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Abstract Corteel, Lovejoy and Mallet concluded their paper “An extension
to overpartitions of the Rogers-Ramanujan identities for even moduli” with
an open question of investigating the combinatorial properties of a q-series
with two additional parameters. We settle their question, unfortunately in the
negative, by showing that the series yields only the known results in overpar-
titions. However; when one annihilates one of the parameters, the resulting
series have nice integer partitions interpretations. Those series appeared in
another publication as well. In particular, Corteel, Lovejoy, and Mallet’s series
involve an index d. This index unifies two classes of overpartition identities
for d = 1 and d = 2, but does not give additional overpartition identities
for d ≥ 3. Upon setting one of the parameters zero, one does get regular
partition identities for all d. The proofs are conventional, formal verifications
for brevity, but we show how to make the proofs constructive.
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1 Introduction

Andrews’ H and J functions [3] are not only a framework for many results
hitherto known, but also a source of inspiration for a wave of results after it.

Hk,a(y;x; q) =
∑
n≥0

xknqkn
2+n−anyn(1− xaq2na)(yxqn+1)∞(1/y)n

(q)n(xqn)∞
(1.1)

Jk,a(y;x; q) =Hk,a(y;xq; q)− yxqHk,a−1(y;xq; q) (1.2)

Above and elsewhere, we employ the standard q-series notation [10]

(a)n =(a; q)n =

n∏
j=1

(1− aqj−1),

(a)∞ =(a; q)∞ = lim
n→∞

(a)n,

(a1, a2, . . . , as)n =(a1, a2, . . . , as; q)n =

s∏
j=1

(aj)n.

a, a1, . . . , as are called parameters, and q is called the base. If the base is not
specified, it is understood to be q. |q| < 1 is enough for absolute convergence
of the infinite products. |x| < 1/|q| in addition is required for absolute con-
vergence of (1.1) and (1.2). In this note, however, one does not need to worry
about convergence.

The series (1.1) and (1.2) satisfy a number of functional equations. They
admit application of Jacobi’s triple product identity [10, eq. (1.6.1)] under
various substitutions. This yields integer partition identities. Some examples
are stated below.

Definition 1.1. A partition of a non-negative integer n is a non-increasing
sum of positive integers

n = λ1 + λ2 + · · ·+ λm

where λ1 ≥ λ2 ≥ · · · ≥ λm > 0. The number of parts m is also known as the
length of the partition.

Alternatively, one can write

n = 1f1 + 2f2 + 3f3 + · · ·

for the same partition, where fi denotes the number of occurrences, or the
frequency, of i among λ1, λ2, . . . , λm.

Obviously, only finitely many of the fi can be nonzero. For example the
non-increasing sum



Open problem of Corteel et. al. 3

5 + 5 + 3 + 3 + 2 + 1 + 1

is a partition of 20, where

f1 = 2, f2 = 1, f3 = 2, f4 = 0, f5 = 2, and fi = 0 for i ≥ 6.

Theorem 1.1 (Rogers-Ramanujan identities [16, 12, 17]). Given a
non-negative integer n, the number of partitions of n where fi + fi+1 < 2
equals the number of partitions of n where f5j = f5j±2 = 0.

The number of partitions of n where fi + fi+1 < 2 and f1 = 0 equals the
number of partitions of n where f5j = f5j±1 = 0.

The conventional way to express the first Rogers-Ramanujan identity is
that the number of partitions of n into distinct and non-consecutive parts
equals the number of partitions of n into parts that are 1 or 4 modulo 5.
Notice that the condition fi+fi+1 < 2 stipulates that the parts cannot repeat,
and i and i+ 1 cannot appear together. Also, the condition f5j = f5j±2 = 0
amounts to disallowing parts that are 0, 2, or 3 modulo 5, so that only those
1 or 4 modulo 5 can be used.

We stick to the frequency notation so that all results in this paper can be
written in a unified and succinct manner [3, Ch. 7].

The specialization here is

J2,2(0;x; q) and J2,1(0;x; q),

respectively. These series appeared in [18] previously.

Theorem 1.2 (Rogers-Ramanujan-Gordon identities [11]). Given a
non-negative integer n, and integers k and a such that k ≥ 2, 1 ≤ a ≤ k, the
number of partitions of n where fi + fi+1 < k and f1 < a equals the number
of partitions of n where f(2k+1)j = f(2k+1)j±a = 0.

Andrews’ proof of Gordon’s theorem [1] uses

Jk,a(0, x; q).

Of course, an immediate open problem after Gordon’s theorem was the
possibility of an even moduli extension (instead of (2k+ 1)). This problem is
partially solved by Andrews [2], who found a modulo (4k + 2) analog. A full
solution was given by Bressoud [5].

Theorem 1.3 (Bressoud’s theorem). Suppose n is a non-negative integer,
k and a are integers such that k ≥ 2, 1 ≤ a < k. Let A(n) be the number of
partitions of n where f2k = f2k±a = 0, Let B(n) be the number of partitions of
n where fi+fi+1 < k, f1 < a, and if fi+fi+1 = k−1, then ifi+(i+1)fi+1 ≡
a− 1 (mod 2). Then A(n) = B(n).

The proof of Bressoud’s theorem [5] uses
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(−xq)∞J k−1
2 , a2

(0;x2; q2).

Later, Corteel and Lovejoy introduced overpartitions [8].

Definition 1.2. An overpartition of a non-negative integer n is a partition
of n in which the first occurrence of each part may be overlined. One can
write

n = 1f1 + 1f1 + 2f2 + 2f2 + 3f3 + 3f3 + · · ·

where fi denotes the number of occurrences, or the frequency, of i (non-
overlined), and fi denotes that of i (overlined).

Again, only finitely many of fi or fis can be non-zero. In addition, fi’s may
be 0 or 1 only. For example,

8 + 8 + 7 + 7 + 5 + 5 + 4 + 3 + 3 + 2 + 1 + 1 (1.3)

is an overpartition of 54 where

f1 = 1, f1 = 1, f2 = 0, f2 = 1, f3 = 2, f3 = 0, f4 = 0, f4 = 1,

f5 = 2, f5 = 0, f6 = 0, f6 = 0, f7 = 2, f7 = 0, f8 = 2, f8 = 0,

and fi = fi = 0 for i ≥ 9.

Lovejoy gave an overpartition analog of Gordon’s theorem for overparti-
tions in two cases [14]. His proof used

Jk,k(−1;x; q) and Jk,1(−1/q;x; q).

In fact, Lovejoy considered Jk,a(y;x; q) but only the two cases above admitted
(single) infinite product representations. Chen, Sang and Shi obtained the
general theorem [6].

Theorem 1.4 (Gordon’s theorem for overpartitions). Suppose n is a
non-negative intege, and k and a are integers such that k ≥ 2, and 1 ≤ a ≤ k.

Let Dk,a(n) be the number of overpartitions of n where fi + fi + fi+1 < k
and f1 < a.

For 1 ≤ a < k, let Ck,i(n) be the number of overpartitions of n where
f2kj = f2kj±a = 0.

Let Ck,k(n) be the number of overpartitions of n where fkj = fkj = 0.
Then Ck,a(n) = Dk,a(n).

It should be noted that the a = k case in Theorem 1.4 is different from
Lovejoy’s a = k case [14]. Chen, Sang and Shi’s proof used

Hk,a(−1/q; q; q),

instead of the specializations of J-function.
Corteel, Lovejoy and Mallet extended Bressoud’s theorem to overpartitions

in one case [9]. They utilized the following statistic.
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Definition 1.3. Given an overpartition and an arbitrary positive integer i
that need not occur in the overpartition,

V (i) =

i∑
j=1

fj .

In other words, V (i) is the number of overlined parts that are less than or
equal to i.

For instance, the overpartition (1.3) has

V (1) = 1, V (2) = 2, V (3) = 2, and V (i) = 3, for i ≥ 4.

Again, Chen, Sang and Shi proved the remaining cases [7].

Theorem 1.5 (Bressoud’s theorem for overpartitions). Suppose n is a
non-negative integer, and k and a are integers such that k ≥ 2, and 1 ≤ a ≤ k.

Let Dk,a(n) be the number of overpartitions of n where fi + fi + fi+1 < k,
f1 < a, and if fi +fi +fi+1 = k−1, then ifi + ifi +(i+1)fi+1 ≡ V (i)+a−1
(mod 2).

Let Ck,a(n) be the number of overpartitions of n where f(2k−1)j = f(2k−1)j±a =
0.

Then Ck,a(n) = Dk,a(n).

Corteel, Lovejoy and Mallet introduced the following variant of the H and
J functions.

H̃k,a(y;x; q)

=
∑
n≥0

(−y)nqkn
2−n(n−1)/2+n−anx(k−1)n(1− xaq2na)(−x,−1/y)n(−yxqn+1)∞

(q2; q2)n(xqn)∞

J̃k,a(y;x, q) = H̃k,a(y;xq; q) + yxqH̃k,a−1(y;xq; q)

Corteel, Lovejoy, and Mallet’s result uses

J̃k,1(1/q;x; q),

whereas Chen, Sang and Shi use

H̃k,a(1/q;xq; q).

in the proofs. For y = 0 instead of y = 1/q, Theorem 1.5 reduces to Theorem
1.3.

Corteel, Lovejoy and Mallet concluded their paper with the open question
of the combinatorial merit of the Jk,a,d(y;x, q) series defined below.
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Hk,a,d(y;x; q)

=
∑
n≥0

(−y)nqkn
2+n−an−(d−1)n(n−1)/2xk−d+1(1− xaq2na)

× (−1/y)n(−yxqn+1)∞(xd; qd)n
(qd; qd)n(x)∞

, (1.4)

Jk,a,d(y;x; q) =Hk,a,d(y;xq; q) + yxqHk,a−1,d(y;xq; q). (1.5)

All of the above listed results have the same formal verification method in
their proofs. One starts with the multiplicity conditions imposed on the par-
titions. The functional equations along with the initial conditions their gen-
erating functions satisfy are found. Of course, these functional equations and
initial conditions must uniquely determine the generating functions, hence
the partition or overpartition enumerants.

Then one verifies that a particular specialization or twist of (1.1) or (1.2)
satisfies the same functional equations and the same initial conditions. There-
fore, one argues, the series at hand must be the generating function. Finally,
one renders all variables but q ineffective (by substituting a power of q, 0,
or 1) and applies Jacobi’s triple product identity. This yields the congruence
condition on the partitions or overpartitions, and hence completes the proof.

Now we turn to the discussion of the case d ≥ 3 for (1.5). For many well-
known classes of (over)partitions, it is easy to derive the recursions satisfied
by their generating functions. Conversely, given a set of generating functions
along with the recursions they satisfy, one can conceive of näıvely revers-
ing this procedure to guess the (over)partitions counted by the generating
functions. Such a process is carried out implicitly in many problems, for in-
stance, in some well-known proofs of Rogers-Ramanujan, Gordon-Andrews,
Göllnitz-Gordon-Andrews, Andrews-Bressoud identities, etc. We explore such
a reverse-engineering procedure to guess what partitions might be counted
by the series Jk,a,d(y;x, q). Unfortunately, our näıve explorations for the case
k = 5, d = 3 suggest that these series may not have easily deducible combi-
natorial interpretations. We discuss our findings in Section 4 below. We first
explain our procedure by applying it to the well-known example of Rogers-
Ramanujan recursion, then we build a formal framework to go beyond. Our
results for the specific case k = 5, d = 3 are explained in Section 4.4.

The paper is organized as follows. In section 2 we state and prove the
main result, and indicate some implications. Although our proofs are formal
verifications as well, we demonstrate how to construct those series in section
3. Thus, the proofs may be made into constructive proofs. We also display the
constructed generating functions when we alter the characterization of classes
of overpartitions slightly. In Section 4 we turn to a concrete exploration done
in the case k = 5, d = 3. We conclude with some further exploration topics
in section 5.
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2 Main results

In this section, we indicate that the answer to Corteel, Lovejoy and Mallet’s
question is most likely negative for overpartitions. The answer is affirmative
for regular partitions, when the parameter y is set to zero [13]. We need
another overpartition statistic [13] before we proceed.

Definition 2.1. Given an overpartition and an arbitrary positive integer i
that need not occur in the overpartition,

ρ(i) =

i∑
j=1

(−1)jfj .

In other words, ρ(i) is the signed sum of number of occurrences of overlined
parts that are less than or equal to i.

For instance, the overpartition (1.3) has

ρ(1) = −1, ρ(2) = 0, ρ(3) = 0, and ρ(i) = 1, for i ≥ 4.

We will place the series defined by (1.4) in the following class of series.

Hs
k,a,d(y;x; q) =

(xd; qd)∞
(x; q)∞

×
∑
n≥0

(−1)nxn(k+1−d)q(2k+1−d)n(n−1)/2+(k+1)n−an

×y
n(−1/y; q)n(−yxqn+1; q)∞

(qd; qd)n(xdqnd; qd)∞

×q−sn
[
qdn

xd−s − xd

1− xd
+

1− xd−s

1− xd

]
−(−1)nxn(k+1−d)+aq(2k+1−d)n(n−1)/2+(k+1)n+a(n+1)

×y
n(−1/y; q)n(−yxqn+1; q)∞

(qd; qd)n(xdqnd; qd)∞

×qsn
[
q−dn

1− xs

1− xd
+
xs − xd

1− xd

]
Hd

k,a,d(y;x; q) = H0
k,a,d(y;x; q) is (1.4).

Theorem 2.1. Suppose m, n, r are non-negative integers, and k, a, d, and
s are integers such that

k ≥ 2, 1 ≤ a ≤ k, 1 ≤ d ≤ k, 0 ≤ s ≤ d− 1.
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Let db
s

k,a(m,n, r) be the number of overpartitions of n into m parts, r of which
are overlined, such that

fi + fi+1 + fi+1 < k, f1 < a,

f1 = 0, i.e. 1 cannot be overlined,

if fi + fi+1 + fi+1 = k − δ for δ = 1, 2 . . . , d− 1,

then a+ s− 1− fodd(i) − χe(i+ 1) + ρ(i+ 1) ≡ 0, 1, . . . , δ − 1 (mod d).

Here, odd(i) = i if i is odd, odd(i) = i + 1 if i is even; and χe(i+ 1) is 1 if
(i+ 1) is even and fi+1 = 1, χe(i+ 1) is 0 otherwise. Then,

Hs
k,a,d(y;xq; q) =

∑
m,n,r≥0

db
s

k,a(m,n, r)xmqnyr

for d = 1 or d = 2.

This theorem is a one-parameter extension of Corollary 12 in [13] up to
a substitution. The formal verification proofs are more or less the same, but
we include the proof here for the sake of completeness.

Proof. Let

dB
s

k,a(y;x; q) =
∑

m,n,r≥0
db

s

k,a(m,n, r)xmqnyr.

First, we argue that

dB
s

k,a(y;x; q)− dB
s+1

k,a−1(y;x; q)

= xa−1qa−1dB
0

k,k−s−a+1(y;xq; q) + yxaqa+1
dB

0

k,k−s−a(y;xq; q), (2.1)

dB
s

k,0(y;x; q) = 0, (2.2)

dB
s

k,a(y; 0; q) = 1. (2.3)

Notice that the functional equation (2.1) and the initial conditions (2.2)
and (2.3) are equivalent to the following recurrence and initial values.

db
s

k,a(m,n, r) = db
s+1

k,a−1(m,n, r)

+ db
0

k,k−s−a+1(m− a+ 1, n− a+ 1, r)

+ db
0

k,k−s−a(m− a, n− a− 1, r − 1), (2.4)

db
s

k,0(m,n, r) = 0, (2.5)

db
s

k,a(0, n, r) =

{
1 if n = r = 0,

0 otherwise.
(2.6)
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It is easy to see that (2.4) - (2.6) uniquely determine db
s

k,a(m,n, r) because
each application of (2.4) decreases one or more parameters. (2.5) and (2.6) are
a complete collection of initial conditions. Therefore (2.1), (2.2), and (2.3),
uniquely determine dB

s

k,a(y;x; q).
It appears at first that we also need

db
s

k,a(m,n, r) = 0 if m,n, or r < 0.

We will momentarily show that the indices cannot go negative. So, the last
condition is not essential although it is clearly true.

The initial condition (2.5) is for the fact that there are no overpartitions
with f1 < 0. No part can appear a negative number of times. The initial
condition (2.6) captures the empty overpartition of zero, which is the only
overpartition with no parts.

For the recurrence (2.4) we consider the following collections of overparti-
tions.
T = the collection of overpartitions enumerated by db

s

k,a(m,n, r), i.e. the
overpartition of n into m parts, r of which are overlined, such that f1 < a,
f1 = 0, fi + fi+1 + fi+1 < k,
and if fi + fi+1 + fi+1 = k − δ for δ = 1, 2, . . . , d− 1,

then a+ s− 1− fodd(i) − χe(i+ 1) + ρ(i+ 1) ≡ 0, 1, . . . , δ − 1 (mod d).
U = the overpartitions in T in which f1 < a− 1,
V = the overpartitions in T in which f1 = a− 1 and f2 = 0,
W = the overpartitions in T in which f1 = a− 1 and f2 = 1.
It is immediate that T is the disjoint union of U , V, and W. Because the

conditions f1 < a− 1; f1 = a− 1 and f2 = 0; and f1 = a− 1 and f2 = 1 are
mutually exclusive and complementary.

U is enumerated by db
s+1

k,a−1(m,n, r), because f1 < a− 1 and if fi + fi+1 +
fi+1 = k − δ for δ = 1, 2, . . . , d − 1, then (a − 1) + (s + 1) − 1 − fodd(i) −
χe(i+ 1) + ρ(i+ 1) ≡ 0, 1, . . . , δ − 1 (mod d), which is equivalent to a+ s−
1− fodd(i) − χe(i+ 1) + ρ(i+ 1) ≡ 0, 1, . . . , δ − 1 (mod d).

Next, we will show that the overpartitions in V are in one-to-one correspon-

dence with the overpartitions counted by db
0

k,k−s−a+1(m−a+1, n−a+1, r).
In the course, we will argue that the indices cannot go negative.

If we delete the (a − 1) 1’s and subtract 1 from the remaining parts,
non-overlined and overlined alike, then the parts change parity. The number
of parts decreases by (a − 1), and becomes (m − a + 1). At the beginning,
necessarily, m ≥ a−1 and n ≥ a−1, so that m−a+ 1 ≥ 0 and n−a+ 1 ≥ 0
after the transformation.

We know that f1 = a − 1 and f2 = 0, so a − 1 + f2 < k and ρ(2) = 0.
Moreover, if a−1+f2 = k−δ for δ = 1, 2, . . . , d−1, then a+s−1−(a−1)+0 ≡
0, 1, . . . , δ−1 (mod d), or simply s ≡ 0, 1, . . . , δ−1 (mod d). Taking 0 ≤ s ≤ d
and 1 ≤ δ ≤ d into consideration, the last congruence asserts s < δ. This in
turn implies k−s > k−δ, that is a−1+f2 = k−δ < k−s, so f2 < k−s−a+1.
Because f2 ≥ 0, k − s− a+ 1 > 0.
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Therefore, after the subtraction f1 = 0 and f1 < k − s− a+ 1.
Suppose λ is a specific overpartition in V. Call the resulting overpartition

λ̃ after the removal of (a− 1) 1’s and subtraction of 1’s from the other parts.
For arbitrary but fixed i ≥ 1, when ρ(i) = A in λ, then ρ̃(i− 1) = −A in λ̃,
since no overlined part is deleted and all parts changed parity. Here, ρ̃ denotes
the ρ−statistic in λ̃. Only one condition remains to verify λ̃ is counted by

db
0

k,k−s−a+1(m−a+1, n−a+1, r). Namely, for i ≥ 2, if f̃i−1 + f̃i + f̃i = k−δ
for δ = 1, 2, . . . , d− 1, then

(k−s−a+1)+0−1−f̃odd(i−1)−χe(i)+ρ̃(i)
?≡ 0, 1, . . . , δ−1 (mod d), (2.7)

where f̃ denotes the frequencies in λ̃.
We know that f̃i = fi+1 and χe(i) + χe(i+ 1) = f̃i = fi+1, so that

f̃odd(i−1) + χe(i) + χe(i+ 1) + fodd(i) = k − δ. We saw that ρ̃(i) = −ρ(i+ 1)
as well. Thus, (2.7) is equivalent to

k−s−a+1+0−1−(k−δ−fodd(i)−χe(i+ 1))−ρ(i+1)
?≡ 0, 1, . . . , δ−1 (mod d),

or, after some rearrangement, to

−a− s+ 1 + fodd(i) + χe(i+ 1)− ρ(i+ 1)
?≡ 0,−1, . . . ,−δ + 1 (mod d),

that is, after negating both sides,

a+ s− 1− fodd(i) − χe(i+ 1) + ρ(i+ 1)
?≡ 0, 1, . . . , δ − 1 (mod d).

The last condition is satisfied by λ. Therefore (2.7) is satisfied by λ̃. It follows

that the number of overpartitions in V is equal to db
0

k,k−s−a+1(m−a+ 1, n−
a+ 1, r).

The correspondence between overpartitions inW and overpartitions counted

by db
0

k,k−s−a(m− a, n− a− 1, r− 1) is constructed likewise. The difference is

that there is a 2 in overpartitions in W, so we delete it alongside the (a− 1)
1’s. A particular overpartition λ in W after the deletions and subtraction of
1 from the remaining parts becomes λ̃. λ̃ has m− a parts, r− 1 of which are
overlined, and it yields an overpartition of n − a − 1. If ρ(i + 1) = A in λ,
then ρ̃(i) = −(A− 1) because of the deleted 2.

The above arguments establish (2.4), and consequently (2.1), (2.2), and
(2.3).

Next, we investigate when Hs
k,a,d(y;xq; q) satisfies (2.1), (2.2), and (2.3).

For convenience, set

cn(y;xq; q)

=
(−1)nxn(k+1−d)q(2k+1−d)n(n+1)/2+nyn(−1/y; q)n(−yxqn+2; q)∞

(qd; qd)n(xdq(n+1)d; qd)∞
,
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so that

Hs
k,a,d(y;xq; q) =

(
(xq)d; qd

)
∞

(xq; q)∞

×
∑
n≥0

cn(y;xq; q)q−anq−sn
[
qdn

(xq)d−s − (xq)d

1− (xq)d
+

1− (xq)d−s

1− (xq)d

]

− cn(y;xq; q)xaqa(n+1)qsn
[
q−dn

1− (xq)s

1− (xq)d
+

(xq)s − (xq)d

1− (xq)d

]
.

Observe that cn(y;xq; q) depends on k and d, but not on a or s. The series
in (1.4) are

Hd
k,a,d(y;xq; q) = H0

k,a,d(y;xq; q)

=

(
(xq)d; qd

)
∞

(xq; q)∞

∑
n≥0

cn(y;xq; q)q−an − cn(y;xq; q)xaqa(n+1).

It is clear that

cn(y; 0; q) =

{
1 if n = 0,

0 otherwise.

So,

Hs
k,a,d(y; 0; q) =

[
(xq)d−s − (xq)d

1− (xq)d
+

1− (xq)d−s

1− (xq)d

]
x=0

= 1. (2.8)

Then we examine

Hs
k,0,d(y;xq; q) =

(
(xq)d; qd

)
∞

(xq; q)∞

∑
n≥0

cn(y;xq; q)

1− (xq)d

×
[
q(d−s)n

(
(xq)d−s − (xq)d

)
+ q−sn

(
1− (xq)d−s

)
−q(s−d)n (1− (xq)s)− qsn

(
(xq)s − (xq)d

)]
.

The expression inside brackets in the last two lines vanishes for s = 0 or
2s = d, i.e. 2s ≡ 0 (mod d). Empirical evidence suggests that Hs

k,0,d(y;xq; q)
is nonzero in all other cases, but we do not have a proof of this. So we have
to be content with saying

Hs
k,0,d(y;xq; q) = 0 if 2s ≡ 0 (mod d). (2.9)

It is worth noting that there are no missing cases for d = 2.
We finally argue that

Hs
k,a,d(y;xq; q)−Hs+1

k,a−1,d(y;xq; q) = (xq)a−1H0
k,k−s−a+1,d(y;xq2; q)
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+ yxaqa+1H0
k,k−s−a,d(y;xq2; q). (2.10)

(2.10) is implied by the following relations.

(
(xq)d; qd

)
∞

(xq; q)∞
cn(y;xq; q)

[
q−anq−sn

[
qdn

(xq)d−s − (xq)d

1− (xq)d
+

1− (xq)d−s

1− (xq)d

]
−q−(a−1)nq−(s+1)n

[
qdn

(xq)d−(s+1) − (xq)d

1− (xq)d
+

1− (xq)d−(s+1)

1− (xq)d

]]
=

(
(xq2)d; qd

)
∞

(xq2; q)∞
cn−1(y;xq2; q)

×
(
−(xq)a−1(xqn+1)k−s−a+1 + yxaqa+1(xqn+1)k−s−a

)
,

(
(xq)d; qd

)
∞

(xq; q)∞
cn(y;xq; q)

×
[
−(xqn+1)aq−sn

[
qdn

(xq)d−s − (xq)d

1− (xq)d
+

1− (xq)d−s

1− (xq)d

]
+(xqn+1)a−1q−(s+1)n

[
qdn

(xq)d−(s+1) − (xq)d

1− (xq)d
+

1− (xq)d−(s+1)

1− (xq)d

]]
=

(
(xq2)d; qd

)
∞

(xq2; q)∞
cn(y;xq2; q)

×
(
(xq)a−1(q−n)k−s−a+1 − yxaqa+1(q−n)k−s−a

)
.

These are straightforward verifications.
The left-hand side of (2.10) suggests that the quantity (a+ s) is an invari-

ant. On the other hand, (2.9) imposes

2(a+ s) ≡ 0 (mod d).

Applying this to the right-hand side of (2.10), we have

2(k − s− a+ 1) ≡ 0 (mod d), and 2(k − s− a) ≡ 0 (mod d),

which forces 2 ≡ 0 (mod d). In other words, d = 1 or d = 2.
Since (2.1), (2.2), and (2.3) uniquely determine dB

s

k,a(y;x; q), we conclude
that

Hs
k,a,d(y;xq; q) = dB

s

k,a(y;x; q) for d = 1 or d = 2,

by (2.8), (2.9), (2.10), and the above congruences. That is,

Hs
k,a,d(y;xq; q) =

∑
m,n,r≥0

db
s

k,a(m,n, r)xmqnyr
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for d = 1 or d = 2.

Corollary 2.1. Let dη
s
k,a(m,n, r) be the number of overpartitions of n into

m parts, r of which are overlined, such that

fi + fi+1 + fi+1 < k, f1 + f1 < a,

if fi + fi+1 + fi+1 = k − δ for δ = 1, 2 . . . , d− 1,

then a+ s− 1− fodd(i) − χe(i+ 1) + ρ(i+ 1) ≡ 0, 1, . . . , δ − 1 (mod d).

Then,

Js
k,a,d(y;x; q) := Hs

k,a,d(y;xq; q) + xyqHs
k,a−1,d(y;xq; q)

=
∑

m,n,r≥0
dη

s
k,a(m,n, r)xmqnyr

for d = 1 or d = 2.

Proof. Let λ be an overpartition enumerated by dη
s
k,a(m,n, r). If λ has no 1,

then it is also counted by db
s

k,a(m,n, r).

If λ has an 1, then erase it to obtain λ̃. λ̃ is an overpartition of n − 1
into m − 1 parts, r − 1 of which are overlined, because of the deleted 1.
ρ̃(i) = ρ(i) + 1 for the same reason, where ρ̃ is the ρ-statistic in λ̃. Also,
f1 < a− 1 in λ̃, because f1 + f1 < a and f1 = 1 in λ.

Now, λ satisfies

a+ s− 1− fodd(i) − χe(i+ 1) + ρ(i+ 1) ≡ 0, 1, . . . , δ − 1 (mod d)

when fi + fi+1 + fi+1 = k − δ for some δ = 1, 2, . . . , d and i ∈ Z+. So,

(a− 1) + s− 1− fodd(i) − χe(i+ 1) + ρ̃(i+ 1) ≡ 0, 1, . . . , δ − 1 (mod d)

for λ̃. Therefore, λ̃ is enumerated by db
s

k,a−1(m−1, n−1, r−1). Conversely, we

can append an 1 to any overpartition counted by db
s

k,a−1(m− 1, n− 1, r− 1),
and obtain one counted by dη

s
k,a(m,n, r).

Having or lacking 1 are mutually exclusive and complementary cases for
λ. We have shown that

dη
s
k,a(m,n, r) = db

s

k,a(m,n, r) + db
s

k,a−1(m− 1, n− 1, r − 1)

which implies the corollary.

In [14], Lovejoy states that J0
k,a,1(1; 1; q) is not an infinite product, but a

combination of two infinite products. One still has a partition identity in this
case, because we can interpret both infinite products as partition enumerants,
and obtain an identity in the form of
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A(n)−A(n− ∗) = B(n)−B(n− ∗) + C(n)− C(n− ∗),

which admittedly is not as elegant as the classical partition identities. Above,
∗ stands for various fixed positive integers, not necessarily the same in each
occurence.

Lovejoy, however, observes also that J0
k,a,1(1/q; 1; q) is a combination of

two infinite products. In this case, as in the proof of the above Corollary, one
subtracts another 1 from all overlined parts, and a possibility of an overlined
zero arises. Then, an overpartition identity cannot be obtained since some
partitions will be counted twice. One needs further work to eliminate the
occurrence of overlined zero.

It is interesting to substitute y = 0 in the series Hs
k,a,d(y;xq; q) and see

what one obtains:

Js
k,a,d(0;x; q) = Hs

k,a,d(0;xq; q)

=
((xq)d; qd)∞

(xq; q)∞

∑
n≥0

(−1)nxn(k+1−d)q(2k+2−d)n(n+1)/2−an

(qd; qd)n(xdqnd; qd)∞

× q−sn
[
qdn

(xq)d−s − (xq)d

1− (xq)d
+

1− (xq)d−s

1− (xq)d

]
− (−1)nxn(k+1−d)+aq(2k+2−d)n(n+1)/2+a(n+1)

(qd; qd)n(xdqnd; qd)∞

× qsn
[
q−dn

1− (xq)s

1− (xq)d
+

(xq)s − (xq)d

1− (xq)d

]
.

This the exact same series as [13, Lemma 11]. There, the series was con-
structed from scratch.

3 Constructions

In this section, we will show that all results stated above can be proven
linearly and constructively. In other words, there is no need for formal veri-
fications that a proposed series is indeed the generating function sought for.
Given the description of partition classes, we will construct their generating
function as a series. We will carry out computations for one example in detail.

Let’s recall the partition enumerant in Corollary 2.1. Let dη
s
k,a(m,n, r) be

the number of overpartitions of n into m parts, r of which are overlined, such
that

fi + fi+1 + fi+1 < k, f1 + f1 < a,

if fi + fi+1 + fi+1 = k − δ for δ = 1, 2 . . . , d− 1,

then a+ s− 1− fodd(i) − χe(i+ 1) + ρ(i+ 1) ≡ 0, 1, . . . , δ − 1 (mod d).



Open problem of Corteel et. al. 15

It is possible (as in the proof of Theorem 2.1) to justify the following
recurrences and initial conditions.

dη
s
k,a(m,n, r) = dη

s+1
k,a−1(m,n, r)

+ dη
0
k,k−a−s+1(m− a+ 1, n− a+ 1, r)

+ dη
0
k,k−a−s+2(m− a+ 1, n− a+ 1, r − 1), (3.1)

dη
s
k,a(0, n, r) =

{
1 if n = r = 0,

0 otherwise ,
(3.2)

dη
s
k,1(m,n, r) = dη

0
k,k−s(m,n, r). (3.3)

It is fairly clear that equations (3.1) for a = 2, 3, . . . , k, (3.2), and (3.3)
uniquely determine dη

s
k,a(m,n, r). The reason we did not use dη

s
k,0(m,n, r) =

0 is that the equation (3.1) already needs a reinterpretation for a = 1, and
the reinterpretation (3.3) implies that dη

s
k,0(m,n, r) = 0. Another reason for

not explicitly stating dη
s
k,0(m,n, r) = 0 is that the computations will not

yield it explicitly. Still we will be able to construct the series.
Set

Qs
a(x) := Qs

k,a,d(y;x, q) =
∑

m,n,r≥0
dη

s
k,a(m,n, r)xmyrqn.

We suppress writing d, k, y, and q because they are unchanged throughout
the computations.

The conditions (3.1)-(3.3) are translated as the following.

Qs
a(x)−Qs+1

a−1 = (xq)a−1Q0
k−a−s+1(xq) + y(xq)a−1Q0

k−a−s+2(xq) (3.4)

for a = 2, 3, . . . , k,
Qs

a(0) = 1, (3.5)

Qs
1(x) = Q0

k−s(xq), (3.6)

and these functional equations and the initial conditions uniquely determine
Qs

a(x).
The next step is taking Andrews’s analytic proof of Gordon’s theorem [1]

as a black box, and assuming that Qs
a(x) is of the form

Qs
a(x) =

∑
n≥0

αs
n(x)q−na + βs

n(x)(xqn+1)a. (3.7)

αs
n(x) and βs

n(x) depend on d, k, y and q; but not on a. Again, we imitate
the mechanism in [1] to assert that

αs
n(x)q−na−αs+1

n (x)q−na+n
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= (xq)a−1β0
n−1(xq)(xqn+1)k−a−s+1

+ y(xq)a−1β0
n−1(xq)(xqn+1)k−a−s+2, (3.8)

and

βs
n(x)(xqn+1)a − βs+1

n (x)(xqn−1)a−1

= (xq)a−1α0
n(xq)(q−n)k−a−s+1 + y(xq)a−1α0

n(xq)(q−n)k−a−s+2. (3.9)

It is useful to keep in mind that although s = 0, 1, . . . , d− 1, it is interpreted
as a residue class (mod d). So, αd

n(x) = α0
n(x), and βd

n(x) = β0
n(x).

The recurrences (3.8) and (3.9) imply (3.4). The idea is to discover α’s
and β’s first, then imposing the initial conditions (3.5) and (3.6).

The reader can check that if one tries to make α’s and β’s independent of
s as well, one either encounters inconsistent equations, or has to adjust the
format of (3.7). In the latter case, the adjustment is more difficult to come
up with, and the resulting equations are much harder to solve. Empirical
evidence shows that this is a convenient way to proceed.

The equations (3.8) and (3.9) can be simplified as

αs
n(x)− qnαs+1

n (x) = (xqn+1)kqn(xqn+1)−s(1 + yxqn+1)β0
n−1(xq),

and

xqn+1βs
n(x)− βs+1

n (x) = (q−n)kqnsyq−n(1 + qn/y)α0
n(xq).

We can collect equations for various s’s and write them in matrix form.
1 −qn

1 −qn
. . .

−qn 1



α0
n(x)
α1
n(x)
...

αd−1
n (x)



= (xqn+1)kqn(1 + yxqn+1)β0
n−1(xq)


1

(xqn+1)−1

...
(xqn+1)−d+1

 ,
and 

xqn+1 −1
xqn+1 −1

. . .

−1 xqn+1



β0
n(x)
β1
n(x)
...

βd−1
n (x)


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= (q−n)kq−ny(1 + qn/y)α0
n(xq)


1
qn

...
(qn)d−1

 .
The displayed matrices have the following respective inverses.

1

(1− qdn)


1 qn q2n · · · qdn−n

qdn−n 1 qn · · · qdn−2n
...

qn q2n q3n · · · 1

 ,
and

(−1)

(1− (xqn+1)d)


(xqn+1)d−1 (xqn+1)d−2 · · · 1

1 (xqn+1)d−1 · · · (xqn+1)
...

(xqn+1)d−2 (xqn+1)d−3 · · · (xqn+1)d−1

 .
Multiplying by the corresponding inverse matrix on both sides, and perform-
ing the matrix-vector multiplication, we obtain

αs
n(x) =

(xqn+1)kqn(xq)1−d(1 + yxqn+1)(1− (xq)d)

(1− qdn)(1− xq)
β0
n−1(xq)

×
[
q(d−s)n

(xq)d−s − (xq)d

1− (xq)d
+ q−sn

1− (xq)d−s

1− (xq)d

]
,

and

βs
n(x) =

(−1)(q−n)kq−n(q−n)1−dy(1 + qn/y)(1− (xq)d)

(1− (xqn+1)d)(1− xq)
α0
n(xq)

×
[
q(s−d)n

1− (xq)s

1− (xq)d
+ qsn

(xq)s − (xq)d

1− (xq)d

]
.

Please notice that the only part involving s in both recurrences is inside the
brackets on the right hand sides, and both brackets evaluate to 1 for s = 0
or s = d.

Unfolding the last two equations, we first find

α0
n(x) = (−1)(xq2)k+1−dqn(d−1)+1y

× (1 + qn−1/y)(1 + yxqn+1)(1− (xq)d)(1− (xq2)d)

(1− qdn)(1− (xqn+1)d)(1− xq)(1− xq2)
α0
n−1(xq2),

and then

α0
n(x) = (−1)nx(k+1−d)nq(2k+1−d)(n+1

2 )+nyn
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× (−1/y; q)n(−yxqn+1; q)n((xq)d; qd)2n
(qd; qd)n((xqn+1)d; qd)n(xq; q)2n

α0
0(xq2n).

Defining

α̃0
0(x) =

((xq)d; qd)∞(xq; q)∞
(−yxq; q)∞((xq)d; qd)∞

α0
0(x),

we finally get

α0
n(x) = (−1)nx(k+1−d)nq(2k+1−d)(n+1

2 )+nyn

× (−1/y; q)n(−yxqn+1; q)∞((xq)d; qd)∞
(qd; qd)n((xqn+1)d; qd)∞(xq; q)∞

α̃0
0(xq2n).

Then, in the order given below, we find

β0
n(x) = −(−1)nx(k+1−d)nq(2k+1−d)(n+1

2 )yn+1

× (−1/y; q)n+1(−yxqn+2; q)∞((xq)d; qd)∞
(qd; qd)n((xqn+1)d; qd)∞(xq; q)∞

α̃0
0(xq2n+1),

αs
n(x) = (−1)nx(k+1−d)nq(2k+1−d)(n+1

2 )+nyn

× (−1/y; q)n(−yxqn+1; q)∞((xq)d; qd)∞
(qd; qd)n((xqn+1)d; qd)∞(xq; q)∞

×
[
q(d−s)n

(xq)d−s − (xq)d

1− (xq)d
+ q−sn

1− (xq)d−s

1− (xq)d

]
α̃0
0(xq2n),

and

βs
n(x) = −(−1)nx(k+1−d)nq(2k+1−d)(n+1

2 )yn+1

× (−1/y; q)n+1(−yxqn+2; q)∞((xq)d; qd)∞
(qd; qd)n((xqn+1)d; qd)∞(xq; q)∞

×
[
q(s−d)n

1− (xq)s

1− (xq)d
+ qsn

(xq)s − (xq)d

1− (xq)d

]
α̃0
0(xq2n+1).

The first initial condition (3.5) is easily seen to hold as long as α̃0
0(0) =

1. The subsequent computations will show that there is no harm in taking
α̃0
0(x) = 1.

There are two options for the other initial condition. The more obvious

Qs
0(x) = 0

does not seem to hold, unfortunately. Therefore, one has to resort to (3.6),
which is
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Qs
1(x) = Q0

k−s(xq).

Qs
1(x) will be used as is. Q0

k−s(xq) needs a small transformation.

Q0
k−s(xq) =

∑
n≥0

(−1)nx(k+1−d)nq(2k+1−d)(n+1
2 )+(s+2−d)nyn

× (−1/y; q)n(−yxqn+2; q)∞((xq2)d; qd)∞
(qd; qd)n((xqn+2)d; qd)∞(xq2; q)∞

− (−1)nx(k+1−d)nq(2k+1−d)(n+1
2 )+(k+1−d)nyn+1

× (−1/y; q)n+1(−yxqn+3; q)∞((xq2)d; qd)∞(xqn+2)k−s

(qd; qd)n((xqn+2)d; qd)∞(xq2; q)∞

=
∑
n≥0

(−1)nx(k+1−d)nq(2k+1−d)(n+1
2 )+(s+2−d)nyn

× (−1/y; q)n(−yxqn+2; q)∞((xq2)d; qd)∞
(qd; qd)n((xqn+2)d; qd)∞(xq2; q)∞

+ (−1)nx(k+1−d)n+d−1−sq(2k+1−d)(n+1
2 )−sn+d−s−1yn

× (−1/y; q)n(−yxqn+2; q)∞((xq2)d; qd)∞
(qd; qd)n−1((xqn+1)d; qd)∞(xq2; q)∞

In particular, we shifted the index n ← (n − 1) in the second term. The
introduction of the n = −1 term in the sum is no problem since 1/(qd; qd)−1 =
0. Noticing the common factor

Cn :=(−1)nx(k+1−d)nq(2k+1−d)(n+1
2 )yn

× (−1/y; q)n(−yxqn+2; q)∞((xq2)d; qd)∞
(qd; qd)n((xqn+1)d; qd)∞(xq; q)∞

,

the series at hand become

Qs
1(x) =

∑
n≥0

Cn
{

(1 + yxqn+1)

×
[
q(d−s)n

(
(xq)d−s − (xq)d

)
+ q−sn

(
1− (xq)d

)]
− xqn+1y(1 + qn/y)

×
[
q(s−d)n (1− (xq)s) + qsn

(
(xq)s − (xq)d

)]}
,

Q0
k−s(xq) =

∑
n≥0

Cn
{
q(s+2−d)n (1− (xqn+1)d

)
(1− xq)

+ xd−1−sq−s(n+1)+d−1(1− qdn)(1− xq)
}
.
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Now one can use a computer algebra system to examine the difference of
the expressions in curly braces. Their difference is zero for d = 1, 2 and all
corresponding s. It is empirically nonzero for d ≥ 3 and various s. This ends
the construction along with the proof of Corollary 2.1.

It should be possible to examine the aforementioned differences, and prove
that the condition d = 1, 2 in the results is not only sufficient, but also
necessary.

4 The case of d ≥ 3

In this section we report on an exploration that shows that a näıve approach
to finding interpretations of the series (1.5) yields complicated (or fascinating,
as per ones taste) results. At the end, for concreteness, we work with d =
3, k = 5.

The main idea of this exploration is to “reverse engineer” the process of
deducing recurrences satisfied by generating functions of a certain class of
partitions. Such a process is an important step in the motivated proof of
Rogers-Ramanujan identities as given by Andrews and Baxter [4].

4.1 Motivating example

As an example of what we mean, let us explain this reverse engineering pro-
cess applied to the familiar Rogers-Ramanujan identities. Suppose that one
is presented with a formal series

F (x, q) =
∑

m,n≥0

fm,nx
mqn

with integral coefficients with the following conditions:

f0,0 = 1 (4.1)

fm,n = 0 if m > n (4.2)

F (x, q) = F (xq, q) + xqF (xq2, q). (4.3)

These conditions tell us that the coefficients of F are non-negative. Now,
the first two conditions hint at the fact that perhaps fm,n counts certain
partitions of n with m parts. With this ansatz, we can now make additional
guesses. The transformation x 7→ xqj corresponds to adding j to every part
of the partition, and multiplication by xqj corresponds to inserting the part j
in the partition. Now we can start “building” the partitions possibly counted
by F using the recurrence (4.3).
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Let us call the class of partitions of n with exactly m parts counted in F
by πm,n. Let us denote the null partition by 0. Thus, a0,0 = 1 counts this null
partition. Note that by definition, we let πm,n = {} if (m,n) 6∈ {(x, y) |x ≥
1, y ≥ 1, x ≤ y} ∪ {(0, 0)}. Then, (4.3) written with partitions in mind reads
as follows:

To find πm,n, take the union of the following two sets:

1. For each partition appearing in πm,n−m, add 1 to every part (corresponds to

the term F (xq, q)).

2. For each partition appearing in πm−1,n−1−2(m−1), add 2 to every part and

then adjoin the part 1 to each of the resulting partitions. (corresponds to the

term xqF (xq2, q)).

Doing this process, we arrive a “partition generating function” Π(x, q) of
the sets of partitions πn,m as follows:

Π(x, q)

= {0}x0q0

+ {(1)}xq + {(2)}xq2 + {(3)}xq3 + {(4)}xq4 + {(5)}xq3 + {(6)}xq4 + · · ·
+ {(1, 3)}x2q4 + {(1, 4)}x2q5 + {(1, 5), (2, 4)}x2q6 + · · ·
+ {(1, 3, 5)}x3q9 + {(1, 3, 6)}x3q10 + {(1, 3, 7), (1, 4, 6)}x3q11 + · · ·
+ · · · .

Doing this for sufficiently high powers xiqj , one can see a pattern emerging:

fm,n counts the number of partitions of n with exactly m parts in which adjacent

parts differ by at least 2.

What we have done is a näıve enrichment of F to a “partition generat-
ing function” and a näıve enrichment of (4.3) to a recurrence of “partition
generating functions.” However, for an arbitrary recurrence, the following
problems could arise:

1. The coefficients fm,n may not be (manifestly) non-negative.
2. The sets of partitions that arise from various summands may not be

disjoint.

These necessitate that we instead look at “partition generating functions”
with integral weights attached to the partitions. We therefore formalize the
reverse engineering process given above in an algebraic language as given in
the next subsection.
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4.2 An algebraic formalism

One can avoid such an algebraic language altogether, however, it facilitates
a succinct exposition of our ideas.

Definition 4.1. Let P denote the set of all partitions and Pm,n denote the
set of all partitions of n with exactly m parts. By convention, P0,0 = {0}.

Definition 4.2. Let P denote the free Z-module generated by P. Similarly,
let Pm,n denote the free Z-module generated by Pm,n.

Definition 4.3. Let P[[x, q]] denote the space of two variable generating
functions with coefficients in P. We say that f ∈ P[[x, q]] is a partition gener-
ating function if the coefficient of xmqn of f lies in Pm,n. We denote the space
of partition generating functions by F. It is clear that F is a Z-submodule of
P[[x, q]].

Henceforth, we shall employ the following convention.

Convention 4.1 We shall write the partitions as tuples of positive integers
in a non-decreasing order. For instance, π = (1, 1, 2, 3, 4, 15) ∈ P6,26. We
shall also think of Pm,n as a subset of Pm,n. Given f ∈ F, we will denote the
coefficient of xmqn by fm,n.

We define the following Z-linear maps:

Definition 4.4. Let σ : Pm,nx
mqn → Pm,n+mx

mqn+m be the unique map
such that σ(πxmqn) = π̃xmqn+m where π ∈ Pm,n and π̃ ∈ Pm,n+n is obtained
by adding 1 to every part of π. Note that the null partition 0 does not have
any parts, and hence σ(0) = 0.

Definition 4.5. Let α : Pm,nx
mqn → Pm+1,n+1x

m+1qn+1 be the unique
map such that σ(πxmqn) = π̃xm+1qn+1 where π ∈ Pm,n and π̃ ∈ Pm,n+n is
obtained by adjoining 1 to π.

Definition 4.6. Let χ : Pm,nx
mqm → Zxmqn be the unique map such that

χ(πxmqn) = xmqn where π ∈ Pm,n.

We may and do extend the maps σ, α and χ to the space F of partition
generating functions.

Proposition 4.1. Let f ∈ F. Then the following hold.

(χ(σ(f)))(x, q) = (χ(f))(xq, q)

(χ(α(f)))(x, q) = xq · (χ(f))(x, q).

Now we can lift the recurrence (4.3) as a recurrence of partition generating
function:

Π(x, q) = (σΠ)(x, q) + (ασ2Π)(x, q).

With the help of computers, it is a trivial matter to generate enough data
for such a generating function.
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4.3 Recurrence for Jk,a,d

In this subsection, we derive the recurrences followed by Jk,a,d. The following
statements are easy generalizations of the results in [9]. First, recall from [9],
with [d]x = (1 + x+ · · ·+ xd−1):

Jk,a,d(y, xq, q) = Hk,a,d(y, xq, q) + yxqHk,a−1,d(y, xq, q) (4.4)

Hk,0,d(y, x, q) = 0 (4.5)

Hk,−a,d(y, x, q) = −x−aHk,a,d(y, x, q) (4.6)

Hk,a,d(y, x, q)−Hk,a−d,d(y, x, q) = xa−d[d]xJk,k−a+1,d(y, x, q) (4.7)

Invoking (4.7) with a = t and a = d− t and dropping the implicit arguments
y, x, q, we have:

Hk,t,d −Hk,t−d,d = xt−d[d]xJk,k−t+1,d

Hk,d−t,d −Hk,−t,d = x−t[d]xJk,k−d+t+1,d.

Using equation (4.6), rearranging:

Hk,t,d + xt−dHk,d−t,d = xt−d[d]xJk,k−t+1,d

x−tHk,t,d +Hk,d−t,d = x−t[d]xJk,k−d+t+1,d.

Solving, we get:

(1− x−d)Hk,d−t,d = [d]x(x−tJk,k+t+1−d,d − x−dJk,k−t+1,d)

The equation one gets for Hk,t,d is just t 7→ d− t. Simplifying,

(xd − 1)Hk,d−t,d = [d]x(xd−tJk,k+t+1−d,d − Jk,k−t+1,d)

Hence,

Hk,d−t,d =
xd−tJk,k+t+1−d,d − Jk,k−t+1,d

x− 1

Letting t 7→ d− t:

Hk,t,d =
xtJk,k−t+1,d − Jk,k+t−d+1,d

x− 1

We can now deduce the following:

1. For a = 1, we have that:

Jk,1,d(y, x, q)

= Hk,1,d(y, xq, q) + yxqHk,0,d(y, xq, q) = Hk,1,d(y, xq, q)
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=
1

xq − 1
{xqJk,k,d(y, xq, q)− Jk,k+2−d,d(y, xq, q)} (4.8)

We get the correct (2.4) from [9] with d = 2.
2. Let 1 < a < d:

Jk,a,d(y, x, q)

= Hk,a,d(y, xq, q) + yxqHk,a−1,d(y, xq, q)

=
1

xq − 1
{(xq)aJk,k−a+1,d(y, xq, q)− Jk,k+a−d+1,d(y, xq, q)

+y(xq)aJk,k−a+2,d(y, xq, q)− yxqJk,k+a−d,d(y, xq, q)} .
(4.9)

3. Letting a = d and then using the expression for H in terms of J :

Jk,d,d(y, x, q)

= Hk,d,d(y, xq, q) + yxqHk,d−1,d(y, xq, q)

= Hk,d,d(y, xq, q)−Hk,0,d(y, xq, q) + axqHk,d−1,d(y, xq, q)

= [d]xqJk,k−d+1,d(y, xq, q) + yxqHk,d−1,d(d, xq, q)

= [d]xqJk,k−d+1,d(y, xq, q) + yxq
(xq)d−1Jk,k+2−d,d(y, xq, q)− Jk,k,d(y, xq, q)

xq − 1

(4.10)

Note that when d = 2, this specializes to (2.5) of [9].
4. For d+ 1 ≤ a ≤ k,

Jk,a,d(y, x, q)− Jk,a−d,d(y, x, q)

= Hk,a,d(y, xq, q) + yxqHk,a−1,d(y, xq, q)

−Hk,a−d,d(y, xq, q)− yxqHk,a−d−1,d(y, xq, q)

= (xq)a−d[d]xq (Jk,k−a+1,d(y, xq, q) + yJk,k−a+2,d(y, xq, q)) (4.11)

Note that for d = 2, we correctly get (2.6) of [9].

4.4 A concrete exploration

For our explorations, we let d = 3, k = 5 and y 7→ 0, to begin with. We have
the following recurrences. For convenience, we shall abbreviate J5,a,3(0, x, q)
by Ja(x, q).

(xq − 1)J1(x, q) = xqJ5(xq, q)− J4(xq, q) (4.12)

(xq − 1)J2(x, q) = (xq)2J4(xq, q)− J5(xq, q) (4.13)
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J3(x, q) = Xd(xq)J3(xq, q) (4.14)

J4(x, q)− J1(x, q) = xqXd(xq)J2(xq, q) (4.15)

J5(x, q)− J2(x, q) = (xq)2Xd(xq)J1(xq, q). (4.16)

We deduce the following functional equations for the “partition generating
functions” (we drop the implicit arguments x, q):

F1 = αF1 − ασF5 + σF4 (4.17)

F2 = αF2 − α2σF4 + σF5 (4.18)

F3 = (1 + α1 + α2)σF3 (4.19)

F4 = F1 + (α+ α2 + α3)σF2 (4.20)

F5 = F2 + (α2 + α3 + α4)σF1. (4.21)

The partition generating functions hold some nice patterns for small parti-
tions, but one quickly gets complicated coefficients. A computer search reveals
the following coefficients in the expansion of F1:

2·(1, 2, 2, 2, 2, 3, 3, 4)x8q19

3·(1, 2, 2, 2, 2, 3, 3, 4, 4, 5)x10q28

2·(1, 2, 2, 2, 2, 3, 3, 4, 4, 5, 5, 6)x12q39

−2·(1, 2, 2, 2, 2, 3, 3, 4, 4, 5, 5, 6, 6, 7)x14q52

−8·(1, 2, 2, 2, 2, 3, 3, 4, 4, 5, 5, 6, 6, 7, 7, 8)x16q67

−12·(1, 2, 2, 2, 2, 3, 3, 4, 4, 5, 5, 6, 6, 7, 7, 8, 8, 9)x18q84.

Of course, for each xmqn appearing above, there are also other partitions
of n with length m besides the ones mentioned above that yield non-zero
coefficients.

One may very easily do explorations with y not specialized to 0. In this
case, we assume that we are working with two-colored partition where parts
may appear overlined, with y counting overlined parts and x counting total
number of parts.

Looking at equations (4.8)–(4.11), observe the following: Whenever a new
overlined part is introduced, that is, whenever we have a factor of y on the
right-hand sides, the newly introduced overlined part is always a 1 (a term of
the sort y(xq)t corresponds to introducing one 1 and t− 1 non-overlined 1s).
Moreover, the term with y on the right-hand sides of equations (4.8)–(4.11)
is always multiplied with a shifted, (that is, x 7→ xq) generating function.
This implies that we get non-zero coefficients in the corresponding partition
generating functions only if the overlined parts do not repeat.

However, further computer search reveals interesting patterns; we have the
following terms as a sample:
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2·(1, 2, 2, 3, 3, 4) ax6q15

2·(1, 1, 2, 2, 3, 3, 4) ax7q16

2·(1, 1, 1, 2, 2, 3, 3, 4) ax8q17,

and

−2·(1, 2, 3, 3, 3, 3) ax6q15

−2·(1, 1, 2, 3, 3, 3, 3) ax7q16

−2·(1, 1, 1, 2, 3, 3, 3, 3) ax8q17,

etc.

5 Further research

We suggest the following directions for further research:

1. Carry out the explorations in Subsection 4.2 with other values of d and
k.

2. First lesson to be learnt from Section 2 is that maybe it is too much to
hope that partition generating functions like Fi count something mean-
ingful. Instead, it will be worthwhile to explore if linear combinations of
Fi hold interesting information.

3. Second lesson to be learnt is that may be only certain combinations of
values (k, a, d) yield interesting results. However, which values of k, a to
choose when d ≥ 3 is not clear yet.

4. Write a computer algebra program to automate the construction in §3.
This is a partial converse to the theory developed in [15] in the context of
Rogers-Ramanujan generalizations. The WZ−theory constructs recur-
rences given series. In contrast, §3 constructs q-series given functional
equations.

Acknowledgements The authors would like to thank the referee for helpful suggestions.
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