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ABSTRACT

Spin-glass problems continue to fascinate with new orderings and phase dia-

grams under frustration and ground-state entropy. In this thesis, new types of

spin-glass systems are introduced resulting in a rich information on these complex

structures and novel orderings. We realized that in spin-glass systems, frustration

can be adjusted continuously and considerably, without changing the antiferro-

magnetic bond probability p, by using locally correlated quenched randomness,

as we demonstrate on hypercubic lattices and hierarchical lattices. Such overfrus-

trated and underfrustrated Ising systems on hierarchical lattices in d = 3 and

d = 2 are studied by a detailed renormalization-group analysis. A variety of infor-

mation about the effects of frustration in spin-glass systems is obtained including

evolution of phase diagrams, destruction of orderings, chaotic rescaling behavior,

and thermodynamic properties. Our results are suggestive for hypercubic lattices.

Furthermore, spin-glass phases and phase transitions for q-state clock models

and their q → ∞ limit the XY model, in spatial dimension d = 3, are studied.

For even q, in addition to the now well established chaotic rescaling behavior of

the spin-glass phase, each of the two types of spin-glass phase boundaries displays,

under renormalization-group trajectories, their own distinctive chaotic behavior.

We thus characterize each different phase and phase boundary exhibiting chaos by

its distinct Lyapunov exponent, which we calculate. We show that, under renor-

malization group, chaotic trajectories and fixed distributions are mechanistically

and quantitatively equivalent. The phase diagrams for arbitrary even q, for all

non-infinite q, have a finite-temperature spin-glass phase. Furthermore, the spin-

glass phases and the spin- glass-paramagnetic phase boundaries exhibit universal

fixed distributions, chaotic trajectories and Lyapunov exponents, independent of

q. In the XY model limit, our calculations indicate a zero-temperature spin-glass

phase.
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On the other hand, very distinctive orderings and phase diagram structures are

found for odd q. These models exhibit asymmetric phase diagrams, as is also the

case for quantum Heisenberg spin-glass models. No finite-temperature spin-glass

phase occurs. For all odd q ≥ 5, algebraically ordered antiferromagnetic phases

occur. All algebraically ordered phases have the same structure, determined by an

attractive finite-temperature sink fixed point where a dominant and a subdominant

pair states have the only non-zero Boltzmann weights. The phase transition critical

exponents quickly saturate to the high q value.

Finally, the diffusive dynamics on non-equilibrium systems are discussed. In

general, the effects of microlevel motions are observed indirectly in the macroworld,

hence observables that are less sensitive to microlevel randomness can be obtained

with fewer parameters. Molecular dynamics simulations are extensively used on

the investigation of many body systems or specific molecules interacting with many

body environment under the effect of thermodynamics. We work on two differ-

ent problems: In the first study, we demonstrate a scheme projecting continuous

dynamical modes on to a discrete Markov State Model and analyze cw-ESR spec-

trum of a spin label attached to a macromolecule undergoing an arbitrary (but

Markovian) rotational diffusion. In the second study, we generate the statistics

and calculate the energetics of the dominant surface diffusion mechanisms and

observe growth modes on nanoscale bimetallic synthesis.

Keywords: Spin glasses. Order in the presence of frozen disorder. Chaos under

scale change. Critical phases and phase diagram reentrance. Renormalization-

group theory. Macromolecule rotational diffusion. Nanoscale bimetallic synthesis.



ÖZET

Spin camı problemleri, bunalım ve sıfır sıcaklık entropisinden kaynaklanan

yeni düzenlerle ve faz diyagramlarıyla ilgi çekmeye devam etmektedir. Bu tezde,

bu sistemlerin karmaşık yapılarıyla ilgili çeşitli bilgiler ve daha önce rastlan-

mamış düzenler ortaya koyan yeni spin camı sistemleri önerilmiştir. Spin camı

sistemlerinde, çalışmamızda hiperkübik ve hiyerarşik örgülerde gösterdiğimiz gibi,

bağ yoğunlukları değiştirilmeden yöresel olarak ilişkili bir biçimde dağıtılmış

donmuş düzensizlik kullanılarak bunalım sürekli bir biçimde ve istenen düzeyde

değiştirilebilir. Bu tarz altbunalımlı ve üstbunalımlı Ising spin camı sistemleri 3-

boyutlu ve 2-boyutlu hiyerarşik örgülerde renormalizasyon grubu analiziyle incele-

meye alınmıştır. Sonuç olarak, spin camı sistemlerinde bunalımın faz diyagramları,

düzen, kaotik ölçeklenme davranışı ve termodinamik özellikler üzerindeki etkile-

riyle ilgili birçok yeni bulgu elde edilmiştir.

Ayrıca, q-durumlu saat modeli ve XY modeli limiti (q sonsuza giderken) spin

camı fazları ve faz geçişleri incelenmiştir. Çift q değerleri için, spin camı fazındaki

kaotik ölçeklenme davranışına ek olarak spin camı faz hudutlarında (spin camı-

paramanyetik ve spin camı-ferromanyetik) farklı iki tip kaotik ölçeklenme dav-

ranışı gözlemlenmiştir ve her birinin Lyapunov üsteli hesaplanmıştır. Renormali-

zasyon grubu dönüşümleri altında ölçeklenen etkileşimlerin izlediği kaotik yolun ve

bir ölçekte sistem üzerinde dağılımların mekaniksel ve niceliksel olarak eş olduğu

gösterilmiştir. Hesaplanan faz diyagramlarına göre bütün sonlu çift q değerleri için

bir sıfır üstü sıcaklık spin camı fazı var olmaktadır. Spin camı fazları ve spin camı-

paramanyetik faz çizgileri bütün q değerleri için evrensellik göstermektedir. XY

modeli limitindeki davranış ise sıfır derece spin camı fazını işaret etmektedir.

Öte yandan, tek q değerleri için, birçok kendine özgü faz davranışları ve faz di-

yagramları gözlemlenmiştir. Bu modeller için faz diyagramları kuantum Heisenberg

spin camı sistemlerinde olduğu gibi asimetriktir ve sıfır üstü sıcaklık spin camı fazı

oluşmamaktadır. Bütün tek q ≥ 5 değerleri için, cebirsel antiferromanyetik fazlar



oluşmaktadır. Bütün bu fazlar iki farklı komşu etkileşme enerjisinin kademeli ola-

rak baskın olduğu bir sıfır üstü sıcaklık sabit noktasıyla belirlenmektedir. Kritik

üsteller q artarken hızlı bir biçimde yüksek q değerlerine ulaşmaktadır.

Son olarak, dengede olmayan sistemlerin dinamiği incelenmiştir. Mikro düzey-

deki hareketler makro dünyada genel olarak dolaylı yoldan gözlendiği için, mikro

düzeydeki raslantısallığa daha az hassas olan gözlemlenebilir özellikler daha az pa-

rametreyle elde edilebilir. Moleküler dinamik benzetimleri çok parçacıklı sistem-

lerde ve bazı özel moleküllerin çok parçacıklı çevre ile etkileşimini incelemek adına

yaygın olarak kullanılmaktadır. Bu bölümde iki farklı problem ele alınmıştır: İlk

çalışmada uzayda sürekli olan dinamik modlar kesikli Markov modeline çevirilerek

difüzyon halindeki bir makromolekül üzerindeki spin etiketinin Elektron Spin Re-

zonans spektrumunun benzetimi ve analizi yapılmıştır. İkinci çalışmada ise, nano

ölçekli bimetalik sentezlerdeki büyüme modları ve baskın difüzyon mekanizma-

larının istatistikleri ve etkin enerji değerleri elde edilmiştir.
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1.1 Critical phenomena

1.1.1 Orderings and phase transitions

The sudden change in the macroscopic picture of a system is known as a phase

transition. In thermodynamics, this incident is observed as a singularity in the

free energy and its derivatives. If a discontinuity is in the first derivative of the free

energy, it is called a first-order phase transition and if a discontinuity is in higher-

order derivatives of the free energy it is referred as a second-order - or critical -

phase transition. The most striking reflections such as destruction of ordering,

large-scale fluctuations and universality is seen in critical phenomena and thus it

has become a topic of various disciplines. Liquid-gas systems, magnetic systems,

and numerous other systems including connectivity between degrees of freedom

can be solved in an analogy if the relevant interaction and order parameters are

introduced.

Considering magnetic materials in a perfect lattice structure having an atom at

each site of the lattice with an independent spin, it is clear that at sufficiently high

external fields, overall spins will point the same direction, i.e., parallel to the exter-

nal field. Surprisingly, collective behavior of large clusters is also seen at zero field,

and this fact is understood through the phenomena of spontaneous magnetization

which is caused by magnetic interactions between individual spins. Starting from

short-range interactions, various spins may participate to a collective behavior

that exhibits long-range ordering. In effect, when surveying a two-level system in

which only spin states are up and down directions, the equilibrium configuration

will favor a non-zero magnetization treating up and down magnetizations equiv-

alently. Applying an infinitesimal external field will break the symmetry of spin

states, hence the system will obey to be in magnetic direction forced by the ex-

ternal field. However, this property is lost above the critical temperature T > Tc

which is also known as the Curie temperature where the double-well structure of

free energy as a function of magnetization collapses into a single-well structure.

Although the densities evolve continuously upon passing the critical temperature

from T < Tc to T > Tc or vice versa, right at the critical point T = Tc where
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the phase transition occurs, fluctuations at all length scales are observed, indicat-

ing scale invariance of correlations resulting in discontinuities in thermodynamic

response functions.

1.1.2 Critical exponents and universality

Since in a phase transition thermodynamic functions exhibit singularities, it is

proper to study asymptotic behaviors as power laws of its parameters. The ex-

ponents defining the asymptotic behaviors are called the critical exponents. Uni-

versality denotes similar critical behaviors, identical critical exponents in diverse

systems. In fact, this observation is not a coincidence and can be better under-

stood with a categorization of universality classes depending on several physical

properties of the system. These properties are: i) symmetry of the order param-

eter ii) dimensionality of the lattice iii)range of interactions. Hence, regarding

such effects of its constituents, it is useful to work with the simplest model in

a universality class. On the other hand, the critical temperature is highly de-

pendent on the details of interatomic interactions and cannot be categorized in

such a simple manner. While the above properties determine universality classes

for critical phenomena they also strongly effect long-range ordering behaviors but

not necessarily in the same subcategories. In this thesis, we will be mentioning

such effects by changing local structure, dimensionality, spin order parameters

and observing new universality classes and diversities for spin-glass orderings and

spin-glass transitions.
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1.2 Spin glasses

Spin-glass theory came into life to validate a physical basis for problems raised

by experimental peculiarities in magnetic systems. While answering some of the

major concerns, its applications grew beyond its original purpose and became a

new topic in statistical physics representing collective complex structures, even

posing now its own questions and being innovative in its understanding. Control

over these magnetic systems would mean a grand innovation on memory storage

and nanotechnology. Apart from its indications on magnetic systems, spin-glass

systems also provide information about similar glassy dynamics in liquid systems

which have more experimental applications. In addition to that, by also being

an abstract theory applicable to complex structures and networks, it is widely

used in biological and neural networks, information theory, optimization problems,

applications to sociology and economy, etc.

Figure 1.1: The complex structure of spin glasses.

In the figure above, we show an illustration of complex spin structure, dis-

playing different patterns of alignments on different regions. In fact, the spin

configuration is dynamic, slowly changing in time, due to large relaxation times

even larger than experimental observation timescales. In return, slowly relaxing

magnetization can be observed. Furthermore, these systems may have very dissim-

ilar equilibrium configurations, also with different portions of the system being not

alike. The degeneracy in free energy minima can be better seen with the notion of
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ground-state entropy which can be injected into the system by bond randomness.

1.2.1 Complexity in spin glasses

Frustration and ground-state entropy

Frustration is caused by competition between interactions. Competition between

interactions can emerge from geometry of the lattice itself (e.g., AF interactions

in a non-bipartite lattice) or having multiple interactions which oppose in behav-

ior. In Fig. (1.2) we have examples for such cases: frustration in a unit triangle

with only AF interactions (Fig. (1.2a)) and unit squares including F and AF

interactions together(Fig. (1.2b)). Evidently, these systems have many energy

minimizing configurations and thus ground-state entropy. The corresponding free

energy landscape with many minimum points and complicated structure is re-

sponsible for slow dynamics on reaching equilibrium, and non-equilibrium aging

effects at low temperatures. In other words, the system can be trapped in a valley

due to relatively high energy barriers between local minima and it can take long

time to reach equilibrium state. As a consequence, we observe glassy dynamics

experimentally, large relaxation times on simulational studies. Since not all bonds

are satisfied due to frustration in these structures, we can only achieve a total

energy E > NbK, where Nb is the total number of bonds and K < 0 is the bond

energy. On the other hand, ground-state entropy can also be obtained in systems






 

Figure 1.2: Frustration a) caused by geometry of the lattice in which a system
with only AF interactions (dashed red) cannot satisfy all bonds in a unit triangle,
and b) due to competition between bonds, when there is an odd number of F
bonds (blue) in a unit square.
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favoring all short-range interactions and E = NbK. The Potts models and odd

q-state clock models with only AF interactions in which the ground-state entropy

is injected due to not having sublattice spin-reversal (θi → θi + π) symmetry, are

examples for such systems. In addition to these, continuous spins such as XY

and Heisenberg models despite having zero entropy at zero temperature, are also

exhibiting high entropy once a little amount of thermal energy is introduced, i.e.,

a high low-temperature entropy. The amount of low-temperature entropy is one of

the key figures in understanding different types of long-range ordering behaviors

in these models. However, for all of these systems, the ordering behavior becomes

much stronger with the increase of dimensionality of the lattice (or coordination

number).

   

   

   

   

Figure 1.3: A bipartite lattice divided into two sublattices A and B. Short-range
interactions are only between a site at A and a site at B. In general, for AF systems
the order parameter is considered to be sublattice magnetization in which all spins
are expected to be firmly aligned at ground-state. In systems lacking sublattice
spin-reversal (θi → θi+π) symmetry, the symmetry of the order parameter is also
destroyed.

Chaos in spin glasses

Although exhibiting a collective ordering behavior, the different portions of a spin

glass system do not seem alike. Accordingly, dominant interaction mechanisms

for long-range ordering differ in nature on different length scales. As we will see

later on, we can better understand this phenomena by chaotic rescaling behavior

[10, 11]. This characteristic suggests that while remaining in spin-glass order,
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introducing a little amount of thermal energy results complete reorganization of the

overall structure. This property of spin glasses which is also known as temperature

chaos is caused by having dissimilar configurations on a small range of free energy.

1.2.2 Systems with quenched randomness

In order to establish a model by concentrating on the notion of frustration through

competition between bonds, quenched bond randomness on the lattice can be in-

troduced. Evidently, in these systems there will be non-uniform interactions. A

simple case can be by having randomly distributed F and AF interactions through-

out the lattice equal in strength. To understand the basic features which will be

implemented by such a case in contrast to uniform magnetic systems, we should

first briefly overview most commonly used magnetic model, i.e., the Ising model.

The Ising model

Consider a lattice in which each atom is perfectly located at lattice sites in crys-

tal structure. In magnetic systems, these atoms have an independent spin which

interacts with its environment, bonding with other spins and coupling with the ex-

ternal field. A basic example of these systems is Ising model with nearest neighbor

interactions. The Ising model Hamiltonian is given by

− βH = J

�

�ij�

sisj +H

�

i

si (1.1)

where H is the external magnetic field, β = 1/kT , at each site i of a lattice

the spin si = ±1 and �ij� denotes that only the nearest-neighbor pair of sites

are included in the summation. The exchange interaction between spins is an

internal characteristic of the system and may differ in materials but what we care

is its proportionality with temperature and in fact with −β since we deal with

Boltzmann weights in equilibrium statistical physics. Thus, in our definition, the

coupling coefficient J is uniform and inversely proportional to temperature. The
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partition function which defines this model at equilibrium is

Z =
�

{s}

e
−βH (1.2)

where
�

{s}
=

�
s1=±1

�
s2=±1 ...

�
sN=±1 is the summation over all configurations.

Once the partition function is determined, we may obtain thermodynamic proper-

ties as a function of J and H. We may acquire equivalent AF model for bipartite

lattices, by taking J → −J and H → H
† where H

† is staggered field exerting

differently on sublattices A and B (see Fig. (1.3)), i.e., applying H on sites in

sublattice A while applying -H on sites in sublattice B. Now it is also clear that a

spin from sublattice A has nearest-neighbor coupling with a spin from sublattice

B, hence, we may consider our Hamiltonian as

− βH = −J

�

�ij�

s
(A)
i

s
(B)
j

+H

{A}�

i

si −H

{B}�

j

sj (1.3)

where {A} and {B} denote the summation is only over sublattices A and B.

Now, taking the whole spin set
�
s
B

j

�
→ −

�
s
B

j

�
in Hamiltonian would not change

anything in the partition function since
�

sj=±1 =
�

sj=∓1, thus we recover Eq.

(1.1) which represents the ferromagnetic Ising model. Accordingly, we conclude

that these two systems are equivalent, and will have identical thermodynamic

properties, transition temperatures and critical exponents.

The Edwards-Anderson spin-glass model

Considering the same model with quenched bond randomness, we have

− βH =
�

<ij>

Jijsisj (1.4)

where the bonds Jij’s are placed independently on the lattice according to a prob-

ability distribution. The simplest case is a bimodal distribution consisting of

Jij = J with probability 1 − p and Jij = −J with probability p where J > 0.

Since bonds are randomly distributed across the lattice without any correlation,

frustration will occur as presented in the previous section.
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This model has been solved previously by RG treatment and Monte Carlo

studies indicating destruction of order due to frustration at relatively lower tem-

peratures than fully F/AF system, reentrance of phase diagrams, spin-glass phase

in d=3, and no spin glass order in d=2, etc. Comparison with newly discovered

spin-glass phases and novel orderings in spin-glass systems will help to under-

stand the effects on ordering caused by microscopic properties such as types of

interactions and accessible spin states and lattice structure.
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1.3 Renormalization-Group (RG) transformation

The basic idea is to bring a mathematical tool to solve for thermodynamical prop-

erties of large systems by invariant transformations. These transformations are

simply mapping of interaction parameters onto different or rescaled lattice struc-

ture while keeping macroscopic characteristics unchanged. Thus the transforma-

tion is done on the degrees of freedom by a projection operator P({x�

i} | {xi}) which

should satisfy the condition that the partition function of two systems are equal

to each other, i.e., Z( �K�) = Z(�K) where {x�
i
} and {xi} are the set of coordinates

respectively in renormalized and original systems. During a scale transformation,

some of the coordinates are taken out resulting in a change in total number of

particles in the system N → N
�, change in coordinates, and change of interaction

strengths. The equivalence of partition functions can be written in detail as

�

{x}

e
−βH (�K,{x}) =

�

{x�}

�

{σ}

e
−βH (�K,{x�},{σ}) (1.5)

and performing a summation over set of degrees of freedom {σ} results in the

functional form with rescaled interactions

�

{x}

e
−βH (�K,{x}) =

�

{x�}

e
−βH ( �K�,{x�})

. (1.6)

In general, the set of interactions �K may grow in number when transforming into

�K� with unavoidable additive interactions or constants in the new functional form

which is defined by

R( �K�, {x
�
}) = e

−βH ( �K�,{x�}) =
�

{σ}

e
−βH (�K,{x�},{σ}) (1.7)

Accordingly by introducing the values for the set of variables {x�
i
} one would

get a set of equations for energy parameters. Solving these equations for energy

parameters will give us the so-called recursion relations for the RG transformation.

RG recursion relations provide the topology of the flows on multidimensional pa-

rameter space (see Fig. (1.4) for sample illustration) in which some specific points



Chapter 1: Introduction 11

gain much importance by being invariant under these transformations and are

called fixed points. We will be dealing in the upcoming chapters with categorizing

the fixed points and their relation in determining ordering behaviors, criticality,

and phase diagrams. Before that, we start by formulating RG transformation in

d = 1 and on higher dimensions.

Figure 1.4: Sample illustration of RG flows from Ref [7].

1.3.1 RG transformation in d = 1

Considering a one-dimensional chain with well-localized sites, an exact scaling

procedure can be done by decimation. As an example, let us apply the b = 2

RG transformation on the Ising model considering the Hamiltonian in Eq.(1.1) at

H = 0, with N lattice sites

− βH = J

�

i

sisi+1 (1.8)

In b=2, d=1 the RG transformation as shown in Fig. (x), it is convenient to project

lattice coordinates in rescaled coordinates by taking i
� ≡ j−1, i�+1 ≡ j+1 where

j = 2i and j ≤ N . With respect to the condition Z(J) = Z(J �), we may write the



Chapter 1: Introduction 12

   

K

K'

Figure 1.5: RG transformation in d = 1, with length rescaling factor b = 2. The
degrees of freedom with cross mark have been eliminated and new interactions are
obtained in the rescaled picture.

equivalence as

e
J
� �

i� s
�
i
s
i�+1+G̃ =

�

{σ}

e
J
�

i
sisi+1 (1.9)

where G̃ is an additive constant, prime variables denoting the rescaled system

and {σ} is the set of eliminated spins which in the case of the b = 2 transforma-

tion is {s2, s4, s6, ..., sN}. To simplify the above equation, we should rewrite the

summation in exponential factors,

N
��

i�

e
J
�
s
�
i
s
i�+1+G̃ =

�

{σ}

N�

i

e
Jsisi+1 (1.10)

Using
�

{σ}
=

�
s2=±1

�
s4=±1 ...

�
sN=±1 and projecting i → j with relevant

transformations, we will have,

N
��

i�

e
J
�
s
�
i
s
i�+1+G̃ =

N
��

j

�

sj=±1

e
Jsj(sj−1+sj+1) (1.11)

Hence, the transformation is equivalent at each portion, and we may define

functions as

R(J �
, G̃, sj−1, sj+1) = e

J
�
sj−1sj+1+G̃ =

�

sj=±1

e
Jsj(sj−1+sj+1) (1.12)

Solving the set of equations by introducing the spin variables, we obtain the re-

cursion relations,
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J
� =

1

2
ln cosh(2J), (1.13)

G̃ =
1

2
ln 4cosh(2J). (1.14)

Solving Eq. (1.13) for J � = J = J
∗ will reveal fixed points for that transfor-

mation. The overall flow diagram of the RG transformations is given in Fig. (1.6)

with fixed points in temperature 1/J∗ = 0,∞ are shown in asterisk. As we see in

the figure, all finite temperature 1/J > 0 points flow to the high-temperature fixed

point 1/J∗ = ∞ indicating that they all belong to the disordered phase. Hence,

we conclude that there is no long-range order and accordingly no phase transition

at finite temperature.

 
 

Figure 1.6: RG flow for d = 1 Ising model at zero external field. Successive RG
transformations at finite temperatures display this pattern, while fixed points (in
asterisk) remain unchanged.

For systems with only nearest-neighbor interactions, the transformation in

Eq.(1.12) can be used by generalizing the summation to a summation over all

possible spin states. As a last remark, for exact transformations, the results de-

termining thermodynamic and critical properties are independent of the rescaling

factor b. In other words, for the model presented above we will have the same exact

result with arbitrary b. However notice that for AF sytems, b = 2 transformation

on a bipartite lattice would mean the removal of one of the sublattices and result

loss of AF interactions unnecessarily at the first RG transformation. Therefore,

for AF models, it is convenient to take an odd value for b.
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1.3.2 Migdal-Kadanoff approximation and hierarchical lattices

In higher dimensions, since lattice structures hold higher connectivity it is not

easy to suggest an exact scheme due to overbonding of local degrees of freedom

when rescaling. However, approximation schemes can be introduced in a consis-

tent basis regarding physical properties put into effect by lattice geometry. The

Migdal-Kadanoff approximation is a generalization of RG transformation in d = 1

onto higher dimensions by strengthening local interactions according to a rule in

order to account for higher connectivity. The RG transformations on higher di-

mensions with the Migdal-Kadanoff RG scheme consisting of bond-moving and

decimation steps is shown in Fig. (1.7) on a square lattice with length rescaling

factor b = 2.

bond-moving decimation

Figure 1.7: The Migdal-Kadanoff RG scheme on a square lattice with b = 2.

The formulation of Migdal-Kadanoff RG transformation on a d-dimensional lat-

tice with arbitrary b will be shown later in this thesis with applications. These

transformations are approximate on hypercubic lattices. One can always con-

struct a lattice in which Migdal-Kadanoff procedure becomes exact. Such lattices

are referred as hierarchical lattices [8] since they are constructed in a hierarchi-

cally growing manner. An example of hierarchical lattice is shown in Fig. (1.8)

with b = 2, d = 2. Scaling on these lattices with the same parameters b = 2,

d = 2 is simply going on the reverse direction in the illustration. While hierar-

chical lattices have many applications on network science, they also give a pretty

much consistent analysis on the effects of dimensionality being strongly suggestive

for hypercubic lattices. Thus, maintaining an exact RG analysis on diverse mod-

els with a wide scope of physical implementations on these structures is highly

valuable for experimental and simulational studies.
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Figure 1.8: Construction of a hieararchical lattice with b = 2, d = 2 [8].
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1.3.3 Calculation of phase diagrams

The unstable fixed points from which the flows are outwards are the critical fixed

points. If we start rescaling at this point �K = �K∗ = �Kc, we have scale invariance

and thus stay at that point under successive RG transformations. The flows going

outwards of this point should reach other fixed points, i.e., stable fixed points,

and these are generally the sink of a phase. We have an example in Fig. (1.9)

illustrating common flow diagram for the Ising model in d > 1 at zero field. Us-

ing the above facts, if the analytical approach is not sufficient for obtaining fixed

points, it is feasible to implement numerical techniques. In general, if the inter-

action set �K consists of m independent parameters, the RG flows are represented

on m-dimensional space, while the phase diagram is shown as a function of ini-

tial (physical) interaction parameters. Therefore, investigation of RG flows and

categorization of fixed points should be carried out with a proper analysis.

 
 




Figure 1.9: RG flow for d > 1 Ising model at zero external field. Successive RG
transformations at finite temperatures display this pattern, while fixed points (in
asterisk) remain unchanged.

1.3.4 Calculation of thermodynamic properties

Free Energy

In order to get rid of asymptotic behaviors in thermodynamic limit N → ∞, it is

much more convenient to consider thermodynamic functions per site or per bond.

The additive constants on each interaction in Eq.(1.14) indeed help in solving for

dimensionless free energy per bond for the system,

fb = −
1

JNb

lnZ. (1.15)

since in general we set the dimensionless temperature as 1/J . As we see from the

above equation fb is proportional to lnZ. Thus, our aim is to solve lnZ using RG
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transformations until reaching the asymptotic limit n → ∞, where n is the RG

iteration number. The formalism in Eqs.(1.10-1.12) gives us a clue on the use of

additive constants. Remembering the form of partition function we have

lnZ = ln
�

{s}

e
−βH

= ln
�

{s�}

e
−βH �+N

�
b
G̃

= ln
�

{s�}

e
−βH �

+N
�

b
G̃ (1.16)

which becomes, continuing recursively until last RG transformation n,

= ln
�

{s(n)}

e
−βH (n)

+
n�

k=1

N
(k)
b

G̃
(k) (1.17)

with superscripts denoting belonging to that RG iteration. When taking n → ∞,

we would be expecting to have a finite set of coordinates
�
s
(n)

�
and to be at a

fixed point for the term βH (n). Accordingly, for all values of the expression in

the logarithmic term, the first term cannot survive when divided by factor JNb,

since at least Nb → ∞ much faster in the thermodynamic limit. As a result the

Eq. (1.15) becomes,

fb = −
1

JNb

n�

k=1

N
(k)
b

G̃
(k)

= −
1

J

n�

k=1

G̃
(k)

bkd
(1.18)

using N
(k)
b

/Nb = b
−kd for decimation in d = 1 and Migdal-Kadanoff transforma-

tions.

Critical exponents

Critical exponents are used for understanding the critical behavior of systems

near a phase transition (second-order - or critical - phase transition). In general,

thermodynamic functions exhibit a singularity near criticality, thus are no longer
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analytical functions. However, we may obtain dependence on relevant parameters

such as temperature and external field as a power law in the asymptotic limit. In

scaling analysis, we may obtain critical behavior from the flows of the interaction

parameters near a critical point. The calculation of critical exponents is done by a

linearization around the critical point. In a case where only interaction parameters

are J and H, as in Eq. (1.1), the related critical exponents are obtained from

∂J
�

∂J
|J=Jc,H=Hc

= b
yT ,

∂H
�

∂H
|J=Jc,H=Hc

= b
yH . (1.19)

where b
yT , b

yH give the scaling of relevant fields and yT , yH are the critical expo-

nents. Since thermodynamic properties are functions of these parameters, we may

accordingly calculate all other critical exponents with scaling analysis (Kadanoff

construction). For ferromagnetic systems, the critical fixed point is found when

H = Hc = 0 due to symmetry. In general, if we have RG flows in phase

space with multiple interaction parameters, i.e., with s interaction parameters

�K = {K1, K2, ..., Ks}, then the critical exponent can be obtained from eigenvalues

of the recursion matrix with elements ∂K �

l
/∂Km,

←−→
∂K�

∂K
=





∂K
�
1

∂K1

∂K
�
1

∂K2
· · ·

∂K
�
1

∂Ks

∂K
�
2

∂K1

∂K
�
2

∂K2

...
. . .

∂K
�
s

∂K1

∂K
�
s

∂Ks




(1.20)

at the critical fixed point �K = �Kc. As we seek an eigenvalue in the form b
yT , the

one being larger than unity will be our critical exponent.

1.3.5 RG transformation of systems with quenched randomness

The bimodal probability distribution implementing quenched randomness on types

of bonds across the lattice as introduced in Section 1.2.2, can be written in func-
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tional form with

P (Jij) = pδ(Jij + J) + (1− p)δ(Jij − J). (1.21)

As we will see later on in this thesis, the probabilitity distribution of renormalized

interactions are represented by a renormalized quenched probability distribution.

Furthermore, the renormalized probability distribution evolves to a more complex

one in the upcoming steps. After applying a sufficient number of RG iterations

until reaching the asymptotic trend of the distribution, we may have information

about the ordering behavior of the system for given initial (physical) parameters.

Without loss of generality, it is convenient to represent the relevant parameters to

classify the distribution as the normalized distribution P (Jij/ < |Jij| >) and the

average magnitude of interactions < |Jij| >. As a matter of fact, the asymptotic

distribution is the fixed distribution P
∗(Jij/ < |Jij| >) and defines the ordering

behavior or criticality of the system along with the asymptotic behavior of <

|Jij| >.

Along with the large scale flow analysis of all local interactions in a system, the

characteristic behavior of interactions at a single location under rescaling can be

maintained by RG transformations. As previously discussed in Section (1.2.1) spin

glasses exhibit diversity in correlations (weak/strong and F/AF) upon changing

length scale. The behavior is observed to be in a chaotic sequence under successive

RG transformations of local interactions at a specific point in the lattice. As we

will show in the upcoming chapters, the distribution of chaotic visits of interactions

at a specific location under rescaling trajectories is indeed equivalent to the fixed

distribution of interactions at different locations showing that chaos is spread out

at all length scales in the same manner.
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1.4 Overview of thesis

The main objective of the thesis is studying a variety of spin-glass systems and

achieve a new perspective on understanding spin-glass theory. Thus, new types of

spin glass systems are introduced resulting in a rich information on these complex

structures and novel orderings. In the upcoming chapter we will be dealing with

controlling the frustration level on spin-glass systems by adding locally correlated

quenched randomness, and accordingly we show how frustation level affects these

systems on the destruction of orderings, chaotic rescaling behaviors, and thermo-

dynamic properties. In chapter 3, q-state clock spin-glass models with symmetry in

ordering (even q-state clock models) are investigated up to reaching high q-values

and thus XY model limit. In chapter 4, we study spin-glass systems without sym-

metry in ordering of F and AF (odd q-state clock models) which belongs to a class

of systems having ground-state entropy even without bond frustration. Finally,

the diffusive dynamics on non-equilibrium systems are discussed in chapter 5. In

general, the effects of microlevel motions are observed indirectly in the macroworld,

hence observables that are less sensitive to microlevel randomness can be obtained

with fewer parameters. The main aim in the first section is to simplify the transi-

tion scheme from microlevel and continuous time analysis which will be sufficient

to define the motional effects on such systems. In the second section, we examine

a system starting from a constrained free energy configuration, evolving to the

equilibrium state under the effect of thermodynamics competing with diffusion

energy barriers.
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Chapter 2

CONTROLLING FRUSTRATION AND

CHAOS IN SPIN GLASSES
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2.1 Introduction

The occurrence of spin-glass long-range order [1], ground-state entropy [2, 3], and

chaotic rescaling behavior [4, 5] has long been discussed in spin-glass systems,

with reference to spatial dimensionality d, interaction randomness and frustra-

tion [6], accepted as inherent to spin-glass systems and spin-glass order. In Ising

models with randomly distributed nearest-neighbor ferromagnetic and antiferro-

magnetic interactions on hypercubic lattices, it has been shown that a spin-glass

phase does not occur in d = 2 and does occur in d = 3.[7] In these hypercubic

systems, frustration occurs in elementary squares with an odd number of anti-

ferromagnetic interactions. Thus, with interactions randomly distributed with

no correlation, maximally 50 % of the elementary squares can be frustrated. This

fraction increases from zero as the concentration of frozen antiferromagnetic bonds

p is increased from zero and reaches its maximal value of 50 % at p = 0.5.

The basis of the current study is the realization that, for any value of the

antiferromagnetic bond concentration 0 < p < 1, the fraction of frustrated squares

can be varied considerably. For example, for the square lattice, for 0.25 ≤ p ≤ 0.75,

the fraction of frustrated squares can be made to vary to any value between 0 and

1 inclusive, by the locally correlated occurrence quenched random bonds. For

p ≤ 0.25, the fraction of frustrated squares can similarly be made to vary between

0 and 4p. For 0.75 ≤ p, the fraction of frustrated squares can be made to vary

between 0 and 4(1 − p). (Thus, frustration reaches 0 with no variation as p

approaches 0 or 1.) Examples are shown in Fig. 2.1 for p = 0.5. Thus, when

the fraction of frustrated squares is zero, we have a so-called Mattis spin glass [8].

At the other extreme, we have a fully frustrated system [9, 10, 11, 12, 13]. All

frustration values in between can be obtained, by randomly removing or adding

local frustration without changing the antiferromagnetic bond concentration p

(Fig. 2.1).

In this study, we have implemented an exact renormalization-group study for

Ising spin-glass models on the hierarchical lattices, with d = 3 and d = 2, re-

spectively shown in Figs. 2.2(b) and 2.3(b), for arbitrary overfrustration or un-

derfrustration implemented by locally correlated quenched randomness. We have
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p=0.5 
stochastic frustration

p=0.5 
underfrustration

p=0.5 
overfrustration

Figure 2.1: (Color online) Randomly distributed ferromagnetic (blue) and antifer-
romagnetic (red) interactions on a square plane. In all three cases, the antiferro-
magnetic bond concentration is p = 0.5. The frustrated squares are shaded. In the
case at the center, the bonds were distributed in an uncorrelated fashion, leading
to the frustration of half of the squares (stochastic frustration). In the case at
the left, 25% of the frustration was randomly removed without changing p = 0.5
(underfrustration). In the case at the right, 25% frustration was randomly added
without changing p = 0.5 (overfrustration). Frustration can thus be set between
zero and complete frustration. It is clear that frustration can thus be adjusted in
all hypercubic lattices.

calculated 18 complete phase diagrams, each for a different frustration level, in

temperature and antiferromagnetic bond probability p. We find that the increase

of frustration disfavors the spin-glass phase (while at low temperatures favoring

the spin-glass phase at the expense of the ferromagnetic phase and, symmetrically,

antiferromagnetic phase.) Both in d = 3 and d = 2, the spin-glass phase disappears

at zero temperature when a certain level of frustration is reached. However, this

disappearance of the spin-glass phase happens in different regimes in d = 3 and

d = 2: For d = 3, it occurs in overfrustration, so that at stochastic frustration (no

correlation in randomness) a spin-glass phase occurs. For d = 2, it already occurs

in underfrustration, so that at stochastic frustration a spin-glass phase does not

occur. However, with frustration only partially removed, we find that a spin-glass

phase certainly does occur in d = 2.

The chaotic rescaling [4, 5, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26,

27, 28, 29, 30, 31, 32, 33, 34, 35] of the interactions within the spin-glass phase

occurs as soon as frustration is increased from zero, both in d = 3 and d = 2. We

have calculated the Lyapunov exponent λ [36, 37] of the renormalization-group

trajectory of the interaction at a given location, when the system is in the spin-

glass phase. When frustration is increased from zero, the Lyapunov exponent λ
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increases from zero, both in d = 3 and d = 2. This behavior is of course consistent

with the chaotic renormalization-group trajectories. Different values of the positive

Lyapunov exponents characterize different spin-glass phases. It is found here that

the value of the Lyapunov exponent continuously varies with the level of frustration

and is different for each dimensionality d. The Lyapunov exponent does not depend

on antiferromagnetic bond concentration p or temperature.

Our calculations with varying frustration also yield information on long- and

short-range ordering, and entropy. The increase in frustration lowers both the

onset temperature of long-range order and the characteristic temperature of short-

range order, but affects long-range order much more drastically, thus interchanging

the two temperatures and eventually eliminating long-range spin-glass order. For

d = 3, for low frustration, the specific heat peak occurs inside the spin-glass

phase, indicating that considerable short-range disorder persists into the higher

temperatures of the spin-glass phase. In these cases, as temperature is lowered,

spin-glass long-range order onsets before the system is predominantly short-range

ordered. As frustration is increased, both ordering temperatures are lowered,

but differently, so that they interchange before stochastic frustration is reached.

Thus, for overfrustration, stochastic frustration, and higher frustration values of

underfrustration, the specific heat peak occurs outside the spin-glass phase, in-

dicating that as temperature is lowered, short-range order sets before long-range

order (which reaches zero temperature in overfrustration). Zero-temperature or

low-temperature entropy is a distinctive character of systems with frustration.

Frustration is introduced into the system, by increasing from zero the antiferro-

magnetic bond concentration p. It is seen that frustration favors the spin-glass

phase over the ferromagnetic phase. However, it is also seen that, in all cases that

frustration is introduced, the major portion of the entropy is created with the

ferromagnetic phase as opposed to the spin-glass phase.
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2.2 Overfrustrated and underfrustrated spin-glass systems

on hypercubic lattices and hierarchical lattices

2.2.1 Stochastic Frustration, Overfrustration, and Underfrustration

on Hypercubic Lattices

The Ising spin-glass model is defined by the Hamiltonian

− βH =
�

�ij�

Jijsisj (2.1)

where β = 1/kT , at each site i of a lattice the spin si = ±1, and �ij� denotes

that the sum runs over all nearest-neighbor pairs of sites. The bond strengths Jij

are +J > 0 (ferromagnetic) with probability 1 − p and −J (antiferromagnetic)

with probability p. On hypercubic lattices, in any elementary square with an odd

number number of antiferromagnetic bonds, all bonds cannot be simultaneously

satisfied, meaning that there is frustration.[6] When the antiferromagnetic bonds

are randomly distributed with probability p across the lattice, a fraction

4p(1− p)3 + 4p3(1− p) = 4(p− 3p2 + 4p3 − 2p4) (2.2)

of the elementary squares is frustrated. This system with uncorrelated quenched

randomness is the usually studied spin-glass system and we shall refer to it as a

stochastically frustrated system. On the other hand, by changing the signs

of individual bonds Jij → −Jij at randomly chosen localities, with the rule that,

for every ferromagnetic-to-antiferromagnetic local change, an antiferromagnetic-

to-ferromagnetic local change is done, frustration can be continuously increased

or decreased from the value in Eq.(2.2), without changing the antiferromagnetic

bond concentration p. We call the systems in which frustration is thus increased

or decreased from stochastic frustration, respectively, overfrustrated or under-

frustrated systems. Examples of overfrustration, stochastic frustration, and un-

derfrustration are given in Fig. 2.1.
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





Figure 2.2: (a) Migdal-Kadanoff approximate renormalization-group transforma-
tion for the d = 3 cubic lattice with the length-rescaling factor of b = 3. Bond-
moving is followed by decimation. (b) Exact renormalization-group transforma-
tion for the equivalent d = 3 hierarchical lattice with the length-rescaling factor
of b = 3. (c) Pairwise applications of the quenched probability convolution of
Eq.(2.5), leading to the exact transformation in (b) and, numerically equivalently,
to the approximate transformation in (a).

2.2.2 Renormalization-Group Transformation, Quenched Probability

Convolutions by Histograms and Cohorts

The usual, stochastically frustrated spin-glass systems on hypercubic lattices are

readily solved by a renormalization-group method that is approximate on the

hypercubic lattice [38, 39] and simultaneously exact on the hierarchical lattice

[40, 41, 42, 43, 44]. Under rescaling, the form of the interaction as given in Eq.(2.1)

is conserved. The renormalization-group transformation, for spatial dimension d

and length-rescaling factor b = 3 (necessary for treating the ferromagnetic and

antiferromagnetic correlations on equal footing), is achieved (Figs. 2.2(a) and
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





Figure 2.3: (a) Migdal-Kadanoff approximate renormalization-group transforma-
tion for the d = 2 square lattice with the length-rescaling factor of b = 3. Bond-
moving is followed by decimation. (b) Exact renormalization-group transforma-
tion for the equivalent d = 2 hierarchical lattice with the length-rescaling factor
of b = 3. (c) Pairwise applications of the quenched probability convolution of
Eq.(2.5), leading to the exact transformation in (b) and, numerically equivalently,
to the approximate transformation in (a).

2.3(a)) by a sequence of bond moving

J
(bm)
ij

=
b
d−1�

<kl>

Jkl (2.3)

and decimation

e
J
(dec)
im

sism+Gim =
�

sj ,sk

e
Jijsisj+Jjksjsk+Jkmsksm , (2.4)

where the additive constants Gij are unavoidably generated.

The starting bimodal quenched probability distribution of the interactions,

characterized by p and described above, is not conserved under rescaling. The

renormalized quenched probability distribution of the interactions is obtained by
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the convolution [45]

P
�(J �

i�j�) =

� �
i
�
j
��

ij

dJijP (Jij)

�
δ(J �

i�j� −R({Jij})), (2.5)

where the primes denote the renormalized system andR({Jij}) represents the bond

moving and decimation given in Eqs.(2.3) and (2.4). For numerical practicality,

the bond moving and decimation of Eqs.(2.3) and (2.4) are achieved by a sequence

of pairwise combination of interactions, as shown for d = 3 and d = 2 respectively

in Figs. 2.2(c) and 2.3(c), each pairwise combination leading to an intermediate

probability distribution resulting from a pairwise convolution as in Eq.(2.5).

We implement this procedure numerically in two calculationally equivalent

ways: (1) The quenched probability distribution is represented by histograms.[47,

49, 50, 51] A total number of between 500 to 2,500 histograms, depending on the

needed accuracy, is used here. This total number is distributed between ferro-

magnetic J > 0 and antiferromagnetic J < 0 interactions according to the total

probabilities for each case. (2) By generating a cohort of 20,000 interactions [31]

that embodies the quenched probability distribution. At each pairwise convolu-

tion as in Eq.(2.5), 20,000 randomly chosen pairs are matched by Eq.(2.3) or (2.4),

and a new set of 20,000 is produced. The numerical convergence of the histogram

and cohort implementations are determined, respectively, by the numbers of his-

tograms and cohort members. At numerical convergence, the results of the two

implementations match. The histogram method is faster and is used to calculate

phase diagrams, thermodynamic properties, and asymptotic fixed distributions.

The cohort method is needed for studying the repeated rescaling behavior of the

interaction at a specific location on the lattice and is used to calculate chaotic

trajectories, chaotic bands, and Lyapunov exponents.[31]

2.2.3 Stochastic Frustration, Overfrustration, and Underfrustration

on Hierarchical Lattices

Hierarchical models are models which are exactly soluble by renormalization-group

theory.[40, 41, 42, 43, 44] Hierarchical lattices have therefore been used to study
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a variety of spin-glass and other statistical mechanics problems.[46, 47, 48, 49,

50, 51, 52, 53, 54, 55, 56, 57, 58] Hierarchical models can be constructed [40]

that have identical renormalization-group recursion relations with the approximate

treatment of models on hypercubic and other Euclidian lattices. Thus, Figs. 2.2(b)

and 2.3(b) respectively give the hierarchical models, used in our study, that have

the same recursion relations as the Migdal-Kadanoff approximation [38, 39] for

the hypercubic lattice in d = 3 (cubic lattice) and d = 2 (square lattice).

Overfrustration or underfrustration is readily introduced into hierarchical lat-

tices by randomly changing local interactions or groups of local interactions, while

conserving p. This overfrustration or underfrustration affects the pairwise bond-

moving step of the renormalization-group solution. In the case of overfrustration,

when two bonds are matched for bond-moving, bonds of the same sign are ac-

cepted with a probability g, 0 � g < 1. Clearly, when g = 1, we have not altered

the occurrence of frustration. But, for a value of g in the range 0 � g < 1, we

have removed a fraction 1− g of the unfrustrated occurrences.

Similarly, in the case of underfrustration, when two bonds are matched for

bond-moving, bonds of the opposite sign are accepted with a probability f , 0 �
f < 1. Again, when f = 1, we have not altered the occurrence of frustration. But,

for a value of f in the range 0 � f < 1, we have removed a fraction 1 − f of the

frustrated occurrences.

We have thus defined the degree of frustration on the hierarchical models. Ac-

cordingly, full frustration, stochastic frustration, and zero frustration respectively

correspond to g = 0, g = 1 = f , f = 0. Our implementation of underfrustration

and overfrustration via the factors f and g does affect, on the hierarchical lattice,

the effective value of the antiferromagnetic bond probability p as

peffective =
p− (1− f)p(1− p)

1− (1− f)2p(1− p)
,

peffective =
p− (1− g)p2

1− (1− g)(p2 + (1− p)2)
.

(2.6)

peffective includes the combined effect of p together with the local quenched cor-

relation rule controlled by f or g. (The actual microscopic renormalization-group
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Figure 2.4: (Color online) peffective versus p for the range of underfrustration and
overfrustration used in our study (Eq.(2.6)). The curves are, consecutively from
the lower right, for f = 0, 0.2, 0.5; f = 1 = g (thicker line); g = 0.8, 0.6, 0.3.

calculation is of course done using p with the quenched correlation rule, which

completely defines the model.) Eqs.(2.6) directly follow from the acceptance rules

given in the previous two paragraphs: The second terms in the numerators sub-

tract the probability due to rejection because of a bond-moving match that is

suppressed; the denominator is a normalization taking into account this rejection

probability. Thus, p = 0.5, the center of a would-be spin-glass phase, is not af-

fected. For other values, peffective stays close to p, as seen in Fig. 2.4. Just as in

the case of underfrustrated and overfrustrated hypercubic lattices (Fig. 2.1), un-

derfrustrated and overfrustrated hierarchical lattices as defined and studied here

can be physically realized. However, our procedure of underfrustrating or over-

frustrating hierarchical lattices is not a direct representation of underfrustrating

or overfrustrating hypercubic lattices. One important difference is that, in hier-

archical lattices, underfrustrating or overfrustrating is done at every length scale.

This leaves the underfrustrated or overfrustrated hypercubic lattices, which can

be achieved as we demonstrated, as an interesting open problem, with our current

results only being suggestive.
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2.2.4 Determination of the Phase Diagrams and Thermodynamic

Properties

The different thermodynamic phases of the model are identified by the different

asymptotic renormalization-group flows of the quenched probability distributions.

For all renormalization-group flows, inside the phases and on the phase bound-

aries, Eq.(2.5) is iterated until asymptotic behavior is reached, meaning that we

are studying an effectively infinite hierarchical lattice. The thermodynamic prop-

erties, such as free energy, energy, entropy, and specific heat, are calculated by

summing along entire renormalization-group trajectories.[40, 43, 44, 59] Thus, we

are able to calculate phase diagrams and thermodynamic properties for any case

of overfrustration or underfrustration.

2.3 Calculated phase diagrams for overfrustration and un-

derfrustration in d = 3 and d = 2

Figure 5 shows 18 different calculated phases diagrams, in temperature 1/J and an-

tiferromagnetic bond concentration p, for overfrustrated, stochastically frustrated,

underfrustrated Ising spin-glass models in d = 3 and d = 2. Each phase diagram

has a different amount of overfrustration or underfrustration, or is stochastically

frustrated. In general, increased frustration drives the spin-glass phase to lower

temperatures. Thus, the spin-glass phase disappears at a threshold amount of frus-

tration. This threshold frustration is dramatically different in d = 3 and d = 2,

as explained below. On the other hand, increased frustration favors the spin-glass

phase (before it disappears) over the ferromagnetic phase and symmetrically the

antiferromagnetic phase, at low temperatures.

The left panels are for d = 3 dimensions. The outermost phase diagram, con-

sisting of one horizontal and two vertical lines, is for no frustration, f = 0. Starting

from this outermost phase diagram, the consecutive phase diagrams have increas-

ing frustration: They are for the underfrustrated cases (where frustration has been

removed) of f = 0.1, 0.2, 0.5, 0.8; the stochastic case (where frustration has been

neither removed, nor added) of f = 1 = g, drawn with the thicker lines; and the
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Figure 2.5: (Caption next page.)

overfrustrated case (where frustration has been added) of g = 0.8, 0.6, 0.3, 0.1. In

the latter three cases, g = 0.6, 0.3, 0.1, no spin-glass phase occurs. Thus, in d = 3,

excessive overfrustration destroys the spin-glass phase.

The right panels are for d = 2 dimensions. Again, the outermost phase di-

agram, consisting of one horizontal and two vertical lines, is for no frustration,

f = 0. Starting from this outermost phase diagram, the consecutive phase dia-

grams again have increasing frustration: They are for the underfrustrated cases

of f = 0.1, 0.2, 0.3, 0.4, 0.5; the stochastic case of f = 1 = g, drawn with the
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Figure 2.5: (Previous page) Calculated phase diagrams (color online) of the over-
frustrated, underfrustrated, and stochastically frustrated Ising spin-glass models
on hierarchical lattices. The panels on the left side are for d = 3 dimensions. Left
top panel: The outermost phase diagram, consisting of one horizontal and two
vertical lines, is for no frustration, f = 0. Starting from this outermost phase
diagram, the three consecutive phase diagrams are for the underfrustrated cases
(where frustration has been removed) of f = 0.1, 0.2, 0.5. Left middle panel: Start-
ing from the outermost phase diagram, the four consecutive phase diagrams are
for the underfrustrated cases of f = 0.5, 0.8; the stochastic case (where frustration
has been neither removed, nor added) of f = 1 = g, drawn with the thicker lines;
and the overfrustrated case (where frustration has been added) of g = 0.8. Left
bottom panel: Starting from the outermost phase diagram, the four consecutive
phase diagrams are for the overfrustrated cases of g = 0.8, 0.6, 0.3, 0.1. In the
latter three cases, g = 0.6, 0.3, 0.1, no spin-glass phase occurs. Excessive over-
frustration destroys the spin-glass phase. The panels on the right side are for
d = 2 dimensions. Right top panel: The outermost phase diagram, consisting
of one horizontal and two vertical lines, is for no frustration, f = 0. Starting
from this outermost phase diagram, the three consecutive phase diagrams are for
the underfrustrated cases of f = 0.1, 0.2, 0.3. Right middle panel: Starting from
the outermost phase diagram, the three consecutive phase diagrams are for the
underfrustrated cases of f = 0.3, 0.4, 0.5. Right bottom panel: Starting from the
outermost phase diagram, the three consecutive phase diagrams are the under-
frustrated case of f = 0.5; for the stochastic case of f = 1 = g, drawn with the
thicker lines; and the overfrustrated case of g = 0.5. In the latter three cases,
f = 0.5, f = 1 = g, g = 0.5, no spin-glass phase occurs. However, in the under-
frustrated cases of f = 0.1, 0.2, 0.3, 0.4, a spin-glass phase occurs in these d = 2
dimensional systems with locally correlated randomness. All phase transitions in
this figure are second order and, to the resolution of the figure, all multicritical
points appear on the Nishimori symmetry line, shown with the dashed curves.
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thicker lines; and the overfrustrated case of g = 0.5. In the latter three cases,

f = 0.5, f = 1 = g, g = 0.5, no spin-glass phase occurs. However, in the under-

frustrated cases of f = 0.1, 0.2, 0.3, 0.4, a spin-glass phase does occur in these d = 2

dimensional systems with locally correlated randomness. Thus, when frustration

is increased from zero, the spin-glass phase disappears while still in the under-

frustrated regime. Accordingly, in ordinarily studied spin-glass systems, which are

stochastically frustrated systems, the spin-glass phase is seen in d = 3, but not

seen in d = 2.

The paramagnetic-ferromagnetic-spinglass reentrance for the phase diagrams

with the spin-glass phase and the paramagnetic-ferromagnetic-paramagnetic (true)

reentrance for the phase diagrams without the spin-glass phase, as temperature

is lowered, is seen here. Both types of phase diagrams were first noted with

hierarchical models for Ising spin glasses [47] and Potts spin glasses [48]. Phase

diagram reentrance is also seen in experimental spin-glass systems [60] and, most

proeminently, in liquid crystal systems where annealed (as opposed to quenched as

in the current study) frustration plays a role.[61, 62, 63, 64] All phase transitions

in Fig. 2.5 are second order and, to the resolution of the figure, the multicritical

points appear on the Nishimori symmetry line, shown with the dashed curves.[65,

66, 67, 68, 69]

2.4 Chaos in the Spin-Glass Phase Triggered by Infinites-

imal Frustration

The local interaction at a given position in the lattice at successive

renormalization-group transformations, in systems with different frustrations, is

given for d = 3 and 2 respectively in Figs. 2.6 and 2.7. These consecutively renor-

malized interactions at a given position of the system are shown here as scaled

with the average interaction < |J | > across the system, which diverges as b
nyR

where n is the number of renormalization-group iterations and yR > 0 is the run-

away exponent shown in Fig. 2.10. This divergence indicates strong-coupling

chaotic behavior.[31] In Figs. 2.6 and 2.7, it is seen that, for any amount of

frustration, the local interaction at a given position in the lattice exhibits, under
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renormalization-group transformations, a chaotic trajectory.[15]
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Figure 2.6: (Color online) Interaction at a given position in the lattice at successive
renormalization-group iterations, for d = 3 systems with different frustrations.
In all cases, the antiferromagnetic bond concentration is p = 0.5 and the initial
temperature is 1/J = 0.2, inside the spin-glass phase. For each frustration amount,
a chaotic trajectory of the interaction at a given position is seen from this figure.
The calculated Lyapunov exponent for each case is given in the upper right corner
of each panel.

The cumulative pictures of the chaotic visits of the consecutively renormal-

ized interactions Jij at a given position of the system, for a large number of

renormalization-group iterations, in the spin-glass phases for different frustra-

tions, is given for d = 3 and 2 respectively in Figs. 2.8 and 2.9. It has been

recently shown [31] that these distributions over renormalization-group iterations

for a given position in the lattice are completely equivalent to the distributions of

interactions across the lattice at a given renormalization-group iteration. As seen

in Figs. 2.8 and 9, in the system where frustration is completely removed (f = 0,

uppermost leftside diagrams), the interaction at a given position randomly visits
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Figure 2.7: (Color online) Interaction at a given position in the lattice at successive
renormalization-group iterations, for d = 2 systems with different frustrations.
In all cases, the antiferromagnetic bond concentration is p = 0.5 and the initial
temperature is 1/J = 0.2, inside the spin-glass phase. For each frustration amount,
a chaotic trajectory of the interaction at a given position is seen from this figure.
The calculated Lyapunov exponent for each case is given in the upper right corner
of each panel.

positive and negative values, giving the two delta functions seen in the figures.

When frustration is introduced (f is increased from 0), these two delta functions

broaden into two chaotic bands (seen in the figures for f = 0.01), which merge

into a double-peaked single band (seen for f = 0.10), which transforms into a sin-

gle peak (seen for f = 0.25). In d = 3, the single-peaked chaotic band continues

through the stochastic frustration (f = 1 = g) into a range of overfrustrated sys-

tems (g > 0.67), albeit with varying Lyapunov exponents λ, as seen in the insets

and in Fig. 2.10. In d = 2, the single-peaked chaotic band continues when frus-

tration is increased to f = 0.45 (uppermost rightside diagram), but no spin-glass

phase occurs for f > 0.49, that is to say in overfrustration, stochastic frustration,

and the higher range of underfrustration.

The spin-glass phases, being chaotic, can be characterized [31] by the Lya-

punov exponent of general chaotic behavior [36, 37]. The positivity of the

Lyapunov exponent measures the strength of the chaos [36, 37] and was also used



Chapter 2: Controlling Frustration and Chaos in Spin Glasses 38

-4 -2 0 2 4
0

0.5

1

f=0

unfrustrated

λ=0

-4 -2 0 2 4
0

0.1

0.2
f=0.01 λ=0.12

under

frustrated

N
u
m

b
e
r 

o
f 
vi

si
ts

 /
 T

o
ta

l n
u
m

b
e
r 

o
f 
vi

si
ts

-4 -2 0 2 4
0

0.05

f=0.10 λ=0.58

under

frustrated

-4 -2 0 2 4
0

0.02

0.04 f=0.25 λ=1.01

under

frustrated

Interaction J
ij
 / < |J| >

-4 -2 0 2 4
0

0.02

0.04g=0.68 λ=2.18

over

frustrated

-4 -2 0 2 4
0

0.02

0.04g=0.85 λ=2.04

over

frustrated

-4 -2 0 2 4
0

0.02

0.04f=1=g λ=1.93

stochastic

-4 -2 0 2 4
0

0.02

0.04f=0.50 λ=1.44

under

frustrated

frustration

Figure 2.8: (Color online) The chaotic visits of the consecutively renormalized
interactions Jij at a given position of the system, in the spin-glass phase of over-
frustrated, underfrustrated, and stochastically frustrated Ising models in d = 3.
These consecutively renormalized interactions at a given position of the system
are shown here as scaled with the average interaction < |J | > across the system,
which diverges as bnyR where n is the number of renormalization-group iterations
and yR > 0 is the runaway exponent shown in Fig. 2.10. The number of visits into
each interval of 0.1 on the horizontal axis have been scaled with the total number of
renormalization-group iterations. Between 300 and 3,500 renormalization-group
iterations have been used for the different panels. The distributions of chaotic
visits shown in the panels stabilize as the number of iterations is increased. The
calculated Lyapunov exponent for each case is given in the upper right corner of
each panel.

in the previous spin-glass study of Ref.[27]. The calculation of the Lyapunov expo-

nent is applied here to the chaotic renormalization-group trajectory at any specific

position in the lattice,

λ = lim
n→∞

1

n

n−1�

k=0

ln
���
dxk+1

dxk

��� (2.7)

where xk = Jij/ < |J | > at step k of the renormalization-group trajectory. The

sum in Eq.(2.6) is to be taken within the asymptotic chaotic band. Thus, we throw
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Figure 2.9: (Color online) The chaotic visits of the consecutively renormalized
interactions Jij at a given position of the system, in the spin-glass phase of under-
frustrated Ising models in d = 2. These consecutively renormalized interactions
at a given position of the system are shown here as scaled with the average inter-
action < |J | > across the system, which diverges as b

nyR where n is the number
of renormalization-group iterations and yR > 0 is the runaway exponent shown
in Fig. 2.10. The number of visits into each interval of 0.1 on the horizontal
axis have been scaled with the total number of renormalization-group iterations.
Between 700 and 5,000 renormalization-group iterations have been used for the
different panels. The distributions of chaotic visits shown in the panels stabilize
as the number of iterations is increased. The calculated Lyapunov exponent for
each case is given in the upper right corner of each panel. No spin-glass phase
occurs for f > 0.49, as seen in Figs. 2.5 and 2.10.

out the first 100 renormalization-group iterations to eliminate the points outside

of, but leading to the chaotic band. Subsequently, typically using up to 2,000

renormalization-group iterations in the sum in Eq.(2.6) assures the convergence

of the Lyapunov exponent value. The calculated Lyapunov exponents λ and run-

away exponents yR of the spin-glass phases of overfrustrated, underfrustrated, and

stochastically frustrated Ising models in d = 3 (upper curves) and d = 2 (lower

curves) are given in Fig. 2.10. As seen in this figure and in Figs. 2.6-9, as soon

as frustration is introduced (f > 0), the Lyapunov exponent becomes positive

and chaotic behavior occurs inside the spin-glass phase. Upon further increasing

frustration, on the other hand, the spin-glass phase disappears when yR reaches
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Figure 2.10: (Color online) Lyapunov exponent λ and runaway exponent yR of the
spin-glass phases of overfrustrated, underfrustrated, and stochastically frustrated
Ising models in d = 3 (upper curves) and d = 2 (lower curves). The horizontal
scale shows, to the left of the dashed line, the f values of the underfrustrated cases
and, to the right of the dashed line, the g values of the overfrustrated cases. The
dashed line marks the stochastic frustration (f = 1 = g). As seen in this figure and
in Figs. 2.8 and 2.9, as soon as frustration is introduced, (f > 0), the Lyapunov
exponent becomes positive and chaotic behavior occurs inside the spin-glass phase.
The average interaction < |J | > across the system diverges as bnyR where n is the
number of renormalization-group iterations and yR > 0 is the runaway exponent.
The Lyapunov exponent λ monotonically increases with frustration from λ = 0
at zero frustration and the runaway exponent yR monotonically decreases with
frustration from yR = d − 1 at zero frustration. The spin-glass phase disappears
when yR reaches zero, for g = 0.67 in d = 3 and f = 0.49 in d = 2.
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zero as seen in Fig. 2.10, for g = 0.67 in d = 3 and f = 0.49 in d = 2.

2.5 Entropy, Short- and Long-Range Order in Overfrus-

trated and Underfrustrated Spin Glasses

Information about the relative shift and interchange in short- and long-range or-

der can be deduced from entropy and specific heat curves. Short-range order is

deduced from a specific heat peak (loss of entropy) that is away from the phase

transition. Long-range order is deduced from the phase transition given by the

renormalization-group flows. Thus, the characteristic temperature of short-range

order is the temperature of the specific heat peak. The characteristic temperature

of long-range order is the phase transition temperature. The calculated entropy

per site S/kN and specific heat per site C/kN are shown in Fig. 2.11 as a func-

tion of temperature 1/J at fixed antiferromagnetic bond concentration p = 0.5,

for d = 3 systems with underfrustration (f = 0.02, 0.2, 0.5), stochastic frustration

(f = 1 = g), and overfrustration (g = 0.7). The tick mark shows the phase tran-

sition point between the spin-glass phase and the paramagnetic phase for each

frustration case. As also seen in Fig. 2.5, frustration lowers this transition tem-

perature. For stochastic frustration (f = 1 = g), the specific heat peak occurs

outside the spin-glass phase, indicating that considerable short-range ordering oc-

curs at higher temperatures before the onset of spin-glass long-range order. By

contrast, for low frustration (f = 0.02, 0.2), the specific heat peak occurs inside

the spin-glass phase, indicating that considerable short-range disorder persists into

the higher temperatures of the spin-glass phase. This conclusion is also reached

from the entropy curves in the upper panel. The changeover between these two

regimes occurs for the underfrustrated system of f = 0.5. Overfrustrated systems

show understandably specific heat behavior similar to f = 1, with frustration low-

ering the long-range order temperature and short-range order setting above this

temperature with a specific heat peak.

The calculated entropy per site S/kN as a function of the antiferromagnetic

bond concentration p at fixed temperature 1/J = 0.5 is shown in the upper panel

of Fig. 2.12 for d = 3 systems with no frustration (f = 0), underfrustration
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Figure 2.11: (Color online) The calculated entropy per site S/kN (upper panel)
and specific heat per site C/kN (lower panel) as a function of temperature 1/J
at fixed antiferromagnetic bond concentration p = 0.5, for d = 3 systems with
underfrustration (f = 0.02, 0.2, 0.5), the stochastic frustration (f = 1 = g), and
overfrustration (g = 0.7). The tick mark shows the phase transition point between
the spin-glass phase and the paramagnetic phase for each frustration case. It is
seen that frustration lowers this transition temperature. Thus, for stochastic frus-
tration (f = 1 = g), the specific heat peak occurs outside the spin-glass phase,
indicating that considerable short-range ordering occurs at higher temperatures
before the onset of spin-glass long-range order. By contrast, for the more under-
frustrated cases (f = 0.02, 0.2), the specific heat peak occurs inside the spin-glass
phase, indicating that considerable short-range disorder persists into the higher
temperatures of the spin-glass phase. This conclusion is also reached from the
entropy curves in the upper panel. The changeover between these two regimes
occurs at the underfrustrated system of f = 0.5. Overfrustrated systems show un-
derstandably specific heat behavior similar to f = 1, with frustration lowering the
long-range order temperature and short-range order setting at higher temperatures
with a specific heat peak.

(f = 0.5, 0.8), stochastic frustration (f = 1 = g), and overfrustration (g = 0.8).

Frustration is thus introduced at different rates in the different curves in Fig. 2.12.

Here the tick mark shows the phase transition point between the ferromagnetic
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Figure 2.12: (Color online) Top panel: The calculated entropy per site S/kN

as a function of the antiferromagnetic bond concentration p at fixed temperature
1/J = 0.5, for systems with no frustration (f = 0), underfrustration (f = 0.5, 0.8),
the stochastic frustration (f = 1 = g), and overfrustration (g = 0.8). The tick
mark shows the phase transition point between the ferromagnetic phase and the
spin-glass phase for each frustration case. It is seen that frustration favors the spin-
glass phase over the ferromagnetic phase. It is also seen that, as soon as frustration
is introduced, the major portion of the entropy is created with the ferromagnetic
phase as opposed to the spin-glass phase. Lower panel: The calculated derivative
of the entropy per site (1/kN)(∂S/∂p) as a function of the antiferromagnetic bond
concentration p at temperature 1/J = 0.5, for the stochastic frustration system
(f = 1) in d = 3. The tick mark shows the phase transition point between
the ferromagnetic phase and the spin-glass phase. The peak being inside the
ferromagnetic phase shows that short-range disorder sets inside the ferromagnetic
phase.

phase and the spin-glass phase for each frustration case. It is seen that frustration

favors the spin-glass phase over the ferromagnetic phase. It is also seen that, as

soon as frustration is introduced, the major portion of the entropy is created with

the ferromagnetic phase as opposed to the spin-glass phase. Fig. 2.12 also shows

the calculated derivative of the entropy per site (1/kN)(∂S/k∂p) as a function of
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the antiferromagnetic bond concentration p at fixed temperature 1/J = 0.5, for

the stochastic frustration system (f = 1) in d = 3. The tick mark again marks the

phase transition point between the ferromagnetic phase and the spin-glass phase.

The peak being inside the ferromagnetic phase also indicates that short-range

disorder sets inside the ferromagnetic phase.

2.6 Conclusion

This study has started upon the realization that in Ising spin glasses, frustration

can be adjusted continuously and, if needed, considerably, without changing the

antiferromagnetic bond probability p, by using locally correlated quenched ran-

domness, as we demonstrated here on hypercubic lattices and hierarchical lattices.

Thus, a rich variety of new spin-glass models and spin-glass phases was created.

Such overfrustrated and underfrustrated systems on hierarchical lattices in d = 3

and 2 were studied in detail, yielding new information and insights. With the

removal of just 51% of frustration (f = 0.49), a spin-glass phase appears in d = 2.

With the addition of just 33% frustration (g = 0.67), the spin-glass phase dis-

appears in d = 3. Sequences of phase diagrams for different levels of frustration

have been calculated in both dimensions. In general, frustration lowers the spin-

glass ordering temperature. At low temperatures, frustration favors the spin-glass

phase (before it disappears) over the ferromagnetic phase and symmetrically the

antiferromagnetic phase.

When any amount, including infinitesimal, frustration is introduced, the

chaotic rescaling of local interactions occurs in the spin-glass phase. Chaos in-

creases with increasing frustration, as seen from the increased positive value of

the calculated Lyapunov exponent, starting from zero when frustration is absent.

The calculated runaway exponent of the renormalization-group flows decreases,

from yR = d − 1 with increasing frustration to yR = 0 when the spin-glass phase

disappears.

From our calculations of entropy and specific heat curves in d = 3, it is seen

that frustration lowers in temperature the onset of both long- and short-range

order in spin-glass phases, but is more effective on the former. Thus, for highly
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overfrustrated cases, considerable short-range order occurs in the lower temper-

ature range of the paramagnetic phase, whereas for moderately overfrustrated,

stochastically frustrated, and underfrustrated cases, considerable short-range dis-

order occurs in the higher temperature of the spin-glass phase. From calculations

of the entropy and its derivative as a function of antiferromagnetic bond concen-

tration p, it is seen that the ground-state and low-temperature entropy already

mostly sets in within the ferromagnetic and antiferromagnetic phases, before the

spin-glass phase is reached.

It is hoped that these calculational results, strictly valid for hierarchical lat-

tices but suggestive for hypercubic lattices, would be repeated by Monte Carlo

simulation, or other methods, for hypercubic lattices, as we have demonstrated

the preparation of overfrustrated and underfrustrated hypercubic lattices.
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Chapter 3

HIGH Q-STATE CLOCK SPIN GLASSES
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3.1 Introduction

Spin-glass phases, with randomly frozen local order [1] and chaotic behavior under

scale change [2, 3, 4], reflecting the effects of frozen interaction disorder, competi-

tion, and frustration, remain a uniquely fascinating and broadly relevant subject of

statistical mechanics and condensed matter physics. However, the large and richly

complex amount of theoretical knowledge produced on spin glasses has been over-

whelmingly derived from Ising, i.e., si = ±1, spin models.[5]

By contrast, we present here a detailed renormalization-group study of spin-

glass phases and phase transitions, for q-state clock models and their q → ∞ limit

the XY model, in spatial dimension d = 3. We note that, in addition to the now

well-established chaotic behavior of the spin-glass phase [2, 3, 4, 6, 7, 8, 9, 10, 11,

12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25], each of the two types of spin-

glass phase boundaries displays, under renormalization-group trajectories, their

own distinctive chaotic behavior. We see that these chaotic renormalization-group

trajectories subdivide into two categories, namely as strong-coupling chaos (in

the spin-glass phase and, distinctly, on the spinglass-ferromagnetic phase bound-

ary) and as intermediate-coupling chaos (on the spinglass-paramagnetic phase

boundary). We thus quantitatively characterize each different phase and phase

boundary exhibiting chaos by its distinct Lyapunov exponent as used in the gen-

eral chaotic studies literature [26, 27], which we calculate. We show that, under

renormalization-group, chaotic trajectories and fixed distributions are mechanisti-

cally and quantitatively equivalent.

We calculate and display the phase diagrams of arbitrary even q-state clock

spin-glass models in d = 3. These models, for any non-infinite q, have a finite-

temperature spin-glass phase. Furthermore, we find that the spin-glass phases

exhibit a universal ordering behavior, independent of q. The spin-glass phases and

the spinglass-paramagnetic phase boundary exhibit universal fixed distributions,

chaotic trajectories and Lyapunov exponents. In the d = 3 XY model limit, our

calculations indicate a zero-temperature spin-glass phase.
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3.2 The q-state clock spin-glass model and the renormal-

ization-group method

The q-state clock models are composed of unit spins that are confined to a plane

and that can only point along q angularly equidistant directions. Accordingly, the

q-state clock spin-glass model is defined by the Hamiltonian

−βH =
�

�ij�

Jij�si · �sj =
�

�ij�

Jijcos(θi − θj), (3.1)

where β = 1/kBT , at site i the spin angle θi takes on the values (2π/q)σi with

σi = 0, 1, 2, ..., q − 1, and �ij� denotes that the sum runs over all nearest-neighbor

pairs of sites. The bond strengths Jij are +J > 0 (ferromagnetic) with probability

1 − p and −J (antiferromagnetic) with probability p. This model becomes the

Ising model for q=2 and the XY model for q → ∞.

The q-state clock spin-glass model, in d = 3 dimensions, is readily solved by

a renormalization-group method that is approximate on the cubic lattice [28, 29]

and simultaneously exact on the hierarchical lattice [30, 31, 32, 33, 34]. Under

rescaling, for q > 4, the form of the interaction as given in the rightmost side of

Eq.(3.1) is not conserved and one must therefore express the Hamiltonian more

generally, as

− βH =
�

�ij�

V (θi − θj) . (3.2)

Thus, the renormalization-group flows, for even q, are the flows of 1 + q/2 inter-

action constants. With no loss of generality, the maximum value of V (θi − θj) is

set to zero.

The renormalization-group transformation, for spatial dimensions d = 3 and

length rescaling factor b = 3 (necessary for treating the ferromagnetic and anti-

ferromagnetic correlations on equal footing), is achieved by a sequence of bond

moving

Vbm(θ1 − θ2) +G12 =
b
d−1�

n=1

Vn(θ1 − θ2) (3.3)
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





Figure 3.1: (a) Migdal-Kadanoff approximate renormalization-group transforma-
tion for the d = 3 cubic lattice with the length-rescaling factor of b = 3. Bond-
moving is followed by decimation. (b) Exact renormalization-group transforma-
tion for the equivalent d = 3 hierarchical lattice with the length-rescaling factor
of b = 3. (c) Pairwise applications of the quenched probability convolution of
Eq.(3.5), leading to the exact transformation in (b).

and decimation

e
Vdec(θ1−θ4)+G14 =

�

θ2,θ3

e
V1(θ1−θ2)+V2(θ2−θ3)+V3(θ3−θ4), (3.4)

where the constants Gij are fixed by the requirement that the maximum value of

V (θi − θj) is zero.

The starting bimodal quenched probability distribution of the interactions,

characterized by p and described above, is also not conserved under rescaling.

The renormalized quenched probability distribution of the interactions is obtained
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by the convolution [35]

P
�(V �(θi�j�)) =

� �
i
�
j
��

ij

dV (θij)P (V (θij))

�
δ(V �(θi�j�)−R({V (θij)})), (3.5)

where R({V (θij)}) represents the bond moving and decimation given in Eqs.(3.3)

and (3.4). For numerical practicality, the bond moving and decimation of Eqs.(3.3)

and (3.4) are achieved by a sequence of pairwise combination of interactions, as

shown in Fig. 3.1(c), each pairwise combination leading to an intermediate prob-

ability distribution resulting from a pairwise convolution as in Eq.(3.5). We ef-

fect this procedure numerically, by generating 5,000 interactions that embody

the quenched probability distribution resulting from each pairwise combination.

Each of the generated 5,000 interactions is determined by 1+ q/2 interaction con-

stants. At each pairwise convolution as in Eq.(3.5), 5,000 randomly chosen pairs

are matched by Eq.(3.3) or (3.4), and a new set of 5,000 is produced. We have

checked that our results are insensitive to further increasing the number 5,000.

Furthermore, our calculated phase diagrams exactly match, for q = 2, the results

in Refs.[36, 37, 38, 39] which are numerically exact by the use of the histogram

representation of the quenched probability distribution.

The different thermodynamic phases of the model are identified by the different

asymptotic renormalization-group flows of the quenched probability distributions.

For all renormalization-group flows, inside the phases and on the phase bound-

aries, Eq.(3.5) is iterated until asymptotic behavior is reached, meaning that we

are studying an effectively infinite hierarchical lattice. Thus, we are able to cal-

culate phase diagrams for any number of clock states q. Our results are obtained

by averaging over 30 to 50 different realizations of the initial ±Jcos(θi − θj) dis-

tribution into the 5,000 initial interactions. In this study, we consider even values

of q and the calculated phase diagrams are symmetric around p = 0.5 with the

antiferromagnetic phase replacing the ferromagnetic phase, so that only the p = 0

to 0.5 halves are shown below. If q is odd, the system does not have sublattice

spin-reversal symmetry, which leads to asymmetric phase diagrams.
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3.3 Calculated phase diagrams for d = 3 q-state clock and

XY spin glasses
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Figure 3.2: (Color online) Calculated phase diagrams of the q = 2, 4, 6, 12 clock
spin-glass models in d = 3 dimensions. The phase diagram for the XY limit,
namely q → ∞, is also shown, by the dashed curve, calculated here with q = 360
clock states. As q is increased, it is found that the spin-glass phase retreats to lower
temperatures while further protruding into the ferromagnetic phase. In the XY
limit, the spin-glass phase disappears at zero temperature (see Fig. 3.4 below),
as the phase boundary between the remaining ferromagnetic and paramagnetic
phases numerically stabilizes, on the scale of the figure, for q � 6.

Our calculated phase diagrams for the q = 2, 4, 6, 12 clock spin-glass models

are shown together in Fig. 3.2. The phase diagram for the XY limit, namely

q → ∞, is also shown in Fig. 3.2, calculated here with q = 360 clock states.
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Figure 3.3: (Color online) Phase diagrams of the q = 12, 18, 36 clock spin-
glass models in d = 3 dimensions. Two new phenomena are simultaneously
detected here: (1) double reentrance: paramagnetic-ferromagnetic-spinglass-
ferromagnetic as temperature is lowered, (2) lateral reentrance: ferromagnetic-
spinglass-ferromagnetic-paramagnetic as p is increased. The XY limit is given,
calculated here with q = 360 clock states, by the dashed curve. The panels on
the right show the region of the multicritical point, where the three phase bound-
ary lines meet, for each q case along with the ferromagnetic-paramagnetic phase
boundary of the XY limit.

In this limit, the spin-glass phase disappears at zero temperature, whereas the

phase boundary between the ferromagnetic and paramagnetic phases numerically

stabilizes, on the scale of the figure, for q � 6. The paramagnetic-ferromagnetic-

spinglass reentrance as temperature is lowered, previously seen [36, 40] for q = 2,

namely the Ising case, is also seen here for the other q. As q is increased, it is found

that the spin-glass phase retreats to lower temperatures while further protruding

into the ferromagnetic phase.

The calculated phase diagrams for the high-q models, q = 12, 18, 36, 360,

are shown in Fig. 3.3. As q is increased, the trend mentioned above, of the

spin-glass phase retreating to lower temperatures while further protruding into
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Figure 3.4: The calculated transition temperatures between the spin-glass phase
and the paramagnetic phase, at p = 0.5, as a function of q, up to very large values
of q = 720. Note the logarithmic scale of the horizontal axes. The slow decay
of the transition temperature suggests that a zero-temperature spin-glass phase
exists in the (q → ∞) XY model limit.

the ferromagnetic phase, is also seen here. Furthermore, two new phenomena

are simultaneously detected here: (1) double reentrance, namely paramagnetic-

ferromagnetic-spinglass-ferromagnetic phases as temperature is lowered; (2) lateral

reentrance, namely ferromagnetic-spinglass-ferromagnetic-paramagnetic phases as

p is increased. Multiple reentrances have previously been seen in liquid crystal

systems.[41, 42, 43]

The (slow) disappearance of the q-state clock spin-glass phase is shown in

Fig. 3.4, where the calculated spin-glass transition temperatures at p = 0.5 are

shown as a function of q, up to very large values of q = 720. The slow decay of

the transition temperature suggests that a zero-temperature spin-glass phase [44]

exists in the q → ∞, namely XY model limit, in agreement with the previous

Monte Carlo study of Ref.[19].

3.4 Stable fixed distribution and chaotic renormalization-

group trajectory of clock spin-glass phases

3.4.1 Stable fixed distribution

For the spin-glass phase of the Ising model (q = 2), under repeated

renormalization-group transformations, the quenched probability distribution of
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the interactions across the system becomes symmetric in ferromagnetic (Jij > 0)

and antiferromagnetic (Jij < 0) couplings, with the average magnitude of either

type of interaction equal and diverging to infinity.[36]
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Figure 3.5: (Color online) Asymptotic fixed distribution, under renormalization-
group transformations, of the interactions in the spin-glass phase, namely the
renormalization-group sink of the spin-glass phase. Note that these are strong-
coupling distributions, as the average interaction strength < |U | > diverges to
infinity under the renormalization-group transformations. The divergence of <
|U | > is as b

0.24n, where n is the number of iterations. Top: For the q = 6-state
clock model in d = 3, for a trajectory starting in the spin-glass phase at p = 0.5
and temperature 1/J = 0.05, the distributions after 20 and 21 renormalization-
group steps are shown. It is seen that these two distributions coincide, signifying a
fixed distribution. Bottom: Asymptotic fixed distributions of the spin-glass phases
for the q = 2 (Ising), 6, 12-state clock models in d = 3. These distributions are
reached after 20 renormalization-group steps, starting at p = 0.5 and temperature
1/J = 0.05. Note that the spin-glass sink fixed distributions for different values of q
coincide. The Lyapunov exponent is λ = 1.93 for the single, universal distribution
that is illustrated in this figure.

For the spin-glass phases of all q-state clock models, we find that under repeated
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renormalization-group transformations, the interaction values Vij(θ) divide into

two groups: θ = 2πn/q and θ = 2πm/q, where n is an even integer, n=0,2,4,...,q-

2, and m is an odd integer, m=1,3,5,...,q-1. The asymptotic renormalized quenched

distribution of the interactions is symmetric, with interactions equal within each

group mentioned above, but at each location overwhelmingly favoring one or the

other of the two groups. Thus, the interaction difference between the two groups,

1

q/2

q−2�

n=0,2,...

Vij(2πn/q)−
1

q/2

q−1�

m=1,3,...

Vij(2πm/q) ≡ Uij, (3.6)

after many renormalization-group transformations, is randomly and equally dis-

tributed as positive or negative in our sampling of 5,000 interactions, which repre-

sent the distribution of interactions spatially across the system, with the average

magnitude of either type of interaction equal and diverging to infinity as b
0.24n,

where n is the number of iterations. This asymptotic fixed distribution, namely

the sink of the spin-glass phase, is shown in Fig. 3.5. Note that this asymptotic be-

havior is also consistent with the behavior of the Ising spin-glass phase (U reduces

to J for the Ising case), recalled at the beginning of this section. This behavior

leaves the system asymptotically frustrated.

3.4.2 Chaotic renormalization-group trajectory

The fact that the Ising spin-glass phase is characterized by the chaotic rescaling

behavior of the interactions [2, 3, 4], and therefore of the correlations [23], is now

well established [2, 3, 4, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21,

22, 23, 24, 25] and is also seen here for the spin-glass phases of the q-state clock

models in d = 3, as shown in Fig. 3.5. As with the Ising model [7], we have

here a strong-coupling chaotic behavior: The values of the interaction difference

Uij obtained by successive renormalization-group transformations at any specific

location, divided by the average magnitude < |U | > across the system, fall into

a chaotic band. Thus, the Uij/ < |U | > values are sampled within the band as

shown in Fig. 3.5. The average magnitude < |U | > diverges to infinity under

repeated renormalization-group transformations, as b0.24n, where n is the number
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of iterations.
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Figure 3.6: (Color online) Comparison, showing the coincidence, of the chaotic vis-
its of the consecutively renormalized interactions at a given position of the system
(for 2,000 renormalization-group iterations) and of the asymptotic distribution of
the interactions across the system at a given renormalization-group step, for the
spin-glass phase. The Lyapunov exponent is λ = 1.93. Identical asymptotic be-
havior occurs for all q-state clock spin-glass phases, as shown in Fig. 3.5. The
divergence of < |U | > is as b0.24n, where n is the number of iterations.

We thus realize that the spin-glass phases can be characterized by the Lyapunov

exponent of general chaotic behavior [26, 27]. The positivity of the Lyapunov

exponent measures the strength of the chaos [26, 27] and was also used in the

previous spin-glass study of Ref.[23]. The calculation of the Lyapunov exponent

is applied here to the chaotic renormalization-group trajectory at any specific

location in the lattice,

λ = lim
n→∞

1

n

n−1�

k=0

ln
���
dxk+1

dxk

��� (3.7)

where xk = Uij/ < |U | > at step k of the renormalization-group trajectory. The

sum in Eq.(3.7) is to be taken within the asymptotic chaotic band. Thus, we

throw out the first 100 renormalization-group iterations to eliminate the points

outside of, but leading to the chaotic band. Subsequently, typically using 2,000

renormalization-group iterations in the sum in Eq.(3.7) assures the convergence

of the Lyapunov exponent value. We have calculated the Lyapunov exponent
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λ = 1.93 for the clock spin-glass phases of q = 2, 6, 12 and presumably for the

clock spin-glass phases of all q, which is to be expected since all q spin-glass

phases renormalize to the same chaotic band, as seen in Fig. 3.5.

3.4.3 Equivalence of the chaotic renormalization-group trajectory and

the quenched probability fixed distribution

The distributions of the interaction difference Uij values shown in Figs. 3.5

and 3.6, respectively obtained as the spatial distribution across the system after

many renormalization-group transformations and the values obtained by succes-

sive renormalization-group transformations at a specific location in the system,

are in fact identical, as seen in Fig. 3.6. Thus, it is understood that the asymp-

totic fixed distribution is realized, after a given number of renormalization-group

transformations, by the interactions at different locations being at different points

of the same chaotic trajectory.

3.5 Unstable fixed distributions and chaotic renormaliza-

tion-group trajectories of the clock spinglass-paramag-

netic and spinglass-ferromagnetic boundaries

We find that the points on the various spin-glass phase boundaries also renor-

malize to a fixed distribution of the quenched interactions across the system and,

equivalently, to a chaotic renormalization-group trajectory of the interaction at

any single location in the lattice. The difference between the asymptotic rescaling

behaviors inside the spin-glass phase and on the spin-glass phase boundaries is

that, under rescaling transformations, the fixed distribution and the chaotic tra-

jectory are reached in a stable manner, with respect to initial conditions, for the

spin-glass phase and are conversely unstable for the spin-glass phase boundaries.

The ferromagnetic-paramagnetic phase boundary renormalizes to the pure ferro-

magnetic system, where an unstable fixed point determines the critical exponent,

differently for each q.
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3.5.1 The spinglass-paramagnetic phase boundary

The phase boundary between the spin-glass and paramagnetic phases renormalizes

to the fixed distribution and chaotic renormalization-group trajectory shown in

Fig. 3.7. The interaction grouping, under rescaling, described before Eq.(3.6) also

happens. However, this behavior here occurs at finite coupling < |U | >= 0.686 for

all q, in contrast to the asymptotic behaviors of the spin-glass phase (given above)

and of the spinglass-ferromagnetic phase boundary (given below), which occur at

strong coupling < |U | >→ ∞.
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Figure 3.7: (Color online) The fixed distribution and, equivalently, chaotic
renormalization-group trajectory onto which the phase boundary between the spin-
glass and paramagnetic phases renormalizes, for the q = 2 and q = 6-state clock
models in d = 3. The Lyapunov exponent is λ = 1.35. Identical asymptotic be-
havior occurs for all q. Note that the chaotic behavior and fixed distribution are
at intermediate coupling strength, with < |U | >= 0.686 for all q.

3.5.2 The spinglass-ferromagnetic phase boundary

The phase boundary between the spin-glass and ferromagnetic phases renormal-

izes to a fixed distribution and chaotic renormalization-group trajectory at strong

coupling < |U | >→ ∞. The interaction grouping, under rescaling, described be-

fore Eq.(3.6) does not happen. Thus, the interaction V (θ) as a function of θ has
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1 + q/2 different values. The asymptotic fixed distribution for q = 2 is shown in

Fig. 3.8 and is characterized by the Lyapunov exponent λ = 1.69. The divergence

of < |U | > is as b0.46n, where n is the number of iterations.
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Figure 3.8: (Color online) Two different, non-coinciding strong-coupling fixed dis-
tributions: The fixed distribution and, equivalently, chaotic renormalization-group
trajectory onto which the spinglass-ferromagnetic phase boundary of the q = 2-
state model in d = 3 renormalizes. For comparison and distinction, the asymp-
totic fixed distribution and chaotic renormalization-group trajectory of the cor-
responding spin-glass phase is also shown. The latter curve is symmetric around
Uij/ < |U | >= 0, whereas the former curve is noticeably displaced towards pos-
itive (ferromagnetic) interaction values. Note that these are strong-coupling dis-
tributions and are therefore shown as a fraction of the diverging < |U | >. The
divergence of < |U | > is as b0.46n and b

0.24n, where n is the number of iterations,
respectively for the phase boundary and phase sink cases. Thus, even small shifts
in the shown curves signify large differences in the interaction values. The Lya-
punov exponents are λ = 1.69 and 1.93, respectively for the phase boundary and
phase sink cases. For q = 2, the form of the interaction in Eq.(3.1) is conserved
under renormalization, which is reflected in the horizontal axis label here.

The asymptotic fixed distribution for q = 6 is shown in Fig. 3.9. The full fixed

distribution has the form P ({V (0), V (60), V (120), V (180)}), as a coupled function

of its arguments. The dominant configurations of this fixed distribution are shown

in Table 3.1. The system remains frustrated at all length scales.
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Weight in
fixed dist. e

V (0)
e
V (60)

e
V (120)

e
V (180)

0.4802 1 0 0 0
0.3951 0 1 0 0
0.1139 1 0 1/2 0
0.0108 0 1 0 2/3

Table 3.1: Dominant potentials in the asymptotic fixed distribution of the phase
boundary between the spin-glass and ferromagnetic phases of the q = 6 clock
model in d = 3. Thus, the system remains frustrated at all length scales.
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Figure 3.9: The fixed distribution and, equivalently, chaotic renormalization-
group trajectory onto which the spinglass-ferromagnetic phase boundary of the
q = 6-state clock model in d = 3 renormalizes. The coupled distributions of
the interactions V (θ)/ < |V (θ)| > are shown, while next to each axis, the frac-
tion of points on the axis are given. The full fixed distribution has the form
P ({V (0), V (60), V (120), V (180)}), as a coupled function of its arguments. This is
a strong-coupling behavior: The inset in the upper left panel shows, with the log-
arithmic vertical scale, the diverging < |V (θ)| > as a function of renormalization-
group iteration n, the consecutive curves being for θ = 180, 120, 60, 0. It is seen
that, for all θ, < |V (θ)| > diverges as b0.46n, where n is the number of iterations.
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3.6 Conclusion

We have calculated, from renormalization-group theory, the phase diagrams of

arbitrary even q-state clock spin-glass models in d = 3. These models, for all

non-infinite q, have a finite-temperature spin-glass phase, exhibiting a universal

ordering behavior, independent of q. In addition to the chaotic rescaling behav-

ior of the spin-glass phase, each of the two types of spin-glass phase boundaries

displays, under renormalization-group trajectories, their own distinctive chaotic

behavior, subdividing into two categories: strong-coupling chaos, in the spin-

glass phase and distinctly on the spinglass-ferromagnetic phase boundary, and

intermediate-coupling chaos, on the spinglass-paramagnetic phase boundary. We

uniquely characterize each different phase and phase boundary exhibiting chaos

by its distinct Lyapunov exponent from general chaos studies, which we calculate.

We demonstrate that, under renormalization-group, chaotic trajectories and fixed

distributions are mechanistically and quantitatively equivalent. The spin-glass

phases and the spinglass-paramagnetic phase boundaries exhibit universal fixed

distributions, chaotic trajectories and Lyapunov exponents. In the XY model

limit, our calculations indicate a zero-temperature spin-glass phase.
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Chapter 4

ODD Q-STATE CLOCK SPIN GLASSES
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4.1 Introduction

Spin-glass problems [1] continue to fascinate with new orderings and phase dia-

grams under frustration [2] and ground-state entropy [3, 4]. The extension of these

models from the extensively studied Ising spin models to less simple spins offer

the possibility of completely new orderings and phase diagrams. We find that odd

q-state clock models are such cases. Spins in odd q-state clock models cannot be

exactly anti-aligned with each other. Furthermore, for a given spin, its interacting

neighbor has two states that give the maximally misaligned pair configuration.

This fact immediately injects ground-state entropy in the presence of antiferro-

magnetic interactions, even without the frozen randomness of interactions of the

spin-glass system.

We have calculated, from renormalization-group theory, the phase diagrams of

arbitrary odd q-state clock spin-glass models in d = 3 dimensions. We find that

these models have asymmetric phase diagrams, as is also the case for quantum

Heisenberg spin-glass models [5]. They exhibit no finite-temperature spin-glass

phase. For all odd q � 5, algebraically ordered antiferromagnetic phases occur.

One such phase is dominant and occurs for all q � 5. Other such phases occupy a

small low-temperature portion of the phase diagram and occur for 5 � q � 15. All

algebraically ordered phases have the same structure, determined by an attractive

finite-temperature sink fixed point where a dominant and a subdominant pair

states have the only non-zero Boltzmann weights. The phase transition critical

exponents come from distinct critical fixed points, but quickly saturate to the high

q value. Thus, a rich phase transition structure is seen for odd q-state spin-glass

models on a d = 3 hierarchical lattice.

4.2 The odd q-state clock spin-glass model and the renor-

malization-group method

The q-state clock models are composed of unit spins that are confined to a plane

and that can only point along q angularly equidistant directions. Accordingly, the
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q-state clock spin-glass model is defined by the Hamiltonian

−βH =
�

�ij�

Jij�si · �sj =
�

�ij�

Jijcos(θi − θj), (4.1)

where β = 1/kBT , at site i the spin angle θi takes on the values (2π/q)σi with

σi = 0, 1, 2, ..., q − 1, and �ij� denotes that the sum runs over all nearest-neighbor

pairs of sites. The bond strengths Jij are +J > 0 (ferromagnetic) with probability

1 − p and −J (antiferromagnetic) with probability p. This model becomes the

Ising model for q=2 and the XY model for q → ∞.







Figure 4.1: (a) Migdal-Kadanoff approximate renormalization-group transforma-
tion for the d = 3 cubic lattice with the length-rescaling factor of b = 3. Bond-
moving is followed by decimation. (b) Exact renormalization-group transforma-
tion for the equivalent d = 3 hierarchical lattice with the length-rescaling factor
of b = 3. (c) Pairwise applications of the quenched probability convolution of
Eq.(4.5), leading to the exact transformation in (b).

The q-state clock spin-glass model, in d = 3 dimensions, is readily solved by

a renormalization-group method that is approximate on the cubic lattice [6, 7]
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and simultaneously exact on the hierarchical lattice [8, 9, 10, 11, 12]. Hierarchical

lattices have been used to study a variety of spin-glass and other statistical me-

chanics problems.[15, 14, 13, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29,

30, 31, 32, 33, 34, 35, 36, 37, 39, 38, 40, 41, 42] Under rescaling, for q > 4, the

form of the interaction as given in the rightmost side of Eq.(4.1) is not conserved

and one must therefore express the Hamiltonian more generally, as

− βH =
�

�ij�

V (θi − θj) . (4.2)

The energy V (θi − θj) depends on the absolute value of the angle difference,

|(θi − θj)|. Thus, the renormalization-group flows are the flows of q/2 interac-

tion constants for even q and the flows of (q − 1)/2 interaction constants for odd

q. With no loss of generality, the maximum value of V (θi − θj) is set to zero.

The renormalization-group transformation, for spatial dimensions d = 3 and

length rescaling factor b = 3 (necessary for treating the ferromagnetic and anti-

ferromagnetic correlations on equal footing), is achieved by a sequence of bond

moving

Vbm(θ1 − θ2) +G12 =
b
d−1�

n=1

Vn(θ1 − θ2) (4.3)

and decimation

e
Vdec(θ1−θ4)+G14 =

�

θ2,θ3

e
V1(θ1−θ2)+V2(θ2−θ3)+V3(θ3−θ4), (4.4)

where the constants Gij are fixed by the requirement that the maximum value of

V (θi − θj) is zero.

The starting bimodal quenched probability distribution of the interactions,

characterized by p and described above, is also not conserved under rescaling.

The renormalized quenched probability distribution of the interactions is obtained
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by the convolution [43]

P
�(V �(θi�j�)) =

� �
i
�
j
��

ij

dV (θij)P (V (θij))

�
δ(V �(θi�j�)−R({V (θij)})), (4.5)

where R({V (θij)}) represents the bond moving and decimation given in Eqs.(4.3)

and (4.4). For numerical practicality, the bond moving and decimation of Eqs.(4.3)

and (4.4) are achieved by a sequence of pairwise combination of interactions, as

shown in Fig. 4.1(c), each pairwise combination leading to an intermediate prob-

ability distribution resulting from a pairwise convolution as in Eq.(4.5). We ef-

fect this procedure numerically, by generating 5,000 interactions that embody the

quenched probability distribution resulting from each pairwise combination. Due

to the large number of phase diagrams (Figs. 4.2 and 4.3), a single realization

of quenched randomness is used. Each of the generated 5,000 interactions is de-

termined by (q − 1)/2 interaction constants. At each pairwise convolution as in

Eq.(4.5), 5,000 randomly chosen pairs are matched by Eq.(4.3) or (4.4), and a new

set of 5,000 is produced.

The different thermodynamic phases of the model are identified by the different

asymptotic renormalization-group flows of the quenched probability distributions.

For all renormalization-group flows, inside the phases and on the phase boundaries,

Eq.(4.5) is iterated until asymptotic behavior is reached. Thus, we are able to

calculate phase diagrams for any number of clock states q. Similar previous studies,

on other spin-glass systems, are in Refs. [13, 14, 15, 16, 17, 18, 19, 20, 21, 22].

In a previous study [21], using the above method, we have considered even

values of q. In this study, we consider odd values of q and calculate the phase

diagrams, which are not symmetric around p = 0.5. For q odd, the system does

not have sublattice spin-reversal (θi → θi + π) symmetry, which leads to the

asymmetric phase diagrams. We obtain qualitatively new features in the phase

diagrams for odd q. These features do not occur for even q.
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4.3 Calculated phase diagrams for odd q-state clock spin

glasses in d=3

Our calculated phase diagrams for the odd q = 3, 5, 7, 9, 11, 13, 15, 17, 21, 361-state

clock spin-glass models are shown in Fig. 4.2. The lower temperature details of

the phase diagrams are given in Fig. 4.3. All phase boundaries are second order.

The phase diagrams of the odd q-state clock spin-glass models are quite dif-

ferent from the even q phase diagrams [21]: The odd q phase diagrams do not

have ferromagnetic-antiferromagnetic symmetry, i.e., they are not left-right sym-

metric with respect to the p = 0.5 line. The odd q phase diagrams do not have

a spin-glass phase, which is consistent with previous results [13, 21] that the XY

model, corresponding to the q → ∞ limit of the q-state clock models, does not

have a spin-glass phase on d = 3 hierarchical lattices. The odd q phase diagrams

show a multiplicity of algebraically ordered phases (and one conventionally ordered

phase) on the antiferromagnetic side. All points in an algebraically ordered phase

flow, under renormalization group, to a single stable fixed point (sink) that occurs

at non-zero, non-infinite temperature. Convergence to this stable critical fixed

occurs, to 6 significant figures, within 5 renormalization-group transformations.

Further convergence is obtained for more renormalization-group transformations.

As seen in Fig. 4.4, at each renormalization-group transformation, the quenched

probability distribution of interactions changes from the initial (1-p) and p double-

delta function, to eventually reach the critical sink described below. Because of

this flow structure, the correlation length is infinite and the correlation function

decays as an inverse power of distance (as opposed to exponentially) at all points

in such an algebraically ordered phase. Such algebraically ordered phases were

previously seen by Berker and Kadanoff [3, 4] for antiferromagnetic Potts models

and have since been extensively studied [44, 45, 46, 47, 48, 49, 50, 51, 52]. The

correlation function decay critical exponent has the same value for all points in

such a phase, since the renormalization-group flows are to single fixed point, in

contrast to the continuously varying critical exponents in the algebraically ordered

phase of the d = 2 XY model, where the flows are to a fixed line.[53, 54, 55]
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Figure 4.2: (Caption next page.)



Chapter 4: Odd q-State Clock Spin Glasses 76

Figure 4.2: (Previous page) Calculated phase diagrams (color online) of the odd
q-state clock spin-glass models on the hierarchical lattice with d = 3 dimensions.
These phase diagrams do not have ferromagnetic-antiferromagnetic symmetry, i.e.,
they are not left-right symmetric with respect to the p = 0.5 line. The phase di-
agrams do not have a spin-glass phase, but show a multiplicity of algebraically
ordered phases on the antiferromagnetic side. The phase diagrams show true
reentrance (disordered-ordered-disordered) as temperature is lowered at fixed an-
tiferromagnetic bond concentration p, on both the ferromagnetic and antiferro-
magnetic sides of the phase diagram. The phase diagrams also show lateral, true
double reentrance (ferromagnetic-disordered-ferromagnetic-disordered) as the an-
tiferromagnetic bond concentration p is increased at fixed temperature, only on
the ferromagnetic side. No antiferromagnetic ordering occurs for the lowest model,
q = 3. Algebracially ordered antiferromagnetic phases occur for all higher q ≥ 5
models. In these cases, the phase boundary between the dominant antiferromag-
netic algebraically ordered phase and the disordered phase is slightly asymmetric
with the phase boundary between the ferromagnetic and disordered phases. To
make this slight asymmetry evident, the latter boundary is also shown (dashed)
reflected about the p = 0.5 line. The lower temperature details of these phase
diagrams are shown in Fig. 4.3

The phase diagrams show true reentrance [13] (disordered-ordered-disordered)

as temperature is lowered at fixed antiferromagnetic bond concentration p, on both

the ferromagnetic and antiferromagnetic sides of the phase diagram. The phase

diagrams also show lateral, true double reentrance (ferromagnetic-disordered-fer-

romagnetic-disordered) as the antiferromagnetic bond concentration p is increased

at fixed temperature, only on the ferromagnetic side. Multiple reentrances have

previously been seen in liquid crystal systems.[56, 57, 58]

No antiferromagnetic ordering occurs for the lowest model, q = 3. Algebraically

ordered antiferromagnetic phases occur for all higher q ≥ 5 models. In these cases,

the phase boundary between the dominant antiferromagnetic algebraically ordered

phase and the disordered phase is slightly asymmetric with the phase boundary

between the ferromagnetic phase and the disordered phase. To make this slight

asymmetry evident, the latter boundary is also shown (dashed) in Fig. 4.2 reflected

about the p = 0.5 line. The phase diagram for the XY model limit, namely odd

q → ∞, is also shown in Fig. 4.2, calculated here with q = 361 clock states. In

this limit, the distinction between odd and even q disappears. This suggests that

the zero-temperature spin-glass phase [60] found for even q → ∞ [21] also occurs



Chapter 4: Odd q-State Clock Spin Glasses 77

0

1

2

q=5

Ferro AF
1
(alg)

Para

AF
2
(alg)

0

0.5

Ferro

Para

NP 1

q=7

AF
1
(alg)

AF
4
 

(alg)

AF
3
(alg)

0

0.5

Ferro

Para

AF
1
(alg)

q=9

AF
8
(cnv)

AF
5
(alg)

0.2 0.4 0.6 0.8
0

0.2

0.4

Ferro

Para

AF
1
(alg)

q=11

Antiferromagnetic bond concentration p

T
e
m

p
e
ra

tu
re

 1
/J

AF
6
(alg)

AF
7
(alg)

AF
5
(alg)

0

0.2

0.4

Ferro

Para

AF
1
(alg)q=21

0

0.2

Ferro

Para

AF
1
(alg)q=17

0

0.2

Ferro

Para

AF
1
(alg)q=15

AF
6
(alg)

0.2 0.4 0.6 0.8
0

0.2

Ferro

Para

AF
1
(alg)

q=13

AF
6
(alg)

Figure 4.3: Lower temperature details of the phase diagrams shown in Fig. 4.2.
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for odd q → ∞.

4.4 Algebraically ordered phases, finite-temperature

renormalization-group sinks, and ground-state en-

tropy

Spins in odd q-state clock models cannot be exactly anti-aligned with each other,

i.e., θi−θj = 2πqij/q < π, where qij is an integer between 0 and (q−1)/2 inclusive.

Furthermore, for a given spin, its interacting neighbor has two states that give the

maximally misaligned pair configuration with θi − θj = π(q − 1)/q < π. Thus,

for antiferromagnetic interaction, this local degeneracy is of crucial distinctive

importance, injecting ground-state entropy into the system, driving the sink of a

would-be ordered phase to non-zero temperature, and thereby causing algebraic

order, as generally explained in Ref. [3, 4].

All points in the antiferromagnetic phases in the phase diagrams in Figs. 4.2

and 4.3 flow under renormalization-group to p = 1 (just as all points in the one

ferromagnetic phase flow to p = 0). The most extant antiferromagnetic phase in

Fig. 4.2, labeled AF1(alg), occurring for all odd q � 5 values, is an algebraically

ordered phase. All points in this phase flow to a completely stable fixed point (”a

phase sink” [61]) that is also a critical point since it occurs at finite temperature

[3, 4]. Of the pair-interaction Boltzmann weights e
V (θi−θj), with θi − θj = π(q −

1− 2n)/q, where n = 0 is the most misaligned pair state, n = 1 is the next-most

misaligned state, etc., until n = (q − 1)/2 is the completely aligned pair state,

only two are non-zero at this sink: The most misaligned pair state, n = 0, is

dominant with e
V (π(q−1)/q) = 1 and the next-most misaligned pair state, n = 1, is

also present but less dominant with e
V (π(q−3)/q) = 1/3. The other, less misaligned

pair states, with n � 2, and the aligned pair state have zero Boltzmann weight

at this sink. That these sink fixed-point Boltzmann weights are applicable for all

odd q is consistent with the fact that the q− 5 less-misaligned pair states and one

aligned pair state have negligible Boltzmann weights at the sink fixed point, so that

the numerosity of q does not matter. The finite difference between the energies
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Figure 4.4: Evolution of the quenched probability distribution under successive
renormalization-group transformations. The case of q = 9, starting with the ini-
tial condition temperature 1/J = 4 and antiferromagnetic bond concentration
p = 0.8 is shown here. For q = 9, the generalized interaction potential unavoid-
ably generated by the renormalization-group transformation is determined by 5
interaction constants (see Table 4.1). The renormalization-group transformation
gives the evolution, under scale change, of the correlated quenched probability
distribution P (V0, V1, V2, V3, V4). Shown in this figure are the projections P0(V0) =�
dV1dV2dV3dV4P (V0, V1, V2, V3, V4) and similarly for P1(V1), P2(V2), P3(V3), and

P4(V4). Each row corresponds to another renormalization-group step k, as marked
on the figure. It is seen here that in four renormalization-group transformations,
the renormalized system essentially reaches the critical phase sink described in
Sec. IV: The most misaligned pair state is dominant with Boltzmann weight
e
V (8π/9) = 1 and the next-most misaligned pair state is also present but less domi-
nant with e

V (6π/9) = 1/3. The other two less misaligned pair states and the aligned
pair state have zero Boltzmann weight at the sink.
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Figure 4.5: (Color online) Top panel: Critical temperatures 1/JC of the ferro-
magnetic (circles) and antiferromagnetic (asterisks) q-state clock models in d = 3.
Lower panel: Critical exponents yT of the ferromagnetic (circles) and antiferro-
magnetic (asterisks) q-state clock models in d = 3. In both panels, the values
exactly coincide for even q, due to the ferromagnetic-antiferromagnetic symmetry
that is present for even q but absent for odd q.
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for θi − θj = π(q − 1)/q and θi − θj = π(q − 3)/q establishes this sink as a finite-

temperature attractive critical fixed point. It can be shown that, in the basin of

attraction of a finite-temperature fixed point, the order parameter is strictly zero,

the correlation length is infinite, and the correlations vanish algebraically with

distance.[3, 4, 62, 11]

The evolution of the quenched probability distribution, under successive renor-

malization-group transformations, towards such a critical sink is shown in Fig. 4.4.

The case of q = 9, starting with the initial condition temperature 1/J = 4 and an-

tiferromagnetic bond concentration p = 0.8 is shown in the figure. For q = 9, the

generalized interaction potential unavoidably generated by the renormalization-

group transformation is determined by 5 interaction constants (see Table 4.1). The

renormalization-group transformation gives the evolution, under scale change, of

the correlated quenched probability distribution P (V0, V1, V2, V3, V4). Shown in

Fig. 4.4 are the projections P0(V0) =
�
dV1dV2dV3dV4P (V0, V1, V2, V3, V4) and

similarly for P1(V1), P2(V2), P3(V3), and P4(V4). Each row corresponds to an-

other renormalization-group step k, as marked on the figure. It is seen that in

four renormalization-group transformations, the renormalized system essentially

reaches the critical phase sink described above: The most misaligned pair state is

dominant with Boltzmann weight eV (8π/9) = 1 and the next-most misaligned pair

state is also present but less dominant with e
V (6π/9) = 1/3. The other two less

misaligned pair states and the aligned pair state have zero Boltzmann weight at

the sink.

The less extant antiferromagnetic phases occur for specific q values, at lower

temperatures, and are disconnected from the most extant antiferromagnetic phase

AF1(alg). In AF2(alg), the two sink Boltzmann weights have exchanged roles:

the next-most misaligned pair state, n = 1, is dominant with e
V (π(q−3)/q) = 1 and

the most misaligned pair state, n = 0, is also present but less dominant with

e
V (π(q−1)/q) = 1/3. In AF3(alg), AF4(alg), AF5(alg), AF6(alg), AF7(alg), these

roles are played respectively by n = 2, 0, n = 1, 2, n = 2, 1, n = 1, 4, n = 4, 2. On

the other hand, AF8(cnv) is a conventionally ordered phase, with a strong-coupling

sink fixed point where n = 1 and n = 4 are equally dominant.

It is thus seen that the stable sink fixed points that attract, under renormaliza-
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V(θij) n=0 n=1 n=2 n=3 n=4 n=5 n=6 yT relevant eigenvectors
q=5 0 -0.0905 -0.1502 0.869030 ( 1, 0.588 )
q=7 0 -0.0538 -0.1242 -0.1569 0.873691 ( 1, 0.782, 0.330 )
q=9 0 -0.0345 -0.0893 -0.1395 -0.1599 0.873709 ( 1, 0.866, 0.544, 0.206 )
q=11 0 -0.0238 -0.0649 -0.1111 -0.1475 -0.1614 0.873709 ( 1, 0.909, 0.675, 0.387, 0.140 )
q=13 0 -0.0173 -0.0486 -0.0873 -0.1249 -0.1523 -0.1623 0.873709 ( 1, 0.935, 0.759, 0.523, 0.287, 0.101 )

Table 4.1: Antiferromagnetic critical fixed-point potentials V (π(q − 1 − 2n)/q),
critical exponents yT , and corresponding relevant eigenvectors of different odd q-
state clock models. Thus, each column progresses, from left to right, from the
most misaligned pair state n = 0 to the aligned pair state n = (q− 1)/2. For each
q, the relevant eigenvector is the (only) relevant eigenvector of the [(q − 1)/2] x
[(q − 1)/2] recursion matrix between the independent V (θij). Although the fixed
points and relevant eigenvectors are distinct for different q, the critical exponents
quickly converge yT = 0.8737.

tion-group flows, and characterize the algebraically ordered phases have identical

structure for all odd q � 5. A similar, but not identical, phenomenon occurs for

the unstable critical fixed points that control the antiferromagnetic phase transi-

tions. This is seen in Fig. 4.5 and Table 4.1, where the ferromagnetic (p = 0)

and antiferromagnetic (p = 1) critical temperatures 1/JC are given as a function

of q. The fixed-point Boltzmann weight values e
V (π(q−1−2n)/q) underpinning the

antiferromagnetic phase transitions, as well as the critical exponents yT and cor-

responding relevant eigenvectors are given for different q in Table 4.1. For each

q, the relevant eigenvector is the (only) relevant eigenvector of the [(q − 1)/2] x

[(q − 1)/2] recursion matrix between the independent V (θij). Although the fixed

points and relevant eigenvectors are distinct for different q, the critical tempera-

tures and critical exponents quickly converge, for high q, to 1/JC = 12.2373 and

yT = 0.8737. The critical temperatures and exponents thus show differences for

low q. The convergence for high q of the critical temperatures at p=0 and p=1 is

expected, since the q-state clock models approach the XY model for large q, with

identical antiferromagnetic and ferromagnetic behavior.

4.5 Conclusion

We have calculated, from renormalization-group theory, the phase diagrams of ar-

bitrary odd q-state clock spin-glass models in d = 3. These models have asymmet-

ric phase diagrams, as is also the case for quantum Heisenberg spin-glass models
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[5]. For all odd q � 5, algebraically ordered antiferromagnetic phases occur. One

such phase is dominant and occurs for all q � 5. Other such phases occupy small

low-temperature portions of the phase diagrams and occur for 5 � q � 15. All

algebraically ordered phases have the same structure, determined by an attrac-

tive finite-temperature sink fixed point where a dominant and a subdominant pair

states are the non-zero Boltzmann weights. The phase transition critical expo-

nents, on the other hand, vary with q only at low q.

A rich and distinctive phase transition structure is thus seen for odd q-state

spin-glass models on a d = 3 dimensional hierarchical lattice.
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[19] V. O. Özçelik and A. N. Berker, Phys. Rev. E 78, 031104 (2008).



References 85
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Chapter 5

DIFFUSIVE DYNAMICS IN

NON-EQUILIBRIUM SYSTEMS
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Dynamical systems with many degrees of freedom follow in general an ob-

servable diffusive motion imposed by vibrational modes due to thermal energy.

The transitions between different configurational states continuously occur in non-

equilibrium systems until relaxing to the global equilibrium state. Atomic scale

events in such diffusive motions can be observed indirectly in experimental studies.

On the other hand, computer simulations including interatomic interactions and

partitionning thermal energy randomly on degrees of freedom maintain motional

information on individuals. Hence, MD simulations are extensively used on the

investigation of many body systems or specific molecules interacting with many

body environment under the effect of thermodynamics. With a sincere interest on

these studies, we work on two different problems. In the first study, we demon-

strate a scheme projecting continuous dynamical modes on to a discrete Markov

State Model (MSM) and analyze cw-ESR spectrum of a spin label attached to a

macromolecule undergoing an arbitrary (but Markovian) rotational diffusion. In

the second study, we generate the statistics and calculate the energetics of the

dominant surface diffusion mechanisms and observe growth modes on bimetallic

nanoparticles.
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5.1 Simulating cw-ESR Spectrum Using Discrete Markov

Model of Single Brownian Trajectory

Dynamic trajectories can be modeled with a Markov State Model (MSM). The

reduction of continuous space coordinates to discretized coordinates can be done

by statistical binning process. In addition to that, the transition probabilities can

be determined by recording each event in the dynamic trajectory. This framework

is put to a test by the electron spin resonance (ESR) spectroscopy of nitroxide

spin label in X- and Q-bands. Calculated derivative spectra from the MSM model

with transition matrix obtained from a single Brownian trajectory by a statisti-

cal binning process with the derivative spectra generated from the average of a

large number of Brownian trajectories, are compared and yield a very good agree-

ment. It is suggested that this method can be implemented to calculate absorption

spectra from molecular dynamics (MD) simulation data.

5.1.1 Introduction

Spin labeling theory [1, 2, 3] has many applications in understanding the dynamics

of complex molecules in a liquid environment. The line shapes from the continous

wave electron spin resonance (cw-ESR) spectroscopy due to rotational diffusive

motion in liquid environment had already been investigated by stochastic Kubo-

Anderson approach [4, 5, 6], approximation of relaxation times[7, 8], and spherical

Stochastic Liouville Equation (SLE) [9] formalism.

The work by Robinson and co-workers [10] changed the perspective on looking

to the problem by taking the rotational molecular trajectory as given. This has

opened a new era, when the community started to infer possible interactions in

the liquid environment that are effective on the cw-ESR spectrum by using molec-

ular dynamics (MD) simulations following Steinhoff and Hubbell [11, 12]. This

framework is based on calculating cw-ESR spectra of a spin label on a rotationally

diffusing molecule from the motion of the three Euler angles (φ, θ, ψ) that repre-

sent the orientational dynamics, and can be modeled with isotropic and anistropic

rotational diffusion processes.
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On the other hand, the diffusion of three Euler angles may depend on the

internal dynamics and structural properties of the molecule and the spin label

[13, 14, 15]. Thus, ESR spectroscopy is a very helpful method in understanding

the physics of such complex structures [16, 17, 18, 19]. With the inclusion of

the internal dynamics, this problem becomes more complex so that it requires an

additional set of variables. As a result modeling spin dynamics with the sampling

of different types of potentials [20, 21, 22] has become necessary. In the end, one

can combine internal dynamics obtained from MD data and the global diffusion

of the molecule to account for the entire dynamics of a spin-labeled molecule [23].

In the recent years, Markov State Models (MSM) of conformational dynamics

have been suggested, in order to interpret the slowly varying potential changes

applied on the molecule or the spin label itself due to the effects of internal de-

grees of freedom [24, 25]. This framework has been established on determining

transition probabilities from relaxation timescales of each dynamical mode. MSM

technique shows a promising scheme in understanding the features of intra- and

inter-molecular phenomena [26, 27] in non-equilibrium dynamics.

Another difficulty for the determination of the effects resulting from spatial dy-

namics of a molecule from a MD trajectory, is that MD trajectories are often too

short and would require to complete the rest of trajectory artificially, e.g., adding

the paths together back and forth. To overcome this issue, Oganesyan suggested

a novel technique to get an overall scheme for simulation from a truncated tra-

jectory [28, 29, 30]. Another approach suggests calculating ESR spectra by using

spherical SLE formalism and taking rotational diffusion parameters from the MD

simulations [31] which has basic similarities with the framework that we used in

this study.

In this paper, we take the example of the cw-ESR spectrum of a spin-1/2

electron coupled to a magnetic field and spin-1 nucleus, e.g., nitroxide spin label,

freely diffusing in a liquid, which is a problem that has been discussed many times.

The s-state Kubo-Anderson process, with Markovian jumps maintains a solution

that takes relatively less computational effort than working on the continuous

coordinate system. We show that a Brownian trajectory can be mapped to a MSM

by using a statistically binning process of exhibited jumps from one microstate to
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another. Therefore, a comparison between, on the one hand, calculated derivative

spectra from MSM model with transition matrix obtained from a single Brownian

trajectory by statistical binning process and, on the other hand the derivative

spectra generated from the average of large number of Brownian trajectories has

been made and shows a very good agreement. In addition to that, extension to

other coordinates, i.e., other rotation angles and hidden dynamics is noted. It

is believed that this framework would fit into calculating the derivative spectra

MD simulation trajectories. This methodology can be also successful for separable

and reducible potentials. It also allows a faster parametrization process with less

computational time by reducing the set of variables.

This section is organized as follows: The Kubo-Anderson process with s-state

Markov model, generalization to s-state Kubo-Anderson process with discrete ro-

tational diffusion, and continuous isotropic diffusion processes are overviewed in

Sections 5.1.2, 5.1.3, and 5.1.4 respectively. In Section 5.1.5, a reduction scheme

from continuous coordinates to discrete coordinates by using statistical binning

process is introduced, and put to a test for the nitroxide example. In Section

5.1.6, we note an extension scheme to other coordinates and also exhibit the rele-

vant comparisons. The application on short length trajectories is shown in Section

5.1.7. Finally, we discuss modeling different diffusion processes in Markov dynam-

ics. In addition to that, we have included calculation tools for trajectory, evolution

of average magnetization in trajectory method, and computational details in Ap-

pendix (Section 5.1.9).

5.1.2 Markov State Model for diffusion

For a Markov process, the master equation for microstate probability vector �p(t)|

is given as

d �p(t)|

dt
= �p(t)|K, (5.1)

where K is the transition rate matrix per unit time whose elements Kij rep-

resent the transition rate from microstate �i| to �j|, so that it is basically the
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diffusion operator. The time-dependent average magnetization is a function of

these microstates, and it can be written as M+(t) = �M+(t)|p(t)�, or equivalently

M+(t) = �p(t)M+(t)|1�. Thus, the time evolution of probability-weighted magne-

tization vector is given as a Kubo-Anderson process[4, 5, 6],

d �p(t)M+(t)|

dt
= �p(t)M+(t)| (−iΩ+K), (5.2)

where Ω is a diagonal matrix with the eigenfrequencies of the Hamiltonian. Here,

Ω is independent of time if the microstates are stationary. The decay rate of

the average magnetization is given by the transition rate matrix. The cw-ESR

signal is obtained from the Fourier transform of the time-dependent average mag-

netization. Taking the Fourier transform of both sides and multiplying by ket

|1�
s
= [1, 1, 1, ..., 1]T , which is a vector with length s (number of states), and

applying the initial condition M+(0) = 0 for all microstates yields to the equation

I(ω) = �veq.| (iΩ−K+ iωIs)
−1

|1�
s
. (5.3)

where �veq.| represents the equilibrium probability vector and Is is the s× s iden-

tity matrix. This is the Stochastic Liouville Equation (SLE) formalism for ESR

absorption lines in which the Liouvillian operator is taken as the eigenfrequency

matrix Ω. The normalization factors are ignored for practicality since we nor-

malize the spectrum by the maximum intensity value. The spin-spin relaxation

rate can be included as an operator in the parenthesis. Taking the derivative with

respect to frequency ω will give the derivative absorption spectra,

∂I(ω)

∂ω
= −i �veq.| (iΩ−K+ (iω + γeT

L

2 ))Is)
−2

|1�
s
, (5.4)

where T
L

2 = 1/γeT2, with T2 as spin-spin relaxation time. Note that we should

divide each term in the parenthesis by gyromagnetic ratio γe in order to see the

spectrum in Gauss (G) units. This formalism can be extended to s-site jump

model, i.e., the s-state Kubo-Anderson process [32] and Eq.(5.3) will be the solu-

tion for absorption spectra.
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5.1.3 Isotropic rotational diffusion in discrete form

MSM model can be used for describing the rotational diffusion process for

molecules by using a discretized form of diffusion equation [10, 33, 34]. The Hamil-

tonian that we consider here is the case where we have stationary eigenkets, i.e.,

we neglect the I+, I− terms,

H(t)

γe
= ω0g

lab

zz
(t)Sz + SzA

lab

zz
(t)Iz, (5.5)

in which we define ω0 = B0/ge. The spin label is assumed to be rigidly fixed to

a macromolecule that is freely diffusing in a solution. The components g
lab

zz
and

A
lab

zz
are found by a transformation using Euler angles (φ, θ, ψ) on the diaganol

matrix consisting of their xx, yy, and zz components in the molecular frame. For

the cases in which their plane components x and y are equal to each other, i.e.,

Axx = Ayy and gxx = gyy, the only relevant diffusion coordinate is the angle θ.

Their transformation is given as

g
lab

zz
(t) = cos

2(θ(t))gmol

zz
+ sin

2(θ(t))gmol

xx
,

A
lab

zz
(t) = cos

2(θ(t))Amol

zz
+ sin

2(θ(t))Amol

xx
. (5.6)

Note that, we may subtract the rotation independent part, i.e., tr(g)/3, in the first

line of Eq.(5.6) which will result in a shift in the frequency axis as ω → ω−ω0. In

the MSM model of rotational diffusion, θ is discretized according to the number

of states s in the form θk = (k− 1
2)∆θ, where k=1,2,...,s and ∆θ = π/s. Following

the arrangement of microstates, the purpose is to find the transition rate matrix K

for the discretized θ coordinate. The calculation of the transition rate matrix from

the discretized form of the rotational diffusion equation by using finite difference

method is given in detail in Ref.[10]. Here, we apply the same procedure with

reflective boundary conditions, and use transition rate matrix K to solve Eq.(5.3),

which takes much less time than taking average over various diffusion trajectories.

The magnetization is a summation over different orientations of the nuclear spin

m = −1, 0, 1, i.e., M+(t) = ΣmM
m

+ (t)/3, where the magnetization components

have their distinct time evolution M
m

+ (t) =
�
M

m

+ (t)|p(t)
�
, and therefore it is con-
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venient to solve their contribution on the absorption spectra I(ω) separately and

add them together. As said before, the matrix Ω is the eigenfrequency matrix,

whose components are in this case

hν
m

γe
= ω0g

lab

zz
+mA

lab

zz
. (5.7)

Finally, for isotoropic rotational diffusion, we have �veq.| = �sin(θ)| in Eq.(5.3).

5.1.4 Isotropic rotational diffusion in continuous form

Another approach to this problem suggests generating Gaussian or uniform dif-

fusion trajectories using the relevant diffusion constant and implying equilibrium

conditions [11]. Accordingly, the rotation angle θ is continous, i.e., we can reach

any angle between 0 and π, but the time-axis is discretized.

The diffusion equation using the Euler angles is solved by the Itô process

[35, 36]. The equation of motion for angle θ is given as

∆θn = σ∆Xn +
σ
2

2tanθn
, (5.8)

where n is the time step, ∆Xn is the Brownian with mean zero, and σ =
√
2D∆t.

The second term in Eq.(5.9) is due to the potential maintaining the path being

in spherical coordinates. When this process is carried out by using a finite ∆t,

it makes strong jumps near the boundaries θ = 0 and θ = π, which would cause

a random noise. In order to get rid of this problem, it is convenient to take ∆t

as small as possible, but this takes more computational time. Alternatively, this

problem is solved by using quaternion based Monte-Carlo approach [23, 37].

The absorption spectrum is calculated through the Fourier transform of the

average magnetization, i.e.,

I(ω) =

�
T

0

Σm

�
M

m

+ (t)|p(t)
�
e
−iωt

e
−t/T2dt, (5.9)

where again the normalization factor for intensity is ignored. The contribution of

each trajectory to the magnetization is done by introducing their initial configu-

ration from the equilibrium distribution, i.e., peq.(θ) = sin(θ).
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The comparison of the derivative spectra calculated from Brownian trajectories

and MSM model is given in Fig. 5.1, to point out once more the equivalence of

two methods. The magnetic tensor parameters are given as

(gxx, gyy, gzz)
mol = (2.00210, 2, 00210, 2.00775), (5.10)

(Axx, Ayy, Azz)
mol = (6.62, 6.62, 33.09) G. (5.11)
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Figure 5.1: Derivative spectra generated from 100,000 Brownian trajectories (blue
line) with time step ∆t=0.005 ns, ∆t=0.025 ns, ∆t=0.5 ns until magnetization
significantly decays to zero, respectively t = 600ns, t = 1µs, t = 5µs (and for
the ones with t < 2 µ s zero-padded to 2 µ s) and calculated from MSM model
(red line) with s=12, 18, 36 states from bottom to top are compared. The two
results are indistinguishable on the scale of this figure. Lorentzian broadening with
T

L

2 =0.8 G is used. The magnetic tensor parameters are given in Eqs. (5.10,5.11).

For the discrete jump model, the convergence is reached with just s=36,18,12

states for D = 106, 108, 1010 rad/s respectively. Thus, a lot of computational effort

has been eliminated and minimized.
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5.1.5 Reduction from continuous space to discrete coordinates

Reduction to finite number of microstates from the continous model is done first

by creating the discretized angle axis with the angle set θ = θ1, θ2, ..., θs, and then

using binning procedure for the angle such that if angle θ(t) is between θk −∆θ/2

and θk +∆θ/2, it is set as θ(t) = θk (Fig. 5.2). Accordingly, all the angles can be

defined in such manner, and then we should be able to determine the transition

probabilities between microstates.
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Figure 5.2: Simple reduction scheme from continous to discrete coordinates for a
Brownian trajectory for the s=4 MSM model. If a point in the trajectory falls into
one of these gridlines, it takes the value of that bin. Calculation of the transition
matrix is done using the discretized coordinates determined by this scheme.

The solution to Eq.(5.1) is simply:

�p(t)| = �p(0)|U(t) (5.12)

or

�p(t+∆t)| = �p(t)|U(∆t), (5.13)

whereU(t) = e
Kt is the propagator for the microstate probability vector, or simply

the transition probability matrix. In order to create the transition matrix from a

Brownian diffusion trajectory, we should first be able to calculate the propagator

matrix, take its matrix logarithm, divide by ∆t. Our interest is in Eq.(5.13) and

since we allow at most a single jump within a time step ∆t and only one component
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of �p(t)| is equal to 1 in a random trajectory, we may define �p(t)| = �i| and

�p(t+∆t)| = �j|, where �i| and �j| are chosen among the orthonormal eigenbasis

of microstates. Multiplying both sides by ket |j� gives the matrix elements of

U(∆t),

1 = �i|U(∆t) |j� . (5.14)

Single jump at a time means that there is a contribution to a single component

(i,j) of the matrix U(t) at each time step. Therefore, we should cover a long

trajectory, and then take an average. The total probability of transitions from a

state should be conserved, hence we should normalize the rows of the transition

probability matrix U(t).

The timescale of events are governed by the rotational correlation time τc =

1/(6D). The resolution of the transition probability matrix will be determined

by the number of time steps we take into account, and typically a minimum of

10,000 time steps with a time step around ∆t ∼ τc/10 is needed in order to have

a reliable transition matrix. In this study, up to 40,000 time steps (∆t values

are given in the figures) from a single diffusion trajectory are taken into account,

which is especially needed when approaching to the rigid limit, i.e., for D = 106

rad/s in Fig. 5.3.

Finally, the equilibrium probability density vector can be determined from

both transition matrix or occupancy rates. In this study we use the latter. Now

we have all entries for Eq.(5.3) and Eq.(5.4) and can solve for the absorption

spectrum. Alternatively, one can always calculate the average magnetization in

time domain with the given ingredients. The comparison between the derivative

spectra generated from 100,000 Brownian trajectories and from MSM model with

transition matrix obtained from a single Brownian trajectory with 40,000 time

steps is given in Fig. 5.3.

This approach can easily be applied to the calculation of absorption spectra

from a single MD trajectory, and resolution of time steps can be taken same as

the relevant MD simulation. In the next subsection, the extension to another

rotation angle will be demonstrated before finally discussing the use for short MD
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Figure 5.3: Derivative spectra generated from 100,000 Brownian trajectories (blue
line) same as in Fig. 5.1 and calculated from MSM model (red line) with tran-
sition matrix obtained from a single Brownian trajectory with 40,000 time steps
having s=12, 18, 36 states from bottom to top are compared. The two results are
indistinguishable on the scale of this figure. Lorentzian broadening with T

L

2 =0.8
G is used. The magnetic tensor parameters are given in Eqs. (5.10,5.11).

trajectories and the possibilities of having a continuous spatial diffusion entangled

to a m-state Markov model.

5.1.6 Extension to other coordinates

The diffusion operator that we want to consider is in the form

Γ(θ, φ) = D
1

sinθ(t)

∂

∂θ
sinθ(t)

∂

∂θ
+

D

sin2θ(t)

∂
2

∂φ2
. (5.15)

Let us define the transition rates for diffusion operator for angle θ with s1× s1

matrix Kθ and for the operator D ∂
2

∂φ2 with s2 × s2 as Kφ matrix, where s1,s2 are

the numbers of eigenstates for angles θ and φ respectively. Hence, the transition

rate operator in Eq.(5.3) will be a s1s2 × s1s2 matrix

Kθφ = Kθ ⊗ Is2 +M⊗Kφ. (5.16)
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M is a s1 × s1 diagonal matrix with elements 1/sin2(θk) remembering k =

1, 2, ..., s1, and Is2 is s2 × s2 identity matrix. The transition matrix in this case is

expanded in |θ, φ� = |θ�
s1
|φ�

s2
space,

|θ, φ,m� = |θ�
s1
|φ�

s2
|m�3 , (5.17)

where |θ� , |φ� are respectively s1, s2 dimensional vectors, and |m� = [1, 1, 1]T .

At equilibrium, the state vector becomes |sinθ� |1� |1�. Thus, it is the general

formalism for an electron spin that is coupled to a magnetic field and nuclear spin,

on a rotating frame with Euler angles (θ,φ). For simplicity, we eliminated the

ket |m�, in Section 5.1.3, by calculating a simple summation over m states. The

equation for absorption spectra in Eq.(5.3) becomes

I(ω) = �veq.| (iω + iL −Kθφm)−1
|1�

s1×s2×3 , (5.18)

which will give the derivative absorption spectra as:

∂I(ω)

∂ω
= −i �veq.| (iω + iL −Kθφm)−2

|1�
s1×s2×3 , (5.19)

where L is the Liouvillian operator extended to θ and φ basis and Kθφm is the

transition matrix extended to |m� basis, hence Kθφm = Kθφ ⊗ I3. The spin-spin

relaxation rate which will result a Lorentzian broadening of γeTL

2 in the spectrum,

can be included in same manner as shown in Eq.(5.4). Note that we should divide

each term in the paranthesis by gyromagnetic ratio γe in order to see the spectrum

in Gauss (G) units.

Including I+, I− terms in Hamiltonian, we will have H = H(t)/γe:

H = ω0g
lab

zz
Sz + Sz(A

lab

zx
Ix + A

lab

zy
Iy + A

lab

zz
Iz) (5.20)
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which can be represented in matrix form as:

H =
1

2





H↑

H↓





(5.21)

where H↑ = −H↓, and given as:

H
↑ =





ω0g
lab

zz
+ A

lab

zz

1
√
2
(Alab

zx
− iA

lab

zy
) 0

1
√
2
(Alab

zx
+ iA

lab

zy
) ω0g

lab

zz

1
√
2
(Alab

zx
− iA

lab

zy
)

0 1
√
2
(Alab

zx
+ iA

lab

zy
) ω0g

lab

zz
− A

lab

zz




. (5.22)

Liouvillian operator in this case is expanded in |θ�
s1
|φ�

s2
|m�

s3
basis such as

for example when s1 = 3,

L({θ} , {φ}) =





L(θ1, {φ})

L(θ2, {φ})

L(θ3, {φ})





(5.23)

and L(θk, {φ}) is extended in itself with the same hierarchy depending on the

number of φ states, s2. We have concluded that the Hamiltonian in Eq.(5.21)

is our relevant Liouvillian operator, i.e., L({θ} , {φ}) = H↑({θ} , {φ}) using the

Hermiticity of both the Hamiltonian and the density matrix [38] and after tracing

with S+ operator. The elements ofAlab and glab matrices are obtained as a function

of three Euler angles (φ, θ, ψ), defined with a transformation:
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Alab = R(φ, θ, ψ)Amol
R

T (φ, θ, ψ) (5.24)

where R(φ, θ, ψ), is the rotation matrix from molecular frame to lab frame.
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Figure 5.4: Derivative spectra generated from 20,000 Brownian trajectories (blue
line) with time step ∆t=0.010 ns, ∆t=0.2 ns, ∆t=0.5 ns until magnetization
significantly decays to zero, respectively t = 400ns, t = 700ns, t = 2.5µs (and for
the ones with t < 2 µs zero-padded to 2 µs) and calculated from MSM model
(red line) of single Brownian trajectory with 40,000 timesteps having ∆t=0.005
ns, ∆t=0.2 ns, ∆t=25 ns with (s1, s2)=(12,5) (18,5) (21,5) states from bottom to
top are compared. The two results are indistinguishable on the scale of this figure.
Lorentzian broadening with T

L

2 =1.25 G is used. The magnetic tensor parameters
are given in Eqs. (5.10,5.11).

For creating the transition matrix, the discrete form of the diffusion operator

in Eq.(5.15) may not represent successfully the spherical rotation, and instead of

that we will use the methodology introduced in Section 5.1.5 extended to |θ�
s1
|φ�

s2

space, therefore we will first create a trajectory long enough which is generated

by quaternion based Monte-Carlo algorithm, and then take the statistics from

that trajectory. The definition of Euler angles in terms of quaternions and their

time evolution is explained in detail in Ref.[23] and Ref.[37], and also included

in Appendix A. For the trajectory method, we need to keep track of evolution
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of density matrix and calculate average magnetization as a function of time from

various trajectories, and then take the Fourier transform to obtain spectrum as

shown in Eq.(5.9). The evolution of transverse magnetization in trajectory method

is explained in Appendix B. The comparison between two methods for isotropic

rotation with angles (θ, φ), using magnetic tensor parameters in Eqs. (5.10,5.11)

is shown in Fig. 5.4 and yield a very good agreement.

-40 -20 0 20 40

D=10
6
 rad/s

D=10
8
 rad/s

D=10
10

 rad/s

 X
-b

a
n

d
 (

B
0
=

 0
.3

3
 T

)

 Frequency swept    ω-ω
0
 (Gauss)

Figure 5.5: Derivative spectra generated from 20,000 Brownian trajectories (blue
line) with time step ∆t=0.010 ns, ∆t=0.2 ns, ∆t=0.5 ns until magnetization sig-
nificantly decays to zero, respectively t = 400ns, t = 700ns, t = 2.5µs(and for
the ones with t < 2 µs zero-padded to 2 µs) and calculated from MSM model
(red line) of single Brownian trajectory with 40,000 time steps having ∆t=0.005
ns, ∆t=0.2 ns, ∆t=25 ns with (s1, s2, s3)=(12,3,2) (18,3,2) (12,3,5) states from
bottom to top are compared. The two results are indistinguishable on the scale
of this figure. Lorentzian broadening with T

L

2 =1.25 G is used. The magnetic
tensor parameters are given as (gxx, gyy, gzz)mol = (2.0082, 2.0060, 2.0023) and
(Axx, Ayy, Azz)mol = (7.0, 6.0, 36.0)G.

Using the procedure applied in Eqs. (5.18-23), it is straightforward to ex-

tend angle space into |θ, φ, ψ� = |θ�
s1
|φ�

s2
|ψ�

s3
space. The comparison between

two methods for isotropic rotation with angles (θ, φ, ψ), using magnetic tensor

parameters (gxx, gyy, gzz)mol = (2.0082, 2.0060, 2.0023) and (Axx, Ayy, Azz)mol =
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Figure 5.6: Derivative spectra generated from 25,000 Brownian trajectories (blue
line) for fully anisotropic rotational motion with time step ∆t=0.2 ns until 200 ns
for each trajectory (then, zero-padded to 2 µs), and calculated from MSM model
(red line) of single Brownian trajectory with 40,000 time steps having ∆t=0.2 ns
are compared. In the left figure, we have Dx = D/5, Dy = D/2, Dz = D using
MSM with (s1, s2, s3)=(30,3,2) while in the right figure, we have Dx = D/2, Dy =
D,Dz = D/5 using MSM with (s1, s2, s3)=(36,5,2). For both cases, D = 108

rad/s and Lorentzian broadening with T
L

2 =1.8 G is used. The magnetic tensor
parameters are same as in Fig. 5.5.

(7.0, 6.0, 36.0)G is shown in Fig. 5.5 and resulted a very good agreement. We have

also made the comparison for fully anisotropic diffusion of cases Dz > Dy > Dx

and Dy > Dx > Dz in Fig. 5.6, where Dx, Dy, Dz are respectively diffusion con-

stants for rotation around x, y, z axes. The results seem to deliver a good result

but need improvement whether by increasing the number of events in single Brow-

nian trajectory or increasing the number of states and/or developing the binning

method. It is also observed that convergence to the spectra obtained from 25,000

Brownian trajectories is mostly and highly dependent on the accuracy of motional

statistics along θ axis.

5.1.7 Application to short Brownian trajectories

In this section, our purpose is to discuss the applicability of the presented approach

to short MD simulations. As a specific case, we will continue with isotropic rota-

tional diffusion up to 100 ns. In that case, we would not expect to get the correct

results for the rare event case, i.e., rigid limit, D = 106 rad/s. Therefore, for

such examples, it is better to estimate rotational correlation time, and perform
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simulations. On the other extreme, we expect and obtain a perfect convergence

(data not shown) for fast motion limit, i.e., D = 1010 rad/s for all independent

single trajectories. Our interest will be on the case of slow motional regime having

D = 108 rad/s. The procedure is the same as in Section 5.1.5 and 5.1.6, except

that this time we have a Brownian trajectory of 100 ns.
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Figure 5.7: Derivative spectra for D = 108 rad/s calculated from MSM model
(red line) of single Brownian trajectory until 100 ns having ∆t=0.1 ns, with
(s1, s2)=(18,5) states. Upper and lower figures are for different realizations of
the single Brownian trajectory, blue lines are for comparison with the derivative
spectra generated from 20,000 Brownian trajectories (blue lines) with time step
∆t=0.2 ns until 700 ns as in Fig. 5.4. Lorentzian broadening with T

L

2 =1.25 G is
used. The magnetic tensor parameters are given in Eqs. (5.10,5.11).

For the diffusion process with D = 108 rad/s the rotational correlational time

is τc ≈ 1.667 ns. Thus, the motion will still not reach some regions in phase space.

Accordingly, when creating the transition probability matrix we may observe un-

visited sections. It is important to eliminate rows with zero event, not only for

computational ease but also not to get a singular matrix. As a result, for example,

while starting with s = 18 state model, we may end up with a 14 × 14 matrix

instead of 18× 18. This also shows that some statistical improvement is necessary

when creating the gridlines. In our calculations, we have just followed the scheme

that is creating gridlines equal in length. As seen in Fig. 5.7, the convergence of

the derivative spectra calculated from MSM of single short Brownian trajectory to

the one obtained from 20,000 trajectories may depend on the realization. In that
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Figure 5.8: Derivative spectra for D = 108 rad/s calculated from MSM model (red
line) of statistics obtained from 5 independent Brownian trajectories until 100 ns
having ∆t=0.1 ns. Upper figure is obtained from (s1, s2)=(18,5) state model and
lower figure is obtained by increasing number of states, i.e., (s1, s2)=(32,5), and
shows a better agreement, blue lines are for comparison with the derivative spectra
generated from 20,000 Brownian trajectories (blue lines) with time step ∆t=0.2
ns until 700 ns as in Fig. 5.4. Lorentzian broadening with T

L

2 =1.25 G is used.
The magnetic tensor parameters are given in Eqs. (5.10,5.11).

case, we may need more information about the type of motion. This is shown in

Fig. 5.8 with the same MSM having a transition matrix obtained from 5 indepen-

dent trajectories, and it shows a better agreement. The convergence to the one

obtained from 20,000 trajectories increases further with higher number of θ states.

5.1.8 Discussion and conclusions

As a further step, having a process such as spatial diffusion of molecule under

a potential that is an element of m-state potential space in which the potential

is selected by a Markov process, may be helpful in understanding the effect of

conformational changes in the spin dynamics [25]. For example, a diffusive process

that has a m-fold selective potential for the angle θ can be introduced, such as

with m=A state for θ ∈ [0, π/2] and m=B state θ ∈ [π/2, π]. This will help to get

a quick feedback about the credibility of the model for the given MD simulation

results by reducing the set of variables. If the simulations are done distinctly for

two different types of potentials [20, 21], then the overall transition rate matrix
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can be created by their extension to the potential subspace, i.e., taking their

Kronecker product with potential change rate matrix, and summing them up.

Alternatively, if these two type of potentials are completely separable, then the

two simulations can be defined in one transition probability matrix, by adding their

records of jumps as if they are in the same trajectory, one being in the starting

section, and the other in the second section, and their own lengths in time axis

will be directly related to their equilibrium distribution and transition rates among

these two types of potentials. On the other hand, for slowly varying potentials

due to internal dynamics, this approach will be insufficient for not recognizing

non-Markovian processes and therefore one has to model rotational motion of the

molecule entangled with the effects of the conformational changes on the spin label

itself, as defined in the upper statement and previous examples [25, 28].

In summary, we have simulated the cw-ESR spectrum of a spin-1/2 electron

coupled to a magnetic field and spin-1 nucleus for X- and Q- bands by using

both discrete isotropic rotational diffusion and continuous Brownian diffusion pro-

cesses. In addition to that, calculated derivative spectra from the MSM model

with transition matrix obtained from a single Brownian trajectory by statistical

binning process and the spectra generated from the average of large number of

Brownian trajectories are compared and resulted in a very good agreement. It

is suggested that this method can be implemented to calculate absorption spec-

tra from MD simulation data. One of its advantages is that due to its reduction

of computational effort, the parametrization process will be quicker. Secondly,

the transition matrix defined in this manner, may indicate separable potential

changes during the motion of the molecule. It is also possible to change the course

of single trajectory by hand and observe its consequences. Thirdly, one can cal-

culate the ESR spectra from a single MD trajectory directly without extending

it artificially in the time axis. However, for short MD trajectories, the required

statistical information can not be obtained depending on the timescale of transi-

tions. Therefore, some statistical improvement will be needed in order to reach a

better convergence. On the other hand, if there is a requirement of high precision

in the extended coordinates, it will enlarge the transition matrix and therefore

will take more computational time. Hence, reducibility of relevant coordinates is
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undoubtably necessary to maintain the efficiency of the present framework. It is

hoped that, in the following studies, this framework will be helpful in extracting

the statistics of motional information of a molecule or implementing additional

motional information on the spin label under various kinds of potentials.

5.1.9 Appendix

Quaternion dynamics

For the generation of Brownian trajectories, we have used the conjecture in Ref.

[23] in which the detailed calculations can be found. Only difference is that here we

use Gaussian random processes, instead of random uniform displacements. Euler

angles (φ, θ, ψ) defined in terms of quaternions as:

q(t) =





q0(t)

q1(t)

q2(t)

q3(t)




=





cos
θ(t)
2 cos

(φ(t)+ψ(t))
2

sin
θ(t)
2 sin

(φ(t)−ψ(t))
2

−sin
θ(t)
2 cos

(φ(t)−ψ(t))
2

−cos
θ(t)
2 sin

(φ(t)+ψ(t))
2




(5.25)

satisfying q
2
0(t) + q

2
1(t) + q

2
2(t) + q

2
3(t) = 1, therefore it is still a function of 3

independent variables. Using the equation relating angular velocities around x, y, z

axes with the time derivative of Euler angles and converting it to quaternion

formalism, one would get the equation of motion as:

q(t+∆t) = e
P∆t/2q(t) (5.26)

where P is defined in the form of

P =





0 ωx ωy ωz

−ωx 0 ωz −ωy

−ωy −ωz 0 ωx

−ωz ωy −ωx 0




. (5.27)

ωx, ωy, ωz are respectively angular velocities around x, y, z axes. As a realization

of Brownian trajectory, we can evaluate P∆t with 3 independent random Gaussian
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displacements. Thus, we introduce ωi∆t = σi∆Ui, where ∆Ui is a Brownian with

mean zero and σi =
√
2Di∆t, with Di as diffusion constant for rotation around i

th

axis. Simplifications for the time evolution of quaternions is shown in the related

reference.

Rotation given by three Euler angles defined with the rotation matrix

R(φ, θ, ψ) = Rz(ψ)Rx(θ)Rz(φ) which can be written in terms of quaternions as

R(t) =





q
2
0 + q

2
1 − q

2
2 − q

2
3 −2(q0q3 − q1q2) 2(q0q2 + q1q3)

2(q0q3 + q1q2) q
2
0 − q

2
1 + q

2
2 − q

2
3 −2(q0q1 − q2q3)

−2(q0q2 − q1q3) 2(q0q1 + q2q3) q
2
0 − q

2
1 − q

2
2 + q

2
3




. (5.28)

Accordingly, one can use directly the rotation matrix in this form to implement

Eq.(5.24) and calculate the Hamiltonian. In our conjecture for calculating the tran-

sition matrix from discretized coordinates, we take the information by converting

quaternions to three Euler angles at each time step throughout the trajectory. It is

also possible to consider an application of binning process over quaternions which

are taking values between -1 and 1 with the condition q
2
0(t)+q

2
1(t)+q

2
2(t)+q

2
3(t) = 1,

and therefore belonging to a process of 3 independent variables. In this study, we

have implemented binning process only on to angle values.

Propagation of magnetization

The time dependent transverse magnetization observable is obtained as:

M+ = Tr(ρS+). (5.29)

As our Hamiltonian shown in Eq.(5.5) and Eqs.(5.20-22), we will have a 6 × 6

density matrix. S+ operator in that basis will act on only ρ+ section of density

matrix which is shown in ρ as,

ρ =




ρ+



 (5.30)
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and hence M+ = Tr(ρ+). As a consequence we will need only the time evolution

of ρ+ to calculate time dependent magnetization. In short time dynamics, i.e., for

small ∆t its time evolution can be calculated with [37]

ρ+(t+∆t) = e
i(γeH↑)∆t

ρ+(t)e
i(γeH↑)∆t

. (5.31)

Finally, initial condition of ρ+ being a 3 × 3 identity matrix, i.e., ρ+(0) = I3

is implemented and propagation of that matrix is followed with its trace being

recorded at each time step throughout the trajectory. Average magnetization that

is needed to solve Eq.(5.9) is calculated over different realizations of Brownian

diffusion with their appropriate sin(θ) weight.

Computational details

The calculations are performed by MATLAB R2012b using a single core Intel�

Xeon� Processor E5420 with base frequency at 2.50 Ghz.

Trajectory method

Calculations are done with a simple process consisting of loop for time steps ntime,

inside a loop for number of trajectories Ntraj in which the magnetization is deter-

mined as shown in the text and Appendix B. For the evaluation of exponentials

in Eqs.(5.26) and (5.31), we have used the simplifications suggested in the related

references. To obtain the derivative spectrum, a Fast Fourier Transform is held

using fft function in MATLAB.

For the calculation of average magnetizations it is seen that there is a linear

increase with number of steps as well as with number of trajectories. For ex., from

average over 5 computations we have observed that for diffusion of (θ, φ) with

5,000 time steps (ntime) and 10,000 Brownian trajectories (Ntraj) average run time

is tav = 12257.6s with a standard deviation σt = 85.48s, whereas with ntime=5,000

and Ntraj=5,000, we had tav = 6080.5s and σt = 28.51s, with ntime=5,000 and

Ntraj=1,000, we had tav = 1223s and σt = 10.06s, and finally with ntime=1,000

and Ntraj=1,000, we had tav = 244.6s and σt = 1.07s. In addition to that, we have

observed computation values for the case of diffusion of (θ, φ, ψ) being very similar
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values such as with ntime=1,000 and Ntraj=1,000, tav = 258.4s and σt = 1.97s.

Accordingly, the computation values for each case obtained in this study can be

determined from the relation tav ∝ Ntrajntime, and using

(θ)diffusion

∆t = 0.005ns −→ 500ns −→ 100, 000steps

∆t = 0.025ns −→ 1µs −→ 40, 000steps

∆t = 0.5ns −→ 5µs −→ 10, 000steps

(θ, φ)diffusion

∆t = 0.010ns −→ 400ns −→ 40, 000steps

∆t = 0.2ns −→ 700ns −→ 3, 500steps

∆t = 0.5ns −→ 2µs −→ 4, 000steps

(θ, φ, ψ)diffusion

∆t = 0.010ns −→ 400ns −→ 40, 000steps

∆t = 0.2ns −→ 700ns −→ 3, 500steps

∆t = 0.5ns −→ 2.5µs −→ 5, 000steps.

It should be noted that the computation times for only (θ) diffusion are much

lower than for the given examples, and it is completed within a few minutes or less

while it takes less than 10 seconds for MSM method. Furthermore, convergence

is reached with around 5,000-10,000 trajectories for (θ) diffusion and with more

than 10,000 trajectories for two and three angles diffusions. Another point is

that one can also reduce computation times by changing the total number of time

steps (depending on additional broadenings) and time step value ∆t, e.g., for fast
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motional limit, i.e. D = 1010 rad/s, one can get the same results(data not shown)

with ∆t = 50ps.

After calculation of average magnetization, Fast Fourier Transform is per-

formed using fft function in MATLAB, which is completed within seconds for

up to 10,000 time steps (including zero-padding), and depending on the size of

time array the computation time may extend drastically.

MSM model of single Brownian trajectory

The computation of derivative spectra from MSM of a single trajectory consists

of i) generation of single Brownian trajectory ii) creation of transition matrix as

explained in Section 5.1.5, iii) calculation of energies for allowed states (depending

on the number of states), iv) calculation of derivative spectra using formula in

Eq.(5.19) for 796 points between frequencies ω − ω0 = [−50, 50] G. Computation

times for derivative spectra in the case of (θ, φ) and (θ, φ, ψ) diffusion which are

exhibited in Fig. 5.4 and Fig. 5.5, are shown respectively in Table 5.1 and Table

5.2.

For much larger matrices, this method becomes problematic, and decrease the

computer efficiency drastically, with taking the logarithm and then the inverse of

large matrices. In such cases, better optimizations and algorithms will be needed

to improve this methodology.

States (s1,s2) tav σt

(12,5) 7.29 s 0.042 s
(18,5) 21.42 s 0.269 s
(21,5) 32.83 s 0.086 s

Table 5.1: Average computation times tav and standard deviations σt over 5 runs
for calculation of spectra with (θ, φ) diffusion.
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States (s1,s2,s3) tav σt

(12,3,2) 11.82 s 0.073 s
(18,3,2) 36.01 s 0.357 s
(12,3,5) 43.48 s 0.922 s

Table 5.2: Average computation times tav and standard deviations σt over 5 runs
for calculation of spectra with (θ, φ, ψ) diffusion.
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5.2 Growth of Bimetallic Nanoparticles: Cu-Ni

5.2.1 Introduction

Controlling the morphology of nanosize metallic synthesis has become increas-

ingly important on nanotechnology due to having diverse properties industrially

acknowledged on many applications. With the adequate initial conditions im-

plemented on the nano structure (forced configurational state), an environment

in which the diffusion mechanisms (the diffusion in the solution and the surface

diffusion on the nanocube) govern the formation of layers in the macrostructure

can be maintained [1, 2]. Then, it becomes a much easier task for the experi-

menter to intervene kinetics of relaxation process in order to control the growth of

bimetallic synthesis by tuning experimental parameters such as the temperature

and injection rate of the additional atoms [2]. Controlled growth of bimetallic

nanoparticles can be maintained by intervening kinetics of relaxation processes.

Such an experimental framework [3, 4, 5, 6, 7] has recently become very common

in controlling the layer formation on bimetallic nanocubes for a variety of synthe-

sis. While the framework is established upon basic principles of thermodynamics,

the atomic-scale details on non-equilibrium processes are still in ambiguity. It

is therefore an appropriate task for molecular static and dynamic simulations to

leak out the underlying atomistic mechanisms of the experimentally well-classified

growth modes.

The present work provides an atomic scale analysis on Cu deposition on Cu

nano cube (Cu-Cu), Ni deposition on Ni nano cube (Ni-Ni), Ni deposition on Cu

nano cube (Cu-Ni), Cu deposition on Ni nano cube (Ni-Cu). In each case, the

original nano cube is a single seed truncated cube in fcc structure having (111)

facets on 8 corners and (100) facets on 6 sides. Starting from a constrained state

where adatoms are projected to (111) facets, it is expected that the system evolves

to the equilibrium state (minimum energy configuration) through diffusion when

the constraint on the system is removed. In fact, this process is a non-equilibrium

process which can be controlled by kinetics. Thus, we have carried out a detailed

atomic scale analysis on relevant diffusion mechanisms and diffusion timescales
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by utilizing the statistics obtained from single-atom diffusion simulations and cal-

culated energetics of transition pathways. Among all types of synthesis, we have

observed Ni-Cu synthesis to contain fastest diffusion processes. Using this analysis,

we investigate the overall non-equilibrium phenomena for each type of synthesis

(Cu-Cu, Ni-Ni, Cu-Ni, Ni-Cu) in two ways. In the first part, we consider an open

system at a fixed temperature T=500 K in which we impose inclusion of particles

(adatoms) with a uniform frequency (injection rate) and an initial constraint over

adsorption sites (only upon deposition), and observe growth modes of the system

by varying injection rates. The entire process is highly sensitive on kinetics, i.e.,

competition between surface diffusion velocity vdiff and deposition velocity vdep of

the adatom, hence our statistical analysis on diffusion timescales is deemed to be

a reliable guide. In the second part, we consider a closed system starting from a

metastable state (octopod shape) in which the deposition process for Ni-Cu syn-

thesis is held at T=300 K. The system is then put into a thermal bath at fixed

temperatures distinctly with T=300 K and T=500 K, in order to observe relax-

ation dynamics and timescales. Accordingly, we have observed a fast transition

(about dozens of ns) to the equilibrium state at T=500 K while having a very slow

dynamics which prolonges the relaxation time to infinite simulation time (from ns

to hours) at T=300 K.

5.2.2 Computational Details

Our aim in this study is to compose a dynamic process which will simulate atomic

deposition on a nano crystal with periodic ad atom injections in a solution at

a fixed temperature. The experimental setup that we want to refer investigates

atomic deposition on a fcc nano crystal containing (100) facets on 6 sides and

(111) facets on 8 corners of which (100) facets are passivated and hence ad

atoms are only deposited on (111) facets. In the experiments, growth modes are

governed by the ratio of surface diffusion velocity vdiff to deposition velocity vdep

of the ad atom, as well as intrinsic characteristics of the interactions between the

ad atom and the nano crystal [2, 3]
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For that purpose, we first prepare a single seed nano crystal in a non-periodic

computation cell. Then, we propose periodic single atom injection from 8 corners

directed towards the center of (111) facets with a periodicity Φ that is inversely

proportional to the deposition velocity vdep. Atomic deposition on single seed nano

crystals is simulated by using LAMMPS Molecular Dynamics Simulator [8]. Initial

cubic nano crystal is obtained using bulk fcc lattice coordinates of the associated

seed type and has finite size with the length of 3.615 nm and 3.52 nm for Cu and

Ni, respectively. The computational cells for both Cu and Ni contain the same

number of atoms. Then a minimization process is applied on both nano crystals

using LAMMPS through which the finite size and surface effects were directly im-

plemented. MD simulations for the initial 4455 single type of atoms of the crystal

structure are conducted after cutting the corners of the cube, thus forming the

(111) facets at the corners (Fig. 5.9). In the heating process, temperature is in-

creased by 50K at each 30 ps time interval using Nosé-Hoover thermostat [9, 10].

Deposition process is performed simultaneously from 8 corners with period of Φ. In

this paper, we have used 161x8 ad atoms in total for each simulation describing the

entire process, to provide consistency for comparison. Throughout the deposition

and relaxation processes, Nosé-Hoover thermostat maintained to fix the tempera-

ture at a constant level, that is in accordance with experimental setups in which

the deposition on nano crystals is realized by periodic injections of ad atoms in a

solution at a fixed temperature. For interatomic interactions, we have employed

an optimized Embedded Atom Model (EAM) potential[11] that is determined by

fitting to experimental and first-principles data (such as lattice constants, cohesive

energies, bulk modulus, elastic constants, diatomic bond lengths and bond ener-

gies) for Cu, Ni and Cu-Ni binary structures [12]. For most frequently occurring

events, the energy barriers and surface adsorption energies are calculated using

Nudged Elastic Band (NEB) method[13, 14].
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Figure 5.9: Cu nanocrystal with (111) facets at T=0 K (on the left) and T=500
K (on the right). Ad atom deposition are directed to the center of (111) surfaces.
Same structure is utilized for Ni nano crystals with the respective lattice constant.
Computational cells are non-periodic so that the entire nano cluster is standing in
an isolated environment.

5.2.3 Results

Statistics

The growth modes of metallic synthesis depend on the competition between aver-

age diffusion times of ad atoms and average injection periods which in our study is

uniform and referred as Φ. The required average diffusion time < tdiff > to have

a valuable comparison, is basically a combination of average diffusion time of ad

atoms from (111) to (100) facets < t
(111)→(100)
diff

>, and average diffusion time on

(100) facets which contains more complex mechanisms than the former and can

be better understood by thermodynamics. As a first step, single-atom diffusion

statistics at a specific temperature can be used for determining < t
(111)→(100)
diff

>

and the most dominant diffusion mechanisms to (100) facets. For that purpose,

we have first extracted freequent diffusion schemes from simulation of ongoing de-

position processes (with hundreds of adatoms) at T=500 K which shows similarity

for Cu-Cu, Ni-Ni and Cu-Ni synthesis while exhibiting completely different scheme

for Ni-Cu synthesis.

The statistics on single-atom diffusion are obtained using 15 independent sim-

ulations for 8 ad atoms (120 atoms in total, see details in Supporting Information)

sent for once (1x8) simultaneously to the 8 corners of original cubic nano seed at

T=500 K. Although, each simulation exhibits distinct atomic trajectories, they
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have some common characteristics for diffusion mechanisms and thus we have

prepared the related statistics which are essentially defining the basic features

of diffusions to (100) facets in the simulation of atomic deposition with much

larger amount of injected atoms such as deposition with (161x8) ad atoms in part

”Growth Modes”. From our observations, we have found that exchange is the

only mechanism that is responsible for mass transport to (100) facets. In Fig.

5.10, we show possible exchange mechanisms to (100) facets, and their occurence

probabilities among all exchange events which shows varying characteristics for

different types of synthesis, i.e., Cu-Cu, Ni-Ni, Cu-Ni. Nonetheless, for all three

of them, we observe that exchange through site C is the mostly frequent event.

Diffusion through corner site A is not observed for any of these cases. The clos-

est fcc site to the corner site A is marked as site 5 (colored in red) in Table 5.3,

and it is next nearest neighbor for site A while it is nearest neighbor for site B

so that diffusion through site B is much more favorable. However, when (110)

channels are formed on the 12 edges, diffusion to these channels through site 5

has been observed experimentally [2], and also confirmed computationally with

hopping as the dominant diffusion mechanism [15]. In this study, we have run

the simulations only on the cubic systems with no (110) channels at the edges,

yet we observe that these channels can be formed at significant simulation time,

about dozens of nanoseconds, as the atoms on the edges are the least coordinated

ones. However, its effects on diffusion processes are negligible since most of the

growth process are completed before formation of the edge channels. The diffusion

mechanism for Ni-Cu sytnhesis with the given geometry in Fig. 5.10 is observed

to be very slow in comparison to other synthesis. However, our simulations of

Cu deposition on Ni nano cube (see Growh Modes) result in a fully covered nano

structure, more rapidly than any other system. This fact implies that another

type of diffusion mechanism should be dominant for Ni-Cu synthesis. In kinetic

view, due to high activation energy barriers for Cu atoms to diffuse (100) facets of

Ni seed, deposited Cu atoms accumulate on (111) facets in fcc stacking. With the

addition of new (111) Cu layer on Ni nano crystal, activation energy barriers for

ad atoms to diffuse on neighboring facets drop significantly as seen in Table 5.5,

and provide much easier exchange through (100) facets. To illustrate the issue in
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Figure 5.10: Occurence probabilities of exchange to (100) surfaces through sites
B,C,D. Exchange to (111) facets are noted as X111 for different types of synthesis.
For all three systems, while exchange through site C is the dominant mechanism,
exchange through site A does not appear. The average diffusion times for all the
exchange events from (111) to (100) facets < t

(111)→(100)
diff

> are found to be a)
99.2 ps, b) 187.1 ps, c) 43.4 ps. for Cu-Cu, Ni-Ni, Cu-Ni systems, respectively.
For Ni-Cu synthesis, the dominant diffusion mechanism is observed to be quite
different and represented in detail in Fig. 5.11.

detail, we performed statistical calculations for the case in which the original nano

cube is considered to be Ni nano cube of which the (111) facets are covered with

Cu atoms in fcc stacking. We deposit Cu ad atoms again on Ni nano seed that

has a layer of Cu on its corner facets and observe diffusion mechanisms. In Fig.
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5.11, we show the statistics for all possible diffusion mechanisms. As seen in the

previous cases, we do not observe any exchange through the corner site E of the

Cu covered (111) facets. On the other hand, the significant increase on the rate

of exchanges on (111) facets points a new favorable mechanism for Cu ad atoms.

In all exchange events, at least one Cu atom from (111) facet join to Ni (100)

facets via exchange or jumping with the push of the ad atom. Here, jumping is

defined as a dynamic process in which the initial position being on Cu (111) and

neighboring with Ni(100) such as sites E,F,G, and final position being on top of

Ni(100). Including all diffusion events of ad atoms, we have observed that these

events yield to exchange of another atom with 16% and jumping of another atom

with 84% occurence.

Regarding most frequent exchange events, we have also calculated average

diffusion time for all synthesis types and found < t
(111)→(100)
diff

> to be 99.2 ps for

Cu-Cu, 187.1 ps for Ni-Ni, 43.4 ps for Cu-Ni, and 16 ps for Ni-Cu. To acquire

the structure in Fig. 5.11 for Ni-Cu synthesis, a constant time depending on

injection period should pass in order to accumulate enough number of atoms to

form Cu(111) facets. However, this is a standard procedure happening for all

range of deposition rates, thus we may easily claim that the easiest diffusion from

(100) to (111) facets will be for Ni-Cu synthesis.
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Figure 5.11: On the left, the original structure that is prepared with a truncated
Ni cube with a layer of Cu atoms in fcc stacking on (111) facets. On the right,
occurence probabilities of exchange to (100) surfaces through sites F,G. Exchange
to (111) facets are noted as X111. On this system, exchange through corner site E
does not occure and the average diffusion time for all exchange events from (111)

to (100) facets, < t
(111)→(100)
diff

>, significantly decreased: 16 ps.
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Finally, our further observations on the diffusion of second ad atom deposited

right after all first (1x8) atoms had diffused is more or less resulting in the same

diffusion timescales. On the other hand, if the second ad atom is sent before the

first ad atom on the corner facet succeeds to diffuse to (100) facet, the diffusion

times for each atom prolonge significantly, at least increased by a factor of 10,

since these two free atoms bond together. In other words, if the deposition period

is chosen higher than the average diffusion time we may expect to have a uniform

diffusion process, while if it is lower than the diffusion timescales in the upcoming

depositions can extend due to clustering. Hence, we may conclude that single-atom

diffusion timescales of the first ad atom provides the characteristic timescales to

control growth modes. Nevertheless, the actual characteristic timescale to control

growth modes is a combination of exchange diffusion time and mobility of ad atom

on (100) surface.

Energetics and Mechanics

The statistics that we obtained for diffusion events and diffusion times are pro-

viding much of the information about dynamic processes responsible for diverse

growth modes. In order to better understand these processes, we have also studied

the energetics and mechanics of the governing diffusion events. Likelihood of dif-

fusion events depends on vibrations of crystal atoms, adsorption energies on (111)

facets and on activation energy barriers of the diffusion processes. Adsorption en-

ergies for several fcc sites (which define all possible adsorption sites) on (111) facet

are shown in Table 5.3. When there is thermal energy introduced to the system,

we would expect that occupancy rates of the adsorption sites to be directly related

to the adsorption energies, meaning that the lower energy, i.e., higher adsorption

energy sites would be more preferable than higher energy, i.e., lower adsorption

energy sites. Activation energy barriers calculated at T=0 K (Table 5.4), deter-

mine the energy cost of the system to make the corresponding action. However,

likelihood of the type of action is not just determined by adsorption rates or energy

barriers but also by effective coordination of the atoms participating in action. In

other words, collective motions would be more likely to happen since workload on

each atom would be less. Hence, one should interpret the statistics of the events
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regarding all of these issues.

Adsorption site 5 4 3
Cu/Cu(111) -0.120 -0.059 -0.070
Ni/Cu(111) -0.195 - -
Ni/Ni(111) -0.304 - -0.153
Cu/Ni(111) -0.179 -0.086 -0.096

Table 5.3: Energetics of adsorption (in eV) on the corner of nanocrystal, i.e.,
(111) facet, with main sites of adsorption (fcc) shown as 5,4,3 and the rest can
be attained by symmetry. All values are normalized by subtracting the highest
adsorption energy value of sites 1 and 2 (1 and 2 are symmetric sites).

Exchange site B C D
Cu/Cu(111) 0.161 0.358 0.343
Ni/Cu(111) 0.078 0.335 * 0.300 *
Ni/Ni(111) 0.121 0.460 * 0.372
Cu/Ni(111) 0.258 0.539 0.527

Table 5.4: Calculated activation energy barriers (in eV) on the corner of nanocrys-
tal and at the intersection of (111) and (100) facets with main exchange sites shown
as B, C, D and the rest can be attained by symmetry. All of the diffusive motion
of ad atoms are estimated to start from the closest fcc site available to each B,
C, D while for ones with asterisk, minimization of the initial configuration leaded
the ad atom to hop to the hcp site below since there is no barrier between two
configurations (for further explanation, see Supporting Information).

Supposing that the target surface (111) is flat with very low ionic vibrations

and the energy barriers between adsorption sites are achievable so that the ad atom
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is considered to be freely diffusing on the surface (111), the probability of being at

adsorption site γ can be roughly determined from the equilibrium distribution, i.e.,

pγ ∝ e
�ads/kBT . Arrhenius equation, on the other hand, suggests that transition

rate k in general can be determined from

k = Ae
−Eq/kBT (5.32)

where A is the attempt frequency which is equivalent to occupancy rates pγ in our

case and Eq is the activation energy barrier per atom. With increasing collectivity

of atoms to accomplish an action, work load on each atom Eq, drops roughly as

∼ 1/q, where q is the number of participating atoms, making the action more likely.

Another factor that determines characteristics of diffusing atoms on surfaces is the

attempt frequencies that are directly related to the occupancy rates pγ ∝ e
�ads/kBT .

That helps us understand why diffusion on Cu-Cu synthesis is quicker than on Ni-

Ni synthesis while activation energy barriers are very similar.

In Table 5.5, we present the calculated activation energy barriers for the re-

garding diffusion processes in Ni-Cu synthesis. For these calculations, the com-

putational cell is constructed as shown in Fig. 5.11. It is clearly seen that the

barriers are dropped significantly when the (111) facets of Ni nano cube are fully

covered by Cu atoms (by accumulation of Cu atoms), and hence it becomes much

easier for Cu atoms to complete the diffusion process hand in hand.

Exchange site F G X111
Cu/Ni(111) 0.211 (0.539) 0.257 (0.527) 0.387

Table 5.5: Calculated activation energy barriers (in eV) on the corner of Ni
nanocrystal when its (111) facets are covered by a monolayer of Cu. Exchange
with an atom on (111) facet is denoted by X111. When compared to the values
in Table 5.5, presented in brackets for C and D, it is easily seen that the barriers
are dropped significantly, which would ease the diffusion to (100) surface.
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Growth modes

So far we have investigated the governing diffusion mechanism based on atomic

level event by event analysis for all synthesis at T=500 K. While our results on

previous sections provide us timescales of diffusion events in detail, in this section

we will be focusing on controlling growth modes by changing injection period Φ.

Simulations will be carried out at T=500 K on an idealized system in which the

deposition of ad atoms takes place from 8 corners of the cube simultaneously

and uniform in time. Indeed, in experimental studies, surface diffusion speed

is controlled by temperature, i.e., vdiff ≡ vdiff (T ) and deposition period is not

identical to the injection rate of the solution which contains the ad atoms and is

generally dependent on the temperature and the amount of solution introduced per

unit time i.e., Φ ≡ Φ(T, n) where n is the amount of ad atom solution introduced

per unit time.

Homogenous growth

In this section, we will exhibit our results for the simulations in which the deposited

ad atom is of the same type with the target nano crystal. Thus, simulations are

done separately for Cu deposition on Cu nano crystal and Ni deposition on Ni

nano crystal.

The growth modes of Cu nano cluster are shown in Fig. 5.12. For higher

deposition rates, i.e., lower injection periods, we obtain an octopod shape. For

lower deposition rate, i.e., higher injection period such as Φ=500 ps, deposited Cu

atoms diffuse to different facets, and forming a truncated cube with nearly flat sur-

faces in collaboration with the cubic seed Cu atoms as displayed in Fig. 5.12(c).

Same growth modes, are also found for Ni deposition on Ni nano crystal (data

not shown). Furthermore our results show that covering the surface for Cu-Cu

synthesis happens for slower deposition periods than Ni-Ni synthesis, as indicated

by our analysis on average diffusion times in ”Statistics”. Previous study on Ag

deposition on Ag nano seed [15], and experimental results for Pt deposition on Pt,

and Pd deposition on Pd nano crystals [3] show similar morphologies for diverse

growth modes. The extensive study on atomic scale analysis of Ag deposition on
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Ag truncated nano cubes via MD simulations [15], also presents the cooperative-

ness of ad atoms and cubic seed atoms when forming the surface of the nano cube

in a single type synthesis. Using all these facts, we may argue a universality for

the behavior of homogenous deposition processes, while other single type metallic

synthesis should confirm our results.

Figure 5.12: Cu deposition on Cu nanocrystal with injection period a) Φ=10 ps
b) Φ=100 ps c) Φ=500 ps at T=500 K. Similar growth modes are obtained for Ni
deposition on Ni nanocrystals (data not shown).

Heterogenous growth

In this section, we will exhibit our results for the simulations in which the deposited

ad atom is not the same type with the target nano crystal. Thus, simulations are

done separately for Ni deposition on Cu nano crystal and Cu deposition on Ni nano

crystal. We obtain very different characteristics and growth modes distinctly for

Ni-Cu and Cu-Ni synthesis unlike the universality that we observed in homogenous

case. Since there are two type of species we will encounter a competition between



Chapter 5: Diffusive Dynamics in Non-equilibrium Systems 128

these atoms for surface formation resulting in different thermodynamic processes.

Previous analysis show that the formation energy for Cu (100) and Cu (111)

surfaces are lower than, respectively, Ni (100) and Ni (111) for infinitely large

systems. Therefore, we may expect Cu clusters to try covering the surface of the

Ni nano crystal. Deposition of Cu atoms on Ni nano crystal confirms this idea,

and thus we obtain a fully Cu covered Ni nano crystal (Fig. 5.13).

In Fig. 5.13, we have results for Cu deposition on Ni nano crystal, and see

two distinct growth modes one being octopod when the injection period Φ=10 ps

and other being fully covered nano structure when Φ=100 ps. For lower injection

period, i.e., high deposition rate (Φ=10 ps), the ad atoms do not have enough time

to diffuse on (100) facets, and thus they will accumulate on (111) facets and form

a cluster which is being in pyramid shape. However, for higher injection period

such as Φ=100 ps, there is enough time for diffusions to take place and thus a

fully covered nano structure is obtained.

With a tentative overview, we see a close relationship between relative ra-

tio of injection period Φ and average diffusion times obtained from single-atom

diffusion statistics on formation of distinct growth modes in Cu-Cu, Ni-Ni and

Ni-Cu synthesis: for all cases an equilibrium state (fully covered nano cube) is

nearly maintained for the injection periods higher than the average diffusion times.

The corresponding injection periods also show agreement with the hierarchy that

we provide in the most previous part of this subsection for diffusion times, i.e.,

t
Ni−Ni

diff
> t

Cu−Cu

diff
> t

Ni−Cu∗

diff
.

In Fig. 5.14, we have results for Ni deposition on Cu nano crystal, which

imply an asymmetric shape formation due to lack of order caused by competition

between Ni and Cu clusters to form surface. Surface formation energy of Cu atoms

are lower than Ni atoms, hence Cu atoms are trying to engulf big Ni islands. Thus,

in fact, the equilibrium product does not suggest a Ni covered Cu nanocrystals.

When the deposition rate is high (i.e., vdep. is high and Φ is low) it becomes harder

for Cu atoms of the seed to keep their surface positions due to faster accumulation

of Ni atoms on the surface. At the end, this may cause non-equilibrium processes

to be dominant, leading to a high competition between Cu and Ni clusters, thus

asymmetric shape formations.
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From kinetic point of view, we can comment on these dramatically different

characteristics of Ni-Cu and Cu-Ni synthesis as follows: From our statistics ob-

tained for dominant exchange mechanisms for Cu-Ni (Fig. 5.10) and Ni-Cu (Fig.

5.11), the diffusion times are relatively shorter than homogenous synthesis. There-

fore, we expect quickly occuring exchange events from (111) to (100) facets for both

cases. However, as we pointed out in the previous subsections, following the dif-

fusion to (100) facets, the rate of diffusion on (100) facets gain much importance

in order to prevent accumulation on corners of the cube. The previous results on

diffusion energy barriers for diffusion mechanisms for Cu, Ni synthesis show that

exchange on Cu(100) surface is more preferable than hopping on Cu(100) for Ni

ad atoms, while we have completely reverse scenario for Cu ad atoms on Ni(100)

surfaces [12, 16]. As a result, Ni atoms reaching Cu(100) facets would not prefer

to move on the surface via hopping and thus would accumulate. On the other

hand, Cu atoms reaching Ni(100) facets may move on the surface much easily

and form a surface layer. Notice that the energy barriers that we refer are for

infinitely large surfaces and we expect to keep the same hierarchy for nano level

(100) facets. In addition, our result for activation energy barriers for hopping of

Cu atoms on Ni(100) facet distinctly calculated for different sites whose locations

are ranging from edge to center, shows that the energy value is quickly converging

to the infinitely large case value when we get closer to the center of (100) facet.

Figure 5.13: Cu deposition on Ni nanocrystal with injection period Φ=10 ps (on
the left) and Φ=100 ps (on the right) at T=500 K. Two distinct growth modes i.e.,
octopod (on the left) and fully covered cubic shape (on the right) are obtained.
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Figure 5.14: Ni deposition on Cu nanocrystal with injection period a)Φ=10 ps
b)Φ=100 ps c)Φ=250 ps at T=500 K.

5.2.4 Relaxation of non-equilibrium nanostructure

Finally, non-equilibrium nature of atomic vibrations lead to transition between

steady states Thus, we have also investigated what would happen when we leave

the nano structure in a thermal bath for some time following the deposition pro-

cess. To allow computationally reachable timescales, we consider the fastest dif-

fusing synthesis, i.e. Ni-Cu, in which we have a Ni nano crystal and initially

performed Cu deposition with 161x8 ad atoms as always but now at T=300 K.

We would expect system to evolve to a stable state, i.e., steady state at the given

temperature. From thermodynamical point of view, in order to have a transition

between diverse morphologies, kinetic process should start initially from octopod

shape to fully covered nano structure for which the reverse is not possible. For that

purpose, we prepare the deposited crystal as an octopod, thus use a deposition

period Φ=10 ps at T=300 K. Inclusion of thermal energy is very crucial to push
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the system out of a metastable state since ad atoms need enough kinetic energy

to pass activation energy barriers for diffusion processes.

First, we consider the case where we add thermal energy to the initial octopod

(Ni-Cu) structure by heating crystal until it reaches T=500 K, and then leave

it for relaxation. As shown in Fig. 5.15, we observe a dynamic transition from

octopod shape to concave one and finally to fully covered original-like structure.

The transition is induced by increasing the temperature and providing a notable

relaxation time to the system without the deposition of any ad atom.

Secondly, we check the evolution of the initial octopod crystal through some

relaxation time without adding thermal energy, at T=300 K. In this case, we ob-

serve very few significant change even at atomistic level as is seen in Fig. 5.16.

As a result, it seems that we would need infinite simulation time, i.e., from ns to

hours, to observe macro changes (if possible) in the nano structure. However, real

experiments can test this at room temperature, and check whether it is a stable

state or not. For this situation, our further analysis on hopping mechanism of

Cu atoms on Ni (100) facets, suggests that shape transformation is very unlikely

at T=300 K. High activation energy barriers for hopping of the atoms diffused

on (100) through exchange, and very low vibrations of crystal atoms, make hop-

ping mechanism harder to occur. Table 5.6, shows activation energy barriers for

diffusion on Ni(100) facets for Cu atoms.

Hopping from 1 → 2 2 → 3 3 → 4
Cu/Ni(100) 0.358 0.425 0.426

Table 5.6: Calculated activation energy barriers (in eV) for hopping of Cu atoms
on Ni(100) surface for nano crystal. The barrier is minimum when the motion is
on the edges and increases when it is close to the center of (100) facet.
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Figure 5.15: Dynamic transition from octopus shape to concave one and finally to
fully covered original-like structure for Cu deposited Ni nano crystals. Deposition
process is held at T=300 K with 161x8 ad atoms with injection period of Φ=10
ps. At the end of deposition process system is heated until T=500 K, and then we
have observed relaxation process in some significant time at T=500 K. Snapshots
represent the state respectively for a) end of deposition process at T=300 K,
b) end of increasing temperature until T=500 K, and setting relaxation time on
thermal bath as tbath=0 ns, then after relaxation on thermal bath with T=500 K,
c)tbath=8.4 ns, d)tbath=20 ns, e)tbath= 37.5 ns, f)tbath=77.5 ns.

5.2.5 Conclusion

In this study, growth modes of nano crystals with synthesis of Cu-Cu, Ni-Ni, Cu-

Ni, and Ni-Cu are investigated using molecular dynamics simulations and energetic

calculations. Our results confirm results of the related experiments on the role of
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Figure 5.16: Relaxation at T=300 K: right after deposition process (on the left)
and after 180 ns (on right). Changes are seen on the tip of octopod while the
atoms on the (100) facets are barely moved.

internal characteristics in determining the shape of the nano structure. From MD

simulation of atomic deposition with different injection rates, we have observed

that fastest diffusion process is occurring for Cu deposition on Ni nano crystals,

i.e., Ni-Cu synthesis. In addition, statistical characteristics of repeated single-atom

diffusions as well as calculated adsorption energies and activation energy barriers

for most frequent diffusion events, maintain a new scope on observing atomic-scale

diffusion processes and their direct relation with macro level shape formations. At

macro level, distinct shape formations, dynamic transitions, and steady states are

carefully observed and characterized. Dynamic transitions between steady states

at T=500 K, may imply more control over growth while transitions are almost

impossible at low temperatures showing a trapped state for the nano structure.

5.2.6 Supporting Information

Analysis of statistics

As discussed in detail in Section 5.2.3, statistics obtained from repeated single-

atom diffusion simulations provide a microscale analysis on most dominant diffu-

sion events and their occurence probabilities (Figs. 5.10-11). In addition to that,

including all types of exchange events we have observed average diffusion time

from (111) to (100) facets < t
(111)→(100)
diff

>. In order to obtain relevant statistics in
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Section 5.2.3, one has to optimize number of samples for statistical accuracy.

In Fig. 5.17, we see how the average diffusion times and the standard deviations

when increasing the number of simulations. As a result, obtaining a value in a 10%

range of the estimated value is enough for our purposes, so that we may conclude

to have an average diffusion time for Cu-Cu sytnhesis in 90− 100ps range.

What interests us besides the average diffusion times of each synthesis is their

relative ratios. < t
(111)→(100)
diff

> has the hierarchy for homogeneous synthesis as

t
Ni−Ni

diff
> t

Cu−Cu

diff
and for heteregeneous synthesis as t

Ni−Cu

diff
> t

Cu−Ni

diff
. However,

our careful analysis on dominant diffusion mechanism for Ni-Cu synthesis showed

us that diffusion on Ni-Cu synthesis becomes much more easier once (111) facets

of Ni nano cube is covered by Cu atoms (referred as Ni-Cu*), and it then has the

smallest tdiff value among all four types of synthesis.
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Figure 5.17: Average diffusion times and standard deviations as a function of
number of simulations.

In addition to the average diffusion times, we also observed how these diffusion

events are fulfilling a cumulative distribution. In Fig. 5.18, we show the number of

diffused atoms normalized by total number of observed atoms, or ratio of diffused

atoms ndiff = Ndiff/Ntot as a function of time where Ntot = 120 in our single-atom

diffusion statistics.

Energy barrier calculation

Thermodynamics suggests that at equilibrium the nano cube should be structured

in a way that it minimizes the total free energy. However, in our simulations there
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Figure 5.18: Cumulative distribution of ratio of diffused atoms as a function of
time.

is a constraint on ad atoms during deposition which forces the atoms to target on

(111) surfaces. So, once the ad atoms land on the corner facets, the atoms should

perform a dynamic process, i.e. diffuse to (100) facets to reach a global minimum

on the energy landscape, starting from a local minimum point. Thus, kinetics will

gain much importance since the ad atoms generally should overcome an energy

barrier to move on to the other minima. An example of energy landscape for

several configurations is shown in Fig. 5.19. If d is given as global minimum for

all cases, then the system is expected to evolve towards point d, starting from

configuration b, and passing the energy barriers along the path. Unless enough

thermal energy introduced to the system, it would not able to overcome the energy

barriers to reach the equilibrium point d, and thus stay at around a local minimum.

In Section 5.2.3, we have calculated activation energy barriers at T=0 K using

NEB method. For that purpose, we have selected the initial position of atom to

be on nearest neighbor fcc site of target position (see figures in Tables 5.4 and 5.5
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Figure 5.20: Optimized energy path of a kinetic process in Cu-Cu synthesis and
specified by the initial and final configurations on the right.

for target sites), and the final position of pushed atom to be on closest minimum

energy site on the top of (100) facet. We show these configurations in Fig. 5.20

along with the calculated energy path for exchange mechanism on site C in Cu-Cu

synthesis. As clearly seen in the figure, the total energy of final configuration in

which an extra atom is on (100) facet instead of (111) facet, is lower than the

energy of initial configuration.

In Fig. 5.21 we plotted the energy path for an exchange mechanism on site C

again in Ni-Ni synthesis. The process is specified by the same same configuration

of the above initial and final positions but minimization of energy of the initial

configuration forces the ad atom to start on hcp site below. The reason becomes

clear once the energy landscape is investigated. The closest fcc site from target
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Figure 5.21: Optimized energy path for a kinetic process in Ni-Ni synthesis and
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configuration is forced to be hcp by the unstability of the presumed fcc site.

site C is not a stable configuration, and minimization pushes the atom on more

stable location.
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Chapter 6

CONCLUSION
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In conclusion, a rich variety of spin-glass systems is introduced by differing

microstructural properties as presented in the thesis and solved by RG transfor-

mations on d = 2 and d = 3. We have seen that ordering behavior is highly

dependent on the level of frustration. Starting from the unfrustrated systems the

drastic effects (but continuous as frustration is tuned continuously) such as de-

struction of orderings, emergence of reentrance of the phase diagrams, increasing

chaos under rescaling have been observed. Furthermore, we have worked on differ-

ent spin systems, i.e., q-state clock spin-glass models in d = 3. We have shown that

for odd q-state clock models, it is very improbable to sustain a spin-glass ordering

due to high ground-state entropy induced by having many similar configurations

to satisfy AF interactions. On the other hand, we have obtained a new universality

class for even q-state clock model spin glasses, exhibiting the identical asymptotic

behaviors on spin-glass phase sinks. For both even and odd q-state clock models,

when increasing the number of clock states q, we obtain the identical convergence

of ferro-para and antiferro-para critical temperatures 1/Jc and critical exponents

yT .

Chaos spread out on clusterings, appears to be a continuation of local frus-

tration at growing length scales. Equivalence of the distribution of chaotic visits

of interactions at a specific location under rescaling trajectories with the fixed

distribution of interactions at all locations is in fact very meaningful. Different

clusterings at different length scales, thus different portions of the system do not

seem alike and dissimilarity is qualitatively equivalent when changing the scale or

changing the location. We observe an increasing chaos in spin-glass phases under

rescaling upon increasing the level of frustration.

In addition to that, dynamic processes in non-equilibrium systems are investi-

gated with two specific examples. While our results contain an original perspective

for the related fields themselves, in fact, similarities with spin-glass systems can

be deduced when reaching towards the equilibrium state. In ESR theory, we have

seen a relatively short relaxation times by the fact that system being paramag-

netic such that having a zero magnetization at equilibrium state. Ferromagnetic

systems are also expected to have very short relaxation times while our knowledge

on criticality suggest that it takes infinite time to the equilibrium state when a
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critical (second-order) phase transition is occuring (system has fluctuations at all

length scales). On the other hand, in the second example where we have a bimetal-

lic synthesis via atomic deposition process, we have seen that relaxation times are

highly sensitive to the competition between energy barriers and the thermal en-

ergy. As discussed in the Introduction, spin glasses are also under the influence

of non-equilibrium dynamics for a huge time window due to the complicated free

energy landscape especially at low temperatures. However, for spin-glass systems,

the perturbation out of equilibrium or a steady state have more drastical results

such as changing the overall configuration of the whole system.

In this thesis, we have focused on equilibrium phase transitions in diverse

spin-glass systems. Our results are hoped to be instructive to a great extent

for simulational and experimental preperations and on understanding better the

complex nature of spin-glass systems.
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