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ABSTRACT 

Electrical energy has an essential role in society as it ensures high quality of life 
and steady economic development. Demand for the electric energy has been steadily 
growing throughout the recent history and this demand is expected to grow further in 
the future. Most of electrical energy nowadays is generated by burning fossil fuels and 
there are serious concerns about the resulting emission. Renewable energy sources 
appeared as a viable alternative for environmentally hazardous sources. However, 
sources of renewable energy have considerably unpredictable and environmental 
conditions dependent power output and as such can’t be directly incorporated into 
existing electrical grid. These sources are usually integrated to the electrical grid as part 
of microgrid or hybrid energy source that consists of two or more energy sources, 
converters and/or storage devices. In hybrid energy sources, generation and storage 
elements complement each other to provide high quality and more reliable power 
delivery. 

This area of research is its infant stage and requires a lot of research and 
development effort to be done. Main objective of this thesis is to develop a framework 
for analysis and control of power electronics interfaces in microgrid connected hybrid 
energy source. The framework offers the generalized approach in treatment of control 
problem for hybrid energy sources. Development of the framework is done for the 
generalized hybrid source comprised of energy source(s), storage element(s), power 
electronic interfaces and control system. 

The main contributions of this thesis are, generalization of control problem for 
power electronics interfaces in hybrid energy source, the development of switching 
algorithm for three phase switching converters based on the closed loop behavior of the 
converters and the development of a maximum power point tracking algorithm for the 
renewable energy sources. 
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ÖZET 

Elektrik enerjisi, yüksek yaşam kalitesi ve istikrarlı bir ekonomik gelişme 
sağladığı için toplumda önemli bir yere sahiptir. Elektrik enerjisine duyulan talep yakın 
tarihte düzenli bir şekilde artmış ve gelecekte daha da artması beklenmektedir. 
Günümüzde elektrik enerjisinin çoğu fosil yakıtların yakılmasıyla üretilmektedir ve 
ortaya çıkan emisyonla ilgili ciddi endişeler oluşmaktadır. Yenilenebilir enerji 
kaynakları çevreye zararlı kaynaklara göre daha uygun bir alternatif olarak ortaya 
çıkmıştır. Ancak yenilenebilir enerji kaynaklarının sağladığı güç önemli ölçüde çevre 
koşullarına bağlı ve tahmin edilemez durumdadır, ve bu nedenle direkt olarak mevcut 
elektrik ağına katılamaz. Bu kaynaklar genelde bir veya daha fazla enerji kaynakları, 
çeviriciler ve/veya depolama aygıtları içeren bir hibrit enerji kaynağı veya mikroağ 
çerçevesinde elektrik ağına entegre edilir. Hibrit enerji kaynaklarında üretim ve 
depolama elemanları birbirlerini tamamlayarak yüksek kalite ve daha tutarlı güç sağlar. 

Bu araştırma alanı daha başlangıç aşamasındadır ve daha çok araştırma ve 
geliştirme çabası gerektirmektedir. Bu tezin ana amacı, mikroağa bağlı hibrit enerji 
kaynağındaki güç elektroniği arabirimlerinin analizi ve kontrolü için bir çerçeve 
geliştirmektir. Bu çerçeve hibrit enerji kaynaklarındaki kontrol problemine çözüm 
olacak genel bir tutum önerir. Bu çerçeve; enerji kaynakları, depolama elemanları, güç 
elektroniği arabirimleri ve kontrol sistemini kapsayan genelleştirilmiş bir hibrit kaynak 
için geliştirilmiştir. 

Bu tezin sağlayacağı temel katkılar; hibrit enerji kaynağındaki güç elektroniği 
arabirimleri için kontrol probleminin genelleştirilmesi, çeviricilerin kapalı döngü 
dinamiğine dayalı üç faz çeviriciler için anahtarlama algoritmasının geliştirilmesi, ve 
yenilenebilir enerji kaynakları için maksimum güç noktası izleme algoritmasının 
geliştirilmesidir. 
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1 INTRODUCTION 

1.1 Motivation 

Sustainable economic growth and stability of countries around the world is 

secured through abundant energy supply. Furthermore, amount of energy supply of a 

country, among other factors, defines standing of that country on global political scene. 

Looking beyond the economic and political reasoning, energy has become the most 

important player in the technological advancement of a modern society.  

Energy consumption scales differently between different countries, however, 

consumption areas are similar including mainly heating/cooling, electricity supply and 

transportation/machinery fuel. Currently, majority of the consumed energy is harvested 

by non-renewable and non-environmentally friendly sources such as petroleum, coal 

and natural gas. Strong dependence on fossil fuels may lead to energy crisis in future 

and gradual or sudden increase in global fuel prices. Main problems related to the 

insecurity of energy supply are the fact that most of the fossil fuels come from 

politically unstable regions of the world; that those energy sources are nonrenewable; 

and that the fossil fuels have harmful environmental impact.  

Remedy to the problems introduced by utilization of fossil fuels can be found in 

deployment of renewable energy sources (RESs), which can guaranty energy security of 

a country in the long run. World is currently is the transition phase where more and 

more RESs are being introduced as generators of energy mostly for electricity and 

heating/cooling needs. RESs cannot be direct replacement for existing electricity grid 

technology, because the grid is far too well established to abandon, while RES systems 

are not sufficiently developed to meet the total energy demand. Therefore RESs are 

gradually placed in the existing grids. RESs are mostly introduced to the existing grid 

system as distributed generation (DG) units, which generate electrical energy at the 

electricity distribution level. 

When RESs are used as DG units they are accompanied with power electronic 
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based devices for power conversion and energy storage systems (ESS). In addition, 

number of DG units and ESSs at the low voltage side of utility grid may be 

interconnected together in a pattern that is different from the conventional power 

generation, grouped with the loads in a cluster that can generate and utilize electricity 

independently from grid or parallel to the grid. This kind of structure is known as the 

microgrid. The microgrid is particularly interesting as an electrical structure because it 

provides an opportunity to optimize the utilization of renewable energy sources with 

improved overall thermal and electrical efficiencies by properly locating different DG 

units while considering their geographical conditions and the nature of available loads. 

Such operating conditions require the microgrid systems to have wide range control 

systems in order to perform large number of tasks. For example, to guarantee the system 

security, optimal operation, emission reduction and a seamless transfer algorithm from 

grid-connected mode to islanded mode without violating system constraints and 

regulatory requirements are some of the main tasks. 

Microgrid can be composed of many different energy sources; however, they are 

usually associated with RESs. Renewable energy sources have different dynamic 

characteristics when compared to the traditional generation sources. These dynamic 

characteristics present hurdles in control and integration. When connected to the grid 

renewable energy sources have to deliver power in controlled fashion and obey the grid 

standards which require specific frequency voltage generation, clean power delivery 

(low total harmonic distortion), high power factor and certain protection functions for 

safe and stable operation of the whole system. When RESs deliver power in stand-alone 

mode they have the requirement to generate voltages of certain amplitude and frequency 

and this fact imposes additional requirement on the control of these sources. Hence it is 

inevitable to develop rather effective control strategy in all levels of microgrid 

consisting of renewable energy sources to deal with mentioned issues. 

Power generated by RESs depends on the environmental conditions. Their power 

output is highly stochastic and often RESs cannot offer necessary support to the 

operation of microgrid where stable active and reactive power is needed. Nevertheless, 

combination of different types of RESs, together with the energy storage can offer a 

viable solution and mitigate power reliability issues. In other words, when different 

types of RESs are combined into hybrid power generation system, these sources can 

complement each other in power delivery and a hybrid source based renewable energy 

system (with proper control) has great potential to provide high quality and reliable 
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power in microgrids. On the other hand, implementation of hybrid source is not so 

straightforward process due to the issues such as unavailable measurement, stochastic 

disturbances, nonlinearities and dynamics in each power component and the dynamic 

interactions between different sources. All of the mentioned issues make the control 

problem very challenging and worthy of considering. 

Microgrid is a modern electrical architecture that incorporates renewable energy 

sources (RESs) and/or fossil fuel based conventional energy sources (CESs), energy 

storage systems (ESSs), loads and power electronic interfaces (PEIs) into self-contained 

portion of electrical distribution system where power is generated transmitted, 

consumed, monitored and managed on the local scale. Microgrids can operate in 

parallel to the utility grid where two-way power exchange is possible or they can 

operate as grid-independent power islands to supply local loads or remote areas. 

Connection and re-connection of microgrid with utility grid occurs at the point of 

common coupling (PCC), controlled by the microgrid control system. Typical microgrid 

structure is shown in the Figure 1-1 for demonstrative purposes. 
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Figure 1-1 Typical microgrid 
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All of the components of microgrid have large individual impact on the design, 

operation and control of the overall system. Most of the challenges arise due to the 

combination of microgrid components with different dynamical responses. Additional 

challenges come from the operating nature of the sources inside microgrid, namely 

CESs are mostly dispatchable energy sources while the RESs are of non-dispatchable 

nature with difficult to predict energy output. To be able to deal with such challenges 

stringent requirements are put on the control system and power management of 

microgrid. 

To implement control and power management in microgrids more effectively, 

multiple energy sources and energy storage units can be combined into hybrid energy 

source. Hybrid energy source can be considered as an energy node of a microgrid with 

bidirectional power flow capability and can deliver power according to the references 

generated by the microgrid controller and/or power management system. Microgrid 

architecture with hybrid energy source is shown demonstratively in Figure 1-2. 

 

 
Figure 1-2 Microgrid with hybrid source 
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1.2 Objectives of the thesis 

Hybrid energy source brings many advantages to the design and implementation 

of microgrid systems. Namely, microgrid with hybrid energy sources becomes a 

structure where all of the sources have similar or same dynamic response. Even though 

hybrid source may be composed of non-dispatchable sources, as a whole, together with 

energy storage elements, proper power electronic interfaces and control system, this 

source could be turned into dispatchable source. In the same time, implementation of 

hybrid energy source increases reliability of the microgrid system, allows for easier 

realization of plug and play feature and upgradability of the whole system is increased. 

Additionally overall system complexity is decreased since many control tasks are 

handled by the hybrid energy source controller. 

Main objective of this thesis is to develop a framework for analysis and control of 

power electronics interfaces in microgrid connected hybrid energy source. 

Development of the framework will be done for generalized hybrid source comprised of 

energy source(s), storage element(s), power electronic interfaces and control system. 

Main justification of the stated objective lies in the advantages that unified approach to 

control of power electronics interfaces would bring to the design and control of hybrid 

source as an element of a microgrid. Basically, most important advantages that 

standardized control scheme would bring to the design of the hybrid source are; 

decreased cost of design; decreased design time; decreased design complexity; 

increased design flexibility; and scalability of the design.  

In the attempt to accomplish the main objective, other objectives of this thesis are 

identified as follows; 

o Modeling and analysis of sources and storage units as the elements of hybrid 

energy source in microgrid. 

o Definition of operational requirements of power electronics for interface of 

sources and storage elements. 

o Analysis of control system requirements for sources and storage elements. 

o Definition of power electronic interface and control system for hybrid source in 

microgrid. 

o Development of unified approach to the power electronics interface analysis and 

control. 
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o Identification of requirements for interconnection of hybrid source and 

microgrid. 

While achieving the main objective and other objectives listed above, primary 

focus will be put on the hybrid source including renewable energy sources, namely, 

wind energy source, solar energy source, hydrogen fuel cell, and battery storage element 

as shown in the Figure 1-3. Nevertheless, the developed framework will permit 

selection of different sources and storage units as the hybrid source elements. 

 

 
Figure 1-3 Targeted hybrid source structure 

1.3 Thesis Outline 

The rest of this thesis is outlined mostly in accordance to the specified objectives 

from the previous section.  

Chapter 2 contains the literature review about distributed generation in microgrid, 

microgrid architectures, microgrid components and hybrid source in microgrid. 

Chapter 3 covers the sources considered for implementation of hybrid energy 

source. Sources under consideration are renewable energy sources, namely, solar, wind, 

fuel cell and battery storage system. Each of these sources is modeled, analyzed and 
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main power electronic requirements and control system requirements are identified and 

presented at the end of each section. At the end of the chapter, power electronic 

interface and control system requirements are defined for hybrid source under 

consideration. 

Chapter 4 is concerned with the development of a framework for analysis and 

control of power electronics interfaces needed for the realization of a hybrid energy 

source. Basically this chapter considers the unified analysis and control of power 

electronics converters needed in interfacing the DC and AC sources and storage units. 

Chapter 5 deals with the issues associated with the interconnection of hybrid 

source with microgrid. In this chapter three main topics are discussed, MPPT algorithm 

based on sliding mode self optimization, power distribution in hybrid source and hybrid 

source output converter control. 

Chapter 6 includes the simulation and experimental results and;  

Chapter 7 is conclusion chapter where summary, main contributions and future 

work are given.      
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2 LITERATURE REVIEW OF MICROGRID TECHNOLOGY 

In this chapter, literature review of microgrid systems with distributed renewable 

energy sources and hybrid energy source is given in detail. Firstly, microgrid concept is 

introduced and general information about microgrids is given. Next, types of microgrids 

are discussed and microgrid operation modes are explained. Many different types of 

energy sources and storage systems can be incorporated in microgrid structure. Details 

about sources and storage systems are provided together with their relevant literature 

references. Power electronics technology is crucial for successful operation of 

microgrid. This technology is reviewed and associated literature review is given. 

Control strategy and methods used in microgrid systems are explained as well. At the 

end of this chapter, hybrid source related literature is reviewed.  

2.1 Distributed Generation and Microgrid Systems 

In current electrical energy grid systems, energy is delivered from the point of 

generation to the consumers (loads). Grid system can be divided in three subsystems; 

namely generation subsystem, transmission subsystem and distribution subsystem. 

Generation subsystem is composed of electrical energy generation plants with high 

production capacity. Electrical energy generated by these plants is delivered to the 

distribution stations via transmission subsystem. On the other hand distribution system 

delivers power from distribution stations to the consumers (loads). Although, current 

centralized electrical energy grid system is well established, it has certain disadvantages 

that need to be addressed in the future. First of all, most of the generation comes from 

fossil fuel based plants. Besides the fact that these fuels are nonrenewable source of 

energy, it must be added that at least 50 - 70% of fuels energy content is lost as waste 

heat in the atmosphere. Nuclear power generating plants are indeed more efficient on 

generation level, however they also have nonrenewable nature and their environmental 
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effects can be disastrous. Another disadvantage of current electrical energy system lays 

in its centralized nature; it is often the case that the load centers are located relatively far 

from the generation plants. This fact makes it difficult for power system operators to 

monitor and act on disturbances occurring at load centers. This disadvantage has great 

importance for critical loads that need to receive power with higher quality that the rest 

of the loads. Also, in current system, due to the long transmission lines, transmission 

losses are high as well. Combined transmission and distribution losses are ranging from 

6%-8% of generated power. Another disadvantage worth of mentioning is that system 

has aging equipment and complex infrastructure, which makes this system prone to 

often black-outs. Finally, construction of new generation stations, transmission system 

and distribution system to supply a geographical region with electrical energy is a 

process that needs strong economical justification. In other words, rural and remote 

areas often don’t get “energized” because it is not profitable for utility providers. 

All of these disadvantages have been motivation for seeking out solutions that 

would remedy and improve existing system. Certain number of these disadvantages has 

been addressed by an introduction of distribution generation (DG) units. DGs are small 

in size and have low power generation capacity compared to centralized generation 

plants. DGs are modular and can be located on-site, near the load center. They are used 

in parallel with utility gird or as autonomous generators to secure less or no down time 

(UPS) for loads, to “energize” the remote areas, to increase power quality for sensitive 

loads and to increase the overall efficiency of the electrical energy system. DG units 

that gained special popularity are those that generate energy from renewable sources 

such as wind, sun, geothermal, tidal, biomass and hydrogen. An interesting fact, coming 

from future energy demand and supply prediction studies, says that increased 

penetration of DG units is expected in near future [1, 2]. The increased penetration of 

DGs, diversity of their ownership and independent operation might create different 

operating conditions within electrical grid, namely, reverse power flow, excessive 

voltage rise, increased fault levels, harmonic distortion and stability problem. High 

degree of penetration of DG, their geographical distribution and sizing will have 

considerable impact on operation, control, protection and reliability of existing power 

utility [3]. In other words, increased deployment of DG units in electricity distribution 

networks is changing the nature of these networks from passive to active. Main issue is 

that distribution networks were not initially designed for such operation and above 

mentioned problems become emphasized in such systems. 
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From the above reasoning it can be concluded that, introduction of DG units in 

electrical distribution network solves certain problems while with the increased 

deployment of such units some other problems are created. When dealing with this 

problem, actual solution can be brought down to two possible options; first is, to 

redesign the network architecture completely and second is, to introduce some kind of 

electrical system architecture that will be able to operate as part of the existing network 

while allowing the deployment of DG units without mentioned drawbacks. First option 

is of course expensive to realize. Second solution is introduced through concept of 

microgrid. There exist no official, widely recognized definition of microgrid concept; 

however its characteristics and features are discussed in literature [4 – 6]. Microgrid is a 

modern electrical architecture that incorporates DG units, energy storage systems 

(ESSs) and loads into self-contained portion of electrical distribution system where 

power is generated transmitted, consumed, monitored and managed on local scale. 

Microgrids can operate in parallel to the utility grid where two-way power exchange is 

possible and they can operate as grid-independent power islands to supply local loads or 

remote areas. Microgrids basically benefit both utility and costumers, to the utility they 

can provide power or additional services (e.g. frequency and voltage support) and to the 

costumers they provide reliable and high quality power.  

In more futuristic manner, according to [6 – 8], the architecture of future electrical 

energy systems will look very different from that of conventional energy system along 

with the microgrids expected to be the main building blocks. The smart grid concept is 

also introduced in these works as structure having high energy efficiency, sustainability, 

and renewable energy sources as generators, reliability, security, advanced sensing, 

measurements, advanced control methods, load usage awareness, advanced load 

components (e.g. electric vehicles), and integrated information and communication 

infrastructures.  

Construction of microgrids offer opportunity for optimized utilization of 

renewable energy sources (RESs) and energy storage systems. Since microgrid is 

deployed on specific geographic location RESs whose operation is optimal for that 

region can be chosen as DG units. Moreover ESSs can be incorporated in the microgrid 

system according to the load characteristics and power specifications. Next to the 

electricity generation, heat generation is also concept often associated with microgrids. 

It is expected that microgrid incorporates both electricity and heat loads and generators 

in the future. This scenario is known as combined heat power generation (CHP) [9, 10]. 
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Potential applications of CHP in microgrids are domestic water and space heating, 

generation of heat for industrial processes and water and space cooling and 

refrigeration. Microgrids that incorporate CHP are expected to have increased overall 

energy utilization efficiency. As simple example, generation of heat using solar energy 

or generation of heat from conversion of conventional fuel into electrical power process 

can be locally used for wide range of applications such as residential heating, 

sterilization chambers in hospitals or heating for industrial process. 

In conclusion, microgrid that incorporates RESs and ESSs is modern concept that  

can offer viable solution to the problems of scarcity of fossil fuel in future, 

environmentally friendly electricity generation, electricity supply to remote areas and 

power supply to critical loads that need uninterrupted power supply. 

2.2 Microgrid Architecture 

Microgrid is power architecture located at the distribution level of utility power 

system. Plainly speaking microgrid includes variety of distributed generation sources, 

energy storage systems and loads in its structure. Next to these three, microgrids include 

power electronic interfaces, control system and communication system. Power 

electronics interface are needed to ensure high quality, reliable and efficient power 

transfer from generation and storage units to loads/grid and from grid to loads/storage 

devices. Power electronic equipment also has protection function to deal with 

emergency/faulty conditions. Control system is used to control power transfer in 

microgrid and to manage the whole system. Since parts of the microgrid often operate 

as independent entities, communication system is included to provide means for 

information transfer between these entities or central controller, if one exists in the 

system. Microgrid contains one more important component in its architecture being the 

point of common coupling (PCC). PCC is a controlled switch placed between the utility 

grid and microgrid which allows microgrid to be disconnected or reconnected to the 

utility grid according to the operating conditions. Typical structure of microgrid is 

shown in Figure 1-1 in previous chapter. 

Distributed generation sources are used in microgrids to generate energy out of 

available energy resources. According to the nature of resources they use, DG sources 

can be classified into renewable energy sources and nonrenewable energy sources. 
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Renewable energy sources are sustainable and environment friendly sources that 

include generation technology such as wind turbines, photovoltaic cells, fuel cells, mini 

hydro turbines, wave/tidal turbines, geothermal turbines and biomass turbines. 

Nonrenewable energy sources include generation technology such as induction and 

synchronous generators driven by internal combustion engines operating using natural 

gas, propane or fuel oil. Some of these technologies are discussed in the next 

subsection, more information can be found in literature [11, 12].  

Energy storage systems are used to store excess energy in microgrid when load 

demand is lower than momentarily capacity of generators and in the same time these 

systems are responsible for compensation of lack of energy when momentarily capacity 

of generators is lower that the load demand. Storage systems are critical components of 

microgrid that ensure power balance despite the load fluctuations and transients, in 

other words ESSs can be thought of as energy buffers that balance energy between 

supply and demand. Most commonly used ESSs are batteries, flywheels, 

supercapacitors and superconducting magnetic energy storage systems (SMES) as 

discussed in [13, 14]. 

Microgrids may include many different kinds of loads. These loads can be 

generally classified into two groups, sensitive and non-sensitive. Sensitive loads need to 

be supplied by high quality power and more importantly need to be supplied constantly 

(uninterrupted power supply). Non-sensitive loads have more flexible power quality 

specifications and can be shaded (turned off) when necessary. According to authors in 

[15, 16] classification of loads in microgrid is important; to be able to meet net 

import/export power in grid-tie mode; to stabilize voltage and frequency in island mode; 

to reduce the peak load to optimize operation of DG sources; and to improve power 

quality and reliability of sensitive loads. Microgrid can have both AC and DC type 

loads. 

Power electronics technology allows interconnection of generators, storage 

elements and loads in microgrid. These interfaces guaranty compatibility of different 

elements in microgrid while providing efficient and flexible energy exchange. Power 

electronics interfaces allow microgrid systems to operate in either islanded or grid-tie 

mode. In general sense power electronics interfaces are expected; to provide fixed 

power and local voltage generation; to facilitate the DG unit to satisfy load demand 

using energy storage systems; to incorporate control methods for load sharing between 

DG units; and to integrate various key technologies for future power systems [17 - 19].  
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Another element in microgrid closely related to power electronics is control 

system. Main tasks of control system can be defined as; control of export/import of 

energy from and to utility grid; control of active and reactive power flow in the system; 

control of DG sources and their characteristics; and control of system frequency and 

voltage within set limits. Control in microgrid systems has important place in research 

of microgrids and covers many different topics. 

Communication system is component of microgrid that realizes exchange of 

important information between different parts of microgrid. For the sake of better match 

between demand and supply of energy inside the microgrid, coordination between 

controllers of DG units, ESSs, loads and grid is done using communication system. This 

system in overall provides increased energy utilization efficiency and increased 

economic benefit for the microgrid operator. There exists no standard communication 

protocol used in microgrid yet, however general ways of dealing with this problem are 

discussed in literature and will be presented in following subsections. 

2.3 Microgrid Classification 

Classification of microgrid architectures can be done in few ways. In [16] this 

classification is done based on microgrid applications as; utility microgrids; industrial 

and commercial microgrids; and remote microgrids. On the other hand, more common 

classification is done based on the way power is distributed and transmitted inside 

microgrid, namely, DC microgrids, high frequency AC microgrids, line frequency 

microgrids and hybrid DC and AC microgrids. Each of these architectures has certain 

advantages and disadvantages that depend on the nature of components found inside 

specific microgrid. Hence during the microgrid design process these advantages and 

disadvantages should be considered and feasibility and economic studies should be 

performed to properly decide on suitable architecture for that specific microgrid. 

2.3.1 DC Microgrids 

Most of the modern loads found in residential buildings, office buildings and 

commercial facilities are of DC nature (PCs, printers/scanners, TVs, various home 
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appliances, etc). Number of pure AC loads is significantly decreased in modern systems 

due to the advances in power electronics and control theory areas. Even the 

conventional loads driven by AC motors (washing machines, refrigerators, air 

conditions, etc.) are being replaced by AC motors with inverters, supplied by DC 

power, that can control the motor speed and decrease overall energy consumption. Even 

though there are so many DC loads in usage, due to the AC power distribution system 

convention they are being driven by AC power. To accommodate the difference in 

power characteristics, AC/DC converters are being placed at their power inputs. These 

converters are usually designed using bulky line transformers and passive electronic 

components resulting in inefficient power conversion and introducing undesirable 

dynamics to the power system. As solution to these issues an introduction of DC power 

distribution system has been proposed and applied to many different systems such as 

telecommunication systems [20], ship power systems [21] and electrical vehicles [22], 

where they proved to be more efficient and cost effective than AC distribution systems. 

DC distribution systems are suitable for application to microgrids that contain DC loads, 

DC sources and DC storage units. 

Low voltage DC (LVDC) distribution network has been proposed in [23] to tackle 

the above mentioned problems and to realize future power systems based on DC 

microgrids. In [24] authors show that LVDC distribution network can improve 

efficiency of power delivery, ensures higher power quality than present distribution 

network (conventional AC) and can facilitate DG units connection. Opportunities and 

challenges in research of DC distribution system for industrial power system are 

discussed in [25]. Authors point out the interaction between power converters and issues 

related to the grounding of DC power distribution systems. Feasibility of a DC 

distribution network is analyzed systematically in [26] Application of DC microgrid to 

small scale, residential buildings is presented in [27, 28]. In overall it can be concluded 

that microgrids based on the DC distribution network have advantageous features 

including simple structure, low system cost and overall improved efficiency (decreased 

number of converters) compared to the AC microgrids [23, 24, 29].  

Figure 2-1 depicts a typical structure of DC microgrid. In this configuration DC 

generation and storage units are interfaced to DC link through DC/DC converter, AC 

generation units are interfaced to DC link through AC/DC converters, local DC loads 

are fed from DC link directly or through additional DC/DC converter and pure AC 

loads are interfaced through DC/AC converter. Connection of DC microgrid to utility 
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grid is done through central DC/AC converter. On the DC distribution level 

synchronization of source and storage outputs is not required. This advantage of the 

system decreases the complexity of control system. Different variations of DC 

microgrids are discussed in [30] where three DC link configurations are identified as 

monopolar DC link, bipolar DC link and homopolar DC link. 

 

 
Figure 2-1 Typical structure of DC microgrid 

2.3.2 High Frequency AC Microgrids (HFAC) 

In high frequency AC microgrids power is distributed at frequency higher than 

line frequency (50Hz/60Hz). Power electronics in these systems incorporate high 

frequency transformers and suitable converters. Typical HFAC microgrid is shown in 

Figure 2-2. Usually these systems operate at multi-kHz frequencies, nevertheless some 

microgrid systems can be developed to operate at 500Hz [31]. In general, high 

frequency power transfer offers certain advantages over and line frequency AC and DC 

microgrids, namely, power quality is easier to improve at higher frequencies, acoustic 

noise can be minimized with frequencies above 20 kHz, soft switching can be explored 

to reduce power losses and power transformers and passive filter elements can be made 

smaller in value and size [32]. On the other hand main disadvantage of HFAC is that 

they are limited to local areas since the losses are dramatically increasing with the 

distance. 
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Figure 2-2 Typical structure of HFAC microgrid 

2.3.3 Line Frequency AC Microgrids (LFAC) 

Typical line frequency AC microgrid is depicted in Figure 2-3. DG units that 

generate grid compatible AC power can be connected to the AC distribution network 

directly, while DG units that generate variable AC power have to be connected to the 

distribution network through additional AC/DC/AC or AC/AC converter. DG units that 

generate DC power are interfaced using DC/AC converters and storage units are 

interfaced using bi-directional DC/AC-AC/DC converter. AC loads are fed directly 

from distribution network and DC loads require AC/DC converter for operation. 

Control, protection, configuration and operation of LFAC microgrids with 

renewable and non-renewable based DG units have been investigated thoroughly in 

literature. Explicit literature review will not be given in this section for the sake of 

consistency. Literature review covering these concepts will be given in later sections 

when they are discussed in detail, additional review of LFAC can be found in [33]. 

Advantages of AC microgrid lay in its convenience due to the popularity of AC 

distribution network. Most of the operational loads on the market are designed to work 

with AC power. Compared to the DC microgrid, AC microgrids don’t need require 

central inverter which makes this configuration more modular and in the same time 

more failure resistant. When compared to DC microgrid, AC microgrids are less 

efficient and have synchronization requirements which increase the complexity of the 

overall system. 
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Figure 2-3 Typical structure of LFAC microgrid 

2.3.4 Hybrid DC/AC Microgrids 

Hybrid AC/DC microgrid architecture naturally appeared out of need to combine 

advantages of both AC and DC microgrids. In hybrid microgrids, DC sources are 

combined with DC loads and energy storage units while AC sources are combined with 

AC loads. Hybrid architecture presents effective way of integration of variety of DG 

units into existing utility grid [34, 35]. In these systems power converters are used to 

decouple AC and DC parts of microgrid electrically and in the terms of control and 

management. In hybrid microgrid DG units that generate AC power are placed on the 

AC side of microgrid together with AC loads and DG units that generate DC power are 

found on the DC side of microgrid together with storage and DC loads. 

Main advantages of hybrid microgrid can be summarized as follows [36]; 

elimination of unnecessary multi-conversion processes which implies reduction of total 

power loss; simplification of equipment and cost reduction by elimination of embedded 

AC/DC converters for DC loads; the connection of all DC loads to the DC side of 

hybrid microgrid make it easy to control harmonic injections into the AC side through 

the central DC/AC converter, thus guarantying high-quality AC power in the utility 

grid; and DC grid is capable of solving negative and zero sequence currents problems 

caused by unbalanced loads in AC distribution network thus eliminating the need for 

neutral wire in transmission which results in reduction of related transmission losses. 
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2.4 Microgrid Operation Modes 

Microgrids can be seen as controllable entities that operate as generator or load 

depending on the given conditions. Microgrids can be connected to utility grid or 

operate isolated from it, i.e. microgrids have two operating modes; grid-tie and island. 

In each of these modes microgrids operate on certain set of technical conditions that 

define control, communication and protection functions of the overall system. 

Microgrid is an electrical structure that can be isolated from the utility grid 

intentionally, or when utility grid fails (fault condition) or blacks out. The action of 

disconnection and reconnection from and to utility grid is controlled by microgrid 

control system and main switch is positioned at point of common coupling PCC. 

2.4.1 Grid-Tie Mode 

In this mode microgrid is electrically tied to the utility grid. It can be connected to 

the medium voltage (e.g. 11-65 kV) or low voltage (e.g. 110-690 V) networks 

depending on its location in the distribution network and the generating capacity [37]. 

In this mode microgrid either receives power from utility grid or injects power to the 

utility grid depending on the current economical or technical operating conditions. 

Technical operating conditions can imply that the power demand in microgrid is higher 

than the current generation capacity so deficit power must be received from grid or the 

power demand is lower than the current generating capacity so excess power is injected 

to the utility grid. Economical conditions on the other hand would consider the current 

cost of power import from and export to utility grid. 

In grid-tie mode, inverter interfacing microgrid with utility operates on voltage 

reference present at the utility grid. Voltage amplitude, frequency and phase angle 

references are obtained from grid voltage and inverter voltage is synchronized to it. 

After synchronization is achieved, inverters’ active and reactive powers are controlled 

according to the references commanded by microgrid operating manager [38, 39]. In 

this mode inverter operates as controlled current source. 
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2.4.2 Island Mode 

In island or standalone mode microgrid is disconnected from utility grid and 

operates as electrical island. All loads are supplied from available power generated by 

DG units or stored in ESSs. If generated power is higher than the demand power, excess 

power is stored to ESS and if the demand power is higher than the generated power, 

loads are supplied from ESS. Additionally non-sensitive loads can be shed if power 

capacity of microgrid is insufficient to support all of its loads [40, 41]. 

In island mode, inverter interfacing microgrid with utility grid operates as 

controlled voltage source. Reference voltage amplitude, frequency and phase angle are 

generated internally by microgrid operating manager and no synchronization with grid 

voltage is required. System voltage is regulated by balancing generation power and load 

demands [15]. 

Transition from grid-tie to island mode and vice versa is important topic to 

consider from the system stability point of view. Control method implemented in 

microgrid has to consider smooth transition between these two modes as one of the 

important requirements. 

2.5 Distributed Energy Sources in Microgrid Systems 

Energy sources in microgrid are mainly distributed energy sources, in literature 

also called distributed generation (DG) units or microsources. DG units that are of 

special interest for microgrid are small (<100 kW) energy sources with power electronic 

interfaces. DG technologies applicable for microgrid may include emerging 

technologies such as wind turbine, solar PV, micro-hydropower turbine, diesel powered 

generators, hydrogen fuel cells, small gas turbines and some well-established 

technologies like single-phase and three-phase induction generators and synchronous 

generators driven by IC engines [42]. Additionally combined heat power (CHP) systems 

are also very often used in microgrids. Different kinds of sources are being used in CHP 

systems such as microturbines driven by natural gas, hydrogen, or biogas, Stirling 

engines, and IC engines [43]. Microgrids may include two or more of these DG units. 

Choice of type of DG unit depends on many factors such as the climate and topology of 

the region, fuel availability and economic considerations. More information about DG 
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sources can be found in [11, 12]. 

DG units inside microgrid can be distinguished by their interface characteristics as 

conventional rotary DG units and electronically-coupled DG units. Example of 

conventional DG unit could be synchronous generator driven by a reciprocating engine 

or an induction generator driven by a fixed-speed wind turbine. Examples of 

electronically coupled DG units are fuel cells, PV systems and variable speed wind 

turbines. In terms of power flow control, a DG unit is either a dispatchable or a 

nondispatchable unit. The output power of dispatchable DG unit can be controlled 

through set points provided by control system. On the other hand the output power of a 

nondispatchable DG unit is controlled based on the optimal operating condition of its 

energy source. For example, a nondispatchable wind or solar unit is operated based on 

the maximum power tracking concept to extract the maximum possible power coming 

from wind turbine and solar panel, respectively. 

2.6 Control of Microgrid Systems 

Control of microgrids can be discussed from many different perspectives because 

indeed it is a research that covers many topics. This literature review deals with several 

aspects of control in microgrids.  

Power electronics interfaces in microgrids are used to interface various 

components of microgrid and allow reliable and high quality power exchange between 

sources/storage units and grid/loads. Such power electronics intense structure requires 

proper control strategies to be implemented [44]. Since microgrid design can vary in 

terms of services it provides (power back-up, grid support, main source of power), 

components it incorporates (sources, storage units, loads) and architecturally (AC, DC, 

hybrid), generalized control tasks are difficult to formulate. This problem can be looked 

at from different perspective, namely, definition of control tasks through the 

requirements of the standards for integration of microgrids into utility grid, for example 

IEEE Std. 1547.4 – 2011 [45],  

Based on Std.1547.4-2011 four modes of operation of microgrid have been 

identified as grid-tie mode, island mode, transition-to-island mode and reconnection 

mode. Grid-tie and island mode have been discussed previously in this text, as main 

modes of operation while other two modes can be seen as transitional modes. Properly 
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designed microgrid control system has to allow the operation of microgrid in all modes 

while satisfying its various technical requirements. 

In grid tie mode, control system needs information about protection devices 

status, current generation level, local loads and system voltage levels so the transition 

from grid-tie to island mode can be planned in advance [45]. Both AC and DC 

microgrids are based on the inverter for interface with utility grid and power transfer, so 

proper control of these devices is crucial for successful operation of the whole system. 

During grid-tie mode inverters are operating in current mode. In current mode inverter 

is given active and reactive power references to be controlled. Grid voltage is used as 

reference to obtain the voltage signal with correct frequency, amplitude and phase angle 

needed for current reference computation and power factor correction [46 – 48]. This 

control scenario in grid-tie mode implies that all sources and storage units can be 

viewed as current sources whose power flow can be controlled by controlling their 

output currents. Overall system stability is maintained by utility grid [49], as utility grid 

is expected to support difference in active/reactive power requirements and maintain 

voltage amplitude and frequency [50]. 

In island mode microgrid is disconnected from the utility grid so voltage 

reference, normally present in grid-tie mode, is lost and control system is responsible 

for its generation internally. The main task of control system in this mode is to ensure 

generation of adequate amount of power for local loads, which implies that the 

microgrid voltage amplitude, frequency and phase angle has to be maintained at the 

levels required by the connected loads. In island mode system inverters operate in 

voltage mode and together with sources and storage units they can be seen as 

synchronous generators with fixed frequency reference and fast voltage regulation 

control, so all the control techniques developed for these systems can be directly applied 

here as well. In general it can be said that sources and storage units in this mode are 

controlled voltage sources whose outputs share the load demand in proportion to their 

power ratings [51] not to overstress any individual unit [52 - 54]. Reason for such share 

of power resources is that there usually doesn’t exist a single dominant energy sources 

to supply overall power demand [55 - 57]. Each inverter in the system supports the 

power demand by adjusting its terminal voltage characteristics and consequently its 

output power. IEEE Std. 1547.4 – 2011 suggests that, in island mode there should 

always be power reserve margin as a function of load factor, magnitude of load and the 

load shape, reliability requirements of the load and the availability of DG units. To 
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maintain power reserve margin control system should implement techniques such as 

load following, load management and load shedding. This standard further puts 

requirements on the system stability that should be maintained for load steps, DG unit 

power outage and various faults. Control system should be flexible in order to meet 

these requirements. 

In transitional modes, transition-to-island and reconnection mode, control tasks 

are defined in the terms of safe, stable and seamless transition from one mode to other. 

In transition-to-island mode DG unit generating capability has to be available in the 

system to support voltage amplitude and frequency for the time necessary for transition 

to occur. In reconnection of microgrid to utility grid both systems have to be 

synchronized in voltage. In other words, microgrid voltage has to be controlled to 

follow utility grid voltage. 

Following the IEEE std.1547.4-2011 tasks of the microgrid controllers are defined 

as above. In [58] summary of microgrid controller responsibilities is given. According 

to the authors microgrid controller has to ensure that: (i) DG units work properly with 

predefined operating point (e.g. maximum power point tracking); (ii) active and reactive 

powers are transferred according to the necessity of microgrid and/or distribution 

system; (iii) disconnection and reconnection processes are conducted seamlessly; (iv) 

production of local DG units and power exchange with utility is optimized; (v) heat 

utilization for local installation is optimized; (vi) sensitive loads are supplied 

uninterruptedly; (vii) in the case of general failure the microgrid is able to operate 

through black-start; and (viii)  energy storage systems can support the microgrid and 

increase system reliability and efficiency. 

Based on the controller tasks and coordination, different controller architectures 

are proposed in literature. Among classifications the most common is classification of 

microgrid controller into; autonomous (local) controller and hierarchical controller 

which is further divided into centralized and decentralized type. Each of these 

architectures has their comparative own advantages and disadvantages regarding cost, 

operation and reliability which have to be analyzed in the design process of microgrid. 

Due to this reason, for a given microgrid, the most suitable architecture has to be 

decided. 

Autonomous (local) controllers are mainly used to control DG sources. This type 

of controller aims to keep DG sources at their optimal operating point and control their 

power electronic interfaces. Measured data used by local controllers are local currents 
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and voltages [58] and they usually don’t require communication interface with the rest 

of system which results in design simplicity and low cost. These controllers must ensure 

easy addition of new sources to microgrid system, sometimes called “plug-and-play” 

characteristic. 

It is difficult to specifically define the local controller because the details of their 

implementation would depend on whether they are operating in DC, AC or hybrid 

microgrid. Nevertheless, authors in [53] put effort towards this task by defining a 

general model of DG source connected to a microgrid. This model contains three basic 

elements, prime mover (source), DC interface with storage and voltage source inverter 

(power electronic interface). In this model, inverter is responsible for regulation of 

magnitude and phase of output voltage in order to control active and reactive power. 

Most common methods to regulate power is droop-based active and reactive power 

control, namely voltage-reactive power and frequency-active power droop control [59, 

60]. 

Hierarchical control system can be of centralized nature or decentralized nature. 

Centralized controllers are best used for microgrids that include DG sources, storage 

units and loads that have single owner or multiple owners with the same goal. 

Centralized controllers are also suitable for small scale microgrid that can be controlled 

with a presence of an operator [61]. On the other hand, decentralized controllers are the 

most suitable for microgrids that include DG sources, storage units and loads that have 

different owners with different goals so certain decisions should be taken locally. In 

decentralized control systems action of controller of each unit usually should have 

certain degree of intelligence [61] and be able to send and receive information through 

communication channels. 

Authors in [15] have identified three control levels in hierarchical controller 

structure, namely, grid level, management level and field level. Functions of grid level 

are to manage the operation of the medium voltage and LV areas with several 

microgrids. Distribution network operator (DNO) and a market operator (MO) are 

found on this level. DNO is interfaced with several microgrid central controllers 

(MGCC) found at the management level. At management level MGCC has tasks of; 

restoration control which improves voltage and frequency of the system; 

synchronization between microgrid and utility grid; managing the load serving or 

shading; and optimization of the production using some predefined cost function. At the 

field level, local controllers (LC) are found that are responsible for inner control of DG 
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units and storages in order to meet the voltage and frequency references. Local 

controllers can be also identified as load controllers for the case of controllable loads. 

These controllers are capable of working both when connected and disconnected to and 

from the main grid while guaranteeing the satisfactory performance of the system. 

DNO and MO operate and manage the microgrid and their main connection to 

microgrid is through MGCC. The MGCC has function of production maximization and 

coordination of LCs. On the other hand many microgrids can be interconnected, 

forming a network. In this case, an intermediate management control structure is added 

to carry out some management tasks [62]. 

2.7 Energy Management System and Communication in Microgrids 

Energy Management System (EMS) is a control layer of microgrid that is 

responsible for optimal allocation of power among DG units, supplying loads 

economically, synchronization and resynchronization of microgrid to utility grid and 

managing system status. Microgrid EMS has to ensure that given microgrid provides 

high-quality power in reliable, sustainable, environment friendly and cost-effective way. 

EMS should coordinate variety of DG units, storage units and loads. Microgrid EMS 

operates by receiving load and energy load and energy resource forecasting data, 

customer information/preference, policy, and electricity market information to 

determine the best available controls on power flow, utility power purchases, load 

dispatch, and DG / storage unit scheduling [63]. 

Energy management problem in microgrids lays in finding optimal dispatch of 

DG and storage units (in power system literature also called unit commitment). In grid 

tie mode EMS objective is to maximize profit [64] and in island mode EMS objective is 

to economically supply the local load [65]. Usually additional objectives can be 

considered such as minimization of greenhouse gas emission [65, 66] using multi-

objective optimization techniques. 

There are two approaches to the design of microgrid EMS, namely centralized and 

decentralized [63, 67] which are very closely related to the control architecture 

implemented in the given microgrid.  

Centralized EMS consists of a central controller that is provided with the relevant 

information of every DG unit in microgrid and microgrid itself such as cost functions, 
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technical limitations, network parameters and mode operation as well as information 

from forecasting systems (e.g., local load, wind speed, solar radiation). General 

framework for the development of centralized EMS is proposed in [68]. In [69] authors 

utilize dynamic linear programming in centralized EMS for a microgrid composed of 

hydrogen storage and wind. In [70] linear programming with heuristics is proposed in 

implementation of centralized EMS for a PV-storage microgrid. Different evaluative 

algorithms for optimization are also applied to the centralized EMS problem in [71] and 

[72]. In centralized architecture, computationally powerful central controller is 

necessary to process large amount of real time data coming from DG units, storage units 

and loads in a timely manner. This structure also requires the implementation of a 

reliable two-way communication infrastructure. Centralized EMS is easy to implement, 

has standardized procedure but high expansion cost and high communication network 

capacity.  

In decentralized microgrid EMS each microgrid component is controlled by local 

controller rather than by a central controller. Each of the local controllers communicates 

with other local controllers through communication network. Local controllers can 

make their own operational decisions independent of central controller. Decentralized 

EMS is usually constructed using Multi-Agent Systems (MAS). A decentralized EMS 

based on MAS for microgrids was first proposed in [73] as an alternative for 

coordinated operation of microgrids in a competitive market environment and with 

multiple generator owners. In these systems consumers, generators, energy units and the 

main grid participate in the market by sending buying and selling bids to the central 

controller based on their particular needs, availability, cost functions, technical 

limitations, expectations and forecasts. A similar MAS approach is also proposed in 

[74]. Additional agents assigned to different tasks such as load shifting and load 

curtailment to allow demand side management are proposed in [75] as well. There is no 

need for manipulation of large amounts of data which reduces computation time. 

Another important advantage of decentralized EMS is its flexibility, as it provides the 

plug-and-play feature. Disadvantages of this type of the EMS come into play when it is 

applied to microgrids that require strong cooperation between the different DG units in 

order to operate the system in a secure and reliable way. 

From the discussion above it can be seen that for a microgrid that is controlled in 

centralized or decentralized manner communication system is important component of 

the overall system. Since there is no standard way of communication system design 
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many different communication configurations and protocols are possible. In a 

conventional power utility system, the standards related to the communication system 

has been provided to ensure the exchange of critical information, e.g., control 

commands, status information, and measurement data, efficiently. Among the standards 

are Distributed Network Protocol (DNP), UCA 3.0, Modbus, and PROFIBUS, as well 

as other protocols with custom communication links. In [76, 77] authors provide a 

contemporary look at the current state of the art in communication systems of modern 

power grid.   

2.8 Protection of Microgrid Systems 

Microgrid protection system has a role of electrical protection of all equipment in 

microgrid. Microgrid protection system differs from the conventional utility grid system 

in type of protection devices used and in methods involved for detection of abnormal 

conditions in electrical network [78]. One of the major challenges in protection of 

microgrid is the design of protection system that can adequately operate in both grid-tie 

and island mode. This challenge mainly exists because fault currents have different 

characteristics in these two modes [79, 80]. 

In a properly protected microgrid, when fault occurs on utility grid microgrid is 

disconnected from faulty utility grid (islanding action), on the other hand if fault occurs 

in the certain section of microgrid that section alone is disconnected from the rest of 

microgrid and reconnected once the fault is cleared. This scenario gives out important 

properties of microgrid protection system. Firstly, the fault nature varies so protection 

has to be able to deal with various fault conditions, and secondly, protection equipment 

has to be placed strategically so fault can be localized with least possible influence to 

the rest of the system. In general, proper coordination between DG units, storage units, 

loads and protective equipment is crucial for safe operation of microgrid. Additionally, 

settings of the protective equipment should be always updated according to the mode of 

operation of microgrid (island or grid tie) [81 – 83] 

Microgrids generally incorporate both AC and DC type of equipment, so 

protection system has to be designed to protect both. Several protection methods for AC 

microgrid are reviewed in [84]. These methods resemble those used for protection of 

conventional utility grid. The issues of protection of microgrid and requirements for 
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protection of modern microgrids and smart grids are discussed in [79]. DC microgrid 

protection guidelines can be found in electrical safety standards for DC networks such 

as Finnish standard SFS 6000 or German standard VDE AR-N-4105. 

Widely used devices for protection devices are over-current relays, re-closers, 

sectionalized circuit breakers and fuses for AC equipment and fuses, molded-case 

circuit breakers, power circuit breakers, fast static switches and isolated case circuit 

breakers for DC equipment [30]. 

When microgrid is looked at as whole, regardless of working mode or the type of 

equipment protection categories can be classified to: (i) utility protection; (ii) power 

electronic converter protection; (iii) DG unit protection; (iv) feeder protection; and (v) 

bus bar protection [30]. 

2.9 Hybrid Energy Source in Microgrid 

Utilization of hybrid energy sources in microgrid is one of the most efficient ways 

to overcome the reliability and control of power delivery. These sources can consist of 

many different, both renewable and nonrenewable, energy sources. In literature authors 

mostly cover specific solutions. Most of the hybrid sources described in the literature 

are based on the wind turbine and photovoltaic (PV) modules as sources and battery 

units as storage elements [85 - 87]. Addition of fuel cell to wind turbine, PV module 

and battery is analyzed in [88 - 90]. This solution is very attractive from the energy 

reliability point of view since these sources can controlled to complement each other in 

operation effectively. Additionally, this combination is possibly the most pollution free 

combination of sources. A hybrid source alternative with diesel generator in 

combination with other renewable energy sources is analyzed in literature. Diesel 

generator and fuel cell are presented in [91, 92], diesel generator and wind turbine in 

[93] and diesel generator, wind turbine and PV module in [94]. 

Similar to the microgrid systems, system configurations for hybrid energy sources 

are DC coupled hybrid source, AC coupled hybrid source and combined AC/DC hybrid 

source [95, 96]. In DC coupled hybrid source system all of the sources and storage units 

are coupled to the common DC bus through appropriate power electronic interface and 

DC bus is interfaced to AC bus through an inverter.  Such configuration is mostly used 

for low power hybrid sources [95]. In AC coupled hybrid energy surce different sources 
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and storage elements are connected to a common AC bus through appropriate power 

electronic interfaces. Third configuration is mixture of DC coupled and AC coupled 

hybrid energy source [96].  

Considering the available literature in this field, most evident technical problems 

related to the utilization of hybrid energy source in microgrids are related to the 

selection of overall system configuration type, reduction of the system cost, design of 

appropriate control strategies, identification of control system requirements and 

specifications, optimal sizing of components, and selection of suitable energy storage 

technologies [97]. 

2.10 Conclusion 

In this chapter microgrid technology has been reviewed. From the presented 

literature review it can be concluded that currently a lot of research is being undertaken 

on the topic of design and control of microgrids and hybrid energy sources. In general, 

elements of the microgrid and hybrid energy source are looked upon individually and 

their control strategies are proposed. However, when several DG sources and energy 

storage units are connected together in microgrid or hybrid energy source, problems 

arise in uniqueness of the approach to the control of such system. Lack of electrical 

standards for development of such systems adds up to that problem.   

Microgrid control problem can be considered in different levels. Upper levels of 

control system are mostly dealing with monitoring, management and global operation 

strategies while lower levels of control system are mostly concerned with the control of 

power electronics interface control and local power control. It is evident from literature 

review that there has been no attempt in literature to generalize the control problem, 

such that certain or mixture of control approaches could be applied, directly or with 

little change, to the control of elements in modern microgrids consisting of renewable 

energy sources and hybrid energy sources in general. 

Renewable energy distributed generation penetration in utility grid has been identified 

as viable solution to the scarcity of fossil fuels and increasing environmental pollution 

problems, however the increased penetration of these sources causes stability and other 

operational problems. As a remedy, microgrid system has been presented and the way 

that this technology solves issues involved with integration of distributed generation has 
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been analyzed. There exist several possible microgrid architectures, DC, LFAC, HFAC 

and hybrid AC/DC. Advantages and disadvantages of these architectures are given 

together with their explanation. Further, operation modes of microgrid have been 

identified as grid-tie and island. Nature of both modes and their operational 

requirements are given. Implications of these modes on the control of microgrid systems 

have been listed and architectures of overall microgrid controllers are analyzed. 

Additionally protection, energy management and communication in microgrid systems 

have been reviewed. Hybrid energy source place in literature and important research 

challenges have been identified. 
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3 HYBRID SOURCE IN MICROGRID SYSTEM  

This chapter is organized to present work done towards accomplishing part of the 

objectives identified in Chapter 0. Through the work in this chapter following objectives 

were realized;  

o Modeling and analysis of sources and storage units as the elements of hybrid 

energy source in microgrid; 

o Definition of operational requirements of power electronics for interface of 

sources and storage elements into hybrid energy source; 

o Analysis of control system requirements for sources and storage elements; 

o Definition of power electronic interface and control system for hybrid source in 

microgrid. 

Modeling and analysis of PV system, wind energy conversion system, fuel cell 

system and battery storage system were done considering elements of these systems that 

are the most important for the definition of their power electronic interfaces and control 

systems. In all of the mentioned systems, energy sources (PV module, wind turbine, fuel 

cell and battery storage unit) were modeled considering physical phenomena that are 

affecting or defining their electrical characteristics. Furthermore, based on the electrical 

characteristics of the modeled sources set of the power electronic interface and control 

system requirements are given. As the final section of this chapter the proposed hybrid 

source and it’s power electronic interface and control requirements are identified based 

on the previous analysis for individual energy sources.  

3.1 Solar Photovoltaic (PV) System 

Sun energy is converted to electrical energy by means of solid-state electrical 

device called photovoltaic (PV) cell or simply solar cell. PV cell converts light into 

direct current electricity and has current-voltage characteristics that are function of the 
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characteristics of the light source, construction material and the device design. PV cells 

are made out of various semiconductor materials including silicon, cadmium sulfide, 

cadmium telluride and gallium arsenide. These semiconductors are usually employed 

for construction of PV cell in single crystalline, multi-crystalline, or amorphous forms. 

PV cells are usually low power devices with power range between 1W and 4W. 

Considering the voltage and current characteristics of a single PV cell it can be noted 

that these devices usually have low output voltage and high current output. For these 

reasons, PV cells are often combined into PV modules (solar panels) to achieve higher 

voltage outputs while current characteristics remain unchanged. PV modules can be 

constructed to produce outputs at various power levels. Currently, these modules are 

produced to generate up to 300W of DC power. Lower limit of generation power varies 

depending on the application of PV module, e.g. educational modules can be found with 

generation capacity of few watts. 

PV module integration into hybrid source should be done using particular 

configuration of PV modules, proper power electronics interface and control system. In 

order to define these elements of integration, PV cell and consequently PV module as 

series combination of PV cells should be modeled and analyzed. Furthermore, model 

should reveal electrical behavior and important characteristics of a PV module that will 

allow for definition of power electronics interface and control system design 

requirements.  

3.1.1 PV Module Modeling and Analysis 

When the light is incident on the PV cell charge is generated that causes electric 

current to flow once the cell terminals are loaded or short circuited. Generation of 

charge happens when the energy of the incident photon is sufficient to detach the 

covalent electrons of the semiconductor. Most basic explanation of electricity 

generation by PV cell can be described as the absorption of solar radiation, the 

generation and transport of free carriers at the p–n junction, and the collection of these 

electric charges at the terminals of the PV cell. The amount of current is dictated by the 

irradiance of the incident light, PV cell temperature and some other factors. Physics of 

the PV cell is relatively complex and its consideration is outside of the scope of this 

thesis. PV cell be analyzed based on electrical characteristics which is important for the 
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study of power electronics interfaces and PV systems integration into considered hybrid 

source and microgrid in general.   

Modeling of PV cell is relatively well explored topic in literature. PV cell is 

generally modeled as the current source in parallel with diode. Simplest model 

considers the current source and diode as ideal and model doesn’t consider any loss 

elements. More complicated model is considering the series resistance at the output of 

the cell to model the ohmic losses. On the other hand, model used in this thesis is 

considering current source to represent current generated by the irradiated light, a diode 

in parallel to it to represent cell polarization process and resistor in series and parallel 

(shunt) to model the ohmic losses of PV cell. Model under consideration is depicted in 

Figure 3-1. Such model is often called “one diode model” and it is used by PV cell 

manufacturers to determine the technical characteristics of their solar cells (data sheets). 
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Figure 3-1 PV cell electrical model 

Considering the circuit in Figure 3-1, electrical characteristics of PV cell can be 

modeled by expressing the terminal voltage 
pv

v in the terms of terminal current 
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i  or by 

expressing the terminal current 
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in the terms of terminal voltage 

pv
v . Either way the 

governing electrical equations are obtained using Kirchhoff’s current and voltage laws. 

From Kirchhoff’s current law following relation can be obtained, 
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From Kirchhoff’s voltage law following relation can be obtained, 
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Finally, PV cell current can be expressed as, 
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In the above equations 
ph

i is the photo-generated current at standard testing 

condition (STC), 0i  is the diode saturation current at STC, sR  is the series resistance, 

sh
R is the shunt resistance, A is the diode quality factor, k  is Boltzmann’s constant, q  

is the charge of the electron, n
T  is the temperature at STC and s

n is the number of cells 

connected in series (for single cell 
s

n  this coefficient is 1).  

Model parameters can be extracted from the PV cell manufacturers’ datasheet. All 

the values given in datasheet are given under STC, the testing conditions used to 

measure PV cell nominal power. Parameters not found in datasheet can be determined 

using method in [98]. 

Photo-generated current 
phi  depends on the sun irradiance and temperature of 

the PV cell or PV module. Above given model only considers dependence of this 

current on the irradiance, temperature is considered constant (specified during STC). 

Temperature dependency is omitted because it does not provide any crucial information 

when considering the power electronics or control of PV system. 

To justify the model from (3.5), simulation of electrical characteristics of 

commercial 300W PV module is done and results are shown in Figure 3-2. In this figure 

dependence of the electrical characteristics on the irradiance is indicated by multiple i-v 

responses for different irradiance values. It is clearly seen from this figure that photo-

generated current values increase with the increase of the irradiance. It is often the case 

that there exist a linear relationship between irradiance and photo-generated current.  

Additionally, Figure 3-3 shows the power change of module with respect to its 

terminal current. There is one maximum power point (MPP) for every test irradiance 

(global maximum). MPP is clearly shown with dot on the graph. 

Simulated PV panel electrical data are given in the Table 3-1. 
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Figure 3-2 i-v characteristics of solar module 

 
Figure 3-3 PV module power curves 

Electrical data 
SUNPOWER SPR-300NE-BLK-D PV module 
(Measured at Standard Test Conditions (STC): 

Irradiance 1000W/m², AM 1.5, and cell temperature 25° C) 
Nominal Power 300 W 
Panel Efficiency 18.4% 

Rated Voltage (Voltage MPP) 54.7 V 
Rated Current (Voltage MPP) 5.49 A 

Open-Circuit Voltage 64 V 
Short-Circuit Current 5.87 A 

Table 3-1 Simulated PV panel electrical Data 

3.1.2 Common PV System Configurations 

Available PV systems reveal several possible system configurations. These 

configurations are as follows; 

o centralized configuration (Figure 3-4), 

o string configuration (Figure 3-5),  

o multi-string configuration (Figure 3-6), and 

o modular configuration (Figure 3-7). 
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In centralized configuration solar panels are connected in a string composed of PV 

panels connected in series to reach high value of DC voltage in order to avoid further 

voltage amplifications. Multiple strings are then connected in parallel through sting 

diodes to reach high power levels. In grid connected centralized PV systems, PV panels 

are interfaced to the AC bus through centralized inverter. A centralized configuration is 

nonflexible and inefficient due to power losses coming from centralized MPP tracking, 

PV panel mismatch and losses in the string diodes. This configuration of PV system is 

not preferred for microgrid integration. 

A string configuration of PV system is modification of centralized configuration 

where each string of PV panels in series is connected to separate inverter for AC bus 

integration. This configuration still achieves high input voltage so voltage amplification 

may be avoided. If voltage amplification is necessary additional DC-DC converter can 

be added before the inverter.  Overall efficiency improvements are obvious because of 

the lack of string diodes and improved MPP tracking performance for a string. 

A multi-string configuration is modified version of string configuration. In a 

multi-string configuration several strings are interfaced with separate DC-DC converter 

to a common inverter. Each string can be controlled separately and power decoupling is 

achieved between strings and AC bus. This configuration of PV system is flexible, 

easily expandable and efficient comparing to central configuration. This configuration is 

suitable for microgrid implementation. 

In a modular configuration of PV system, each PV panel is interfaced with an 

inverter. This configuration gives an opportunity to individually design MPP tracking 

for each panel which in turn increases efficiency of the system. This kind of system is 

easily expandable and has plug-and-play feature. Main drawback is in design 

complexity because of necessity for high voltage amplification. This configuration is 

ideal for microgrid implementation. 

 

 
Figure 3-4 Centralized configuration of PV modules 
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Figure 3-5 String configuration of PV modules 

 
Figure 3-6 Multi-string configuration of PV modules 

 
Figure 3-7 Modular configuration for PV modules 

3.1.3 Power electronics interface and control system requirements for PV systems 

Most important characteristic of PV module is that output power is determined by 

terminal voltage and current which are results of output loading. This characteristic of 

PV system partly reveals design requirements for power electronic interface. Other 

design requirement of power electronic interface comes from the microgrid interface 

requirements. Power electronics interface for PV system has two main tasks, namely, 

one is to convert the generated DC current into a current suitable for interfacing to a  

microgrid, and other is to control the terminal conditions of the PV panel such that 

energy capture is maximized and panel is operated at maximum power point (MPP). 

Based on the PV system configurations discussed in the previous section, power 

electronics interfaces for these systems can be identified as a single stage power 

electronics interface and a multi-stage power electronics interface. Single stage power 

electronics interface includes DC-AC inverter as shown in Figure 3-4. This inverter is 

responsible for both MPP tracking and supplying grid current. On the other hand, a 

multi-stage power electronics interface, shown in Figure 3-5 -Figure 3-7, consists of a 
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DC-DC converter and a DC-AC inverter. A DC-DC inverter is responsible for MPP 

tracking, while a DC-AC inverter is responsible for grid current injection.  

The DC-DC inverters in multi-stage configuration and the DC-AC inverters in 

both single stage and multi-stage configurations can be constructed based on variety of 

power electronics topologies. The selection of topology is based on factors such as cost, 

efficiency, isolation and reliability. Cost of the power electronics interface can be 

reduced by using less number of components which in turn increases the reliability as 

well. Technically speaking, efficiency is the most important factor for the selection of 

power electronics topology. The efficiency of power electronics interface depends on 

conduction and switching losses. The conduction losses can be effectively reduced by 

reducing the usage of components and their operating ranges and switching losses can 

be reduced by soft switching techniques either by zero voltage crossing or zero current 

crossing techniques. The major advantages of soft switching technique over hard 

switching conditions are to reduce the losses over the device by about 20–30%. 

Most suitable power electronics interface configuration of PV source for 

integration into hybrid source is the multi-stage configuration. Requirement of the 

hybrid source is to have all of it energy sources connected to a common DC bus through 

a power electronic converter. In the case of PV source, since it is a DC source, this 

converter must be DC-DC. Control requirements for this converter are, as stated 

previously, controlled transfer of power from source to DC bus through the 

implementation of maximum power point tracking algorithm; source, converter and DC 

bus protection; and source health monitoring.  

3.2   Wind Energy Conversion System (WECS) 

General structure of WEC system is shown in Figure 3-8. Wind energy 

conversion systems convert the kinetic energy of the wind into mechanical energy using 

wind turbine. Wind turbine comes in many different configurations, horizontal wind 

turbine with three blades being the most commonly used. Despite different mechanical 

configurations, wind turbine, used for electricity generation purpose, is always coupled 

to an electrical generator. Type of generator is usually choice of the designer with the 

trade offs of efficiency, integration complexity and cost. Mechanical drive train is 

placed between turbine and generator and serves the purpose of transmission of motion. 
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Depending on the type of generator used, mechanical drive train complexity varies. 

Variable speed turbines include a blade pitch angle control for controlling the amount of 

power to be transferred. Power electronic interface in these systems has function of 

delivering power from output of the generator to the AC bus or storing it through 

implementation of storage elements in the system. Control system has function of 

controlling blade pitch system, supplying necessary control signals to power electronic 

interface, measuring variables of interest and making high level and low level decisions 

when necessary.  

 

Mechanical 

drive train

AC Bus

Generator

Control System

 
Figure 3-8 General structure of WEC system 

Wind turbines currently in use are ranging from few kW up to 2 MW in capacity 

and even larger ones are being built. A lot of different concepts for construction of 

turbines have been developed and tested [99]. One important modification in newer 

wind turbines is the introduction of pitch controllable blades, where it is possible to 

control the wind power input of the generator. These systems are called variable speed 

wind turbine systems in general classification. There exist also constant speed wind 

turbine systems; however these systems are less popular due to their low efficiency and 

control inflexibility. 

3.2.1 WEC System Configurations 

Most of the modern WEC systems are constructed using variable speed wind 

turbines. Variable speed wind turbines have many advantages over constant speed wind 

turbines such as increased power production, delivery of power with reduced fluctuation 

and ability to increase or decrease their speed if the wind speed or torque vary, which 

imposes less wear and tear on the shaft, gearbox, and other components in the drive 

train [100]. Variable speed wind turbines can incorporate few different types of 
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generators in their structure, namely, permanent magnet synchronous generators 

(PMSG), electrically excited synchronous generators (EESG), induction generators 

(IG), and doubly fed induction generators (DFIG), which are electronically coupled to 

microgrid through power electronics converters.  

In the case of synchronous generators and induction generators without rotor 

windings, a full power rated converter is connected between stator and microgrid. Total 

power produced from these generators must flow through power converters, hence the 

name full power rated electronic converter. On the other hand, for induction generators 

with rotor windings, stator is directly connected to the microgrid and their rotor is 

connected to partial power rated electronic converter and slip rings. Rotor connected 

converter supplies only portion of the power to the system and can be rated at power 

lower than the maximum generator power. 

Induction and synchronous generators are usually interfaced to microgrid 

through back-to-back full power rated electronic converters. Back-to-back converter 

consists of two voltage source converters (VSC) with shared DC link. Back-to-back 

converter gives good technical performance since full control of active and reactive 

power is achievable. When using such power electronics interface for generators, they 

are being decoupled from microgrid and can operate at wide range of speeds, necessary 

for optimal generation. Power extracted from the generator is sent to microgrid through 

the power converter which can control active and reactive powers independently. 

Four possible configurations of generators with full power rated power 

electronic converter are shown in Figure 3-9 - Figure 3-12 [100]. Depicted solutions 

have almost same controllable characteristics, where generators are decoupled from 

microgrid by a DC link and decoupled control of active and reactive powers. In the case 

of wind turbines including induction generator, the turbine blades are mounted to the 

generator through gearbox. Generator is further interfaced to microgrid through back-to-

back full power rated converter. Power electronics interface for induction generator is 

shown in Figure 3-9. In wind turbines including synchronous generator, turbine blades 

can be coupled to the generator through gearbox, Figure 3-10 or in the case of multi-

pole synchronous generators without it, Figure 3-11. Power electronics interface for 

both of these generator types is the same, full power rated back-to-back converter. It is 

important to notice the additional AC-DC converter used for field excitation of 

synchronous generators. Use of this additional converter is avoided by using PMSG as 

shown in Figure 3-12. 
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Figure 3-9 Power electronics interface for induction generator 

 
Figure 3-10 Power electronics interface for synchronous generator with gearbox 

 
Figure 3-11 Power electronics interface for multi-pole synchronous generators 

 
Figure 3-12 Power electronics interface for multi-pole permanent magnet 

synchronous generator 

Typical DFIG based wind turbine is depicted in Figure 3-13. The stator is directly 

connected to the AC bus and the rotor is interfaced through a back-to-back converter 

that consists of a rotor side converter (RSC) and a grid side converter (GSC) and a 

common DC bus [101, 102]. Grid Side Converter (GSC) has a task of maintaining the 

desired DC bus voltage through proper control. Rotor side converter (RSC) of DFIG has 

elementary function of active and reactive power control. Stator power is controlled 

through rotor circuit. 
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Figure 3-13 Power electronics interface for doubly fed induction generator 

3.2.2 Wind turbine modeling 

Comprehensive modeling of wind energy conversion system is out of scope of 

this work. Modeling in this section is done with the sole purpose of understanding the 

electrical and mechanical behavior of the wind turbine as the central component of 

WECS and eventually coming up with the design requirements for power electronic 

interface and control system design. For proper power electronic interface and control 

system design, it is important to understand the aerodynamic and mechanical behavior 

of the wind turbines and mechanical and electrical behavior of electrical generator 

employed in the wind turbine. 

Aerodynamics model of the wind turbine normally considers both turbulence and 

steady state behavior. Nevertheless to obtain the power output characteristics for the 

purposes of power electronics and control system design only steady state behavior is 

considered, i.e. the mean power output is determined by the mean wind speed. The 

mechanical power output of the wind turbine can be described by the following relation; 

 ( )2 31
,

2m p wP r c vρπ λ β=  (3.6) 

where ρ is the air density, r  is the rotor blade radius and 
wv  is the average wind speed. 

In (3.6), ( ),pc λ β  parameter represents the power coefficient. This coefficient is the 

function of tip speed ratio, λ, and controllable pitch angle β . This coefficient dictates 

the maximum power that can be extracted under given conditions. In ideal case this 

coefficient it 0.5926, meaning that 59.26% of available power in the wind is extractable. 

This limit is known as the Betz limit. Power coefficient 
p

c  can be calculated for a given 

turbine design and environment conditions, however most commonly used formula for 

calculation of this parameter is for 3 blade variable speed turbine [103]; 
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where 
r

ω  is the generators speed of rotation. 

Wind turbine model represented by (3.6) - (3.9) has been simulated using 

Matlab/Simulink and simulation results are shown in Figure 3-14. In the given graph, 

mechanical power is examined with respect to generator speed of rotation for different 

cases of wind speed, from 6 m/s up to 12 m/s. All curves exhibit similar behavior 

indicating that there exists maximum power point (MPP) at specific generator speed of 

rotation. It is always desired to operate wind turbine at MPP for a given speed of wind. 

To accomplish this task, control system has to control the speed of generator that 

corresponds to MPP. Simulation values are given in the Table 3.2. 

 

 
Figure 3-14 Mechanical power curve for different wind speeds 

 Wind turbine simulation data 
Air density ρ  1.29 kg/m3 
Blade radius r 1 m 
Pitch angle β  0o 

Rotor Speed Range rω  0 – 2500 rpm 

Wind Speed Range w
v  6m/s – 12 m/s 

Table 3-2 Wind turbine simulation data 
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3.2.3 DFIG generator modeling 

Among the asynchronous generator used in variable speed turbines Doubly Fed 

Induction Generator (DFIG) is the most popular option. DFIG is a special type of 

electrical generator that, when controlled, can track a prescribed torque-speed profile 

and can output power at any given wind speed. Power rating of the converter for doubly 

fed induction generator is generally much lower than the power rating of generator itself 

(about 25%-30%), which makes these generators ideal for WEC applications due to the 

reduced power rating of necessary electronic converters.  

Doubly fed induction generator comprises of a set of three-phase stator windings 

and a set of three-phase rotor winding. Rotor windings are fed through slip rings. 

Mathematical model describing the electrical dynamic behavior of DFIG is written for 

the set of windings on rotor and stator that can be supplied from separate voltage 

sources. More detailed analysis and modeling of three phase machines can be found in 

[104]. For each winding in rotor and stator voltage equation is in the form of 

 

,

;

.
i k

i i i

i i i m k

k

d
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dt

L i L i

φ

φ

= +

= +∑
 (3.10) 

In the above equations, the subscript i  is identifying winding under consideration, 

i
v is the terminal voltage, 

i
i  is the winding current, 

i
R and 

i
L are the resistance and self 

inductance of the winding and 
,i kmL  is the mutual inductance between the winding iand 

some other rotor or stator winding k . Above compact representation represents 6 

different dynamical equations (3 for stator and 3 for rotor). Usually, for three phase 

machines, winding equations are transformed into some other reference frame. By doing 

so, dynamic modeling and consequently control of three phase machines is simplified. 

DFIG dynamical equations are derived in stator synchronously rotating reference frame 

and expressed in the following form [105], 

 ( ) ,sd rd
sd s sd s s s sq m rq m

di di
v R i L L i L i L

dt dt
ω= + − + +  (3.11) 

 ( ) ,sq rq

sq s sq s s s sd m rd m

di di
v R i L L i L i L

dt dt
ω= + + + +  (3.12) 

 ( )( ) ,rd sd
rd r rd r s r rq m sq m

di di
v R i L L i L i L

dt dt
ω ω= + − − + +  (3.13) 
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 ( )( ) ,rq sq

rq r rq r s r rd m sd m

di di
v R i L L i L i L

dt dt
ω ω= + + − + +  (3.14) 

where , , ,
sd sq rd rq

v v v v
 
are stator and rotor voltages in stator synchronous reference frame, 

, , ,
sd sq rd rq

i i i i are stator and rotor currents in stator synchronous reference frame, 
s

ω is 

stator synchronous speed and ω  is electrical speed of rotor, 
s

R  and 
r

R  are stator and 

rotor resistances respectively, s
L  and r

L are stator and rotor self inductances 

respectively and m
L  is the mutual inductance between rotor and stator. All of the above 

derivation is done in stator voltage oriented synchronous frame and rotor and stator 

winding turn ratio is assumed to be equal. 

Expressions for stator active and reactive power are in the following form, 
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 (3.15) 

Stator active and reactive powers, on the first look seem to be coupled where both 

direct and quadrature current components influence both variables. However, if the 

synchronously rotating frame is oriented with respect to stator voltage, then the 

quadrature voltage vanish from the equations and independent active and reactive power 

could be achieved through the control of stator current components. Electromagnetic 

torque developed by DFIG as the result of currents flowing in rotor and stator becomes, 

 ( )3
,

2 2e m rd sq rq sd

p
T L i i i i= −  (3.16) 

where p  is the number of pole pairs. Often, it is desired that magnetizing current comes 

solely from voltage formed at the stator – so 0
rd

i = and above expression becomes, 

 
3

.
2 2e m rq sd

p
T L i i= −  (3.17) 

During the operation of DFIG developed electromagnetic torque counteracts the 

mechanical torque developed by wind turbine attached to the shaft of the generator and 

friction forces to dictate the speed of rotation of generator.  The nature of this 

interaction becomes clearer by looking at the DFIG’s equation of motion, 

 ( )
1

.m
m e m

d
T T b

dt J

ω
ω= − −  (3.18) 

Where m
ω is the mechanical rotational speed, m

T  is the mechanical torque 
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developed by the wind turbine blades (by sign convention –negative), J  is the 

combined rotational inertia of turbine and generator and b is the damping coefficient.  

3.2.4 Power Electronics and Control Requirements for DFIG Based WEC System 

As shown in Figure 3-13 power electronics interface for DFIG consists of back-

to-back converter placed between AC bus (electrical distribution network) and rotor 

circuit. Most of back-to-back converters are designed using pairs of three-phase 

transistors in half bridge configuration. Bridges are coupled through DC link including 

capacitor. Transistor can be either MOSFET type, with high switching frequency and 

low power rating or IGBT type with lower switching frequency and higher power 

rating. Three phase bridges can act as a rectifier or inverter depending on the imposed 

power sign. Different power electronics topologies are possible for the design of back-

to-back converters. For example, it is possible to construct back-to-back converter using 

so called multilevel inverters. These converters include an array of switching elements 

and capacitor voltage sources, the output of which generate voltages with stepped 

waveforms. One of the advantages of this multilevel topology is that the control of the 

switches permits the addition of the capacitor voltages, which reaches high voltage at 

the output, while the switches must withstand only reduced voltages. It has been shown 

that multilevel inverters are viable solution in renewable energy systems as interface 

medium for sources such as photovoltaic systems or fuel cells or with energy storage 

devices such as capacitors or batteries [106]. 

Main control requirements for DFIG based wind turbine can be identified as 

following; 

o Control of active and reactive power delivery; 

o Control of amplitude and frequency of stator voltage to match the load 

requirements in island or grid requirements grid connected applications; 

o Control of generators speed to achieve maximum  power point tracking; 

o DFIG stator and AC bus voltage synchronization. 

All of the above mentioned control requirements are achieved through proper 

control of rotor circuit currents. In general, the rotor current magnitude and frequency 

are controlled in such a way that stator voltage with fixed magnitude and frequency is 

generated while angular speed of rotor varies. 
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3.3 Fuel Cell Based Energy Conversion System 

Fuel cell is a device that converts the chemical energy from a fuel into electricity 

through a chemical reaction. Fuel cell consists of two electrodes – an anode and a 

cathode - and an electrolyte, arranged in matrix. Operation of fuel cell is similar to the 

operation battery, however in battery reactants and products are stored while in fuel cell 

they are continuously fed to cell. During operation hydrogen is fed to anode and air is 

fed to cathode, electrochemical oxidation and reduction take place at the electrodes to 

produce electricity. Produced power has DC nature. Heat and water are by-products of 

generation process.  

When compared to conventional generators, fuel cells that use hydrogen have 

several advantages; they are eco-friendly emitting less CO2 and NOX per kilowatt, fuel 

cells are noiseless and vibration free, since they have no moving parts, they are robust 

construction wise and they require little maintenance. There are many different types of 

fuel cells that use variety of fuels like natural gas, propane, landfill gas, anaerobic 

digester gas, diesel, methanol and hydrogen. However hydrogen is the most common 

fuel because it can be easily stored and transported, it is efficient and highly versatile. 

There are mainly four types of fuel cells with different electrolytes and operating 

temperatures, which are as follows: (i) Proton exchange membrane fuel cell (PEMFC) 

operating at 80°C; (ii) Phosphoric acid fuel cell (PAFC) operating at 200°C; (iii) Molten 

carbonate fuel cell (MCFC) operating at 650°C; and (iv) Solid oxide fuel cell (SOFC) 

operating at 1,000°C. Further information about fuel cell operation, classification and 

their utilization in microgrids can be found in [107]. 

3.3.1 Fuel Cell Modeling and Analysis 

Modeling of fuel cell is rather complex since it includes fluid dynamics modeling, 

electrochemical modeling and thermal modeling. Modeling of fuel cell has been a topic 

of research of great interest and authors have developed varieties of models including 

fluid dynamics, electrochemical and thermal phenomena. Many of the present models 

are done with the purpose of fuel cell design and as such include many details which are 

not of interest for this thesis. When considering the fuel cell as a component in a 

microgrid, its electrochemical model is of crucial importance. Electrical characteristics 
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of fuel cell have to be identified in order to come up with power electronics interface 

and control system requirements. Electrochemical model of fuel cell is developed with 

the aim of coming up with the mathematical description of polarization curve. 

Understanding of polarization curve of a fuel cell has to be done by identifying 

the operating regions of fuel cell as the activation region, the ohmic region and the 

concentration region. Due to the electrical characteristics of the fuel cell, increase of the 

output current will increase internal voltage drop of the fuel cell and consequently 

terminal voltage of the device will decrease. The major factors that contribute to the 

terminal voltage drop are: activation loss, ohmic loss and concentration loss [108]. 

Operation of fuel cell in the activation region is consequence of light loading and 

small output currents. In the activation region, electrochemical reactions occurring 

internally in the fuel cell are typically complex and energy intensive and reflect as 

nonlinear increase/decrease in the voltage output. On the other hand, in the ohmic 

region, voltage increase/decrease is relatively linear with respect to change of the 

loading current. Electrical operation of the fuel cell in ohmic region can be simply seen 

as voltage source with resistance connected in serial. Increase of the current will cause 

increased voltage drop across series resistance and consequently terminal voltage will 

decrease. At very heavy loading of the fuel cells when the output current is large, the 

output voltage falls down significantly because of the reduction of gas exchange 

efficiency, it is mainly due to over-flooding of water in catalyst and this region is also 

called concentration region. 

General equation of fuel cell voltage, extensively used in the literature is given by, 

 .
fc o act ohm conc

V V V V V= − − −  (3.19) 

Value of fuel cell voltage 
fc

V  is defined by open circuit voltage o
V  and voltage 

drops due to the fuel cell operation in different regions of polarization curve, namely, 

activation voltage drop act
V , ohmic voltage drop ohm

V  and concentration voltage drop

conc
V . Usually commercial fuel cell is evaluated by the curve that represents voltage of 

the fuel cell versus the fuel cell current or current density, similar to the PV cell. 

The following equation has been proposed by authors in [109] to model the 

electrochemical phenomena occurring in fuel cell; 
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Where parameters 1 8...x x  are determined experimentally for a fuel cell under 

consideration using method described in [109], st
T is the operating stack temperature 

and 0
stT  is the testing temperature of the stack, 

2O
P  and 

2H
P  are the operating pressures 

of the oxygen and hydrogen respectively and j  is the current density defined by, 

 .fc

fc

I
j

A
=  (3.21) 

With 
fc

I being the fuel cell current and
fc

A is the active fuel cell area. Additionally 

three expressions complete the model of stack voltage, 
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In the above equation 
fc

n is the number of fuel cells inside the stack. 

Simulation of equations (3.20) through (3.22) is done using Matlab/Simulink, 

Behavior of stack voltage with respect to the stack current is shown in Figure 3-15. 

Three regions of stack operation are clearly identified on the figure as activation region, 

ohmic region and concentration region. Change of power with respect to current is 

given in the Figure 3-16. This graph shows the power curve for the constant operating 

temperature and constant operating hydrogen and oxygen pressures. It is important to 

note that fuel cell stack has maximum power point, behavior similar to wind turbine and 

photovoltaic module. Power curve variation with respect to operating temperature of the 

stack is shown in the Figure 3-17. Maximum power point varies for different operating 

temperature. Table 3.3. lists the simulation parameters.  

 

 

Figure 3-15 i-v characteristics of fuel cell stack 
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Figure 3-16 Fuel cell stack power curve 

 
Figure 3-17 Power curve variation with respect to stack temperature 

Fuel cell stack and simulation data (Nexa® 1200) 
Rated Power 1200 W 

Rated Voltage 24 V 
Rated Current 50 A 

Rated Temperature 0
stT  308 K 

1 2 3 4
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x x x x

x x x x

 
 
 

 
1.17,  0.0076,  0.24,  0.18 

0.015,  0.64,  288.59,  10

 
 
 

 

2O
P

 0.16 bar 

2H
P

 1.25 bar 

fcn  46 

fc
A

 110 cm2 
Table 3-3 1.2kW fuel cell datasheet values and simulation data 

3.3.2 Power Electronics and Control Requirements for Fuel Cell System 

Power electronics interface for fuel cell is given in the Figure 3-18. Operating 

regions of the fuel cell and the electrical characteristics associated with these regions 

give out important insights into the design of power electronic interface. Power 
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electronics design is similar to the PV module interface design. A DC-DC converter is 

placed between the output terminals of the fuel cell and the DC bus. For AC bus 

connected systems additional DC-AC converter is placed between DC and AC buses. 

Most basic control requirement for the fuel cell system is the output voltage 

regulation at a given load. In other words, maximum power point tracking is 

implemented through the control of a DC-DC converter. For the AC bus connected fuel 

cell, a control system has to regulate active and reactive power and AC bus voltage 

magnitude and frequency. Additionally control system is responsible for 

implementation of protection for both converter and fuel cell and for fuel cell health 

monitoring.  

 

 
Figure 3-18 Power electronics interface for fuel cell 

3.4 Energy Storage System 

Distributed generation sources used in microgrid have relatively low generation 

capacity and use electronic converters at their outputs to generate suitable form of 

power according to specified power requirements. Compared to conventional generation 

systems, which are dominated by rotating electrical machines with large rotating mass 

and damping, DG units have small or no rotating mass and damping. In other words DG 

sources can be considered as inertialess generation systems. This feature of the DG 

sources makes them unable to effectively respond to surge power or power mismatch. 

Energy storage systems appear as an effective solution to these problems in microgrid. 

Energy storage systems can be controlled to simulate the effect of inertia, naturally 

found in conventional generation system, with the aim of increasing power reliability 

and overall microgrid system stability. 

Energy storage systems play especially important role in microgrids that integrate 

renewable energy sources since these sources are largely affected by environmental 

conditions and their power output is hard to predict. Intermittent power delivery of 

renewable energy systems has poor effect on overall power reliability and stability of 
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microgrid system. Properly designed energy storage systems are used to mitigate 

problems related to the intermittency and instability of power in microgrids. 

Most commonly used types of energy storage systems in microgrid are; super-

capacitors, batteries, superconducting magnetic energy storage systems, kinetic energy 

storage in flywheels and hydrogen based energy storage. Due to the importance of 

energy storage systems in microgrid, these systems have been extensively covered in 

literature. Literature reviews covering particular applications of ESSs and their 

comparative advantages and disadvantages can be found in [110-112]. 

Batteries are devices that store energy in electrochemical form. They consist of 

cells connected in series and parallel that include conductor electrodes and electrolyte 

placed together in the sealed container and connected to the external load. Batteries are 

the most widely used energy storage systems available on market. Their size and 

capacity ranges from 100W to several megawatts. Batteries provide rapid response for 

charge and discharge operations. Nevertheless, discharge rate is limited by chemical 

reactions and the type of battery. Types of batteries used in microgrids are lead-acid, 

nickel-iron, nickel-cadmium, nickel metal hydride and lithium ion. Their average 

efficiency is between 60%-80% [113]. 

Super-capacitors also go by the name ultra-capacitors or double layer capacitors, 

are storage devices that store energy directly without chemical reaction and have small 

response time. These devices have much higher energy density and capacitance 

compared to the regular electrolytic capacitors. Cells forming super-capacitors have 

capacitance values from 5F to 2700F and rated voltage between 2V-4V. Due to the low 

output voltage cells are connected in parallel and series to form a module with desired 

voltage. These devices are relatively expensive, however compared to the other storage 

systems they have unbeatable characteristic of absorbing and releasing large amounts of 

energy in very short period of time. New trends in this technology are usage of super-

capacitors for temporary high peak power demands, integration with other storage 

technologies and development of high voltage applications [114]. 

Flywheel is electromechanical device that stores energy in the form of kinetic 

energy. Rotating mass is connected to the electrical machine. Electrical machine is used 

as motor and rotates the flywheel to store kinetic energy when excess energy is 

available in the system. Energy is extracted from flywheel during power dips through 

the same mechanism, only rotating machine is used as generator this time. Flywheels 

are classified to low speed-large inertia and high speed-small inertia. These storage 
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systems have relatively high efficiency (around 80%), low cycling life, wide operating 

temperature range and high power/energy density [115-118]. The disadvantages of 

flywheel systems are large dimensions, high standby loss and noise pollution. 

Superconducting magnetic storage systems are storing energy in magnetic field 

which is created by injection of DC current in superconducting coil at low temperature. 

Resistive losses of this system are small and their efficiency is high (around 95%) [113]. 

There is very short time delay during charge or discharge of energy in these systems. 

The output power is available almost instantaneously and in large quantities. Main 

disadvantage of these systems is their cost due to refrigeration and expensive coil wires.  

In hydrogen based energy storage systems excess energy is used to produce 

hydrogen from water and store it. This system consists of water electrolyzer system, 

power conversion system, hydrogen storage system and fuel cell. Fuel cell is explained 

previously as DG source and it is crucial to convert energy from chemical reacting into 

electrical energy. Electrolyzer and fuel cell have relatively low efficiencies of 60% and 

70% respectively [119], so resulting overall efficiency of this kind of storage system is 

somewhere between 40% - 45%. 

Choosing of the proper energy storage for a microgrid is a topic of discussion 

among the researchers. There are many criteria according to which energy storage 

system are chosen as the most suitable solution. Definitely, energy storage selection is a 

subject of system optimization. In this thesis, battery storage system is chosen as further 

topic of discussion due to the technology maturity, their availability and low cost.   

3.4.1 Battery Modeling and Analysis 

Modeling of battery can be done by considering the electrochemical processes 

that are occurring during its operation. Development of such a model is necessary for 

particular battery design and optimization. From the electrical point of view and from 

the point of view of microgrid integration of battery, a much simpler model can be 

developed to serve the purpose of definition of power electronic interface and control 

system requirements. Model developed for these purposes can be concerned only with 

electrical behavior of battery during charging and discharging processes. Developed 

model can be analytical, empirical or result of mixture of these two methods. 

General model of battery including the electrical behavior during charging and 
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discharging processes and state of charge information can be developed by considering 

the battery voltage equations as; 

 exp ,
b oc pol ohm

V V V V V= − − +  (3.23) 

where 
b

V  is the battery output voltage, 
oc

V is the battery open circuit voltage, 
pol

V is the 

voltage drop during the polarization phase, ohmV  is the ohmic voltage drop due to the 

internal and polarization resistance and expV is the exponential voltage of battery. 

Depending on the type of the battery (Li-Ion, Lead-Acid, NiMH or NiCd), the 

charge and discharge models differ. In this thesis the Li-Ion model is given, for models 

of other types of battery one can refer to [120]. Charge model of Li-Ion battery can be 

modeled by following expression 
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and discharge model can be modeled by following expression, 
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where κ is the polarization coefficient or polarization resistance, Q  is the battery 

capacity, R is the exponential zone constant A  is the amplitude of exponential zone 

and B is the exponential zone time constant. Authors in [120] show the method for 

calculation of unknown parameters using information from datasheet.  

Important parameter to consider for battery is the state of charge. This parameter 

is 0 when battery is empty and it is 1 when battery is full. State of charge (SOC) is 

expressed by following equation, 

 ( )
0

1
100 1 .

t

bSOC i t dt
Q

 
= − 

 
∫  (3.26) 

Model of battery from (3.24) and (3.25) is implemented in Matlab/Simulink for 

12V/100Ah Li-Ion battery. Technical specifications of battery are given in the Table 

3-4, and simulation results are given in the Figure 3-19. Simulation results show battery 

discharge characteristics. In other words output voltage behavior is plotted in time when 

constant current is drawn from battery. Battery is tested for different values of discharge 

currents (50A, 100A, 150A) and shown on the same graph. As expected higher current 

values discharge battery faster. 
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Figure 3-19 Li-Ion battery discharge curve 

12V/100Ah Li-Ion battery and simulation data 
Nominal Watt Hours 1320 Wh 

Nominal Capacity 100Ah 
Nominal Battery Voltage 12 V 
Open Circuit Voltage Voc 13.52 V 

Internal Resistance R 1.24 m Ω  
Polarization Resistance κ   0.503 mΩ   

Exponential Zone Amplitude A 1.0325 V 
Exponential Zone Time Constant B 0.611 Ah-1 

Table 3-4 12V/100Ah Li-Ion battery datasheet values and simulation data 

3.4.2 Power Electronics and Control Requirements for Battery Based Storage 
System 

Battery storage units produce or store DC power. Battery storage units are usually 

connected series/parallel combinations based on the power requirements. Battery 

storage unit in hybrid source need power electronic interface to operate in a controlled 

way (controlled charging and discharging process). Hybrid source connected battery 

needs a DC-DC converter to be interface to a DC bus and for its connection to AC bus it 

needs additional DC-AC converter. When comparing to the other power electronic 

interfaces usually used for sources, the battery storage system requires interface that 

allows bidirectional flow of power from DC bus to it and from it to DC bus. Power 

electronic interface is shown in the Figure 3-20.  

Control system requirements for battery storage unit are somewhat different than 

for other sources analyzed in this chapter. Battery control system is solely responsible 

for DC bus voltage regulation. This requirement in the same time means that, battery 

control system should detect excess power in the DC bus and store it or should detect 

the deficit of the power in the DC bus and compensate it by discharging battery.  
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Figure 3-20 Power electronics interface for battery storage 

3.5 Hybrid Energy Source in Microgrid 

Hybrid energy source (HES), as explained in introductory chapter, consists of 

multiple energy sources that complement each other in energy delivery. Proper selection 

of sources, power electronics interfaces (power conversion units) and control strategies 

to be included in the HES results in the system that is reliable and efficient in energy 

delivery. From microgrid point of view, HES is an energy source that offers flexible 

energy control while delivering or storing sustainable and clean energy. It can be said 

by confidence, that such energy structure, when integrated to a microgrid, increases 

overall system efficiency.  

Integration of distributed generation and storage units into hybrid energy source is 

done through power electronics interfaces. Throughout this chapter, most typical power 

electronics interfaces for various different renewable energy sources and battery storage 

unit were analyzed. Most important conclusion of this analysis is that power electronic 

interfaces for the sources under considerations are structurally very similar. This fact 

contributes to, the objective of this thesis – development of a framework for analysis 

and control of power electronics interfaces in microgrid connected hybrid energy 

source. Analysis of sources in this chapter has showed that for AC bus connected 

systems power electronics can be designed such that the source dynamics are decoupled 

from the rest of the system through implementation of a DC bus. In such power 

electronics interface configuration, there is a common pattern of multi-stage power 

conversion for all analyzed sources. The same pattern can be demonstrated for other 

sources commonly found in microgrid but not analyzed in this thesis.  

For the purpose of integration of renewable energy sources into HES, their power 

electronics interfaces are put into a suitable form. Basically, for the power electronic 

structures from Figure 3-4 – Figure 3-7, Figure 3-13, Figure 3-18 and Figure 3-20 the 

power converter between DC bus and AC bus is the same, so for the HES integration 
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purposes it has been combined into a single converter responsible for power conversion 

between DC and AC buses. Each source is then integrated to the HES through power 

electronic converter between its output and DC bus (Figure 3-21). Different types of the 

sources (not considered in this thesis) could be integrated into HES in the same way. 

For HES structure, following components can be identified; sources, input side 

converters and controllers, DC bus, output side converter and controller, an AC bus and 

HES control system. Each element can be described as follows; sources represent a 

primary energy sources that can be treated as distributed generation units or as storage 

units; input side converters are the power electronic converters responsible for input 

power conversion; input side controllers are responsible for input power control and 

various monitoring tasks; DC bus acts as an intermediate agent for power transfer 

between input and output side converters; output side converter is responsible for 

power conversion between DC bus and AC bus; output side controller is an element of 

this interface that controls the power delivered to the AC bus, synchronizes the HES 

with an AC bus in terms of voltage magnitude and frequency and monitors the AC bus; 

AC bus is generalized bus that can represent a utility grid, microgrid or distribution 

network for local loads; and HES control system is mainly responsible for power 

balancing in the DC bus according to an external power reference demanded by a 

microgrid. Identification of each of HES elements is necessary to come up with the 

design requirements. Sources are analyzed and their characteristics are discussed in the 

previous sections of this chapter so it will not be repeated here.  

Input side converter is a power electronics interface connected between source 

and DC bus. Primary function of this converter is to act as the power conversion agent 

between source and DC bus. If the source is considered to be DG unit, power flow of 

this converter is mostly unidirectional and power flows from the source to the DC bus. 

On the other hand, if the source is considered to be storage unit then power flow of 

input converter is bidirectional, meaning that power flows from DC bus to the source 

during the absorption (charging) process as well as from the source to the DC bus 

during the generation (discharging) process.  

Power coming from the source can be of AC or DC nature. Example of distributed 

generation units that generate DC power are PV and fuel cells, on the other hand, DG 

units that generate AC power are many, including wind turbines, small hydro-turbines, 

small gas-turbines and induction/synchronous generators driven by IC engines. Most of 

the energy storage systems that utilize generation and absorption through single 
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electrical connection, such as batteries, super-capacitors and superconducting magnetic 

storage system generate and absorb DC power, while flywheels and pumped water 

energy storage systems with reversible turbines require the AC power to operate. On the 

other hand, hydrogen and compressed air based energy storage systems do not generate 

and absorb power through same electrical connection, so they can be viewed as “useful” 

loads during the absorption and as DG units during generation process. In that light, fuel 

cells are using hydrogen to generate DC power and induction/synchronous generator is 

used in compressed air systems to generate AC power. 
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Figure 3-21 HES structure - source integration - power electronics interface 

Input side converter can be topologically classified as DC-DC converters or AC-

DC converters. It is important to note that power flow in these converters can be either 

unidirectional or bidirectional depending on whether source is DG unit or storage unit.  

To accomplish controlled power conversion, input side converter must include 

measurement/sensing circuits in its structure. Sensing circuits in the input converter are 

mostly responsible for voltage and current sensing both at the input and output of the 

converter. Sensing of voltage and current values at the input and output of this converter 
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is primarily used by control system to perform control actions and monitoring. 

Depending on the specific design of input side converter, additional measurement 

circuits can be incorporated in its structure to measure source associated environmental 

conditions (e.g. temperature, humidity, etc.).  

Input side converter additionally includes protection equipment in its structure. 

The protection equipment is usually responsible for protection of both converter 

components and source from various faulty electrical conditions. Protection circuits 

included in this converter are standard AC and/or DC power protection equipment. 

Besides hardware protection circuits, certain protection functions can also be software 

implemented in the input side converter.   

The output side converter is connected between DC bus and AC bus and it acts as 

a power conversion agent between these two buses.  During its operation output side 

converter has to do conversion that is consistent with the demand and supply depending 

on the availability of power at either bus. This converter must be able to supply both 

active and reactive power to the AC bus. Likewise, this converter has to be able to 

import power from AC bus. Thus this converter is bidirectional AC-DC/DC-AC 

converter.  

For the proper operation of this converter monitoring and measurement circuits 

must be implemented on both DC bus side and on AC bus side. Measurement circuits 

sense the currents and voltages necessary for power control and AC bus 

synchronization. Similar to the input side converter, the output side converters includes 

certain protection equipment in its structure. This protection equipment is used to 

protect both the converter and the AC bus depending where the fault occurs.  

Input side controller tasks are related to the driving and controlling of input side 

converter. Generally speaking control tasks of input side controller are the control of the 

input power, protection of the source and protection of the converter. Nevertheless more 

specific control tasks must be defined according to the type of the source that is being 

interfaced. Controller requirements for each source under consideration in this thesis are 

discussed in the previous sections.  

Output side controller controls the power that flows from DC bus to the AC bus 

according to power reference supplied by the HES control system. This controller 

additionally has a task of synchronization of converter output and AC bus when voltage 

at the AC bus is defined externally or it is responsible for forming of AC bus when 

voltage is not defined externally (island mode). 
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3.5.1 Proposed Hybrid Energy Source 

Proposed HES is shown in Figure 3-22. All of the energy sources are integrated 

using common DC bus. PV and fuel cell sources are integrated through DC-DC 

converter. Wind source includes DFIG whose rotor circuit may be supplied from DC 

bus to create conditions for power flow from its stator terminals toward AC bus. Power 

flow from rotor circuit towards the DC bus is also possible when DFIG rotational speed 

is larger than its synchronous speed. Battery storage is interfaced to DC bus through 

bidirectional DC-DC converter. Electrolyzer is interfaced to the DC bus through DC-

DC converter. From power electronics and control system point of view, electrolyzer is 

seen as a controllable DC load and can be used to implement efficient power 

management strategies. 

It is important to note that DFIG system may require high voltage at the DC bus. 

In the figure it is shown with dashed lines to indicate this. DFIG bus integration could 

be handled with additional DC-DC converter if it is required. 

3.6 Conclusion 

In this chapter operation of PV, wind and fuel cell renewable energy sources and 

battery storage were analyzed and their power electronics and control requirements 

were identified. In the last section of this chapter set of power electronic and control 

requirements of overall HES was given and some integration issues associated with 

HES were discussed.  

Main conclusion regarding the analyzed sources is that there exist certain two 

stage power electronics configurations that can be utilized for the integration of all of 

the sources into HES. Two stage power electronics configuration consists of input side 

converter, DC bus, output side converter that is connected to AC bus (microgrid). As a 

result of this analysis, it has been shown how multiple sources can be integrated into 

HES (Figure 3-22). 
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Figure 3-22 Proposed HES structure 
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4 SWITCHING POWER CONVERTERS –  TOPOLOGIES AND 

CONTROL  

The role of a power converter is to interconnect available electric energy sources 

with loads and to control the rate of energy exchange between source and the load. The 

form of the available electric energy sources and the form required/desired at the load 

side may not be the same. The power converters are devices interposed between 

available sources and the loads – thus an element of the overall power conversion 

system. Any energy consumed by power converter while performing desired rate of the 

power conversion control is, in principle, unnecessary loss and consequently, to satisfy 

application requirements power converter must be made as efficient as possible. From 

the aspect of efficiency and control of electric power flow the static converters 

operating in the switching mode represent the best solution.  

This chapter presents unified approach to the analysis and control of power 

converters found in the power electronics interface of hybrid energy source as one of 

the remaining two objectives specified in Chapter 1. First, generalized converter 

structure is introduced; the roles and basic operation are identified. Further, DC-DC, 

AC-DC and DC-AC converters are analyzed and their dynamics are written. Finally the 

control method based on sliding mode theory is given and unified approach to the 

control of all of the converters is shown. 

4.1 The Role of Switching Converters 

In the most general case the source and the energy conversion process (load) may 

be generating and/or consuming energy (sink - negative power source) – thus power 

converter has to be able to support bidirectional power (Figure 4-1). 

The polyphase AC is a prevailing electric energy distribution system. Hence, a 

conversion of polyphase AC of some frequency and voltage to polyphase AC of some 
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other frequency and voltage is the most general type of power conversion. However, the 

distinct properties possessed by certain power distribution, traditionally the polyphase 

AC (most often three-phase), single phase AC and DC distribution systems are 

recognized. This leads to possible four conversion functions that can be implemented, 

namely: AC-AC, AC-DC, DC-AC and DC-DC (Figure 4-2).  
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Figure 4-1 The connecting role of a switching converter 

For a source interconnected to a given load, no voltage and current could be set 

independent. That leads to recognition of the two classes of sources: so-called voltage 

source and the current source.  

A voltage source ( ) ( ){ },v v vS v t i t= ∀ , with terminal voltage ( )vv t  as independent 

variable while the current is the voltage source dependent variable determined by the 

circuitry connected to voltage source terminals.  

 

 
Figure 4-2 The basic conversion functions 
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A current source, ( ) ( ){ },c c cS i t v t= ∀ , with current ( )ci t  as independent variable 

while voltage across current source terminals ( )cv t  is dependent variable determined 

by the current state of the circuitry connected to current source terminals. 

The converter is an interconnecting electrical network facilitating the 

transformation of current state of the electric power source 
g

S  into the state of the 

electric power sink ( )s g
S S= Ω . The interconnecting network together with sources and 

sinks satisfies Kirchhoff’s laws and acts in a way that uniqueness of the solutions for the 

branch currents and node voltages is ensured. The dependent variables on the source 

and sink terminals need to be determined.  

4.2 Switching Matrix 

The most general converter interconnects a poly-phase ac source with a poly-

phase ac sink. Let ( ){ }g g
S t= v  be a poly-phase voltage source connected to n  input 

lines, where jth input line is connected to independent voltage sources ( ){ }gj gjS v t= ,

1, 2,...,j n= . Vector 1...
T

g g gn
v v =  v  stands for 1n×  voltage vector. A poly-phase 

current source ( ){ }s sS t= i  is the power sink with each kth line is interconnected to 

( ){ }sk skS i t=  1, 2,...,k m=  as independent current sources. Vector [ ]1 ...T

s s smi i=i  

stands for the 1m×  current vector.  

The use of switches as a structural elements of the converters allows considering a 

converter as the switching matrix as shown in Figure 4-3. The switches arranged in the 

nodes of a matrix permit that any input line is connected to any output line during some 

duration of time, by following a selected sequence of "ON" and "OFF" switching states. 

In an ideal case the transition from one current topology to another is assumed 

instantaneous. The topologies, resulting from combination of the "ON" and "OFF" 

states of the switches, that satisfy the Kirchoff’s laws - thus allow unique determination 

of the branch currents and the node's voltage in the current topology will be considered 

permissible and will form set of converter permitted configurations. Due to the finite 

number of switches in converter matrix the number of permitted configurations is also 



64 

finite. In a sense the conversion is realized by a variable topology (structure) electric 

network and the resulting properties depend on the permitted configurations and their 

temporal changes. The analysis of such structures needs to address the average behavior 

as well as temporal changes of the currents and voltages.  
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Figure 4-3 The structure of an n-input m-output converter 

Let n  AC voltage sources ( ) , 1,2,..,gkv t k n=  be connected to the input lines, and 

m  AC current sinks ( ) , 1,2,..,sji t j m=  be connected to the output lines and they are are 

interconnected by a switching matrix as shown in Fig. 4.3. The switch 
kj

S  is placed on 

the node between k th−  input line and j th− output line – thus it can connect or 

disconnect these two lines. For the given source and sink the output voltages and the 

input currents are dependent quantities that have to be determined. 

To satisfy Kirchhoff’s law for voltages only one of the switches connecting jth 

output line to any of the input lines can be closed at any instant of time. If more than 

one of these switches is closed simultaneously they would short-circuit the input voltage 

sources to which they are connected. To prevent violation of the Kirchhoff’s law for 

current sources, at least one of the switches connecting jth
 output line to any of the input 

lines must be closed at any instant of time. Note that more than one of the output lines 

may be simultaneously connected to kth input line since this does not violate KCL. 

Let state of the switch 
kjS be described by the binary function ( )kjs t  (for this 

function sometimes the term “switching function” will be used), 
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( )
1 if switch  is ON

0 if switch  is OFF

1 2,  

1,2,...,

kj

kj

kj

S
s t

S

k , ..,n

j m


= 


=

=

 (4.1) 

4.3 Interconnection of Multiple Voltage or Current Sources to a Line 

In Figure 4-4-(a) the interconnection of the n input voltage sources to the single 

output line and in Figure 4-4-(b) interconnection of the n input current sources to one 

output line are depicted. Due to the assumed bilateral energy flow the topologies can be 

also regarded as interconnection of a single voltage source to n current sinks and 

interconnection of a single current source to n voltage sinks.  
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Figure 4-4 Interconnection of the voltage sources (a) and the current sources (b) 
to one ouptu line 

For structure depicted in Figure 4-4-(a) the KVL will not be violated if the binary 

functions ( )
lj

s t satisfy the following constraints: 
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s t
=

=∑  (4.2) 

Voltage ( )sjv t , as a dependent quantity, at any instant of time can be expressed 

as: 
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The output voltage is a weighted sum of the input voltages and its instantaneous 

value can never exceed peak value of the one of the input voltages ,    1 2
gk

v k , ,..,n= . 

Due to the fact that input voltages are given, the desired voltages on the j th− output 

line must be obtained by proper variation of the switching pattern - determined by the 

temporal changes of the components of switching vector 
j

s . 

Input line currents can be expressed as a function of the output line current 
sj

i  as, 
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∑

∑
 (4.4) 

It is obvious that switching pattern cannot be independently selected from the 

desired output voltages and desired input currents – thus design requirements must 

specify the desired quantities.  

For the structure depicted in Figure 4-4-(b) the output line current as dependent 

quantity can be expressed as, 

 
1

( ) .
n

sj kj gk

k

i t s i
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=∑  (4.5) 

In this case at least one of the switches must be closed at any instant of time – thus 

the constraints can be formulated in the following form, 

 
1

1

1 ,

or

0.

n

kj

k

n

kj

k

s n

s

=

=

≤ ≤

≠

∑

∑

 (4.6) 

The input voltages are then determined by,  
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The topology consisting of n input voltage sources and m output current sources is 

depicted in Figure 4-5.  
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Figure 4-5 Interconnection of the n voltage sources and the m current sources 

By combining all m outputs into a vector [ ]1 2 ..T

s s s smv v v=v  the relation

1

( )  
n

T

sj kj gk j g

k

v t s v
=

= =∑ s v ,   1, 2,...,j m=   can be rearranged in the matrix vector form as, 

 ( ) ( ) ( ).t t t=s v gv M v  (4.8) 

Elements of the matrix ( )tvM are the switching functions ( )
kj

s t . Under the 

assumption of the lossless operation of the switches the power of the source and the 

power of the load must be the same. From ( ) ( )T

gP t t= g gv i and ( ) ( )T

sP t t= s sv i  and (4.8), 

the vector of the currents in the input lines 1 2 ..T

g g gni i i =  gi can be expresses as 

 ( ) ( ) ( )Tt t t=g v si M i  (4.9) 

The constraint conditions (4.2) can be extended on the matrix vM in the form, 

 
[ ]

;

1 1 .. 1 .T

=

=

vM e e

e
 (4.10) 

Such topology may be regarded as an interaction of the m-current sources and n-

voltage sources (reversal of the role of the sources on input and output side). Then 

relation (4.9) represents the transformation of the source independent variables and 

relation (4.8) describes the transformation of the output independent variables.  

The relationship (4.8) and (4.9) define the transfer of the input variables to the 

output lines of the switching matrix. The relationship is solely determined by the 
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operation of the switching matrix. The state of the switches determines the switching 

matrix configuration at any instant of time. The change of the switching matrix 

configuration determines the switching pattern which describes the changes of the 

dependent quantities on output and the input lines of the switching matrix. This allows 

treatment of the switching matrix as an element that interconnects the electrical circuits 

on the input and output lines.   

The changes in the configuration can be interpreted as the control of the converter. 

It is obvious that control is related to the changes in the binary variables 
kj

s  and in order 

to design the desired transformation these binary variables must be determined. For the 

full specification of the switching pattern one has to find the instant of time when binary 

functions 
kj

s  change its value. For n m× switching matrix, the switching pattern design 

– thus selection of the binary functions
kjs  1, 2,..,k n= , 1, 2,..,j m= - one can use 

relationships (4.5) and (4.7). These expressions define ( )n m+  linear algebraic 

equations for n m× unknown binary functions
kj

s . The change of 
kj

s could be, in 

general, determined as function of time or a function of the conversion quantities.  

Fourier series expansion for periodic function ( )
kj

s t  leads to its approximation 

 ( ) ( )( )0
1

( ) cos sin ,kj n n

n

t a a n t b n tλ ω ω
∞

=

= + +∑  (4.11) 

where 2 Tω π= stands for angular frequency. By replacing in configuration matrix 

m n×∈ ℜM  discontinuous function ( )
kj

s t  by its Fourier representation ( )
kj

tλ  the 

switching matrix operation can be described by the matrix m n×∈ ℜMɶ  that has time 

varying but continuous elements. Under the assumption that all variables assigned to 

sources and sinks are constant during switching interval T, and that ( )
kj

tλ is the 

fundamental or dc component the operation of switching matrix with voltage  
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or current input source, 
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This relationship shows a possibility to treat switching matrix as a universal 
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transformer where transformation is defined by matrices vMɶ  and/or iMɶ . This allows 

simple treatment of the overall circuit with switching matrix as a generalized 

transformer inserted between input and output circuitry. Setting a particular 

“transformation ratio” consists in selecting n m× continuous functions ( )kj tλ . The 

general solution cannot be directly found from (4.12) or (4.13) and (4.11), and 

additional constraints have to be specified for a particular conversion [121,122]. 

4.4 The Operation of Switching Converters 

4.4.1 DC-DC Switching Converters 
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Figure 4-6 Structure of a single input single output converter with voltage input 
(a), (b) simplified - single source version 

The attribute of DC-DC converters is that the input and output share the common 

line thus one of the switches is interconnecting the common line to the output. The 

general structure interconnecting input sources 1g
v  and 2g

v  with current sources 1s
i and 

2s
i is depicted in Figure 4-6.   

The dependent quantities 1s
v  and 2s

v or in vector form [ ]1 2

T

s s sv v=v on the 

output lines can be expressed as 
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 (4.14) 

The dependent quantities on input lines – currents 1g
i  and 2g

i  - as function of the 

current in output lines 1 2,
s s

i i can be expressed as, 

 [ ]1 2

1 2

;

;

.

T

T

s s

T

g g

i i

i i

=

=

 =  

g v s

s

g

i M i

i

i

 (4.15) 

Operational constraints do not allow switches 11S and 21S  be closed concurrently, 

thus having constraint relationship in the form, 

 11 21 21 111 1s s s s+ = ⇒ = −  (4.16) 

With the common line voltage 2 0
g

v =  operation can be expressed by  

 
1 11 1

2

;

0.
s g

s

v s v

v

=

=
 (4.17) 

 
1 11 1

2 11 1

;

.
g s

g s

i s i

i s i

=

= −
 (4.18) 

Relationships (4.17) and (4.18) show that particular switching matrix has only one 

independent switch 11S  as one can readily conclude by circuit analysis.  

The dependent quantities cannot exceed the peak values of the corresponding 

independent quantities. The converter has single “control” input – the switching pattern 

of the switch 11S . Here term control input term points out the fact that the deliberate 

changes of the state of the switch 11S  act as a control quantity in determining, for given 

input and output independent quantities, the changes in the dependent quantities. 

Converter with one common line having current sources at its input lines and 

voltage sources at its output lines is shown in Figure 4-7. The dependent quantities on 

the output lines can be expressed as 
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(a) (b) 

Figure 4-7 Structure of a single input single output converter with current 
inputs (a), (b) simplified single source version 
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 (4.19) 
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 (4.20) 

By inspection of (4.14) and (4.19) it is easy to confirm that conditions T=v iM M

are satisfied and the topologies shown in Figure 4-6 and Figure 4-7 are functionally the 

same - thus with assumption that the switches can support the bilateral energy flow the 

interchange of the input and output is allowed.  

With constraints (4.16) and the properties of the topology expressed by 2 1g g
i i= −

and 2 0
s

v = , the (4.19) and (4.20) yield 

 
1 11 1

2 11 1

;

.
s g

s g

i s i

i s i

=

= −
 (4.21) 

 
1 11 1

2

;

0.
g s

g

v s v

v

=

=
 (4.22) 

The dependent quantities are expressed the same way as in the structure with 

voltage sources.  
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4.4.2 DC-AC and AC-DC Single Phase Switching Converters 

11S

21S

1s
i

2si

1

2

1g
i

2gi

1

2

1g
v

2g
v

1s
i

2s
i

1sv

2sv

12S

22S

11S

21S

1g
i

2g
i

1si

2s
i

12S

22S

1

2

1g
v

2g
v

2g
i

1g
i

1

2

1sv

2s
v

 
(a) (b) 

Figure 4-8 Converters with two input and two output lines, voltage sources at 
the input and current sinks at the ouput (a) and vie versa (b) 

By combining two of switching matrices depicted in Figure 4-6 one can easily 

obtain a switching matrix that interconnect two input and two output sources as shown 

in Figure 4-8-(a). To avoid violation of the KVL and/or KCL switches ( 11S and 21S ) or (

12S and 22S ) cannot be simultaneously closed or open. By treating branches ( )11 21,S S  

and ( )12 22,S S  as independent switching matrices, the output voltages 1s
v  and 2s

v  can be 

treated independently and from (4.14)and (4.16) determined as ( )( )1 11 1 2s g gv s t v v= −  

and ( )( )2 12 1 2s g g
v s t v v= − . The voltages 1sv  and 2sv  stand for independent voltage 

sources that can be interconnected to the output circuitry. Analysis of the circuits with 

two input and two output lines can be done as combination of the two converters 

analyzed in the previous sections. 

The direct analysis of the switching matrix shown in Figure 4-8-(a) allows express 

the dependent quantities on the output side as , 
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22 12 22

11 21

12 22
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vv s s

vv s s
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 
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v M v
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 (4.23) 

where 1 2

T

g gv v =  gv stands for the voltage input vector, [ ]1 2

T

s sv v=sv stands 
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for the output voltage vector, and  v2M  stands for the transformation matrix describing 

operation of the topology with 2 input and 2 output lines. 

The current on the input lines can be expressed as T=g v2 si M i where 

1 2

T

g g
i i =  gi stands for the current vector on the input side of converter (dependent 

quantity), [ ]1 2

T

s si i=si  stands for the output current vector (independent quantity).  

For switching matrix with two input and two output lines the constraints have the 

following form, 

 
11 21 21 11

12 22 22 12

1 1 ,

1 1 .

s s s s

s s s s

+ = ⇒ = −

+ = ⇒ = −
 (4.24) 

If the input voltage is measured from line 2, thus 2 0
g

v =  and 1g g
v v= the voltages 

on the output lines can be expressed in the following form, 
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;

.

s

g

s

s g

v s
v

v s

v
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=sv s

 (4.25) 

The relationship (4.25) clearly shows that the voltages on the output lines, 

measured from the common point, act as two independent voltage sources each 

"controlled" by its switching pattern.     

The output circuit is connected between output lines 1 and 2 thus the equivalent 

voltage that acts on this circuit can be written as, 

 ( )( )
( )

1 2

11 12 1 2

11 12

;

;

.

s s s

g g

g

v v v

s s v v

v s s

= −

= − −

= −

 (4.26) 

Similarly the input current can be expressed as, 

 

( )

1

11 1 12 2

11 12

;

;

.

g g

s s

s

i i

s i s i

i s s

=

= +

= −

 (4.27) 

The dependent quantities - voltage acting on the output circuitry s
v  and current in 

input lines 
g

i  - depend on the input and output independent quantities and the difference 

between switching pattern in the branches of the switching matrix. 

The same topology can be analyzed with current sources at input side and the 

voltage sources at the output side (Figure 4-8-(b)).  Direct application of the generalized 
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switching matrix description the line currents on the output can be expressed in the 

following form  

 

11 11 21

22 12 22

gs

gs
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ii s s
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 (4.28) 

The line voltages on the input can be expressed in the following form  
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 (4.29) 

Insertion of the values of the switching variables 11s  and 12s  into (4.28) and 

(4.29) the span of the changes of the dependent quantities can be expressed as 

 
11 21

11 21 11 21

11 21

if 1& 0

0 if 1& 1  0 & 0

if 0 & 1,

g

s

g

i s s

i s s or s s

i s s
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
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 (4.30) 
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v s s or s s
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
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− = =

 (4.31) 

4.4.3 DC-AC and AC-DC Three Phase Converters 

The three phase is a dominant way of the electrical distribution. This section 

discusses interaction of a three phase sources with other type of electric power sources.  

The topology depicted in Figure 4-9 consists of the branches ( )11 21,S S , ( )12 22,S S  

and ( )13 23,S S , thus it is an interconnection of the three converters shown in Figure 4-6. 

The switches in one branch cannot be simultaneously closed due to the 

requirement to meet the KVL or cannot be simultaneously open without violating KCL, 

so all the possible state of the switches for structure depicted in can be summarized as in 

Table 4-1. 
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Figure 4-9 Converter with two input lines and three output lines, voltage 

sources at the input and current sinks at the output 

Matrix 
Configuration 

State of switches Value of switching variable 

11S  21S  12S  22S  13S  23S  11s  21s  12s  22s  13s  23s  

1 ON OFF OFF ON OFF ON 1 0 0 1 0 1 
2 ON OFF ON OFF OFF ON 1 0 1 0 0 1 
3 OFF ON ON OFF OFF ON 0 1 1 0 0 1 
4 OFF ON ON OFF ON OFF 0 1 1 0 1 0 
5 OFF ON OFF ON ON OFF 0 1 0 1 1 0 
6 ON OFF OFF ON ON OFF 1 0 0 1 1 0 
7 ON OFF ON OFF ON OFF 1 0 1 0 1 0 
8 OFF ON OFF ON OFF ON 0 1 0 1 0 1 
Table 4-1 State of the switches for structure depicted in Figure 4-9 

The voltages on output lines can be expressed as 
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The equation (4.32) describes, as expected, three voltage sources acting on the 

output lines of the switching matrix.  

The input currents are determined by transposing the matrix v3M to obtain 
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To avoid violation of KLV and KLC, switching variables ( )kjs t , 1, 2k = ,

1, 2,3j =  are constrained by  

 

11 21 21 11

12 22 22 12

13 23 23 13

1 1

1 1

1 1

s s s s

s s s s

s s s s

+ = ⇒ = −

+ = ⇒ = −

+ = ⇒ = −

 (4.34) 

The same relationships are valid if topology is analyzed with reversed input and 

output sides (current sources as inputs and voltage source at output) thus describing the 

operation of the AC-DC three phase converter with current inputs. In this case the 

switching constraints are the same as in (4.34). 

Relations (4.32) and (4.33) define quantities on the output lines. In order to 

determine the voltages across the load side sources one need to know the topology 

determining the interconnection on load side. In general there are three possibilities: (a) 

all load side sources are connected to the return path - thus they act as three independent 

loads, (b) load side sources are interconnected to a common point (usually called 

neutral) which is not connected to the ground. Such interconnection is known as so-

called star connection (Figure 4-10-(a)) and (c) load side sources are interconnected in 

so-called delta connection (Figure 4-10-(b)).  
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(a) (b) 

Figure 4-10 Converter with star connection on the load side (a) and delta 
connection on load side (b)  

Assuming that the voltage of the common point is denoted as n
v , the voltages 

across the loads - usually called load phase voltages - can be expressed as 
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 (4.35) 

The load currents satisfy the following constraints 

 1 2 3 1 2 3 0
o o o s s s

i i i i i i+ + = + + =  (4.36) 

For the case of symmetrical load, the voltages of neutral point can be expressed as  

 ( ) 1 31 1
1 2 33 3

T

n s s sv v v v × = + + =   se v  (4.37) 

where [ ]1 1 1T =e  stands for unit vector. Insertion of the (4.32) into (4.37) yields 
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From (4.35) and (4.38) load phase voltages in star connection can be expressed in 

the following form: 
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Insertion of (4.32) into (4.39) yields 
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The load phase voltages depend on the matrix operation ( v3 gM v ) and the load 

connection defined by matrix
Υ

A . If load is in delta connection Figure 4-10-(b), the 

phase voltages measured across the phase sources 12o
i , 23o

i  and 31o
i can be expressed in 

the following form: 
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Figure 4-11 Converters with two input and three output lines, current source 

and voltage sink at output 

A converter with current source at input and three phase voltage source at output 

is shown in Figure 4-11. The dependent quantities (currents in the output lines and 

voltages on input lines) can be expressed as, 
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Equation (4.42) describes three current sources acting on the output lines of the 

converter. The results obtained for the general switching matrix operation links directly 

the iM and vM matrices. The result can be verified by comparing the results for voltage 

source and current source converters. 

To avoid violation of KVL and KCL, switching variables ( )kjs t 1, 2k = , 1, 2,3j =  

are constrained by  
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1

1

s s s

s s s

+ + =
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 (4.44) 

At least one of the switches connecting input line 1 or 2 to an output line must be 
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ON. The same relationship is valid if the topology in Figure 4-11 is analyzed as 

switching matrix with three input and two output lines e.g. as an AC-DC converter. 

The analysis of the switching matrix operation shows that it can be treated as 

generalized transformer acting on the independent variables of the sources 

interconnected to its input and output lines in an electrical circuit. In Figure 4-12 the 

topologies with equivalent input side voltage and current sources are shown. In both 

cases the action of the switching matrix as a transformer allows calculation of the 

relevant voltages and currents in input and output circuits. 

 

gv
T
v sM i

v gM v si
svgi T

i sM v i gM i

 
Figure 4-12 Switching matrix as a transformer 

4.5 Dynamics of Switching Converters 

In preceding sections basic properties of the interaction of the switches and ideal 

sources were revealed and basic functional characteristics of elementary switching 

matrix were shown. The topology of the converters, besides of the sources employs 

energy storing elements (see Figure 4-1). Energy storing elements introduce dynamics 

in the energy processing due to the capabilities to accumulate energy. By developing a 

way of deriving the input and output properties of switching matrix derivation of 

dynamical models of switching converters may follow the standard procedure for 

electric circuitry modeling. Switching matrix than is an element of the topology with 

defined relationship between quantities on its input and output lines. 
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(a) (b) 

Figure 4-13 Converters with no energy storing elements on input side (a) and 
converters with dynamics on both input and output side (b) 

4.5.1 Dynamics of DC-DC Converters  

In general energy storing elements (L,C) may be placed on the output side of the 

converter or on the input and output side of the converter or they may be structured in 

such a way that they are shared between input and output side as depicted in structures 

in Figure 4-13.  

The dynamics of the output circuit in Figure 4-13-(a) can be written directly, by 

selecting the inductor current L
i and the capacitor voltage as system state variables as; 
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By taking into account the operation of the switching matrix and the fact that 

1 1 11,
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v =  and 1 2 1 11g g s
i i i s= − = ⋅  (4.45) can be rewritten as  
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This description should be completed by the switching pattern for 11s . Under 

assumption that switching is periodic with period s
T one can write, 
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 The inductor voltage and the capacitor current for converter in Figure 4-13-(b) 
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can be derived as 
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The voltage on the common line is 2 0
g

v = and the current in the common line is 

2 1g g L
i i i= − = − . From previous section we know that voltage on the input line 1g

v  and 

the current on the output line 1s
i can be written as 1 1 11 11 1 1 11 11;

g s C s g L
v v s v s i i s i s= =   = = . So 

inserting these expressions into (4.48) yields, 
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This description should be completed by the switching pattern for 11s  

 
( )

( )
11

11 12
11

1 for
1 1,2,...

0 for
s s s

s s s

kT t kT d T
s s k

kT d T t T

≤ ≤ +
= − = =

+ < ≤
 (4.50) 

In the power electronics literature as a rule the switching function for switch 12s is 

used in the mathematical description of this converter. Then the model (4.49) becomes, 

 
( ) ( )

( ) ( )

12

12

1 ,

1 .

L g C

C
C L

d
Li v v s

dt

vd
Cv i s

dt R

= − −

= − −

 (4.51) 

4.5.2 DC-AC and AC-DC Single Phase Switching Converters 

The voltage source converter with two input and two output lines (Figure 4-14) 

can be treated in very similar way. The dynamics of the output circuit can be written 

directly, by selecting the inductor current L
i and the capacitor voltage as system state 

variables. Then by inspection we can write: 

 
( ) ( )

( )

1 2 ,

.

L s s C

C L R

d
Li v v v

dt

d
Cv i i

dt

= − −

= −

 (4.52) 
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(a) (b) 

Figure 4-14 Voltage source converter (a) and current source converter (b) with 
two input and two output lines 

By taking into account the operation of the switching matrix as described by 

(4.25) and the fact that the voltage on the switching matrix output lines is defined by 

( )1 2 11 12s s gv v s s v− = −  and we can write, 

 
( ) ( )

( )

11 12 ,

.

L g C

C
C L

d
Li s s v v

dt

vd
Cv i

dt R

= − −

= −

 (4.53) 

This description should be completed by the switching pattern for 11s  and 12s . 

Model (4.53) appears to have two independent switching patterns - or two binary 

control inputs - acting in the first equation. It could be easily verified that converter has 

four topologies but they results in three possible values of the voltage 

( )1 2 11 12s s gv v s s v− = −  as shown in (4.31).  

For converter with current input in Figure 4-14-(b) if, 

 
( )( ) ( )

( )
1 11 21 1 2 11 21

1 11 21

,

,

g s s C

s L

v s s v v s s v

i s s i

= − − = −

= −
 (4.54) 

then dynamics become; 

 
( ) ( )

( ) ( )

11 21

11 21

,

.

L g C

C
C L

d
Li v v s s

dt

vd
Cv i s s

dt R

= − −

= − −

 (4.55) 
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Figure 4-15 Voltage source 3-phase converter (buck inverter) 

4.5.3 Three-Phase Switching Converters 

In this section dynamics of the most common three phase converters will be 

analyzed to demonstrate the procedures and operational properties.  

From Figure 4-15 it is easy to write the voltages across inductors as, 

 ( ) 1 , 1,2,3.
Li si Ci g i Ci

d
Li v v v s v i

dt
= − = − =  (4.56) 

All of the voltages will be determined with respect to one reference point. With 

star connection of the load, transformation (4.39) should be applied to right-hand side of 

(4.56). This transformation leads to following equations, 

 ( ) 2 3 ,
g

d
v

dt

→= −L Υ s Υ CLi A s A v  (4.57) 

where [ ]1 2 3
T

L L Li i i=Li  is inductors current vector, ( )diag L=L  is diagonal 

inductance matrix, [ ]2 3
11 12 13

T
s s s

→ =ss  is vector that defines operation of the 

switches, and [ ]1 2 3
T

C C Cv v v=Cv  is capacitor voltage vector. Note that this 

transformation means that the measurements are taken with point "0" on the input side 

as a reference. Equation (4.57) can be written in expanded form as,  

 
3 3

1 1
1 1

1 1
, 1, 2,3.

3 3
Li

L Ci Cj g i j

j j

di
L v v v v s s i

dt = =

   
= = − − + − =   

   
∑ ∑  (4.58) 

The components of the 1 , 1, 2,3
j

s j = control are defined as: 
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 1 2

1
1 2

1 for &
( ) , 1, 2,3.

0 for &
j j

j

j j

S ON S OFF
s t j

S OFF S ON

= =
= =

= =
 (4.59) 

The change of the voltages of the output capacitors can be obtained as, 

 ( ) 1 ,
d

dt

−= −C L CCv i R v  (4.60) 

where ( )diag C=C  and ( )diag R=R are diagonal matrices of capacitances and load 

resistances. Model (4.58)-(4.60) represent a sixth order dynamical system linear with 

respect to control vector 2 3
s

→s . The comparison with corresponding expressions for DC-

DC buck converter shows the same properties of the two converters regarding the 

transformations of the variables. The basic behavior is determined by the switching 

matrix and the sources connected to the input and output terminals of the switching 

matrix. The gains that switching matrix introduces in the system are less than 1 for all 

independent variables connected to the input or output terminals. 

The voltages across inductor for converter depicted in Figure 4-16 are

( ) 2 3
1 2

T

L g g g g Cv v v v v
→= − − = − v s , and the dynamics of the inductor current are, 

 ( ) 2 3.T

L L g

d
Li v v

dt

→= = − Cv s  (4.61) 

The change of the voltages of the output capacitors can be obtained as: 

 
( )

2 3 1

2 3 1

;

,

L

L

i

d
i

dt

→ −

→ −

= −

= −

C Υ C

C Υ C

i s R A v

Cv s R A v
 (4.62) 

where ( )diag C=C , ( )diag R=R  and [ ]1 2 3
T

C C Ci i i=Ci vector of capacitor currents.  
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Figure 4-16 Current source 3-phase converter (boost inverter) 
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Model (4.61) and (4.62) represent a sixth order dynamical system linear with 

respect to control vector 2 3→s . The comparison with corresponding expressions for DC-

DC boost converter shows the same properties of the two converters regarding the 

transformations of the variables. 

Structure of three phase buck rectifier is depicted in Fig. 4.17. The time derivative 

of the inductor current can be calculated as, 

 ( ) 3 2T

L L C

d
Li v v

dt

→= = −gv s  (4.63) 

where iL is inductor current, 1 2 3
T

g g g g
v v v =  v  is input voltage vector, C

v is output 

capacitance voltage, [ ]3 2
11 21 31

T
s s s→ =s and L is inductance. The change of the 

voltages of the output capacitors can be obtained as, 

 ( ) .C

C C L

vd
Cv i i

dt R
= = −  (4.64) 

where C and R are capacitance and resistance. This model is similar as the model 

obtained for DC-DC buck converter. The difference is in inner product 3 2T

g

→v s  instead 

of a simple scalar product as it stands in DC-DC converter. Input current is influenced 

by all components of the control and this raises the problem of MISO systems control.  
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Figure 4-17 Structure of three phase buck rectifier 
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Figure 4-18 Structures of three phase boost rectifier 

A structure of three phase boost rectifier is depicted in Figure 4-18. The time 

derivative of the inductor current can be calculated as, 

 ( ) 3 2 ,C

d
v

dt

→= −L g ΥLi v A s  (4.65) 

where [ ]1 2 3
T

L L L Li i i=i is inductor current, Cv is output capacitance voltage, 

[ ]3 2
11 21 31

T
s s s

→ =s and  ( )diag L=L is inductance.  

The change of the voltages of the output capacitors can be obtained as: 

 ( ) 3 2T C

C

vd
Cv

dt R

→= −Li s  (4.66) 

where C and R are capacitance and resistance of the output circuitry. This model is 

similar as the model obtained for DC-DC boost converter. 

Till now we had been looking at converters in which energy storage elements are 

placed at the output lines of the switching matrix (so-called buck converters) and 

converters in which storage elements are placed on input and output side of the 

switching matrix (so-called boost converters) as depicted in Figure 4-19 and Figure 

4-20. 
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Figure 4-19 Dynamic structures of the buck converters 
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Figure 4-20 Dynamic structures of the boost converters 

By inspection of the above given mathematical models of converters, the 

dynamics of the converters can be written in the form  

 ( ) ( ) ( )
d

dt
= g

x
f x + B x u s + Hv  (4.67) 

where n∈ℜx  stands for the state vector of inductor currents and capacitor voltages, 

( ) n∈ℜf x  stands for a vector function of converter states, ( ) n m×∈ℜB x  stands for the 

control distribution matrix, ( ) m∈ℜu s  stands for the control vector which depend on 

the switching matrix operation, n l×∈ℜH stands for the input voltage l

g ∈ℜv  

distribution matrix. The components of the control vector are periodic functions (with 

period T) defined on a duty cycle as: 

 ( )
( )

( )
( )

1

1 for
, 1,..., , 1,

0 for

m
i

i i

ii

t t T
u i m

t T T

τ µ
µ

µ τ =

≤ ≤ +
= = =

+ ≤ ≤
∑

x
s x

x
 (4.68) 

with average ( ) ( )i iu µ=s xɶ . The nonlinear system described by (4.67) and (4.68), is 

linear in discontinuous control. For such systems averaged motion could be derived by 

applying Filippov's method [123] for averaged motion of systems with discontinuous 

right hand side. Direct application of Filippov results leads to the averaged motion in 

the form 

 ( ) ( ) ( )
d

dt
= g

x
f x + B x u s + Hv

ɶ
ɶ ɶ ɶ  (4.69) 

where ( )u sɶ  stands for average control input with components ( ) ( )i iu µ=s xɶ ɶ . Model 

(4.69) allows calculation of the steady state operation of switching power converters 

from ( ) ( ) ( ) g0 = f x +B x u s + Hvɶ ɶ ɶ . 
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4.6 Control of DC-DC Switching Converters 

Control of the power converters in general could be designed as continuous (based 

on model (4.69) and then switching patter is derived by applying a PWM. In this 

approach well known methods of continuous system design are directly applicable.  

Another possibility is to apply methods of the variable structure systems and 

directly design switching pattern while enforcing desired dynamics of the closed loop. 

The simplest design procedure consists of two steps; 

o select control u  such that inductor current tracks its reference; 

o select the current reference so that voltage satisfies prescribed closed loop 

dynamics. 

Application of this procedure for DC-DC buck converters leads to selection of 

current tracking error as ( )ref

L Li t iσ = −  (where ( )ref

Li t  is a continuous function). From 

0d dtσ =  one can find an fictitious control input that, if applied at instant 0t

(determined as a time when error function reaches its zero value for the first time 

( )0 0tσ = ,) will assure that the 00,d dt t tσ = ∀ > . That control input, denoted as 11eq
s

could be determined in the following form: 

 

( )
11

11

0 

1

ref ref
L L gCL

eq

ref

L
eq C

g

d i i vvdid
s

dt dt dt L L

di
s L v

v dt

σ −
= = + − =

 
= + 

 

 (4.70) 

From operational conditions of the buck converter the 110 1
eq

s≤ ≤  can be easily 

verified. Substituting this control to the original equations of the system one can obtain: 

 ( ) ( ), .
ref

refC CL
L L

dv vi
i t i t

dt C RC
= − =  (4.71) 

Dynamics of the system reduces to the first order linear system with reference 

current as input and capacitance voltage as output. Reference current could be selected 

using standard design procedures for linear systems. If for example, reference current is 

selected as ( ). ; 0ref ref refd
L C C C Cdt

i v R C v Ck v v k= + − − >  the voltage error dynamics will 

be described by ( ) ( ) 0ref refd
C C C Cdt

v v k v v− + − = . The proposed design leads to first order 

dynamics in the closed loop but implementation of the 11eq
s  as a continuous control 
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input cannot be realized due to the fact that 11s is discontinuous. This leads to the 

application of Pulse Width Modulation (PWM) in the control system. The role of PWM 

is to generate discontinuous signal which has average value equal to 11eq
s . 

Approach based on the deliberate introduction of sliding mode into the control 

system leads to direct selection of the switching pattern - thus avoiding usage of the 

PWM generator. The procedure follows the same steps with small modification in the 

realization. The d dtσ can be expressed as  

 ( )11 11 ; 0g g

eq

v vd
s s

dt L L

σ
= − >  (4.72) 

In order to ensure stability of solution ( ) 0tσ = , one may use Lyapunov stability 

concept which leads to selection of 11s such that 0σσ <ɺ . By selecting  

 11

1 0
.

0 0

if
s

if

σ

σ

>
=   

<
 (4.73) 

The condition 0σσ <ɺ  is satisfied, and after finite time, 0σ = , 0σ =ɺ and 

consequently 11 11eqs s=ɶ and desired closed loop transient is enforced. 

For boost DC-to-DC converter the same procedure leads to: 

 

( )
( )

( )

12

12 12

1 0,
.

1
1 ; 0 1 1

ref ref
L L gCL

eq

ref

L
eq g eq

C

d i i vvdid
s

dt dt dt L L

di
s L v s

v dt

σ −
= = + − − =

 
− = − + ≤ − ≤ 

 

 (4.74) 

and insertion of this equation to the system model leads to, 

 
( )

2
2 2

, .
2 2

ref

L ref refC C
g L L L

d idv vC L
v i i i

dt dt R
+ = − =  (4.75) 

The system structure is describing energy conservation law for the circuits. From 

the control point of view it could be regarded as a linear first order system with square 

of the output voltage as output and inductor current as control input  

It is easy to conclude that condition 0σσ <ɺ , and thus current tracking, is satisfied 

if 121 s−  is selected as 

 ( )12

1 0
1 .

0 0

if
s

if

σ

σ

>
− =   

<
 (4.76) 
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4.7 AC-DC and DC-AC Single Phase Switching Converter Control 

Control of DC-AC single phase buck converters described by (4.53) can be 

designed the same way as shown for DC-DC converters. The reference current may be 

selected from second equation in (4.53) to ensure first order dynamics in the voltage 

control loop as ( ). ; 0ref ref refd
L C C C Cdt

i v R C v Ck v v k= + − − > . The dynamics of the current 

loop can be expressed as.  

 
( )

( )11 12

1
, 0.

ref ref
L L g gL

C

g

d i i v vdid
L v s s

dt dt L dt v L

σ −   
= = + − − >     

 (4.77) 

The operational conditions of the converter are met if ( )11 12 eq
s s− obtained from 

0σ =ɺ  satisfy 

 ( )11 12

1
1 1.

ref

L
Ceq

g

di
s s L v

dt v

 
− ≤ − = + ≤ 

 
 (4.78) 

The sliding mode conditions 0σσ <ɺ will be satisfied if ( )11 12s s− is selected as, 

 ( )11 12

1 0
.

1 0

if
s s

if

σ

σ

>
− =    

− <
 (4.79) 

From the analysis of the converter operation we have concluded that ( )11 12s s−  

can take three distinctive values ( 1,0,1− ). The above solution uses only two of them 

thus not all possibilities are used in the design of the switching pattern. This leads to 

excessive switching frequency.  

From ( ) ( )( )11 12 11 12
gv

L eq
s s s sσ = − − −ɺ  a switching pattern that will enforce 

condition 0σσ <ɺ could be specified as function of ( )11 12s s−  and ( )11 12 eq
s s− as follows: 

 ( )
( )

( )
11 12

11 12

11 12

1 if 0 and 0

0 if 0 and 0

eq

eq

s s
s s

s s

σ

σ

 − > >
− = 

− > <

 (4.80) 

 ( )
( )

( )
11 12

11 12

11 12

0 if 0 and 0

1 if 0 and 0

eq

eq

s s
s s

s s

σ

σ

 − < >
− = 

− − < <

 (4.81) 

This solution shows a way of using information on equivalent control in selecting 

switching pattern.  

 



91 

4.8 AC-DC and DC-AC Three Phase Switching Converters Control 

As previously shown three phase converters are interconnecting a DC and AC 

sources (sinks). That poses a problem of the operational and control tasks specification 

for the DC and AC side of converter and thus the power flow in the system.  

On the DC side either voltage or current could be set as control variables, not both 

together, thus only one control task could be defined from the DC side requirements.  

The AC side in addition to the magnitude of the voltage or current may also have 

specification for the phase shift between voltage and current (a reactive and active 

power ratio). That means in the AC side there are up to two requirements, a magnitude 

and displacement of the voltage (current). For given voltage and current vectors, ,v i  are 

displaced by an angle φ  , apparent power is expressed as 2 2 2S P Q= + = v i , active 

power is defined as ( ) ( )cos cosT
P Sφ φ= = =v i v i , and the reactive power is 

defined as  ( ) ( )2 2 sin sinQ S P Sφ φ= ± − = =v i . The active and reactive powers 

may be expressed in the following form ( )cosT

dP iφ= = =v i v i v and

( )sin qQ iφ= =v i v , where ( )cosdi φ= i  and ( )sinqi φ= i are components of the 

current vector collinear d
i  and orthogonal 

q
i to the voltage vector respectively. This 

shows that in the case voltage is given or constrained we still have possibility to change 

angular shift and components d
i  and 

q
i of the current (or P and Q) with maximum 

current (or apparent power) as constraint.  

On the other hand, the operation of the electrical machines shows similar features. 

If one is looking from the mechanical variables control then, projection of the machine 

dynamics to the rotor flux frame of references, would lead to similar analysis. The 

component of the current collinear with determine flux magnitude and the component of 

the current orthogonal to flux would determine torque - thus the mechanical motion.  

From the above analysis in a way to design control in three phase converters (both 

DC-AC and AC-DC) one needs to project the dynamics expressed in the terms of phase 

variables in a rotating frame of references which is related to selected vector (voltage, 

flux, etc.). This transformation is generally done in two steps. First mapping 

corresponding equations of motion into orthogonal stationary (α,β,0) frame of 
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references by matrix 0
abc

αβA  and then mapping description presented in (α,β,0) frame of 

references into synchronously rotating (d,q,0) frame of references defined by matrix

0
0

dq

αβA . These two mappings could be represented by the following matrix, 

 ( ) ( )

1 1
2 2

3 3
2 2

2 2 2
2 2 2

1cos sin 0
2

sin cos 0 0 .
3

0 0 1

r r

r r r r

θ θ

θ θ θ θ

− −  
  = = − −  
     

dq0 dq0 αβ0
abc αβ0 abcF A A  (4.82) 

For the balanced three-phase systems “0” component is always equal to zero so 

the transformation (4.82) from stationary three-phase (a,b,c) to orthogonal two-phase 

(α,β) and synchronous frame of reference (d,q) could be simplified and mapping 

between these frames of reference is defined by matrix αβ

abcA  for (a,b,c) to (α,β) and 

dq
αβ

A  for (α,β) to (d,q). 

 ( ) ( )
1 1
2 2

3 3
2 2

1cos sin2
.

sin cos 03
r r

r r

r r

θ θ
θ θ

θ θ

− −  
= =   − −   

dq αβ

αβ abcF A A  (4.83) 

Matrix 
r

θF( )  is defining the nonlinear transformation between three phase (a,b,c) 

and synchronous orthogonal (d,q) frames of reference. For all three-phase converters the 

(d,q) frame of reference is determined in such a way that it is synchronous with the 

three-phase side of a converter (input side for rectifiers and output side for inverters). In 

the presented models notation is used as follows: T

cd cq
v v =  cv  the capacitance 

voltage vector, T

Ld Lq
i i =  Li  inductor current vector and  T

d q
u u =  dqu  is the 

control vector, 
gv  is amplitude of input voltage R,L,C – converter parameters. 

4.8.1 Three phase buck inverter 

Applying the coordinate transformation to the mathematical model developed for 

three phase buck inverter with 
r

θ  determined as a output voltage vector position in 

(α,β,0) frame of references one can easily calculate, 

 

;

;

cd cd Ld
r cq

cq cq Lq

r cd

dv v i
v

dt RC C

dv v i
v

dt RC C

ω

ω

= − + +

= − − +

 (4.84) 
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;

;

gLd cd
r Lq d

Lq cq g

r Ld q

Vdi v
i u

dt L L

di v V
i u

dt L L

ω

ω

= − + +

= − − +

 (4.85) 

 
;

,

r
r

r

d

dt

θ
ω

θ

=

dqu = F( )u

 (4.86) 

where r
r

d

dt

θ
ω=  is the angular velocity of the desired output, voltage, T

cd cq
v v =  cv  

and T

Ld Lq
i i =  Li  are the output voltage and the inductor current vectors respectively.  

The control in stationary (a,b,c) frame of reference is determined from, 

 1 2i

1 2i

1 with switch ON and S  OFF
( ) ; 1, 2,3.

0 with switch OFF and S  ON
i

i

i

S
u t i

S

= =
= =

= =
 (4.87) 

For particular value of the 
r

θ  transformation (4.82) results in the seven values of 

the control vector as depicted in Figure 4-23. It is easy to verify that above model in 

vector form can be described by (4.88) and that this expression fully resembles the DC-

DC buck converter.  

 

( )

( ) ( )

, ;

, ;

.

c L

gc L

dq r

d
v i

dt

d
vv i

dt

θ

=

= +

=

c
v

L
i u dq

v
f

i
f B u

u F( )u

 (4.88) 

4.8.2 Three phase boost inverter 

By applying mapping (4.82) on mathematical description of the model of boost 

inverter, one can obtain the following description, 

 

;

;

cd cd L
r cq d

cq cq L
r cd q

dv v i
v u

dt RC C

dv v i
v u

dt RC C

ω

ω

= − + +

= − − +

 (4.89) 

 ;cq gcdL
d q

v vvdi
u u

dt L L L
= − − +  (4.90) 
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;

,

r
r

r

d

dt

θ
ω

θ

=

dqu = F( )u

 (4.91) 

where r
r

d

dt

θ
ω= is the angular velocity of the desired output voltage, T

c cd cq
v v v =    

and L
i  are the output voltage and the inductor current respectively. The components of 

switching functions vector us can have values from the set { }3 : 1,0,1u iS u= − . The above 

description can be rewritten in the form of (4.92). It can be noticed that such description 

has the same structure as model of DC-DC boost converter. 

 

( ) ( )

( ) ( )

;

;

( ) .

c L

L
gi c

dq r

d
v i

dt

di
vf v

dt

θ

= +

= +

=

c
v v dq

u dq

v
f B u

B u

u F u

 (4.92) 

4.8.3 Three phase buck rectifier 

In the (d,q) frame of references, with d-axis collinear with the voltage supply 

vector gv , the mathematical model of buck rectifier can be written as, 

 ;c c L
dv v i

dt RC C
= − +  (4.93)

     

 ;  gcL
d

vvdi
u

dt L L
= − +  (4.94) 

 
;     

;

gdq L

T

gdq gd gq

i

i i

=

 =  

i u

i
 (4.95) 

 
;

,

r
r

r

d

dt

θ
ω

θ

=

dqu = F( )u

 (4.96) 

where r
r

d

dt

θ
ω=  is the angular velocity of the input voltage, cv  is the output voltage, 

Li   

is the inductor current. Above given mathematical model can be written in the 

following, generalized form; 
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( )

( ) ( )

, ;

;

( ) .

c
v c L

L
gi c

r

dv
f v i

dt

di
vf v

dt

θ

=

= +

=

u dq

dq

B u

u F u

 (4.97) 

4.8.4 Three phase boost rectifier 

By selecting the orthogonal frame of references (d,q) with d-axis collinear with 

the voltage  supply vector gv , the dynamics of a boost rectifier can be described by 

 ;
2

Ld d Lq qc c
i u i udv v

dt RC C

+
= − +  (4.98) 

 
;   

2

;
2

gLd c
r Lq d

Lq c
r Ld q

vdi v
i u

dt L L

di v
i u

dt L

ω

ω

= − +

= − −

 (4.99) 

 
;

,

r
r

r

d

dt

θ
ω

θ

=

dqu = F( )u

 (4.100) 

where r
r

d

dt

θ
ω= is the angular velocity of the source voltage, c

v is the output voltage, 

T

L Ld Lq
i i i =    is the vector of the input current 

 

( ) ( )

( ) ( )

;

, ;

.

c
v c L

g L c

r

dv
f v i

dt

d
v i v

dt

θ

= +

= +

v dq

L
i u dq

dq

B u

i
f B u

u = F( )u

 (4.101) 

Combining the descriptions of various types of converters described above, 

unified model of the three phase converters can be derived in the following form; 

 

( ) ( )

( ) ( )

, ;

, , , ;

.

c L L

g L c c g

r

d
v i i

dt

d
v i v v v

dt

θ

= +

= +

c
v v dq

L
i u dq

dq

v
f B u

i
f B u

u = F( )u

 (4.102) 
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The structure of three phase converters is depicted in Figure 4-21. The same 

properties as for DC-DC converters are apparent. 
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Figure 4-21 The dynamical structure of the (a) buck and (b) boost three phase 

converters 

4.8.5 The Design of a Converter Control System 

The structures of the buck and boost converters depict the fundamental properties 

of the converters acting as the voltage source. The output voltage can be controlled by 

the appropriate change of the inductor current. Here, the differences between buck and 

boost structures are apparent. For the buck converters, the current must be changed if 

the operation conditions changes. 

Buck Converter: 

 

( )

( ) ( )

,

,

c L

gc L

r

d
v i

dt

d
vv i

dt

θ

=

= +

c
v

L
i u dq

dq

v
f

i
f B u

u = F( )u

 (4.103) 
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Boost Converter: 

 

( ) ( )

( ) ( ),

c L

L g c

r

d
v i

dt

d
i v v

dt

θ

= +

= +

c
v v dq

L
i u dq

dq

v
f B u

i
f B u

u = F( )u

 (4.104) 

Control vector mapping: 

 

( )

( ) ,                  

cos sin
,      

sin cos

1 1 2 1 22
,

3 0 3 2 3 2

.

dq

r abc

r rdq

r r

abc

dq r abc

αβ
αβ

αβ

αβ

θ

θ θ

θ θ

θ

=

 
=  − 

− − 
=  

− 

=

F A A

A

A

u F u

 (4.105) 

Mathematical models of the switching converters could be presented in regular 

form [124] with discontinuous control influencing the change of the currents and 

currents being treated as “virtual control” in the voltage dynamics. The structure of the 

boost converters is more complicated with control entering all the equations of the 

system. Despite the differences in the dynamical structure, the control system design for 

buck and boost converters may follow the two-step procedure: 

o Select control u such that inductor current tracks its reference; 

o Select the current reference ( virtual control ) so that capacitance voltage satisfy 

prescribed dynamical behavior 

This procedure is not so obvious for the boost structures since control enters both 

equations. In this framework the above procedure for boost converters requires 

calculation of the control to track current reference (so-called equivalent control), 

substitution of the equivalent control to the voltage equation and then taking current 

reference as ”virtual control” input. Three phase converters structurally differ from their 

DC counterparts in the number of energy storage elements and in the structure of the 

switching matrix. These converters interconnect a DC and AC sources. The dynamical 

structure of the systems remains the same as for DC converters except that the there-

phase are MIMO systems. That allows design of the control in the same two-step 

procedure as applied for DC converters.  

In Figure 4-22 the number of dof that could be specified by the operation of the 

interconnected switching matrix is shown. As it can be seen the number of independent 
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control parameters that could be specified for both DC-DC and AC-DC structures is two 

while the switching matrix has three independent controls. 
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Figure 4-22 The assignment of the degrees of freedom in control for three-
phase switching matrix. 

4.8.6 Current Control in Three Phase Converters 

The switching matrix in DC to AC and AC to DC three phase converters has six 

switches. The state of the switches may be represented by a sector with six elements 

each defining a state of the corresponding switch. For buck inverter and boost rectifier, 

due to electrical circuit constraints for buck inverter and boost rectifier, there are 8 

permissible configurations of the switches; 

 
[ ] [ ] [ ] [ ]
[ ] [ ] [ ] [ ]

1 2 3 4

5 6 7 8

100011 , 110001 , 010101 , 011100 ,

001110 , 101010 , 111000 , 000111 .

S S S S

S S S S

= = = =

= = = =
 

For boost inverter and buck rectifier there are 9 permissible switch configurations, 

 
[ ] [ ] [ ] [ ] [ ]

[ ] [ ] [ ] [ ]
1 2 3 4 5

6 7 8 9

100001 , 010001 , 010100 , 001100 , 001010 ,

100010 , 100100 , 010010 , 001001 ;

S S S S S

S S S S

= = = = =

= = = =
 

These combination of the switches in (α,β,0) frame of references, for star and 

delta interconnection, is shown Figure 4-23-(a) and (b). 



99 

α

β

1S

2S3S

4S

5S 6S

Ae

Be

Ce

α

β

1S

2S

3S

4S

5S

6S

Ae

Be

Ce

7 8S S 7 8 9S S S

 
                                 (a)                                                                (b) 

Figure 4-23 Possible values of Si (i=1,2,...,9) with star connected load (a) and 
delta connected load (b) 

Let us now look at design of the switching pattern for the three phase converters 

in more details. Current control is based on the sliding mode existence in the manifold 

( ) 0
T

T ref

L Lt = − = σ i i  where vector 
T

T

d qσ σ =  σ  with ( )ref

d Ld Ldi t iσ = − , 

( )ref

q Lq Lqi t iσ = −  and ( ) ( ),    ref ref

Ld Lqi t i t  are continuous functions to be determined later. 

Design of the current controller is based on the system description (4.103)-(4.105)

where matrix uB  is diagonal. The structure of function if  and matrix uB  could be easily 

found from mathematical models of converters. The time derivative of 
T

T

d qσ σ =  σ

is determined as 

 ,

;

ref

dq Ldq Ldq

ref

Ldq

i u

T

d q

d d d

dt dt dt

d
  

dt

u u

= −

= − −

 =  

σ i i

i
f B u

u

 (4.106) 

Equivalent control can be calculated as 1 ref

u Ldq i eq
d dt

−  − = B i f u  and (4.106) 

becomes  

 ( )u= , (1,...,9).dq

eq i

d
S i

dt
 − = 

σ
B u u  (4.107) 

Control vectors could take values from the discrete set 

S={S1,S2,S3,S4,S5,S6,S7,S8,S9} as depicted in Figure 4-23-(b). All realizable values of the 
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equivalent control lie inside the hexagon spanned by the elements of the set S. The rate 

of change of error is proportional to the differences between the vector of equivalent 

control and the realizable control vectors. For a particular combination of errors all 

permissible vectors Si that satisfy the sliding mode existence conditions could be 

determined from 0
d d

σ σ <ɺ and 0
q q

σ σ <ɺ or ( )( ) ( )dqeq dq i
u u Ssign sign σ− = −  as shown in 

Figure 4-24 Permissible control vectors (a), selection of permissible control for given 

combination of the signs of control errors (b).  
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Figure 4-24 Permissible control vectors (a), selection of permissible control for 
given combination of the signs of control errors (b) 

For some combinations of errors there are more than one permissible vector that 

leads to an ambiguous selection of the control and consequently existence of more than 

one solution for the selection of switching pattern. The same could be concluded from

( )rank rank 2rθ = =dq αβ

αβ abcF( ) A A . Ambiguity in selection of the control vector based on 

selected  and 
d q

u u  allows us to have a number of different PWM algorithms that satisfy 

sliding mode conditions in (d,q) frame of references. In early works related to electrical 

machine control, expression (4.106) is augmented with the an additional requirement 

( ) 0tϑ =  to have the form 

 ( )
( )

ref

u r

iT

d
d

dt Sdt
d

f
dt

ϑ
ϑ

θ

ϑ

 
    − = −           

dq
L

i

σ
i B Ff

u
b

 (4.108) 
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( )

[ ]

;         

( ) .

N
N N i

T

i a b c

d
S

dt

S u u u

= −

=

σ
f B u

u

 (4.109) 

where vector 
ϑ

b should be selected so that rank 3N =B . The simplest solution is 

( ) a b ct u u uϑ = + +ɺ , then matrix N
B  will have full rank. To determine the switching 

pattern, the simplest way is to use the nonlinear transformation 1
s N N

−=σ B σ , and then the 

sliding mode conditions are satisfied if the control is selected as, 

 ( )( ) ( ), 1 1.
j i sj eqj

sign u S sign uσ= − − ≤ ≤  (4.110) 

This line of reasoning with some variations has been the most popular in 

designing the sliding mode based switching pattern [125]. 

Another solution implicitly applied in most of the so-called space vector PWM 

algorithms is based on the simple idea [126] using transformation ( )
T

dq

abc abc dq

αβ
αβ=u A A u  

to the (a,b,c) reference frame. Then components , ,
a b c

u u u of u are selected according to 

the following rule 

 

( )( ) ( )

( )( ) ( ) ( )( )
( )( ) ( ) ( )( )

cos sin

2 2cos sin , 1, ..., 9;
3 3

4 4cos sin
3 3

a i d r q r

i b i d r q r

c i d r q r

sign u S sign u u

S sign u S sign u u i

sign u S sign u u

θ θ

π πθ θ

π πθ θ

= −

= = − − − =   

= − − −

 
 
 
 
 
  

 (4.111) 

In the application of above algorithms switching is realized using hysteresis which 

directly determines the current ripple to be equal to the half of the hysteresis width. For 

the given current ripple (constant hysteresis width) the time between two switching for 

each component is directly proportional to ( ) , ( , ), ( 1,..,9)
jeq j i

u u S j d q i − = =  .  

A new class of the switching algorithms based on the simple requirement that 

control should be selected to give the minimum rate of change of control error could be 

designed for which the same error will be achieved with less switching effort. The 

algorithm can be formulated in the following form,  

 

( )

( ){ }

( ){ }

( )

min

1 , 1,2, ......... ,8,9 .

1

eq i

eqd d i di

eqq q i q

(t) S

&

sign u u S σ (t)S = i

&

sign u u S σ (t)

 −
 
 
   − ⋅ = − =  
 
 
  − ⋅ = −   

u u

 (4.112) 
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All of the above algorithms naturally include so-called over-modulation 

functionality. Due to the specifics of three-phase balanced systems the number of 

independent controls for the switching matrix is higher than the dimension of the 

controlled current vector This is the basic reason that three-phase PWM, under many 

different names, is still attractive as a research topic.  

In the sliding mode dynamics of current the control loop is reduced to 

( )
T

T ref

L L
t = − = σ i i 0  or ( )ref

Ld Ldi t i= and ( )ref

q qi t i=  with equivalent control being 

determined as 1 ref

u L i eq
d dt

−  − = B i f u .  In order to complete the design of converters 

and electrical machines the reference currents must be determined.  

For buck converters and electrical machines with reference currents interpreted as 

virtual control inputs the description could be easily transformed to the following form; 

 
, ;        c

v c L

ref

c L L g

d
(v i )

dt

d
(v ,i ) (i ,v )

dt

=

= +L
o i

v
f

i
f B i

 (4.113) 

where vector T

c cd cq
v v =  v  represent the output voltage vector. For the buck inverter 

both components of the reference current could be determined from the specification of 

the voltage loop, but for buck rectifiers only the d-component of the source current can 

be determined from the voltage loop specification. The q-component of the source 

current does not influence the output voltage and thus represent current circulating 

between supply sources and creating reactive power flow from sources. The same is 

directly applicable for a DC machine supplied by the three-phase rectifier. The outer 

loop control requirements for converters could be defined as in equations (4.114)-

(4.116);  

Buck three-phase inverter:             
 ;

 ;

ref

d cd cd

ref

q cq cq

v v

v v

σ

σ

= −

= −
     (4.114)

Buck three-phase rectifier:             
 ;

  

ref

d c c

ref

q Lqav Lqav

v v

i i

σ

σ

= −

= − ;
    (4.115) 

Boost three-phase rectifier:           
( )2 2

, ;

 

d c ref c

ref

q Lqav Lqav

v v

i i

σ µ

σ

= −

= − ;
                                        (4.116) 

The reference current can be selected following the discrete time sliding mode 

control design. For all of the systems under consideration it can be written in a unified 
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form as ( ) ( )( ) { }
1

1 1 ;  ,ref ref

k k i k kT T x
−

− −= − + − = ∂ ∂i i GB E D σ σ G σ  where T is the 

sampling interval.  The realization of this control algorithm requires information on the 

sliding functions and the plant gain matrix. The selected structure is only one of the 

several possible solutions, applying other design procedures many of which are 

developed in the framework of motion control systems may derive other structures.  
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5 INTERCONNECTION OF THE HYBRID ENERGY SOURCE AND A 

MICROGRID  

In previous chapters HES design requirements were identified, and main focus 

was put on the analysis and control of power electronic interfaces necessary for HES 

operation. Important aspects of interconnection of the HES and a microgrid are 

discussed in this chapter and technical discussion regarding HES is concluded. 

Throughout this chapter, the final objective of this thesis, identification of requirements 

for interconnection of the hybrid energy source and a microgrid, is achieved. Firstly, 

power control and power management for HES is explained and main guidelines to the 

design are discussed. Power control and management discussion reveals that renewable 

energy sources receive their power set values from MPPT algorithm and that the power 

control of output side converter is very important in implementation of overall control 

system. Following the section on power control and management, sections covering 

output side converter control and MPPT algorithm are given. 

5.1 HES Control System – Power Management 

A hybrid energy source can be viewed as an interconnection of different energy 

sources as shown in the Figure 5-1. The Σ in Figure 5-1 represents the power 

summation power point of the HES. For the hybrid source discussed in this thesis power 

summation point is DC bus in the system. For HES many different combination of the 

energy sources and energy storage systems can be used. From a structural point of view, 

they have no difference. In Figure 5-1 power is delivered to (or absorbed from) the load 

(grid, microgrid, local loads). Components of HES can be categorized based on their 

way of handling power. They fall into three categories, namely, components that 

generate power (G), components that store energy (S) and components that convert 

power (C). 
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Σ

 
Figure 5-1 Functional structure of HES attached to the load that can consume or 

generate power 

In this thesis we have been discussing the HES containing PV and wind 

renewable energy sources, fuel cell that uses fuel (hydrogen) to generate energy and 

battery storage unit. Other than these, incorporation of device for hydrogen production 

(electrolyzer) is also possible.  

Other than their relatively low efficiency and high cost, the controllability of the 

electrical production is the main drawback of renewable energy generators, like wind 

turbines and photovoltaic moduless, because of the uncontrollable meteorological 

conditions. In consequence, their connection into the utility network can lead to grid 

instability or even failure if they are not properly controlled. Moreover, the standards 

for interconnecting these systems to the utility become more and more critical and 

require the HES systems to provide certain services, like frequency and voltage 

regulations of the local grid.  

The structure of the HES considered in this thesis is shown in Figure 5-2. Wind 

energy conversion systems and PV work like passive generators. Because of the 

intermittent and fluctuant power flow they cannot offer any ancillary services to the 

electrical system in a microgrid application, where stable active- and reactive-power 

requirements should be attributed to the generators. As solutions HES is complemented 

with fuel cell and a battery as a element that can play both source and storage role and 

the electrolyzer as a energy converter and storage system. This way HES can use 

available renewable energy sources on their optimal points of exploitation, battery as a 

fast energy source to cover fast changes in the power requirements and electrolyzer with 
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storage as a high capacity storage system. Energy storage is used to compensate or 

absorb the difference between the generated wind power and the required microgrid 

power, and power management strategies are implemented to control the power 

exchange among different sources and to provide some services to the grid. 

 

 
Figure 5-2 Structure of a HES consisting of PV, WT, FC and storage system 

In this section power management strategies of the studied HES will be discussed. 

Power management strategies are implemented in order to control the power at the 

summation point-DC bus (see Figure 5-1) and to satisfy microgrid power requirements. 

These requirements are formulated as real- and reactive-power references, which are 
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calculated by a centralized secondary control center in order to coordinate power 

dispatch of several plants in a control area. This area corresponds to a microgrid and is 

limited due to the high level of reliability and speed required for communications and 

data transfer. 

5.1.1 Structure of HES Control System 

Power converters introduce control inputs for power conversion system and its 

interconnections to the grid. The structure of control system is depicted in Figure 5-3. 

The Switching Converter Unit (SCU) is designed for each power converter. The 

structures and the algorithms for different converters and different operational modes 

are discussed in Chapter 4. The SCU can receive different commands and deliver 

desired current flow in the branch they are connected.  

The Automatic Control Unit (ACU) is designed for each energy source and its 

power conversion system in such a way that source is working in desired (in many cases 

the maximum power) mode. The operational mode of the energy source would then be 

treated as a reference for the switching converter control.  

The Power Control Unit (PCU) is aiming to perform the power balancing of the 

entire HES in order to satisfy the microgrid requirements. These requirements are real- 

and reactive-power flow, which are obtained from the secondary control center. In a 

PCU, some power-balancing algorithms are implemented to coordinate the power flows 

of different energy sources. The different power-balancing algorithms correspond to a 

number of possible operating modes of the HES or some optimization algorithms. 

In order to focus on the power-balancing strategies of the HES, the control 

schemes of the power conversion systems through different power converters is already 

discussed in Chapter 4 and it will not be repeated here.  

The energy sources are interconnected to the DC bus and then via DC-AC 

converter to the AC bus (microgrid, grid, local loads). The wind system, PV system and 

fuel cell systems are controlled to follow maximum available power conversion via 

MPPT algorithms. Both wind and PV are stochastic energy sources, but the fuel cell is a 

source that may change its power by changing the fuel input, thus it can play a role of 

the controllable source, but it dynamics are not very fast. The battery is energy 

source/sink that can be charged and discharged very fast, thus it can play a role of either 
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source or a sink with instantaneous power change capability. The DC bus capacitor is 

defining DC bus voltage and is balanced by the current from energy sources and current 

to the microgrid. This allows us to look at the HES control system as shown in Figure 

5-3. 
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Figure 5-3 Control system structure of a HES consisting of PV, wind, FC and 

storage system 

5.1.2 Power Control Level 

The power exchanges are controlled by deriving related power references. The 

sources’ powers, the exchanged power with the DC bus capacitor and the required grid 

power are taken into account here. For the energy storage systems, the powers are 

calculated by multiplying the measured currents and the measured voltages. For the 

wind and PV, an MPPT strategy is used to extract the maximum power of the available 

energy. The output of the DC bus voltage control loop is the current reference of the DC 

bus capacitor, and its product with the measured DC bus voltage gives the power 

reference for the DC bus voltage regulation. The powers, which are exchanged with the 

microgrid, can be calculated from measured data. In order to focus on the power 
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exchanges with the different sources around the DC bus, the instantaneously exchanged 

power with the choke, the losses in the filters and in the power converters are neglected. 

5.1.3 Power Sharing Level 

The power sharing level is used to implement the power balancing strategies in 

order to coordinate the various sources in the HES (Figure 5-3). It plays a very 

important role in the control system, because the power exchanges lead directly to the 

stability of the HES and impact the DC bus voltage. Change of the energy stored in the 

DC bus capacitor 
DC

E  (or resulted power into the DC bus capacitor 
DCP  can be 

expressed as function of the wt
P  power from the wind turbine, 

pv
P  power generated by 

PV module, 
fc

P  power generated from the fuel cell, batt
P  power exchanged with battery 

(note that it can act as storage or a source), 
2H

P  power consumed by the electrolysis and 

stored as 2H  and dc acP −  power delivered to the microgrid from the DC bus (via the 

output side converter). Power reference to the output side converter can be calculated 

as, 

 ref ref

dc ac mg wtP P P− = −  (5.1) 

Power control of DC-AC output side converter has been discussed as the outer 

loop control of cascade control structure in Chapter 4 and will be further discussed in 

this Chapter. We can assume that power of DC-AC converter is regulated such that 

ref

dc ac dc acP P− −= . Under these conditions the power exchange on the DC bus can be 

expressed as, 

 
2

DC DC

DC DC pv fc batt H dc ac

dE du
Cu P P P P P P

dt dt
−= = = + ± − −  (5.2) 

From this expression one can derive many strategies to keep balanced power flow 

and the desired DC bus voltage. The operational requirements and constraints are 

opening a set of different strategies. Among the sources that are acting as generators the 

wind and PV sources have stochastic nature and their time profile cannot be controlled, 

but if good statistical data are available, their average behavior could be estimated. 

These sources, from the control point of view, may be regarded as "disturbances" and 

reasonable strategy of their usage is to tap maximum power they can deliver at any 
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instant of time. That strategy then operates these two sources by their individual MPPT.  

The fuel cell and electrolyzer are two main energy exchangers due to simple fact that 

large quantity of hydrogen can be stored. The fuel cell conversion processes dictate 

slow dynamics of the energy conversion thus the battery plays a role of fast power 

source that can act almost instantaneously in changing the current flow. 

According to a chosen power flow many power balancing strategies can be 

implemented. Here we will make short analysis of the two of them: 

1) The microgrid following strategy in which the power exchanged with 

microgrid is variable and regarded as a control input along with power exchanged with 

storage elements.    

2) The source following strategy in which the microgrid active power is set as 

reference determined by the system controller and the DC bus voltage is regulated by 

the available sources and storage units 

5.1.3.1 Microgrid Following Strategy 

In this scenario a HES operational point is determined and then available power is 

delivered to the microgrid. The operational point of the HES means setting of 

2
, , , ,

pv fc batt wt H
P P P P P  and then changing ref

dc acP −
 in order to maintain the desired DC bus 

voltage DCu . The operational point of the HES may be set according to many scenarios 

one of them being the maximum power tracking of the renewable sources (PV and 

wind) and desired operational point of the fuel cell (can also be MPPT) and energy 

storage. These scenarios may be derived by different cost functions and their derivation 

is outside of the scope of this work. The main methods in setting operational point of 

the HES can be divided in three groups [130]:  

o Rule-based method  

Rule based strategy is easy to implement. It has been widely used in industry due 

to the low computational load required. However, the control strategy is not 

mathematically formulated, the optimality of power management strategy is difficult to 

evaluate. 

o Instantaneous optimization method 

The main idea in energy management strategy based on the instantaneous 

optimization method is to define a cost function to be minimized at each instant. This 
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cost function depends only on the system variables at the current time. Due to the self-

sustaining requirements (in some period of time) of electrical energy storage, the 

variation of stored energy status has to be taken into account as part of cost function. 

Different approaches have been proposed to deal with this issue.  

o Optimal control methods 

The third type of strategy level control is based on different techniques in 

optimization theory, such as calculus of variation, Pontryagin's Minimum Principle, and 

Bellman's Dynamic Programming. These optimization techniques are mathematically 

well formulated. They choose the optimal control policy over the whole operating 

period. However, the difficulties for applying this type of control to a real time HES 

come from the unknown future power requirement and limitations. When the problem is 

stochastic optimal control, a stochastic model is needed.  

These mathematical approaches are valuable tools to obtain good insight into the 

problem and its optimal solution. They can be used as a reference to evaluate other 

approaches. In some cases the optimal solution can help defining simple and 

implementable rule-based strategy. 

5.1.3.2 Source Following Strategy 

In this strategy the microgrid power is set as reference determined by the system 

controller, within operational capability of the HES and the microgrid requirements.  

Then the power exchange and the DC bus voltage are regulated by the available sources 

and storage units. The operational point of the HES is then determined from the 

requirement of the balanced power flow needed to maintain DC bus voltage DC
u  and 

with dc ac
P −  as disturbance in the system. The operational point of the HES may be 

realized with different distribution of the needed power flow between sources and the 

storage units. The maximum power tracking of the renewable sources may not be 

always possible but it should be maintained as much as possible. The HES operational 

point tracking would need careful selection of the methods in setting operational point. 

The realization of the power flow rests on the proper control of the power 

converters. In both scenarios these converters should be controlled as current sources 

with either DC bus or microgrid being assumed to be voltage sources. 
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5.2 MPPT Algorithm 

In Chapter 3 it has been shown that PV module, wind turbine and fuel cell sources 

exhibit very similar behavior related to the extractable power. Furthermore, for the 

given electrical and environmental conditions, analysis of sources has shown that there 

exists a single maximum power point. Main goal of the MPPT algorithm is to control 

the power of the system and keeps it in the maximum point despite the environmental 

disturbances. 

5.2.1 MPP in renewable energy sources 

For a PV module, the output power behavior with respect to module current is 

depicted in Figure 5-4-(a). At the given irradiance and temperature conditions there 

exists a maximum power point. Since the value of power at the maximum changes with 

changing environmental conditions (for irradiance change effect see Figure 5-4-(b)), a 

control of PV module current should be done such that maximum power is always 

extracted from the module. 

Fuel cell electrical characteristics are similar to the ones exhibited by a PV 

module. Behavior of output power with respect to the fuel cell current is depicted in 

Figure 5-5-(a). At the given environmental conditions (oxygen and hydrogen pressures 

and fuel cell stack temperature) there exists a maximum power point. Change of MPP 

with respect to the temperature change of fuel cell is depicted in Figure 5-5-(b). Change 

of MPP imposes a requirement on control system to achieve MPP tracking by 

controlling the fuel cell output current. 

Finally, for a wind turbine similar behavior is observed for a generator output 

power. The change of power with respect to the generator speed, for constant wind 

speed, is shown in Figure 5-6-(a). Existence of MPP is clearly seen on this graph. 

However, changing wind speed causes changing value of MPP (Figure 5-6-(b)). For a 

MPP tracking to be achieved, generator speed needs to be controlled. 
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(a) (b) 

Figure 5-4 PV power vs. PV current (a); MPP for changing irradiance (b) 

  
(a) (b) 

Figure 5-5 FC power vs. FC current (a); MPP for changing stack temp. (b) 

  
(a) (b) 

Figure 5-6 WT power vs. generator speed (a); MPP for changing wind speed (b) 

All of the shown power curves exhibit similar behavior with respect to individual 

source related variables. Thus, same MPPT algorithm can be applied in all three cases. 

Literature review about the MPPT algorithms has shown that there exist many different 

approaches to this problem. In general solutions can be grouped into online and offline 

algorithms. Offline algorithms are mostly based on the development of empirical 

relation between the controllable variable and output power. Offline algorithms show 

severe disadvantages mostly due to the complexity of development of empirical 

relations. Online algorithms, on the other hand, are much better solutions in terms of 

overall performance. In online algorithm usually the instantaneous values of the output 

power are used to generate control signals. Most popular online MPPT algorithms are 

perturbation and observation method (P&O), extremum seeking control method (ESC) 

and the incremental conductance method (IncCond) [127]. All of these algorithms have 

very poor precision and depend on the calculation of derivative of power. 
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5.2.2 Sliding mode based optimization algorithm 

Maximum power point tracking for renewable energy sources is a maximization 

problem. Such problem can be treated using sliding mode optimization algorithm 

originally developed for anti-lock breaking system in cars [128]. This algorithm doesn’t 

depend on the calculation of derivative of power and inherits the robustness due to the 

implementation of sliding mode control. Optimization algorithm is developed for the 

systems in following dynamical form, 

 ,x u=ɺ  (5.3) 

with output ( )y f x= is assumed differentiable function and its derivative different than 

zero everywhere except at the point where max( )y y= . For system in (5.3) ushould be 

found such that it results in x  that drives the function y to its maximum value. To 

achieve this, optimization algorithm is developed by constructing an error between 

some monotonically increasing function g and output of the system as, 

 .g yσ = −  (5.4) 

Based on this error, sliding surfaces are chosen to be, 

 
1

2

;

,

s

s

σ

σ δ

=    

= +
 (5.5) 

and control input u is defined as, 

 0 1 2( ).u u sign s s=  (5.6) 

The reference function g is defined by (5.7) as, 

 1 2( , ).g v s sρ= +ɺ  (5.7) 

In the above equations 0, ,uδ ρ  are positive constants. And ( )1 2,v s s  is the three-

element relay defined as, 

 
1 2

1 2

1 2

 for    0, 0

0  for    ( )( ) 0,

 for    0, 0

M s s

v s s

M s s

− − ∆ > >


= + ∆ − ∆ <
 < + ∆ <

 (5.8) 

With 0,M M ρ> ≫  conditions. In the above equation 2∆ is the width of relay 

hysteresis. For easier visualization, control input uand relay function v  are depicted in 

Figure 5-7 and Figure 5-8 respectively.  
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Figure 5-7 Control input u 

 
Figure 5-8 Three element relay v 

In these figures three regions of operation are identified. When σ δ< −  or 0σ >  

control effort is positive and controller forces the error to decrease by driving system 

output closer to the reference value. Once the value of error is in the region where 

0δ σ− < <  holds, control effort is negative and from this point on, controller exhibits 

the typical behavior of sliding mode and control input changes its sign according at the 

boundaries defined by either sliding surface. Reference modification is done using three 

element relay depicted in Figure 5-8. This element modifies reference such that it is 

always monotonically increasing function so that output will always move toward its 

maximum value. At the region around maximum point, algorithm exhibits oscillatory 

behavior. Optimization algorithm based on sliding mode is depicted in the Figure 5-9.  
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Figure 5-9 Optimization algorithm block diagram 
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5.2.3 Application of sliding mode based optimization algorithm for MPPT 

 
Algorithm presented in the previous subsection is simple and doesn’t require 

knowledge of derivative of output function ( )y f x= . However, algorithm exhibits 

certain undesired switching behavior (chattering) due to the implementation of sliding 

mode. This problem is addressed by introduction of smooth functions in the place of 

sign function in controller and relay function in three element relay. Smooth functions 

can be specified as sigmoid functions in the form, 

 
1

2

1 1

2 2

2
( ) 1;

1
2

( ) 1.
1

ks

ks

h s
e

h s
e

−

−

= −
+

= −
+

 (5.9) 

In the above expressions, k is the design parameter specifying the rate of change 

of sigmoid functions. When k → ∞ , expressions in (5.9) become sign functions. Three 

element relay v  and control input u  are then redefined using functions from (5.9) as; 

 0 1 2.u u h h=  (5.10) 

 ( )1 2 .
2

M
v h h= − −  (5.11) 

  Graphical comparison between (5.6) and (5.8) and newly defined function from 

(5.10) and (5.11) is given in the Figure 5-10. With implementation of newly defined u

and v strictly speaking sliding mode is lost, however for maximization problem, the rest 

of the algorithm can be applied without any change. 
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 (b) 

Figure 5-10 Control input u (a) and three element relay v (b) redefined using 
sigmoid functions 

Maximum power point tracking for renewable energy sources under consideration 

in this thesis can be achieved using sliding mode based optimization algorithm. This 

conclusion can be drawn from the analysis of systems and their output behavior. For PV 

system, this optimization algorithm can be applied in the following way, 
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; ;
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; ;

; ;

2 2
( ) 1; ( ) 1,

1 1

ref

pv

pv pv pv

pv pv

pv pv pv pv pv
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ks ks

di
u P f i
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e e
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σ σ δ
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= − = −
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ɺ  (5.12) 

with the parameters 0, , , , 0M u kρ δ > . MPPT algorithm generates reference output 

current of PV module ( ref

pvi ). Output current of PV module is in fact input current of a 

DC-DC converter, and control system must control this current.  

In Chapter 4 current control of DC-DC converters was discussed. A control 

approach was developed to control current flowing through inductor in converter. For 

boost DC-DC converters, current flowing through inductor is in the same time the input 

current of the converter, for buck DC-DC converter this is not the case, however there 

exists a straightforward relation between inductor current and converter input current 

and can be easily calculated. 

Control block diagram of PV module controller is shown in Figure 5-11. MPPT 

block generates PV output reference current, ref

pvi , according to the algorithm described 

by (5.12). Block H  represents a relation between reference PV module output current 
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0

σ

v
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and converter inductor current reference ref

Li . Inductor current controller is denoted by 

i
C  and developed in Chapter 4. Inductor current dynamics are described by general 

form L
i i

di
f b u

dt
= + . Inductor current controller enforces that ref

L Li i=  and consequently

ref

pv pvi i= . In this manner maximum power point tracking is realized. 
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+
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u
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pvipvP
MPPT H
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L
i

Li

L
i i
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f b u
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= +

Li 1
H

−
pv

i

Figure 5-11 Control block diagram for PV with DC-DC converter and MPPT 

For a fuel cell, controller is very similar to that one of PV module so its 

description will not be explicitly given for convenience. The MPPT algorithm is 

described with the following set of equations, 
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with the design parameters 0, , , , 0M u kρ δ > . 

MPPT of wind turbine is developed with different variables of interest. 

Additionally need for speed control appears. The MPPT algorithm for wind turbine is 

described by, 
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with the design parameters 0, , , , 0M u kρ δ > . 

Controller block diagram is shown in Figure 5-12. MPPT block generates the 

reference generator rotational speed ref

gω according to the algorithm given in(5.14). 

Reference generator speed is controlled by speed controller denoted as Cω , this 

controller can be designed as in [129]. Speed controller results in reference 

electromagnetic torque ref

eT  which is used to calculate ref

Lqi  using (3.17). Current Lqi is 

controlled using control techniques described in Chapter 4. Current Lqi  generates 

electromagnetic torque and consequently changes the generator speed. In overall current 

controller achieves that ref

Lq Lqi i= , which in the same time means that ref

e eT T=  and 

speed controller achieves that ref

g gω ω= . In this manner maximum power point tracking 

for wind turbine is realized.        
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Figure 5-12 Control block diagram for wind turbine with MPPT 

5.3 Output side converter control and grid synchronization 

The converter interfacing DC bus with AC bus plays a major role in the power 

exchange between HES and AC bus. Let us assume that AC bus is representing 

microgrid. By interfacing a DC and AC sources this converter may have a role of the 

inverter (or AC source) and a rectifier (a DC source) thus it can transfer energy from 

DC bus to microgrid or from the microgrid to DC bus. As shown in previous sections 

the switching matrix with two input (or output) lines and three output (or input) lines - 

so called buck inverter or boost rectifier - may control a bilateral power flow. Before 

discussing control system design let us analyze possible power flow that this converter 

may be required to realize. This analysis would serve as a control task specification. 

The single line diagram of the DC bus to microgrid interconnection is given in Figure 

5-13. 
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Figure 5-13 A single line diagram of the DC bus to microgrid interconnection 

The dynamical model of the system in the grid voltage frame of references can be 

written as, 
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where 
g

ω is the angular velocity of the desired output voltage, T

C Cd Cq
v v v =    and

T

L L d Lqi i i =  
, 2 2 2

T

L L d L q
i i i =    are the output voltage and the inductor current vectors 

respectively.  The control in stationary (a,b,c) frame of reference is determine by  
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1i 1i

i

1i 2i
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u t i

S = OFF S = ON


= =


 (5.18) 

If the DC bus voltage is controlled by other converters then the output side 

converter can be regarded as a source with apparent power iv=+= 222
QPS ,

( ) ( )ϕϕ coscos SP T === iviv  and ( ) ( )ϕϕ sinsin22
SPSQ ==−±= iv . The voltage is 

determined by the microgrid, thus in that voltage frame of references the active and 

reactive powers may be expressed in the following form ( ) d

T iP viviv === ϕcos and 
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( ) qiQ viv == ϕsin , where ( )ϕcosi=di  and ( )ϕsini=qi  are components of the current 

vector collinear di  and orthogonal 
qi to the voltage vector respectively. With given 

maximum current (thus maximum apparent power) the converter may be theoretically 

required to deliver to the microgrid active and reactive power in ratio satisfying 

constraints iv=+= 222 QPS , thus currents ( )ϕcosi=ref

di  and ( )ϕsini=ref

qi  can be 

specified to attain desired power.  

In structure under examination the current L2i is defining power delivered to 

microgrid. From given active and reactive power the reference currents 2
ref

L di  and 2
ref

L qi  

can be easily determined. Then 
ref= −iL2 L2 L2e i i  can be expressed as 
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The disv  act as a disturbance in the current control loop and the output capacitor 

voltage Cv is a control input. If Cv is selected as 
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Then the HES current supplied to the microgrid would have error dynamics 

governed by 

 0; 0.
d

k k
dt

+ = >L2
L2

e
e  (5.21) 

With 
ref

Cv  defined as in (5.20) the current Li could be determined from converter 

output voltage control loop. The voltage control error vCe  can be expressed as 
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For the closed loop dynamics 1 10, 0,
d

k k
dt

+ = >vC
vC

e
e  inductor current should be 

 ( ) 1

1 ref

gC Ck
C

ω= − + =L L2 C vC Li i Pv e i  (5.23) 

With reference current determined as in (5.23) we can now apply current control 

algorithm already discussed in Chapter 4. It is now obvious that we can directly specify 
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active and reactive power as input to the controller without any change of its structure. 

In this way this converter may act as active or reactive power source. This allows its 

usage as a power compensator or higher harmonics filter. It is only necessary to be able 

to express desired controlled variable in the terms of active and reactive power (or 

components of the current collinear and orthogonal to the grid voltage vector). Classical 

active filter configuration of output side converter is shown in Figure 5-14.  

 

 
Figure 5-14 Output side converter as active filter in microgrid 

5.4 Conclusion 

This chapter concludes the technical discussion about the HES power electronic 

interfaces and control system. In this chapter three basic topics are covered, MPPT for 

renewable energy sources, output side converter control and HES power control and 

power balancing strategies. Developed MPPT algorithm discussed in this chapter is 

modification of optimization algorithm based on sliding mode control as described in 

[128]. Algorithm has been modified by replacing discontinuous control and 

optimization functions with smooth and differentiable functions and algorithm is 

modified so it can be applied for each renewable source under consideration. Regarding 

the output converter control it has been shown that additional dynamics introduced by 

the output filter must be taken into consideration when designing control system. 

Together with the control strategies developed in Chapter 4 a control system design of 

output side converter has been completed. Finally the power management strategies are 

presented for the sake of completeness of this thesis. Power management in HES is 

active topic of research and it is explained in this chapter only roughly.  
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6 EXPERIMENTAL AND SIMULATION RESULTS 

This chapter contains the experimental results that verify the most important 

finding of this thesis. To solidify the verification simulation results are given along. 

Basic DC-DC converters were simulated and experimentally verified. Control of DC-

DC converters presented in Chapter 4 is verified both in simulations and experiments. 

Experiments related to the renewable energy sources are done and relevant results are 

presented. Finally experimental results concerning the control of three phase switching 

converters are given together with simulation and experimental verification of switching 

algorithm from Chapter 4.  

6.1 Experimental Results of Control of DC-DC Converters 

6.1.1 DC-DC Converters Experimental Setup 

For the experimental purposes, two most common DC-DC converters, buck and 

boost were designed and implemented. Schematic of the designed DC-DC buck 

converter is shown in the Figure 6-1. Switches in switching matrix are implemented 

using combination of MOFET and Schottky diodes to allow bidirectional power 

transfer. Inductor current and capacitor voltage are measured quantities. Current is 

measured using Hall effect current sensors. Voltage is measured by custom designed 

sensor. Voltage sensor consists of resistor divider and signal conditioning stage. DC-DC 

converter is run from digital controller that includes analog to digital converters and 

switch modulators. Switch signals are supplied to the gate terminal of the MOSFET 

using appropriate gate driver circuits. Implemented buck converter is shown in Figure 

6-2. Current and voltage sensors are shown in Figure 6-3-(a) and Figure 6-3-(b), 

respectively. 
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Figure 6-1 Buck converter implementation schematic  

Gate driver
DC-DC 

Converter

Buck Boost

Switching 

signal

 
Figure 6-2 DC-DC converter power topology implementation 

  
(a) (b) 

Figure 6-3 Implementation of current sensor (a) and voltage sensor (b) 

Boost converter implementation schematic is shown in Figure 6-4. Careful 

examination of the schematic reveals the topological similarity between buck and boost 
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converters. For the experimental purposes same power topology from Fig. 6.2. is used 

to implement boost converter. In fact boost converter is obtained by simple source/load 

inversion of buck converter and different place of the voltage sensor. Implementation 

details of the DC-DC converter experimental setup are given in Table.6.1. 
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Figure 6-4 Boost converter implementation schematic 

Implementation details of DC-DC converter 
MOSFET IRF530 

Schottky diode MBR10100ct 
Gate driver IR2104 

Current sensor LEM LTSR15np 
Voltage sensor Resistor divider + conditioning circuit (OP495) 

Inductor (L) 330 µH 
Capacitor (C) 220 µC 

Digital controller dSpace DS1103 
Table 6-1 Implementation details of DC-DC converter 

6.1.2 Control of DC-DC Converters 

Buck converter dynamics are given by (4.46) with 11s as the control input and 

measured L
i inductor current and c

v  capacitor voltage. Current in inductor is controlled 

using expressions from (4.70), (4.72) and (4.73). Current controller achieves .ref

L Li i=

Voltage is then controlled using linear, proportional integral (PI), controller in the form 

of ( ) ( ) ;ref ref ref

L i c c p c c p i
i K v v dt K v v K ,K= − + −   > 0.∫ Obtained ref

Li is reference inductor 

current necessary to achieve desired voltage level. This cascaded control structure is 

depicted in the Figure 6-5. 
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Figure 6-5 Buck converter control block diagram 

Dynamics of DC-DC boost converter are given in (4.51) with 121 s−  as control 

input and measured L
i inductor current and c

v  capacitor voltage. Inductor current is 

controlled using (4.74) and (4.76). Current controller achieves .ref

L Li i=  Voltage is then 

controlled using linear, proportional integral (PI) controller in the form 

( ) ( ) ;ref ref ref

L i c c p c c p i
i K v v dt K v v K ,K= − + −   > 0.∫  Obtained ref

Li  is reference inductor 

current providing desired voltage level. This control structure is depicted in Figure 6-6. 
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Figure 6-6 Boost converter control block diagram 

6.1.3 DC-DC Buck Converter Experimental Results 

Voltage control of buck converter is implemented using setup presented in the 

previous subsection. Current control results are shown here to verify the control 

capabilities of the proposed controllers. In the first case, shown in the Figure 6-7 the 

buck inductor current is controlled to the constant reference value of 0.5A. Controller 

shows satisfactory performance with fast settling time, no overshoot and negligible 

steady state error in response. In the second experiment inductor current is controlled to 

the constant reference value of 1A and results are shown in the Figure 6-8. Similar 

results are achieved as in previous experiment.   

In the next experiment buck capacitor voltage is controlled to the desired 

reference value. In the first experiment output voltage reference is set to 10V and 

controller performance is evaluated. Controller response is satisfactory with fast settling 

time, no overshoot and minimum steady state error. Controller response is shown in the 

Figure 6-9. In the second experiment, voltage reference of 20V is supplied to the 



127 

controller and response is given in the Figure 6-10. The controller shows the same 

performance. For further testing purposes voltage reference is changed in the form of 

staircase signal and voltage response is shown in the Figure 6-11. Additional 

experimental parameters are given in Table 6-2.  

 

DC-DC buck converter experiment parameters 
Load resistance R 22Ω 

Control loop sampling frequency 10 kHz 
Input voltage vg 32V 

PI controller parameters Kp, Ki 75, 1000 
Table 6-2 DC-DC buck converter experiment parameters 

 
Figure 6-7 Buck converter inductor current control (0.5A reference) 

 
Figure 6-8 Buck converter inductor current control (1A reference) 

 
Figure 6-9 Buck converter capacitor voltage control (10V reference) 
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Figure 6-10 Buck converter capacitor voltage control (20V reference) 

 
Figure 6-11 Buck converter capacitor voltage control (staircase reference) 

6.1.4 DC-DC Boost Converter Experimental Results 

Experiments with boost converter are done for the inductor current control. In the 

first experiment inductor current reference is controlled to the value of 1.7A. Controller 

exhibits good performance with fast settling time, minimum steady state error and 

minimum overshoot. Current response is shown in Figure 6-12. with magnified transient 

period for better view. Boost converter is initially controlled to 0.35A current value; 

open loop initial current is 0.31A due to the nature of boost topology.  

 

Figure 6-12 Boost converter inductor current control (1.7A reference) 
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Second experiment show boost current control performance against a slow time 

varying reference current. Reference current is supplied in the form of ramp signal with 

both positive and negative slopes. Controller shows excellent tracking performance. 

Current response for this case is shown in Figure 6-13. Current error is shown in Figure 

6-14. Additional experiment parameters are shown in Table 6-3.  

 

Figure 6-13 Boost converter inductor current control (ramp reference)  

 
Figure 6-14 Current tracking error (ramp reference) 

DC-DC boost converter experiment parameters 
Sampling frequency 10kHz 
Load resistance R 106Ω 
Input voltage vg 21V 

Table 6-3 DC-DC boost converter experiment parameters 
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6.2 PV System Experimental Results 

6.2.1 PV System Experimental Setup 

L
L

i

oCR cv
+

−

pvi

pvv
+

−

pv
v

pvp

pvi

pvp

ref

L
i

pvi

+−
iC

u

 
Figure 6-15 PV System experimental system 

Experimental setup for PV system is shown in the Figure 6-15. Setup consists of 

PV module emulator with DC-DC boost converter attached at its output terminals and 

resistive load at the output of boost converter for power dissipation purposes.  

Implementation of boost converter used in this experiment is explained in the 

previous section. Boost converter inductor current control is implemented as depicted in  

Figure 6-6 with inductor current reference ref

Li supplied by MPPT algorithm 

described in Chapter 5. In Figure 6-15, 
i

C  block represents current controller. 

 For experimental purposes PV module emulator is implemented using buck 

converter as the power stage as shown in Figure 6-16. Output capacitor voltage of buck 

converter is controlled using controller from  

Figure 6-5. Buck converter output current is measured, based on that information 

and PV module I-V characteristics information, the reference output voltage of buck 

converter is generated. Set output voltage is obtained using PV model (Chapter 3), 

 0 1 ;
Vd
Vtd

ph pv

sh
g

h

V
i i i e

R

 − = + − 
 ���

�������

 (6.1) 

 0.
pv s pv d

v R i V+ − =  (6.2) 
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Figure 6-16 PV module emulator 

In the equation (6.1) and (6.2), 
ph

i  is known photo-generated current proportional 

to the given irradiance,
pvi  is the measured buck converter output current and 

0, , ,
sh t s

R V i R  parameters are known for the PV module under consideration. In order to 

obtain the ( )ref

pv cv v= for a measured 
pv

i , diode voltage 
d

V needs to be calculated from 

(6.1) and inserted into (6.2). However, explicit solution of (6.1) doesn’t exist, so this 

equation has to be solved in some other manner.  

In the available literature, the value of diode voltage is most commonly found by 

iterative root finding methods such as Newton-Raphson. However, when such 

algorithms are run in real-time, convergence is hard to be guaranteed, hence, such 

solution may fail. Instead, different solution is proposed including offline curve 

parameterization. Namely, all possible d
V values for a given PV module are plotted 

against the right hand side of (6.1) denoted by h. Obtained curve is parameterized to get 

solution in the form of ( )dV f h= , where ( )f h is polynomial of some known degree. 

Now for any given h within the permitted range d
V  value can be obtained by calculating 

the value of the polynomial. Since h g=  (the right hand side of (6.1)) it can be 

calculated in each sampling period as the difference of photo-generated current and 

buck converter output current.  
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Figure 6-17 Parameterization of diode voltage curve 

The plot of dV  vs. h is shown in Figure 6-17. Practically polynomial of very high 

degree is necessary to obtain the parametric description of this curve. For the 

implementation purposes the curve has been divided into four regions and each region is 

estimated by a 6th order polynomial. This degree of polynomial for each region is not 

the optimal but for our purposes it is satisfactory considering the estimation error. 

Obtaining optimal degree of polynomial for each region is the matter of future work. 

6.2.2 PV Module Emulator - Simulation and Experimental Results 

PV module emulator depicted in Figure 6-16 has been simulated using 

Matlab/Simulink 2012b and experimentally verified using buck converter presented in 

the previous section. Simulation model of PV module emulator is shown in Fig.6.18. 

Simulation and experimental results are compared for the sake of verification and 

satisfactory results are obtained.  

 

 
Figure 6-18 PV module emulation simulation model 
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In the first experiment, PV module emulator performance is examined when the 

resistive load is attached to it. When the load is attached current starts to flow at the 

output of the emulator which in return causes the change of the output voltage in 

accordance to the I-V characteristics of the emulated PV module. Results of this 

experiment are shown in Figure 6-19. Without load, emulator output voltage is at its 

maximum (open circuit voltage) for given irradiance, when the load is attached, the 

actual drop on the output voltage is determined by the loading condition.  

 

 
Figure 6-19 PV module emulator – load connection experiment 

Power extracted from the PV module emulator is determined by the current 

flowing at its output, in other words, power is determined by the load impedance. For 

the attachment of the given load in the first experiment power graph is shown in Figure 

6-20. At the beginning of the experiment there is no power flow to the output, once the 

load is attached, power starts to flow to the output as seen in the figure. For the given 

loading condition, power extracted from the emulator is 26.58W. 

 Second experiment with PV module emulator is done for the sudden load change 

at the output. In the beginning of the experiment there is 11Ω load attached to the output 

of the emulator. At some arbitrary point in time output load is changed to 22Ω and 

 

 
Figure 6-20 PV module emulator – power flow 
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emulator output current and voltage are observed. For this change, output current 

decreases while output voltage increases as shown in Figure 6-21. It is important to 

notice that the value of current is given with an offset of 20A for better display 

purposes. Fast settling time of the PV emulator is observed. 

 

 
Figure 6-21 PV module emulator – output load change response 

 For better interpretation of the results and comparison of the experimental and 

simulation results, the I-V characteristics of the emulator are simulated using model 

from Figure 6-18. The output current value is varied between its minimum and 

maximum values and emulator output voltage is recorded. The I-V characteristic curve 

is plotted in Figure 6-22. Additional to that the two load lines are plotted on the same 

graph; first load line is plotted for 11Ω and second load line is plotted for the load of 

22Ω. In ideal conditions, for a given load at its output, it is expected that emulator 

output voltage and output current have values that that are equal to the values of 

operating point where load line intersects the I-V curve. Operating points for two values 

of load (11Ω and 22Ω) are obtained from simulations and experiments and compared as 

depicted in the Figure 6-22. Simulation and experimental results are very close to the 

expected operating point as it can be seen from the graph. 

 

 
Figure 6-22 PV module emulator – comparison against load lines 
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Experimental setup from Figure 6-15 was used to perform third experiment. For 

the purposes of this experiment, boost inductor current reference was changed from its 

minimum value to its maximum value as shown in Figure 6-23, and emulator output 

voltage and output power is observed. In addition, experimentally obtained results are 

compared to the simulation results for the performance evaluation. The comparison of 

simulated and experimentally obtained I-V curve is shown in the Figure 6-24. Power 

curve results are given in the Figure 6-25. It is important to notice that these all of these 

experiments are done for the maximum irradiance of 1000 W/m2. All of the necessary 

simulation and experimental data is given in the Table 6-4. 

 
Figure 6-23 PV module emulator – change of output current 

 
Figure 6-24 PV module emulator – I-V curve (simulation vs. experiments) 

 
Figure 6-25 PV module emulator – power curve (simulation vs. experiments) 
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PV Module Emulator Simulation and Experiment Parameters 
PV module 

Open circuit voltage Voc 21.6 V 
Short circuit current Isc 1.93 A 
Rated voltage (@ MPP) 17.2 V 
Rated current (@ MPP) 1.74 A 
Rated power (@ MPP) 30 W 

Experimental parameters 
Sampling frequency 10 kHz 

Input voltage vg 32V 
Table 6-4 PV Module Emulator Simulation and Experiment Parameters 

6.2.3 MPPT – Simulation Results 

In this section simulations of PV module with DC-DC boost converter at its 

output are described. Boost converter is feeding a resistive load. Modeling and 

simulation of electrical characteristics of PV module is covered in Chapter 3 and 

technical data of simulated module and other simulation parameters are given in the 

Table 3.1. MPPT algorithm based on sliding mode optimization from Chapter 5 was 

implemented using smooth sigmoid functions. As an output of MPPT algorithm boost 

converter inductor current references are generated.  

In first simulation case, sun irradiance was set to its maximum value of 1000 

W/m2. For this value of irradiance it is expected that PV module can produce 300W at 

its output. Current and voltage values of PV module at maximum power are specified in 

Table 3-1. as 5.49A and 54.7V respectively. Figure 6-26 shows the performance of 

MPPT algorithm in maximum power point search. PV modules output power is 

compared to the optimization reference denoted as g . Power tracks the optimization 

reference that, as a result of MPPT, reaches the PV module maximum power value of 

300W.  There are few important facts that can be seen on the Figure 6-26. First; boost 

converter output voltage has some initial value so there exist some initial value of 

current at the input. This input current manifests itself through power at the time 0s. 

After the simulation is started, output power picks up MPPT optimization reference 

quickly and optimization reference increases until it reaches the maximum power point 

and stays there with certain amount of oscillations around the maximum power point. 

Maximum power point reaching time is relatively fast, however it is a result of selected 

MPPT design parameters. For the same test case of 1000 W/m2 irradiance reference 
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inductor current and inductor current response are shown in the Figure 6-27. Inductor 

current settles at 5.49A as specified by PV module datasheet. PV module output voltage 

change is shown in Figure 6-28. Voltage falls from open circuit value to 54.7V at MPP.  

 
Figure 6-26 Maximum power point tracking for PV system 

 
Figure 6-27 PV module current response 

 
Figure 6-28 PV module voltage response during MPPT 
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the frequency of sine irradiance value is 20Hz. Simulation results of MPPT are shown 
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value of 300W and for 500W/m2 irradiance module power is at half of that value. 

Corresponding boost converter inductor current tracking is shown in Figure 6-30. 

 
Figure 6-29 MPPT for varying irradiance 

 
Figure 6-30 PV output current response for varying irradiance 

 

 

Figure 6-31 MPPT performance shown on power curve 
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values for a given irradiance. MPPT algorithm parameters and the rest of simulation 

parameters are shown in Table 6-5 MPPT simulation parameters. 

 
MPPT Simulation Parameters 

0u  500 

δ  0.5 
ρ  1000 
M  50000 
k  1000 

Table 6-5 MPPT simulation parameters 

6.2.4 MPPT – Experimental Results 

MPPT was implemented using setup shown in Figure 6-15. First experiment was 

done for the maximum irradiance (1000W/m2). According to the emulated PV module 

specifications it is expected that MPPT settles at about 30W power. Results shown in 

Figure 6-32 verify this expectation. At the beginning of the experiment certain amount 

of power is drawn from the PV module emulator due to the boost converter initial 

current (0.45A). For that current value of PV module voltage is 20.91V so resulting 

power drawn from emulator is 9.4W. After some arbitrary point in time MPPT is started 

(using commands in software). MPPT algorithm starts to drive the system to the 

maximum power point and this process can be clearly seen in the graph. When 

maximum power point is reached MPPT algorithm keeps system in that point until MPP 

changes. The boost inductor current reference commanded by MPPT is shown in Figure 

6-33. Boost inductor current tracks the reference current during MPP reaching. Figure 

6-34 shows the PV module output voltage change. Voltage settles at 17.2V, rated 

voltage at MPP. 

 
Figure 6-32 PV module power during MPPT 
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Figure 6-33 PV module current during MPPT 

 
Figure 6-34 PV module voltage during MPPT 

Reaching of the maximum power point for the first experiment is shown on the 

simulated power curve in Figure 6-35. It can be seen that experimentally obtained 

power values match the power curve and MPPT forces the system to settle at its 

maximum power of 30W. 

 

Figure 6-35 PV module power during MPPT compared to the simulation case 
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the MPPT were recorded and compared against the simulated power curves as shown in 

Figure 6-36. It can be seen that at the beginning of the experiment the module outputs 

about 10.7W of power. After MPPT is enabled the power of the module rises to the 

value of 22.5W which is the maximum power point at given irradiance of 750W/m2. 

With the change of irradiance to 1000W/m2, the module output power raises to the 

value of 30W. Boost inductor current response is shown in the Figure 6-37. From this 

figure the MPP reaching (0s-3s), settling (3s-5s), irradiance change(5s-8s) and settling 

to new value (8s-9s) can be clearly seen. 

 

 
Figure 6-36 PV module power during MPPT for irradiance change 

 

Figure 6-37 PV module current during MPPT for irradiance change 
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phase converters for various applications (Figure 6-38). The central component of the 
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designed three phase switching inverter is intelligent power module (IPM) that consists 

of three IGBT based half bridge components and their gate drivers (gd). The board was 

designed to properly interface IPM with necessary components. Board additionally 

includes the current sensors (cm) at the AC power side for the measurement of phase 

currents. Board also features optical isolators for IGBT gate signals, auxiliary power 

supply to power the gate drivers and optical isolators (not shown in Figure 6-38). All of 

the analog and digital signals are collected at the single interface for easier connection 

of the board and digital controller. The overall design of the electronics is characterized 

with modularity which offers ease of the troubleshooting.  

 

i
C

 
Figure 6-38 Three phase switching converter design schematic 

Intelligent power module on the board is Fairchild Semiconductor’s FNB41060-

B2, 10A, 600V IGBT module. This module consists of three half bridges and 

corresponding gate drivers. Internally, module has implemented safety procedures for 

over-current fault, under-voltage lockout and excess temperature protections using a 

thermistor. This is a low cost, small footprint module and requires very few additional 

components to be fully interfaced. 

In order to separate digital and high power grounds and in that way guaranty the 

safety of the controller equipment the switch control signals are optically isolated 

through direct current drive opto-coupler. Outputs of the opto-couplers are connected to 

the IPM IGBT gate driver inputs.  
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The half bridge currents measurement is done using fully integrated, Hall-effect 

based, low offset, high precision linear current sensors. The sensor is capable of 

measuring RMS currents up to 25A value. Terminals of the conductive current path are 

magnetically isolated from the conditioning circuit. This sensor integrates the output 

voltage conditioning circuit, so the measurement signals can be interfaced directly to the 

digital controller without further conditioning or isolation. 

The implementation of the hardware requires the availability of supply voltages of 

different values. Basically the conditioning circuits require 5V, gate drivers require 15V 

and DC bus voltage is a matter of preference with limit of 600V. Board is designed such 

that it requires auxiliary 24V supply to power on-board 15V and 5V regulators.  

Collection of the all relevant analog and digital signals is done into a single 

breakout connector for easy interface. Special attention was paid to the routing and 

layouting of the circuit due to the accommodation of different types of signals; analog, 

digital and high power. 

The hardware module can be used in combination with many different digital 

controllers, for the purposes of this work, dSpace DS1103 is used because it provides 

rapid prototyping capability, high processing I/O speed and accuracy. 

Figure 6-39 and Figure 6-40 show the implementation of three phase switching 

converter explained above. All of the components are clearly identified on the figures. 

   

 
Figure 6-39 Implementation of three phase converter 
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(a) (b) 

  
(c) (d) 

Figure 6-40 Converters PCB design (a) and (b), test period of converter (c), 
IPM outlook (d) 

 

Designed three phase switching converter can be used both as the inverter and 

rectifier as it permits the bidirectional power flow. For the purposes of this thesis the 

converter was tested as inverter driving the rotor circuit of doubly fed induction 

generator (DFIG). For the implementation of full setup necessary to drive and control 

the DFIG some additional equipment is used together with the converter. The schematic 

of the experimental setup for interface of DFIG is shown in Figure 6-41. Laboratory 

setup consists of the doubly fed induction generator and another asynchronous motor. 

The shafts of both machines are coupled mechanically. Asynchronous motor is used as 

wind turbine emulator and it is driven from a regular commercial speed controller. 

Outputs of the three phase inverter interfacing a DFIG are connected to the rotor 

terminals of the DFIG, and stator terminals of DFIG are connected to the three phase 

electrical load or utility grid. Additionally current and voltage measurement circuits are 
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added to the stator side of generator and voltage measurements for the grid voltage. DC 

bus voltage for the inverter is supplied from a separate DC power supply. Setup is 

controlled using dSpace DS1103 controller system. DFIG is shown in Figure 6-42. 

 

gv

 
Figure 6-41 Three phase inverter driving a DFIG rotor circuit 

 
Figure 6-42 DFIG (on the right) coupled to wind turbine emulator (on the left) 

6.3.2 Three Phase Inverter Simulation and Experimental Results 

Three phase buck inverter was simulated using following expressions for inductor 

current and capacitor voltages (see Figure 4-15 ), 
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This dynamical model is given in (a,b,c) frame of references. For the control 

purposes this model is transformed into (d,q) frame of references as follows, 

 
( )

( )

;

;

gLd cd
r Lq d i

Lq cq g

r Ld q i

vdi v
i u S

dt L L

di v v
i u S

dt L L

ω

ω

= − + +

= − − +

 (6.6) 

 

;

;

cd cd Ld
r cq

cq cq Lq

r cd

dv v i
v

dt RC C

dv v i
v

dt RC C

ω

ω

= − + +

= − − +

 (6.7) 

 
;

,

r
r

r

d

dt

θ
ω

θ

=

dqu = F( )u
 (6.8) 

where r
ω  is the angular velocity of the desired output voltage, control vector u is 

defined in stationary (a,b,c) frame as, 
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and ( )d iu S and ( )q iu S , 1,...,8i =  correspond to control inputs based on the permissible 

switch combinations as shown in the Figure 6-43 . 
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Figure 6-43 Permissible switch configurations for three phase inverter 
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Control of the three phase inverter is done by controlling the inductor currents to 

their reference values. As a result of voltage control these current references are 

calculated. For inductor current control, errors are constructed as ( )ref

d Ld Ldi t iσ = −  and 

( )ref

q Lq Lqi t iσ = − . Taking the time derivative of the current errors following expressions 

are obtained, 
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.
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d Ld Ld

ref

q Lq Lq

d di di
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σ
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= −

= −

 (6.10) 

Now by substituting the current dynamics from (6.6) into (6.10) and equating the 

error derivatives to zero expressions for equivalent control are obtained as in (6.12) . 
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As discussed earlier equivalent control is the component of the control that, once 

applied to the plant, guaranties that change of error is zero. Substituting (6.12) back into 

(6.11) following expressions are obtained, 

 
( )( )

( )( )

;

.

g eqd
d d i

q g eq

q q i

vd
u u S

dt L

d v
u u S

dt L

σ

σ

= −

= −

 (6.13) 

Control selection is done using sliding mode control design principle based on 

Lyapunov stability criteria, namely, 0
d d

σ σ <ɺ  and 0
q q

σ σ <ɺ . This condition can be 

expressed in somewhat different form as, 
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Control problem is now narrowed down to the selection of one of the permissible 

switch configuration that will in turn guaranty sliding mode existence and , 0
d q

σ σ = .  
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Figure 6-44 depicts the all of the possible switch combinations and resulting 

values of ( )g
L v dqσɺ  vector. Since there are often more than one switch combinations 

satisfying the constraints from (6.14) an additional constraint can be added such that 

switch is selected according to the minimum change of error. Switching algorithm is 

summarized in (6.15). 
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Figure 6-44 Selection of control for given vector of equivalent control 

Inductor current control achieves that ref

Ld Ldi i=  and ref

Lq Lqi i= . Now ref
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can be selected according to the desired output behavior. For this simulation case output 

capacitor voltage control is targeted. For capacitor voltage control errors are selected as 

ref

d cd cdv vσ = − and  ref

q cq cqv vσ = −  and resulting reference inductor current is obtained 

using following expressions, 
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where τ can be seen as the response time constant. Control block diagram of three 

phase buck inverter is shown in Figure 6-45.  
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Figure 6-45 Three phase inverter control block diagram 

Model was simulated using Matlab/Simulink 2012 and desired variables are 

plotted for the simulation scenario. Results of the voltage control are shown in Figure 

6-46 and Figure 6-47. For the controller test purposes the d component of the voltage is 

changed from initial 220V to 310V and lowered down to 220V after some time. The 

responses are shown in Figure 6-46. Settling time is dictated by the τ  parameter in 

(6.16). Similarly response for q component of the voltage is given in Figure 6-47, where 

the reference is changed from 0V to 120V and back to 0V. Controller shows excellent 

performance with desired settling time, no overshoot and minimum steady state error. 

Resulting capacitor voltages in (a,b,c) frame of references are shown in Figure 

6-48. Capacitor voltages are sinusoidal in shape, their amplitude is determined by d and 

q component magnitudes and have desired angular frequency value (for the simulation 

purposes 60Hz).  

 
Figure 6-46 Voltage control response – d component 
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Figure 6-47 Voltage control response – q component 

 
Figure 6-48 Capacitor voltage response – (a,b,c) frame of references 

As mentioned earlier for given voltage control, inductor current references are 

generated and inductor current controller performs control based on those references. 

The inductor current responses for voltage control in this simulation scenario are given 

in Figure 6-49 (d component) and Figure 6-50 (q component). Switching consequences 

can be seen in current ripples. The magnitude of these current ripples is dictated by the 

width of hysteresis used in current controller. Hysteresis is used for implementation of 

sign function as relay to avoid high switching frequencies. Switch selection is shown in 

Figure 6-51 in (α,β) frame of references. Simulation parameters are given in Table 6-6.   

 
Figure 6-49 Inductor current response – d component 
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Figure 6-50 Inductor current response – q component 

 
Figure 6-51 Switches state selection according to the switching algorithm  

DC-AC buck inverter simulation parameters 
Inductor value L  15mH 
Capacitor value C  50µF 
Load resistance R 22Ω 
Input voltage vg 538V 

Synchronous speed r
ω  2π50 rad/s 

Time constant τ  1.5 ms 
ODE solver and step size Ode1 (euler), 1e-6s 

Table 6-6 Three phase inverter simulation parameters 

For the purposes of experimental verification of the designed controller 

experimental setup depicted in Figure 6-41 is used. Current control of three phase 

inverter with rotor circuit attached at its output is realized. DFIG rotor circuit can be 

seen as the load of the inverter. Experiment scenario is depicted in Figure 6-52. 
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Figure 6-52 Three phase inverter with DFIG rotor circuit as the load 

For the circuit in Figure 6-52 inductor currents dynamics in the synchronous 

frame of references can be rewritten as follows, 
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where r
ω  is the angular velocity of the desired DFIG rotor voltage. Rotor current 

dynamics can be rewritten from (3.13) and (3.14) as, 
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with desired angular velocity 
r s

ω ω ω= − . All the variables of DFIG rotor current 

dynamics are explained in Chapter 3. By expressing (6.19) in terms of rotor voltages, 

substituting them into (6.17) and noting that *
rq Lq Lqi i i= =  and *

rd L d L di i i= =  following 

current dynamics can be obtained, 
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Current controller can now be designed as described earlier. For the 

implementation purposes equivalent control is estimated with equivalent control 

observer from [129].  

When doubly fed induction generator is integrated in HES, its power references 

are generated by the MPPT algorithm. Active and reactive powers are controlled by 

controlling stator currents. Control of stator currents can be implemented considering 

the stator current dynamics from (3.11) and (3.12), where corresponding rotor currents 

are considered as the control input. In other words ( )*ref

Ldi t  and ( )*ref

Lqi t  are obtained 

from the stator current control loop.  

In general DFIG can act as either voltage or current source. When DFIG is used in 

grid connected mode, stator voltage is defined by grid voltage and DFIG acts as the 

current source. On the other hand, when DFIG is used in island mode, stator voltage is 

defined by the currents flowing in stator circuit and given loading so DFIG can act as 

the voltage source. In the following sections, behavior of the designed controller for 

both cases is examined and proposed current controller is tested for robustness in 

multiple scenarios. 

In order to verify the performance of the rotor current controller, set of three basic 

experiments has been performed. DFIG rotor shaft is driven by an induction motor 

attached to it. Such setup is used to simulate the behavior of real wind turbine.  In the 

first experiment rotor current controller performance was tested while no load was 

attached to the stator side of DFIG. Second experiment was performed when 

combination of resistive and inductive loads are suddenly connected and disconnected 

from the stator. For both of these experiments, rotor mechanical speed was kept 

constant. Third experiment was performed when the DFIG is subjected to the 

mechanical speed changes. All of the relevant results are shown below.  

Rotor is supplied from a voltage source of 24V and speed change of wind turbine 

simulating asynchronous machine is changed manually. Three phase electrical load is 

connected to or disconnected from stator terminals by means of manual mechanical 
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switch. In all of the experiments current responses are looked at individually, in other 

words, when ( )*ref

Ldi t  is supplied, ( )*ref

Lqi t  is kept at zero and vice versa. 

In the first experiment stator circuit is left open (no load) and rotor mechanical 

speed is kept constant. Current reposes for d and q component are shown in Figure 6-53 

and Figure 6-54. The controller shows satisfactory performance in both transient and 

steady state regions, with minimum steady state error and fast rise time. Rotational 

speed was kept constant at 125rad/s during the experiment. 

 

 
Figure 6-53 Current Controller Response, d-component, no load 

 
Figure 6-54 Current Controller Response, q-component, no load 
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previous experiment. At some arbitrary point in time after 1.5s stator is connected to 

three phase resistive-inductive load and disconnected after an arbitrary time by 

operating manual switch. Clearly marked points on the figures as ”Load ON” and ”Load 

OFF” represent the load connection and disconnection. Presence of load causes stator 
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controller shows robustness and it is able to quickly compensate for the occurring 

changes. Resistance and inductance of the load have values of 200Ω and 19mH 

respectively. Rotational speed was kept constant at 125rad/s in this experiment as well.  

 

 
Figure 6-55 Current Controller Response, d-component, resistive-inductive load 

 
Figure 6-56 Current Controller Response, q-component, resistive-inductive load 
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Figure 6-57 Current Controller Response, q-component, speed change case 

For the sake of further experimentation and controller verification grid stator is 

connected to the utility grid and set of experiments was performed. Experiments are 

performed in the following manner. Firstly, controlled amount of d component of rotor 

current has been supplied to the rotor circuit. As a result voltage has been formed at the 

stator circuit. Magnitude of this current determines the amplitude of voltage formed at 

the stator. For these experiments current magnitude has been determined to be 4A. After 

the desired stator voltage is reached and synchronization between grid and stator is 

achieved, stator is tied to the grid and desired current step references are supplied.  

In this experiment, q component of rotor current response and its contribution to 

the power flow from stator circuit has been clearly shown. Current controller 

performance is observed with step reference current response as shown in Figure 6-58.  

 

 
Figure 6-58 Current controller response, q-component 
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the change in stator d component current of 1.46
ds

i A=  as shown in the Figure 6-59. 

Utility grid is connected to DFIG through step down transformer so that grid voltage 

seen by stator is 100V peak. Stator voltage is oriented with d component of grid voltage 

so 100
ds

v V=  . With 1.46
ds

i A=  and 100
ds

v V=
 
, stator active power is 219

s
P W= , this 

result is verified in Figure 6-60.  

 

 
Figure 6-59 d-component stator current change for q- component rotor current 

step change 

 
Figure 6-60 Active stator power change for current step change 
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7 CONCLUSION AND FUTURE WORK 

Microgrid is relatively new concept and research on this topic is still in its infant 

stage. As literature review, done in the second chapter of this thesis, suggests, the 

research topics in this area are diverse and wide. Microgrids are substantially different 

than the classical electrical distribution network because they are dominated by the 

sources that are integrated through power electronic devices. In addition to that, in 

microgrid, usually all of the sources act together to form a stable and reliable electrical 

network. Due to these facts, majority of the research challenges in this field are found in 

the area of power conversion, power control and power management. 

Sources, storage units and loads are interfaced to the microgrid through power 

electronics. In this way their controllability is increased but in the same time this makes 

the control problem more complex. For the sake of easier implementation of microgrids 

and reducing the control problem complexity, hybrid energy source is introduced to 

microgrid. In hybrid energy source all power conversion, control and management is 

done locally and microgrid acts as a supervisor to such a system. Hybrid energy source 

integrates renewable energy sources that are characterized with stochastic power 

delivery dependent on the environmental conditions. It additionally includes storage 

units and sometimes other dispatchable sources to smooth out power profile and be able 

to deliver power on demand. As such hybrid energy source from microgrid perspective 

can be seen as a dispatchable (intelligent) source.  

7.1 Summary 

In this thesis we discuss a control framework that, up to a large extent, 

standardizes the way the hybrid energy source, as a part of microgrid, is controlled and 

analyzed. In that light, modeling and analysis of selected renewable energy sources 

(wind, PV, fuel cell) and storage units (battery) is done. Such analysis is done with the 
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sole purpose of understanding the electrical characteristics and power behavior of those 

sources and storage units. Result of this analysis gave an insight in the operational 

requirements for power electronics interface in hybrid energy source.  

Following the modeling and electrical analysis of the sources and storage units, 

their power electronics interfaces and control system requirements are defined. Power 

electronics interfaces and their control systems showed many structural and functional 

similarities. Resulting from that fact, generalized power electronics interface and 

control system is derived and presented at the end of the third chapter. 

Analysis and control of converter topologies is presented in fourth chapter. This 

chapter is the main technical core of the thesis. Firstly, power electronics converters are 

analyzed as switching matrix to generally describe their functionality. Further the 

switching matrix characteristics are applied to the analysis of DC-DC, single phase AC 

(rectifier and inverter) and three phase AC (rectifier and inverter). The structural and 

functional similarities between all of the converters become obvious once the analysis is 

done in this way. After obtaining the dynamics of the mentioned converters the control 

system design is discussed. Most important results are obtained for the current 

controller of three phase converters, where it is shown that the same algorithm can be 

applied to all three phase converters (buck inverter/rectifier, boost inverter/rectifier). 

Switching algorithm used to produce switching signals for the converters is realized as 

the direct consequence of sliding mode control, which in turn brings all of the 

advantages of this control into attention. 

Last topic that is discussed in this thesis is the interconnection of hybrid source to 

microgrid. In the scope of discussion three main points are covered, namely, power 

control and management, control of converter interfacing DC bus of hybrid source and 

microgrid and maximum power point tracking method for renewable energy sources. 

Control and management of power inside the hybrid energy source and microgrid in 

general is indeed hot research topic. Use of dispatching algorithms and linear 

programming is one of the possible solutions; another solution is based on the rule 

based strategies possibly including some intelligent control methods (fuzzy, neural 

network). In this thesis we don’t go into details of implementation of those methods nor 

do we propose specific solution since this topic is out of the scope of the thesis. 

Information given is solely for to have completeness of the text. On the other hand 

power control of the so called output side converter is discussed in detail and 

mathematical formulation of the problem is given. Since this converter acts both as the 
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current source converter and voltage source converter depending on the microgrid 

requirements (modes of operation), a control strategy is developed for both cases. 

Finally maximum power point tracking for the power control of renewable energy 

sources is discussed.  

Verification of control algorithms is done both experimentally and by simulation. 

All of the relevant experimental and simulation results are discussed in sixth chapter. 

Experimental results include the current control of DC-DC buck and boost converters 

and voltage control of DC-DC buck converter. PV emulator is implemented using buck 

converter with output voltage control where voltage reference is generated according to 

the i-v characteristics of PV module. Experimental results verifying the proposed MPPT 

algorithm are done using boost converter attached to the output of PV emulator. Boost 

is current controlled where reference current is generated by the MPPT algorithm. 

Finally simulation and experimental results for control of three phase switching inverter 

is presented. Simulation is done for inverter feeding a balanced resistive three phase 

load and experimental results are obtained by considering control of inverter feeding a 

rotor circuit of doubly fed induction generator (in literature referred to as rotor side 

converter - RSC). Three phase current controller is tested for robustness against 

different disturbances and shows satisfactory results. 

7.2 Contributions of the Thesis 

Throughout the thesis much information is presented to achieve the completeness 

of the text however the main contributions of this thesis can be narrowed down to the 

following;  

 

o Generalization of control problem for power electronics interfaces in hybrid 

energy source; 

o Development of switching algorithm for three phase switching converters based 

on the closed loop behavior of the converters; 

o Development of a maximum power point tracking algorithm for the renewable 

energy sources. 
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7.2.1 Generalization of Control Problem for Power Electronics Interfaces in HES 

The hybrid energy source control system can be divided into three different layers 

as discussed in the Chapter 5. Top layer is responsible for power management such that 

power sharing is guaranteed among the available sources and storage units according to 

some predefined strategy and power references obtained from the microgrid controller. 

Middle layer is responsible for power control based on the references generated by the 

top layer; and bottom layer of the control system achieves the current control in each 

individual converter. In this thesis generalization of the control approach is done for the 

bottom and middle layer of the HES control system.  

Main power electronic converter topologies used for interface of hybrid energy 

source are DC-DC converters for DC sources, AC-DC rectifiers for AC sources and 

DC-AC inverters for the hybrid energy source interface to microgrid electrical network 

which is usually AC type. Using the analysis procedure developed in Chapter 4 the 

mathematical description for the dynamics of the converter is given. It has been shown 

that dynamics description can be put into certain mathematical form to describe a class 

of systems for which the control approach is then developed. The control approach is 

based on sliding mode control principles and it has been shown that the same design can 

be done for all of the converters. This result is particularly interesting from the 

standardization point of view. Control of the converters is done as the two step 

approach; first the control input is found that realizes the inductor current control 

(bottom layer); and then inductor current reference is found as the result of control of 

some other relevant variable – in the case of HES it is power (middle layer). Such 

cascaded control approach allows for the control design as for systems with reduced 

order dynamics.   

7.2.2 Switching Algorithm for Three Phase Switching Converters  

In Chapter 4 switching algorithm for the three phase converters is developed. 

Switching pattern for three phase converters is determined based on the desired closed 

loop behavior of converter. Control design is performed such that sliding mode exists in 

a manifold resulting in reference current tracking. Reference current generation is done 

taking into consideration the desired closed loop behavior of the converter. Switching 
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algorithm combines the closed loop behavior and selection of switching pattern into one 

problem which is usually not the case for majority of the control methods found in 

literature. Current control is performed in (d,q) frame of references resulting in two 

values of control, however, since the control vector has three components for three 

phase converter the selection of switching pattern may not have unique solution. In the 

presented algorithm an additional constraint is added so switching pattern is selected to 

guaranty the minimum rate of change of error. In this way number of switch transitions 

is minimized leading to the minimization of switching losses. The switching algorithm 

is summarized in (4.112) and with minimum modifications can be applied to all three 

phase switching converters.  

7.2.3 MPPT Algorithm for the Renewable Energy Sources 

MPPT algorithm details are given in Chapter 5. This algorithm is based on the 

sliding mode control optimization proposed in [128]. Original optimization algorithm 

was used in anti-lock breaking system implementation for slip minimization. In this 

thesis we present modified version of that algorithm with applications as the MPPT for 

PV module, wind turbine and fuel cell. Following modifications to the algorithm are 

done; optimization is treated as the maximization problem and discontinuous control 

function and relay elements are replaced with their smooth counterparts. By the second 

implementation strictly speaking the sliding mode is lost however the algorithm exhibits 

less oscillation around the maximum point. MPPT algorithm is formulated for 

applications in control of PV module, wind turbine and fuel cell. The control follows 

earlier described procedure where converters attached to the sources are current 

compensated and MPPT has sole function of power maximization.   

7.3 Future Work 

Future work will mostly be based on the improvement of switching algorithm for 

three phase converters. Since the calculation of control vector from values of control 

obtained in (d,q) or (α,β) frame of references doesn’t have unique solution additional 

requirements can be added to the control system. These requirements can be related to 
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the minimization of total harmonic distortion, for example. 

Another future development will be the construction of the complete hybrid 

system emulator. The development of this emulator is started through this thesis by 

constructing the 30W PV module emulator and 1.1kW DFIG based wind turbine 

emulator. Future work will focus on the implementation of emulator for fuel cell and 

addition of battery storage system. This kind of experimental setup would allow 

realization of more heavy duty experiments with the complete HES system. It could 

further be used for testing of power management and power sharing strategies. 
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