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Abstract

Image mosaicing aims to increase visual perception by composing data
from separate images since a mosaic image provides a more powerful scene
description. Gaining and maintaining situational awareness from image mo-
saics is important for both civil and military applications. Inspection of the
urban areas suffering from natural disasters and examination of the large
plantations are possible civil areas of utilization. For military applications,
image mosaicing can provide critical information about enemy activities in
wide areas. Although there are many studies in the literature that focus on
creating real-time image mosaics for different applications, there is still room
for improvement due to the need for faster and more accurate mosaicing for
a variety of practical scenarios.

In this thesis, novel techniques for creating fast and accurate aerial image
mosaics of quasi-planar scenes are developed. First, a sequential mosaicing
approach is proposed where all the past images intersecting the new image
are used to estimate alignment of the new image. A tool from computer
graphics, Separating Axis Theorem (SAT), is employed to detect image in-
tersections. A new local affine refinement is introduced to provide global
consistency throughout the mosaic. Second, a pose estimation based mo-
saicing technique is developed where the scene normal and the camera pose
parameters are estimated through an Extended Kalman Filter (EKF). Mosaic
is formed by using the homographies constructed from the estimated state
vector. Using an EKF based approach provides a significant global consis-
tency throughout the mosaic since all the parameters are updated by which
error accumulations in the loop closing regions are compensated. Proposed
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algorithm also provides localization and attitude information of the camera
which might be beneficial for robotics applications. Both methods are veri-
fied through several experiments and comparisons with some state-of-the-art
algorithms are presented. Results show that the developed algorithms work
successfully as intended.
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Düzlemsi Sahnelere Ait Havadan Çekilmiş Görüntüler İçin

Hızlı ve Doğru Görüntü Mozaikleme Teknikleri

Alper Yıldırım

ME, Master Tezi, 2014

Tez Danışmanı: Prof. Dr. Mustafa Ünel

Anahtar Kelimeler: Görüntü Mozaikleme, Yerleşim, Ayırıcı Eksen Teoremi,

Afin İyileştirme, Poz Kestirimi, Genişletilmiş Kalman Süzgeci

Özet

Görüntü mozaikleme, ayrı ayrı çekilmiş resimlerin bütünleştirilmesini ve
bütünleşik resimlerin sahne hakkında daha iyi bir tanımlama sunmasından
dolayı bu şekilde sahne hakkındaki görsel algının artırılmasını amaçlar. Moza-
ik resimlerden elde edilen durumsal farkındalık sivil ve askeri uygulamalar
açısından önem taşır. Muhtemel sivil kullanım alanları, doğal felaketlerden
dolayı hasar görmüş kentsel bölgelerin keşfi ve geniş dikili alanların incelen-
mesi olarak verilebilir. Askeri uygulamalar içinse, görüntü mozaikleme geniş
alanda süregelen düşman aktiviteleri hakkında kritik bilgiler sağlayabilir. Lit-
eratürdeki farklı uygulamalar için geliştirilmiş çeşitli gerçek zamanlı görüntü
mozaikleme çalışmalarına rağmen, birçok pratik uygulama için daha hızlı
ve doğru sonuçlar veren yöntemlere duyulan ihtiyaç sebebiyle, konu hala
gelişmeye açıktır.

Bu tezde, havadan alınmış düzlemsi sahnelere ait görüntülerin hızlı ve
doğru şekilde mozaiklenmesini amaçlayan yeni yöntemler geliştirilmiştir. İlk
olarak, yeni gelen bir resmin yerleşiminin belirlenmesi için bu resim ile kesişen
bütün eski resimlerin kullanıldığı bir mozaikleme yaklaşımı geliştirilmiştir.
Kesişen resimleri belirlemek için Bilgisayar Grafikleri literatüründe kullanılan
Ayırıcı Eksen Teoremi kullanılmıştır. Mozaik görüntü üzerindeki global tu-
tarlılığın artırımı için yeni bir afin iyileştirme yöntemi sunulmuştur. İkinci
olarak, sahne normali ve kamera poz parameterelerinin Genişletilmiş Kalman
Süzgeci ile kestirimine dayalı bir mozaikleme yöntemi önerilmiştir. Mozaik
görüntü, durum vektörü parametrelerinden elde edilen homografiler yardımı-
yla oluşturulmaktadır. Bütün parametrelerin kestiriminin birlikte yapılması
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ve bu sayede döngü kapanışlarındaki hataların kompanze edilmesinden dolayı,
Genişletilmiş Kalman Süzgeci temelli bir yaklaşım kullanmak, mozaik görüntü-
ye kayda değer oranda global tutarlılık sağlamaktadır. Önerilen metod ayrıca
robotik uygulamalarda kullanışlı olabilecek kameranın yer ve duruş bilgisini
de sağlamaktadır. İki yöntem de farklı durumlar için deneylere tabi tu-
tulmuş ve bazı diğer gelişmiş mozaikleme algoritmaları ile karşılaştırılmaları
sunulmuştur. Sonuçlar, geliştirilen yöntemlerin amaçlandığı gibi başarılı bir
şekilde çalıştığını göstermektedir.
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Chapter I

1 Introduction

Image mosaicing aims to increase visual perception by composing visual data

obtained from separate images since a composite image provides richer de-

scription than individual images. Gaining and maintaining situational aware-

ness from image mosaics is important for both civil and military applications.

Inspection of the urban areas suffering from natural disasters and examina-

tion of the large plantations are possible civil areas of utilization. For military

applications, image mosaicing can provide critical information about enemy

activities in a broad perspective. Although there are many studies in the

literature that focus on creating real-time image mosaics for different appli-

cations, there is still room for improvement due to the need for faster and

more accurate mosaicing for a variety of practical scenarios.

Image mosaicing is the process of merging several images to create a

consistent and seamless composite image. This composite image can provide

more information than spatially and temporally distinct individual images.

Image mosaicing algorithms are frequently used for medical, personal and

remote sensing applications. By using these algorithms, attractive panoramic

images of the natural photos [1] can be obtained with from relatively cheap

off-the-shelf cameras. In medical imaging, successful results are obtained

from mosaicing of retinal images [2] and tissues [3]. Mosaicing algorithms



can be useful to create mosaics of microscopic [4] and fingerprint images [5].

These algorithms can also be useful in remote sensing applications where

maps of an environment can be created using aerial [6] and underwater [7]

images. They are also used as video compression and image stabilization

purposes [8].

Finding the alignments of the images is the central part of all mosaicing

algorithms. In literature, image alignment methods are usually categorized

under two main categories: dense and sparse methods. These are known as

direct and feature based alignment approaches [9]. In direct approaches, all

the available data in the image is used instead of a set of sparse features

in the images. Transformation parameters and pixel correspondences are

estimated simultaneously in these approaches. These approaches provide a

higher accuracy when compared to the feature based approaches since all the

image information is exploited. Although this provides more accuracy, they

require a close initialization to the true solution and a high degree of overlap

between the images for the algorithm to converge. Pioneering work in this

area is done by Lucas and Kanade [10]. An overview on historical progress

and extensions of direct approaches can be found in [11].

In feature based methods, distinctive image features such as SIFT [12],

SURF [13] and affine invariant regions [14] are used for the estimation of the

alignment parameters. Sparse nature of the features accelerates the estima-

tion process and eases the real-time operation.

Selecting an appropriate transformation model to compute the image

alignments is an important step for image mosaicing. A hierarchy of transfor-

mations [15] are available under projectivity. Projective homography is the

most general linear transformation model for image mosaicing applications
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where the scene is planar and the camera undergoes a rigid motion [9]. For

the case of pure rotational camera motion, homography becomes the rota-

tion matrix which is represented with a less number of parameters by which

estimation becomes more stable [16, 1].

Several different frameworks have been proposed to create image mo-

saics. One approach is to consider the mosaicing problem under a recursive

estimation framework [17] where homography parameters are treated as the

system states. Whenever a loop is detected in the image sequence, an Ex-

tended Kalman Filter (EKF) is launched to tune transformation parameters

through the loop. This way error is propagated through images and thus

global consistency is improved. The analogy of mosaicing to Simultaneous

Localization and Mapping (SLAM) problem is considered by Civera et. al.

[18]. They utilize a SLAM framework for creating image mosaics in real-time.

In the cited work, system states are composed of feature coordinates and the

most recent pose parameters of the camera.

An alternative formulation is to employ graph theory in mosaicing. Kang

et al. formulate global consistency as finding optimal paths in the graph

[19]. Elibol et al. utilize Minimum Spanning Tree (MST) algorithm to infer

tentative topology of the mosaic with a reduced number of matching trials

[20]. Choe et al. [2] focus on selecting optimal reference frame which is

formulated as a shortest path problem on the graph using Floyd-Warshall

algorithm. Kim and Hong [21] use sequential block matching in regularly

spaced grid features. They reduce search space on the graph by using a

sequential shortest-path algorithm.

In order to create globally consistent image mosaics, a nonlinear opti-

mization algorithm, i.e. ‘Bundle Adjustment’ [22], can be run on the feature

3



reprojection errors. Given a number of overlapping images, bundle adjust-

ment aims to find parameters that minimize the total feature reprojection

error. The minimization can be performed over motion parameters or struc-

ture parameters or both. Despite the fact that results can be impressive,

this minimization is hard to perform in real-time. Although several variants

of bundle adjustment exist and either sparsity of the structure is exploited

[23, 24] or multiple cores are being utilized [25], speed issues are still being

investigated. This severely limits usage of bundle adjustment in robotics

applications, especially for large scale data.

Image mosaicing can be easier if some prior data are used. For example,

in the context of mosaicing where images are captured from a UAV, data

from non-visual airborne sensors such as Inertial Measurement Unit (IMU)

and GPS can be incorporated. Such sensors will allow orthorectification of

the acquired imagery and limit the parameter space [26]. By narrowing the

region of interest, computation time is also decreased during the matching

procedure [27]. Initial works on aerial image mosaicing adopted robust model

estimation techniques for feature matching such as RANSAC [28] and LMeds

[29]. Various improvements have been introduced on classical RANSAC in

terms of speed, accuracy and robustness. For example, RANSAC framework

has been extended with various ideas such as MLE estimation [30], guided

sampling procedure [31], exploitation of match similarities [32] and local

optimizations [33].

1.1 Thesis Contributions and Organization

In this thesis, two new mosaicing techniques capable of creating fast and ac-

curate image mosaics of quasi-planar scenes are developed. Our contributions
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can be highlighted as follows:

• A new mosaicing approach where alignments of the new images are

computed by using all the previously aligned images intersecting the

new image.

• To detect image intersections in an efficient manner, a tool from com-

puter graphics, Separating Axis Theorem (SAT), is employed.

• A local affine refinement procedure is introduced to provide a better

global consistency throughout the mosaic.

• A novel mosaicing technique based on camera pose estimation is devel-

oped where scene normal and camera pose parameters are updated by

an Extended Kalman Filter (EKF). EKF handles error accumulations

in the loop closing regions.

Organization of the thesis can be summarized as follows:

In Chapter 2, background information for image alignment and mosaicing

is given. In Chapter 3, first mosaicing approach is presented. Visual and

numerical results for this algorithm are provided with several experiments.

In Chapter 4, our second mosaicing approach which is based on camera pose

estimation is introduced. Algorithm is tested on some image datasets and

visual and numerical results are presented. Finally, thesis is concluded in the

Chapter 5 with some remarks.
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Chapter II

2 Background

Image mosaicing process involves aligning the images captured from different

camera poses to each other. The fundemental part of all the mosaicing

algorithms is to find the alignments between images. Finding the alignments

include obtaining a mathematical mapping between the pixel coordinates of

these images.

2.1 Motion Models

Several different parametric models can be used for the purpose of image

alignments. We can summarize these models as translation, Euclidean, sim-

ilarity, affine and projective models.

2.1.1 Translation

Translation between the the pixel coordinates of two images can be given as:

x′ = x+ t (1)



where the x′ and x denote the pixel coordinates of the images. This can be

expressed with a linear transformation by using homogeneous coordinates as:
x′

y′

1

 =


0 0 tx

0 0 ty

0 0 1



x

y

1

 (2)

2.1.2 Euclidean

Euclidean model includes a 2D translation and 2D rotation between images.

Given a 2D rotation R =

r11 r12

r21 r22

 and translation t =

t1
t2

, Euclidean
motion between the homogeneous coordinates of two images can be given as:

x′

y′

1

 =


r11 r12 t1

r21 r22 t2

0 0 1



x

y

1

 (3)

Euclidean motion preserves the magnitude and relative angle proporties of

the lines in space. It has 3 degrees of freedom (DOF) as the 2D rotation has

one DOF and the translation has 2 DOF.

2.1.3 Similarity

Similarity transformation is a motion model which is composed of an isomet-

ric scaling and Euclidean motion. For a scaling S =

s 0

0 s

, it can be given

7



as follows:

x′ = SRx+ t (4)
x′

y′

1

 =


sr11 sr12 tx

sr21 sr22 tx

0 0 1



x

y

1

 (5)

Similarity transformation has four DOF. These are three DOFs of the Eu-

clidean motion and a scaling factor for the isometric scaling denoted with s.

It is a shape preserving transformation where angles between lines and ratio

of the line lengths remain unchanged. A similarity transformation can be

calculated from 2 point correspondences.

2.1.4 Affine

Affine model includes a six DOF linear transformation which can be written

in terms of homogeneous pixel coordinates as:
x′

y′

1

 =


a11 a12 a13

a21 a22 a23

0 0 1



x

y

1

 (6)

Affine transformations preserve the parallelism. Area ratios are also invariant

under this transformation. Ratio of the lengths of the line segments are not

preserved except the case where lines are parallel to each other.
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2.1.5 Projectivity

Projectivity is the most general linear transformation that is defined with a

3×3 nonsingular matrix. A projective transformation can be given as below

in terms of homogeneous coordinates:
x′

y′

1

 =


h11 h12 h13

h21 h22 h23

h21 h22 h23



x

y

1

 (7)

where the transformation matrix includes nine elements. A 3×3 projective

transformation mapping homogeneous pixel coordinates to each other is also

called as homography. It differs from an affine transformation by its last row

which includes extra three elements. However since ratio of these elements

to each other matters because of the homogeneous coordinates, it has eight

degrees of freedom where any nonzero multiple of the matrix implies the

same transformation. In terms of pixel coordinates, this mapping can be

given with the following nonlinear equation:

x′ =
h11x+ h12y + h13
h31x+ h32y + h33

(8)

y′ =
h21x+ h22y + h23
h31x+ h32y + h33

(9)

Cross ratio of the collinear points is an invariant of the projective transforma-

tion. Parallelism is not usually preserved under projective transformations.

9



2.2 Image Alignment

After a suitable motion model is chosen, parameters of this model must

be estimated. Since it is not usually possible to find a perfect alignment

between images because of the uncertainties such as noise, illumination dif-

ferences and parallax, this problem is usually expressed as an optimization

problem where ‘best’ possible alignment between images is found. There are

two main approaches in the literature based on the utilized cost function to

find the alignment parameters of images. These are the direct (pixel based)

and feature based approaches. Both approaches have their advantages and

disadvantages.

2.2.1 Direct Alignment

This approach includes warping the image on top of the other and trying to

find the parameters by which the overlapping pixels of both images agree.

This problem is defined on several different properties of the images [9]. The

simplest approach is to find alignments parameters by minimizing intensity

differences between images. Assume that we want to find alignment between

two images by using a translational motion model. Cost function based on

the intensity differences can be given by the following equation:

ESSD (u) =
∑
i

e2i =
∑
i

[I1 (xi + u)− I0 (xi)]
2 (10)

where u is the displacement and I1 (xi) denotes the intensity value of the

image at xi. However, it is possible that a bias and a scale differences exist

in the image intensities. To handle these illumination differences, a bias

and a scale parameter can be added to the cost function [10]. Updated cost

10



function can be given as:

ESSD (u) =
∑
i

e2i =
∑
i

[I1 (xi + u)− (1 + α)I0 (xi)− β]2 (11)

where β and α denotes the bias and gain parameters respectively. Since

squared diffences of the intensities are used in the optimization problem,

outliers can dramatically affect the results of the problem. To reduce the

affects of these outliers, robust cost functions are proposed in the literature.

For example, it is possible to use sum of absolote differences (SAD) of the

intensities instead of using a least square scheme which can be given as:

ESAD =
∑
i

∥ei∥ =
∑
i

∥I1 (xi + u)− (1 + α)I0 (xi)− β∥ (12)

However, this function is not suitable to be used with the optimization tech-

niques where Jacobians are utilized as it is not differentiable at the origin.

Using a differentiable function which does not grow as fast as square function

can be a possible option. For example, Huber robust error function [34] is

given as:

h (x) =

∥x∥2 x < σ

2σ∥x∥ − σ2 x ≥ σ

(13)

This cost function has both the fast convergence properties of L2 norm and

robustness of a L1 norm [1]. If this kind of a robust error function is used,
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the cost function is given as:

ESAD =
∑
i

h (ei) =
∑
i

h (I1 (xi + u)− (1 + α)I0 (xi)− β) (14)

It should be noted that, in direct alignment, a hierarchical estimation scheme

[35] is usually employed to speed up the convergence of the problem. This

is done by using an image pyramid where estimation is first performed on

coarser level and results of this estimation is used in a finer level for initial-

ization.

Direct alignment can also be performed for other motion models other

than pure translation. In this case, instead of using a translation vector u,

a spatially varying motion field which is a function of xi parameterized by a

small size parameter vector (parameters of the motion model) is employed.

As a result, new cost function can be given as:

ESSD (u) =
∑
i

e2i =
∑
i

[I1 (f(xi, p))− I0 (xi)]
2 (15)

where f is the function that maps a given point xi according to the motion

model parametrized by p vector.

The biggest advantage of the direct approaches is that they can use all the

information in the image which provides accurate registration results. Also,

these methods can be used for the cases where the amount of the texture in

the images (distinctive features) is insufficient. Their biggest disadvantage is

they have a limited range of convergence [9].
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2.2.2 Feature Based Alignment

Feature based registration is another approach that is used to align images.

These approaches are based on utilizing sparse distinctive features of the

images and using them to estimate the alignment parameters. To find the

alignment between two images, distinctive features are extracted from both

images and feature matching is employed after finding the feature correspon-

dences. Feature based approaches are available in the literature for a long

time. Some old studies employing these approaches are [36] and [37].

Several different image features can be used for image alignment. Recent

feature detectors (keypoint detectors) have good invariance properties that

can be used to find point matches between images. This provides robustness

to the large point-of-view changes in the images. For example, some feature

detectors have good scale ([38]) and affine invariance properties ([39], [40]

and [41]). It is also possibe to use some other kind of features for image

alignment. For example, line features can be exploited as in [42] and [43].

Tuytelaars and Van Gool [44] propose to use affine invariant regions to detect

correspondences between images.

After the features are detected from images, it is important to find the

feature matches between images. For some cases e.g. video sequences [45],

local motion around the point features can be assumed to be translational

where equation (10) can be utilized to compare the small patches around

feature points. For the situations where features are tracked over long image

sequences, appearances of the features may change dramatically. In this case,

it is more reasonable to use an affine motion model. For example, Shi and

Tomasi [45] compare patches by using a translational model between tem-

porally neighbour frames where after location estimation obtained from this
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procedure, an affine registration between two frames are performed between

the patches of the current and base frames. This kind of detect-than-track

approaches are suitable for video sequences where locations of the features

can be accurately predicted in the next frame.

Another possible feature matching scheme is the detect-and-match ap-

proach which is suitable for the cases in which temporal and geometric re-

lations between images are unknown [46] and [47]. For these situations,

features can easily appear in different scales and orientations which makes

use of view invariant features more important. Some recently developed view

invariant features are analysed and their performances are evaluated in [48].

For the usual cases, it is observed that Scale Invariant Feature Transform

(SIFT) [38] usually performs the best.

The simplest way of matching features between image pairs is to compare

all features of one image with the those of the other image. However, this

approach becomes infeasible for some cases as its computational complexity

becomes quadratic with the number of the features. As a result, to handle

feature matching more efficiently, different indexing schemes which are usu-

ally based on finding neigbours in high dimensional spaces are proposed. As

an example, a Best-Bin-First (BBF) algorithm is proposed by Beis and Lowe

[49]. It should be noted that, efficient detection of feature matches between

images is still considered as a problem which is far from being solved [9].

After a set of feature correspondences are computed, the problem is to

estimate the alignment parameters from this set of features. A possible

approach is to use a least-squares estimation for this task. However, it is

possible that there are some false matches between images which can seri-

ously spoil the quality of the estimations especially if a least-squares scheme
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is used. For a more robust estimation, it is better to perform some proce-

dures to eliminate these false matches which do not suit to the considered

model. There are two widely used solutions to this problem which are known

as RANdom SAmple Consensus (RANSAC) [28] and least median of squares

(LMS) [50]. For both techniques, first a set of correspondences that are

enough to define the model is chosen and model is estimated by using these

correspondences. Estimated model is tested on all of the feature correspon-

dences to specify its fitting performance. Residuals of all the features are

calculated with respect to the estimated model which is given as:

ri = x′i − g (xi, p) (16)

where p is the parameters of the given model that is mapping point xi to

x′i. For RANSAC, features whose residul norm is within a given interval are

assumed to be inliers. Procedure is repeated S times and model with the

maximum number of inliers are chosen as the final solution. To ensure that

a robust model of the given correspondances are obtained, enough number of

trials must be performed. Let the chance of a feature correspondence to be

valid is p and P be the total probability of success after S trials. Probability

of a trial which uses only inlier features becomes pk where k is the minimum

number of the correspondences needed to estimate the model parameters.

Probability of failure to find set of features composed of only inlier features

is given as:

1− P =
(
1− pk

)S
(17)

As a result, required minimum number of trials needed is given by the fol-
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lowing equation:

S =
log(1− P )

log(1− pk)
(18)

For LMS, median of the residual norms of a given model is considered. Model

which has the smallest median value is chosen to be the final solution.

2.2.3 Advantages of Feature Based Alignment

Feature based alignment methods have become very popular lately as a re-

sult of successful keypoint detectors which have very good scale and affine

invariant properties. As a result, alignment of the images from completely

different point of view and scale become possible which provides robustness

to the image alignment process since feature based methods do no not need

close initialization as in direct methods.

2.3 Image Mosaicing

Image mosaicing is the process of composing several images of a scene to

create a large field of images of the scene. This is done by aligning all the

images on the same reference frame by their estimated alignments. Both

direct or feature based methods can be used to find the alignments of the

images. However, feature based method become popular lately since they

have attractive invariance properties which makes mosaicing of images from

very different perspectives possible and ability to recognize if two images

have common texture [47].

Image mosaicing is possible with different motion models which were de-

tailed in 2.1. Most common motion models which can be used for mosaic-
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ing are similarity, affine and homography (a subset of projective transfor-

mations). Homography is the most general and popular motion model for

image mosaicing since it is the most general linear transformation on the

homogeneous image coordinates which is capable of representing perspective

distortions between images.

2.3.1 Homography

For two different camera frames, coordinates of the 3D points can be related

with a rotation and translation. For the coordinates of a point with respect

to the two camera frames, X1, X2, coordinate transformation between two

frames can be given as:

X2 = RX1 + T (19)

This transformation can be expressed as a homogeneous linear transforma-

tion when some additional constraints hold. For example, if the camera

translation is zero (pure rotational motion), transformation becomes as:

X2 = RX1 (20)

where homography is the rotation matrix. Coordinates of the points can

also be transformed to each other with a linear transformation for a general

euclidean motion when the scene is planar [51]. Let N be the unit normal of

the plane with respect to the first camera frame. Distance of the point X1

to the camera is given as:

d = NᵀX1 = n1X + n2Y + n3Z (21)
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By using (20) and (21), we obtain

1

d
NᵀX1 = 1 (22)

X2 = RX1 + T (23)

X2 = RX1 + T
1

d
NᵀX1 (24)

X2 =

(
R + T

1

d
Nᵀ

)
X1 (25)

H = R + T
1

d
Nᵀ (26)

As a result, mapping between image coordinates between two camera frames

can be expressed with a homography for the cases where camera undergoes

a pure rotation in a general scene or an Euclidean motion where scene is

planar.

2.3.2 Homography Estimation

For a set of inlier point correspondences between two images, a Direct Linear

Transformation (DLT) algorithm [15] can be used to compute the homogra-

phy between these images. Let the mapping between the coordinates of two

images be given as:

x′
i = Hxi (27)

Since this is a homogeneous transformation, x′ vector is an up to a scale

multiple of Hx, relation between these two vector can be expressed by the
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following equation:

x′
i × (Hxi) = 0 (28)

as cross product of collinear vectors equal to zero vector. Hxi can be written

as follows:

Hxi =


h1xi

h2xi

h3xi

 (29)

where hj denotes the jth row of H. Cross product in (28) can be written

explicitly as:

x′
i × (Hxi) =


y′ih

3xi − w′
ih

2xi

w′
ih

1xi − x′ih
3xi

x′ih
2xi − y′ih

1xi

 (30)

This expression is decomposed as a matrix vector product as follows:
0 −w′

ix
ᵀ
i y′ix

ᵀ
i

w′
ix

ᵀ
i 0 −x′ix

ᵀ
i

−y′ix
ᵀ
i x′ix

ᵀ
i 0



h1

ᵀ

h2
ᵀ

h3
ᵀ

 = 0 (31)

19



Since this is a skew-symmetric matrix, it has two independent rows. After

the third row is omitted, equations become:

 0 −w′
ix

ᵀ
i y′ix

ᵀ
i

w′
ix

ᵀ
i 0 −x′ix

ᵀ
i



h1

ᵀ

h2
ᵀ

h3
ᵀ

 = 0 (32)

This equation can be written for all point correspondences where each point

gives two independent equations (Aih = 0). By concatenating Ai matrices

vertically for n point correspondences, total number of 2n equations are

obtained where a system of equations are given as :

Ah = 0 (33)

where size of A is 2n × 9. For exact point correspondences, A has a one

dimensional nullspace. However, because of the noise involved in the point

coordinates, this homogeneous system of equations must be solved by using

least-squares where optimization problem is stated as:

min
h

∥Ah∥2 subject to ∥h∥2 = 1 (34)

The solution is found to be the eigenvector of ATA corresponding to its

smallest eigenvalue which can be obtained from Singular Value Decomposi-

tion (SVD) of A.

It should be noted that during the estimations, algebraic error is mini-

mized. However, it is more sensible to minimize geometric error since align-

ment quality is related to this quantity. To decrease the differences between

results of algebraic and geometric error minimization, a normalization is
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necessary for the pixel coordinates of the images. Normalization can be per-

formed with following steps [15] :

1. Feature coordinates of the first image (xi) are normalized. First, a

translation (T) is performed on all the points which map the centroid

of the points to the origin. After this mapping, an isotropic scaling (S)

is performed on the points such that average distance of the feature

points to the origin is
√
2. Final transformation becomes K = ST.

2. A similar procedure is also performed for the feature coordinates of the

other image (x′). Let transformation applied on these features to be

K′ = S′T′.

3. DLT algorithm is performed on the normalized feature coordinates. Let

the estimated homography be Hn. Homography between the original

feature coordinates can be recovered as H = (K′)−1 HnK.

Another advantage of the normalization is that it provides invariance to the

chosen coordinate frame. Normalization is stated as an essential step for

homography estimation which should not be thought as optional [15].

After an estimation is performed, it is also important to determine its

accuracy. Covariance matrix of the homography can be calculated as:

1. Given the point correspondances for two images (x′
i and xi) where ho-

mogeneous feature coordinates are mapped to each other with x′
i =

Hxi, Jacobian of x′ is calculated with respect to the homography pa-

rameters for all the correspondances. This can be calculated from (8)

and (9).

21



2. These Jacobians are concatenated vertically and J is formed which

includes all the individual jacobians. Covariance matrix of the homog-

raphy is obtained from J by the following equation:

ΣH = A
(
AᵀJᵀΣ−1JA

)−1
Aᵀ (35)

where A is any 9 × 8 matrix whose columns are orthogonal to H. Σ

is the covariance matrix formed from the covariances of the feature

coordinates which is a 2n × 2n matrix. Since we can assume that the

components of the feature coordinates are independent from each other,

this matrix can be chosen as a multiple of identity (λI).

2.3.3 Homography Decomposition

Relative rotation and translation between two camera frames can be ex-

tracted from the estimated homography between images (HL) [51]. To ex-

tract these quantities, homography is normalized with its second largest

eigenvalue which is given as:

H =
HL

σ2 (HL)
= ±

(
R +

1

d
TNT

)
(36)

A sign ambiguity is presented with the normalized homography. This am-

biguity is eliminated by imposing positive depth constraint to the equation.

For the depth values of the scene (λ1, λ2) of two camera frames, mapping

between camera coordinates of the points are given as:

λ1x1 = ±λ2Hx2, λ1, λ2 > 0 (37)
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Since scene depths take positive values, positive depth constrain can be im-

posed as follows:

xT
2Hx1 > 0 (38)

As a result, correct sign of the normalized homography is obtained. To

decompose this homography, SVD of HTH is calculated such that

HTH = V ΣV T (39)

Σ = diag
(
σ2
1, σ

2
2, σ

2
3

)
(40)

V = [v1,v2,v3] (41)

It should be noted that translation can only be extracted up to a scale factor

since there is an inherent depth ambiguity in (36). As a result, we can only

expect a scaled translation from a homography. To extract {R, 1
d
T,N}, the

following steps must be followed:

1. u1 and u2 vectors are defined as follows:

u1 =

√
1− σ2

3v1 +
√
σ2
1 − 1v3√

σ2
1 − σ2

3

(42)

u2 =

√
1− σ2

3v1 −
√
σ2
1 − 1v3√

σ2
1 − σ2

3

(43)
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Table 2.1: Possible Decompositions of the Homograpy
Solution 1 Solution 2 Solution 3 Solution 4
R1 = W1U

T
1 R2 = W2U

T
2 R3 = R1 R4 = R2

N1 = v̂2u1 N2 = v̂2u2 N3 = −N1 N4 = −N2
1
d
T1 = (H −R1)N1

1
d
T2 = (H −R2)N2

1
d
T3 = −1

d
T1

1
d
T3 = −1

d
T2

2. U1, U2, W1 and W2 are defined as follows:

U1 = [v2,u1, v̂2u1] (44)

W1 = [Hv2, Hu1, (Hv2)× (Hu1)] (45)

U2 = [v2,u2, v̂2u2] (46)

W2 = [Hv2, Hu2, (Hv2)× (Hu2)] (47)

3. There are four possible triples
(
R, 1

d
T,N

)
which results in the same

homography. Possible Solutions are given in Table 2.1.

4. The dot product of the unit plane normal with the homogeneous image

coordinates (NTx) is equal to the plane-camera distance which must

take a positive value for physically possible cases. At most two of the

possible solutions can fulfill this condition. It is also possible that only

one of the possible solutions meet this requirement. However, it is not

the usual situation [52].
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Chapter III

3 A New Approach for Fast and Accurate

Mosaicing of Aerial Images

We present a new image mosaicing technique that uses sequential aerial im-

ages captured from a camera and is capable of creating consistent large scale

mosaics in a fast and accurate manner. To find the alignment of every new

image, we use all the available images in the mosaic that have intersection

with the new image instead of using only the previous one. To detect image

intersections in an efficient manner, we utilize ‘Separating Axis Theorem’,

a geometric tool from computer graphics which is used for collision detec-

tion. Moreover, after a certain number of images are added to the mosaic,

a novel affine refinement procedure is carried out to increase global consis-

tency. Finally, gain compensation and multi-band blending are optionally

used as offline steps to compensate for photometric defects and seams caused

by misregistrations. General structure of the proposed method is depicted

in Figure 3.1. Proposed approach is tested on some public datasets and it

is compared with two state-of-the-art algorithms. Results are promising and

show the potential of our algorithm in various practical scenarios. Our work

is accepted to be published as [53].



Figure 3.1: General structure of the proposed method

3.1 Image Mosaicing

Image mosaicing includes aligning images which are captured from different

camera poses and registering them on a image plane (mosaic plane or refer-

ence frame). The easiest way to register images captured from a UAV is to

perform homography estimations between successive images (pairwise align-

ment). To create the mosaic, all the images must be aligned to the reference

image. Let Ir be our reference image. Given that n images I0, I1, I2..., In−1

from a planar scene and pairwise homographies H01, H12, H23 ..., H(n−2)(n−1)
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between image pairs are known where Hij is the homography which aligns

Ij to Ii, homography between the new (In) and the reference image (Ir) can

be calculated as:

Hrn =
n−1∏
i=r

Hi(i+1) (1)

Although this approach is straightforward, because of its multiplicative na-

ture, errors accumulate with every new image which causes a drift in the

mosaic in time. Drift of the images in the mosaic are depicted in Figure 3.2.

Since a Normalized Direct Linear Transformation (NDLT) algorithm is used

Figure 3.2: Drift caused by estimation errors. UAV returns to the same
area and snaps the same image from the initial position. True and estimated
trajectories are shown with green and red dashed curves respectively.

during the estimations of the the pairwise homographies, minimization of the

algebraic error is sufficient [15]. In this case, the cost function can be given

as:

J(Hi(i+1)) = ∥xi −Hi(i+1)xi+1∥2 (2)

Note that error is defined on the image Ii. However, when we align Ii and

Ij to the mosaic, homography between Ii and Ij will not have the minimum
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error property anymore since residual vectors between these images for the

estimated pairwise homography are also transformed during the alignment.

An alternative approach is to estimate the homography directly between

new image and the mosaic (reference image). In other words, the features

of the new image Ii are extracted and matched with those of Ii−1. Then,

matching features of image Ii−1 are aligned to the mosaic using Hr,i−1 and

estimation of Hri is carried out using the aligned version of Ii−1. Conse-

quently, the cost function for the estimation is modified as

J(Hri) = ∥Hr(i−1)xi−1 −Hrixi∥2 (3)

where xi and xi−1 are matching features of Ii and Ii−1, respectively. Utilizing

this approach is more advantageous since the estimation is realized directly

on the reference image. We use this approach in our estimations.

As all the images are aligned to a common reference frame, it can be

questioned if the choice of the reference image changes the results. Since

the homography maps the image coordinates of a scene point in one camera

to another, coordinates in the reference frame are found by mapping the

point via its global homography. As a result, it can be presumed that the

image mosaic composed of the aligned images is taken by one camera which

is located at the reference camera frame. For the case where the dominant

plane defining the scene is not parallel to the plane of the reference image,

perspective distortions may occur in the mosaic image depending on the

severeness of the scenario. Distortion manifests itself as the growth or shrink

of the separate images which is caused by the change of the scene depth with

respect to the reference camera frame.
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In our algorithm, homography estimations are also performed with re-

spect to the reference image. This reveals a possibility that estimation qual-

ity of the homographies may depend on the reference image selection. For

the case where image plane of the reference image is not parallel to the scene

plane, similar to the case of separate images, feature reprojection errors also

manifest growth and shrink behavior. This means feature reprojection errors

of the scene points closer to the image plane will have a leverage effect on

the minimization which can spoil the estimation quality. An ideal reference

image should be taken perpendicular to the scene and should contain scene

features which form a plane parallel to the dominant scene. Since the ground

images captured from the UAVs approximately hold this condition, it does

not pose a serious problem to our algorithm for generic cases. For other

cases, selection of the reference image can be handled via a small external

adjustment at the initialization of the algorithm if necessary.

3.2 Proposed Mosaicing Approach

The homography estimation process discussed in Section 3.1 includes the

estimation between two images. However, estimating the homography by us-

ing only the previous image can lead to errors in mosaicing applications. For

a more robust estimation, considering all of the previously aligned images

which intersect the new image can be more beneficial. Since it is computa-

tionally expensive to check feature matches between the new and all of the

previous images, number of these matching trials must be decreased. To this

end, we propose to use a geometric tool called ‘Seperating Axis Theorem’

to detect the previous images intersecting the new image since only aligned

images intersecting each other are supposed to have common features.
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3.2.1 Detection of Image Intersections by Using Seperating Axis

Theorem

Separating Axis Theorem (SAT) is a popular tool in computer graphics which

can be used to detect collisions between objects [54]. For 2D case, theorem

simply states that if there exists a line for which the intervals of projection

of the two objects onto that line do not intersect, then the objects do not

intersect. Such a line is called a separating line or, more commonly, a sepa-

rating axis. Since translated version of a separating line is also a separating

line, it is sufficient to consider the lines passing through the origin. Given a

line passing through the origin and with unit-length direction d⃗, projection

of a convex set C onto this line is given by the following interval:

[λmin(d⃗), λmax(d⃗)] = [min{d⃗ · X⃗ : X⃗ ∈ C},max{d⃗ · X⃗ : X⃗ ∈ C}] (4)

To see if two convex sets Ci and Cj are separated, one can check the following

simple conditions:

λimin(d⃗) > λjmax(d⃗) or λimax(d⃗) < λjmin(d⃗) (5)

where the superscript denotes index of the object. For convex polygons,

considering a finite set of unit-length directions is enough to conclude if two

objects are separated. These unit-length directions are the unit edge normals

of the objects. An illustration of the theorem is depicted in Figure 3.3.

Since images aligned to the mosaic are 2D convex objects, SAT can be

used to detect intersections between the new and the previous images. To

employ SAT, we must know the layout of all images on the mosaic which
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we can be computed by using the homographies of those images. As we do

not have the homography of the new image, we perform an initial estima-

tion between the new and previous image and obtain an estimate for the

homography of this image.

We represent each image by their four vertices and these vertices form a

quadrilateral when aligned to the mosaic by its homography. As we look for

the previous images intersecting the new image, SAT is employed between

the new image and all of the previous images one by one. Since it is enough

to choose the unit-length directions (d⃗) as the edge normals of the convex

objects, we need to perform the operations in (4) and (5) at most eight times

for each image pair which is a very efficient procedure. Suppose we need to

check two aligned images if they are separated. SAT can be performed by

the following steps:

1. Edge normals are obtained from the vertices of the aligned images

(eight normals in total) and they are normalized to obtain the unit-

length directions d⃗.

2. Operation in Eqn. (4) is performed for both images by using directions

d⃗ and vertices of the images (denoted with X⃗ in the equation)

3. Condition given in Eqn. (5) is checked for all d⃗ directions.

4. If there exist a d⃗ for which the condition holds, it is concluded that these

two images are separated which means it is unnecessary to perform

matching trials for this image pair.

Using SAT provides efficient operations in the proposed approach. However,

it should be noted that the number of the images increases linearly with
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Figure 3.3: An illustration of SAT. For a separating axis Pk, projected convex
sets do not intersect.

the number of the previous images in the mosaic. This might pose some

problems to the algorithm when number of the images in the mosaic takes

larger values. It is possible to further reduce number of the images used with

SAT. For example, a sorting algorithm can be employed to sort the location

of the aligned images in the mosaic. Every new image can be added to this

list with a logarithmic computational complexity. Assume that we obtain a

new image which is on the right side of a previous image in the sorted list

and know that it does not intersect this previous image. We can directly

eliminate a large number of other images in the list which stay on the left

side of this previous image (the ones approximately at the same level with it

in the up-down direction). This can dramatically reduce the number of the

needed trials. In our experiments, we did not utilize such an approach since

SAT required negligible amount of computational power even for very large

number of images.
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3.2.2 Homography Estimation Using Intersecting Images

As we determine all the previous images overlapping with the new image

by using SAT, these images can be used to obtain a better estimate for the

homography of the new image. Assume that there are n images in the mosaic

overlapping with the new image. To estimate the alignment of a new image

with respect to the reference image, we construct the following cost function

where all the previous images and their homographies are incorporated:

J(Hrn) =
n−1∑
i=1

∥Hrixi −Hrnxn∥2 (6)

where xi and xn denote the set of feature matches between the overlapping

image Ii and the new image, In.

It should be noted that a different sampling scheme known as MLE-

SAC [30] is employed during the homography estimations instead of classical

RANSAC [28] as an MLE estimation can be beneficial for the mosaicing of

quasi-planar scenes.

3.2.3 Affine Refinement

In the proposed estimation process, alignment of new images are estimated

by using their feature matches with the previous images. During the estima-

tion, homographies of the previous images Hr1, Hr2,...,Hr(n−1) are fixed and

alignment of the new image (In) is estimated under this constraint. As a

result, we obtain a locally optimal estimate of the homography for the given

image. To obtain globally optimal results, all of the homographies must be

estimated jointly. However, updating the alignment of all images in each

step of the algorithm cannot be handled in real-time because of the increas-
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ing computational complexity of the estimation process with the number of

images in the mosaic. As a result, we propose a partial global minimization

process which aims to improve the global consistency of the mosaic by consid-

ering a fixed number of previous images. We enhance global error properties

of the mosaic with affine refinement while retaining real-time capabilities.

In the literature, there are studies pursuing analogues goals with our local

refinement procedure. Sawhney et al. [55] propose to refine the registration

parameters of the images after they are roughly aligned to the mosaic. Gauss-

Newton iterations are used in the joint optimization of the motion parameters

of all images from this rough alignment. Gracias et al. [56] use affine model

for image motions and update all the parameters at each time step via re-

cursive least-squares estimation. Pizarro and Singh [7] offer affine motion

model for mosaicing of the underwater images for the initial alignments of

the images. They propose to estimate affine transformations for the images

as an initial operation which can be performed by using linear least squares.

This estimation is used to determine the topology of the mosaic which is

later used in the nonlinear optimization process where global alignment is

obtained. Sibley [57] and Davis [58] propose partial global optimization

procedures similar to ours in their estimations for robotics and mosaicing

applications, respectively. Sibley [57] proposes a local bundle adjustment

procedure for robotics applications where only a small portion of the state

vector (composed of robot poses and landmarks) is optimized which results

in a constant time algorithm. In the context of image mosaicing, Davis [58]

offers a linear least-squares refinement in which global registration parame-

ter estimates are updated by imposing pairwise relations of images. Global

registration parameters are refined in such a way that pairwise homogra-
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phies obtained from these parameters deviate minimally from the pairwise

estimations obtained from the image pairs.

In our method, we assume that the relation between the current and

the globally optimal version of the aligned images can be described by an

affine transformation. Given n consecutive images which are aligned to the

mosaic, the problem is to estimate affine transformations to be applied on

these images which minimize the sum-of-squares of the feature reprojection

errors between the image pairs. Cost function for this optimization problem

can be expressed as

Cint(A1:n) =
n∑

i,j ∈ chosen
images

∥AiΦ
i
ij − AjΦ

j
ij∥2 (7)

where Φ denotes the set of feature match coordinates of the aligned images

and A denotes the the affine transformation to be applied on a given im-

age. Subscript of Φ implies the image pair that feature set belongs to and

superscript implies the image whose features are considered. For example,

Φi
ij includes feature coordinates of the aligned image i obtained from the

feature matching procedure between the images i and j. Ai denotes the 3×3

affine transformation to be applied on the warped image i. Our purpose is

to find affine transformations that minimize Cint. Assume that, at time t,

refinement will be performed on the recently added n images in the mosaic.

Minimization of Cint implies an enhanced internal consistency between these

n images. However, this cost function ignores the feature reprojection errors

between the chosen images and the rest of the mosaic. For this reason, we

propose a new term Cext, which considers the consistency between chosen
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images and rest of the mosaic. This new term can be expressed as

Cext(A1:n) =
∑

i ∈ chosen
images

∑
j∈

rest
of the
mosaic

∥AiΦ
i
ij − Φj

ij∥2 (8)

Consequently, by considering both internal consistency of n images and

external consistency of these n images with the mosaic, we first propose to

update our cost function by a linear combination of Cint and Cext. However,

system of equations constructed from these terms become ill-conditioned. For

this reason, we add a regularization term to our cost function to regularize

the system of equations. Since we assume that features of the warped images

are close to their optimal position in the mosaic, all of the estimated affine

transformations must be close to the identity. Accordingly, we choose to

penalize the differences of the the affine transformations from the identity,

which in turn implies penalizing the displacements of the warped features

from their initial positions. Regularization term can be written as

Creg(A1:n) =
∑

i,j ∈ chosen
images

∥(Ai − I)Φi
ij∥2 + ∥(Aj − I)Φj

ij∥2 (9)

where I is the 3 × 3 identity matrix. Equations (7), (8) and (9) can be

linearly combined to obtain the final cost function

f(A1:n) = Cint + λ1Cext + λ2Creg (10)

where λ1 and λ2 are the weights for Cext and Creg terms. Since every affine

transformation has 6 independent parameters, for n images the solution vec-

tor will have 6n parameters. This optimization problem can be solved in an
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efficient manner since it can be expressed as a linear-least-squares problem

defined on a limited number of images.

3.3 Offline Enhancements

When the complete mosaic is obtained by aligning the images, results are

post-processed with gain compensation [1] and multi-band blending oper-

ations [59]. By using these operations, seams caused by the illumination

differences and misregistrations are reduced and visually appealing results

are obtained. Finally, a contrast stretching procedure is applied on the mo-

saic images to compensate for a possible loose of contrast in the composite

images.

3.3.1 Gain Compensation

One of the main constituent of the seams in the mosaic images is the illu-

mination differences in the images. These differences can be corrected by

using gain compensation [1]. Gain compensation is based on an optimization

problem by which we obtain gain values for all the images that minimize

sum-of-squares of the illumination differences across the overlapping regions

of the images. Gains of the images are obtained from the minimization of

the cost function which can be solved in closed form.

3.3.2 Multi-band Blending

Seams caused by illumination differences can be reduced with gain compen-

sation. However, there are also some misregistrations on the mosaic image

because of the violation of the assumption of scene planarity and error accu-

mulations in the loop closing regions of the mosaic. We propose to improve
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(a) Czyste

(b) Munich Quarry

(c) Savona Highway

Figure 3.4: Sample images from the aerial image datasets.

the mosaic image with multi-band blending algorithm [59] by which we aim

to attenuate these visual artifacts. Algorithm given in Brown et al. [1] is

used to blend the mosaic image.

3.4 Experimental Results

We tested our mosaicing approach on the images of three publicly available

datasets. These are Czyste [60], Munich Quarry [61] and Savona Highway

[61]. A set of sample images selected from these datasets are depicted in

Figure 3.4.

Our method is run for two different cases: with and without affine re-

finement. For the case with affine refinement, procedure is chosen to be run

for once in every ten step of the algorithm on the most recent thirty images.
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(a) Before Postprocessing (b) After Postprocessing

Figure 3.5: Mosaic image for the Czyste image sequence before and after
postprocessing

We postprocess the results by using gain compensation, multi-band blending

and contrast stretching. Results we obtain before and after post processing

are shown in Figure 3.5 for Czyste. It can be observed that illumination dif-

ferences are eliminated and seams caused by misregistrations are attenuated

which provides visually pleasing results. However, it should be noted that

the raw mosaic image is also satisfactory since it provides a sufficient scene

awareness which is one of the main purposes of aerial image mosaicing.

To compare the performance of the proposed method, we also performed

experiments with some other methods in the literature. One of these is the

study of Gracias et al. [56] where a real-time affine mosaicing technique is

proposed based on recursive least-squares estimation. We also implemented

the bundle adjustment algorithm [22] where optimization is run on the ho-

mography parameters of the images. Homographies of all the images are
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estimated by minimizing the total feature reprojection error between im-

age pairs. This nonlinear optimization problem is solved using Levenberg-

Marquard algorithm.

Visual results of proposed method (with affine refinement), the bundle

adjustment and Gracias’ method for Czyste, Munich Quarry and Savona

Highway datasets are given in Figure 7, Figure 3.7, Figure 3.8, respectively.

It is apparent from Figure 7 that mosaic results of the proposed method

and the bundle adjustment are similar to each other and these results are

quite different than the one created with Gracias’ method. For the Munich

Quarry and Savona Highway datasets in Figure 3.7 and 3.8, it is observed

that image mosaics created from the proposed method are indistinguishable

from the results of the bundle adjustment. Results of the Gracias’ method

are also similar to those of the proposed method and the bundle adjustment.

However, some differences are visible in the results of this method when the

mosaic images are carefully examined.

3.4.1 Numerical Comparisons

Since visual comparisons can be subjective, a numerical evaluation of the

algorithms is also necessary. To evaluate the algorithm performances, feature

reprojection errors present in the results of each method are calculated. We

use the root mean square (RMS) of the norm of feature reprojection errors

as our performance metric.

For the Czyste image sequence, 453 images are used during the experi-

ments. We calculate the error for the proposed approach with/without affine

refinement. Results for the implementation of Gracias et. al (2004) and the

bundle adjustment are also calculated. Spatial relations between images are
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(a) Proposed Method (b) Bundle Adjustment

(c) Gracias’ Method

Figure 3.6: Mosaic images of the proposed method, the bundle adjustment
and Gracias’ method for Czyste image sequence
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(a) Proposed Method (b) Bundle Adjustment

(c) Gracias’ Method

Figure 3.7: Mosaic images of the proposed method, the bundle adjustment
and Gracias’ method for Munich Quarry image sequence
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(a) Proposed Method (b) Bundle Adjustment

(c) Gracias’ Method

Figure 3.8: Mosaic images of the proposed method, the bundle adjustment
and Gracias’ method for Savona Highway image sequence
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Table 3.1: RMS values for the four cases in Czyste image sequence
Case Total Matches RMS(pix)

Algorithm (without Affine Refinement) 645272 4.4520
Algorithm (with Affine Refinement) 645272 3.9971

Gracias et al. (2004) 645272 3.8636
Bundle Adjustment 645272 0.8390

given in Figure 3.9. Matched image pairs are depicted as red points in the

adjacency matrix which is shown in Figure 9(a). The number of matching

images versus image indices is plotted in Figure 9(c). Camera trajectory

for the dataset is sketched in Figure 9(b). Total number of 645272 pair-

wise feature matches are used during the computations. All of these feature

matches are utilized during the operation of each method. Results are given

in the Table 3.1. It can be inferred from the table that RMS value is the

smallest for the bundle adjustment which is an expected result since bundle

adjustment is supposed to give the lower bound of the sum of squared er-

rors. It is also apparent from the table that affine refinement improves the

error characteristics of the image mosaic by 10.2% in terms of RMS value

when compared to the case without affine refinement. For this experiment,

Gracias’ method gives slightly better results than our algorithm. It is partly

because this method utilizes a recursive estimation scheme where motion

parameters of all the images are estimated in every step of the algorithm.

This provides a better global consistency to the Gracias’ method. However,

success of the algorithm is mainly because of the accuracy of the affine mo-

tion model for the given images. For an image sequence where perspective

distortions between the images and the reference image are negligible, the

algorithm can give successful results since the affine motion model handles

such cases effectively.
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(a) Adjacency Matrix (b) Approximate trajectory of the
UAV sketched on the mosaic
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Figure 3.9: Visual and numerical presentations of the spatial image relations
in Czyste
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Figure 3.10: Cumulative distribution of the residual error norms for Czyste
image sequence

Cumulative distributions of the error for all the methods are plotted in

Figure 3.10. It can be observed from Figure 3.10 that for the same residual

norm value, cumulative distribution value for the case with affine refinement

is less for small pixel values and more for larger pixel values when compared

to the case without affine refinement. This implies that affine refinement

decreases the norm of the large residuals at the expense of increasing the

small ones which means the error norms are more uniformly distributed.

Same behavior is also observed between the proposed technique and Gracias’

method. Our algorithm outperforms Gracias’ algorithm for small residual

values and underperform for large residuals which causes the RMS value of

this method to be smaller than our algorithm since the large residuals have

a leverage effect on the sum-of-squared errors.

For the Munich Quarry image sequence, 56 images are used during the

experiments. Spatial relations of the images in the mosaic are depicted in

Figure 3.11. RMS values are given in Table 3.2 for different methods. It

can be inferred from the table that RMS values for the proposed approach
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Table 3.2: RMS values for the four cases in Munich Quarry image sequence
Case Total Matches RMS(pix)

Algorithm (without Affine Refinement) 69149 1.3497
Algorithm (with Affine Refinement) 69149 1.2676

Gracias et al. (2004) 69149 3.1742
Bundle Adjustment 69149 1.2185

with/without affine refinement are both close to the RMS value of the bundle

adjustment. Cumulative distributions of the residuals are also similar to each

other for these cases which is clear from Figure 3.12. There is a 6.1% decrease

in the RMS value when affine refinement is activated. It is an important

improvement as the difference between the proposed approach without affine

refinement and the bundle adjustment is 9.7%. For the results of the Gracias’

method, RMS value is found to be larger than other methods.

30 images are used during the experiments. Spatial relations of the im-

ages are given in Figure 3.13. RMS values are provided in Table 3.3 for

different methods. It can be inferred from the table that performance of the

proposed approach with affine refinement is nearly equal to the results of the

bundle adjustment. Gracias’ method has the largest RMS value among all

methods which is again due to the affine motion model where large perspec-

tive distortions cause the method to underperform. Cumulative distributions

of the error are plotted in Figure 3.14. It is obvious from this figure that

cumulative distributions are also very similar for the proposed method and

the bundle adjustment. It should be noted that because of the selection of

the reference image, growth and shrink of the images are apparent in Figure

3.8 (see Section 3.1).

It is apparent from the visual and numerical results that numerical results

can be quite different for various cases where visual differences are negligible.
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(a) Adjacency Matrix (b) Approximate trajectory of the UAV
sketched on the mosaic

0 10 20 30 40 50 60
0

10

20

30

40

Image Order

N
u

m
b

er
 o

f 
th

e 
N

ei
g

b
o

u
rs

(c) Number of the neighbor images for a given image

Figure 3.11: Visual and numerical presentations of the spatial image relations
in Munich Quarry

Table 3.3: RMS values for the four cases in Savona Highway image sequence
Case Total Matches RMS(pix)

Algorithm (without Affine Refinement) 72509 1.4402
Algorithm (with Affine Refinement) 72509 1.2252

Gracias et al. (2004) 72509 4.4611
Bundle Adjustment 72509 1.2137
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Figure 3.12: Cumulative distribution of the residual error norms for Munich
Quarry image sequence

As a result it can be questioned that if using RMS error of the point features

as the performance metric is a good idea. Since we mostly observe the

seams of the mosaic at the edges of the shapes, using the property of these

edge-like structures, e.g. line or curve continuity, could provide a better

measure for the mosaic quality. We did not use such a metric for two main

reasons. First, new generation of point features, e.g. SIFT or SURF, are

usually detected in large numbers and well-spreaded to the whole image

which implies that all parts of the scene are represented approximately in

equal weight. Second, using edge-like features can be tricky in the sense of

feature description and matching because of some well known problems they

suffer from, e.g. aperture problem and weak invariance to the point of view

changes.

It should be noted that the improvement achieved by affine refinement

will be useful for cases where navigational requirements are more stringent.

However, it can be deactivated for cases where only visual appearance is the
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Figure 3.13: Visual and numerical presentations of the spatial image relations
in Savona Highway
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Figure 3.14: Cumulative distribution of the residual error norms for Savona
Highway image sequence

prime concern.
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Chapter IV

4 Pose Estimation Based Image Mosaicing

via Extended Kalman Filter

In the previous chapter, we proposed a sequential mosaicing approach where

new images were aligned to the mosaic by using the alignments of all the pre-

vious images intersecting the new image. This provides a good consistency

to the mosaic as all the possible information available in the mosaic is con-

sidered during the operation. However, since previous images are fixed and

alignment of the new image is performed under this condition, only locally

optimal results can be obtained. It is clear that, a joint estimation including

the new image and all the previous images would yield more successful re-

sults in the sense of global consistency. However, this is not a scalable option

as operation time for estimating the alignments of all the previous images

increases with the number of the images. To strike a bargain between the

global consistency and computational expense, we introduced a partial global

estimation where only alignments of a limited number of recent images were

updated. Experimental results validated that this procedure brought some

extra global consistency to the mosaic which is apparent from the decrease in

the RMS values of feature reprojection errors presented in the related section.

However, it is possible to use recursive estimation techniques available in

the literature for image mosaicing where their recursive nature provides a



computationally efficient estimation. It is also possible to update the align-

ment parameters of all the images in every step of the algorithm in a scalable

manner by this option. There are some studies in the literature where these

kinds of estimation schemes are employed. Gracias et. al [56] propose an

RLS (recursive least-squares) filter approach for mosaicing of underwater

images. An affine mosaicing approach is considered in this study to get a

linear estimation. Since estimations are directly based on the minimization

of the vector composed of the feature reprojection errors, scalability of this

approach with the number of images can be questionable. An EKF based

estimation of the pairwise homographies between image pairs are proposed

in [17]. In this study, an EKF loop is employed for every image set which

forms a loop. After the loop is closed, all of the pairwise homographies be-

tween consecutive images (members of the loop) are updated via EKF. Error

is propagated to all of the pairwise homographies in this manner. Problem of

this approach is that estimation updates are limited to the images that are

the members of the loop where the estimation lacks a full-state covariance

matrix including the stochastic relations between all of images available in

the mosaic. Such an approach is proposed in Civera et. al [18]. In this

work, a Simultaneous Localization and Mapping (SLAM) based approach is

proposed for the mosaicing of the images captured from a pure rotational

camera. State vector includes the pose of the last camera and global co-

ordinates of all features extracted from the images. It is reasonable to use

feature parameters directly for the pure rotational camera motion since a lim-

ited number of features are available for this case. However, this approach is

not suitable for planar scene mosaicing since the number of available features

can be unbounded. As a result, this method lacks scalability for aerial image
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mosaicing applications. We also propose a new method based on recursive

parameter estimation. In our method, estimation of a full state vector and its

covariance matrix imply more accurate results. Also for each image, we only

need to add six new parameters to the estimation which makes our method

more scalable than all the available studies in the literature.

We develop a novel method for creating image mosaics of quasi-planar

scenes based on Extended Kalman Filter (EKF) framework. It includes a

state space approach where the state vector is composed of the scene normal

and camera extrinsic parameters (rotation and translation). A joint estima-

tion is performed on all the image parameters when a new image is included

into the estimation. This is handled with a low computational effort thanks

to the efficient nature of the EKF update equations and sparse structure of

the spatial image relations. Utilization of EKF provides a good global consis-

tency between images since it can handle the accumulated error at the loop

closing regions by propagating the error to the whole mosaic. Sparse nature

of image relations implies small size measurement equations which provide

a computationally efficient operation and make real-time operation possible.

We tested our algorithm on some publicly available datasets. Results are

promising both visually and numerically. Our study will appear as [62].

4.1 Proposed Approach

We use classical EKF loop to update the mosaic with every new image. State

vector includes scene parameters and global camera poses which are obtained

from the relative rotation, relative translation and plane normal parameters

extracted from pairwise homographies between image pairs. Rotations are

parameterized with a vector of Euler angles which is denoted with Φi =
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[
γi βi αi

]ᵀ (
for the parameters of ith image, Ii

)
. Rotation matrix related

to Φi can be expressed as:

Ri =
i
1R =


cosαi − sinαi 0

sinαi cosαi 0

0 0 1




cos βi 0 sin βi

0 1 0

− sin βi 0 cos βi



1 0 0

0 cos γi − sin γi

0 sin γi cos γi


(1)

which encodes the rotation of the first camera frame with respect to the

ith camera frame. Translation parameters of the camera frames are also

included in the estimation. However, we use scaled camera translations in our

estimations since we can only expect a scaled translation from a homography.

For Ii, scaled translation is denoted as ti which is a three parameter vector

representing the translation of the first camera frame with respect to the

ith camera frame. Scene is modeled as a plane and to represent this plane,

two parameters, θ and ψ, angle of the plane normal with respect to the first

camera frame, are used. Unit normal vector of this plane can be written in

terms of these parameters as:

n = 1n =


sinψ sin θ

sinψ cos θ

cosψ

 (2)

where n is the plane unit plane normal with respect to the first camera frame.

State vector of the EKF after Ii is included to the estimation can be defined
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as:

x =
[
θ, ψ, Φᵀ

2, tᵀ2, . . . Φᵀ
i , tᵀi

]ᵀ
(3)

Proposed algorithm can be outlined as follows:

1. To include a new image in the estimation, its pairwise homography with

the previous image is estimated (denoted with Hij for the homography

between new image i and previous image j).

2. Relative rotation
(
i
jR

)
and scaled translation (itij) are extracted from

this homography and used to initialize new state vector variables (Φi, ti).

3. By using the approximate location of the new image in the mosaic,

which will be determined during the prediction step, previously aligned

images which intersect the new image are identified. Homography esti-

mation is performed between these images and the new image. These

pairwise homographies are utilised as the measurements of the estima-

tion.

4. State vector is updated via EKF update equations.

A flowchart of the proposed method is given in Figure 4.1.

4.1.1 Prediction

To include a new image to the estimation process, its approximate location

in the mosaic must be predicted. This is achieved by a homography estima-

tion performed between the new and previous image. Relative pose of the

camera where new image is captured can be extracted from this pairwise ho-

mography. As the state parameters for the previous image are known from
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Figure 4.1: Flowchart of the proposed method

the previous time step, predicted parameters can be obtained for the new

camera frame. The predicted camera orientation, Φ̂−
i is extracted from R̂i,

which is computed as:

R̂i =
i

jR̂
j

1R̂ (4)

where
i

jR̂ is the relative rotation between ith and jth camera frame extracted

from Hij. As the relative translation extracted from the pairwise homogra-

phy is a scaled translation, a small adjustment is necessary to calculate the
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Figure 4.2: Initialization of the new image parameters from the previous
image

predicted value of scaled translation (̂t−i ) which is given as:

t̂−i =
i

jR̂tj +
i
t̂ijd

∗ (5)

d∗ = 1 + nᵀRᵀ
j tj (6)

where tj, Rj are the translation and rotation of the previous camera frame

obtained from state vector. Camera-plane distance is assumed to be unity

for the first camera frame. Related variables and important quantities are

depicted in Figure 4.2. After Φ̂−
i and t̂−i are obtained and included into

the state vector, covariances of these predicted states are also needed. To

find the covariances of these parameters, Jacobian of these parameters with

respect to the state vector and relative pose parameters must be calculated.
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Jacobian can be given as:

J =
∂
[
Φ̂−

i t̂−i

]
∂
[
xold Φij

itij

] (7)

where Φij and itij are the pairwise rotation and translation parameters ob-

tained from pairwise homography. This calculation can be performed easily

by using (4) and (5). By using this Jacobian, new covariance matrix of the

state vector is computed as:

Pk =

I 0

J

Pk,old 0

0 Cij

I 0

J

ᵀ

(8)

where Pk,old is covariance matrix obtained from the previous time step and

Cij is the covariance matrix of the new parameters. Cij is assumed to be a

multiple of identity, i.e λI in the estimations.

4.1.2 Measurement

Pairwise homography between a new and the previous image is calculated

and used to initilizeΦi and ti. However, it is also possible that the new image

has some common features with some other previously aligned images in the

mosaic. To provide a better global consistency to our estimation, we should

also include the pairwise homographies between the new and these previous

images to the estimation. Homographies of these images are incorporated to

the estimation as measurements.

It is necassary to detect the previous images which have common features

with the new image (intersecting the new image) efficiently since performing
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matching trials for all the past images would be computationally expensive.

List of the previous images is narrowed by using Separating Axis Theorem

(SAT) which is previously explained. Pairwise homographies between the

new image and previous images are used to construct measurements. Be-

fore using them as measurements, all the estimations are normalized since

homography is a redundant parametrization where an arbitrary nonzero mul-

tiple of the transformation implies the same transformation. Our normalized

homography (hij) can be given by the following equation:

hij = sgn (detHij)
Hij

∥Hij∥
(9)

where ∥.∥ is the Frobenious norm. Covariance matrices of the pairwise ho-

mographies are also required for estimation. However, we need to calculate

the inverse of the covariance matrices during the inversion of the innovation

covariance. Because of the redundant nature of a homography, its covariance

matrix is not invertible. As a result, a linear transformation on hij is utilized

to construct measurements by which inversion of the innovation covariance

is possible. We choose our measurements as:

zij = Aijhij (10)

where Aij is a 8× 9 matrix whose rows are orthogonal to hij and each other.

To obtain the covariance matrix for our measurement hij, the procedure

detailed in Chapter 2. Estimation is performed under the two steps.

1. Jacobian of the feature matches are calculated with respect to the mea-

surement parameters. During the calculations, features coordinates of

the first image (x) is assumed to be correct and error is assumed to be
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only in the second image. For example, let the homography matrix be

hij. For i
th feature match, using the equation X ′

i = hijXi where X
′ and

X are homogeneous coordinates of x′ and x, Jacobian of the feature

match with respect to the measurement is calculated from:

Ji =
∂x′

∂hij

∂hij
∂zij

where
∂hij
∂zij

= Aᵀ
ij (11)

For every feature match, Ji is calculated and by concatenating these

jacobians J is found to be J =
(
Jᵀ
1 , J

ᵀ
2 , . . . , J

ᵀ
n

)ᵀ
for n feature matches,

which is size of 2n× 9.

2. Covariance matrix of the measurement is given as:

Σzij =
(
JᵀΣ−1

x′ J
)−1

(12)

where Σx′ is a block diagonal matrix whose diagonal elements are the

covariance matrices of the feature coordinates. We take this matrix

as identity for all of our estimations since we can assume that feature

errors are independent.

4.2 Update

Measurements are used to update the predicted state estimates
(
x̂−k

)
obtained

from the prediction step. Assuming that there are n measurements acquired

from the pairwise homography estimates, the measurement vector (z) and
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its covariance matrix (Rz) are defined as:

z =
(
zᵀi1, zᵀi2, . . . , zᵀin

)ᵀ
(13)

Rz = diag (Czi1 , Czi2 , . . . , Czin) (14)

Predicted homographies ĥ− can be calculated from the predicted state esti-

mates as:

ĥ− = g
(
x̂−
k

)
(15)

where g is the nonlinear homography function. Assume we want to calculate

the predicted homography between ith and jth camera frames (Hij). We use

the parameters n, Φ̂−
i , t̂

−
i , Φ̂

−
j , t̂

−
j which are available in the state vector. R̂−

i

and R̂−
j is obtained from Φ̂−

i and Φ̂−
j , respectively. Predicted homography is

given as follows:

R̂−
ij = R̂−

i

(
R̂−

j

)T

(16)

t̂−ij =
t̂−i − R̂−

ij t̂
−
j

1 + nT
(
R̂−

j

)T

t̂−j

(17)

n̂−
ij = R̂−

j n (18)

Ĥ−
ij = R̂−

ij + t̂−ij
(
n̂−
ij

)T
(19)

ĥ−ij = sgn
(
detĤ−

ij

) Ĥ−
ij

∥Ĥ−
ij∥

(20)
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Predicted homographies are also transformed by the same transformation

matrices used to transform pairwise homographies as in (10); i.e.

ẑ = Aĥ− (21)

A = diag(Ai1, Ai2, . . . , ) (22)

Update equations for the Kalman filter are given as:

Sk = ZkP
−
k Z

ᵀ
k +Rz (23)

Kk = P−
k Z

ᵀ
kS

−1
k (24)

xk = x−k +Kk (z − ẑ) (25)

Pk = (I −KkZk)P
−
k (26)

where Zk is the jacobian of the measurement function with respect to the

state variables calculated at x = x̂−k . It can be obtained by using chain rule

as:

Zk =
∂z

∂x
=
∂z

∂g

∂g

∂x
= A

∂g

∂x
(27)

4.3 Mosaic Creation

Mosaic image can be obtained from the homographies obtained from the

state variables. Assume that we want to calculate the homography between

Ii and the first image. In terms of state vector parameters, homography
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between Ii and the first image can be given as:

Gi1 = KHi1K
−1 (28)

= K (Ri + tin
ᵀ)K−1 (29)

which maps the points from the first image to Ii. To create the mosaic image,

we must align all the images on a common reference plane. For example, to

align Ii on the first image, we need G1i which is the inverse of Gi1 calculated

in (29).

It is straightforward to align all the images on the first image since our

state vector parameters are in terms of the parameters of the first camera

frame (n = 1n, Ri =
i
1R, ti =

it1). However, a more reasonable idea is to

align the images on a virtual reference frame in which the plane normal has

only z-axis component (vn =
[
0 0 1

]ᵀ
). We choose this new camera frame

as its origin is coincident with the origin of the first camera frame. It is

necessary to determine its rotation with respect to the first camera frame.

Since we know the plane normal with respect to the first camera frame and

want it to be mapped to another frame as vn =
[
0 0 1

]ᵀ
, we need to

determine the rotation matrix which maps these two vectors to each other.

Rodrigues’ formula is used to determine this rotation matrix between two
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vectors.

vn =
[
0 0 1

]ᵀ
(30)

θ = atan2 (nᵀ · vn, ∥n× vn∥) (31)

k = (n× vn) / sin(θ) (32)

Rδ = I +
[
k
]
×
sin θ +

[
k
]2
×
(1− cos θ) (33)

We express the state variables in terms of this virtual camera frame. Rotation

parameters of ith camera frame is transformed as:

Rnew
i = RiR

ᵀ
δ (34)

Translation is not changed since virtual camera frame is coincident with the

first camera frame. As a result, image homographies which transfer the points

from the virtual camera frame to the ith camera frame are found as:

Hiv = Rnew
i + ti


0

0

1


ᵀ

(35)

We again use the inverse of the homography calculated in (35) to align the

images on our virtual camera plane.

4.4 Experimental Results

We tested our algorithm on some aerial image databases in which scenes are

quasi-planar. We use the SIFT features [38] extracted from the images during

the experiments. Bundle adjustment results are also obtained for the same
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Table 4.1: RMS values for Small Village
Case Total Matches RMS(pix)

Proposed Approach 891409 3.2703
Bundle Adjustment 891409 2.8836

images. Optimization is run only on the homography parameters and not on

the camera intrinsic parameters since we assume a calibrated camera where

these parameters are constant. During the optimization, homographies of

the images which minimize sum of squares of the feature reprojection errors

between images are obtained by using Levenberg-Marquard algorithm. Root

mean square (RMS) value for the residual norms (norm of feature reprojec-

tion error) is given in all experiments for both the proposed method and the

bundle adjustment. Visual results are also provided for both cases. Results

are also blended by using a multi-band blending [59] technique detailed in

[1] to get higher quality mosaics.

4.4.1 Small Village Image Sequence

Image sequence is provided in [63]. Total number of 280 images are used

in this experiment which are captured from a Canon IXUS 125HS camera.

Size of the images is 4608×3456. Images are resized to the size of 1152×864

during the experiments. Altitude of the camera is reported as 162 m. Visual

results for the proposed approach and the bundle adjustment are given in

Figure 4.3. Numerical performances of both proposed approach and the

bundle adjustment are given in terms of RMS of the residuals in Table 4.1.

It can be concluded that there are no obtrusive differences between the

visual results of the proposed method and the bundle adjustment for Small
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(a) Result of the proposed method

(b) Result of the bundle adjustment

Figure 4.3: Results of the proposed method and bundle adjustment for Small
Village

Village image sequence. Numerical results are also close to each other which

also show the success of the proposed approach.

4.4.2 Pteryx UAV-Volvo Factory Image Sequence

Images are provided in [64]. 364 images are used during the experiments.

Images are captured from a Canon PowerShot S90 camera and are size of

3648×2736. During the experiments, images are resized to 912×684. Visual
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results are shown in Figure 4.4. Altitude of the camera is reported as 200 m

[65]. Numerical results are provided in Table 4.2.

Table 4.2: RMS values for Volvo
Case Total Matches RMS(pix)

Proposed Approach 1009580 1.8353
Bundle Adjustment 1009580 1.6191

For Volvo Factory image sequence, we again obtained similar visual and

numerical results for proposed approach and the bundle adjustment. How-

ever, some fractures and seams are available in the mosaic image. Since

these problems are also available for the results obtained by the bundle ad-

justment, we can conclude that these inconveniences are due to the violation

of planar scene assumption which is the main assumption for all mosaicing

algorithms where homography is used as the motion model and Euclidean

camera motion is present.

4.4.3 Bourget Airport Image Sequence

Images are provided in [63]. 251 images are used during the experiments.

Images are captured from a Canon IXUS 125HS camera. Altitude of the

camera is reported as 120 m. Size of the images are 4608×3456 and they are

resized to 1152×864 during the experiments. Results of the Bourget dataset

for the proposed approach and the bundle adjustment are given in Figure

4.5. Numerical results are presented in Table 4.3.

There are apparent defects in the mosaic for Bourget Airport image se-

quence for both proposed method and the bundle adjustment. This is again

related to the violation of the planar scene assumption. Defects are more
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(a) Result of the proposed method

(b) Result of the bundle adjustment

Figure 4.4: Results of the proposed method and bundle adjustment for Small
Village
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(a) Result of the proposed method

(b) Result of the bundle adjustment

Figure 4.5: Results of the proposed method and bundle adjustment for Bour-
get
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Table 4.3: RMS values for Bourget
Case Total Matches RMS(pix)

Proposed Approach 240325 3.6772
Bundle Adjustment 240625 1.7528

apparent since there are high buildings, towers, planes in the airport and

camera altitude is low which causes a more serious violation. When carefully

inspected, it can be noticed that some defects in the mosaic created by the

proposed algorithm is corrected with the bundle adjustment. A relatively

large difference between RMS of the feature residuals between the proposed

algorithm and the bundle adjustment also validates this observation.

4.4.4 Construction site (France) Image Sequence

Images are provided in [63]. Total number of 28 images are used during the

experiments. Images are captured from a Canon IXUS 220HS camera. Size

of the images are 4000×3000. Altitude of the camera is reported as 82 m.

Images are resized to 912×684 during the experiments. Visual results for the

image sequence are given in Figure 4.6. Numerical results are presented in

Table 4.4.

For a numerical comparison, RMS of the residuals are tabulated in Table

4.4. For this image sequence, results of the proposed algorithm is almost

Table 4.4: RMS values for Construction site (France)
Case Total Matches RMS(pix)

Proposed Approach 27393 2.5042
Bundle Adjustment 27393 2.2284

identical, both visually and numerically, to the results of the bundle adjust-
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(a) Result of the proposed method

(b) Result of the bundle adjustment

Figure 4.6: Results of the proposed method and bundle adjustment for Con-
struction site (France)
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ment. This is partly because of the large intersection ratios between images

which can be inferred from the compact structure of the mosaic image.
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Chapter V

5 Conclusions

We have now developed two different mosaicing approaches to create image

mosaics of the planar scenes. In the first method presented in Chapter 3, we

proposed a sequential mosaicing approach where alignment of new images

were computed by using all the previous images intersecting the new image.

To detect image intersections, a computer graphics tool, namely ‘Separating

Axis Theorem’ (SAT) was employed. This theorem uses basic geometric

procedures which provide an efficient operation. Since alignments of the

previous images were assumed to be fixed during the alignment estimation

of the new image which provides locally optimal estimates, we proposed a

novel refinement procedure to enhance the global consistency of the mosaic

by which alignments of the recent images were updated jointly. Experimental

results show the success and potential of our algorithm when it is compared

to some the other state-of-the art methods in the literature.

In the second method presented in Chapter 4, we proposed a new image

mosaicing technique based on recursive estimation of the alignment param-

eters of the images. Parameters of all the images were updated at each time

step by using Extended Kalman Filter. This was handled quite efficiently

thanks to the recursive structure of the estimation and sparse nature of the

image relations which provides small-size measurement equations. Several



experiments on publicly available datasets were conducted to assess the per-

formance of our proposed algorithm. Results show that our algorithm pro-

duces satisfactory image mosaics which are visually and numerically close to

the results of the bundle adjustment.

As future works, we plan to develop a more meaningful way of select-

ing images used in the affine refinement procedure instead of only using

the temporally recent ones. We also plan to use a computationally cheaper

detect-and-track based feature matching approach as in [18].
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