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ABSTRACT

Spin-glass problems continue to fascinate with new orderings and phase dia-
grams under frustration and ground-state entropy. In this thesis, new types of
spin-glass systems are introduced resulting in a rich information on these complex
structures and novel orderings. We realized that in spin-glass systems, frustration
can be adjusted continuously and considerably, without changing the antiferro-
magnetic bond probability p, by using locally correlated quenched randomness,
as we demonstrate on hypercubic lattices and hierarchical lattices. Such overfrus-
trated and underfrustrated Ising systems on hierarchical lattices in d = 3 and
d = 2 are studied by a detailed renormalization-group analysis. A variety of infor-
mation about the effects of frustration in spin-glass systems is obtained including
evolution of phase diagrams, destruction of orderings, chaotic rescaling behavior,
and thermodynamic properties. Our results are suggestive for hypercubic lattices.

Furthermore, spin-glass phases and phase transitions for g-state clock models
and their ¢ — oo limit the XY model, in spatial dimension d = 3, are studied.
For even ¢, in addition to the now well established chaotic rescaling behavior of
the spin-glass phase, each of the two types of spin-glass phase boundaries displays,
under renormalization-group trajectories, their own distinctive chaotic behavior.
We thus characterize each different phase and phase boundary exhibiting chaos by
its distinct Lyapunov exponent, which we calculate. We show that, under renor-
malization group, chaotic trajectories and fixed distributions are mechanistically
and quantitatively equivalent. The phase diagrams for arbitrary even ¢, for all
non-infinite q, have a finite-temperature spin-glass phase. Furthermore, the spin-
glass phases and the spin- glass-paramagnetic phase boundaries exhibit universal
fixed distributions, chaotic trajectories and Lyapunov exponents, independent of
q. In the XY model limit, our calculations indicate a zero-temperature spin-glass

phase.

v



On the other hand, very distinctive orderings and phase diagram structures are
found for odd q. These models exhibit asymmetric phase diagrams, as is also the
case for quantum Heisenberg spin-glass models. No finite-temperature spin-glass
phase occurs. For all odd ¢ > 5, algebraically ordered antiferromagnetic phases
occur. All algebraically ordered phases have the same structure, determined by an
attractive finite-temperature sink fixed point where a dominant and a subdominant
pair states have the only non-zero Boltzmann weights. The phase transition critical
exponents quickly saturate to the high q value.

Finally, the diffusive dynamics on non-equilibrium systems are discussed. In
general, the effects of microlevel motions are observed indirectly in the macroworld,
hence observables that are less sensitive to microlevel randomness can be obtained
with fewer parameters. Molecular dynamics simulations are extensively used on
the investigation of many body systems or specific molecules interacting with many
body environment under the effect of thermodynamics. We work on two differ-
ent problems: In the first study, we demonstrate a scheme projecting continuous
dynamical modes on to a discrete Markov State Model and analyze cw-ESR spec-
trum of a spin label attached to a macromolecule undergoing an arbitrary (but
Markovian) rotational diffusion. In the second study, we generate the statistics
and calculate the energetics of the dominant surface diffusion mechanisms and

observe growth modes on nanoscale bimetallic synthesis.

Keywords: Spin glasses. Order in the presence of frozen disorder. Chaos under
scale change. Critical phases and phase diagram reentrance. Renormalization-

group theory. Macromolecule rotational diffusion. Nanoscale bimetallic synthesis.



OZET

Spin cami problemleri, bunalim ve sifir sicaklik entropisinden kaynaklanan
yeni diizenlerle ve faz diyagramlariyla ilgi cekmeye devam etmektedir. Bu tezde,
bu sistemlerin karmasgik yapilariyla ilgili gesitli bilgiler ve daha once rastlan-
mamig diizenler ortaya koyan yeni spin cami sistemleri onerilmisgtir. Spin cami
sistemlerinde, ¢alismamizda hiperkiibik ve hiyerarsik orgiilerde gosterdigimiz gibi,
bag yogunluklari degistirilmeden yoresel olarak iligkili bir bicimde dagitilmis
donmug diizensizlik kullanilarak bunalim stirekli bir bicimde ve istenen diizeyde
degistirilebilir. Bu tarz altbunalimhi ve tistbunalimlh Ising spin cami sistemleri 3-
boyutlu ve 2-boyutlu hiyerarsik orgiilerde renormalizasyon grubu analiziyle incele-
meye alinmigtir. Sonug olarak, spin camui sistemlerinde bunalimin faz diyagramlari,
diizen, kaotik olgeklenme davranigi ve termodinamik ozellikler tizerindeki etkile-
riyle ilgili bir¢cok yeni bulgu elde edilmigtir.

Ayrica, g-durumlu saat modeli ve XY modeli limiti (q sonsuza giderken) spin
cami fazlar1 ve faz gecisleri incelenmistir. Cift q degerleri icin, spin cami fazindaki
kaotik olgeklenme davramigina ek olarak spin cami faz hudutlarinda (spin cami-
paramanyetik ve spin cami-ferromanyetik) farkli iki tip kaotik 6lgeklenme dav-
ranigl gozlemlenmistir ve her birinin Lyapunov iisteli hesaplanmigtir. Renormali-
zasyon grubu dontisiimleri altinda 6lgeklenen etkilesimlerin izledigi kaotik yolun ve
bir olcekte sistem iizerinde dagilimlarin mekaniksel ve niceliksel olarak es oldugu
gosterilmigtir. Hesaplanan faz diyagramlarina gore biitiin sonlu ¢ift q degerleri igin
bir sifir tistii sicaklik spin cami fazi var olmaktadir. Spin cami fazlar1 ve spin cami-
paramanyetik faz cizgileri biitiin q degerleri i¢in evrensellik gostermektedir. XY
modeli limitindeki davranig ise sifir derece spin cami fazini isaret etmektedir.

Ote yandan, tek q degerleri icin, bircok kendine 6zgii faz davramslari ve faz di-
yagramlari gozlemlenmistir. Bu modeller i¢in faz diyagramlar: kuantum Heisenberg
spin cami sistemlerinde oldugu gibi asimetriktir ve sifir tistii sicaklik spin cami fazi

olusmamaktadir. Biitiin tek ¢ > 5 degerleri igin, cebirsel antiferromanyetik fazlar



olugmaktadir. Biitiin bu fazlar iki farkli komsu etkilesme enerjisinin kademeli ola-
rak baskin oldugu bir sifir iistii sicaklik sabit noktasiyla belirlenmektedir. Kritik
usteller q artarken hizli bir bigimde yiiksek q degerlerine ulagmaktadir.

Son olarak, dengede olmayan sistemlerin dinamigi incelenmigtir. Mikro diizey-
deki hareketler makro diinyada genel olarak dolayl yoldan gozlendigi i¢in, mikro
diizeydeki raslantisalliga daha az hassas olan gozlemlenebilir ozellikler daha az pa-
rametreyle elde edilebilir. Molekiiler dinamik benzetimleri ¢ok parcgacikli sistem-
lerde ve baz1 6zel molekiillerin ¢ok pargacikli cevre ile etkilegimini incelemek adina
yaygin olarak kullanilmaktadir. Bu boltimde iki farkli problem ele alinmigtir: Tk
caligmada uzayda stirekli olan dinamik modlar kesikli Markov modeline ¢evirilerek
diftizyon halindeki bir makromolekiil iizerindeki spin etiketinin Elektron Spin Re-
zonans spektrumunun benzetimi ve analizi yapilmistir. Ikinci calismada ise, nano
Olcekli bimetalik sentezlerdeki biiyiime modlar1 ve baskin difiizyon mekanizma-

lariin istatistikleri ve etkin enerji degerleri elde edilmistir.
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Chapter 1: Introduction 2

1.1 Critical phenomena

1.1.1 Orderings and phase transitions

The sudden change in the macroscopic picture of a system is known as a phase
transition. In thermodynamics, this incident is observed as a singularity in the
free energy and its derivatives. If a discontinuity is in the first derivative of the free
energy, it is called a first-order phase transition and if a discontinuity is in higher-
order derivatives of the free energy it is referred as a second-order - or critical -
phase transition. The most striking reflections such as destruction of ordering,
large-scale fluctuations and universality is seen in critical phenomena and thus it
has become a topic of various disciplines. Liquid-gas systems, magnetic systems,
and numerous other systems including connectivity between degrees of freedom
can be solved in an analogy if the relevant interaction and order parameters are
introduced.

Considering magnetic materials in a perfect lattice structure having an atom at
each site of the lattice with an independent spin, it is clear that at sufficiently high
external fields, overall spins will point the same direction, i.e., parallel to the exter-
nal field. Surprisingly, collective behavior of large clusters is also seen at zero field,
and this fact is understood through the phenomena of spontaneous magnetization
which is caused by magnetic interactions between individual spins. Starting from
short-range interactions, various spins may participate to a collective behavior
that exhibits long-range ordering. In effect, when surveying a two-level system in
which only spin states are up and down directions, the equilibrium configuration
will favor a non-zero magnetization treating up and down magnetizations equiv-
alently. Applying an infinitesimal external field will break the symmetry of spin
states, hence the system will obey to be in magnetic direction forced by the ex-
ternal field. However, this property is lost above the critical temperature T > T,
which is also known as the Curie temperature where the double-well structure of
free energy as a function of magnetization collapses into a single-well structure.
Although the densities evolve continuously upon passing the critical temperature

from T' < T, to T > T, or vice versa, right at the critical point T" = T, where
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the phase transition occurs, fluctuations at all length scales are observed, indicat-
ing scale invariance of correlations resulting in discontinuities in thermodynamic

response functions.

1.1.2 Critical exponents and universality

Since in a phase transition thermodynamic functions exhibit singularities, it is
proper to study asymptotic behaviors as power laws of its parameters. The ex-
ponents defining the asymptotic behaviors are called the critical exponents. Uni-
versality denotes similar critical behaviors, identical critical exponents in diverse
systems. In fact, this observation is not a coincidence and can be better under-
stood with a categorization of universality classes depending on several physical
properties of the system. These properties are: i) symmetry of the order param-
eter i7) dimensionality of the lattice iii)range of interactions. Hence, regarding
such effects of its constituents, it is useful to work with the simplest model in
a universality class. On the other hand, the critical temperature is highly de-
pendent on the details of interatomic interactions and cannot be categorized in
such a simple manner. While the above properties determine universality classes
for critical phenomena they also strongly effect long-range ordering behaviors but
not necessarily in the same subcategories. In this thesis, we will be mentioning
such effects by changing local structure, dimensionality, spin order parameters
and observing new universality classes and diversities for spin-glass orderings and

spin-glass transitions.
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1.2 Spin glasses

Spin-glass theory came into life to validate a physical basis for problems raised
by experimental peculiarities in magnetic systems. While answering some of the
major concerns, its applications grew beyond its original purpose and became a
new topic in statistical physics representing collective complex structures, even
posing now its own questions and being innovative in its understanding. Control
over these magnetic systems would mean a grand innovation on memory storage
and nanotechnology. Apart from its indications on magnetic systems, spin-glass
systems also provide information about similar glassy dynamics in liquid systems
which have more experimental applications. In addition to that, by also being
an abstract theory applicable to complex structures and networks, it is widely
used in biological and neural networks, information theory, optimization problems,

applications to sociology and economy, etc.

Figure 1.1: The complex structure of spin glasses.

In the figure above, we show an illustration of complex spin structure, dis-
playing different patterns of alignments on different regions. In fact, the spin
configuration is dynamic, slowly changing in time, due to large relaxation times
even larger than experimental observation timescales. In return, slowly relaxing
magnetization can be observed. Furthermore, these systems may have very dissim-
ilar equilibrium configurations, also with different portions of the system being not

alike. The degeneracy in free energy minima can be better seen with the notion of
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ground-state entropy which can be injected into the system by bond randomness.

1.2.1 Complexity in spin glasses
Frustration and ground-state entropy

Frustration is caused by competition between interactions. Competition between
interactions can emerge from geometry of the lattice itself (e.g., AF interactions
in a non-bipartite lattice) or having multiple interactions which oppose in behav-
ior. In Fig. (1.2) we have examples for such cases: frustration in a unit triangle
with only AF interactions (Fig. (1.2a)) and unit squares including F and AF
interactions together(Fig. (1.2b)). Evidently, these systems have many energy
minimizing configurations and thus ground-state entropy. The corresponding free
energy landscape with many minimum points and complicated structure is re-
sponsible for slow dynamics on reaching equilibrium, and non-equilibrium aging
effects at low temperatures. In other words, the system can be trapped in a valley
due to relatively high energy barriers between local minima and it can take long
time to reach equilibrium state. As a consequence, we observe glassy dynamics
experimentally, large relaxation times on simulational studies. Since not all bonds
are satisfied due to frustration in these structures, we can only achieve a total
energy ' > N, K, where N, is the total number of bonds and K < 0 is the bond

energy. On the other hand, ground-state entropy can also be obtained in systems

2
~

e

~J

f— Lo

Figure 1.2: Frustration a) caused by geometry of the lattice in which a system
with only AF interactions (dashed red) cannot satisfy all bonds in a unit triangle,
and b) due to competition between bonds, when there is an odd number of F
bonds (blue) in a unit square.
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favoring all short-range interactions and £ = N,K. The Potts models and odd
g-state clock models with only AF interactions in which the ground-state entropy
is injected due to not having sublattice spin-reversal (6; — 60; + 7) symmetry, are
examples for such systems. In addition to these, continuous spins such as XY
and Heisenberg models despite having zero entropy at zero temperature, are also
exhibiting high entropy once a little amount of thermal energy is introduced, i.e.,
a high low-temperature entropy. The amount of low-temperature entropy is one of
the key figures in understanding different types of long-range ordering behaviors
in these models. However, for all of these systems, the ordering behavior becomes
much stronger with the increase of dimensionality of the lattice (or coordination

number).

BH—E—®—®
E—EO—Ee—®
BH—EO—EO—0®

) A\ () (7

E—EO—Ee—®
Figure 1.3: A bipartite lattice divided into two sublattices A and B. Short-range
interactions are only between a site at A and a site at B. In general, for AF systems
the order parameter is considered to be sublattice magnetization in which all spins
are expected to be firmly aligned at ground-state. In systems lacking sublattice
spin-reversal (6; — 6; + m) symmetry, the symmetry of the order parameter is also
destroyed.

Chaos in spin glasses

Although exhibiting a collective ordering behavior, the different portions of a spin
glass system do not seem alike. Accordingly, dominant interaction mechanisms
for long-range ordering differ in nature on different length scales. As we will see
later on, we can better understand this phenomena by chaotic rescaling behavior

[10, 11]. This characteristic suggests that while remaining in spin-glass order,
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introducing a little amount of thermal energy results complete reorganization of the
overall structure. This property of spin glasses which is also known as temperature

chaos is caused by having dissimilar configurations on a small range of free energy.

1.2.2 Systems with quenched randomness

In order to establish a model by concentrating on the notion of frustration through
competition between bonds, quenched bond randomness on the lattice can be in-
troduced. Evidently, in these systems there will be non-uniform interactions. A
simple case can be by having randomly distributed F and AF interactions through-
out the lattice equal in strength. To understand the basic features which will be
implemented by such a case in contrast to uniform magnetic systems, we should

first briefly overview most commonly used magnetic model, i.e., the Ising model.

The Ising model

Consider a lattice in which each atom is perfectly located at lattice sites in crys-
tal structure. In magnetic systems, these atoms have an independent spin which
interacts with its environment, bonding with other spins and coupling with the ex-
ternal field. A basic example of these systems is Ising model with nearest neighbor

interactions. The Ising model Hamiltonian is given by
(i5) i

where H is the external magnetic field, § = 1/kT, at each site i of a lattice
the spin s; = +1 and (ij) denotes that only the nearest-neighbor pair of sites
are included in the summation. The exchange interaction between spins is an
internal characteristic of the system and may differ in materials but what we care
is its proportionality with temperature and in fact with —/ since we deal with
Boltzmann weights in equilibrium statistical physics. Thus, in our definition, the

coupling coefficient J is uniform and inversely proportional to temperature. The
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partition function which defines this model at equilibrium is

Z=> " (1.2)
{s}

where >y =370 1D iy Qs y—+ IS the summation over all configurations.
Once the partition function is determined, we may obtain thermodynamic proper-
ties as a function of J and H. We may acquire equivalent AF model for bipartite
lattices, by taking J — —J and H — H' where H' is staggered field exerting
differently on sublattices A and B (see Fig. (1.3)), i.e., applying H on sites in
sublattice A while applying -H on sites in sublattice B. Now it is also clear that a
spin from sublattice A has nearest-neighbor coupling with a spin from sublattice

B, hence, we may consider our Hamiltonian as

{A} {B}
NP SLLNLEY) SR’y 31 1
(ig) @ J

where {A} and {B} denote the summation is only over sublattices A and B.
Now, taking the whole spin set {sf } — —{sf } in Hamiltonian would not change
anything in the partition function since Zsj: = Zsj:jFl, thus we recover Eq.
(1.1) which represents the ferromagnetic Ising model. Accordingly, we conclude
that these two systems are equivalent, and will have identical thermodynamic

properties, transition temperatures and critical exponents.

The Edwards-Anderson spin-glass model

Considering the same model with quenched bond randomness, we have

— B = Z JijsiS; (1.4)

<ij>
where the bonds J;;’s are placed independently on the lattice according to a prob-
ability distribution. The simplest case is a bimodal distribution consisting of
Jij = J with probability 1 — p and J;; = —J with probability p where J > 0.
Since bonds are randomly distributed across the lattice without any correlation,

frustration will occur as presented in the previous section.
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This model has been solved previously by RG treatment and Monte Carlo
studies indicating destruction of order due to frustration at relatively lower tem-
peratures than fully F/AF system, reentrance of phase diagrams, spin-glass phase
in d=3, and no spin glass order in d=2, etc. Comparison with newly discovered
spin-glass phases and novel orderings in spin-glass systems will help to under-
stand the effects on ordering caused by microscopic properties such as types of

interactions and accessible spin states and lattice structure.
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1.3 Renormalization-Group (RG) transformation

The basic idea is to bring a mathematical tool to solve for thermodynamical prop-
erties of large systems by invariant transformations. These transformations are
simply mapping of interaction parameters onto different or rescaled lattice struc-
ture while keeping macroscopic characteristics unchanged. Thus the transforma-
tion is done on the degrees of freedom by a projection operator P({x}} | {x;}) which
should satisfy the condition that the partition function of two systems are equal
to each other, i.c., Z(K') = Z(K) where {z]} and {2;} are the set of coordinates
respectively in renormalized and original systems. During a scale transformation,
some of the coordinates are taken out resulting in a change in total number of

particles in the system N — N’, change in coordinates, and change of interaction

strengths. The equivalence of partition functions can be written in detail as

Z o B (R {z}) _ Z Z o B (K {a'} {o}) (1.5)

{z} {z'} {a}

and performing a summation over set of degrees of freedom {o} results in the

functional form with rescaled interactions

> e BH Ra}) _ > e BN K} (1.6)
{z} {a'}

In general, the set of interactions K may grow in number when transforming into
K’ with unavoidable additive interactions or constants in the new functional form

which is defined by

R(K’, {x/}) _ 67,6’%”(15/7{99’}) _ ZQ*BW(K@’}’{U}) (1.7)
{o}

Accordingly by introducing the values for the set of variables {z}} one would
get a set of equations for energy parameters. Solving these equations for energy
parameters will give us the so-called recursion relations for the RG transformation.
RG recursion relations provide the topology of the flows on multidimensional pa-

rameter space (see Fig. (1.4) for sample illustration) in which some specific points
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gain much importance by being invariant under these transformations and are
called fized points. We will be dealing in the upcoming chapters with categorizing
the fixed points and their relation in determining ordering behaviors, criticality,
and phase diagrams. Before that, we start by formulating RG transformation in

d =1 and on higher dimensions.

physical physical manifold
critical

point

renormalized first

critical i
: \ renormalized
point \ manifold
\
/kl \ AN
/ \
¥ .
R[]
fixed point T{*
- -
- *4— —_— —
X<

(c)

Figure 1.4: Sample illustration of RG flows from Ref [7].

1.3.1 RG transformation in d =1

Considering a one-dimensional chain with well-localized sites, an exact scaling
procedure can be done by decimation. As an example, let us apply the b = 2
RG transformation on the Ising model considering the Hamiltonian in Eq.(1.1) at

H =0, with N lattice sites
- 5% = JZ S;Si+1 (18)

In b=2, d=1 the RG transformation as shown in Fig. (x), it is convenient to project
lattice coordinates in rescaled coordinates by taking i = j—1,7+1 = j+1 where

J =2t and j < N. With respect to the condition Z(.J) = Z(.J'), we may write the
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K’
Figure 1.5: RG transformation in d = 1, with length rescaling factor b = 2. The

degrees of freedom with cross mark have been eliminated and new interactions are
obtained in the rescaled picture.

equivalence as
ol T sisupatG _ Z e Li sisit1 (1.9)
{o}
where G is an additive constant, prime variables denoting the rescaled system
and {o} is the set of eliminated spins which in the case of the b = 2 transforma-
tion is {s9, S4, S¢, ..., Sy }. To simplify the above equation, we should rewrite the

summation in exponential factors,
N’ i N
H e‘]/S:;Si’+1+G — E H GJSiSH—l (110)
4 {c} 1

Using Z{U} = D yt1 Dsymtl - 2osy—t1 and projecting i — j with relevant

transformations, we will have,

N’ N’
HeJ’s;si/+l+G — H E er]-(sj_1+sj+1) (111)
,L'/ ] szil

Hence, the transformation is equivalent at each portion, and we may define

functions as

= g, . g ey .
R(J',G,sj1,8511) = e 5m1omitC — E e’silss1tsiv) (1.12)
sj==1

Solving the set of equations by introducing the spin variables, we obtain the re-

cursion relations,
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1
J = ilncosh(ZJ), (1.13)

G = %lnélcosh(QJ). (1.14)

Solving Eq. (1.13) for J' = J = J* will reveal fixed points for that transfor-
mation. The overall flow diagram of the RG transformations is given in Fig. (1.6)
with fixed points in temperature 1/J* = 0, 0o are shown in asterisk. As we see in
the figure, all finite temperature 1/J > 0 points flow to the high-temperature fixed
point 1/J* = oo indicating that they all belong to the disordered phase. Hence,
we conclude that there is no long-range order and accordingly no phase transition

at finite temperature.

b > Xk
1/]=0 1/]= 00

Figure 1.6: RG flow for d = 1 Ising model at zero external field. Successive RG
transformations at finite temperatures display this pattern, while fixed points (in
asterisk) remain unchanged.

For systems with only nearest-neighbor interactions, the transformation in
Eq.(1.12) can be used by generalizing the summation to a summation over all
possible spin states. As a last remark, for exact transformations, the results de-
termining thermodynamic and critical properties are independent of the rescaling
factor b. In other words, for the model presented above we will have the same exact
result with arbitrary b. However notice that for AF sytems, b = 2 transformation
on a bipartite lattice would mean the removal of one of the sublattices and result
loss of AF interactions unnecessarily at the first RG transformation. Therefore,

for AF models, it is convenient to take an odd value for b.
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1.3.2 Migdal-Kadanoff approximation and hierarchical lattices

In higher dimensions, since lattice structures hold higher connectivity it is not
easy to suggest an exact scheme due to overbonding of local degrees of freedom
when rescaling. However, approximation schemes can be introduced in a consis-
tent basis regarding physical properties put into effect by lattice geometry. The
Migdal-Kadanoff approximation is a generalization of RG transformation in d = 1
onto higher dimensions by strengthening local interactions according to a rule in
order to account for higher connectivity. The RG transformations on higher di-
mensions with the Migdal-Kadanoff RG scheme consisting of bond-moving and
decimation steps is shown in Fig. (1.7) on a square lattice with length rescaling

factor b = 2.

bond-moving decimation

> —>>

Figure 1.7: The Migdal-Kadanoff RG scheme on a square lattice with b = 2.

The formulation of Migdal-Kadanoff RG transformation on a d-dimensional lat-
tice with arbitrary b will be shown later in this thesis with applications. These
transformations are approximate on hypercubic lattices. One can always con-
struct a lattice in which Migdal-Kadanoff procedure becomes exact. Such lattices
are referred as hierarchical lattices [8] since they are constructed in a hierarchi-
cally growing manner. An example of hierarchical lattice is shown in Fig. (1.8)
with b = 2, d = 2. Scaling on these lattices with the same parameters b = 2,
d = 2 is simply going on the reverse direction in the illustration. While hierar-
chical lattices have many applications on network science, they also give a pretty
much consistent analysis on the effects of dimensionality being strongly suggestive
for hypercubic lattices. Thus, maintaining an exact RG analysis on diverse mod-
els with a wide scope of physical implementations on these structures is highly

valuable for experimental and simulational studies.
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Figure 1.8: Construction of a hieararchical lattice with b =2, d = 2 [8].
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1.3.3 Calculation of phase diagrams

The unstable fixed points from which the flows are outwards are the critical fixed
points. If we start rescaling at this point K=K*= Kc, we have scale invariance
and thus stay at that point under successive RG transformations. The flows going
outwards of this point should reach other fixed points, i.e., stable fixed points,
and these are generally the sink of a phase. We have an example in Fig. (1.9)
illustrating common flow diagram for the Ising model in d > 1 at zero field. Us-
ing the above facts, if the analytical approach is not sufficient for obtaining fixed
points, it is feasible to implement numerical techniques. In general, if the inter-
action set K consists of m independent parameters, the RG flows are represented
on m-dimensional space, while the phase diagram is shown as a function of ini-
tial (physical) interaction parameters. Therefore, investigation of RG flows and

categorization of fixed points should be carried out with a proper analysis.

1/]=0 1/]. 1/]= 00

Figure 1.9: RG flow for d > 1 Ising model at zero external field. Successive RG
transformations at finite temperatures display this pattern, while fixed points (in
asterisk) remain unchanged.

1.3.4 Calculation of thermodynamic properties
Free Energy

In order to get rid of asymptotic behaviors in thermodynamic limit N — oo, it is
much more convenient to consider thermodynamic functions per site or per bond.
The additive constants on each interaction in Eq.(1.14) indeed help in solving for

dimensionless free energy per bond for the system,

1

since in general we set the dimensionless temperature as 1/.J. As we see from the

above equation f; is proportional to In Z. Thus, our aim is to solve In Z using RG
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transformations until reaching the asymptotic limit n — oo, where n is the RG
iteration number. The formalism in Eqs.(1.10-1.12) gives us a clue on the use of

additive constants. Remembering the form of partition function we have

InZ=1In Z e P
{s}

—In Z o BA+N}G
{s'}

=In) e+ NG (1.16)
{s'}

which becomes, continuing recursively until last RG transformation n,

=In Y ey NPGW (1.17)
{S(n)} k=1

with superscripts denoting belonging to that RG iteration. When taking n — oo,
we would be expecting to have a finite set of coordinates {s(”)} and to be at a
fixed point for the term .. Accordingly, for all values of the expression in
the logarithmic term, the first term cannot survive when divided by factor JN,
since at least N, — oo much faster in the thermodynamic limit. As a result the

Eq. (1.15) becomes,

__IsGen (1.18)

using Nb(k) /Ny = b=*¢ for decimation in d = 1 and Migdal-Kadanoff transforma-

tions.

Critical exponents

Critical exponents are used for understanding the critical behavior of systems
near a phase transition (second-order - or critical - phase transition). In general,

thermodynamic functions exhibit a singularity near criticality, thus are no longer
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analytical functions. However, we may obtain dependence on relevant parameters

such as temperature and external field as a power law in the asymptotic limit. In

scaling analysis, we may obtain critical behavior from the flows of the interaction

parameters near a critical point. The calculation of critical exponents is done by a

linearization around the critical point. In a case where only interaction parameters

are J and H, as in Eq. (1.1), the related critical exponents are obtained from
oJ'

— KYT
J=J. H=H, = b
oJ | ’

0H'
aH |J:JC,H:HC

= b¥H. (1.19)

where bYT, DYH give the scaling of relevant fields and y7,yy are the critical expo-
nents. Since thermodynamic properties are functions of these parameters, we may
accordingly calculate all other critical exponents with scaling analysis (Kadanoff
construction). For ferromagnetic systems, the critical fixed point is found when
H = H. = 0 due to symmetry. In general, if we have RG flows in phase
space with multiple interaction parameters, i.e., with s interaction parameters
K = {Ki, K3, ..., K}, then the critical exponent can be obtained from eigenvalues

of the recursion matrix with elements 0K//0K,,,

K|  OK! oK/,
K1 0K, = 9K,
e 4 0K, 9K}
oK' | & ox (1.20)
0K '
oK, K
9K, 9K,

at the critical fixed point K= K.. As we seek an eigenvalue in the form O¥7 | the
one being larger than unity will be our critical exponent.
1.3.5 RG transformation of systems with quenched randomness

The bimodal probability distribution implementing quenched randomness on types

of bonds across the lattice as introduced in Section 1.2.2, can be written in func-
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tional form with

As we will see later on in this thesis, the probabilitity distribution of renormalized
interactions are represented by a renormalized quenched probability distribution.
Furthermore, the renormalized probability distribution evolves to a more complex
one in the upcoming steps. After applying a sufficient number of RG iterations
until reaching the asymptotic trend of the distribution, we may have information
about the ordering behavior of the system for given initial (physical) parameters.
Without loss of generality, it is convenient to represent the relevant parameters to
classify the distribution as the normalized distribution P(J;;/ < |.J;;| >) and the
average magnitude of interactions < [J;;| >. As a matter of fact, the asymptotic
distribution is the fixed distribution P*(J;;/ < |J;;| >) and defines the ordering
behavior or criticality of the system along with the asymptotic behavior of <
| Jij] >

Along with the large scale flow analysis of all local interactions in a system, the
characteristic behavior of interactions at a single location under rescaling can be
maintained by RG transformations. As previously discussed in Section (1.2.1) spin
glasses exhibit diversity in correlations (weak/strong and F/AF) upon changing
length scale. The behavior is observed to be in a chaotic sequence under successive
RG transformations of local interactions at a specific point in the lattice. As we
will show in the upcoming chapters, the distribution of chaotic visits of interactions
at a specific location under rescaling trajectories is indeed equivalent to the fixed
distribution of interactions at different locations showing that chaos is spread out

at all length scales in the same manner.
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1.4 Overview of thesis

The main objective of the thesis is studying a variety of spin-glass systems and
achieve a new perspective on understanding spin-glass theory. Thus, new types of
spin glass systems are introduced resulting in a rich information on these complex
structures and novel orderings. In the upcoming chapter we will be dealing with
controlling the frustration level on spin-glass systems by adding locally correlated
quenched randomness, and accordingly we show how frustation level affects these
systems on the destruction of orderings, chaotic rescaling behaviors, and thermo-
dynamic properties. In chapter 3, g-state clock spin-glass models with symmetry in
ordering (even g-state clock models) are investigated up to reaching high g-values
and thus XY model limit. In chapter 4, we study spin-glass systems without sym-
metry in ordering of F and AF (odd g-state clock models) which belongs to a class
of systems having ground-state entropy even without bond frustration. Finally,
the diffusive dynamics on non-equilibrium systems are discussed in chapter 5. In
general, the effects of microlevel motions are observed indirectly in the macroworld,
hence observables that are less sensitive to microlevel randomness can be obtained
with fewer parameters. The main aim in the first section is to simplify the transi-
tion scheme from microlevel and continuous time analysis which will be sufficient
to define the motional effects on such systems. In the second section, we examine
a system starting from a constrained free energy configuration, evolving to the
equilibrium state under the effect of thermodynamics competing with diffusion

energy barriers.
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2.1 Introduction

The occurrence of spin-glass long-range order [1], ground-state entropy [2, 3], and
chaotic rescaling behavior [4, 5] has long been discussed in spin-glass systems,
with reference to spatial dimensionality d, interaction randomness and frustra-
tion [6], accepted as inherent to spin-glass systems and spin-glass order. In Ising
models with randomly distributed nearest-neighbor ferromagnetic and antiferro-
magnetic interactions on hypercubic lattices, it has been shown that a spin-glass
phase does not occur in d = 2 and does occur in d = 3.[7] In these hypercubic
systems, frustration occurs in elementary squares with an odd number of anti-
ferromagnetic interactions. Thus, with interactions randomly distributed with
no correlation, maximally 50 % of the elementary squares can be frustrated. This
fraction increases from zero as the concentration of frozen antiferromagnetic bonds
p is increased from zero and reaches its maximal value of 50 % at p = 0.5.

The basis of the current study is the realization that, for any value of the
antiferromagnetic bond concentration 0 < p < 1, the fraction of frustrated squares
can be varied considerably. For example, for the square lattice, for 0.25 < p < 0.75,
the fraction of frustrated squares can be made to vary to any value between 0 and
1 inclusive, by the locally correlated occurrence quenched random bonds. For
p < 0.25, the fraction of frustrated squares can similarly be made to vary between
0 and 4p. For 0.75 < p, the fraction of frustrated squares can be made to vary
between 0 and 4(1 — p). (Thus, frustration reaches 0 with no variation as p
approaches 0 or 1.) Examples are shown in Fig. 2.1 for p = 0.5. Thus, when
the fraction of frustrated squares is zero, we have a so-called Mattis spin glass [8].
At the other extreme, we have a fully frustrated system [9, 10, 11, 12, 13]. All
frustration values in between can be obtained, by randomly removing or adding
local frustration without changing the antiferromagnetic bond concentration p
(Fig. 2.1).

In this study, we have implemented an exact renormalization-group study for
Ising spin-glass models on the hierarchical lattices, with d = 3 and d = 2, re-
spectively shown in Figs. 2.2(b) and 2.3(b), for arbitrary overfrustration or un-

derfrustration implemented by locally correlated quenched randomness. We have
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p=0.5 p=0.5 p=0.5
underfrustration  stochastic frustration overfrustration

Figure 2.1: (Color online) Randomly distributed ferromagnetic (blue) and antifer-
romagnetic (red) interactions on a square plane. In all three cases, the antiferro-
magnetic bond concentration is p = 0.5. The frustrated squares are shaded. In the
case at the center, the bonds were distributed in an uncorrelated fashion, leading
to the frustration of half of the squares (stochastic frustration). In the case at
the left, 25% of the frustration was randomly removed without changing p = 0.5
(underfrustration). In the case at the right, 25% frustration was randomly added
without changing p = 0.5 (overfrustration). Frustration can thus be set between
zero and complete frustration. It is clear that frustration can thus be adjusted in
all hypercubic lattices.

calculated 18 complete phase diagrams, each for a different frustration level, in
temperature and antiferromagnetic bond probability p. We find that the increase
of frustration disfavors the spin-glass phase (while at low temperatures favoring
the spin-glass phase at the expense of the ferromagnetic phase and, symmetrically,
antiferromagnetic phase.) Both in d = 3 and d = 2, the spin-glass phase disappears
at zero temperature when a certain level of frustration is reached. However, this
disappearance of the spin-glass phase happens in different regimes in d = 3 and
d = 2: For d = 3, it occurs in overfrustration, so that at stochastic frustration (no
correlation in randomness) a spin-glass phase occurs. For d = 2, it already occurs
in underfrustration, so that at stochastic frustration a spin-glass phase does not
occur. However, with frustration only partially removed, we find that a spin-glass
phase certainly does occur in d = 2.

The chaotic rescaling [4, 5, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26,
27, 28, 29, 30, 31, 32, 33, 34, 35] of the interactions within the spin-glass phase
occurs as soon as frustration is increased from zero, both in d = 3 and d = 2. We
have calculated the Lyapunov exponent A [36, 37] of the renormalization-group
trajectory of the interaction at a given location, when the system is in the spin-

glass phase. When frustration is increased from zero, the Lyapunov exponent A
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increases from zero, both in d = 3 and d = 2. This behavior is of course consistent
with the chaotic renormalization-group trajectories. Different values of the positive
Lyapunov exponents characterize different spin-glass phases. It is found here that
the value of the Lyapunov exponent continuously varies with the level of frustration
and is different for each dimensionality d. The Lyapunov exponent does not depend
on antiferromagnetic bond concentration p or temperature.

Our calculations with varying frustration also yield information on long- and
short-range ordering, and entropy. The increase in frustration lowers both the
onset temperature of long-range order and the characteristic temperature of short-
range order, but affects long-range order much more drastically, thus interchanging
the two temperatures and eventually eliminating long-range spin-glass order. For
d = 3, for low frustration, the specific heat peak occurs inside the spin-glass
phase, indicating that considerable short-range disorder persists into the higher
temperatures of the spin-glass phase. In these cases, as temperature is lowered,
spin-glass long-range order onsets before the system is predominantly short-range
ordered. As frustration is increased, both ordering temperatures are lowered,
but differently, so that they interchange before stochastic frustration is reached.
Thus, for overfrustration, stochastic frustration, and higher frustration values of
underfrustration, the specific heat peak occurs outside the spin-glass phase, in-
dicating that as temperature is lowered, short-range order sets before long-range
order (which reaches zero temperature in overfrustration). Zero-temperature or
low-temperature entropy is a distinctive character of systems with frustration.
Frustration is introduced into the system, by increasing from zero the antiferro-
magnetic bond concentration p. It is seen that frustration favors the spin-glass
phase over the ferromagnetic phase. However, it is also seen that, in all cases that
frustration is introduced, the major portion of the entropy is created with the

ferromagnetic phase as opposed to the spin-glass phase.
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2.2 Overfrustrated and underfrustrated spin-glass systems

on hypercubic lattices and hierarchical lattices

2.2.1 Stochastic Frustration, Overfrustration, and Underfrustration

on Hypercubic Lattices

The Ising spin-glass model is defined by the Hamiltonian

—BH = Jysis; (2.1)
(i7)

where § = 1/kT, at each site i of a lattice the spin s; = +1, and (ij) denotes
that the sum runs over all nearest-neighbor pairs of sites. The bond strengths J;;
are +J > 0 (ferromagnetic) with probability 1 — p and —J (antiferromagnetic)
with probability p. On hypercubic lattices, in any elementary square with an odd
number number of antiferromagnetic bonds, all bonds cannot be simultaneously
satisfied, meaning that there is frustration.[6] When the antiferromagnetic bonds

are randomly distributed with probability p across the lattice, a fraction
4p(1 = p)® + 4p°(1 = p) = 4(p — 3p* + 4p” — 2p") (2.2)

of the elementary squares is frustrated. This system with uncorrelated quenched
randomness is the usually studied spin-glass system and we shall refer to it as a
stochastically frustrated system. On the other hand, by changing the signs
of individual bonds J;; — —J;; at randomly chosen localities, with the rule that,
for every ferromagnetic-to-antiferromagnetic local change, an antiferromagnetic-
to-ferromagnetic local change is done, frustration can be continuously increased
or decreased from the value in Eq.(2.2), without changing the antiferromagnetic
bond concentration p. We call the systems in which frustration is thus increased
or decreased from stochastic frustration, respectively, overfrustrated or under-
frustrated systems. Examples of overfrustration, stochastic frustration, and un-

derfrustration are given in Fig. 2.1.
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Figure 2.2: (a) Migdal-Kadanoff approximate renormalization-group transforma-
tion for the d = 3 cubic lattice with the length-rescaling factor of b = 3. Bond-
moving is followed by decimation. (b) Exact renormalization-group transforma-
tion for the equivalent d = 3 hierarchical lattice with the length-rescaling factor
of b = 3. (c) Pairwise applications of the quenched probability convolution of
Eq.(2.5), leading to the exact transformation in (b) and, numerically equivalently,
to the approximate transformation in (a).

2.2.2 Renormalization-Group Transformation, Quenched Probability

Convolutions by Histograms and Cohorts

The usual, stochastically frustrated spin-glass systems on hypercubic lattices are
readily solved by a renormalization-group method that is approximate on the
hypercubic lattice [38, 39] and simultaneously exact on the hierarchical lattice
[40, 41, 42, 43, 44]. Under rescaling, the form of the interaction as given in Eq.(2.1)
is conserved. The renormalization-group transformation, for spatial dimension d
and length-rescaling factor b = 3 (necessary for treating the ferromagnetic and

antiferromagnetic correlations on equal footing), is achieved (Figs. 2.2(a) and



Chapter 2: Controlling Frustration and Chaos in Spin Glasses 28

a) R
()
— ". —
Lol
b)
oo -
o)

Figure 2.3: (a) Migdal-Kadanoff approximate renormalization-group transforma-
tion for the d = 2 square lattice with the length-rescaling factor of b = 3. Bond-
moving is followed by decimation. (b) Exact renormalization-group transforma-
tion for the equivalent d = 2 hierarchical lattice with the length-rescaling factor
of b = 3. (c) Pairwise applications of the quenched probability convolution of
Eq.(2.5), leading to the exact transformation in (b) and, numerically equivalently,
to the approximate transformation in (a).

2.3(a)) by a sequence of bond moving

bd71
(bm) __ E
<kl>
and decimation
dec
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where the additive constants (;; are unavoidably generated.
The starting bimodal quenched probability distribution of the interactions,
characterized by p and described above, is not conserved under rescaling. The

renormalized quenched probability distribution of the interactions is obtained by
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the convolution [45]

0(Jiy — R({Ji;})), (2.5)

i/j/
P'(J) = / [H dJ; P(J;;)
ij

where the primes denote the renormalized system and R({.J;;}) represents the bond
moving and decimation given in Eqs.(2.3) and (2.4). For numerical practicality,
the bond moving and decimation of Eqgs.(2.3) and (2.4) are achieved by a sequence
of pairwise combination of interactions, as shown for d = 3 and d = 2 respectively
in Figs. 2.2(c) and 2.3(c), each pairwise combination leading to an intermediate
probability distribution resulting from a pairwise convolution as in Eq.(2.5).

We implement this procedure numerically in two calculationally equivalent
ways: (1) The quenched probability distribution is represented by histograms.[47,
49, 50, 51] A total number of between 500 to 2,500 histograms, depending on the
needed accuracy, is used here. This total number is distributed between ferro-
magnetic J > 0 and antiferromagnetic J < 0 interactions according to the total
probabilities for each case. (2) By generating a cohort of 20,000 interactions [31]
that embodies the quenched probability distribution. At each pairwise convolu-
tion as in Eq.(2.5), 20,000 randomly chosen pairs are matched by Eq.(2.3) or (2.4),
and a new set of 20,000 is produced. The numerical convergence of the histogram
and cohort implementations are determined, respectively, by the numbers of his-
tograms and cohort members. At numerical convergence, the results of the two
implementations match. The histogram method is faster and is used to calculate
phase diagrams, thermodynamic properties, and asymptotic fixed distributions.
The cohort method is needed for studying the repeated rescaling behavior of the
interaction at a specific location on the lattice and is used to calculate chaotic

trajectories, chaotic bands, and Lyapunov exponents.[31]
2.2.3 Stochastic Frustration, Overfrustration, and Underfrustration
on Hierarchical Lattices

Hierarchical models are models which are exactly soluble by renormalization-group

theory.[40, 41, 42, 43, 44] Hierarchical lattices have therefore been used to study
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a variety of spin-glass and other statistical mechanics problems.[46, 47, 48, 49,
50, 51, 52, 53, 54, 55, 56, 57, 58] Hierarchical models can be constructed [40]
that have identical renormalization-group recursion relations with the approximate
treatment of models on hypercubic and other Euclidian lattices. Thus, Figs. 2.2(b)
and 2.3(b) respectively give the hierarchical models, used in our study, that have
the same recursion relations as the Migdal-Kadanoff approximation [38, 39] for
the hypercubic lattice in d = 3 (cubic lattice) and d = 2 (square lattice).

Overfrustration or underfrustration is readily introduced into hierarchical lat-
tices by randomly changing local interactions or groups of local interactions, while
conserving p. This overfrustration or underfrustration affects the pairwise bond-
moving step of the renormalization-group solution. In the case of overfrustration,
when two bonds are matched for bond-moving, bonds of the same sign are ac-
cepted with a probability g, 0 < g < 1. Clearly, when g = 1, we have not altered
the occurrence of frustration. But, for a value of g in the range 0 < g < 1, we
have removed a fraction 1 — g of the unfrustrated occurrences.

Similarly, in the case of underfrustration, when two bonds are matched for
bond-moving, bonds of the opposite sign are accepted with a probability f, 0 <
f < 1. Again, when f = 1, we have not altered the occurrence of frustration. But,
for a value of f in the range 0 < f < 1, we have removed a fraction 1 — f of the
frustrated occurrences.

We have thus defined the degree of frustration on the hierarchical models. Ac-
cordingly, full frustration, stochastic frustration, and zero frustration respectively
correspond to g =0, g =1 = f, f = 0. Our implementation of underfrustration
and overfrustration via the factors f and g does affect, on the hierarchical lattice,

the effective value of the antiferromagnetic bond probability p as

p—(1—f)p(l—p)
1—(1-f)2p(1—-p)’
- p—(1-g)p
e T 11— g) 2+ (1 —p)?)

Pef fective =

(2.6)

Deffective includes the combined effect of p together with the local quenched cor-

relation rule controlled by f or g. (The actual microscopic renormalization-group
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Figure 2.4: (Color online) peffective versus p for the range of underfrustration and
overfrustration used in our study (Eq.(2.6)). The curves are, consecutively from
the lower right, for f = 0,0.2,0.5; f = 1 = g (thicker line); g = 0.8,0.6,0.3.

calculation is of course done using p with the quenched correlation rule, which
completely defines the model.) Eqs.(2.6) directly follow from the acceptance rules
given in the previous two paragraphs: The second terms in the numerators sub-
tract the probability due to rejection because of a bond-moving match that is
suppressed; the denominator is a normalization taking into account this rejection
probability. Thus, p = 0.5, the center of a would-be spin-glass phase, is not af-
fected. For other values, peffective Stays close to p, as seen in Fig. 2.4. Just as in
the case of underfrustrated and overfrustrated hypercubic lattices (Fig. 2.1), un-
derfrustrated and overfrustrated hierarchical lattices as defined and studied here
can be physically realized. However, our procedure of underfrustrating or over-
frustrating hierarchical lattices is not a direct representation of underfrustrating
or overfrustrating hypercubic lattices. One important difference is that, in hier-
archical lattices, underfrustrating or overfrustrating is done at every length scale.
This leaves the underfrustrated or overfrustrated hypercubic lattices, which can
be achieved as we demonstrated, as an interesting open problem, with our current

results only being suggestive.
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2.2.4 Determination of the Phase Diagrams and Thermodynamic

Properties

The different thermodynamic phases of the model are identified by the different
asymptotic renormalization-group flows of the quenched probability distributions.
For all renormalization-group flows, inside the phases and on the phase bound-
aries, Eq.(2.5) is iterated until asymptotic behavior is reached, meaning that we
are studying an effectively infinite hierarchical lattice. The thermodynamic prop-
erties, such as free energy, energy, entropy, and specific heat, are calculated by
summing along entire renormalization-group trajectories.[40, 43, 44, 59] Thus, we
are able to calculate phase diagrams and thermodynamic properties for any case

of overfrustration or underfrustration.

2.3 Calculated phase diagrams for overfrustration and un-

derfrustration in d =3 and d = 2

Figure 5 shows 18 different calculated phases diagrams, in temperature 1/.J and an-
tiferromagnetic bond concentration p, for overfrustrated, stochastically frustrated,
underfrustrated Ising spin-glass models in d = 3 and d = 2. Each phase diagram
has a different amount of overfrustration or underfrustration, or is stochastically
frustrated. In general, increased frustration drives the spin-glass phase to lower
temperatures. Thus, the spin-glass phase disappears at a threshold amount of frus-
tration. This threshold frustration is dramatically different in d = 3 and d = 2,
as explained below. On the other hand, increased frustration favors the spin-glass
phase (before it disappears) over the ferromagnetic phase and symmetrically the
antiferromagnetic phase, at low temperatures.

The left panels are for d = 3 dimensions. The outermost phase diagram, con-
sisting of one horizontal and two vertical lines, is for no frustration, f = 0. Starting
from this outermost phase diagram, the consecutive phase diagrams have increas-
ing frustration: They are for the underfrustrated cases (where frustration has been
removed) of f = 0.1,0.2,0.5,0.8; the stochastic case (where frustration has been

neither removed, nor added) of f = 1 = ¢, drawn with the thicker lines; and the
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Figure 2.5: (Caption next page.)

overfrustrated case (where frustration has been added) of g = 0.8,0.6,0.3,0.1. In
the latter three cases, g = 0.6,0.3,0.1, no spin-glass phase occurs. Thus, in d = 3,
excessive overfrustration destroys the spin-glass phase.

The right panels are for d = 2 dimensions. Again, the outermost phase di-
agram, consisting of one horizontal and two vertical lines, is for no frustration,
f = 0. Starting from this outermost phase diagram, the consecutive phase dia-
grams again have increasing frustration: They are for the underfrustrated cases

of f = 0.1,0.2,0.3,0.4,0.5; the stochastic case of f = 1 = ¢, drawn with the
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Figure 2.5: (Previous page) Calculated phase diagrams (color online) of the over-
frustrated, underfrustrated, and stochastically frustrated Ising spin-glass models
on hierarchical lattices. The panels on the left side are for d = 3 dimensions. Left
top panel: The outermost phase diagram, consisting of one horizontal and two
vertical lines, is for no frustration, f = 0. Starting from this outermost phase
diagram, the three consecutive phase diagrams are for the underfrustrated cases
(where frustration has been removed) of f = 0.1,0.2,0.5. Left middle panel: Start-
ing from the outermost phase diagram, the four consecutive phase diagrams are
for the underfrustrated cases of f = 0.5,0.8; the stochastic case (where frustration
has been neither removed, nor added) of f = 1 = g, drawn with the thicker lines;
and the overfrustrated case (where frustration has been added) of g = 0.8. Left
bottom panel: Starting from the outermost phase diagram, the four consecutive
phase diagrams are for the overfrustrated cases of ¢ = 0.8,0.6,0.3,0.1. In the
latter three cases, ¢ = 0.6,0.3,0.1, no spin-glass phase occurs. Excessive over-
frustration destroys the spin-glass phase. The panels on the right side are for
d = 2 dimensions. Right top panel: The outermost phase diagram, consisting
of one horizontal and two vertical lines, is for no frustration, f = 0. Starting
from this outermost phase diagram, the three consecutive phase diagrams are for
the underfrustrated cases of f = 0.1,0.2,0.3. Right middle panel: Starting from
the outermost phase diagram, the three consecutive phase diagrams are for the
underfrustrated cases of f = 0.3,0.4,0.5. Right bottom panel: Starting from the
outermost phase diagram, the three consecutive phase diagrams are the under-
frustrated case of f = 0.5; for the stochastic case of f = 1 = g, drawn with the
thicker lines; and the overfrustrated case of ¢ = 0.5. In the latter three cases,
f=05f=1=g,9g = 0.5 no spin-glass phase occurs. However, in the under-
frustrated cases of f = 0.1,0.2,0.3,0.4, a spin-glass phase occurs in these d = 2
dimensional systems with locally correlated randomness. All phase transitions in
this figure are second order and, to the resolution of the figure, all multicritical
points appear on the Nishimori symmetry line, shown with the dashed curves.
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thicker lines; and the overfrustrated case of ¢ = 0.5. In the latter three cases,
f=05f=1=g,9g= 0.5 no spin-glass phase occurs. However, in the under-
frustrated cases of f = 0.1,0.2,0.3, 0.4, a spin-glass phase does occur in these d = 2
dimensional systems with locally correlated randomness. Thus, when frustration
is increased from zero, the spin-glass phase disappears while still in the under-
frustrated regime. Accordingly, in ordinarily studied spin-glass systems, which are
stochastically frustrated systems, the spin-glass phase is seen in d = 3, but not
seen in d = 2.

The paramagnetic-ferromagnetic-spinglass reentrance for the phase diagrams
with the spin-glass phase and the paramagnetic-ferromagnetic-paramagnetic (true)
reentrance for the phase diagrams without the spin-glass phase, as temperature
is lowered, is seen here. Both types of phase diagrams were first noted with
hierarchical models for Ising spin glasses [47] and Potts spin glasses [48]. Phase
diagram reentrance is also seen in experimental spin-glass systems [60] and, most
proeminently, in liquid crystal systems where annealed (as opposed to quenched as
in the current study) frustration plays a role.[61, 62, 63, 64] All phase transitions
in Fig. 2.5 are second order and, to the resolution of the figure, the multicritical

points appear on the Nishimori symmetry line, shown with the dashed curves.[65,

66, 67, 68, 69]

2.4 Chaos in the Spin-Glass Phase Triggered by Infinites-

imal Frustration

The local interaction at a given position in the lattice at successive
renormalization-group transformations, in systems with different frustrations, is
given for d = 3 and 2 respectively in Figs. 2.6 and 2.7. These consecutively renor-
malized interactions at a given position of the system are shown here as scaled
w