.3 about estimating an inverse filter. With the guidance

of Equation (3.9), inverse filter can be represented as w̄t = [1, 0, 0, ..., 0,−c̄]T . The

number of zeros in the inverse filter vector is equal to D, delay.

In conclusion, DLP algorithm is a simple technique to achieve dereverberation.

However, it may not work well in most cases. The reason behind this is having an FIR

filter as the inverse filter. We know that RIR acts as an FIR filter and expectation

would be having an IIR filter as inverse of an FIR filter. In contrary, another FIR filter

is approximately found as the inverse filter. As a result, this may be one of the reasons

why the DLP method is suboptimal.

3.2 Weighted prediction error method (G-WPE)

Weighted prediction error (WPE) is rooted from DLP to solve dereverberation prob-

lem. It can be applied both in time domain and STFT domain. This method is sug-

gested in [10] and to solve WPE problem, maximum likelihood estimation (MLE) is

used. In this section, pre-assumptions, formulation and algorithm will be explained in

depth.

3.2.1 Gaussian model of speech

For WPE method, speech signal st is assumed to have a local Gaussian distribution

for small frames with length Lf . As a result, dt ,desired signal, also has Gaussian

distribution due to the fact that weighted summation of Gaussians also forms Gaussian

distribution. As a result, probability density function of dt can be formulated as

p(dt) = N (dt ; 0, σ2
t ). (3.10)
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Additionally, we assume that samples are mutually uncorrelated after a certain

distance i.e.,

E{stst′} = 0 for |t− t′| > δ. (3.11)

Third issue is time-varying variance assumption. We assume variance is constant

for short-time frames with size Lf for WPE method. Variance of t samples of dt can

be approximated as follows:

α2
t ≈

1

Lf

t+Lf/2∑
t′=t−Lf/2+1

|dt′|2. (3.12)

3.2.2 Formulation and algorithm

Dereverberation can be done both in time domain and in STFT domain. However,

most of the time, using time domain is very costly, because of having quite big matrices

to solve. As a result, we will solve dereverberation problem by WPE in STFT domain.

When we apply such algorithms in the STFT domain, we consider each frequency k

separately and the signal xn,k as a function of n becomes a much shorter signal than the

full time-domain signal xt. Also, we assume that we can find prediction filters in the

STFT domain and they also become much shorter than their time-domain counterparts.

Hence, computationally, it becomes advantageous to work in the STFT domain.

Probability density function of desired signal in STFT domain, p(dn,k) is as defined

as

p(dn,k) = N (dn,k; 0, ρ2
n,k) (3.13)

where n is frame number, k is frequency bin, ρ2
n,k is the time-varying variance value for

each frequency and frame and defined as ρ2
n,k = E{dn,k d∗n,k}. p(dn,k) is the probability

distribution function of a complex Gaussian process, “(.)∗” is conjugate operator and

“(.)T” is transpose operator.

Then, our model in STFT domain becomes as

d̂n,k = xn,k − (c̄∗k)
T x̄n−D′,k (3.14)

where D′ is the number of delayed frames, c̄k is regression coefficient vector defined as

c̄k = [c1,k, c2,k, ..., cLc,k]
T for each frequency bin.
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We know that ρ2
n,k, variance values alter only with respect to time frames. Thus, ρ2

k

can be illustrated as ρ2
k = {ρ2

1,k, ρ
2
2,k, ..., ρ

2
N,k, }.

Now, we will apply Likelihood maximization to Gaussian pdf in Equation 3.13.

Parameter vector θk for likelihood maximization can be set as θk = {c̄k, ρ2
k}. Then, log

likelihood function for dereverberation process in STFT domain becomes:

L(θk) =
n=1∑
N

log p(dn,k; θk), (3.15)

L(θk) =
n=1∑
N

log p(dn,k = xn,k − (c̄∗k)
T x̄n−D′,k; θk), (3.16)

L(θk) = −
N∑
n=1

|xn,k − (c̄∗k)
T x̄n−D′,k|2

ρ2
n,k

−
N∑
n=1

log(ρ2
n,k) + const. (3.17)

Maximizing the Equation 3.17 with respect to parameter vector θk cannot be achieved

analytically and there is no closed form solution for this equation. Thus, an iterative

algorithm is needed. Two step procedure has been proposed in [10] to solve Likelihood

maximization problem as: in the first iteration, we keep ρ2
n,k constant and solve for

dn,k by estimating c̄k regression coefficients to maximize equation; in second step, we

keep dn,k constant and update ρ2
n,k and so on until a convergence criterion satisfied or

a maximum number of iterations completed. For the first step, a linear least square

problem has to be solved for c̄k and for second step, it is a simple calculation of variance

through updated dn,k. Algorithm 1 summarises the process.

Algorithm 1 : Gaussian based WPE Algorithm (in STFT domain)

Input: xn,k , ε

while Condition criteria is not satisfied do

1. Initialize ρ̂2
n,k = max

{
|xn,k|2, ε

}
2. Update ˆ̄ck as : ˆ̄ck =

(∑N
n=1

x̄n−D′,k x̄H
n−D′,k

ρ2n,k

)+ (∑N
n=1

x̄n−D′,k x∗n,k
ρ2n,k

)
3. Update d̂n,k as : d̂n,k = xn,k − ˆ̄cHk x̄n−D′,k

4. Update ρ̂2
n,k as : ρ̂2

n,k = max
{
|d2
n,k|, ε

}
.

end while
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The sign “(.)H” denotes the Hermitian transpose of a matrix, ε is the lower bound

of ρ̂2
n,k preventing zero divisions and “(.)+” denotes the Moore-Penrose pseudo-inverse.

In [10], algorithm 1 is suggested to do just one iteration. However, in Chapter 4,

results up to 5 iterations have been found to obtain better results.

Frequency domain WPE compared to time domain WPE reduces the number of

regression coefficients greatly. It results in fast computation due to small matrix size.

For DLP algorithm, there is not much of a time complexity problem, since convolution

matrix can be defined as a Toeplitz matrix. However, for time-domain WPE, this is

not possible due to fast varying variance weights.

Result of STFT domain WPE algorithm can be summarized as normalization of

speech signal samples with variance weights to make silent parts more silent and voiced

parts more dominant. Additionally, as stated in [12], using frequency-domain WPE

instead of time-domain is more robust to be combined with blind-source separation

algorithms and it is much more faster.

3.3 Laplacian model based weighted prediction (L-

WPE)

Laplacian model based WPE method (L-WPE) as proposed in [11] suggests that

speech can be modeled more precisely with a Laplacian model rather than a Gaussian

model in STFT domain. The L-WPE algorithm differs from regular WPE because of

this assumption. In this section, Laplacian model based WPE method will be used to

achieve single-channel speech dereverberation as written in [11].

3.3.1 Laplacian model of speech

For Gaussian based WPE algorithm, regression coefficients has been found in a

closed form solution as a result of linear least square problem’s having exact solution

in Section 3.2. On the other hand, STFT coefficients can be modeled more accurately

with a Laplacian distributive model or a Gamma distributive model as mentioned in
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[41],[42],[43],[11].

A Laplacian model will be proposed to represent STFT coefficients of the desired

signal dn,k for each time-frequency bin with an equal variance ρ2
n,k/2 for independent

imaginary and real parts. Probability distribution function of the Laplacian model of

desired signal can be formulated as:

p(dn,k) =
1

ρ2
n,k

e
−2
|<(dn,k)|+|=(dn,k)|

ρn,k (3.18)

where <{.} and ={.} denote real and imaginary part of a complex number and p(.)

symbolizes probability density function.

3.3.2 Formulation and algorithm

Likewise to solve Gaussian based WPE method, we will utilize maximum likelihood

estimation (ML) to find parameter vector θk which is defined as θk = {c̄k, ρ2
k} in Section

3.2. According to Laplacian pdf assumption of speech signal in frequency domain and

Equation 3.18, we can write ML estimate of the parameter vector θk. Then, likelihood

function of θk is

L(θk) =
N∑
n=1

− log(ρ2
n,k)− 2

|<(dn,k)|+ |=(dn,k)|
ρn,k

(3.19)

where N is the number of time frames in STFT domain. As seen there is no closed

formulation for 3.19. As a result we will apply an iterative algorithm to solve it numer-

ically. First let’s assume variance is fixed and maximize 3.19 with respect to regression

coefficients c̄k and according to estimated c̄k vector, update desired signal dn,k. Equation

(3.19) can be rewritten in terms of c̄k as

L(c̄k) =
N∑
n=1

− log(ρ2
n,k)−

2

ρn,k

(
|<(xn,k− c̄Hk x̄n−D′,k)|+ |=(xn,k− c̄Hk x̄n−D′,k)|

)
. (3.20)

− log(ρ2
n,k) part of the equation does not depend on c̄k. As a result, this term will

disappear while taking derivative of the equation with respect to c̄k.
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<(xn,k − c̄Hk x̄n−D′,k) = <(xn,k)− ¯̄cTk ¯̄xn−D′,k (3.21)

where

¯̄xn,k =

<(x̄n,k)

=(x̄n,k)

 , ¯̄ck =

<(c̄k)

=(c̄k)

 (3.22)

likewise,

=(xn,k − c̄Hk x̄n−D′,k) = =(xn,k)− ¯̄cTk ˜̄xn−D′,k (3.23)

where ˜̄xn,k =
[
=(x̄n,k)

T −<(x̄n,k)
T

]T
(3.24)

Thus, likelihood function 3.20 can be rewritten as

L(c̄k) =
N∑
n=1

− 2

ρn,k

(
|<(xn,k)− ¯̄cTk ¯̄xn−D′,k|+ |=(xn,k)− ¯̄cTk ˜̄xn−D′,k|) (3.25)

To clear the minus sign, we can think it as an minimization problem instead of an

maximization problem with a minus. Then, problem can be interpreted as a linear

programming problem as given in

minimize
t, c̄k

‖t‖1

subject to t ≥ 0

|<(xn,k)− ¯̄cTk ¯̄xn−D′,k| ≤
ρn,k
2

t2n−1

|=(xn,k)− ¯̄cTk ˜̄xn−D′,k| ≤ ρn,k
2

t2n

(3.26)

where t ∈ R2N and tn represents the n-th element of the vector t and ‖t‖1 is `1 norm

of t. t2n = [=(rn,k)] and t2n−1 = [<(rn,k)] where (rn,k) is the error. So, t is defined as

upper bound of error for real and imaginary parts.

Second step, fix c̄k, update ρ2
n,k and rewrite log likelihood function as a function of

variance as given in 3.19. To maximize it, take its derivative with respect to ρn,k and

equalize it to zero. Then, closed form solution for variance is

ρ2
n,k =

(
|<(dn,k)|+ |=(dn,k)|

)2

. (3.27)
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These two steps will proceed until a convergence criterion is satisfied or maximum

number of iterations has been reached. Summary of the steps are given in Algorithm

2. where ε is the lower bound of ρ̂2
n,k. It is a very small positive number and prevents

Algorithm 2 : Laplacian based WPE Algorithm

Input: xn,k , ε

Initialize: ρ̂2
n,k = max

{
(|<(xn,k)|+ |=(xn,k)|)2, ε

}
while Condition criteria is not satisfied do

1. Update ˆ̄ck as : solve LP in (3.26)

2. Update d̂n,k as : d̂n,k = xn,k − ˆ̄cHk x̄n−D′,k

3. Update ρ̂2
n,k as : ρ̂2

n,k = max
{

(|<(d̂n,k)|+ |=(d̂n,k)|)2, ε
}

end while

solution from zero divisions.

As seen, this algorithm is much more complex than Gaussian based WPE because

of linear programming part. Thus, it works very slow. Paper [11] claims that there may

be different algorithms to solve L-WPE very fast. For our case, if the length of room

impulse response (RIR) is long ( 0.5 sec or more), then algorithm takes more than a

day to run with CVX, a package for specifying and solving convex programs [44],[45]

in Matlab. These issues will be discussed in detail in Chapter 4.

3.4 NMF-based spectral modeling method

NMF-based spectral modeling method is proposed in [6] and [46]. This method does

blind-dereverberation for a single-channel speech signal and it is a combined version of

non-negative convoluted transfer function (N-CTF) model and non-negative matrix

factorization (NMF) method. Assumption here is that for each frequency bin, the

power spectrogram of STFT coefficient matrices of clean speech signal and room impulse

response’s convolution gives us the power spectrogram of STFT coefficient matrix of

reverberated signal in (3.29). Note that the suggested method does not keep the phase

information of RIR, because of only using power spectral domain.
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x(n, k) ≈
Lh−1∑
τ=0

h(τ, k) s(n− τ, k) (3.28)

where x(n, k), h and s are all in STFT domain which means they are complex and

respectively represent reverberated, room impulse response (RIR) and clean signals. k

is the frequency index and n is time-frame index. Lh is the frame length of RIR. It has

been suggested in [47] to rewrite the Equation 3.28 for power spectral domain as

|x(n, k)|2 ≈
Lh−1∑
τ=0

|h(τ, k)|2 |s(n− τ, k)|2 (3.29)

which is called non-negative convolutive transfer function (N-CTF) model. This model

presumes that phase elements of the hτ,k at different frames are mutually independent

zero-mean random variable with Gaussian distribution as mentioned in [46] and addi-

tionally depends on the idea that clean signal and RIR spectral coefficients are also

mutually independent.

For simplicity of notation, we will set |x(n, k)|2 as xn,k and likewise for s(n, k) and

h(n, k) as shown in Equation 3.30. Note that this notation is different than other

methods for this thesis.

xn,k ≈
Lh−1∑
τ=0

hτ,k sn−τ,k. (3.30)

3.4.1 N-CTF Model Formulation

In order to solve Equation 3.30 and to estimate power spectrogram of sn,k, Kullback-

Leibler (KL) divergence will be used. KL divergence is a common minimum distance

algorithm and it has been investigated in Section 2.2.3.

Q =
∑
k,n

KL
(
xn,k

∣∣∣ Lh−1∑
τ=0

hτ,k sn−τ,k

)
(3.31)

where

KL(xn,k|x̃n,k) = xn,k log
( xn,k
x̃n,k

)
+ x̃n,k − xn,k (3.32)
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and x̃n,k represents estimated power spectrogram of reverberated signal. To acquire

more accurate estimation, we can use the sparsity of clean speech spectrogram and add

a regularization term with a weight λ to the optimization problem given in (3.31).

Q =
∑
n,k

KL
(
xn,k

∣∣∣ Lh−1∑
τ=0

hτ,k sn−τ,k

)
+ λ

∑
n,k

sn,k. (3.33)

Additionally, as a non-negativity constraint, sn,k and hτ,k are expected to be greater

than zero. Thus, the problem turns into minimizing cost function 3.33 to estimate hτ,k.

This model can be solved as an iterative learning method as

hi+1
τ,k = hiτ,k ⊗

∑
n xn,k s

i
n−τ,k / x̃n,k∑

n s
i
n−τ,k

, (3.34)

si+1
n,k = sin,k ⊗

∑
τ xn+τ,k h

i+1
τ,k / x̃n+τ,k∑

τ h
i+1
τ,k + λ

(3.35)

where (.)i represents the iteration index and x̃n,k =
∑

τ hτ,k sn−τ,k . x̃n,k is computed

from latest estimations of hτ,k and sn,k.

3.4.2 NMF Based Spectral Model

As discussed in Section 2.2.3, non-negative matrix factorization (NMF) is an algo-

rithm to factorize a matrix as a product of two new matrices with non-negative entries.

The method in [6] suggest to factorize the clean speech magnitude spectrogram S as

a production of a dictionary matrix B and a weight matrix G. Bold letters represent

matrices.

S ≈ BG (3.36)

where B = [br,k]
T , S = [sn,k]

T and G = [gn,r]
T . In other terms, Equation 3.36 can be

rewritten as

sn,k =
R∑
r=1

br,k gn,r. (3.37)

Here, R stands for the number of basis vectors in the dictionary matrix B. R is

smaller than number of frames in sn,k, N , as discussed in 2.2.3.
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3.4.3 Combined Method of N-CTF and NMF

In [6], it has been proposed to put Equation 3.37 directly into Equation 3.30 in

order to create an integrated method. Then, cost function to be minimized becomes

Q1 =
∑
n,k

KL
(
xn,k

∣∣∣ Lh−1∑
τ=0

hτ,k

R∑
r=1

br,k gn−τ,r

)
+ λ

∑
r,n

gn,r. (3.38)

According to [46], sparsity constraint is enforced on the weight matrix gn,r and this

assumption helps estimated s to be sparse.

To be able to minimize Q1, auxiliary function method is suggested which is similar

to [37]. As seen, we have three variables to be alternatively updated in iterations: hτ,k,

br,k, gn,r. Thus, we need to keep two fixed and assume one is to be updated. That

means, derivative of function will be calculated when it is zero to find a local minimum

with respect to the variable which is going to be updated and other two variable must

be keep fixed. This process will be carried on until a convergence criterion has been

succeeded or maximum number of iteration has been reached. According to results of

this method, update rule can be denoted as

hi+1
τ,k = hiτ,k

∑
n xn,ks̃n−τ,k/ x̃n,k∑

n s̃n−τ,k
(3.39)

bi+1
r,k = bir,k ⊗

∑
n,r xn,k h

i+1
τ,k xin−τ,r/ x̃n,k∑

n,τ h
i+1
τ,k gin−τ,r

(3.40)

gi+1
n,r = gin,r ⊗

∑
τ,k xn+τ,k h

i+1
τ,k bi+1

r,k / x̃n+τ,k∑
τ,k h

i+1
τ,k bi+1

r,k + λ
(3.41)

and

s̃n,k =
∑
r

br,k gn,r (3.42)

x̃n,k =
∑
τ

hτ,k s̃n−τ,k (3.43)

where s̃n,k and x̃n,k are updated according to the last estimates of the variables. To

remove scale ambiguity, after each iteration each columns of B is normalized to sum

to one and the columns of H are element-wise divided by the first column of itself as
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suggested in [6], [37]. The nature of RIR consists of decaying impulses. Thus, paper

[6] suggest to satisfy hτ,k < hτ−1,k ∀τ .

Additionally, clean speech spectrogram estimation ŝn,k, can be accomplished through

variables H, B, G where they model a gain matrix Wn,k which can be defined as the

mapping coefficient matrix between clean speech signal and reverberated speech signal

xn,k. Gain matrix can be represented as ŝn,k = Wn,k xn,k where Wn,k formulation is

Wn,k =

∑
r b̂r,k ĝn,r∑

τ,r ĥτ,k b̂r,k ĝn−τ,r.
(3.44)

As a result, the algorithm of the integrated version of N-CTF and NMF can be

written as in Algorithm 3 where Niter is the total iteration number.

Algorithm 3 : N-CTF and NMF combined Algorithm

Input: x(n, k)

Output: ŝ(n, k)

1. Initialize: set parameters: R (number of basis vectors) , λ (sparsity weight), Lh

(RIR length)

2. Initialize: H,B,G with non-negative numbers (see Chapter 4 for more details)

3. Compute: compute power spectrogram of xn,k = |x(n, k)|2

while i=1 to Niter do

4. Update Hi+1 = [hi+1
τ,k ] by using 3.39

5. Update Bi+1 = [bi+1
r,k ] by using 3.40

6. Update Gi+1 = [gi+1
n,r ] by using 3.41

end while

7. Compute: compute gain function Wn,k by using 3.44

8. Compute: compute dereverberated signal ŝ(k, n) by taking inverse STFT of

ŝ(n, k) = W
1/2
n,k x(n, k)

Initialization basis matrix B can be learned online or offline. For online case, ini-

tializations of basis and weight matrices consists of randomized non-negative numbers

as applied for regular NMF. However, as an alternative to online method, it has been

proposed that a pre-basis matrix can be learned from a general speech signal database.

In this thesis, we only employ the online method.
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3.5 Sparsity penalized weighted least squares method

(SPWLS)

3.5.1 Introduction to SPWLS method

Sparsity Penalized Weighted Least Squares (SPWLS) method is a novel approach

which we introduce for single channel blind dereverberation problems. Different from

[19], SPWLS approach combines the idea of variance normalization with a weight matrix

and sparsity property of speech spectrogram matrices. In order to provide sparsity of a

variable, generally `1 norm regularization is used as discussed in Section 2.2.1. With `1

regularization, optimization problem, also known as Lasso (Least absolute shrinkage and

selection operator) problem, usually requires an iterative algorithm for solution. There

are several popular algorithms to solve Lasso problem as ISTA (iterative shrinkage and

threshold algorithm) [29][30][31], FISTA (fast-ISTA) [32] and SALSA (split variable

augmented Lagrangian shrinkage algorithm) [33][34]. In our method we are going to

use ISTA which will be explained in Section 3.5.3.

3.5.2 SPWLS problem formulation

As seen in NMF and WPE methods, we assume that the STFT of reverberated

speech signal is equal to the convolution of RIR spectrogram and clean speech spectro-

gram which are unknown. This convolution is performed for each frequency k separately.

For a fixed frequency, we can express it in a matrix form (dropping dependence on k)

as

x = Hs + n (3.45)

where s is the clean speech signal, x is the reverberated signal, n is noise signal and H

is the convolution matrix of RIR with complex coefficients all in the STFT domain with

fixed frequency k. While solving this problem, we want to add a sparsity constraint

because of the sparse nature of clean speech signal spectrogram and it is known that

`1 norm works better with noisy cases as mentioned in [26]. So, we can define an

optimization problem as
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arg min
s, h
‖(x−Hs)‖2

2 + λs‖s‖1 (3.46)

where λs is a regularization parameter. In the literature, this type of equations are

called Lasso problem or basis pursuit denoising. The Equation 3.46 does not have an

exact solution, so an iterative numeric solution is needed.

Furthermore, we want to add weights to the problem as in Laplacian based WPE

method and Gaussian based WPE method. In addition, we need an extra regularization

on the norm of the filter h which makes sure that we do not get a trivial solution. So,

we update our optimization loss function as follows

arg min
s, h
‖W (x−Hs)‖2

2 + λs‖s‖1+λh(||h||2 − nh)2 (3.47)

where nh is the target norm for the filter h, where weight matrix W is defined as

W = diag(1/ρ̂n,k) (3.48)

and

ρ̂2
n,k = |ŝn,k|2. (3.49)

ρ̂2
n,k is the precision values vector and diag(1/ρ̂n,k) is a diagonal matrix with reciprocal

of the standard deviation entries. Note that, here k is fixed and n is the frame index

variable which is indexing the vectors s and x. HenceW is a diagonal weighting matrix

which has a weight equal to the reciprocal of the standard deviations for each frame in

its diagonal.

Note that the term Hs can also be written as Sh since it corresponds to a convo-

lution operation and depending on the variable of interest, we may form a convolution

matrix from h called H or we may form a convolution matrix from s called S each

exactly determined from the filter coefficients. In practice, H is a large matrix and S

is often manageable in size. So, during our implementations, multiplication with H

is implemented as a convolution, but multiplications with S can be implemented as

a matrix multiplication directly. This fact also affects our algorithm choice since we

cannot use algorithms which require inverting matrices of large sizes which are derived

from H for example.
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In the following, we discuss our proposed solution to this problem which is called

the SPWLS algorithm.

3.5.3 Proposed algorithm for solution

As it is discussed in Section 3.5.2, our problem Equation 3.47 is non-differentiable

with respect to s at its local minimum. Thus, we have to calculate s and h numerically

with an iterative approach. Our approach requires a good initialization for s and h

which can be obtained from an earlier method such as G-WPE. After obtaining initial

values from G-WPE, we perform alternating updates of s and h that would minimize

the objective function with respect to the corresponding variable. For each update of

s, we fix the value of h and update s and vice versa. For updating s, and h, we use

the ISTA algorithm which is well suited for these kind of problems.

ISTA is used to minimize functions like f(s) + g(s) where the first function is

differentiable and the second function is usually not differentiable but simple. The first

step of the ISTA algorithm takes a gradient descent step in the direction of the first

function f(.)

si+.5 = si − η∇sf(si),

where i is the iteration index and the result is an intermediate solution. Then a proximal

operator of g(.) is performed around that intermediate solution as follows:

si+1 = arg min
s
g(s) +

1

2η
||s− si+.5||22.

This gradient descent followed by a proximal operator is shown to converge to the true

solution under certain conditions [29]. Here, η is a positive step size parameter and

indicates the amount that we move along the negative gradient.

If we calculate the gradient of the first function in Equation 3.47, we will find it as

∇sf(si) = −2HHW2(x−Hsi). (3.50)

The next proximal step corresponds to a thresholding/shrinkage operation for the

`1 norm penalty. We update s using the shrinkage operator defined as

τa(s) = (|s| − a)+
s

|s|
(3.51)
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where (x)+ = max(x, 0). Basically, it erases the components that have small energy

and shrinks the other parts.

For our problem, the threshold a should be ηλs due to the ISTA algorithm as shown

in Algorithm 4. In this algorithm, we show the algorithm for a fixed step size η.

However, in practice we may want to reduce the step size as the iterations increase as

shown in Equation 3.53.

After updating s, we usually update the matrix W which contains the variances of

s too. This update may hurt convergence of the algorithm, but since the variances are

supposed to be more accurate after the update, it may help to improve the results as

well.

To update h, we need to solve the same optimization function for h by fixing s terms.

After completing estimation of s part, we will update weight matrix from estimated s

and update h according to ‖W(x− Sh)‖2
2 + λh(||h||2 − nh)2 part due to derivative of

other parts with respect to h being zero. We can again use the ISTA algorithm for

this purpose. But, we make one change. Since it is easy to find the minimizer of f(.)

for updating h, we find the minimizer for f(.) and perform the proximal operator step

afterwards. Minimizing f(.) is a simple least squares problem with an exact solution

h = (SHWHWS)−1SHWHWx. (3.52)

Next step is to perform the proximal step for the regularization of h. This corresponds

to a rescaling of the solution as follows:

hi+1 =
1 + λh

nh
‖h‖

1 + λh
h.

In practice, for the inner gradient descent iteration for s, the step size parameter η

can be made to change for each iteration. We apply a schedule as follows:

ηij = α1−iβ1−jη0, (3.53)

where α and β are hyperparameters and η0 is the initial step size, i and j are the inner

and outer iteration indices (see Algorithm 4) respectively. At first iteration, we have

η = η0 and the step size keeps decreasins as we increase the iterations.
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Note that, the target norm nh of the filter h can be obtained as the norm of the

initial h filter.

Algorithm 4 SPWLS Algorithm with ISTA

Input: x = {X(n, k), n = 1 : . . . : Nf} repeat for each k

Output: s, h (note H and S are convolution matrices of signals h and s)

Initialize: s, h, W

Set parameters: λs, ε, λh, Nout, Nin

for j=1 to Nout do

for i= 1 to Nin do

1. Update s :

Determine η = ηij (use Equation 3.53)

si+.5 = si − η ∇sf(si) (use Equation 3.50)

si+1 = τλsη(s
i+.5) (use Equation 3.51 )

end for

2. Update new W: use Equation 3.48

3. Update h:

hi+.5 = (SHWHWS)−1SHWHWx.

hi+1 =
1+λh

nh

‖hi+.5‖
1+λh

hi+.5

end for
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Chapter 4

Experimental Results

4.1 Implementation setup

4.1.1 Methods to be compared

1) DLP: Delayed linear prediction method which is proposed in [9]. It is discussed

in Section 3.1.

2) G-WPE: Gaussian based weighted prediction error method. It is based on vari-

ance normalization method proposed in [10], discussed in Section 3.2

3) L-WPE: Laplacian-based WPE method which is proposed in [11], discussed in

Section 3.3

4) NMF+N-CTF: NMF based N-CTF method which is proposed in [6]. It is dis-

cussed in Section 3.4

5) SPWLS: Spectrogram sparsity based weighted optimization method which is

discussed in Section 3.5.

4.1.2 Test data

For the first experiment, 3 male and 3 female voices without reverberation has

been convolved with 6 different room impulse response samples with 30dB and 60dB

additive noises separately for DLP, G-WPE, NMF+N-CTF, SPWLS methods. It means

72 different speech signal has been dereverberated for experiment 1. For the experiment

2, 1 male and 1 female voices without reverberation has been convolved with 5 different
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RIR samples and added 30dB and 60dB additive noises separately onto them to test

all methods. It means 20 different reverberated and noised speech signals have been

dereverberated for experiment 2. Test data has been taken from “Reverb Challenge”

[48] data set. Sampling frequency was 16KHz which is same for all the audio data.

Room impulse response times (RT60) were 0.17, 0.11, 0.95, 0.33, 0.54, 0.35s respec-

tively. L-WPE method was not performed with 0.95 sec RT60 only due to excessive run

time.

The input to all algorithms is the reverberated speech signal and the RT60 values

for the unknown RIRs. Original signals without echo and noise have been only used

while testing them.

As noise data, a “.wav” file with cafe sounds has been used as additive noise with

30dB and 60db levels.

4.1.3 Analysis conditions and implementation details

Sampling rate for all the signals were 16KHz. Number of delayed frame size, D was

set to 3 frames for G-WPE, L-WPE and DLP methods. NMF+N-TFC method and

SPWLS method do not include D variable. Lf , number of frames used for variance

calculations is set to 1 frame for G-WPE, L-WPE and SPWLS methods, “NMF+N-

CTF” method and DLP do not contain any variance calculations and Lf variable.

Iteration numbers for all methods except NMF+N-CTF have been set to 5. NMF+N-

CTF method has 100 iterations due to slow convergence rate as proposed in [6]. STFT

parameters are hop size and STFT window size which have been set to 10 ms and 30

ms respectively. Furthermore, Minimum variance to avoid zero divisions, ε has been

set to 10−6.

Number of STFT frames used to predict signals is obtained from RT60 values which

is fixed for all methods.

SPWLS parameters specific to this method are step size, η set as 10−7, ISTA reg-

ularization parameter λs set as 105, inner iteration number for ISTA set as 10, ISTA

regularization parameter for filter λh set as 10. SPWLS initialization for RIR, h is

obtained using Equation 3.52 using the s value from the output of the G-WPE method.
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NMF+N-CTF method has dictionary matrix size “ndict” as 100 for the experiments.

“ndict” is altered for some cases to observe the effect of it over results. NMF+N-CTF

method uses online method.

4.2 Performance measures

4.2.1 Computational efficiency of dereverberation

The computational efficiency is an important issue. The algorithm is computation-

ally efficient means that we can apply it in real time applications. All the algorithms

are implemented in MATLAB on a computer with an Intel Xeon CPU, 2.5GHz.

When we compare all the methods, the fastest one becomes SPWLS method, then

G-WPE, DLP, NMF+N-CTF and L-WPE come respectively. L-WPE is very slow due

to linear programming (LP) part inside. We used CVX tool [45] [44] to solve the LP

part of the L-WPE algorithm. For a reverberated signal with 0.5s reverberation time,

L-WPE is solved in approximately one day. Also, NMF+N-CTF method is quite slow.

It takes around 1.5 hour for dereverberating the same data. On the other hand, the

code takes approximately 2-3 minutes for G-WPE, SPWLS and DLP. DLP method is

implemented with Levinson-Durbin algorithm to accelerate the process. This method

does not keep the whole convolution matrix, instead it creates an auto-correlation

matrix and just keeps the first row. This kind of solutions are called matrix-free. Due

to the fact that G-WPE, L-WPE and SPWLS methods have variance weights, it is not

possible to apply Levinson-Durbin algorithm to these methods.

4.2.2 Accuracy measures

Accuracy of the dereverberation process is calculated with average cepstral distor-

tion (CD) over short time frames as suggested in [49]. It is a very common and popular

tool to measure speech quality measure between clean signal and reconstructed signal.

CD in short time frame can be defined as
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CD = (10/ ln 10) 2

√√√√(β̂0 − β0)2 + 2
12∑
k=1

(β̂k − βk)2 (4.1)

in dB and where βk is clean speech signal cepstral coefficients from 1th to 12th order

and β̂k is estimated speech signal’s cepstral coefficients with same order. Zero order

coefficient, β0 defines the power spectrum envelope in dB. CD between similar signals

converges to 0. Our aim is to keep CD as small as possible after dereverberation process.

CD results can be found in Section 4.3.

Signal to noise ration (SNR) and segmental SNR, SNR obtained from short seg-

ments, measurements have been used as a signal level accuracy measure for performance

measurement.

We also evaluate algorithms using STOI and PESQ measures as well. Short-time

objective intelligibility measure (STOI) is an intelligibility measure which is introduced

in [50]. For short-time frames, it compares the temporal envelopes of the clean and

degraded speech in terms of correlation coefficients. Perceptual Evaluation of Speech

Quality (PESQ) is a common standardized test method for speech quality [51].

4.3 Experimental results

4.3.1 Spectrogram results

In this section, spectrogram effects of the dereverberation methods will be illus-

trated. To be able to capture the differences, additionally spectrogram figures of clean

and reverberated signals are shown. Spectrogram corresponding to a clean signal is

provided in Figure 4.1, whereas the spectrogram for the reverberated signal is in Fig-

ure 4.2. DLP reconstructed signal’s spectrogram is in 4.3, whereas L-WPE, G-WPE,

NMF+N-CTF and SPWLS reconstructed signals’ spectrograms are in Figures 4.4, 4.5,

4.6, 4.7 respectively. We observe that reverberation causes extension of structures and

other effects in the spectrogram and dereverberation methods such as L-WPE, G-PWE

and SPWLS manage to remove some of those effects to yield a spectrogram close to

the clean signal’s spectrogram.
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Figure 4.1: Original (anechoic) speech signal

Figure 4.2: Reverberated speech signal
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Figure 4.3: DLP dereverberation result

Figure 4.4: Laplacian-WPE method dereverberation result
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Figure 4.5: Gaussian-WPE method dereverberation result

Figure 4.6: NMF+N-CTF method dereverberation result
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Figure 4.7: SPWLS method dereverberation result

4.3.2 Numerical evaluations

In Table 4.1 and 4.2 below, the results of experiments are presented. The accuracy

measures are averaged over all files. “Revb/Clean” in tables refers to accuracy measures

between reverberated and clean speech signals to show the difference and alterations

in results after dereverberation. Three different types of PESQ results indicated with

PESQ1, PESQ2, PESQ3 are wideband MOS-LQO, narrowband PESQ-MOS and nar-

rowband MOS-LQO respectively.
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Table 4.1: Dereverberation Method Results for 20 files

Method SNR segSNR CD PESQ1 PESQ2 PESQ3 STOI

Revb/Clean -2.0086 0.2080 20.4112 2.6094 2.3403 1.8367 0.8911

L-WPE -0.8339 0.5731 16.2641 2.9742 2.8165 2.3402 0.9202

G-WPE -0.8922 0.5532 16.4651 2.9495 2.7826 2.3036 0.9188

SPWLS -0.4435 0.6569 56.7051 2.4384 2.1024 1.5539 0.8796

NMF+CTF -0.0379 0.0357 27.2434 1.8837 1.5674 1.2315 0.6839

DLP -2,049 0,5652 22,1378 2,4976 2,1710 1,6273 0,8955

Table 4.2: Dereverberation Method Results for 72 files

Method SNR segSNR CD PESQ1 PESQ2 PESQ3 STOI

Revb/Clean -2.7062 -0.3922 24.1169 2.3945 2.1012 1.5998 0.8687

G-WPE -1.6003 -0.0970 20.2801 2.6956 2.4624 1.9540 0.8985

SPWLS -1.1054 0.0006 51.8132 2.4507 2.1380 1.5610 0.8768

NMF+CTF -0.1233 0.0016 30.4215 1.8197 1.5268 1.1714 0.6725

DLP -2.7661 -0.0246 25.9241 2.3365 2.0062 1.4707 0.8732

For the Table 4.1 and 4.2, iteration sizes for NN-CTF (NMF+N-CTF method), L-

WPE, G-WPE, DLP, SPWLS are 100, 5, 5, 1, 5 respectively. Due to different iteration

numbers, we investigated the test results separately for NN-CTF alone and L-WPE,

G-WPE, SPWLS group.

We provide plots of test results versus iteration number for the L-WPE, G-WPE

and SPWLS methods in Figures 4.8, 4.9, 4.10, 4.11, 4.12, 4.13, 4.14. These performance

measures have been obtained as an average over 20 files. It is observed that SPWLS

method gets worse in certain measures as the iterations are increased. This may be

due to the non-convex nature of the loss function used in the problem which does not

converge to a desirable solution.
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Figure 4.8: CD Results

Figure 4.9: STOI Results
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Figure 4.10: SNR Results

Figure 4.11: Segmental SNR Results
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Figure 4.12: PESQ Result

Figure 4.13: PESQ2 Result
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Figure 4.14: PESQ3 Result

We provide NMF+N-CTF test results versus number of iterations plots in Figures

4.15, 4.16, 4.17, 4.18, 4.19, 4.20, 4.21.

Figure 4.15: CD Results for NMF+N-CTF
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Figure 4.16: STOI Results for NMF+N-CTF

Figure 4.17: SNR Results for NMF+N-CTF
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Figure 4.18: Segmental SNR Results for NMF+N-CTF

Figure 4.19: PESQ1 Result for NMF+N-CTF
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Figure 4.20: PESQ2 Result for NMF+N-CTF

Figure 4.21: PESQ3 Result for NMF+N-CTF

As an addition to these, to pick a proper iteration number for L-WPE and G-WPE

methods, we performed an experiment with 20 iterations. The results can be observed

below as given in Figures 4.22, 4.23, 4.24, 4.25, 4.26, 4.27, 4.28.
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Figure 4.22: SNR for 20 iterations

Figure 4.23: Segmented SNR for 20 iterations
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Figure 4.24: Cepstral Distance (CD) for 20 iterations

Figure 4.25: PESQ1 values for 20 iterations
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Figure 4.26: PESQ2 values for 20 iterations

Figure 4.27: PESQ3 values for 20 iterations
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Figure 4.28: STOI for 20 iterations

As seen, 5-6 iterations are usually enough for both methods to stabilize test results.

4.3.3 Robustness against RIR size

For long room impulse with RT60 = 0.54s results are as given in Table 4.3. SNR

and segmental SNR results are better for SPWLS and NMF+N-CTF methods. On the

other hand L-WPE and G-WPE give better results for CD, STOI and PESQ results

after 5 iterations to each. For first and second iterations of SPWLS, also we can see

some improvements for STOI and PESQ.
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Table 4.3: Dereverberation method results for long RIR

Method SNR segSNR CD PESQ1 PESQ2 PESQ3 STOI

Revb/Clean -4.386 -1.2268 28.923 1.771 1.47 1.141 0.7915

L-WPE -2.7747 -0.5622 24.2204 2.0330 1.6590 1.2810 0.8556

G-WPE -2.8522 -0.5904 24.4234 2.0190 1.6470 1.2710 0.8516

SPWLS -2.5681 -0.5053 41.6081 2.0400 1.6640 1.2580 0.8391

NMF+CTF -0.1454 0.0304 33.4180 1.5840 1.3660 1.0890 0.6685

DLP -3.6398 -0.3382 28.1874 1.8810 1.5430 1.1750 0.8303

When the Table 4.3 and 4.1 are compared, it is clear that long RIR results are

worse than the average RIR results as expected. However interestingly, NMF+N-CTF’s

CD results and SPWLS’s CD results are better for long RIR dereverberation case

than average CD results. Additionally, SPWLS PESQ results are better than G-WPE

different than the average results.

As an addition, five separate experiments are conducted to measure NMF+N-CTF

results for different iteration numbers and dictionary sizes. NNCTF1 is the results for

NMF+N-CTF with dictionary matrix size 100 and iteration number 100; NNCTF2 is

the results for NMF+N-CTF with dictionary matrix size 500 and iteration number 200;

NNCTF3 is the results for NMF+N-CTF with dictionary matrix size 1000 and iteration

number 200. We made an forth experiment which is called NNCTF4 with dictionary

size 1000 and iteration numbers 400 in case of a large dictionary matrix might need

more iterations to converge. NNCTF5 is the fifth experiment with iteration number

240 and dictionary size 1000. The results of these experiments can be seen in Table 4.4.
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Table 4.4: Dereverberation method results for long RIR

Method SNR segSNR CD PESQ1 PESQ2 PESQ3 STOI

NNCTF1 -0.1454 0.0304 33.418 1.5840 1.3660 1.0890 0.6685

NNCTF2 -0.6503 -0.0176 30.6301 1.5230 1.3370 1.0840 0.7187

NNCTF3 -0.6517 -0.0084 30.7251 1.4890 1.3210 1.0780 0.7205

NNCTF4 -0.8553 -0.0337 31.0310 1.4850 1.3190 1.0840 0.7070

NNCTF5 -0.5673 0.0036 30.5984 1.5240 1.3370 1.0760 0.7192

As seen from the Table 4.4, CD and STOI results are getting better for NMF+N-

CTF when iteration number and dictionary matrix size both are increased in general.

On the other hand, SNR, segSNR and PESQ values are getting worse. These four

experiments are only conducted for the speech data with RT60 = 0.54s. Also, as seen in

experiment 5 and 4 in Table 4.4, the NMF+N-CTF algorithm does not always converge

with respect to iteration number.

4.3.4 Loss function versus iterations of SPWLS method

In this section, loss function will be calculated to analyze the convergence of SPWLS

method. To observe convergence behavior, the loss for certain frequency bins are shown

in figures below.
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Figure 4.29: Total loss ‖W (x−Hs)‖2
2 + λs‖s‖1+λh(||h||2 − nh)2

Figure 4.30: Loss function term ||W (x−Hs)||22
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Figure 4.31: Loss function term λs||s||1

Figure 4.32: Loss function term λh(||h||2 − nh)2

As observed in Figure 4.29, total loss value is decreasing with iterations. So, we can

claim that the algorithm works to decrease the total loss value as iterations increase.

However, it is not clear whether we are moving towards a more accurate solution. This

may be due to the non-convex nature of the problem and also we may need more

constraints to obtain more reasonable solutions.
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We, also observe the behavior with respect to each term of the loss function. As

observed in the figures above, ||W (x−Hs)||22 term is increasing and small; λs||s||1 term

is decreasing and large; finally λh(||h||2−nh)2 term is increasing and small. We can see

that total loss function is decreasing and it is dominated by the sparsity λs||s||1 term.

Decreased loss function indicates that we are solving the defined problem. Sparsity

dominating effect can be observed in Figure 4.7, spectrogram results.
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Chapter 5

Discussion and Conclusion

5.1 Discussion

As seen from the results in Table 4.1 and 4.2, the best results are obtained by

L-WPE method in terms of performance measures. It is the best in terms of SNR,

segmental SNR, CD, PESQ values and STOI. As a disadvantage, L-WPE method is

really slow. Thus, in terms of time efficiency and test results, G-WPE may be better

with real time applications such as ASR.

NMF+N-CTF results are converging as seen from plots in Section 4.3.2. However,

the test results are not as good as proposed in paper [6]. To get better results, iter-

ation number can be increased. Also, this method could perform better with a good

initialization. In [6], it is proposed to utilize two cases: first one with an online method

to learn basis matrix which has dictionary size 100 columns and the 50 iterations, and

second one with a supervised basis matrix with dictionary size 4000 columns to start

with a good initialization and with same iteration numbers. In our implementation, ba-

sis matrix dictionary size is set as 100 without any initialization as proposed for online

method in [6] with iteration size 100. Although, we put more iterations, results were

not as accurate as the results of other algorithms except for SNR results. On the other

hand, increasing the dictionary matrix size and iteration number had positive effects on

the results. It must be considered that increasing dictionary size or iteration number

increases the computational complexity of the algorithm.

DLP is just utilized to make comparisons with L-WPE and G-WPE methods, since
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they are based on DLP method. In comparison results, both gave better results than

DLP as expected. L-WPE was slower and G-WPE was faster in comparison to DLP

for one iteration.

SPWLS could not show good performance as expected, especially in terms of CD

test results. For iterative algorithms, they need to be advanced with well defined

constraints. This might be the problem with SPWLS. As seen from Table 4.1 and 4.2,

results are not converging all the time. The reason behind it could be getting stuck

at local minimum solutions. To improve results, better constraints should be used and

coefficients must be set properly. This method needs to be improved. However, it shows

promise due to time efficiency, SNR and PESQ results. Also, the intelligibility of the

results are still high.

Additionally, spectrogram results show that L-WPE and G-WPE are successfully

managing dereverberation since the high similarity between clean and dereverberated

signals. Also, listening the results shows that best ones are L-WPE and G-WPE meth-

ods, indeed. For NMF+N-CTF, dereverberated sound is nearly impossible to under-

stand due to some background noise and degradation of the speech signal. For SPWLS

method, intelligibility of words are good. However, there is a voice like glottal vibrations

in the background.

5.2 Conclusion

In conclusion, best test result are obtained with L-WPE method. On the other

hand, for efficiency G-WPE is better. If the dereverberation method picked will be

combined with real time applications, then we propose to use G-WPE. If there is no

need for speed and efficiency, L-WPE is suggested to be utilized.

NMF+N-CTF and SPWLS methods need to be improved. Especially, SPWLS

method is promising due to the run-time efficiency and robustness. Also, the results

were slightly better for noisy and long RIR cases. However, the algorithm needs to

be reevaluated with better constraints and the effect of the sparsity term might be

decreased.
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