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Abstract

This thesis has two main parts. The first part deals with security and privacy analysis of

biometric hashing. The second part introduces a method for fixed-length feature vector

extraction and hash generation from fingerprint minutiae.

The upsurge of interest in biometric systems has led to development of biometric tem-

plate protection methods in order to overcome security and privacy problems. Biometric

hashing produces a secure binary template by combining a personal secret key and the

biometric of a person, which leads to a two factor authentication method. This disserta-

tion analyzes biometric hashing both from a theoretical point of view and in regards to

its practical application. For theoretical evaluation of biohashes, a systematic approach

which uses estimated entropy based on degree of freedom of a binomial distribution is

outlined. In addition, novel practical security and privacy attacks against face image

hashing are presented to quantify additional protection provided by biometrics in cases

where the secret key is compromised (i.e., the attacker is assumed to know the user’s

secret key). Two of these attacks are based on sparse signal recovery techniques us-

ing one-bit compressed sensing in addition to two other minimum-norm solution based

attacks. A rainbow attack based on a large database of faces is also introduced. The

results show that biometric templates would be in serious danger of being exposed when

the secret key is known by an attacker, and the system would be under a serious threat

as well.

Due to its distinctiveness and performance, fingerprint is preferred among various bio-

metric modalities in many settings. Most fingerprint recognition systems use minutiae

information, which is an unordered collection of minutiae locations and orientations.



Some advanced template protection algorithms (such as fuzzy commitment and other

modern cryptographic alternatives) require a fixed-length binary template. However,

such a template protection method is not directly applicable to fingerprint minutiae

representation which by its nature is of variable size. This dissertation introduces a

novel and empirically validated framework that represents a minutiae set with a rota-

tion invariant fixed-length vector and hence enables using biometric template protection

methods for fingerprint recognition without significant loss in verification performance.

The introduced framework is based on using local representations around each minutia

as observations modeled by a Gaussian mixture model called a universal background

model (UBM). For each fingerprint, we extract a fixed length super-vector of first or-

der statistics through alignment with the UBM. These super-vectors are then used for

learning linear support vector machine (SVM) models per person for verification. In

addition, the fixed-length vector and the linear SVM model are both converted into

binary hashes and the matching process is reduced to calculating the Hamming dis-

tance between them so that modern cryptographic alternatives based on homomorphic

encryption can be applied for minutiae template protection.



BİYOMETRİK KIYIM İÇİN GÜVENLİK/MAHREMİYET ANALİZİ VE PARMAK

İZİ OLAY NOKTALARI İÇİN ŞABLON KORUMA

BERKAY TOPÇU

EE, Doktora Tezi, 2016

Tez Danışmanı: Hakan Erdoğan

Anahtar Kelimeler: Biyometrik, biyometrik şablon koruma, yüz tanıma, parmak izi

doğrulama, biyometrik kıyım.

Özet

Bu tez çalışması iki ana parçadan oluşmaktadır. İlk kısım biyometrik kıyım (hash)

yönteminin güvenliğini ve mahremiyetini ele almaktadır. İkinci kısım ise parmak izi

olay noktaları için sabit uzunlukta bir vektör ve kıyım oluşturma yöntemi sunmaktadır.

Biyometrik sistemlere hızla artan ilgi, güvenlik ve mahremiyet problemlerini arttrm ve

dolayısıyla biyometrik şablon koruma yöntemlerinin geliştirilmesini de beraberinde ge-

tirmiştir. Biyometrik kıyım, kişinin biyometrisi ile kişisel bir gizli anahtarı birleştirerek

güvenli bir ikili (binary) şablon oluşturur ve iki unsurlu bir biyometrik doğrulama

yöntemi sunar. Bu tez çalışması, biyometrik kıyım yöntemini hem teorik açıdan hem de

pratik uygulama yönünden analiz etmektedir. Biyometrik kıyımın teorik değerlendirmesi

kapsamında binomial dağılımın serbestlik derecesine dayalı entropi kestirimini kullanan

sistematik bir yöntem anlatılmaktadır. Buna ek olarak, yüz imgesi kıyımına yönelik

özgün güvenlik ve mahremiyet atakları sunulmaktadır. Bu ataklar ile kişinin gizli

anahtarının art niyetli bir saldırganca bilindiği durumlarda biyometrik tarafından sağlanan

ilave koruma miktarı ölçülmektedir. Bu ataklardan ikisi bir-bit sıkıştırmalı algılama

kullanan seyrek işaret geri kazanımına dayanmaktadır. Diğer iki atak ise en küçük

işaret boyu çözümlerine dayanmaktadır. Bunlara ek olarak büyük bir yüz veritabanına

dayalı gökkuşağı atağı da sunulmaktadır. Sonuçlar göstermektedir ki, kişisel anahtarın

saldırgan tarafından bilindiği durumda biyometrik şablon açığa çıkma tehlikesi ile karşıya

karşıya kalmakta ve aynı zamanda sistem de ciddi tehdit altında bulunmaktadır.

Parmak izi, yüksek ayırdediciliği ve başarımı dolayısıyla pek çok farklı biyometrik özellik

arasından tercih edilmektedir. Parmak izi tanıma sistemlerinin tamamına yakını sıralı



olmayan olay noktalarının konum ve yön bilgilerini kullanmaktadır. Fuzzy commit-

ment ve diğer modern kriptografik alternatifler gibi ileri biyometrik şablon koruma

yöntemleri sabit uzunlukta bir öznitelik vektörüne ihtiyaç duymaktadır. Dolayısıyla,

bu yöntemler doğası gereği farklı sayıda olan parmak izi olay noktalarını korumak için

kullanılamamaktadır. Bu tez çalışması, parmak izi olay noktaları kümesini dönmelere

değişimsiz ve sabit uzunlukta bir vektör olarak ifade eden, özgün ve geçerliliği deney-

sel olarak gösterilmiş bir yöntem sunmaktadır. Bu sayede biyometrik şablon koruma

yöntemlerinin ciddi bir performans kaybı olmadan parmak izi tanıma için kullanılabilmesi

sağlanmıştır. Sunulan yöntem, her bir olay noktası etrafındaki yerel gösterimleri evrensel

arka plan modeli (UBM) olarak adlandırılan bir Gaussian karışım modeli ile modellenen

gözlemler olarak kullanmaktadır. Her bir parmak izi için, UBM ile olan doğrultusuna

göre birinci dereceden istatistiklerin bir süper-vektörünü oluşturulmakta ve bu süper-

vektörler, doğrulama işleminde kullanılmak üzere her bir kişinin doğrusal karar destek

makinesi (SVM) modelini öğrenmek için kullanılmaktadır. Ayrıca, hem sabit uzun-

luktaki süper-vektör hem de doğrusal SVM modeli ikili bir kıyıma dönüştürülmüş ve

karşılaştırma işlemi bu ikisi arasındaki Hamming uzaklığının hesaplanmasına indirgenmiştir.

Böylelikle, parmak izi olay noktaları homomorfik (benzer yapılı) şifreleme temelli krip-

tografik alternatifler ile korunabilir hale gelmiştir.
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Chapter 1

Introduction

1.1 Biometric Template Protection

Biometric traits (such as fingerprint, face, and iris) are inalienable and distinctive at-

tributes that can be used in establishing personal identities. For instance, fingerprints

are ubiquitous in that each and every person but those with some kinds of physical

disabilities has fingerprints. Additionally, fingerprints are unique to each person and

no more than one person has the same fingerprint. Distinguishing and to some extent

permanent characteristics of biometric traits offer greater security and convenience than

traditional forms of verification that are based on passwords or tokens (such as PIN num-

bers and ID cards). Biometric authentication systems have been used to authenticate

personal identities in many real world applications such as electronic identity cards, bor-

der control systems with electronic travel documents, electronic payment systems, and

forensics applications since they provide a fast, reliable, and secure electronic authenti-

cation mechanism. The societal importance of biometrics and its main contributions to

our daily lives are enormous as succinctly stated in [2]:

Biometrics is not only a fascinating pattern recognition research problem

but, if carefully used, is an enabling technology with the potential to make

our society safer, reduce fraud and provide user convenience.

Automatically determining the validity of an identity claim by a person is a critical

task, but unfortunately, the knowledge-based mechanisms and similarly token-based

1
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authentication systems are not able to meet this challenge. Neither a token nor a

password, which can be stolen or handed over easily, provides a unique link between a

person and his identity. At the governmental level, e-Passports store fingerprints and face

photos in Europe. For visa application and border control, the US visit program keeps

records of 10 fingers and face images of each person. In addition, automated fingerprint

identification systems (AFIS), which are fingerprint and criminal history systems, help

local, state, and federal partners solve and prevent crime by catching criminals and

terrorists with the use of automated fingerprint and latent search capabilities. FBI IAFIS

includes not only fingerprints but also additional biometrics such as corresponding mug

shots and photos of scars and tattoos.

However, widespread deployment of biometric authentication systems in real world ap-

plications brings about severe security and privacy concerns [3–5]. This is the main

driving force behind significant research efforts put forward to protect biometric tem-

plates of users. In the literature, several biometric template protection methods have

been proposed (e.g., fuzzy commitment scheme [6] and biohashing [7]) in order to over-

come these concerns by securing biometric templates. As another advantage, protected

templates ideally enable multiple secure references to be created from the same biomet-

ric data. These secure references are supposed to be unlinkable and non-invertible in

order to achieve the desired level of security and to fulfill privacy requirements.

The main goals of template protection are i) security, ii) privacy protection ability, iii)

and unlinkability [8]. Security of a protected template corresponds to the difficulty

of creating a “pre-image” of the template that gives a positive authentication result.

Privacy protection ability of a protected template involves irreversibility and privacy

leakage. Irreversibility indicates the hardness in retrieving original biometric data and

privacy leakage shows the amount of information exposed in protected templates about

the biometric data [3]. Another motivation for template protection is to prevent linking

protected templates. It should not be easy for an adversary to decide whether two

protected templates belong to same subject or not (cross matching). Moreover, the

combination of two or more protected templates should not reveal secrets or biometric

features (leakage amplification).
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Biometric hashing (biohashing) scheme is a transformation-based template protection

method that projects an input biometric trait to a pseudo-random space. After a thresh-

olding step, the biometric sample of a user is converted into a binary vector. Biohashing

is used to secure different biometric modalities such as fingerprints [7], faces [9], and

palms [10]. It uses a user specific secret key for creating a random projection specific

to each user. The ability to revoke the biohash of a user by simply assigning a new

secret key in cases where the secret key of a user is compromised is a major advantage of

biohashing. It is also possible to generate different biohashes with different secret keys.

This allows a person to enroll to different services using his unique biometric data and

prevents linkability.

Due to increased inter-class variation and preserved intra-class variation, biohashing

significantly improves the matching performance. On the other hand, this performance

degrades if the secret key of the user is known to the adversary. However, empirical

studies showed that even in such cases, the matching accuracy is still comparable to

that of unprotected biometric templates.

Although biohashing methods have become very popular due to their high authentication

performance and easy deployment into match-on-card applications, research recently

showed that they may suffer from serious security and privacy problems [8, 11–13]. A

comprehensive security and privacy evaluation of biometric template protection methods

can be carried out by theoretically analyzing the underlying methodology and assessing

its vulnerabilities under practical attacks. In this dissertation, we present the first

successful theoretical evaluation of biometric hashing as required for thorough analysis,

where the unpredictability of biohashes generated by random projection (RP) based

biohashing scheme is quantified via estimated entropy. The amount of information a

biohash carries is quantitatively analyzed by measuring the entropy of a biohash obtained

from a face image. Furthermore, to assess to what extent a biohash is unpredictable

once the secret key of a user is stolen, we calculate the entropy of biohashes obtained

using the same key but using biometric data from arbitrary people.

From a practical point of view, the strength of transformation-based methods is based

on the hardness of invertibility of the underlying transformation. Introduction of prac-

tical attacks against biometric template protection methods are interesting since they

reveal vulnerabilities in these methods. If a practical attack can be found, then this
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simply shows that the method cannot be reliably used for template protection. In some

studies [11, 14], computational inversion techniques for biohashing and practical secu-

rity analysis of biohashes have been explored. In this work, we have also addressed the

reconstruction of face recognition features from face biohashes with a novel use of two

different sparse recovery techniques from one-bit compressed sensing measurements. In

addition, we introduce two minimum-norm solution attacks and a rainbow attack which

makes use of a large database of faces..

1.2 Template Protection for Fingerprint Minutiae

Among various biometric modalities, fingerprint is preferred in many settings, due to its

distinctiveness and performance, as well as the practicality and low cost of fingerprint

readers. Most fingerprint recognition systems depend on the comparison of minutiae

which are the endpoints and bifurcations of fingerprint ridges. They are known to

remain unchanged throughout an individual’s lifetime and enable a very discriminative

classification of fingerprints [2].

Increasing use of fingerprint identification as well as other biometric modalities raise

privacy concerns significantly [15] and hence protecting biometric fingerprint templates

(mostly minutiae templates) becomes a requirement. We need a fixed-length orientation-

invariant fingerprint representation to be able to use advanced template protection al-

gorithms such as fuzzy commitment and modern cryptographic alternatives based on

homomorphic encryption. However, the number of minutiae in a fingerprint depends

on various conditions. For instance, two impressions of the same finger might not have

an equal number of minutiae due to difficulties in fingerprint imaging and automatic

minutiae extraction. This difference may result from the placement of a finger on the

fingerprint reader (rotation or translation), elasticity of the skin (non-linear distortion),

dryness or wetness of the finger, or the current amount of pressure applied. In addition,

in cases where two impressions of the same finger are captured by two different read-

ers, differences in the sensing area and sensor intrinsic properties may lead to a varying

number of minutiae.

Spectral minutiae representation [16] proposes a method for combining fingerprint recog-

nition with template protection. It transforms a minutiae set into a fixed-length feature
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vector by representing minutiae as a magnitude spectrum. This transformation is in-

variant to translation. Furthermore, rotation and scaling become easily compensated

translations under this transformation. In this work, we present the first successful

implementation of biometric hashing for spectral minutiae.

In practice, an alignment based on singular points (core and delta) is required for spectral

minutiae representation in order to achieve good recognition performances [17] because a

large rotation or a translation might lead to partial overlap between different impressions

of the same finger. Additionally, missing or spurious minutiae lead to lower matching

performances. To overcome these drawbacks, we propose a novel framework that enables

the generation of a fixed-length feature vector representation for fingerprint minutiae

based on local representations unlike spectral minutiae.

In our new representation, each minutia is represented as a minutia patch which en-

codes its geometric relations with other closely located minutiae. A minutia patch is

translated and rotated accordingly to eliminate the registration requirement due to the

relative alignment of fingerprints. Thus, a rotation invariant representation is obtained.

The distribution of minutiae patches is modeled via a single user-independent Gaussian

mixture model (GMM) called universal background model (UBM) and a fingerprint is

represented with its probabilistic alignment to the UBM mixture components. We ob-

tain first-order statistics from the alignment to UBM mixture components and use them

to form a super-vector to represent each fingerprint. We further train a linear SVM in

this large-dimensional vector space to discriminate a person’s fingerprint from other peo-

ple’s fingerprints. This idea is borrowed from speaker verification literature where each

frame of an utterance is assumed as a separate observation and a similar GMM-SVM

approach is used for verification [18]. In this approach each minutia patch is analogous

to a frame of speech and a collection of minutia patches which forms a fingerprint is

analogous to an utterance.

Even though the above approach obtains fixed length vectors for representing fingerprints

and their linear SVM models are also vectors of the same size, the representations

are not binary and they may not be directly used with template protection methods

which require binary representations. Hence, we explore the use of asymmetric locality

sensitive hashing (ALSH) to map these vectors into binary strings and the inner products

between vectors are approximated by the Hamming distance between mapped binary
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strings. In this framework, both fingerprints and linear SVM models are represented as

binary strings and the decision is made by thresholding the Hamming distance between

them, but the mapping to binary domain is slightly different for fingerprint vectors and

SVM models, hence the locality sensitive hashing is asymmetric. In this framework, a

fixed-length minutiae vector is also transformed into a binary string using asymmetric

locality sensitive hashing (ALSH) [19]. Our framework is able to create a fixed-length

binary feature vector of fingerprints to represent minutiae information. This enables the

protection of fingerprint minutiae via current template protection methods such as fuzzy

commitment and biometric hashing as well as application of homomorphic encryption

techniques.

1.3 Contributions

In this dissertation, biometric template protection methods are addressed. Biometric

hashing is analyzed from security and privacy aspects. In addition, template protection

for fingerprint minutiae is discussed in detail and novel solutions are proposed.

The contributions of this research are summarized as follows:

• This work presents the first successful theoretical evaluation of biometric hashing

as required for thorough analysis where unpredictability of biohashes is quantified

via estimated entropy.

• This work estimates entropy of biohashes using the degree of freedom of binomial

distribution as described by Daugman [1]. Our work demonstrates that Daugman’s

entropy estimation is not restricted only to iris but can also be applied to other

biometric modalities that can be represented with a fixed-length binary string and

compared via Hamming distance.

• This work proposes four novel optimization-based methods that aim to reconstruct

the feature vector from a biohash. Assuming that an adversary gains access to the

biohash vector of a user and the corresponding secret key, these methods can

be used to estimate a new real-valued feature vector from binary biohash and

authenticate to the system.
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• This work introduces the first practical security and privacy attacks against bio-

hashes using one-bit compressive sensing framework. Apart from that, minimum

norm solutions are discussed in detail and L1 norm minimization is introduced in

addition to the L2 norm minimization which previously appeared in the literature.

Finally, this work introduces a type of “rainbow attack” against biometric hashing

systems.

• This work evaluates spectral minutiae representation in depth and proposes the

first implementation of biometric hashing for spectral minutiae.

• This work describes an underlying framework that enables the generation of a novel

fixed-length feature vector representation for fingerprint minutiae based on GMM-

SVM approach. The framework allows biometric template protection methods to

be applied to fingerprint minutiae.

• This work presents the use of asymmetric locality sensitive hashing for binary

strings generation from GMM-SVM fingerprint features. This allows fast and

efficient matching via Hamming distance.

1.4 Outline of the Dissertation

Chapter 2 discusses related work in various research areas that is relevant to our work.

Chapter 3 describes biometric hashing in detail and presents entropy analysis of bio-

hashes.

Chapter 4 presents novel methods for reconstructing biometric features from biohashes

via sparse recovery.

Chapter 5 presents spectral minutiae representation in detail and provides the first

implementation of biometric hashing for spectral minutiae.

Chapter 6 describes an underlying framework that enables the generation of a novel

fixed-length feature vector representation for fingerprint minutiae and presents a

binary hash generation method.

Chapter 7 presents our conclusions and future plans on extending this research.
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Related Work

This chapter presents related work in several disparate fields that is relevant to our work

and describes how our work both builds on and differs from this existing research. Sec-

tion 2.1 presents the fundamentals of biometric recognition systems. Section 2.2 looks

at research efforts aimed at enhancing security and privacy aspects of biometric recogni-

tion systems by protecting biometric templates of users. Section 2.3 discusses potential

vulnerabilities of biometric template protection methods and possible attacks against

biometric hashing. Section 2.4 discusses research efforts specific to protecting finger-

print minutiae templates. Section 2.5 discusses fixed-length minutiae representations

that is required for template protection.

2.1 Biometric Recognition Systems

Biometric recognition (simply biometrics) refers to the use of distinctive physical/phys-

iological (e.g., fingerprints, face, and iris) or behavioral (e.g., speech) characteristics for

automatically recognizing the identity of an individual or verifying/authenticating his

claimed identity. These characteristics are called as biometric identifiers or traits.

Recognizing a person by his body and linking it to an identity is a very powerful tool

for identity management. Biometrics is becoming an essential component of effective

person identification solutions since biometric identifiers cannot be shared or misplaced,

and they intrinsically represent individuals’ bodily identities.

8
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Three main management tools for the identification of a person are: i) what you have

(i.e., ID cards), ii) what you know (i.e., password or PIN), and iii) who you are (i.e.,

biometrics). Biometrics are accepted as more reliable in recognizing a person than

traditional token or knowledge-based methods due to their inalienable nature (e.g., they

cannot be easily misplaced, forged, or shared). Some biometric characteristics that

have been used for automated recognition include fingerprints, iris, face, hand or finger

geometry, retina, voice, signature, and keystroke dynamics.

Automated biometric recognition systems consists of the following steps. A biometric

sample is taken from an individual, for instance, a fingerprint or an iris scan, which

might be represented by an image. Representative data (a biometric template) are often

extracted from that sample. This biometric data, either the image or the template or

both, is then stored on a storage medium which could be a database or a distributed

environment (e.g., smart cards). All these phases constitute the enrolment process.

At a later stage, if a person presents himself to the system, the system will ask the person

to submit his biometric characteristic(s). The system will then compare the image of the

submitted sample (or the template extracted from it) with the biometric data/template

taken during enrolment. The person is then recognized and accepted by the system if a

match is obtained. If there is no match, the person is not recognized and “rejected” by

the system.

Depending on the application context, a biometric system may either perform the veri-

fication or identification task:

• A verification system authenticates a person’s identity by comparing the captured

biometric characteristics with his previously captured biometric reference template

that is pre-stored in the system. It conducts a one-to-one matching to confirm

whether the claimed identity of the individual is true.

• An identification system recognizes an individual by searching the entire enrolment

template database for a match by conducting one-to-many comparisons.

Although biometrics promise to correctly identify or validate the identity of a subject,

in practice, a biometric system is a pattern recognition system that inevitably makes

some incorrect decisions. Some of the main source of errors are capture systems (i.e.,
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Failure to Detect (FTD) and Failure to Capture (FTC)) and feature extraction (i.e.,

Failure to Process (FTP)). These kinds of errors can be combined into a single measure

which is called as the “Failure to Acquire (FTA)”. Another source of errors, named

as the “Failure to Enroll (FTE)”, is observed when there is not enough discriminatory

information present in the feature sets.

Throughout this work, we focus on the verification task where a one-to-one matching be-

tween a reference biometric template and a query biometric template is performed. Two

types of errors that can be committed by a verification system are the “false match” and

“false non-match”. False match corresponds to mistaking templates from two different

subjects as belonging to the same subject. False non-match corresponds to mistaking

two templates of the same subject to be from two different subjects. Although they do

not exactly stand for each other, false acceptance and false rejection are commonly used

in the same context.
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Figure 2.1: A sample ROC

In this work, we use the “False Acceptance Rare (FAR)” and “False Rejection Rate

(FRR)” for evaluating the verification performance of biometric systems. There is a

trade-off between these two types of errors since we can decrease one by increasing the

other one. This is achieved by changing a decision threshold. We can plot FAR versus

FRR in a detection error trade-off (DET) curve. An example DET curve is shown in

Figure 2.1. Each point on the curve corresponds to using a different decision threshold.

Same information can also be conveyed using a receiver operating characteristic (ROC)

curve which plots true accept rates versus false reject rates. We also employ the “Equal
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Error Rate (EER)” of a verification system, which is the error rate at a point where

FAR and FRR are identical.

2.2 Biometric Template Protection Methods

Biometric recognition systems enable fast, reliable, and secure electronic authentication,

however, their large scale deployment in real world applications causes privacy and secu-

rity concerns [3–5]. Biometric systems are not foolproof and a critical vulnerability that

is unique to biometrics systems is the possession of stored templates by adversaries [11].

Biometric data might reveal sensitive information such as race, gender, and certain med-

ical conditions. Since biometric traits are supposed to be permanent and unique to an

individual, stolen templates can be used as unique identifiers to link information across

different applications. Moreover, biometric modalities are limited in number and they

cannot be easily revoked to obtain another template as seen in the use of passwords.

Therefore, it is essential to ensure the security of biometric templates and to protect

biometric data. In the literature, several biometric template protection methods have

been proposed [15] (e.g., fuzzy commitment scheme [6] and biohashing [7]) to overcome

these concerns by securing biometric templates (e.g., face and fingerprint). Biometric

template protection methods store a modified version of the biometric template and

reveal as little information about the original biometric trait as possible without losing

the capability to identify a person.

Template protection methods can be categorized into two groups: i) biometric cryp-

tosystems [15] (e.g., fuzzy commitment [6], fuzzy vault [20]) and ii) transformation-

based methods/salting [2] (e.g., biohashing [7]). Biometric cryptosystems either bind

secrets into biometric data to form a secure biometric template or generate secrets

from biometric data with the help of some auxiliary data. The secrets can be success-

fully retrieved during a genuine verification attempt. The helper or auxiliary data does

not reveal significant information about the biometric or the key. On the other hand,

transformation-based approaches distort or randomize biometric data with the use of

non-invertible functions so that the original data cannot be reconstructed from trans-

formed templates. Biometric templates are transformed using parameters derived from

external information such as user keys or passwords.
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Biohashing or biometric hashing [7, 9] is one of the transformation-based methods, in

which the biometric template of the user is transformed into a protected binary string

through multiplication with a pseudo-random projection matrix and quantization. Due

to increased inter-class variation and preservation of intra-class variation, biohashing

significantly improves verification accuracy when the secret key is kept secure and un-

known to adversaries. In this thesis, we use the terms biohashing and biometric hashing

synonymously, even though we think biometric hashing is a more descriptive name.

In addition to the increased performance of the protected templates when the secret key

of a user is kept safe, another advantage of biometric hashing lies in the ease of revoking

a transformed template by changing the associated secret key. Furthermore, using the

same biometric data, a user can be authenticated to different services through different

biohashes generated from distinct secret keys. This way, two records that are presented

to two different systems cannot be linked and activities of the user is kept private.

2.3 Security and Privacy Evaluation of Biometric Hashing

Biometric hashing uses a unique secret key in order to randomize biometric template of

each user. It is a two factor authentication system in which both the biometric modal-

ity and the secret key of a user have to be presented during authentication. Although

biohashing methods have become very popular due to their high authentication perfor-

mance and easy deployment into match-on-card applications, research recently showed

that they might suffer from serious security and privacy problems [8, 11, 13, 21].

We believe that it is necessary to study the security and privacy preservation capabilities

of biometric hashing especially when the secret key is compromised. If the key is always

assumed to be kept secure, an authentication system which checks the accuracy of the

entered key will achieve a zero verification error even without any need for biometric

data.
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2.3.1 Unpredictability of Biohashes

A comprehensive evaluation of biometric template protection methods can be carried

out by theoretically analyzing the underlying methodology and assessing its vulnerabil-

ities under practical attacks. For biometric cryptosystems, there exist some theoretical

analyses utilizing information theoretical metrics (e.g., entropy, conditional entropy, and

mutual information) or metrics used in cryptanalysis (e.g., min-entropy, average min-

entropy, guessing entropy, and conditional guessing entropy) [8]. However, the applica-

bility of these metrics to empirical evaluation and their computation in practice are still

unknown and need further investigation. Unfortunately, transformation-based methods

lack any such theoretical analysis.

In this work, we present the first successful theoretical evaluation of biometric hashing

as required for thorough analysis where the unpredictability of biohashes generated by

random projection (RP) based biohashing scheme is quantified via estimated entropy.

2.3.2 Irreversibility of Biohashes

The security performance of a biohashing scheme under the assumption of a known

key is analyzed in [22] and [23], and biohashing is concluded to be a good biometric

randomization algorithm with a high risk of compromising the biometric information.

If the secret key of a user is compromised, the security of the protected template is at

stake and it is only dependent on the non-invertibility of the biohash (i.e., it should be

hard for an adversary to approximate the biometric feature vector from the biohash and

the secret key). The reconstruction of a sufficiently similar feature vector that provides

a close biohash to the original one, called a pre-image attack (masquerade attack), is a

major threat to the template protection capability of a biometric hashing scheme. It is

not sufficient to make a function “lossy” (not one-to-one) in order to have a one-way

function [24]. The biohashing method of Ngo et al. is presented as a one-way function [9],

however, we show that this is not the case (in the cryptographic sense) and biometric

hashing is not pre-image attack resistant if the secret key that is used for generating a

biohash is known to the adversary.
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In the first study that investigates the invertibility of a biometric hashing algorithm [25],

it was assumed that the biohash of a user and the corresponding random projection ma-

trix are available to an adversary. Each dimension of the biohash vector was mapped to

the set {−1, 1} (by mapping [0]→[-1] and [1]→[1]) and the resulting vector was multi-

plied with the pseudo-inverse of the random projection matrix. A new biohash created

from the estimated biometric feature vector was used to perform imposter attacks. A

similar approach that uses the pseudo inverse of a random projection matrix was also

presented in [26]. In [27], a new method was proposed to generate a biometric feature

from biohashes using genetic algorithms. For each biohash in a database, the proposed

genetic algorithm was applied to approximate the value of the biometric feature given

the corresponding secret key.

A detailed analysis of irreversibility of biohashes was performed by Feng et al. [14] where

the details of the random projection is solved using perceptron learning. It was assumed

that the attacker does not have the secret key of the user and the parameters of the

random projection are estimated using stolen biohashes and a local biometric database.

The main difference of this study is that the method requires several stolen biohashes

from several distinct subjects (68 subjects - 105 images/subject for one database and

350 subjects - 40 images/subject for another database) for parameter estimation. It

was assumed that the whole system is available to the adversary as a black box and

the matching scores could be eavesdropped. A local face dataset (3500 different local

faces) was presented to the system along with a common token and every local binary

template was matched against every stolen template. Using the matching scores and the

stolen biohashes, local binary biohashes corresponding to the local face database were

calculated, which were used for iterative perceptron learning to estimate the projection

parameters. Once the parameters of the random projection were estimated, they could

be used to generate synthetic real-valued features from a stolen biohash which is another

perceptron problem.

In another recent study, Nagar et al. [11] presented a method to recover a close approx-

imation to the original biometric features given the binary biohash vector of a subject

and the transformation parameters by formulating the problem as an optimization prob-

lem. A database of unrelated biometric features was used for optimization. For each

unrelated biometric feature vector from the database, a new feature vector was esti-

mated by minimizing the Euclidean distance between the new feature vector and the
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unrelated biometric feature vector subject to the consistency criterion (i.e., the new bio-

hash created from the estimated feature vector exactly matches the original biohash).

The estimated feature vector was computed by taking the weighted average of t number

of trials where the weight was the Hamming distance between the original biohash and

the estimated one. This promising approach attempts to invert biohashes in a similar

set-up with our proposed methods. Therefore, we compare our algorithms in terms of

verification errors and computation times with this attack.

In this thesis, we propose four different novel optimization-based methods that aim to

predict the feature vector and/or the biometric image itself. Here, we assume that an

adversary gains access to the biohash vector of a valid system user and the corresponding

secret key, and estimates a new real-valued feature vector from the binary biohash in

order to authenticate to the system. Novel feature estimation methods are in the focus

of this study.

Our novel contributions regarding the reversibility of biohashes can be stated as follows.

Practical security and privacy attacks against biohashes using one-bit compressive sens-

ing framework are introduced. Apart from that, minimum norm solutions are discussed

in detail and L1 norm minimization is introduced in addition to the L2 norm minimiza-

tion which appeared in the literature before. Finally, this study introduces a type of

“rainbow attack” against biometric hashing systems. The differences between the exist-

ing attacks and our proposed attack are given in Table 2.1 in terms of assumptions and

related security and privacy issues.

2.4 Template Protection for Fingerprint Minutiae

Template protection schemes require either a fixed length feature vector representation

or a binarized string as input. Thus, a variable length minutiae representation of a

fingerprint cannot be directly used in combination with these schemes. In addition,

some template protection schemes designed specifically to work with unordered sets of

varying number of minutiae (e.g., fuzzy vault [28]) experience degradation in matching

accuracy due to alignment issues and nonlinear distortion [29].

Fuzzy vault scheme secures a set of r minutiae points by generating a uniformly random

cryptographic key of L bits and transforming it into a polynomial P of degree k (where
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Table 2.1: Existing biohash inversion attacks

Method Assumptions Security Privacy

Multiply with the - Random projection Attack with biohash
pseudo-inverse of matrix is available from estimated features:
the random projection - Threshold is fixed - existing key
matrix [25, 26] and it is 0 - a new key is assigned

- Wavelet FMT face and stolen again
features

Genetic algorithms - Random projection 1) Attack with biohash
[27] matrix is available from estimated features:

- Threshold is fixed - existing key
and it is 0 - a new key is assigned
- Fingercode features and stolen again

2) Average distance
between real and
approximated features

Solve a constrained - Random projection Attack with biohash Reconstructed
minimization of matrix is available from estimated features: face images
distance between - Threshold is available - existing key from estimated
estimated features - A database of - a new key is assigned vector using
and unrelated unrelated features and stolen again PCA inversion
feature vector [11] - Eigenface features

Perceptron-learning - Several biohashes Identification scenario, Adversary has
with hill climbing & of various different where biohash generated access to output
MLP modeling with subjects are available from each synthetic face of feature extractor
customized hill- (other methods assume is matched against the given a face image
climbing [14] availability of a single stolen templates & applies hill-

stolen biohash) climbing attack to
- Attacker can access generate synthetic
the matching scores of face images
the system
- Secret key of the
user is available

Methods proposed - Random projection 1) Attack with biohash Orthogonal linear
and discussed matrix is available from estimated features: face features
in this study: - Threshold is available - existing key (i.e., PCA and LDA):

- Eigenface features - a new key is assigned transformation
- Sparse recovery and is unknown matrix is known
- Min-norm solutions - a new key is assigned and its inverse

and stolen again is used to
2) Verification accuracy reconstruct
using the real features face images
as gallery and
approximated features
as probe
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k < r). All the minutiae points in a fingerprint is then evaluated on this polynomial

and the obtained set of points is secured by hiding them among a large set of randomly

generated chaff points that do not lie on the polynomial P . The polynomial evaluation of

the combination of genuine and chaff points constitute the vault. During authentication,

the polynomial P can be successfully reconstructed by identifying the genuine points in

the vault that are associated with the minutiae of the enrolled fingerprint if the query

fingerprint is sufficiently close.

Attacks via record multiplicity, stolen key inversion attack and blended substitution

attack are some specific attacks against a fuzzy vault [30]. If an attacker obtains two

different vaults generated from the same biometric data, he can easily identify the gen-

uine points and decode the vault. In addition, if an adversary learns the key embedded

in the vault, he can decode the vault and obtain the biometric template. Furthermore,

an adversary can substitute a few points in the vault using his fingerprint minutiae with-

out being detected, since the vault contains a large number of chaff points. Thus, both

the genuine user and the attacker can successfully authenticate to the system under the

same identity (i.e., blended substitution [29]).

One of the earliest works on fingerprint template protection has secured minutiae in-

formation x, y, θ separately [31]. In a later study, FingerCode feature (a texture based

fingerprint representation without minutiae information [32]) has been protected via

biohashing [7]. Another branch of research has focused on securing each minutia sepa-

rately. Yang et al. [12, 21] have proposed methods to extract a binary secure hash bit

string from each minutia and its vicinity using minutiae information only. A more recent

study similarly has used neighboring minutiae information along with texture informa-

tion around each minutia and secured each minutia feature vector by biohashing [33].

Protected Minutiae Cylinder-Code (P-MCC) [34], one of the most accurate algorithms

proposed recently, has secured each MCC structure that corresponds to a single minu-

tia. All these studies have represented a single minutia with a fixed length binary string

therefore matching between variable length final templates has been addressed as a

minutiae pairing problem.
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2.5 Fixed-length Feature Representation for Minutiae

Unfortunately, only a limited number of studies has presented methods for converting

a minutiae set into fixed length feature vectors. In the work of Sutcu et al. [35], binary

features were extracted by counting the number of minutiae present in randomly chosen

cuboidal patches in the (x, y, θ) space occupied by the minutia. To chose a cuboid, an

origin was selected uniformly at random in (x, y, θ) space, and the dimensions along the

three axes were also randomly chosen. Next, the threshold was defined as the median of

the number of minutiae points in the chosen cuboid, measured across the whole training

set. The threshold value might differ for each cuboid based on its position and volume.

If the number of minutiae points in a randomly generated cuboid exceeded the threshold,

then a 1-bit was appended to the feature vector, otherwise a 0-bit was appended. N

such random selections of cuboid resulted in an N -bit feature vector.

Nagar et al. [36] improved over [35] in a fundamental way such that each cuboid gen-

erates a richer feature set from which a larger number of bits could be extracted and

those with the highest determinability are used for matching. Corresponding to each

randomly chosen cuboid, they introduced three minutiae-based features: (i) aggregate

wall distance: the summation of the closest distance of each minutia from the cuboid

boundary, (ii) minutiae average: the average coordinate of all minutiae present in each

cuboid in a given fingerprint sample, and (iii) minutiae deviation: the standard devia-

tion of minutiae coordinates present in each cuboid in a given fingerprint sample. The

extracted features were binarized using the median value of a given feature calculated

over all enrolled fingerprints. Using the median value as threshold ensured that each bit

has equal probability of being 1 or 0. The main limitation of this approach is that it

requires the fingerprints to be aligned beforehand [37].

Bringer et al. [38] characterized a fingerprint in terms of its similarity to each represen-

tative local minutiae vicinities in a set of fixed size. This fixed size set was extracted

from a representative database of all existing vicinities in the world of fingerprints. For a

fingerprint, a feature vector that contains the similarities of its vicinities to those of the

representative set was produced. The reported verification performance was far from the

classical minutiae matching algorithms. This was attributed to purely local approach

of the encoding algorithm since it deals well with local distortions of a fingerprint but

lacks global coherency. In their follow up work [39], more discriminative information was
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added to distinguish impostors with high scores from genuine scores by using localization

information of vicinities which increased the global coherency.

In the spectral minutiae representation [16, 17], each minutia location was coded by

an isotropic two-dimensional Gaussian function in the spatial domain. Here, minutiae

were represented as a magnitude spectrum and their orientations were incorporated by

assigning each Gaussian a complex magnitude. Only the magnitude spectrum was con-

sidered and it was sampled on a log polar grid to obtain a fixed length vector. It is

possible to perform matching between two spectral minutiae vectors without aligning

them first since the magnitude spectrum is invariant to rotation and translation due

to the shift, scale, and rotation properties of the Fourier transform. However, in prac-

tice, alignment based on singular points (core and delta) is required to achieve a good

recognition performance [17] because a large rotation or translation may lead to partial

overlap between different impressions of the same finger. It should be noted that spec-

tral minutiae representation uses the global position and orientation information of the

minutiae thus already include relations of minutiae to each other.

In our study, we evaluate spectral minutiae representation in depth and propose the first

implementation of biometric hashing for spectral minutiae [40]. Next, we describe an

underlying framework that enables the generation of a novel fixed-length feature vector

representation for fingerprint minutiae. Also, a method based on asymmetric local-

ity sensitive hashing is proposed to generate binary strings from fixed-length minutiae

vectors.



Chapter 3

Biometric Hashing and Its

Entropy

Biometric hashing is a vector based template protection method that is used to secure

various biometric modalities such as fingerprint [7], face [9], palm [10], etc. In a typical

biometric hashing scheme, the input biometric modality is represented as a vector of real

numbers of length n, x ∈ Rn. After multiplying with a random matrix and applying a

threshold, this representation is converted to a binary string.

Biometric hashing (simply biohashing) schemes are simple yet powerful biometric tem-

plate protection methods [41–45]. Biohash is a binary and pseudo-random representation

of a biometric template and biometric hashing schemes perform an automatic verifica-

tion of a user based on his biohash (a binary string). Two inputs of a biometric hashing

scheme are: i) biometric template and ii) user specific secret key. A biometric feature

vector is transformed into another space using a pseudo-random set of vectors which

are generated from the user’s secret key. Then, the result is binarized to produce a

pseudo-random bit-string which is called the biohash. The random projection matrix is

unique and specific to each user and it can be stored in a USB token or a smartcard.

In a practical system, a user specific random matrix is calculated using a seed (a user

specific secret key) that is stored in a USB token or a smartcard microprocessor through

a pseudo random number generator. The seed is the same with that used during the

enrollment of a user and is different among different users and different applications [7].

This allows revocability of the subject’s biohash in case it is compromised. Also, the

20
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same biometric trait of a subject can be used in different biometric recognition systems

without constituting privacy threat as two biohashes of the same person with different

keys are unlinkable.

In an ideal case, the distance between the biohashes belonging to biometric templates of

the same user is expected to be relatively small. On the other hand, the distance between

the biohashes belonging to different users is expected to be sufficiently high which enables

higher recognition rates. The user is enrolled to the system at the enrollment stage. At

the authentication stage, the user provides his biometric data and secret key to the

system in order to prove his identity.

In the next section, we describe the random projection (RP) based biohashing scheme

proposed by Ngo et al. [7] for face verification.

3.1 Enrollment Stage

The first stage in a biometric recognition system is the enrollment stage in which a user

is introduced to the system for the first time. His biometric record is captured and

converted to a reference biometric template which will be compared to a fresh sample

at the authentication stage. This biometric template can be stored either in a central

database or a smart card that will be in possession of the user.

3.1.1 Feature Extraction

At this phase, face images that are collected during the enrollment stage are used as the

training set. The set has training face images belonging to registered users, Ii,j ∈ Rm×n

where i = 1, . . . ,K and K denotes the number of users, and j = 1, . . . , L and L denotes

the number of training images per user. Each face image is represented as a vector,

y ∈ R(mn)×1. Then, the Principle Component Analysis (PCA) [46] is applied to face

images in the training set for feature extraction:

x = A(y − µ), (3.1)

where A ∈ Rk×(mn) is the PCA matrix trained by the face images in the training set, µ is

the mean face vector, and x ∈ Rk×1 is the vector containing PCA coefficients (k < mn).
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3.1.2 Random Projection

At this phase, a pseudo random projection (RP) matrix, R ∈ R`×k, is generated to

transform the PCA coefficient vectors. The RP matrix elements are independent and

identically distributed (i.i.d) and generated from a Gaussian distribution with zero mean

and unit variance by using a Pseudo Random Number Generator (PRNG) with a seed

derived from the user’s secret key. The RP matrix projects the PCA coefficients onto

an `-dimensional space:

z = Rx, (3.2)

where z ∈ R`×1 is an intermediate biohash vector.

3.1.3 Quantization

At this phase, elements of the intermediate biohash vector z are binarized with respect

to a threshold:

b (k) =


1, z (k) ≥ β,

0, otherwise,

(3.3)

where b ∈ {0, 1}` denotes the biohash vector of the user and β denotes the quantization

threshold which can be 0 (sign operator) or the mean value of the intermediate biohash

vector z, depending on the system design.

After enrollment, biometric hashes are stored in a database or in a smart card.

3.2 Authentication Stage

At the authentication stage of a biometric system, an identity claim of a user is evaluated

and a decision (YES/NO) is given depending on the result of this evaluation. The fresh

biometric sample of the claimer is matched against the enrollment record of the subject.

Authentication result of the system depends on the similarity (or distance) between
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Figure 3.1: Biometric hashing verification setup

these two biometric templates. Throughout this thesis, authentication and verification

are used interchangeably and both terms refer to a one-to-one matching.

At the authentication stage of the biometric hashing system, a claimer sends his face

image Ĩ ∈ Rm×n and his secret key to the system. The system computes the claimer’s

test biometric hash vector by using the same procedures as in the enrollment phase.

The user is authenticated when the Hamming distance between benroll (which denotes

the biohash of the user generated at the enrollment stage) and bauth (which denotes the

biohash of the user generated at the authentication stage) is below a pre-determined

distance threshold ε as follows:

n∑
k=1

benroll (k)⊕ bauth (k) ≤ ε (3.4)

where ⊕ denotes the binary XOR (exclusive OR) operator. The system computes the

Hamming distance between the test biometric hash vector and the claimed user’s refer-

ence biometric hash vector stored in the database (or in the smart card). If the Hamming

distance is below the pre-determined distance threshold, the claimer is accepted; other-

wise, the claimer is rejected (Figure 3.1).
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The remaining of this chapter presents the first successful theoretical evaluation of bio-

metric hashing as required for thorough analysis where the unpredictability of biohashes

generated by random projection (RP) based biohashing scheme is quantified via esti-

mated entropy. Since a random projection and quantization method is required in our

framework, the first study of Ngo et al. [9] among all other recent alternatives such as [47]

was chosen since none has an effect on our entropy estimation method. The amount of

information a biohash carries is quantitatively analyzed by measuring the entropy of a

biohash obtained from a face image. Furthermore, to assess to what extent a biohash is

unpredictable once the secret key of a user is stolen, the difference in the entropy of the

original biohash and the entropy of the one created by using the stolen key along with

the biometric feature of an arbitrary person is used.

We conduct experiments in a face verification set-up considering two different threat

scenarios. Our results shows that the entropy of a biohash is almost equal to its bit

length when the secret key of each user is kept safe. However, in the advanced threat

scenario where the secret key of a user is compromised, the discriminative effect of

the random projection is lost and the entropy of the biohash is limited to the entropy

of the biometric feature. This is consistent with the study of Adler et al. [48] which

shows that the biometric information for a person could be calculated by the relative

entropy between the feature distributions of that person and the population (practically

measured to be approximately 40 bits).

3.3 Entropy Prediction for Biohashing

The entropy of a random variable measures it uncertainty. In other words, it is a

measure of the average amount of information required to describe a random variable.

An important theoretical measure for biometric template protection methods is the

entropy loss or mutual information (defined as the difference between unconditional and

conditional entropies) [49]:

I(B;K) = H(B)−H(B|K), (3.5)

where H(B) is the entropy of biohash B and H(B|K) is the conditional entropy of B

where the corresponding secret key K is known (i.e., stolen by an adversary). In [15],
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the entropy of a biometric template is defined as the measure of the number of different

identities that are distinguishable by a biometric system and it is a powerful indicator

of its unpredictability. However, theoretical estimation methods are required to assess

the entropy of a biohash since how to calculate that entropy is not immediately clear.

One approach is to compute the bit-wise entropy of a biohash where the entropy of each

bit location is calculated using a large database of biohashes [50]. Since this approach

assumes that the bits of a biohash are independent and identically distributed, the

predicted entropy is overestimated.

3.3.1 Daugman’s Entropy Estimation

Daugman proposed a method for estimating the entropy of iris phase codes [1]. Iris

phase codes, bit strings of length 2048, are compared using the normalized Hamming

distance and the ratio of the number of disagreeing bits to the number of total bits are

used to assess the degree of dissimilarity between two bit strings. A low dissimilarity

ratio between two iris codes are accepted as belonging to the same eye whereas as from

different eyes if it is close to 0.5.

Comparing bits corresponds to a Bernoulli trial and a binomial distribution is the dis-

tribution of the sum of n Bernoulli trials, each with the same probability. By observing

the inter-class distance distribution over a large iris database, Daugman concluded that

the distribution of the normalized Hamming distances between iris codes are normalized

binomial with an observed mean of 0.499. Correlated Bernoulli trials reduce the effective

number of trials but the output is still binomially distributed [51]. In iris phase codes,

only a small number of bits are mutually independent, therefore the effective number

of bits is not 2048 (number of bits in a phase code) but 249 and this corresponds to

the entropy of an iris phase code [1]. In Figure 3.2, the observed distribution is plotted

against the theoretical normalized binomial (the solid curve), which shows the close fit

between them.

3.3.2 Entropy of Biometric Hashing

Biohashes are bit strings as iris codes and are compared via Hamming distance dur-

ing authentication. In this work, we utilize these similarities between biohashes and
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Figure 3.2: Distribution of Hamming distances of interclass comparisons for iris phase
codes [1]

iris codes. We use the same methodology of fitting a binomial distribution to imposter

distance data and to calculate the entropy of biohashes via the degree of freedom in

the corresponding binomial distribution. A binomial distribution is fit to the obtained

inter-class distances (i.e., imposter comparisons) as follows. Using the imposter com-

parisons between biohashes of different subjects, the observed mean of the normalized

Hamming distances (µd) and observed standard deviation (σd) are calculated from data.

This corresponds to a binomial distribution with Nb = µd(1 − µd)/σ2
d. The theoretical

binomial distribution has the functional form:

f(m) =
Nb!

m!(Nb −m)!
µmd (1− µd)(N−m), (3.6)

where m/Nb (m = 1, . . . , Nb) is the outcome fraction of Nb Bernoulli trials, for our case,

it is the normalized Hamming distance for imposter matches. The number Nb (degree

of freedom) of the binomial distribution is the predicted entropy of biohashes.
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3.4 Experiments and Results

We implement the entropy estimation method described in Section 3.3.2 on a face verifi-

cation set-up considering two different threat scenarios. The naive threat model assumes

that an adversary has very limited information about the system and he can only per-

form a brute force attack using an arbitrary face information and a random secret key.

In the advanced threat model, essential details of the algorithms, properties of biometric

data as well as the secret keys of users are assumed to be known by the attacker. So,

the attacker can create biohashes using any face image and the secret key of the user

that he tries to impersonate.

3.4.1 Experimental Setup and Database

In our experiments, we use the BioSecure-ds2 [52] face database. It consists of 210

users, equally balanced by gender. 8 standard camera acquisitions per person (captured

in two separate sessions) are used in our experiments. PCA coefficients extracted from

detected face images are used for matching. The faces are automatically detected using

Viola-Jones face detector [53] and resized to 64 × 64 pixels. In order to normalize a

gray-scale face image, its mean intensity value is extracted from each pixel and each

pixel is divided by its standard deviation.

1024-dimensional PCA coefficients are calculated for all 8 samples of 210 subjects (a

total of 1680 (210 × 8) face images). PCA training is done using the first session im-

ages only. Applying the standard biohashing procedure, a bit-string is created through

matrix-vector product between the pseudo-random matrix and 1024-dimensional PCA

coefficients vector. The resulting vector is then quantized using a predefined threshold.

One can obtain a bit-string of any length according to the memory and security require-

ments of the system. In order to demonstrate that the accuracy of the entropy analysis

does not depend on biohash length, we experiment with three test lengths, namely 128,

256 and 512.
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Table 3.1: Mean value, standard deviations, and degrees of freedom for different bit
lengths under both scenarios

Bit Length Mean (µd)
Standard Degree of

Deviation (σd) Freedom (Nb)

Naive Model
128 0.5000 0.0443 127
256 0.4997 0.0313 254
512 0.5001 0.0223 504

Advanced
128 0.3653 0.0862 31

Threat Model
256 0.3685 0.0792 37
512 0.3836 0.0761 40

3.4.2 Entropy Prediction Under Naive Threat Model

In our verification setting, all possible combinations of matching genuine pairs are used

and the first sample of each subject is chosen for imposter matches (5880 (210×8×7/2)

genuine comparisons and 21945 (210×209/2) imposter comparisons). For imposter com-

parisons, the observed mean normalized Hamming distance with its standard deviation

and the degree of freedom of its corresponding binomial distribution for each test length

are given in Table 3.1.

The figures in the first column of Figure 3.3 illustrate the distribution of imposter dis-

tances under the naive threat model for biohashes with three test lengths. The histogram

of the interclass comparison distribution (shown in blue) forms a perfect binomial dis-

tribution with parameters µd = 0.5001, σd = 0.0223, and Nb = 504 (for 512 bits) as

shown by the solid red line. The small difference between the actual bit length and the

predicted entropy is due to database artifacts and it is expected that as the number of

imposter comparisons gets higher, the ratio estimated entropy in bits/bit length would

reach 1.

3.4.3 Entropy Prediction Under Advanced Threat Model

In the advanced threat model, the adversary is assumed to have full knowledge of the

system and the secret keys of all users. The same experimental set-up of the naive model

is used in order to predict the entropy of biohashes. For a biohash of a valid system user,

an imposter biohash is created using the secret key of that user and a biometric template

of an arbitrary user. Thus, unlike the naive model, interclass distances are calculated
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Figure 3.3: Distribution of normalized Hamming distances of interclass comparisons
of biohashes with various lengths and different threat models - first column: naive

threat model and second column: advanced threat model

between two biohashes that are created using the same secret key for different users.

The graphs in the second column of Figure 3.3 illustrate the distribution of imposter

distances for biohashes with various lengths. The observed mean of the distribution

deviates from 0.5 and gets closer to the observed mean of genuine comparisons as the

imposter distances get smaller. Since the distribution of genuine results is not involved

in the entropy estimation, it is not discussed here. Thus, the comparison of genuine

templates is not presented here for brevity.
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This effect is also evident in the results given in Table 3.1. As compared to the naive

model, the degree of freedom is much lower than the actual bit length and the predicted

entropy decreases dramatically for all biohash lengths. For example, the entropy drops

from 504 to 40 for biohashes of length 512. We argue that our results in naive and ad-

vanced scenarios are generalizable when the database is large and representative enough.

For all biohash lengths, the estimated entropy in this threat model is between 31 and

40 bits which is consistent with the face entropy of 40 bits reported in [48].

3.5 Discussion

Existing theoretical evaluations of biometric protection methods cannot be used for

assessing biohashing methods. In this work, we have described a systematic approach

to quantify the unpredictability of random projection-based biohashing scheme by using

entropy as a measure. Since feature extraction and feature normalization methods are

not in our scope, we have focused only on quantitative evaluation of random projection

and quantization steps. We have estimated the entropy of a biohash in terms of bits via

the degree of freedom of binomial distribution under two predefined threat models [8].

Our experiments in a face verification setup have demonstrated that the entropy of a

biohash is almost equal to its bit-length as expected when there is no attack against

the system (the naive threat model). On the other hand, the entropy and hence the

unpredictability of biohashes decrease when the attacker knows the secret key of the

user that he tries to impersonate (the advanced threat model). Thus, the amount of

information kept secret in a biohash becomes more likely to be predicted in such cases.

Potential future research directions on entropy of biohashes can be summarized as fol-

lows. Novel random projection methods should be studied in order to decrease the

entropy loss between the naive and advanced threat models. In addition, other applica-

ble privacy and security metrics could be investigated, such as the mutual information of

hashes of different users (i.e., the entropy of one hash conditional to another hash). One

other possible research direction would be to study the suitability of universal entropy

estimators (e.g., Coron’s or Maurer’s [54]) to biohashes.



Chapter 4

Practical Security and Privacy

Attacks Against Biometric

Hashing Using Sparse Recovery

In this chapter, we present four different novel optimization-based methods that aim to

predict the feature vector and/or the biometric image itself. Here, our assumption is

that an adversary, who gains access to the biohash vector of a valid system user and

the corresponding secret key, estimates a new real-valued feature vector from the binary

biohash and uses it to authenticate to the system. In this study, we focus on novel

feature estimation methods. The first two proposed methods are based on one-bit com-

pressive sensing approach and related feature reconstruction algorithms. Compressive

sensing is a new signal acquisition technology with the potential of reducing the number

of measurements required to acquire signals that are sparse or compressible in some do-

main. Rather than uniformly sampling the signal, compressive sensing computes inner

products with a randomized dictionary of test functions. The signal is then recovered

by a convex optimization which ensures that the recovered signal is consistent with the

measurements. One-bit measurements is a more restricted case in which only the sign

information of the random measurements is preserved. In our framework, we solve the

biohash invertibility problem by using two different reconstruction approaches, namely,

linear programming [55] and binary iterative hard thresholding [56].
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Figure 4.1: Overview of a biometric hashing system

We also discuss minimum norm solutions for approximating feature vectors from bio-

hashes and present L2 and L1 norm minimization for this problem. Finally, we describe

the rainbow attack to compromise the security of a biometric hashing scheme. Rainbow

attack is different from feature approximation methods and does not aim at predicting

a new feature vector. With the help of a huge database of biometric features along

with the biohash vector of a valid user and the corresponding secret key, a biometric

image that creates a sufficiently close biohash to the desired one is found and used for

illegitimate authentication.

We propose practical attacks and study their performances instead of using theoreti-

cal metrics. Furthermore, we analyze the privacy issues related to the invertibility of

biohash templates and, as a case study, we visually inspect reconstructed face images

of the subjects. Authentication performance of the reconstructed feature vectors in a

conventional verification setup, in which the plain features are used for matching, is also

investigated.

4.1 Proposed Feature Approximation Methods from Bio-

hash

In this section, we introduce intrusion attacks via reconstruction of the biometric fea-

ture vector from biohashes. In this context, intrusion is defined as gaining access to a

biometric recognition system by presenting falsified authentication data to the system

[11] (see Figure 4.1).
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We use the following notation throughout our analysis of biometric hashing scheme: b

represents the biohash vector of a valid system user and it is obtained by an adversary to

perform intrusion attacks through feature approximation, R is the user specific random

projection matrix and known to the adversary, x is the original biometric feature vector

that b is created from and it is neither known nor accessible by the attacker, and x̂ is the

feature vector (or pre-image) that is approximated through inversion of b. Note that, x̂

does not necessarily correspond to a valid biometric feature vector (i.e., PCA coefficients

for faces or fingerprint minutiae information). However, using x̂, one can produce a

biohash vector that allows unauthorized access to the biometric system (Figure 4.2).

Once x̂ is obtained, an attacker might also reconstruct the biometric modality and use

it for illegitimate access to a system, i.e., in our case this is the face image (it is also

assumed that the attacker knows the PCA matrix used in feature extraction). In this

study, we consider that the intrusion to the system can happen in two ways before the

random projection step. An attacker either provides a digital face image (reconstructed

face image) to the system prior to the feature extraction step or uses the approximated

feature vector as input to the random projection.

The success probability of such an attack to the biometric hashing system can be mea-

sured as P (d(sign(Rx̂),b) < ε) 1, where d(·) is the Hamming distance between two

biohashes (i.e., the number of disagreeing bits). This metric is also called the Intrusion

Rate due to Inversion for the Same biometric system (IRIS) by Nagar et al. [11]. In

1This probability is estimated by using the false accept rate of the system when the threshold is ε
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the next sections, we present various methods to obtain a feature vector x̂ that allows

illegitimate access to a biometric system given b and the transformation parameters.

4.1.1 One-bit Compressive Sensing Approach

One-bit compressive sensing studies efficient acquisition of sparse (or more structured)

signals via linear measurement systems and only 1 bit per measurement is retained.

While the key application of this problem has been in the area of signal acquisition, it

has also found applications in several learning related problems. Boufounos et al. [57]

introduced the problem of one-bit compressive sensing where only 1 bit of the linear mea-

surement, specifically its sign is observed. Random projection based biometric hashing

can be viewed in the same context as one-bit compressive sensing. If the threshold used

in quantization of the projected signal is 0 (such that the sign of the signal is kept),

each bit of a biohash is the sign of the inner product of the feature vector (x) with a

measurement vector (in biometric hashing, each row of the random projection matrix

(R):

bi = sign(〈Ri,x〉). (4.1)

The biometric hashing procedure is compactly expressed using:

b = sign(Rx), (4.2)

where b is the biohash vector, R is the matrix representing the random projection

matrix (the measurement system), and the 1-bit quantization function sign(.) is applied

element-wise to the vector Rx.

For consistent reconstruction from 1-bit measurements, the measurements are treated

as sign constraints that are enforced in the reconstruction to recover the signal. In the

reconstruction, L1 norm of the feature vector is minimized to obtain a sparse solution.

When the PCA coefficients of face images are analyzed, it is noted that most of the

coefficients are small in magnitude and only about 25% of them is enough to obtain

∼ 70% of the total energy as seen in Figure 4.3. Therefore, it is reasonable to assume

that PCA vectors are sparse. Also, as stated by Candes and Wakin [58], ”compressive
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Figure 4.3: (a) Cumulative energy contained in PCA coefficients. (b) Distribution of
1024 dimensional PCA coefficients of a sample from the database.

sampling exploits the fact that many natural signals are sparse in the sense that they

have concise representations when expressed in the proper basis”. Even if the original

signal is not sparse, a basis can be found in which most coefficients are small, and the

relatively few large coefficients capture most of the information and this allows for the

use of sparse recovery in the problem of biohash inversion.

In addition, to enforce reconstruction at a non-trivial solution, one needs to artificially

resolve the amplitude ambiguity. Thus, an energy constraint is imposed that the recon-

structed signal lies on the unit L2-sphere:

‖x‖2 =

(∑
i

x2
i

)1/2

= 1. (4.3)

The signal on the unit sphere that is consistent with the measurements is found by

solving:

x̂ = arg min
x
‖x‖1

s.t. sign(Rx̂) ≡ b

and ‖x̂‖2 = 1.

(4.4)

As the compressive sensing measurements are quantized to one bit, it is clear that the
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scale (absolute amplitude) of the signal is lost and it is not immediately evident that

the remaining information is enough for signal reconstruction. Nonetheless, there is

strong empirical evidence stating that signal reconstruction is possible [57]. One-bit

compressive sensing by linear programming [55] and binary iterative hard thresholding

[56] are two theoretical reconstruction methods that we implement separately for ob-

taining inverse images of biohashes and finding biometric feature vectors that provide

biohash vectors which are acceptable by the verification system (i.e., with a distance to

the original biohash vector that is less than a threshold).

4.1.1.1 One-bit Compressive Sensing by Linear Programming

The study in [55] has showed that x can be accurately estimated from extremely quan-

tized measurement vector in (4.2). Note that, b contains no information about the

magnitude of x and only the normalized vector x/‖x‖2 can be recovered. It has been

shown that the signal can be accurately recovered by solving the following convex min-

imization program:

min ‖x̂‖1

s.t. BRx̂ ≥ 0

and ‖Rx̂‖1 = m,

(4.5)

where B = diag(b).

The first constraint, BRx̂ ≥ 0, keeps the solution consistent with the original biohash

vector and it is defined by the relation 〈Ri, x̂〉 · bi ≥ 0 for i = 1, 2, . . . ,m where Ri is

the ith row of the random projection matrix R. The second constraint in the original

problem definition (4.4) contains L2-norm which is a quadratic term and can be replaced

with the linear L1-norm, so that the optimization becomes a linear program. The second

constraint, ‖Rx̂‖1 = m, serves to prevent the program from returning zero solution and

it is linear as it can be represented as one linear equation
∑m

i=1 bi〈Ri, x̂〉 = m, where m

is the length of the biohash vector. Therefore, (4.5) is a convex minimization problem

and can easily be represented as a linear program (see Algorithm 4.1).



Practical Security and Privacy Attacks Against Biometric Hashing Using Sparse
Recovery 37

Algorithm 4.1 Approximate biometric feature vector x̂ using Linear Programming

Input: b, R
Output: x̂

calculate A such that Ax̂ ≥ 0 using b and R
calculate Aeq such that Aeqx̂ = m using R
set f to calculate L1 norm of x̂
use simplex method to solve for x̂

4.1.1.2 Binary Iterative Hard Thresholding

Binary iterative hard thresholding (BIHT) [56] is a modification of iterative hard thresh-

olding (IHT) which is a real-valued algorithm designed for compressive sensing [59].

Proposed for the recovery of K-sparse signals, IHT algorithm consists of two steps. The

first step is a gradient descent to reduce the least squares objective ‖y −Rx‖22/2. At

each iteration, IHT proceeds by setting al+1 = xl + RT (y − Rx). The second step

imposes a sparse signal model by selecting the K elements of al+1 that are largest in

magnitude.

BIHT algorithm modifies the first step of IHT and minimizes a consistency-enforcing

objective. Given an initial estimate x0 = 0 and 1-bit measurements b, at each iteration

l, BIHT computes:

al+1 = xl +
τ

2
RT (b− sign(Rxl))

xl+1 = ηK(al+1),

(4.6)

where τ is a scalar that controls the gradient descent step size, and the function ηK

computes the best K-term approximation of al+1 (see Algorithm 4.2). In our experi-

ments, we choose K as 25% of the feature vector length, i.e., K = 50 for 200 dimensional

feature vectors and K = 256 for 1024 dimensional feature vectors.

Algorithm 4.2 Approximate biometric feature vector x̂ using BIHT

Input: b, R, K
Output: x̂

initialize x0 all zeros
while |b− sign(Rxl)|1 > 0 do
al+1 = xl + τ

2RT (b− sign(Rxl))
sort elements of al+1 and set the all but the largest K components to 0,

end while
set x̂← al+1
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4.1.2 Minimum L1 and L2 Norm Solutions

In this section, we present and discuss minimum-norm based feature reconstruction

methods for biohashes in addition to the solutions we propose in one-bit compressive

sensing framework.

Biohash vector is obtained through quantization from an intermediate vector z which is

the output of a random projection, i.e., z = Rx. If one can invert the quantization step

and find an intermediate vector ẑ that produces the biohash vector after quantization,

a minimum norm solution can be used to estimate the biometric feature vector (x̂) as:

min ‖x̂‖n s.t. ẑ = Rx̂. (4.7)

In this work, we study minimum norm solutions for n = 1 and n = 2, namely L1 and

L2 norms.

4.1.2.1 Inversion of the Quantization Step

Solutions in one-bit compressive sensing framework implicitly handle the quantization

of the randomly projected feature z within the optimization process. However, L1 and

L2 norm-based reconstruction requires an explicit inversion of the thresholding step of

the biometric hashing scheme.

In order to invert the quantization process, an adversary who possesses the biohash (b) of

a valid system user and corresponding random projection matrix (R), uses an arbitrary

biometric feature vector xf to simulate the biometric hashing procedure through random

projection and obtain an intermediate vector zf = Rxf . Next, the sample mean and

standard deviation of zf are calculated, µ and σ respectively. Mapping the elements of

the compromised biohash vector b from {0,1} to {-1,1} is performed as:

b̂(i) =


1, b(i) = 1,

−1, b(i) = 0,

(4.8)
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where b̂ is the mapped biohash vector. Finally, using the values calculated from the

arbitrary biometric features, the intermediate vector ẑ is estimated as:

ẑ(i) = µ+ b̂(i)σ. (4.9)

To be consistent with the solutions described in one-bit compressive sensing approach,

we assume that the signs of elements of the intermediate vector z is used to obtain the

biohash (i.e., the threshold at the quantization step is 0). However, various quantization

methods and thresholding mechanisms are proposed in the literature for biometric hash-

ing, one of them being the mean value of the intermediate vector and another one being

its median value. If the system uses the mean value of the intermediate vector as the

quantization threshold, the mean value of the zf can be calculated. In our experiments,

the threshold equals to 0, thus the mean value is not used, and the intermediate vector

is computed as ẑ(i) = b̂(i)σ.

4.1.2.2 Minimum L2 Norm Solution

Once an adversary creates an intermediate vector ẑ, the following L2 norm minimiza-

tion provides an estimate feature vector x̂ that is consistent with the observation b =

sign(Rx̂).

min ‖x̂‖2 s.t. ẑ = Rx̂. (4.10)

The closed form solution that gives the minimum L2 norm for the estimated feature

vector is given by the MoorePenrose pseudo-inverse. For linear systems Ax = b with

non-unique solutions (i.e., under-determined systems), the pseudo inverse is used to

reconstruct the solution of minimum Euclidean norm ‖x‖2 among all solutions. So the

solution to the above minimization problem to estimate the feature vector from biohash

b is calculated as x̂ = R†ẑ.
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4.1.2.3 Minimum L1 Norm Solution

Similar to the minimum L2 norm solution, minimum L1 norm solution aims at solving

the following minimization problem.

min ‖x̂‖1 s.t. ẑ = Rx̂. (4.11)

In one-bit compressive sensing approach by linear programming, L1 norm of the esti-

mated feature vector is minimized according to the constraints that include the quantiza-

tion step. However, minimum L1 norm solution handles the quantization step separately

and the minimization is carried out over the intermediate real-valued vector ẑ. The min-

imization problem still has linear constraints and minimization of L1 norm can easily be

expressed as a linear program and solved accordingly.

For both L1 and L2 norm minimizations, if the PCA dimension is less than the biohash

length (i.e., if the random projection step does not reduce the dimension), the linear

system is over-determined and an exact solution might not possibly exist (i.e., solutions

could be inconsistent with the observations). Instead, it is possible to minimize the

residual between the observation and the solution (i.e., ‖ẑ − Rx̂‖n) and to obtain a

feature vector that provides biohashes that is close to the original one.

4.1.3 Reconstructing the Face Image

As long as the feature extraction step uses an orthogonal transformation matrix, it is

possible to invert the feature extraction process simply by using the pseudo inverse of

the transformation matrix and a face image can be reconstructed easily. The Principal

Component Analysis uses an orthogonal transformation, which means that the columns

of the PCA matrix are perpendicular to each other and hence one can reconstruct the

face image ŷ from x̂ by using the property of an orthogonal matrix A† = AT :

ŷ = AT x̂ + µy, (4.12)

where A ∈ <k×(mn) is the PCA matrix, A† is the pseudo-inverse of A, and µy is the

mean face vector.
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4.1.4 Other Thresholding Methods - Apart from the “sign” Operator

In cases where the thresholding after the random projection step is not the sign operator,

some alternatives can also be formulated within our proposed framework. Assuming that

an adversary has the full knowledge of the system, i.e., the specific thresholding method,

he can also invert the biohashes.

4.1.4.1 Fixed or User Specific Threshold

Apart from using the sign operator, one can use a pre-defined fixed threshold or user

specific threshold, i.e., b = sign(Rx−T) where T denotes the threshold. Entries of T

can be the same number or different numbers at each dimension. T can also be specific

to each user (it is show as Ti where i denotes the subject number). By augmenting the

threshold vector to the random projection matrix, R̂ =
[
R −Ti

]
, we can reformulate

the biohashing operation as b = sign
(
R̂
[
x 1

])
and perform the same operations for

inverting biohashes.

4.1.4.2 Mean Value is the Threshold

An alternative way of thresholding the intermediate vector is to use the mean value of

the intermediate biohash vector z = Rx as the threshold and to calculate the biohash

vector as

b = sign(Rx−mean(Rx)). (4.13)

Thresholding step can be integrated into the random projection step by using the mod-

ified random projection matrix R̂:

R̂ =

[
R− 1 ·R

N

]
, (4.14)

where N is the biohash length, 1 is a matrix of ones, and the biohash vector becomes

b = sign(R̂x). An adversary can use the modified matrix R̂ and all inversion methods

that we discuss are still valid in this setup.
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4.2 Rainbow Attack

In the previous section, we propose four different optimization methods for recovering

features from an original biohash vector that is stolen by an attacker. Having the cor-

responding secret key and using the knowledge of system parameters, one can estimate

a real valued feature vector x̂ with the consistency criterion such that b = sign(Rx̂) in

order to gain illegitimate access to the biometric system. Rainbow attack is different

from these methods in the sense that it does not aim at inverting a biohash vector to

obtain a valid pre-image. Instead, using the knowledge of the system and the secret

key of the user, with the help of a large database of biometric features, an adversary

may find a face image which, when combined with the secret key of the user, result in

a biohash vector that is sufficiently close to the original biohash b.

In the cryptography literature, a rainbow table is a precomputed table for reversing

cryptographic hash functions, usually for cracking password hashes. Any computer

system that requires password authentication must contain a database of passwords,

either hashed or in plaintext, and utilize different methods to store passwords. Because

the tables are vulnerable to thefts, storing passwords as plain texts is dangerous. Most

databases therefore store a cryptographic hash of a user’s password in the database.

When a user enters his password for authentication, it is hashed and compared to the

stored password entry of that user (which is also hashed before being stored in the

database). If the two hashes match, the access is granted. A Rainbow Table is a

large dictionary with pre-calculated hashes and the passwords from which they were

calculated. When an attacker steals a long list of password hashes from the system,

he can quickly check if any of them are in the Rainbow Table. If that is the case, the

Rainbow Table will also contain the original string that they were hashed from.

A biometric authentication system that protects biometric templates using biometric

hashing methods operates in a similar way; the biohash of a user is stored and compared

to the query biohash during verification. If an adversary having a large database of

biometric features of various users, steals the biohash of a system user and knows his

secret key, the adversary can compute biohashes of each biometric feature in the database

using the random projection matrix of the user and create a table of biohashes and

their corresponding feature vectors. If any of the biohashes in the table is sufficiently
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close to the stolen biohash (i.e., their Hamming distance is less than a threshold), the

corresponding feature vector can be used for illegitimate access to the biometric system.

Different from previously described attacks which try to approximate a feature vector

that gives a close biohash vector to the stolen one, the rainbow attack is a practical attack

that aims to compromise the security of a biometric hashing scheme. Furthermore,

assuming that one authentication factor (the secret key of a user) is known, the rainbow

attack also provides privacy threat since look alike faces can be found.

4.3 Experiments and Results

In this section, the performance of our proposed attack methods are analyzed and dis-

cussed. The database that is used and the experimental set-up are described, and attack

models and their corresponding error rates are given.

4.3.1 The Database and Experimental Set-up

In order to provide the performance analysis of the security of biohashes based on the

feature approximation methods, we implement our proposed methods on a face verifica-

tion setup. We obtain face verification results on the BioSecure-ds2 face database [52].

The same database set-up with Section 3.4 is followed. M -dimensional PCA coefficients

are calculated for all 8 samples of 210 subjects. In our results, we present results using

bit-strings of length 128, 256, 512 and 1024.

In a verification setting, we use all possible combinations for matching genuine pairs and

the first sample of each subject is chosen for imposter matches (5880 (210 × 8 × 7/2)

genuine comparisons and 21945 (210×209/2) imposter comparisons) in order to evaluate

the performance of the biometric hashing scheme. For validating the consistency of

approximated features using the proposed methods, we compare the biohashes created

from these features with the original biohashes leading to one imposter score for each

sample in the database (1680 imposter matches). Equal error rates (EER) in each case

are reported.
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4.3.2 The Performance of the Biometric Hashing Scheme

First, we apply the general biometric hashing scheme described in Chapter 3 on the

BioSecure-ds2 face database. For comparison, we also include face verification results

of PCA vectors by using Euclidean distance as the matching method. The equal error

rates for this method before applying biometric hashing to PCA vectors are 11.893% and

12.482% for vectors of length 200 and 1024, respectively. Equal error rates for biohash

vectors of various lengths are given in Table 4.1.

Table 4.1: Equal Error Rates (%) for biohash vectors of different lengths

PCA 200 PCA 1024

Bit
Biohash

Biohash
Biohash

Biohash
Length (Stolen Key) (Stolen Key)

128 6.295 12.571 6.593 13.565

256 4.570 11.457 4.813 12.216

512 4.137 11.595 4.328 11.634

1024 2.875 11.118 2.934 11.553

For all bit lengths, the performance of the biometric hashing scheme is better than the

baseline PCA approach and lower EERs are obtained with the protected templates. In

cases where an adversary steals the secret key of a user but does not possess the claimed

person’s biometric information, the adversary sends his own biometric (or an arbitrary

biometric) and the secret key of the genuine user in order to be authenticated. This is

a serious threat to the system as the pseudo-random vectors generated using the secret

key have a considerable influence on the generated bit string, therefore on the matching

score. However, even if the attacker knows the secret key, the verification accuracy of

the biometric hashing system is still in the same range with the performance of the

unprotected PCA vectors.

One obvious addition to the biometric hashing scheme is the direct comparison of secret

keys (i.e., the one stored during enrollment and the one presented during authentication)

prior to biohash comparison. This way 0% (zero) EER is achieved if the attacker does

not have the secret key of a valid user. The error rates presented in Table 4.1 are the

results of biohash comparison and if key checking mechanism is applied as illustrated

in Figure 3.1, the EERs for the first scenario would be 0%. So that, here we study the
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added security coming from the biometrics with the use of biohashes in cases where an

attacker obtains the secret key.

4.3.3 The Performance of the Feature Approximation from Biohash

Methods

Since the database that we use has 1680 samples from 210 subjects, using their PCA

coefficients and secret keys of each subject, we create 1680 biohashes, each corresponding

to a different sample. It is assumed that an adversary obtains the biohash and the secret

key of a user and with this knowledge he aims to find a feature vector by inverting the

biohash. With this new feature vector, a new biohash can be calculated and used for

authentication purposes. For each biohash in the database, we obtain a new feature

vector and create its corresponding biohash. We use the new biohash to perform an

imposter attack to the original one and we do not attack to other genuine samples. We

use all possible combinations to match genuine pairs (5880 (210 × 8 × 7/2)) and the

number of imposter comparisons is 1680 (one for each biohash). The performance of

each method is reported in terms of the equal error rate (EER) and higher EER shows

the success of the attacker (i.e., 100% EER means that the inversion of all biohashes in

the database is successful and the approximated features provide biohash that matches

with the original one).

In order to evaluate the security that biometric hashing provides, we follow three con-

secutive scenarios:

Advanced Attack Model (AAM): The attacker, who knows the system details

and possesses the biohash of a user and his secret key, calculates an estimate feature

vector. Using this feature vector and the secret key of the subject, a new biohash is

created and compared with the original one.

Security After Key Change (SAKC): Upon the detection of a security breach,

the secret key of the user is changed by the system administrator. Using the previous

biometric data, a new biohash is created from the new secret key and stored as the new

gallery template in the system. The adversary does not have access to neither the new

secret key nor the new biohash. The adversary makes an authentication attempt using
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the feature vector found in the advanced attack model and the previous (or an arbitrary)

secret key. It should be noted that, these errors are available only when the system does

not perform key checking prior to biohash comparison. As the attacker does not know

the secret key of the user, the EER in a key-checking system is 0%.

However, for the sake of completeness, a no key-checking system is also considered and

EERs in this case are also reported. EERs presented in Table 4.2 correspond to the

attack in which the adversary has the true (original) biometric features but does not

possess the associated secret key. These numbers provide a lower bound on the long-

term security error, where the secret key of the user is changed and is not known to the

attacker.

Table 4.2: Equal Error Rates (%) when the adversary has the true biometric features
but does not possess the associated secret key

PCA Biohash Length
dimension 128 256 512 1024

200 6.199 4.290 4.243 2.917

1024 6.497 4.902 4.375 3.044

Attack in the Long-term (ALT): The adversary obtains the new secret key of the

user but not the new biohash. Using the feature vector found in the advanced attack

model and the new secret key, the adversary makes an authentication attempt. This is

different from the advanced attack model in the sense that the biohash vector of the user

is not known to the adversary and the authentication attempt is performed using the

approximated feature vector which is obtained from the previous biohash of the user.

4.3.3.1 Results for One-bit Compressive Sensing Approaches

We use two different feature approximation methods, namely linear programming (LP)

and binary iterative hard thresholding (BIHT), in the one-bit compressive sensing frame-

work. The success rates of both methods are presented in Table 4.3 and Table 4.4. For

the advanced attack model, the number of exact reconstructions, i.e., the number of esti-

mated features that provide the exact same biohashes (such that the Hamming distance

between the original biohash and the forged biohash is 0) is 1680 for all bit lengths. For

every sample in the database, regardless of the PCA dimension, both methods are able
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to find a feature vector that provides the exact same biohash and that is also reflected

by 100% EERs.

Table 4.3: Equal Error Rates (%) for one-bit compressive sensing approaches - linear
programming (LP) method

PCA Bit Length AAM SAKC ALT

200

128 100.00 7.262 48.333
256 100.00 5.225 65.570
512 100.00 4.018 78.958
1024 100.00 3.308 89.987

1024

128 100.00 7.530 40.187
256 100.00 5.128 53.342
512 100.00 4.286 68.907
1024 100.00 3.444 80.863

Table 4.4: Equal Error Rates (%) for one-bit compressive sensing approaches - BIHT
method

PCA Bit Length AAM SAKC ALT

200

128 100.00 7.381 33.767
256 100.00 4.851 49.388
512 100.00 3.958 74.809
1024 100.00 3.367 90.536

1024

128 100.00 6.667 16.314
256 100.00 5.306 19.887
512 100.00 4.252 28.759
1024 100.00 3.474 47.653

In the security after key change scenario, when the secret key of the user is changed

but not known to the adversary, EERs are in the same line with the cases where the

adversary has access only to one of the factors, either true biometric or true secret key

(see Tables 4.1 and 4.2). In the attack in the long term (ALT) scenario, it is possible

for the attacker to have unauthorized access to the system most of the time, especially

if the PCA length is shorter and the biohash length is longer (see the ALT column in

Tables 4.3 and 4.4).

Values of the intermediate vector z = Rx which are very close to the threshold, e.g.,

values z that are close to zero for the sign operator, lead to numerical inconsistencies

about the inequality criteria of the linear program (i.e., BRx ≥ 0) and can be solved

by replacing the inequality constraint with BRx ≥ ε, where ε is the minimum positive

number available in MATLAB (machine epsilon).
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4.3.3.2 Results for Minimum Norm Solutions

The same set of experiments on the invertibility of biohashes is conducted using the

proposed minimum norm solutions (see Table 4.5 and Table 4.6). For biohashes created

from PCA vector of length 1024, both methods are able to find a pre-hash vector that

can be used to create the same biohash for each sample in the database. As in the

one-bit compressive sensing approach, the number of exact reconstructions is also 1680

in this case. However, when less number of PCA coefficients are used in the system (i.e.,

the PCA feature vectors are 200 dimensional), there is a slight decrease in the equal

error rates. Biohashes created from the estimated feature vectors are not exactly same

with the original ones (i.e., the Hamming distance between them is greater than zero)

which is reflected by the slight deviation from 100% EER.

Table 4.5: Equal Error Rates (%) for minimum norm solutions - L2 norm

PCA Bit Length AAM SAKC ALT

200

128 100.00 7.113 31.233
256 99.843 5.196 34.753
512 99.239 4.018 72.513
1024 98.444 3.219 86.599

1024

128 100.00 7.117 17.623
256 100.00 5.544 21.003
512 100.00 4.256 28.703
1024 100.00 3.474 36.947

Table 4.6: Equal Error Rates (%) for minimum norm solutions - L1 norm

PCA Bit Length AAM SAKC ALT

200

128 100.00 6.815 30.965
256 97.113 5.106 28.563
512 92.491 3.839 61.173
1024 92.751 3.431 77.564

1024

128 100.00 6.577 17.534
256 100.00 5.723 20.765
512 100.00 4.196 28.346
1024 100.00 3.474 36.947

In the SAKC scenario, the performances of minimum norm solutions are similar to

the one-bit compressive sensing solutions. If the new key of the user is stolen (the ALT

scenario), one-bit compressive sensing approaches provide significantly higher error rates

which shows the success of the attack method.
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Figure 4.4: DET curves for the proposed methods under the scenario Attack in the
Long-Term. (a) Reconstruction of 200 dimensional PCA feature vectors from biohash
of length 1024-bits. (b) Reconstruction of 1024 dimensional PCA feature vectors from

biohash of length 1024-bits.

Figure 4.4 illustrates the detection error tradeoff curves for the attacks using the pro-

posed methods under the ALT scenario (together with the results of the the study

in [11]). Table 4.7 shows the corresponding FAR1000 values (False Reject Rates when

the FAR = 10−3). The attack performance of the reconstructed feature vectors from

biohashes of 1024-bits can be compared among different methods. For brevity, we do

not include all results for different biohash lengths.

Table 4.7: FAR1000 values for the proposed methods under the scenario Attack in
the Long-Term.

Method 200→ 1024 1024→ 1024

LP 97.9932 95.9864

BIHT 97.6190 66.1565

L2 94.1190 54.7789

L1 89.3027 54.7789

A special case of solving the norm-minimization problem is when the PCA feature vector

dimension is equal to the length of biohash in bits. In approximating the 1024 dimen-

sional PCA vector from biohash of length 1024 bits, there is a single unique solution.

However, the condition number of the random projection matrix is so high and this leads

to inaccurate solutions. To improve the solution by decreasing the condition number,
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we add the 20% of the maximum singular value of the matrix R to all singular values.

This way, the condition number of R decreases by ∼ 102.

4.3.3.3 Computation Times for the Proposed Feature Approximation Meth-

ods

The proposed feature approximation methods are implemented in MATLAB and the

experimental results are run on a 2.5 GHz with 64 GB of RAM PC using 64-bit Win-

dows Server 2008 operating system. From a given biohash of length 1024-bits and the

corresponding secret key, we estimate the PCA feature vectors with four proposed meth-

ods, for PCA dimensions of 200 and 1024, respectively (Table 4.8). It is intuitive that

for all methods it is faster to estimate a 200-dimensional feature vector. Among the

four proposed methods, L2-norm minimization is the first to estimate a 200-dimensional

feature vector from a biohash of length 1024-bits. On the other hand, when the feature

vector to be estimated is 1024-dimensional, the BIHT method performs faster than other

methods.

Table 4.8: Computation time required to estimate a feature vector from a given
biohash (in seconds)

Method 1024→ 200 1024→ 1024

LP 12.681736 144.288818

BIHT 0.192342 0.294719

L2 0.108523 1.681796

L1 11.451703 26.453929

Method in [11] for t = 1 28.244039 185.517469

Method in [11] for t = 20 572.584385 4700.410120

4.3.4 Results for the Rainbow Attack

The rainbow attack is different from feature approximation methods and its success

mainly depends on the availability of a huge biometric database. In this study, we

simulate the rainbow attack where an adversary has the secret key and the biohash of

the user. We use the BioSecure-ds2 database and take the attacked user out of the set.

We calculate the biohashes of the remaining face images with the secret key of the user

and search for the one that is closest to the user’s biohash. In this manner, we describe

three different scenarios:
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Table 4.9: Equal Error Rates (%) for the rainbow attack

PCA Bit Length CM SAKC ALT

200

128 53.597 6.964 38.571
256 49.787 4.762 40.179
512 47.177 4.043 41.820
1024 46.054 3.342 43.469

1024

128 56.467 7.440 38.746
256 51.786 5.795 41.417
512 48.206 4.524 42.543
1024 46.794 3.296 43.439

Collusion Model (CM): Keys are known to the attacker and using an available

database, he finds the faces that provide the closest biohash given the secret key of the

valid user.

Security After Key Change (SAKC): Secret keys of users are changed by the

system administrator. The attacker does not know the new key but uses the face found

in the CM scenario.

Attack in the Long-term (ALT): The attacker obtains the new key. He uses the

face found in the CM scenario and the new key to create biohashes.

The equal error rates for the rainbow attack on biohashes for these three scenarios are

given in Table 4.9. Our visual inspection shows that, faces which create close biohashes

when combined with the same secret key are visually alike. This should also be regarded

as a threat to the privacy of the user, as well as a threat to the security of the system

(Figure 4.5).

4.3.5 Privacy Assessment of the Proposed Methods

A critical implication of the reversibility of biohashes is the relation between the recon-

structed feature vectors and the original biometric information (face) of the users. For

assessing to what extent the privacy of the user is at stake if his/her biohash is inverted

via our proposed methods, we compare face images reconstructed using the original

PCA vectors and the estimated features. Assuming that the attacker knows the details

of feature extraction (PCA matrix and mean vector), we reconstruct face images with
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Figure 4.5: Rainbow attack - faces that provide close biohashes.
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the approximated feature vectors using (4.12). In the following figures (Figures 4.6 and

4.7), we present the original face image of the user, the reconstructed face image from

original PCA coefficients, and the four reconstructed face images from obtained PCA

coefficients through L2, L1, LP and BIHT methods, respectively.

The first two set of images (Figures 4.6(a) and 4.6(b)) belong to two different users from

the database and the reconstruction is carried out on biohashes with length of 1024-

bits which are obtained from 200-dimensional PCA features. All four methods provide

face images that look similar to the subject’s original face image. Figures 4.7(a) and

4.7(b) illustrate the results for the same two users. The length of the biohashes used

is 1024-bits, however, the only difference is the number of PCA coefficients used, which

is 1024 instead of 200. It is immediately clear that estimating 1024-dimensional PCA

features is harder than estimating 200-dimensional PCA features and the reconstructed

face images show the difficulty in obtaining faces that are visually similar to the original

face image. Among the four proposed methods, only the LP solution stands out for

obtaining face images that look alike the original face of the subject. Figure 4.8 illustrates

the reconstruction of face images using the LP method for various PCA feature vector

dimensions and biohash bit lengths. It is clear that the reconstruction is visually more

successful when the length of the PCA feature to be estimated is smaller and the biohash

length is larger.

In addition to visually threatening the privacy of the system users, estimating feature

vectors from biohashes might threaten their privacy in other biometric recognitions

systems which use the same biometric characteristic (i.e., face information). To check

whether reconstructed feature vectors are close to the original PCA feature vectors or

not, we include face verification results of PCA vectors, (i.e., reconstructed feature vector

is compared to corresponding original feature vector). The Euclidean distance is used

to match two PCA vectors and each PCA vector is normalized in order to have zero

mean and unit variance prior to comparison. The normalization step is required since

the scale of the original PCA coefficients and the reconstructed ones might be different.

We do not include all verification results for brevity, but the EERs for PCA-based face

verification when 200-dimensional feature vectors are estimated from 1024-bits biohashes

are given in Table 4.10 and the corresponding DET curves are shown in Figure 4.9.
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(a) Sample user 1

(b) Sample user 2

Figure 4.6: Reconstructed face images from biohashes of length 1024-bits - PCA
dimension 200
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(a) Sample user 1

(b) Sample user 2

Figure 4.7: Reconstructed face images from biohashes of length 1024-bits - PCA
dimension 1024
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Figure 4.8: Reconstructed face images using the LP method for different biohash bit
lengths (128, 256, 512 and 1024)
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Figure 4.9: DET curves for direct feature level comparisons - 200-dimensional PCA
feature vectors & biohash length = 1024-bits
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Table 4.10: Equal Error Rates (%) for direct feature level comparisons - 200-
dimensional PCA feature vectors & biohash length = 1024-bits

LP 91.161

BIHT 91.773

L2 88.338

L1 78.720

4.4 Discussion

Biometric template protection is a critical problem that needs to be addressed to en-

hance the public acceptance of biometric technologies and it is essential to develop a

set of measures which can evaluate the strength of template protection techniques. Al-

though biometric cryptosystems can be analyzed using information theoretical metrics

such as entropy and mutual information, the suitability of theoretical analysis of the

transformation-based methods is based on the hardness of the invertibility of the trans-

formation.

When a user’s biohash is obtained by an adversary, it can seriously undermine the

security of the biometric system and privacy of users. If the secret key of a user is known

to the adversary, the biometric feature of the user can be reconstructed from the user’s

biohash which might harm the subject’s privacy and lead to illegitimate authentication

to a system. Biometric hashing is claimed to be irreversible due to the random projection

and quantization steps, however our study shows that an attacker is able to invert the

transformed template to obtain a close approximation to the original biometric template.

This thesis proposes four novel ways to approximate the original biometric feature from

the transformed template in a biometric hashing scheme and reveals security and privacy

problems concerning the associated biometric system. We define three different attack

scenarios under which we analyze the protection capability of biohashing. From the

security point of view, these attacks enable an adversary to recover a biometric template

under realistic assumptions and perform intrusion attacks to the biometric system. This

study is the first to analyze the inversion of biohashes in one-bit compressive sensing

framework. Experimental results show the superiority of this approach over minimum

norm solutions. Biohashes that are created from feature vectors obtained by using

LP and BIHT solutions to the one-bit compressive problem are equal to the original

biohashes stored during enrollment and this is a serious threat to the security of the
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system. In addition, this study introduces rainbow attack in order to find a biometric

template from a biometric database and use it to obtain a biohash that is same with or

close to the original biohash of a subject.

Biometric hashing scheme is a generic template protection scheme that can be applied

to various types of biometric features. In this paper, we focus on an orthogonal lin-

ear transform of face images, namely PCA (i.e., Eigenfaces). Several other studies on

biohashing also use PCA ([9, 11]) or LDA ([14]) (i.e., Fisherface) which is another or-

thogonal linear transform that is invertible. Using the knowledge of the linear transform

and its inversion, we analyze the privacy issues by reconstructing face images.

If the adversary knows system details (i.e., the PCA matrix, user’s secret key, and other

parameters), the obtained feature vectors can be used to reconstruct face images of the

subject which is a direct threat to the privacy of system users. The quality of the re-

constructed images depends on the number of bits and length of the original feature

vector and the images illustrated in the last section visually confirm the success of the

methods in reverting the biohash vectors. In this work, we study feature reconstruc-

tion and image reconstruction is carried out separately. Directly approximating images

from biohash vectors may also be possible by integrating the PCA transformation with

random projection matrix and solving the optimization problem by enforcing sparsity

in the DCT or block-DCT domain. However, our initial experiments in this direction

indicate that image level approximation approach lowers the performance both in secu-

rity perspective (evaluated through EERs) and privacy perspective (evaluated through

visual inspection of the reconstructed face images) due to the fact that the number of

dimensions to be approximated is higher for images.

In the future, the effects of various improvements proposed for biometric hashing scheme

might be investigated for security and privacy analysis by carrying out similar attacks

on the improved versions of biometric hashing. In addition, weaknesses of the biometric

hashing scheme should be explored and possible modifications should be introduced for

better security and privacy protection capability in the light of the inversion attacks

proposed in this study.



Chapter 5

Template Protection for

Fingerprint Spectral Minutiae

Template protection options for fingerprint minutiae are discussed in section 2.4. It can

be concluded that fuzzy vault has its own security and privacy drawbacks in addition

to degradation in matching accuracy due to alignment issues and nonlinear distortion.

For other alternative template protection schemes, a fixed-length feature vector or a

binarized string is required. Spectral minutiae representation is one of the very few

approaches that provides such a fixed-length representation for minutiae points.

In this chapter, we introduce spectral minutiae representation in detail and provide the

first implementation of biometric hashing for spectral minutiae [40]. Our work in [40]

is an initial attempt for protecting fingerprint minutiae templates. In the next chapter,

we improve on the introduction to minutiae protection that we discuss here.

5.1 Biometric Hashing with Fingerprint Spectral Minutiae

Spectral minutiae representation [16] provides a fixed-length feature vector from minu-

tiae location and direction information (i.e., (x, y, θ) in ISO 19794-2 standard format [60]).

This fixed-length template for a fingerprint sample can then be combined with existing

biometric template protection methods. In this work, biometric hashing scheme [7] is

used for securing fingerprints and generating protected bit strings based on minutiae

information only.

59
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Biometric hashing transforms the biometric information of a user by using pseudo-

random data which is generated from a user specified key or token. The combination

of pseudo-random number and biometric data protects the biometric template against

biometric fabrication when the corresponding token or knowledge of the randomization

is not available to an adversary. Token-based randomization also enables revocation of

one’s biometric template via token replacement. This makes it possible to renew the

biometric record of the subject in cases where it is compromised. Furthermore, different

biohashes from the same fingerprint can be generated by using different tokens which

allows a subject to be enrolled to two or more applications.

5.1.1 Spectral Minutiae Representation

The spectral minutiae representation of a minutiae set is a fixed-length feature vector

that is invariant to translation, rotation and scaling [16]. These characteristics enable

the combination of fingerprint recognition systems with template protection schemes and

allow for fast minutiae-based matching. The spectral minutiae representation requires

only minutiae information, therefore it is compatible with most of the existing fingerprint

databases (in which only minutiae are saved and no additional information related to

the finger, e.g., ridge count, singular points, and pores are kept) and minutiae-based

fingerprint verification systems.

Complex spectral minutiae (SMC) is one of the three possible spectral minutiae repre-

sentations proposed by Xu et al. [17] in order to obtain a fixed-length feature vector

using minutiae location and orientation only. The other two alternatives are location

based spectral minutiae (SML) and orientation based spectral minutiae (SMO) which

are given in detail in [16].

In SMC, each minutiae is represented by a Dirac pulse and in order to reduce the sensi-

tivity of minutiae locations to small variations in the spatial domain, a Gaussian low-pass

filter is used to attenuate higher frequencies. This low-pass filtering in the frequency

domain corresponds to a convolution in the spatial domain where every minutia is now

represented by an isotropic two-dimensional Gaussian function with standard deviation

σC . Minutiae locations on a fingerprint image and the corresponding Gaussian functions

are illustrated in Figure 5.1. Minutiae orientation is incorporated into this representa-

tion by assigning each Gaussian a complex amplitude ejθi , where θi is the orientation of
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Figure 5.1: Minutiae locations and set of minutiae represented by Gaussian functions

the corresponding minutia. For a set of Z minutiae with locations (xi, yi)|Zi=1, the com-

plex spectral representation, MC(wx, wy;σ
2
C), is obtained by evaluating the magnitude

of the Fourier spectrum (5.1) on a polar-logarithmic grid as:

MC(wx, wy;σ
2
C) =

∣∣∣∣∣exp

(
−
w2
x + w2

y

2σ−2
C

)
Z∑
i=1

exp(−j(wxxi + wyyi) + jθi)

∣∣∣∣∣ , (5.1)

where wx and wy are the spatial frequencies in the x and y directions.

The Fourier spectral magnitude is mapped onto a polar-logarithmic coordinate system

as λ =
√
w2
x + w2

y and β = arctan (wy/wx), where λ corresponds to the radial direction

and β corresponds to the angular direction. In the radial direction M = 128 samples

are used between λl = 0.05 and λh = 0.63. In the angular direction N = 256 samples

are used between β = 0 and β = 2π. The resulting complex spectral representation of a

minutiae set is a 128× 256 matrix (Figure 5.2).

5.1.2 Protecting SMC Template with Biometric Hashing

Biometric hashing, initially applied to FingerCode [32] fingerprint templates by Jin et

al. [7], is a two factor authentication approach that combines a fingerprint with a user

specified key/token and generates a unique compact code per person (Figure 5.3). A

bit string from biometric data is created by taking the inner product of a fixed-length

fingerprint feature vector and the pseudo-random number sequence that is generated
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Figure 5.2: Complex spectral minutiae representation of a fingerprint

Figure 5.3: Two factor authentication - secret key and fingerprint

using the key as the seed. Each bit is decided based on the sign of the result by

comparing to a pre-defined threshold.

In our study, we convert the M × N spectral fingerprint feature (MC) to a bit string,

b ∈ {0, 1}p, by applying the biohashing scheme to complex spectral minutiae features.

Each column of MC is a M -dimensional column vector. Randomly projecting each

column of MC to k dimensions and then thresholding the resulting vector, we obtain
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Figure 5.4: BioHashing procedure - from spectral representation to bit string

a k-length bit string per column. The mean value of the k-dimensional feature vector

is used as the quantization threshold. We apply the same procedure to each column of

MC and concatenate the bit strings to create a p-length bit string, where p = k ×N .

In our implementation, the spectral fingerprint representation that we create from a

minutiae set (MC), is a 128 × 256 matrix. Each column fn of this matrix is a 128-

dimensional column vector and it is reduced to k dimensions by multiplying it (R · fn)

with the random projection matrix, R (which is a k × 128 matrix). Thresholding the

resulting k-dimensional feature vector by using its mean value as the threshold, we obtain

a k-length bit string. The outputs of each column of MC are then concatenated in order

to create a bit string of length k × 256. We evaluate different values of k and use k = 4
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resulting in a 1024-bit final feature vector to obtain a high verification accuracy while

keeping the feature vector small (Figure 5.4).

5.1.3 Experiments and Results

5.1.3.1 Experimental Settings

We evaluate our algorithm on publicly available FVC2002 fingerprint databases, namely

DB1A, DB2A, and DB3A [61]. DB1 and DB2 consist of fingerprint images captured

with optical sensors whereas images in DB3 are captured with a capacitive fingerprint

sensor. We select these three databases in order to evaluate the performance of our

method for different image capturing technologies and leave the synthetic fingerprint

database DB4 out in the experiments. For performance evaluations, we adopt the equal

error rate (EER), which is the error rate when the frequency of false accepts (FAR) and

the frequency of false rejections (FRR) are equal to each other.

The minutiae sets are obtained by a commercial automatic minutiae extractor (Verifinger

4.4 SDK). We use our algorithm in a high security scenario as suggested in the original

spectral minutiae work [16]. In FVC2002 databases, some of the samples are obtained by

requesting users to provide fingerprints with exaggerated displacement and rotation. In

a high security scenario, users are aware that cooperation is crucial for security reasons.

Therefore, only four out of eight samples are chosen for each subject (1-2-6-7 for DB1,

1-2-7-8 for DB2, and 1-2-6-7 for DB3). Following the verification setting described in

FVC competitions, we use all possible combinations to match genuine pairs and the

first sample of each subject is chosen for imposter matches. Without making symmetric

comparisons, this results in a total of 600 (4 × 3 × 100/2) genuine matches and 4950

(99× 100/2) imposter matches for 100 subjects.

5.1.3.2 Results for the Naive Model

We evaluate the spectral minutiae representation and biohash of spectral minutiae rep-

resentation on three databases. For comparison, we also include the results from two

other matching methods: i) matching two fingerprints based on the correlation of their

complex spectral minutiae (called SMC-Correlation) and ii) matching two fingerprints

using a minutiae-based commercial matcher which is also used for minutiae extraction.
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Figure 5.5: Genuine and imposter distance distribution for the FVC2002DB1A
database

The equal error rates (EER) for all methods on three databases are given in Table 5.1.

As can be seen in this table, we obtain a 0% EER for all databases when biohashing is

applied on the spectral minutiae features.

Table 5.1: EER on FVC2002 databases

SMC-Correlation Minutiae Matching SMC-BioHash

FVC2002 DB1 6.50% 0.50% 0.00%

FVC2002 DB2 6.47% 0.83% 0.00%

FVC2002 DB3 11.68% 2.50% 0.00%

Two factor biometric hashing (fingerprint + user specified tokens) provides a clean

separation of genuine and imposter populations along with a zero EER level. As an

example, genuine and imposter distance distribution for the FVC2002 DB1 database

is illustrated in Figure 5.5. It is observed that the highest genuine distance is smaller

than the lowest imposter distance, therefore a perfect separation between genuine and

imposter distances is obtained.

5.1.3.3 Results for Stolen Key Scenario

We also evaluate the performance of our proposed scheme on a stolen key scenario,

where an unauthorized imposter acquires the secret key/token of a genuine user but
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Figure 5.6: Genuine and imposter distance distribution for the FVC2002DB1A
database for the stolen key scenario

does not have the claimed person’s fingerprint information. In this case, the imposter

sends his/her fingerprint template and the secret key/token of the genuine user in order

to be authenticated as the genuine user. This is a serious threat to the system as the

pseudo-random vectors generated using the secret key has a considerable influence on

the generated bit string, therefore on the matching score.

Assuming that the key is unknown at all times (never stolen) makes the use of bio-

metric unnecessary for real authentication scenarios. In order to analyze the effect of

the key/token and generated random vectors on the resulting bit strings, we conduct

experiments in a stolen key scenario where an imposter attempt has the same secret key

with the user that he/she is intended to authenticate as. The equal error rates for this

scenario are given in Table 5.2.

Table 5.2: EER on FVC2002 databases - stolen key scenario

SMC-Correlation SMC-BioHash (Stolen Key)

FVC2002 DB1 6.50% 14.77%

FVC2002 DB2 6.47% 13.10%

FVC2002 DB3 11.68% 26.46%

While these error rates are considerably high in this case, they are in the same range

as other results obtained with fingerprint biohash implementations. For instance, the
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straightforward biohash implementation that uses the FingerCode [32] reported in [45]

achieves a 15%, 15%, and 27% EER on FVC2002 DB1-DB3 databases respectively for

the stolen key scenario (the BASE row in Table 5 of [45]). Our error rates for this case

are slightly better in the same scenario. The same authors reported improved results

(7%, 6.8%, and 22% on FVC2002 DB1-DB3 respectively) with a classifier combination

approach that aims to reduce the stability issues of biohash, presumably with a system

significantly slower and larger than ours.

5.1.3.4 Analysis

Two factor biometric hashing scheme used in this study improves the verification ac-

curacy of biometrics alone and provides a clear separation of the genuine and imposter

distances achieving a zero EER level. With this method, a unique compact code per

person is obtained which is easy to match via bit-wise XOR operation (Hamming dis-

tance).

Our main contribution is providing the first implementation of the biohashing scheme

with spectral minutiae representation. The proposed scheme is computationally fast

as it only uses column-wise random projection of the spectral minutiae matrix while

achieving a 0% EER in the 1-to-1 verification scenario.

The original spectral minutiae features are 8096-dimensional (128 × 256). In order to

create a 1024-bits string, one needs to generate a random projection matrix of size

1024 × 8096. Instead, we propose to use a single 4 × 128 random projection matrix to

multiply with each column of SMC (128-dimensional column vectors). This results in

a computationally low random projection operation as well as an adaptive thresholding

for each column of SMC, instead of generating a larger projection matrix (which takes

more time to generate for higher number of vectors - 1024 instead of 4) and using a

single threshold for quantization.

5.2 Discussion

Biometrics is a key factor for human identification or identity management since it bases

recognition task on intrinsic human characteristics and the person to be authenticated
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should be physically present. However, biometrics suffer from high false rejection of

valid users when a high security scenario is desired with a low false acceptance rate.

In this study, we propose a biometric hashing approach for fingerprint identification

based on minutiae information. Using the spectral minutiae representation of a finger-

print minutiae set, we create a fixed-length bit string by randomly projecting spectral

minutiae feature vectors. With this approach, one can obtain perfect separation be-

tween the genuine and imposter population and the system provides a 0% equal error

rate, which is desired for all identity verification systems. In addition, in case the secret

key of a valid user is stolen, the system allows acceptable error rates for imposter authen-

tication attempts with a valid secret key. Also, biometric revocation becomes feasible

through secret key (token) replacement, which addresses the cancellability issue.

Possible future work in this direction includes different quantization methods following

the random projection of spectral minutiae feature vectors in order to provide non-

invertibility of the protected template. The processing time for comparing two bit strings

is very low as Hamming distance metric is used for bit string comparison. However,

extracting the feature vector from spectral minutiae representation takes considerable

time. This is another issue which should be addressed. It is also important to investigate

the stolen key scenario and decrease the error rates when the secret key of a user is stolen

by creating intelligent projections.

This study is an initial attempt for protecting fingerprint minutiae templates. However,

it should be noted that a large overlapping area between fingerprints is required for

spectral minutiae representation to perform well. Missing or spurious minutia leads to

decreased verification performance. In the remaining chapters of this thesis, we seek for

a better fixed-length representation for minutiae.



Chapter 6

GMM-SVM Fingerprint

Verification

In this chapter, our ultimate goal is to describe an underlying framework that enables the

generation of a fixed-length feature vector representation for fingerprint minutiae. The

framework draws upon the work of Campbell et al. on support vector machines using

GMM supervectors for speaker verification [18]. Each minutia and its neighbors within a

specified radius are represented as a 2D image by placing two-dimensional Gaussians at

the locations of neighbor minutiae. DCT coefficients of this patch image are rearranged

based on zig-zag scanning and the first D DCT coefficients of this patch image are used

to represent each minutia as a D-dimensional feature vector. A single user-independent

GMM universal background model (UBM) is trained from a collection of fingerprints to

represent the distribution of DCT features. A fingerprint is then represented with its

probabilistic alignment into the UBM mixture components and a GMM supervector is

created from the stacked first order statistics of the mixture components.

For a given enrollment fingerprint sample, a two-class linear SVM is trained in order

to create a model template that discriminates positive samples from negative samples.

The matching between a query fingerprint and the model template is performed by

computing a single inner product between the target fingerprint SVM model and the

query fingerprint GMM supervector. Next, the GMM-SVM features are binarized using

asymmetric locality sensitive hashing. The overall GMM-SVM fingerprint verification

system is illustrated in Figure 6.1. The performance of our framework is evaluated in a

69
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GMM UBM 
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(DCT Minutia Patches) 
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Hamming Distance 

Figure 6.1: Overall framework of the GMM-SVM fingerprint verification system

one-to-one fingerprint verification setup and the results on the FVC2002DB1A and the

FVC2002DB2A databases demonstrate that our approach performs better than existing

fixed-length methods.

6.1 DCT-based Minutiae Patch Representation

6.1.1 Minutia Patch

A minutia patch is a local representation that encodes a minutia and its geometric

relations with other minutiae that are closely located. Each minutia patch consists of a

central minutia mc and its neighboring minutiae within a radius R (Figure 6.2(a)). In

order to directly compare two minutia patches, without any registration for the relative

alignment of fingerprints, a relatively invariant representation using mc as a reference

is required. The central minutia mc can be used to define a new coordinate system

where its position would be the center of the system and its orientation would give the

direction of the x-axis. In this new coordinate system, the coordinates and orientations

of the neighbor points would be translated and rotated accordingly. This representation

scheme is inspired from minutiae vicinities described in [38].

In this representation, a global set of minutiae is converted into a collection of several

local minutiae sets and a patch is constructed for each minutia of a fingerprint. This

also enables two fingerprints to be matched by locally comparing patches pairwise and

calculating their similarity score using the local scores of the best pairs. Although global

coherency in the minutiae set is not utilized, the local approach has the advantage of
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(a) A minutia and its
neighbors in R

(b) Gaussian repre-
sentation for neighbor
minutiae

(c) Neighbor minutiae
at the new coordinate
system

(d) Reconstructed
minutiae patch image
from DCT coefficients

Figure 6.2: DCT representation of a minutia patch image

limiting the crucial elastic distortion problem in fingerprint matching. In the local area

of a patch, distortion due to the elasticity of the skin is negligible. The radius used

in the local approach is of great importance. The neighborhood of the central minutia

should contain several minutiae in order to be sufficiently discriminative but at the same

time it should be small enough to be considered as a local area.

6.1.2 Gaussian minutia patch image

Within a specific radius R, the number of neighbor points of a central minutia varies

and this leads to a minutia representation of unknown length. In order to obtain a fixed

length representation, one can use a rectangular grid of size (2R + 1)× (2R + 1) where

the central minutiae is at the center. Each neighbor minutia is then inserted into this

grid with respect to its relative location to mc on the fingerprint.

Representing a minutia with a single point in the spatial domain increases the sensitivity

of minutiae positions to small variations and does not maintain direction information.

Instead, each neighbor minutia is represented by a two-dimensional multivariate Gaus-

sian. We first consider a template anisotropic Gaussian:

f(x, µ,Σ) =
1

2πσ1σ2
e−

1
2

(x−µ)T Σ−1(x−µ), (6.1)

where Σ = diag(σ1, σ2) is the covariance matrix with σ1 > σ2. A Gaussian is centered

at each neighbor minutia location and its covariance matrix is selected such that the

major axis coincides with the minutia orientation as illustrated in Figure 6.2(b). For

a neighbor minutia with relative position (xi, yi) and relative angle θi as compared
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(a) Two neighbor minutiae (b) Minutia patch for minutia 1 (c) Minutia patch for minutia 2

Figure 6.3: Selected minutiae patches of two neighbor minutia from the same finger-
print image (before rotation)

with the central minutia in the patch, the template Gaussian is translated to (xi, yi)

and rotated with θi. This makes the mean of Gaussian µi = [xi, yi]
T and covariance

matrix Σi = R(θi)ΣR(θi)
T , where R(θi) is a rotation matrix 1. The patch image is then

generated as a sum over these shifted Gaussians:

I(x) =

Np∑
i=1

f(x, µi,Σi) (6.2)

where Np is the number of neighbor minutiae. Sample minutia patch images selected

from a fingerprint are illustrated in Figures 6.3(b) and 6.3(c). Please note that, the

central minutia is not directly included in this representation, but it defines the new

coordinate system and the neighbors of the patch.

6.1.3 DCT representation for minutia patches

Although minutia patch images capture the required information for fingerprint match-

ing, (2R+1)2-dimensional representation for each minutia brings heavy computation and

storage requirements. Discrete cosine transform (DCT) is often used in image process-

ing, especially for lossy compression (e.g., JPEG), due to its strong energy compaction

property. It expresses a finite sequence of data points in terms of a sum of cosine func-

tions oscillating at different frequencies. Since most of the signal information tend to

be concentrated in a few low-frequency components of the DCT, discarding small high-

frequency components results in compact representation of the signal. By keeping only

1Please note that, Gaussians are placed prior to the rotation with respect to the orientation of the
central minutia θc.
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the first D 2D-DCT coefficients after performing zig-zag scanning, each minutia patch

image is represented as a D-dimensional feature vector. This enables two patches to be

easily compared via Euclidean distance between their D-dimensional feature vectors.

Minutiae Pair Matching via DCT Patches We conduct an evaluation to assess

the discriminative power of our DCT minutia patch representation. To compare two fin-

gerprints, fp1 and fp2, a pairing matrix that contains similarity scores between patches

of fp1 and patches of fp2 is constructed. The scores are computed using a decreasing

function that converts the Euclidean distances between DCT coefficients to a score (i.e.,

g(x) = 1/(1 + ex/τ )).

DCT minutia patches
(#minutiae = T1)

fp1 

DCT minutia patches
(#minutiae = T2)

fp2

T2

T1

T2 -1

T1 -1

T2 -2

T1 -2

T2 - k

T1 - k

1st turn

2nd turn

kth turn

Figure 6.4: Minutiae pairing matrix and selection of highest score at each turn
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A closest neighbor search algorithm is applied to the pairing matrix in order to select

the best association of minutiae. At each turn, a minutiae pair from fp1 and fp2 with

the highest matching score is identified and removed from the matrix (Figure 6.4). The

final score between two fingerprints is computed by accumulating the matching scores

of identified pairs during the search.

In the evaluation, the FVC2002DB1A database [61] which has 8 impressions of 100

different fingerprints captured with an optical sensor is used. Following the performance

evaluation protocol of FVC2002 [62], 2800 genuine and 4950 imposter comparisons are

performed. An Equal Error Rate (EER) of 4.46% is achieved for D = 50. Although,

the achieved EER is worse than the state of the art [61, 62], it arguably confirms the

discriminative capability of minutia patches.

6.2 GMM Supervector Training

Gaussian mixture models (GMMs) have been dominantly used for modeling in text-

independent speaker verification. The distribution of features extracted from speech

segments (i.e., frames of an utterance) is modeled by performing background model

adaptation of GMMs. First, a universal background model (UBM) is trained from set

of frames and then the speaker model for the ith speaker is derived by adapting the

universal background model to match the observations of the speaker. Recently, the use

of GMM for modeling feature distribution has also become an effective approach for face

verification [63].

Similar to the frames of a speech utterance or the blocks of a face image, minutiae

points of a fingerprint are separate observations of the same underlying signal. DCT

patch representation of minutiae is used to train a universal background minutiae model.

The UBM is a large GMM trained to represent the distribution of features. From a huge

database of fingerprints, a large number of minutiae patches are extracted as training

data and they are pooled to train the UBM via EM (expectation maximization [64])

algorithm2:

2For further details, please refer to [65].
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g(x) =
N∑
i=1

wipi(x) (6.3)

where wi are the mixture weights and pi(x) is the unimodal Gaussian density with mean

mi and covariance Σi (diagonal covariance is assumed as this requires fewer observations

to train from).

Given a fingerprint with T minutiae, xt, t = 1, ..., T are the DCT minutia patches for

each minutia. The estimates of first order statistics for the fingerprint data are computed

for mixture i in the UBM as:

Ei(x) =
T∑
t=1

Pr(i|xt)(xt − µi) (6.4)

Pr(i|xt) =
wipi(xt)∑M
j=1wjpj(xt)

(6.5)

Using only the first order statistics (Ei(x)), a GMM supervector is formed by con-

catenating the first order statistics of each mixture. The GMM supervector maps a

fingerprint to a high-dimensional vector of size DN× 1, where D is the number of DCT

coefficients and N is the number of Gaussians in the mixture (Figure 6.5). Please note

GMM UBM 
means 

DCT minutia patches 
of FP1 

μ1 

μ2 

μN 

GMM Supervector 
of FP1 

Figure 6.5: GMM supervector generation from a single fingerprint
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that, we do not perform MAP adaptation as done in [18, 63, 65, 66] for adapting a

speaker model. Our experiments shows that using first order statistics without MAP

adaptation performed better, so we employ first order statistics only.

6.3 Linear SVM Training for Template Generation

An SVM is a two-class linear classifier constructed from sums of a kernel function K

f(x) =

L∑
i=1

αitiK(x,xi) + d (6.6)

where ti are the ideal outputs (either 1 or -1), d is a learned constant,
∑L

i=1 αiti = 0,

and αi > 0. The vectors xi are support vectors and obtained from the training set by an

optimization process. The kernel K is constrained to have certain properties so that K

can be expressed as an inner product, K(x,xi) = Φ(xi) ·Φ(x), where Φ(·) is a mapping

to a higher dimension.

SVM provides a suitable solution to fingerprint verification problem, since it is funda-

mentally a two-class problem. We aim to decide whether the fingerprint comes from the

user or the fingerprint belongs to someone else. As the number of features is large in

our problem (DN), we do not need to map data to a higher dimensional space and use

linear kernel (i.e., K(x,xi) = xTi x. In practice, the linear kernel tends to perform very

well when the number of features is large. In addition, GMM supervector has already

been employed as a linear kernel with a simple diagonal scaling [18, 67]. The SVM in

(6.6) can be expressed as:

f(x) =

L∑
i=1

αitix
T
i x + d

=

(
L∑
i=1

αitixi

)T
x + d = wTx + d

(6.7)

which reduces two-class classification to an inner product between the classifier model

w and GMM supervector x. The model w is solved by minimizing:
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min
w,d

(
1

2
‖w‖2 + C

∑
i

H1

(
ti(w

Txi + d)
))

(6.8)

where H1(z) = max(0, 1 − z) is the ”Hinge Loss” and C is a regularization parameter

that controls a tradeoff between a low error on the training data and the ability to

generalize well.

We use SVM to create a model w (which we also refer to as a reference template) for

an enrollment fingerprint sample fenroll. This is achieved by training an SVM using the

GMM supervector of fenroll as a positive sample (labeled as +1) and GMM supervectors

of fingerprints from example imposters as negative samples (labeled as -1). Given a query

fingerprint sample fquery, its matching score for the subject i is the inner product between

wi and xquery, where wi is the SVM classifier model for the subject i and xquery is the

GMM supervector of fquery. The verification decision is based upon whether the score

wT
i xquery is above or below a threshold. This approach provides one-to-one fingerprint

matching as only one single training sample for each class is used to train the template

model. It corresponds to comparing a gallery fingerprint to a query fingerprint as done

in all other fingerprint verification systems.

6.3.1 Initial Experiments and Results

We perform one-to-one fingerprint verification experiments on the FVC2002DB1A fin-

gerprint database [61]. For minutiae extraction, a commercial fingerprint minutiae ex-

tractor (which participated in FVC-onGoing [68], Ongoing MINEX [69] and FpVTE

2012 [70]) is used to obtain minutiae information in ISO 19794-2 format (x, y, θ) [60].

In order to create patches for each minutia, all neighbor minutiae within a radius R = 60

pixels at 500 dpi resolution are used. This results in minutia patch images of size

121× 121 pixels. For DCT representation of patches, the first 50 DCT coefficients after

zig-zag scanning are kept (i.e. D = 50), which means that a minutia is represented along

with its local information via a feature vector of length 50.

We use 158083 fingerprints from publicly available FVC databases and an in-house finger-

print database collected via an optical reader. The details of these databases (number

332 minutiae in FVC2006DB1 have zero neighbors within R, therefore they are not used in GMM
training.
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DB Name #Fingers
#Fingers ×

#Samples/Finger

FVC2002DB2 800 100 × 8

FVC2002DB3 800 100 × 8

FVC2002DB4 800 100 × 8

FVC2004DB1 800 100 × 8

FVC2004DB2 800 100 × 8

FVC2004DB3 800 100 × 8

FVC2004DB4 800 100 × 8

FVC2006DB1 1648 140 × 12

FVC2006DB2 1680 140 × 12

FVC2006DB3 1680 140 × 12

FVC2006DB4 1680 140 × 12

IN-HOUSE DB 3520 440 × 8

TOTAL 15808

Table 6.1: Number of fingerprints used in GMM training

of fingers and samples per finger) can be found in Table 6.1. Our target database,

FVC2002DB1A, is not included in GMM training to prevent any bias that might fa-

vor supervector representation in the advantage of the FVC2002DB1A database. The

GMMs are trained for different number of Gaussians (1024, 2048, and 4096) and their

results are reported separately. Once the universal models are trained, we extract first

order statistics of fingerprint samples from FVC2002DB1A and produce supervectors for

GMMs with different number of Gaussians, which results in supervectors of dimensions

51200 (1024× 50), 102400 (2048× 50), and 204800 (4096× 50).

For the enrollment of target fingerprints, we train an SVM for each fingerprint sample

using the target GMM supervector and the set of imposter GMM supervectors labeled

as -1, using the first impression of each subject as imposters. The weight vector of

the SVM classifier model is the template for the enrolled fingerprint sample. During

verification, GMM supervector of the query fingerprint is compared to the template of

the claimed identity and their inner product is used to give an accept or reject decision.

The verification protocol is as follows:

i) Each impression is matched against the remaining impressions of the same finger.

The total number of genuine tests is 5600 (8× 7× 100).

ii) The first impression of each finger is matched against the first impression of the

remaining fingers. The total number of imposter tests is 9900 (99× 100).
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# Gaussians EER

1024 2.191%

2048 1.911%

4096 1.633%

Table 6.2: Equal error rates for GMMs with different number of Gaussians

Since wT
fp1

xfp2 is different from wT
fp2

xfp1 , both scores are calculated and included in

the experiments separately as either genuine or imposter matching scores.

Equal error rates (EERs) for GMMs with different number of Gaussians are shown in

Table 6.2. The optimal C values for training SVMs corresponding to different number of

Gaussians are found by grid search and best C values were 10, 0.001, and 1 for 1024, 2048,

and 4096 Gaussians, respectively. As the number of Gaussians in the GMMs increases,

our method performs better in representing feature distribution which eventually leads

to lower error rates.

In order to provide comparison with our system, we also perform direct minutiae match-

ing4 with the commercial algorithm which we also use for minutiae extraction. It obtains

0.50% EER on FVC2002DB1A and performs better than our method. This difference

stems from the facts that we can neither perform minutiae pair search, which is a cru-

cial step for minutiae matching, nor include singular point information. However, the

main purpose of this study is to present a fixed-length fingerprint representation and

this performance drop is expected.

6.3.2 Discussion

The GMM-SVM based feature representation is a novel method to create a fixed-length

feature vector for fingerprint minutiae. Although minutiae-based matching is the most

widely used technique in fingerprint verification/identification, the increasing security

and privacy concerns make minutiae template protection one of the most crucial tasks.

The main motivation of this study is to obtain a fixed-length feature vector for finger-

prints so that minutiae based fingerprint verification can be combined with template

protection schemes. In addition, our method avoids the difficulties of minutiae registra-

tion by representing minutiae patches on a normalized coordinate system defined by the

4Additional fingerprint features that are not defined in ISO minutiae template are not used in any of
the experiments.
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orientation of the central minutia. Also, major problem of elastic distortion in fingerprint

matching is compensated with the local representation of the minutiae neighborhoods.

This study introduces a fixed-length feature representation for variable length minutiae

of a fingerprint. In order to combine our method with the cryptographic primitives

for template protection, such as [71, 72], one should extract bits that are stable for

genuine users and completely random for arbitrary users. Random projection-based

biometric hashing [7] cannot be directly applied to minutiae templates, however, another

possible direction for securing minutiae might be applying biohashing to our GMM-SVM

fingerprint feature vectors.

In the remaining of this chapter, we will work towards hashing of the feature vectors

created by our approach and include the binarization of the GMM-SVM feature vectors.

We also conjecture that enriching the database that is used in training GMMs and using

random resampling ([73]) for addressing data-imbalance problem in SVM will be possible

improvements to our GMM-SVM minutiae representation.

6.4 Asymmetric Locality Sensitive Hashing

In this section, we introduce an asymmetric hashing scheme for the inner product match-

ing of GMM-SVM feature vectors presented in Section 6.3. The matching score between

a reference SVM model template and a query GMM supervector is calculated via inner

product of these two vectors. The main goal of asymmetric locality sensitive hashing

is to convert reference SVM model templates and query GMM supervectors into binary

strings, so that they can be compared using Hamming difference. The asymmetry comes

from the differences in transformations that are applied on template model vectors and

query fingerprint feature vectors separately. We adopt the asymmetric locality sensitive

hashing method proposed in [19] for maximum inner product search using sign random

projections. First, we present the fundamentals of locality sensitive hashing. Then, we

continue with the asymmetric feature transformation.
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6.4.1 Locality Sensitive Hashing

Locality sensitive hashing (LSH) [74] is initially proposed to solve the problem of effi-

ciently finding nearest neighbors. It improves over the brute-force algorithm in which

the query point is compared to each data point. LSH is a family of functions with the

property that more similar items in the d-dimensional Euclidean space according to some

similarity measure have a higher collision probability hence a lower expected Hamming

distance (Figure 6.6).
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w 
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w 

LSH 

LSH 

. . . 1 1 0 1 1 0 1 0 1 0 0 1 

. . . 1 1 0 0 1 0 1 0 1 0 0 1 

. . . 1 1 0 1 1 0 1 0 1 0 0 1 

. . . 0 1 0 1 1 1 1 0 0 1 0 1 

Low Hamming Distance 

High Hamming Distance 

h(x) 

h(w) 

h(x) 

h(w) 

Figure 6.6: Illustration of the LSH scheme

6.4.1.1 LSH for correlation

In our GMM-SVM framework,the inner product between a query vector x and a database

model w, wTx is the score used for making decisions. It is required to find a hashing

scheme such that the Hamming distance between the hashes of the vectors would ap-

proximate their inner product.

Sign random projection (SRP) is a popular LSH family in which the sign of the projection

is kept [76, 77]. The hash function using SRP is defined as:

ht(x) = sign(aTt x), (6.9)
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where at is randomly chosen from i.i.d. normal distribution with at(i) ∼ N(0, 1). Note

that, this is the same as biohashing. So, we are using biohashing for LSH here.

The correlation or cosine similarity between a query x and model w is defined as:

wTx

‖w‖‖x‖
. (6.10)

It has been shown that the correlation between vectors is monotonically related to the

collision probability of sign random projections [77] due to the following relation:

P (ht(x) = ht(w)) = 1− 1

π
cos−1

(
wTx

(||w||||x||)

)
. (6.11)

So, the probability of one bit random hashes of two vectors to be equal is monotonically

related to the cosine similarity (or correlation) between two vectors. After a basic

transformation of the hash code outputs from {−1, 1} to {0, 1}, the Hamming distance

between two N -bit hashes in terms of XOR is:

Dh(h(w), h(x)) =
N∑
t=1

(ht(w)⊕ ht(x)) , (6.12)

where Dh denotes the Hamming distance operator and ⊕ is the bitwise XOR operator.

Due to this relation, Hamming distance can be seen as a sum of Bernoulli random vari-

ables and consequently has a binomial distribution with probability of success equal to

one minus the collision probability given in 6.11. Here, we make a simplifying assumption

of independent bits.

Hence for an N -bit SRP hash, the expected value of the Hamming distance between the

hashes is:

E(Dh(h(x), h(w))) =
N

π
cos−1

(
wTx

(||w||||x||)

)
. (6.13)

The relation between vector correlations which takes values in the range [-1,1] and the

expected N -bit normalized Hamming distance between their SRP hashes is shown in

Figure 6.7. The confidence intervals shown in this figure is obtained by assuming that the

Hamming distance is distributed binomial. It is easy to see that if the number of bits N
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is large enough, correlation and N -bit Hamming distances will be monotonically related,

hence an ascending ranking of expected Hamming distances and a descending ranking of

correlations will be the same. This means that if we wanted to use correlations between

vectors for scoring verification attempts, we can safely use Hamming distances between

N -bit SRP hashes instead, without significantly affecting verification performance.
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Figure 6.7: Relation between the correlation and the expected normalized Hamming
distance together with 95% confidence intervals for different hash lengths

However, we are interested in calculating inner products and not correlations between

vectors due to our linear SVM formulation. In order to be able to approximate inner

products with Hamming distances, we need to use asymmetric hashing.

6.4.2 Asymmetric Feature Transformation

In our GMM-SVM framework, matching score between a query fingerprint and a refer-

ence template is calculated based on the inner product of the corresponding vectors. Due

to variations in the norms of these vectors, an inner product cannot be substituted with

a correlation directly. Asymmetric feature transformation, where the transformations

Fx and Fw are different for input query and reference data, converts an inner product

to a correlation so that outputs of these two operations are approximately equal [19].



GMM-SVM Fingerprint Verification 84

It should be noted that the preprocessing transformation Fx is applied on the query x

and the preprocessing transformation Fw is applied on the reference model w.

For the purpose of converting correlations to inner products, [19] defines two vector

transformations F ′w : RD 7→ RD+2m and F ′x : RD 7→ RD+2m as:

F ′w(w) = [w; 1/2− ‖w‖22; 1/2− ‖w‖42; ...; 1/2− ‖w‖2m2 ; 0; 0; ...; 0], (6.14)

F ′x(x) = [x; 0; 0; ...; 0; 1/2− ‖x‖22; 1/2− ‖x‖42; ...; 1/2− ‖x‖2m2 ]. (6.15)

The transformation F ′w(w) first appends m components of the form 1/2 − ‖w‖2i2 and

then m zeros. Its asymmetric counterpart F ′x(x) first appends m zeros and then m

components of the form 1/2− ‖x‖2i2 .

Without loss of generality, it can be assumed that ‖wi‖2 ≤ U < 1,∀wi enrolled in the

database and ‖xi‖2 ≤ U < 1,∀xi. If that is not the case, it is possible to scale all data

points. Let M be the upper bound on all norms, i.e. M = max(max ‖w‖2,max ‖x‖2)

and the transformation T : RD 7→ RD as:

T (x) = x
U

M
. (6.16)

We apply this transformation first to limit the norms of the vectors, then we apply

the asymmetric transforms provided in 6.14 and 6.15. Finally, we obtain combined

transformations Fw and Fx which can be defined as Fw = F ′w ◦ T and Fx = F ′x ◦ T ,

respectively. The inner product between a query x and reference data w after the

transformations Fw and Fx become:

Fw(w)TFx(x) = wTx

(
U2

M2

)
. (6.17)

Fw(w) and Fx(x) are now D + 2m dimensional and their norms are given by:

‖Fw(w)‖ =

√
m

4
+ ‖T (w)‖2m+1

2 , (6.18)
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‖Fx(x)‖ =

√
m

4
+ ‖T (x)‖2m+1

2 . (6.19)

After the asymmetric transformations on w and x, the correlation between Fw(w) and

Fx(x) is:

Corr (Fw(w), Fx(x)) =
wTx

(
U2

M2

)
√

m
4 + ‖T (w)‖2m+1

2

√
m
4 + ‖T (x)‖2m+1

2

. (6.20)

The norms ‖T (w)‖2 and ‖T (x)‖2 are less than 1. Therefore, both ‖T (w)‖2m+1
2 and

‖T (x)‖2m+1
2 converge to zero very fast when m is chosen to be large enough and the

correlation approximately becomes proportional to the inner product wTx. The sign

random projection can then be applied on Fw(w) and Fx(x) to generate respective

hashes. The Hamming distance between the asymmetric hashes of w and x is calculated

as:

N∑
t=1

(ht(Fw(w))⊕ ht(Fx(x))) . (6.21)

This Hamming distance is monotonically related to the correlation between transformed

vectors due to Equation 6.13 when number of bits N is sufficiently large, which in turn is

proportional to the inner product of wTx as given in Equation 6.20 when m is sufficiently

large. This means that we can use Hamming distance between these asymmetric hashes

instead of using inner products for making verification decisions.

6.4.3 Experiments and Results

We perform the same one-to-one fingerprint verification experiments on the FVC2002DB1A

database as in Section 6.3.1. Using the GMM supervectors as query fingerprint vectors

and SVM model templates as reference data, we conduct asymmetric hashing exper-

iments by following the verification protocol described in Section 6.3.1 where report

EERs for matching of GMM-SVM vectors are reported with 1024, 2048, and 4096 num-

ber of Gaussians as 2.231%, 1.911%, and 1.633%, respectively. Table 6.3 presents the

verification EERs for asymmetric hashing.
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# Gaussians GMM-SVM ALSH

1024 2.191% 2.362%

2048 1.911% 1.850%

4096 1.633% 1.661%

Table 6.3: Equal error rates for Asymmetric Locality Sensitive Hashing for correlation

The results show that the verification performance is not altered by the asymmetric

transformation followed by hashing. The error rates are very close to each other for

matching of the GMM-SVM vectors and ALSH hash vectors.

6.5 Improvements

In this section, we present two modifications that improve efficiency and accuracy of

the proposed fingerprint matching approach. First, we reduce the dimension of the

GMM-SVM feature vectors via Principal Component Analysis (PCA) [46]. Next, we use

random minutiae resampling for addressing data-imbalance problem in SVM to improve

our GMM-SVM minutiae representation.

6.5.1 Dimension Reduction with PCA before SVM Training

The GMM-SVM features are DN dimensional, where D = 50 is the number of DCT

coefficients and N = 1024, 2048, or 4096 is the number of Gaussians in the mixture.

Respectively, this corresponds to feature lengths of 51200, 102400, and 204800 which

are quite high for computational complexity of the SVM training process and matching

step. Thus, we apply PCA on the input features and reduce the dimension of D × N

to 799. The selection of 799 is due to the nature of the available data. FVC2002DB1

database includes 800 fingerprint samples (8 impression of 100 different fingers) and the

highest number of corresponding principal components is 800-1=799.

6.5.2 Random Minutiae Sampling for SVM Training

There is an evident imbalance between number of positive and negative samples for

SVM training at the reference template generation step. For every enrollment sample,

there is only 1 positive sample which corresponds to the given enrollment fingerprint
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GMM supervector. On the other hand, we have 99 negative samples that come from 99

different fingerprints available in the database. So, the training data for SVM has 100

samples and only 1 of them has a positive label (i.e. +1) and the remaining 99 samples

are labeled as negative (i.e. −1). Due to this data imbalance, the orientation of the

decision boundary is largely dictated by the negative samples in the training data.

In order to address the problem of data imbalance, we follow the work in [73] which

proposes to increase the number of positive samples by randomly selecting a subset

of the input features. Specifically, the order of minutiae in an enrollment fingerprint

is first randomized; then random subsets of minutiae are selected among this random

set. Each of these subsets is then used to produce a GMM supervector. A desirable

number of fingerprint supervectors can be produced by repeating this randomization

and partitioning process a number of times.

Given an enrollment fingerprint, we randomize the order of minutiae and selected the

first n% minutiae to create a subset. This procedure is repeated for different selections of

percentage n, and several subsets of minutiae are generated. Then, GMM supervectors

corresponding to each subset is created and included in the SVM training as positive

training samples, in addition to the GMM supervector of the original enrollment finger-

print full length minutiae set.

Table 6.4 shows the number of random sampling repetitions for different values of n.

A total of 16 subsets are generated and when combined with the original full length

minutiae set, 17 positive samples become available for SVM training from GMM super-

vectors.

n% # repetitions

95% 1

90% 2

85% 3

80% 4

75% 3

70% 2

65% 1

TOTAL 16

Table 6.4: Number of subsets selected for different percentages of minutiae
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The implemented improvements significantly decreases error rates of the GMM-SVM

approach (Table 6.5). Equal error rates usually decrease when the number of hash

dimension is higher. However, increasing the hash dimension even more does not lead

to lower error rates and usually hash dimensions between 218−222 are enough to obtain

the best accuracies (Figure 6.8). For brevity, the table do not include EERs for every

hash dimension. Instead, we report the results for hash dimension of 226. In addition,

FAR1000 values (i.e., FRR values where FAR = 10−3) are given in Table 6.6.

# Gaussians
GMM-SVM GMM-SVM Asymmetric

ALSH - 226

initial improved Transformation

1024 2.191% 1.180% 1.118% 1.123%

2048 1.911% 1.175% 1.024% 1.010%

4096 1.633% 1.218% 1.175% 1.180%

Table 6.5: Equal error rates of the improved system for FVC2002DB1A

# Gaussians
ALSH - 226

EER FAR1000

1024 1.123% 2.625%

2048 1.010% 2.500%

4096 1.180% 2.696%

Table 6.6: FAR1000 values of the improved ALSH scheme for FVC2002DB1A
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Figure 6.8: EERs for different hash dimensions - FVC2002DB1A

Figures 6.9(a) to 6.9(f) illustrate the corresponding ROC and DET curves for systems

with different number of Gaussians. For every implementation of the system, i.e., with
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(c) ROC curves for #Gaussians = 2048
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(e) ROC curves for #Gaussians = 4096
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(f) DET curves for #Gaussians = 4096

Figure 6.9: Error rates for FVC2002DB1A

different number of Gaussians in the mixture, reducing the feature dimension and in-

creasing the number of positive samples for SVM training improves the robustness of

the system and decreases matching errors.

Figure 6.10 illustrates the hash generation time for the ALSH scheme, i.e., the time

for generation of a bit-string from a query or reference GMM-SVM feature vector. The
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GMM-SVM feature generation and ALSH scheme are implemented in MATLAB and the

experimens are run on a 2.5 GHz with 64 GB of RAM PC using 64-bit Windows Server

2008 operating system. It should be noted that the final output of the system is a bit-

string, therefore the matching step is low cost and suitable for light weight applications

such as match-on-card systems. Figure 6.11 illustrates the matching time between two

hashes for different hash lengths. Even if the hash length is 226, the matching time is

less than 0.2 seconds, which is acceptable for a fingerprint verification system.
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Figure 6.10: ALSH hash generation time from GMM-SVM feature
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Figure 6.11: ALSH hash matching time

The verification performance of our approach is also validated on another fingerprint
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database, namely FVC2002DB2A. Table 6.7 includes the EERs corresponding to differ-

ent number of Gaussians and presents error rates for different steps of the framework

at each column. In addition, FAR1000 values (i.e., FRR values where FAR = 10−3) are

given in Table 6.8. Figure 6.12 presents the EERs for different hash dimensions and the

corresponding ROC and DET curves are given in Figures 6.13(a) to 6.13(f).

# Gaussians GMM-SVM
Asymmetric

ALSH - 222

Transformation

1024 1.834% 1.645% 1.664%

2048 1.426% 1.374% 1.393%

4096 1.123% 1.118% 1.000%

Table 6.7: Equal error rates of the improved system for FVC2002DB2A

# Gaussians
ALSH - 222

EER FAR1000

1024 1.664% 4.286%

2048 1.393% 3.018%

4096 1.000% 2.750%

Table 6.8: FAR1000 values of the improved ALSH scheme for FVC2002DB2A
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Figure 6.12: EERs for different hash dimensions - FVC2002DB2A

Two other fixed length approaches that can be compared with our system are the spec-

tral minutiae representation [17] and binary feature vector representation in [38]. How-

ever, they do not report error rates for the FVC2002DB1A database. When we analyze

their reported results on the FVC2002DB2A database (2.48% [17] and 3.88% [38] EERs

compared to minutiae matching 1.0% on FVC2002DB2A), we also observe similar per-

formance drops compared to minutiae matching. The best performance obtained for
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(b) DET curves for #Gaussians = 1024
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(c) ROC curves for #Gaussians = 2048
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(d) DET curves for #Gaussians = 2048
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(e) ROC curves for #Gaussians = 4096
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(f) DET curves for #Gaussians = 4096

Figure 6.13: Error rates for FVC2002DB2A

FVC2002DB2A with our approach is 1.000%, which is far lower than those two results.

It is also at the same level with minutiae matching result on the same database.
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Figure 6.14: Overall framework and other possibilities

6.6 Flexibility of the Framework - Enabling Other Possi-

bilities

The overall framework consists of four separate components and each component has

its own objective. This allows various other possible methods to either be integrated to

the system or replace the implemented ones (Figure 6.14).

The first component aims at representing local minutiae information in a compact way.

For this task, we propose using DCT coefficients of the minutia patch images. It is also

possible to use other image descriptors such as PCA or LBP (Local Binary Patterns).

Also, one does not have to use a minutia patch image at all. Instead, local minutiae con-

structs such as minutia vicinities, minutiae triplets or MCC (Minutiae Cylinder Codes)

features can be used at this stage.

Feature modeling is the second component and it aims at estimating the distribution of

the input local minutia vectors. In our framework, this has been accomplished by GMM-

UBM approach and each fingerprint is represented according to its relative alignment

into the background Gaussian mixture. In order to model the input feature distribu-

tion, other alternatives among parametric/non-parametric generative or discriminative

models can also be employed.

The next component generates a model template for a given enrollment fingerprint

sample. At this stage, we train a linear SVM for each enrollment sample. The main

aim at this step is to create a model for an enrollment sample that would discriminate

samples of the same fingerprint from other imposter fingerprint samples. A collection of
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linear classifiers are available at this stage and can be used in the same context as well.

In addition, Neural Networks can be another direction to discriminate positive samples

from negative ones.

The last step includes the binarization of the resulting fixed-length feature vectors. Bi-

nary representation of the features not only leads to faster matching, but also allows

combination of the fingerprint templates with cryptographic primitives based on homo-

morphic encryption and opens an alternative path to biometric template protection. We

propose to use asymmetric locality sensitive hashing at this stage and extract binary

strings, or namely hashes, that can easily be compared via Hamming distance. Other

possible thresholding strategies can also be followed here.

6.7 Discussion

In this chapter, we present a novel framework for fixed-length feature generation from

fingerprint minutiae. As each fingerprint has varying number of minutiae, it is a crit-

ical bottleneck for fingerprint template protection to obtain a fixed-length representa-

tion. Most of the current fingerprint verification systems use only minutiae information

since minutiae representation is globally regarded as the standard feature for fingerprint

matching. Therefore, other additional features that can be extracted from fingerprints,

such as ridge information, orientation, texture, etc., are not included in this study. Sin-

gular points (core and delta) are also included in the standard minutiae formats (i.e.

ISO 19794-2 [60]), however their automatic detection can be misleading. Also, not all

fingerprint images include singular points due to exaggerated displacement. So, we keep

singular points out of discussion in this work.

In order to address the security and privacy concerns regarding protection of the minutiae

templates, we propose a multi step feature generation framework based on GMM-SVM

approach. The last step of the framework includes the binarization of the obtained

fingerprint features without decreasing the representative ability while keeping the rep-

resentation as compact as possible. Asymmetric locality sensitive hashing provides two

separate transformations. One of them is applied on query fingerprint templates or the
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other one on reference data that is previously stored in the system. These transfor-

mations allow the use of locality sensitive hashing for converting the GMM-SVM fea-

ture vector into binary hash vectors. The experiments conducted on publicly available

fingerprint databases show the success of our system and its superiority over existing

fixed-length minutiae representations.



Chapter 7

Conclusion and Future Work

Biometric template protection methods are natural extensions of existing biometric

recognition systems. These methods aim at securing the templates of system users that

are either saved in smart cards or large biometric databases depending on the system

design. The security and privacy of biometric templates are of greatest importance and

attacks to biometric systems and databases severely threaten the security and privacy

of the society.

This dissertation evaluates one of the current biometric template protections methods,

namely biometric hashing, from security and privacy aspects. Thorough analysis of

biometric hashing requires theoretical evaluation of the method as well as analysis of

practical attacks. In this study, we theoretically analyze the unpredictability of biohashes

via estimated entropy and the amount of information carried in a biohash is measured

for the first time. In addition, several inversion attacks are proposed and weaknesses

of biometric hashing is discussed. Thus, a complete assessment of biometric template

protection with biometric hashing is presented.

Fingerprint modality stands out from other biometric modalities due its distinct prop-

erties. The standard matching of fingerprints depends on minutiae features which have

a non-constant length by nature. This does not allow current biometric template pro-

tection methods to be applied for securing minutiae templates. Spectral minutiae rep-

resentation is one of the previous methods proposed to provide a fixed-length feature

vector for fingerprint minutiae. This work includes an evaluation of this method and a

potential template protection for spectral minutiae via biometric hashing.

96
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This dissertation presents a novel framework to bypass the bottleneck of varying length

input feature to template protection by generating a fixed-length representation of fin-

gerprint minutiae. This task requires two subtasks to be completed. First of all, discrim-

inative features that represent the local minutia structures has to be extracted. Second,

the distribution of such local features should be modeled. Local minutia information is

captured by a minutia patch image and expressed via the first D DCT coefficients of

this image. The GMM-SVM approach, which was first applied to speaker verification, is

adapted to fingerprint verification based on minutiae features with some modifications.

Given a fingerprint sample, its minutiae information is converted into a fixed-length fea-

ture vector and become securable with a biometric template protection method such as

fuzzy commitment and biometric hashing. Furthermore, the binarization of feature vec-

tors via asymmetric locality sensitive hashing enables the combination of homomorphic

encryption based cryptographic alternatives and minutiae information.

7.1 Evaluation of Biometric Hashing

Biometric hashing provides an intelligent solution for protecting biometric templates

and thus deserves considerable attention. However, vanilla biohashing has significant

security and privacy drawbacks, as discussed in Chapters 3 and 4. Especially, if the

secret key of a user is known to an adversary, there is a significant drop in the entropy of

biohashes. So, novel random projection and quantization schemes are required to prevent

or limit this drop. However, entropy is not the only theoretical metric in analyzing

biometric template protection methods. Other privacy and security metrics should also

be investigated and ways to implement them on biometric hashing should be studied.

The reconstruction of the biometric template or the original signal from biohash is an-

other security and privacy aspect of biometric hashing as discussed in Chapter 4. There-

fore, better biohashing schemes that address the improvements in theoretical security

should also be studied in order to provide resistance against inversion attacks.
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7.2 Template Protection for Fingerprint Minutiae

One of the main supporting ideas of this dissertation is that a fixed-length representation

for minutiae is required for fingerprint template protection. Chapters 5 and 6 discuss

this requirement in depth and propose novel solutions. The GMM-SVM framework is

able to fill this gap by offering a fixed-length representation which can be combined

with existing template protection methods such as fuzzy commitment and biohashing.

A possible future work would be investigating applicable template protection methods

and securing fingerprint minutiae templates using GMM-SVM features.

Asymmetric locality sensitive hashing provides a successful binary representation for

GMM-SVM features. This allows the use of cryptographic primitives and homomorphic

encryption for securing minutiae information. A promising area of future work would

be building novel encryption strategies for securing binary minutiae features of this

framework.
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