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Abstract

In this project we propose a new method for biometric hashing. In our method we use a

deep neural network structure to learn a similarity preserving mapping. For this purpose

we train a neural network architecture that consists of two identical neural nets called

Siamese neural nets where each one performs the mapping for hashing. The weights are

tuned in training such that two different biometric data of a person yield a similar code

but codes corresponding to different subject’s images are far away. The neural network

outputs a pre-hash vector which is then converted to a biometric hash vector through

random projection and thresholding. We use angular distance measure to train pre-hash

vectors which is more related with the Hamming distance that is used between hashes in

verification time. Our experiments show that the introduced method can outperform a

PCA-based baseline. We also show that a biometric hashing system which was trained

using the angular distance can achieve better verification rates than another one trained

with the Euclidean distance.
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Özet

Bu proje biyometrik kıyım için yeni bir yöntem tanımlanmasını içermektedir. Önerdiğimiz

metod, bir derin sinir ağı (deep neural network) yapısı aracılığı ile benzerlik koruyan bir

ilişkilendirme öğrenilmesi sağlar. Bu, kıyım için ilişkilendirme yapan iki birbirine eş

(ikiz) yapay sinir ağı içeren bir ağ mimarisi sayesinde mümkün kılınmıştırç. Yapay sinir

ağı parametreleri öğrenme asamasında aynı ınsanın resimlerini birbirine benzer, farklı in-

sanların resimlerini birbirinden farklı kodlara indirgeyecek şekilde ayarlanmaktadır. Ya-

pay sinir ağından elde edilen önkıyım çıktısı, rastgele yansıtma ve sınırlandırma yöntemi

ile biyometrik kıyım dizinine çevirilmektedir. Önkıyım dizinleri öğrenimi sırasında,

doğrulama esnasında kullanılan Hamming uzaklık ölçütü ile ilişkili olan açısal uzaklık

ölçütü kullanılmıştır. Deneylerimizin neticesinde önerdiğimiz metodun PCA temelli baz

alınan yöntemlere nazaran daha iyi çalıştığı gözlemlenmiştir. Ayrıca açısal uzaklık ölçütü

kullanan bir ikiz ağın Öklidyen uzaklık kullanan alternatifine göre daha iyi doğrulama

başarımı elde ettiği gösterilmiştir.
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Chapter 1

Introduction

1.1 Motivation

Security is one of the most important concepts in modern world. One aspect of this

problem is authentication which we try to improve in this project. Many systems rely

on biometric data for authentication. It has many advantages like we always have the

biometric property like our finger print or face features, potentially it is safe, etc.; how-

ever, there are some serious problems. One of the most important issues for such systems

is that no system is safe enough to store our biological identity information. A possible

solution developed to tackle the problem is called biometric hashing.Biometric hash-

ing uses a pseudo-random transformation to transform biometric data into a fixed length

binary hash vector that is specific to each user of the system [1]. The naive method for

an authentication system is saving raw biometric data during enrollment and during

authentication, comparing the input biometric with the stored one. A more secure way

would be to use a hashing function applied to the raw data and save the resulting hash in

the system. During authentication, the hashing function acts on the new input and the

resulting hash is compared with the stored one. To improve the security of the system,

we can add a random parameter to the hashing process, i.e. assign a pseudo-random

vector (a key) to each user and make her hash vector depend on this secret vector. This

method is sometimes called salt hashing (adding the random parameter to the hash

vector like salt) and this could provide high level of security for the user since it is

not easy to go back from the hash to the original biometric data without knowing the

pseudo-random secret key.

1
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The implementation of this method for face data, which is discussed in detail in [2], is

based on a predefined mapping and multiplying with the pseudo-randomly generated

matrix for salting.

One of the problems here is robustness of the system under different lighting conditions,

different facial expressions, changes through time, facial accessories (scarf, glasses, etc.).

Such invariancy is hard to obtain through a pre-defined linear mapping.

Another problem with this method is that the function is very computationally simple

(a linear mapping, mostly based on principle component analysis of the data). It is

easy to come up with security attacks against this method when we assume that the

user’s secret key is compromised. We think that even if the secret key is obtained by

an attacker (without the true biometric data), it should be difficult to break system

security and privacy. Currently, when an attacker obtains the secret key of a user, the

performance of biohashing is not very good. So, in this thesis, we specifically address

the case when the secret key is known by an attacker.

The method we propose for biometric hashing is based on salt hashing which also ben-

efits from recent developments in deep learning. Here we train a similarity preserving

mapping then salt it with a random string. Since neural networks are very capable

models, in presence of enough training data we can have such a complex function that

keeps the images belonging to one person close to each other and far from the other’s.

We show that one can obtain better verification performance from the system even if

the secret key of a user is stolen by an attacker. It also makes it difficult for attackers to

obtain biometric data from biometric hashes since the used transform is highly nonlinear

which increases the privacy of the system.

1.2 Contributions

The main contribution in this work is to develop a biometric hashing system based on the

Siamese neural network architecture. Our second contribution is to modify the Siamese

network by using a new objective function based on angular distances which is more

suitable for biometric hashing purposes. We calculate and present the gradient of the

new angular distance based objective function with respect to the weight parameters of

the neural network.



Introduction 3

Here we trained a very special neural networks (Siamese architecture) with huge num-

ber of parameters for a specific application, Studding neural networks with many hidden

layers is a new field of research with lots of open problems. Training such networks in-

volves with tuning many hyper-parameters like number of hidden layers and elements in

each layer, optimization algorithm and its own parameters and etc., as far as the author

knows, there is no general answer to these questions and using different “techniques” to

optimize these hyper-parameters was another issue we dealt with and report the results

in this project.

1.3 Outline

We describe the biometric hashing problem and its solution in Chapter 2. In the Chap-

ter 3 we give a brief introduction to neural networks and deep learning. The special

neural network architecture called the “Siamese architecture” which is used to solve the

biometric hashing problem is introduced in Chapter 4. We report the results of experi-

ments on different face datasets and compare them with the existing model and then the

effects of different parameters on the performance of the system is discussed in Chapter

5. Finally in Chapter 6 we give a conclusion and summary of our work.



Chapter 2

Background and Problem

Statement

2.1 Biometrics

“Biometrics” means “life measurement”, more often it is used as unique physiological

characteristics to identify a person. Security is one of the most important applications

and use of biometrics. Identifying “who” you are interacting with is an important human

feature for computers as well [3]. Many biometric methods have been developed and are

used for identification purposes. The idea is to use the special characteristics of a person

to identify him. Here special characteristics means features like face, iris, fingerprint,

signature etc. [3].

A biometric system can be seen as a pattern recognition system that identifies people

by determining the authenticity of a specific physiological characteristic provided by the

user [4].

Verification basically is a bi-class classification task, i.e. one person claims an identity,

the system may respond “yes” or “no”. On the other hand identification task can be seen

as multi-class classification, in this scenario the enrolled biometrics should be classified

to one class (registered person).

A biometric system can serve as :

4
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• Identification: Biometrics can be used to determine a person’s identity. These

tasks are multi-class classification problems.

• Verification: Biometrics can also be used to verify a person’s identity, as in the

system promising secure access to a bank account at an ATM by using retinal

scan.

Biometric authentication requires enrollment of a valid user where the user provides a

biometric template to store in the system. This enrollment can be seen as a three-step

process.

1. Capture,

2. Process,

3. Store.

Biometric data is first captured by a sensor such as camera which is followed by process-

ing to extract a biometric feature vector. Extracted feature from the raw data is called

biometric sample or biometric template. This template is stored in a database which

completes the enrollment. During verification or identification, the user provides her

biometric data again. After capturing the raw biometric data, it is processed to obtain

the test template and then a comparison with the stored template is performed. In many

applications it is important that the original biometric sample cannot be reconstructed

from extracted feature [3]. The current project targets this issue in verification systems.

2.1.1 Face recognition system

Face recognition is one of the most challenging areas in the field of computer vision. Face

detection as the first step for this task should be done in order to localize and to extract

the face region from the background. For face detection, active contour models referred

as snakes [5], or approaches based on Hough method [6] and skin-color information [7],

boosted cascade of Haar-transform based features (Viola-Jones method) [8] or mixed

methods are being used to detect the edges and for locating the face boundary [9].



Background and Problem Statement 6

2.1.2 Face verification

There are many different algorithms for face recognition. The called “Eigenface” [10]

is one of the most popular ones. In the eigenfaces approach, we represent each face

image with an N -dimensional vector xi, i = 1, 2, ..., n. The covariance matrix of all

the n samples can be computed as S =
n∑
i=1

(xi −µ)(xi −µ)T , where µ is the mean face

vector. The k largest eigenvalues of S are called the principal values and the eigenvectors

corresponding to them are called the principal directions of S, where k � n. For each

image x, we obtain a feature vector Y by projecting x̃ = x − µ, the mean-subtracted

image, onto the subspace generated by these principal directions, that is Y = P x̃ where

the P matrix has the principal direction vectors of S in its rows. [11]

Biometric samples obtained like this are stored in the dataset as a template for each

user and are used during the authentication time.

2.2 Performance metrics

By accuracy of a biometric system we mean how accurate this system can separate

authentic persons from impostors. It means that the system should reject the impostors

and accept genuine samples as much as possible. There are several quantities which can

be used to report the accuracy of a biometric system [12].

The verification system compares an input biometric feature vector to the claimed user’s

stored template in the database. A score is calculated which indicates similarity (the

higher the similar). Instead of a score, a distance can be calculated as well in which

case a lower distance indicates more similarity. The decision is based on comparing this

score or distance to a (possibly varying) threshold. If the matching score/distance is

higher/lower than the threshold, the claim of identity is accepted, if not it is rejected.

Based on this, there are two possible types of errors: false acceptance and false rejection.

• False acceptance rate (FAR): The probability that the system incorrectly ac-

cepts a false input biometric as belonging to the claimed user. It measures the

likelihood of impostor inputs which are incorrectly accepted. If the person is an

impostor in reality, but the matching score is higher than the threshold he will be

treated as genuine.
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• False rejection rate(FRR): The probability that the system fails to accept

a genuine input. It measures the percent of valid inputs which are incorrectly

rejected.

It is clear that these two types of errors are traded off by changing the decision

threshold. To observe how the errors change with respect to each other as the

threshold is varied we use the following plots.

• Receiver operating characteristic or relative operating characteristic

(ROC): The ROC plot is a visual characterization of the trade-off between the

true accept rate, which is equal to one minus false reject rate, and the false ac-

cept rate. By decreasing the threshold we will see fewer false rejects but more

false accepts. Conversely, a higher threshold will reduce the FAR but increase the

FRR.

• Detection error trade-off (DET): DET graph is another graphical plot of

error rates for binary classification systems, plotting false reject rate vs. false

accept rate. DET curve is equivalent to an ROC curve but directly plots two error

types against each other. Generally the x- and y-axes are scaled non-linearly by

their standard normal deviates.[? ]

If we would like to summarize the performance using a single value instead of a

plot, we can use the equal error rate.

• Equal error rate(EER): The rate at which both acceptance and rejection errors

(that is FAR and FRR) are equal. The value of the EER can be easily obtained

from the ROC or DET curve. The EER is a quick way to compare the accuracy

of devices with different ROC curves. In general, the device with the lowest EER

is the most accurate, hence the objective of our system is to design a system with

smaller EER. [12]

2.3 Biometric hashing based verification system

Biometric hashing (or biohashing) is one of the biometric template protection methods.

Biohash is a binary and pseudo-random representation of a biometric template.Biometric

hashing methods use two inputs:
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1. Biometric template.

2. User’s secret key.

A biometric feature vector is transformed into a (lower dimensional) sub-space using

a pseudorandom set of orthogonal vectors which are generated from the user’s secret

key. Then, the result is binarized to produce a bit-string which is called the Biohash

[13]. In an ideal case, the distance between the biohashes belonging to the biometric

templates of the same user is expected to be relatively small. On the other hand, the

distance between the biohashes belonging to different users is expected to be sufficiently

high to achieve lower false acceptance rates. The desired properties of the biohashes are

summarized as follows:

1. The biohash should be irreversible so that biometric template cannot be obtained

from a biohash vector.

2. The biohash should be cancelable so that it can be renewed when an attacker steals

it.

3. The biohash should be robust against different biometric images belonging to the

same user so that the Hamming distance between the biohash vectors (i.e. gener-

ated from the same secret key but different biometric images collected at different

sessions) of the same user should be small.

4. Biohash should be fragile to the biometric images which do not belong to the same

user so that the Hamming distance between the biohash vectors (i.e. generated

from different secret key and different biometric image) of the different users should

be high [14],[15], [16].

2.4 Random projection biohashing

Random projection (RP) based biohashing scheme is proposed by Ngo et al. [17][14].

In a RP based biohashing method, there are three main phases in each stage and these

phases are described as follows:

1. Feature extraction,
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2. Linear Random Transformation,

3. Quantization [14],[15].

2.4.1 Generating the biohash

In traditional biohashing techniques, feature extraction is done by linear transformation

of the data. Principle component analysis (PCA) [18] is the most frequent tool here.

We generate a matrix R whose elements are independent and identically distributed

(i.i.d) and generated from a Gaussian distribution with zero mean and unit variance, by

using a Random Number Generator (RNG) with a seed derived from the user’s secret

key. This matrix R acts as random transformation.

In short we can summarize as:

Bi = sign(Ri(P (xi − µ))) (2.1)

where xi is the vectorized image for the user i, P is the pca matrix, Ri, as mentioned

before, is the random matrix for the user i or her secret key, and Bi is the hash vector

generated for the user i.

Quantization or binarization can simply be done by applying sign function to the result

of the previous step.

2.4.2 Authentication using biohash

In authentication again all the operators for hashing are done on the unidentified image

xnew to generate Bnew, then Hamming distances Bi and Bnew are compared to a

threshold η. If these two vectors are close enough, the user providing xnew will be

verified as the claimed user i.

2.5 Drawbacks of traditional biohash and cures

There are several problems for traditional biohashing procedure described in section

2.4.1.
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• The system in the case of a compromised key is very fragile. The main reason is

that the system is computationally very simple and all the operators till quanti-

zation are linear.

• The feature extractor which is applied in this algorithm is linear. Features ex-

tracted linearly from the raw data do not necessarily provide us invariancy under

changes within a class, or generating codes with large Hamming distances between

different users.

2.6 Our proposed method

To improve the biohashing system which has the discussed troubles, we introduce a deep

learning based method. Several layers of nonlinearity before applying random projection,

make the system harder to be attacked even with a compromised hidden key, since this

system potentially has much more parameters than the model in (2.1). Figure 2.1 shows

a schematic of our model.

Input Images

Random Projection 
&

Threshold

Pre-hash
vector

Final
Hash vector

Bottle neck

Trainable 
part

Figure 2.1: Deep learning based biohash model.

Deep neural networks are very rich models and by enough training they can approximate

very complex functions [19]. Furthermore, first layers of DNN can be seen as feature

extractors. By training a good structured neural network, instead of using “off-the-

shelf” feature extractors that may not suite our task, we design (train) feature extractors

optimized for the special task. More specifically, our suggested system consists of two

identical neural networks, sharing weights. During the training both sub-networks will



Background and Problem Statement 11

be penalized if the distance between two hash vectors generated from images of the same

person have large distance or hash vectors from different subjects are close.

Neural networks is a general purpose pattern recognition model. Given two person’s

images, they are sent to a Siamese neural network (SNN). Similarity of an image in the

gallery with a probe image is computed based on SNN outputs. The structure of the

SNN is shown in Figure 4.1, which is composed by two identical neural networks. During

training, the two sub-networks are connected via a cost computing unit. Since in action

(test phase) we use only one of the networks to compute the features, in Siamese neural

networks we should have a constraint that the two sub-networks share the same weights

and biases.



Chapter 3

Neural Networks and Deep

Learning

Neural network is a general purpose computational model which is inspired from the

human brain. The basic paradigm in neural networks is to represent a function as a

nonlinear function of weighed mean of the inputs. Training is finding weights such that

the entire final function generates the target output from the input, the process of finding

the optimal weights is called “training”.

The diagram shown in Figure 3.1 illustrates a 3 layer feedforward neural network; it

consists of an output layer and two hidden layers. There are n neurons in the input layer.

The output is calculated as follows: a(L) = f(W (L)(...(f(W (0)xin + b(0))...) +b(L)), b(i)

is referred to as the bias. We can set a special input for b equal to 1 and deal with it like

other weights. We will call this multi-layer function as O = GW (xin) where O = a(L)

is the output of the neural network and W includes all the weight parameters from all

layers in it.

12
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Input layer Hidden layers Output layer

Schematic of a Feedforward 4 layer Neural Network

Figure 3.1: A schematic sample of a 3-layer neural network.

3.1 Training the neural network

There are different classes of learning methods. All learning algorithms aim to adjust the

weights of the connections between units, obtain a proper output for each input, accord-

ing to different update rules. Hebbian learning rule as one of the basic neural network

training states that, if two units j and k are active simultaneously, their interconnection

must be strengthened. If j receives input from k, [20] The following learning rule uses

the difference between the actual and desired activation for adjusting the weights:

∆wjk = γyj(tk − yk) (3.1)

in which tk is the desired (target) activation provided by a teacher, where γ is the

learning rate parameter. This is often called the Widrow-Hoff rule or the delta rule [21].

There are different algorithms for training neural networks, the main difference in these

algorithm is how they address the problem of optimization of a cost function. Gradient

based optimization are the most common choice for training neural networks. In the

next section we will discuss backpropagation.

3.1.1 Backpropagation

Backpropagation is a three stage algorithm:

1. Forward Propagation
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• Passing the training data through the neural network to calculate the activa-

tions and output of the net.

2. Backward Propagation

• Backward propagation of the output error (actually the gradient of the ob-

jective function) through the neural network. The gradient of the training

objective which usually includes a comparison of the output of the network

with a target value leads to generation of the gradient (named as the error

or the δ in neural network literature) with respect to each weight parameter

in the network using the chain rule.

3. Weight Update

• Update the weights by subtracting a ratio γ of the gradient from the weight.

The goal of the backpropagation algorithm is to compute the partial derivative ∂C
∂W

where C represents the cost function (or the loss function) and W stands for any pa-

rameter in the network. An example for the cost function C can be given as the least

squares cost which is given as C = 1
2

N∑
i=1
||oi − yi||2 where oi = a

(L)
i = GW (xi) is the

output vector for the neural network given input xi and yi is the target vector for the

i′th training data point during training. In the below discussion we can think about the

cost as the cost of a single training instance, that is C = 1
2 ||o− y||

2 for simplification.

For back propagation in general we calculate the following quantities:

∆
(l)
j =

∂C

∂a
(l)
j

f(z
(l)
j ). (3.2)

Here a
(l)
j is the activation of j′th neuron of l′th layer, z

(l)
j is the input of this neuron and

∆
(l)
j is defined as error of neuron j in layer l.

∆(l) = ((W (l+1))T∆(l+1))⊗ f(x(l)). (3.3)

Here ⊗ stands for Hadamard (component wise) multiplication.
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The equation for the rate of change of the cost with respect to any weight in the network

is:
∂C

∂W
(l)
jk

= a
(l−1)
k ∆

(l)
j ,

∂C

∂b
(l)
j

= ∆
(l)
j . (3.4)

Backpropagation algorithm is:

1. Input: Set the corresponding activation a(0) = x (the input) for the input layer.

2. Feedforward: For each l = 1, 2, . . . , L compute z(l) = W (l)a(l−1) + b(l) and

a(l) = f(z(l)).

3. Output error ∆(L): Compute the vector ∆(L) = ∇a(L)C ⊗ f(z(L)).

4. Backpropagate the error: For each l = L − 1, L − 2, . . . , 2 compute ∆(l) =

(((W (l+1))T∆(l+1))⊗ f(z(l)).

5. Output: The gradient of the cost function is given by ∂C

∂W
(l)
jk

= a
(l−1)
k ∆

(l)
j and

∂C

∂b
(l)
j

= ∆
(l)
j [22].

3.2 Optimization algorithms for neural network learning

3.2.1 Gradient descent

We consider a cost or a loss function C(θ,W ) , where θ = (xi,yi)
N
i=1 represents the set

of all inputs and outputs of the system that measures the cost of predicting. We seek the

function GW ,parametrized over vector (matrix) W , that minimizes the loss C(θ,W )

averaged on the examples. A common way to minimize an the cost function is using the

gradient descent algorithm. In each iteration the weights W are updated based on the

gradient of C(θ,W ),

W t+1 = W t − γ
1

N

N∑
i=1

∇WC(θi,W t) (3.5)

where γ is called learning rate and could be a constant or function of the parameters

e.g. decreasing function of number of iterations (γt). Under sufficient condition,like

good initialization and when the learning rate γ is sufficiently small, this algorithm

convergence linearly i.e. residual error asymptotically decreases exponentially. [23].
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3.2.2 Stochastic gradient descent

Stochastic gradient descent algorithm is a simplification to reduce the computational

expenses of gradient descent. Here instead of computing the gradient of C(θ,W ) exactly,

in each iteration we estimate this gradient by a single randomly picked example:

W t+1 = W t − γt∇WC(θt,W t) (3.6)

In this case {W t, t = 1, . . .} is a stochastic process depends on the examples randomly

picked at each iteration. We hope that Equation (3.6) behaves like its expectation

Equation (3.5) despite the simplification of taking only one sample each time. Beside

the speed of stochastic gradient algorithm, It can easily be performed on-line which is

a big advantage for big data. γt has to decay in time as 1
t so that stochastic gradient

descent converges in probability to the true parameter values.

3.2.3 Batch gradient descent

Another alternative for full gradient method is to approximate the gradient not only

with a random sample of training data, like in stochastic gradient method. We can take

a small batch of data and update the weights based on average of gradients over that

small batch.

W t+1 = W t − γ
1

B

B∑
i=1

∇WC(θi,W t). (3.7)

Here B is the batch size. This method is called the mini-batch stochastic gradient

method sometimes. The regular gradient descent (or steepest descent) method described

in 3.2.1 is sometimes called full-batch gradient descent since it corresponds to using the

whole data in the batch gradient descent. We discuss about B on performance of the

system in Section 5.4.3.
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3.3 Architecture of the neural net

The choice of the number of layers (deepness or shallowness of the network) for the

architecture is dependent on many factors. For every specific task and data type, the

number of layers and the number of nodes in each layer that would achieve good gen-

eralization is different [24][25]. Shallow architectures (structures with few hidden layer)

have smaller number of parameters to be trained hence there is no need to access large

dataset of training samples, on the other side such structures may not be capable to

completely capture the specific information and extract proper features from the data.

In order to have high separability among data classes, the architecture should have

enough parameters to handle the complexity or nonlinearity of the function to capture

latent structure in the data [24].

In [26], it is stated that “From a mathematical perspective, a large number of functions

can be well approximated by shallow architectures, provided they have sufficient number

of elements in their hidden layers. However, the number of elements needed to estimate

a highly nonlinear function can grow exponentially.” [26],Neural nets with many hidden

layers in some new text are referenced as “deep neural nets”. These kind of networks

attract a huge attention for different applications. Neural networks was a hot topic in

70s and 80s in artificial intelligence and machine learning but training deep architec-

tures using backpropagation was not successful. The reason of the failure is called “the

vanishing gradient problem” [27][28]. To overcome this problem, several methods were

proposed. One is multi-level hierarchy pre-trained one level at a time through unsuper-

vised learning and then fine-tuned through backpropagation [29]. In this method each

level learns a compressed representation of the observations that is fed to the next level.

The idea is to divide the training of successive layers of a deep network in the form

of small sub-networks and use unsupervised learning to minimize input reconstruction

error. This will be discussed in detail later. This technique successfully eliminates the

shortcomings of the gradient based learning by averting the local minima [30].
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3.3.1 Pretraining and Autoencoders

Autoencoders are models that are trained in order to represent the data using a series of

nonlinear transformations [24],[26]. Basically an autoencoder is a neural network with

single or multiple hidden layers which is trained in an unsupervised manner, the aim

of this network is to find a representation of the data. The objective of learning is

to minimize the data reconstruction error. To avoid trivial cases in training, mostly a

constraint like sparsity or applying smaller number of neurons than the number of input

units are used. [24],[26],[31], [32] and [33]. According to the definition in [33], encoder is

referred to a deterministic mapping GW that transforms an input vector x into hidden

representation y, whereW is the weight matrix . On the other hand a decoder maps back

the hidden representation y to the reconstructed input x via GW ′ . The whole process of

autoencoding is to compare this reconstructed input to the original, apparently it needs

an error criterion, and try to minimize this error to make the reconstructed value as

close as possible to the original.

Each autoencoder is a two-layered neural network with a single nonlinear hidden layer.

for input x, the hidden layer representation is given as

hj(x) = f(b
(1)
j +

|x|∑
i=1

W
(1)
ij xi), (3.8)

where W
(1)
ij are the connection weights between input xi and hj , while b(1) is the hidden

layer bias vector. f(.) is the neural network activation function. The choice of the

activation function varies depending upon the statistical properties of the data [34].

The input reconstruction at the output layer is

x̂i = f ′(b
(2)
i +

|h|∑
i=1

W
(2)
ij hj(x)). (3.9)

In (3.8) and (3.9) W
(k)
ij , k = 1, 2 are the weights corresponding to the hidden layer

(k = 1) and output layer (k = 2). f ′(.) is the neural network activation function for the

reverse path. The objective or the cost function for training autoencoder networks can

be the mean square error between actual and reconstructed input,

C(x, x̂) = ||x− x̂||22. (3.10)
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The same learning principle is applied for higher layers. The parameter optimization

usually involves gradient descent using backpropagation [24][35].

3.4 Deep neural network training

The training of Deep neural networks (DNN) involves two-stage learning of the

network parameters. The first stage, i.e., pre-training, is unsupervised learning using

unlabeled data and provides the initialization for the DNN. The second stage, i.e. fine-

tuning stage involves supervised learning using the backpropagation algorithm.



Chapter 4

Siamese Networks

4.1 Siamese architecture, why, what, how

Our proposed method is to train a model in an unsupervised manner which generates

codes for each sample and try to minimize the distances between the codes for similar

examples and maximize it for distinct examples.

In applications like face recognition and face verification, the number of categories can

be hundreds or thousands, with only a few examples per category. A common approach

to these kind of problems is distance-based methods, which consists of computing a

similarity metric between the pattern to be classified or verified and a library of stored

prototypes. To apply discriminative learning techniques to this kind of application,

in [36] a model is proposed which can extract information about the problem from the

available data, without requiring specific information about the categories. The solution

presented in [36] and then [37] and [38] is to learn a similarity metric from data. This

similarity metric can later be used to compare or match new samples from previously-

unseen categories (e.g. faces from people not seen during training).

Siamese networks (or metric learning) can be applied to multi-class classification prob-

lems as well may be since it will learn good mappings after which you can directly use

nearest neighbor methods for classification. However this is not our goal in this thesis.

The main idea is to find a function which maps input patterns into a target space

such that a simple distance in the target space (Euclidean distance or in our particular

20
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example Hamming distance or angular distance) approximates the similarities in the

input space. More precisely, given a family of functions GW (x) parameterized by W ,

we are looking for a value of the parameter W such that the similarity metric (distance)

DW (x1,x2) = dS(GW (x1), GW (x2)) is small if x1 and x2 belong to the same class,

and large if they belong to different classes. The system is trained on pairs of training

samples taken from a training set.

Because the same function G with the same parameterW is used to process both inputs,

the similarity metric is symmetric. This is called a Siamese architecture as in [39] and

[36] or hybrid architecture, as in [37].

In our face verification system, like in [36] and [38], we first train the model to produce

output vectors that are close in angular distance sense for pairs of images from the

same person, and far away for pairs of images from different persons. We expect that

the model would map face images of new persons that were not seen during training

to vectors with proper distances. An important aspect of the proposed method is that

there is infinite possibilities for the function GW . In particular, we can use architectures

which are designed to extract features that are robust to different distortions and are

invariant to a class of transformations of the input. The resulting similarity metric will

be robust to some differences of the pose between the pairs of images [36].

4.2 The framework for Siamese architecture

Energy-based models (EBM) assign an unnormalized energy to each configuration of

parameters of a system. Prediction in such systems is performed by searching for con-

figurations of the variables that minimize the energy [40]. A trainable similarity metric

can be seen as associating an energy EW (s,x1,x2) where the binary variable s indicates

whether x1 and x2 come from the same class. to labeled pairs of input patterns.

Learning is done by finding the W that minimizes a suitably designed loss function,

evaluated over a training set [40].

The first loss function that may come to one’s mind is simply minimizing EW (s,x1,x2)

summed over a set of pairs of inputs from the same category, but this generally leads

to a catastrophic collapse. Using such a loss function which only uses pairs from the
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same category will map the whole space to a very small portion of the code space (the

range of the mapping), or by setting GW (.) to a constant function a minimum for this

inefficient loss function can be achieved.

A remedy for this problem is to use a contrastive term loss function.

4.2.1 Face verification

The task of face verification, is to accept or reject the claimed identity of a subject in

an image, [36] [41]. Performance is assessed using two measures: false accepts ratio

(FAR) and the false rejects ratio (FRR). A good system should minimize both measures

simultaneously and have small equal error rate (EER).

In this thesis, we apply the idea of metric learning using Siamese networks to biometric

hashing. The basic idea of this approach is to embed raw biometric data in a low dimen-

sional space so that the distance between the embeddings is small if the data belongs to

the same person and large otherwise [36]. This idea has been used for biometric verifi-

cation before [36], [38], but has not been used for biometric hashing. Our contribution

is to apply it for biohashing problems. In addition, we specifically introduce a novel loss

function for Siamese networks for learning better biometric hashes.

Learning the similarity metric is realized by training a network which consists of two

identical networks that share the same set of weights - a Siamese Architecture [39],[38]

(see Figure 4.1).

4.3 Energy function and training the network

4.3.1 Learning the Mapping

In a famous work called “DrLim” [42] The problem of finding a function that maps

input data to (binary) outputs, given neighborhood relationships between samples in

input space and preserve the mutual distances between them, is formalized as follows:

We are interested in the following properties:
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Figure 4.1: Schematic of the Siamese network.

1. Desired distance measures in the output space (such as Hamming distance or

angular or cosine distance in this study) should approximate the neighborhood

relationships in the input space.

2. The mapping should not be constrained to implementing simple distance measures

in the input space and should be able to learn invariances to complex transforma-

tions.

3. It should work well even for samples whose neighborhood relationships are un-

known.

We call such a mapping (function) GW which means function G with parameter W .

4.3.2 The contrastive loss function

Consider the set X of (high dimensional) training vectors. A meaningful mapping from

high to low dimensional space maps similar input vectors to nearby points on the output

manifold and dissimilar vectors to distant points. There are some loss functions whose

minimization can produce such a function [40]. The loss function here runs over pairs

of samples. Let x1,x2 ∈ X be a pair of input vectors shown to the system. Let s be

a binary label assigned to this pair: s = 1 for similar pairs and s = 0 for dissimilar
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pairs. Define the parameterized distance function to be learned DW between x1,x2 as

the (Euclidean) distance between the outputs of the mapping (GW ). That is,

DW (x1,x2) = ||GW (x1)−GW (x2)||2. (4.1)

Then the loss function (which is similar to the cost function of the Chapter 3) in its

most general form is:

L(W ) =
P∑
i=1

L(W , (s,x1,x2)
i), (4.2)

L(W , (s,x1,x2)) = s× LS(DW ) + (1− s)× LD(DW ), (4.3)

where DW stands for DW (x1,x2), (s,x1,x2)
i is the ith labeled sample pair, LS is the

partial loss function for a pair of similar points, LD the partial loss function for a pair

of dissimilar points, and P the number of training pairs (which may be as large as the

square of the number of samples). LS and LD are defined such that minimizing L with

respect to W would result in low values of DW for similar pairs and high values of DW

for dissimilar pairs.

For our problem the loss function for a single pair of inputs and their label is the same

as their energy function E(s,x1,x2). So the overall loss function ends up being equal to

the sum of energies over training data. For other learning problems such as multi-class

classification, a loss function can be different from the energy function. For example

a reasonable multi-class loss function would encourage the correct class’ energy to be

lower whereas wrong class’ energies to be higher for a single training data [40].

There are many possible ways to define the loss function [40]. In different experiments

conducted for this project the best results were obtained by the following loss function

which is also used in [42],[38]and [43].

L(W, s,x1,x2) = s× 1

2
(DW )2 + (1− s)× 1

2
max{0, α−DW }2, (4.4)

where α > 0 is a margin defined around mapped data. Dissimilar pairs contribute to the

loss function only if their distance is within this radius. The contrastive term involving
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dissimilar pairs, LD, is crucial.

4.3.3 Method and gradients in detail

In this section we will describe details for learning an invariant mapping that can exploit

the similarity of pairs of training examples obtained through class labels.

We construct sets based on our data collection efforts. Each set consists of two sam-

ples from training set and the label indicating if they are similar or not, (xi,xj , s) as

mentioned before.

4.3.3.1 Energy-based method

This approach is online (each training pair updates the system independently) and suites

the large training set or large models. Moreover, we can control the balance between

similar and dissimilar examples when the dataset is dominated by one or the other.

DrLIM [42] is an energy-based method that is trained by stochastic gradient descent. It

can be used with arbitrary nonlinear GW . Here we define Oi = GW (xi).

L(W, s, x1, x2) = s× 1

2
(DW )2 + (1− s)× 1

2
max{0, α−DW }2. (4.5)

To keep the embedding from collapsing, L has a contrastive component whereby dissim-

ilar points are pulled apart through the dissimilarity loss:

1

2
max{0, α−DW }2 (4.6)

where α > 0 is a margin which ensures that dissimilar points contribute to the loss only

if they lie close-by in the embedded space, and α is fixed to a certain value [38].

The model is trained by stochastic gradient descent. The gradient of the outputs with

respect to the weight matrix W given a single data point (x1,x2, s) is given by:

∂L
∂W

=
∂L
∂O1

∂O1

∂W
+

∂L
∂O2

∂O2

∂W
, (4.7)
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∂L
∂O1

=


s(O1 −O2) if s > 0

(d− α)O1−O2
d if s = 0, d < α

0 if s = 0, dij > α,

(4.8)

where s indicates the similarity between x1 and x2 and d = ||O1 − O2||2 and O1 =

GW (x1). The gradient with rspect to O2 can be obtained as the negative of the gradient

with respect to O1 since the loss function is symmetric.

We should notice that the equations before, are valid if only we are interested in pre-

serving the Euclidean distance between the mapped data. The formulas for different

metrics will be provided in the next section.

4.3.4 Angular distance relations

In application of our interest, obtaining similarity preserving binary hash codes; one

popular way for binarization of calculated feature vectors is to threshold them, i.e. to

apply sign function on all the coordinates of the feature vector.

Before going into details of the model in our specific application, we mention the following

notations, definitions and theorems.

A useful distance in signal space is the angular distance between two vectors. We define

angular or cosine distance between two vector u and v as follows:

dS(u,v) :=
1

π
arccos

〈u,v〉
(||u||||v||)

(4.9)

From now on, by BK we refer to the binary space {−1, 1}K .

Let’s define A : <N −→ BK defined as follows:

y = A(x) := sign(Φx), (4.10)
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where the sign function is defined as:

sign(x) =


1 if x ≥ 0

−1 if x < 0.

(4.11)

The operator A(.) is a mapping from <N toK dimensional binary space, in this definition

Φ is a matrix satisfying Restricted Isometry Principle (RIP) condition. We aim to build

binary codes which are far from each other. The Hamming distance is the natural

distance for counting the number of unequal bits between two hash vectors. Specifically,

for a, b ∈ BK we define the normalized Hamming distance as

dH(a, b) =
1

K

K∑
i=1

ai ⊕ bi, (4.12)

where ⊕ is the XOR operation such that a ⊕ b equals 0 if a = b and 1 otherwise. The

distance is normalized such that dH ∈ [0, 1]. In [44] and [45] it is shown that :

Theorem 4.1. Let Φ be a matrix generated as Φ ∼ NK×N (0, 1), and let the mapping

A : x ∈ <N −→ BK be defined as in (4.10). Fix 0 < ε < 1. if For any u,v, we have

P(|dH(A(u), A(v))− dS(u,v)| ≤ ε) ≥ 1− 2−2ε
2K , (4.13)

where the probability is with respect to the generation of Φ.

In words, Theorem 4.1 implies that the Hamming distance between two binary measure-

ment vectors A(u), A(v) tends to the angle between the signals u and v as the number

of output hash dimensions K increases.

4.3.4.1 Loss function using the angular distance

As discussed before, we aim to map biometric data to binary code such that samples

from different classes have large mutual Hamming distance.

At the first look we can directly penalize the mapping with respect to Hamming dis-

tances between instances, but the problematic point is that Hamming distance is not

differentiable.
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The solution we propose is to divide the mapping into two steps:

1. Feature extraction

2. Binarization.

In Feature extraction step we try to find a (sub-)optimal mapping which maximizes

angular distances between dissimilar samples and minimizes it between similar samples,

then applying theorem 4.10, with a proper Φ matrix we can obtain good binary codes.

To obtain the new energy function and the loss function, we just replace the Euclidean

distance used in the earlier derivation with the angular distance and make no other

change.

4.3.4.2 Derivatives with the respect to the angular distance

The partial derivative of angular distance with respect to one of the vectors is as follows:

∂

∂u
dS(u,v) = (

1

2
− 1

||u||
)
v

||v||
. (4.14)

By substituting above equation into 4.7 we can obtain derivatives similar to ones in 4.8

with respect to angular distance.

The resulting derivatives are used in order to back propagate the error which is discussed

in Chapter 3.

∂L
∂O1

=



s(12 −
1

||O1||
) O2

||O2||
if s > 0

(d− α)
( 1
2
− 1

||O1||
)
O2

||O2||
d if s = 0, d < α

0 if s = 0, d > α.

(4.15)

Again s is the indicator for the similarity between x1 and x2 and d = dS(O1,O2) is the

angular distance between the mapped sample and O1 = GW (x1).



Chapter 5

Experiments and Results

In this chapter, we first present our experimental setup including database prepara-

tion, next we present the experimental results followed by our discussions about certain

aspects of the experimentation.

5.1 Datasets

The first dataset we used for training and testing was a relatively small dataset of 400

images from the AT&T Database of Faces [46]. The dataset contains 10 images each of

40 subjects, with variations in lighting, facial expression, accessories, and head position.

Each image is 112x92 pixels, gray scale, and closely cropped to include the face only.

To avoid computational difficulties we did reduce the resolution of the images to 56x46

using 4x4 subsampling. See Figure 5.1 for example face images from this dataset.

FERET dataset [47]- distributed by the National Institute of Standards and Technology,

is a well known database for recognition tasks. Here we used a subset of this set con-

taining 4 images in different poses of 60 different persons. Lighting and facial expression

varies for different images and different subject. Our subset consists of 1122 images, that

is, 6 images each of 187 subjects. The only preprocessing was cropping and subsampling

to 56x46 pixel images.

CMU dataset is another well known database for face recognition tasks. Here we used

a subset of this set containing 4 images in different poses of 68 different persons. We

29
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cropped images into semi-elliptic frame around the center of the face and then down-

sampled the images to the size 75× 65 pixels.

M2VTS [48] dataset is another famous dataset for testing face recognition tasks, here

we used a subset of the dataset with images of 37 people in 10 different poses where

images of 27 subject used for training, 5 unseen subjects for validation and 5 for testing.

We train our model on a relatively large portion of the dataset, leave a small portion of

data as validation data which is used for cross-validation to obtain parameter settings

and stopping criteria and use the rest for testing.

We first shuffle the identities of the samples then make training and testing sets which

consist of all images of selected identities for each set. Since train and test phase both

need pairs of images, the images should be paired. If in a set (train, validation or test)

C identities (people) are chosen where each one has K different samples, we will have

C ×K(K − 1) genuine pairs and K × ((C − 1) ×K) impostor pairs. In order to keep

balance in training, we pick randomly a portion of impostor pairs for training.

5.2 Training protocol

Our framework as described in Chapter 4 compares two identical networks and one cost

function, the input to the system is a pair of images and a similarity indicator. The

images are passed through sub-networks and form two pre-hash vectors. These two

vector outputs are passed to the energy (or loss) calculation routine which calculates

the scalar called loss function by the Equation (4.5).

The loss function is calculated using the labels in the training data. By back-propagation

the gradient of the loss function with respect to the parameters for both subnets is

computed. Then each parameter is updated with the SGD method using the sum of

gradients obtained at both sub-nets since the parameters of the sub-nets are tied to each

other.

5.2.1 Data partitioning

In order to have a fair train and test set. we should generate a test set consisting of

images of the subjects that are not seen by the learning algorithm during training, we
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split the datasets into three disjoint sets, namely SET1, SET2 and SET3. Each image in

each of these sets was paired up with a fixed number of other image in that set to have

as many as possible genuine pairs and a reasonable number of impostor pairs. For the

AT&T data, SET1 consisted of the 250 images of first 25 subjects and SET2 consisted

of 50 images of last 5 subjects for validation and SET3 consisted of 50 images of last 5

subjects as test set. Training is done using only the image pairs generated from SET1

and hyper-parameters for training obtained from pairs in SET2.

For the Feret data, SET1 contains images from 50 subjects, 5 subjects for validation

and again 5 person for testing. For M2VTS [48] we used a subset of the dataset with

images of 37 people in 10 different poses where images of 27 subject used for training, 5

unseen subjects for validation and 5 for testing. The last dataset we used in this project

is CMU [49] which has 4 images of 68 different subjects, we split them into 55, 5 and 8

for training, validation and testing respectively.

Except AT&T we down-sampled to the size 75× 65 pixel (down-sampling ratio is about

2× 2) then cropped all the images by an elliptic frame.

5.2.2 Network Architecture

Our sub-nets have one input layer, 4 hidden layers which have 1000, 400, 100 and 256

units in each layer respectively. The output is a real vector of length 256 which is called a

pre-hash. The next step is generating hash vector, this stage can be done by multiplying

the pre-hash vector with a pseudo-random matrix whose entries are generated in a

pseudo-random fashion initialized by a seed from the user and satisfy a standard normal

distribution.Then, we take the sign of the transformed vector to convert it into a binary

hash vector. This way, we obtain the biometric hash for the given biometric data.

We used linear units for the first two layers and sigmoid transfer function for upper

layers. This choice is made empirically, changing the first layer to the nonlinear decreases

the performance in all different implementations. Other hyper-parameters used in the

algorithm are determined empirically too. The best performance with respect to α

was obtained for α = 1.5. Another important effecting hyper-parameter is the batch

size used in the optimization algorithm. Training with batch containing 20-50 training

samples lead to better results. We initialize our networks with i.i.d. zero mean randomly
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generated matrices for all the experiments. We compared various initializations in 5.4.4,

the results there suggest using random initialization superiority to the other methods

for this task.
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5.3 Results

5.3.1 AT&T dataset

Figure 5.1 shows some samples from AT&T dataset.

Some images from the training set
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Figure 5.1: Some samples of AT&T dataset.

An illustration of PCA coefficients from the AT&T dataset is in Figure 5.2.

As we described before, better verification systems has DET curves, closer to the bottom-

left of the plane. As we expect DET curve for training set for all methods have better

performance than the same method’s performance on the test set (unseen subjects).

Blue curve, nearest to the origin in all the experiments is performance of our method on

the training set, green curve shows the results on the test set, for the competitor method

(PCA based method), training and testing curves in red and purple respectively are in

farther distance from the origin compare to result of our method on the same data.

Figure 5.3 shows changing of EER for validation set and energy (mean of the energy for

the batches.) in each epoch.

As we expect energy decreases through training but EER does not change dramatically,

we will discuss this topic in Section 5.4.1.

Figures 5.4 and 5.5 show angular distances between pre-hash vectors for each pairs of

training and testing set respectively. Here we arrange data points such that all members
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pre−training filters
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Figure 5.2: Some samples of PCA eigenvectors for the AT&T dataset. These filter
are used for pre-training in some experiments.
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Figure 5.3: Changing of loss function and EER on validation data of the AT&T
database.

of each classes stick together and all class have equal number of members. The DET

curve show the behavior of the system with respect to pre-hash vectors and angular

distance is shown in Figure 5.6.

DET curves for hash vectors of length 128, 256, 512, 1024 and 2048 are provided in

Figures: 5.7 ,5.8,5.9,5.10 and 5.11 respectively.

As we use more bits for the biohash, the performance of the deep network gets better as

compared to the PCA based one. As we expect he longer hash code will behave similar
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Mutual distances
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Figure 5.4: Mutual distances between AT&T pre-hash codes from train subset.
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Figure 5.5: Mutual distances between AT&T pre-hash codes from test subset.

to pre-hash vector with respect to Angular distance.
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Figure 5.6: DET curve for AT&T dataset of pre-hash with angular distance .
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Figure 5.7: DET curve for AT&T dataset, hash vector of length 128.
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DET curves of binary hash vector of length: 256
  EER train deep : 0.080557 EER test deep : 0.17529
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Figure 5.8: DET curve for AT&T dataset, hash vector of length 256.
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DET curves of binary hash vector of length: 512
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Figure 5.9: DET curve for AT&T dataset, hash vector of length 512.
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DET curves of binary hash vector of length: 1024
  EER train deep : 0.067494 EER test deep : 0.15025

 EER train PCA : 0.10856 EER test PCA : 0.27379
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Figure 5.10: DET curve for AT&T dataset, hash vector of length 1024.
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DET curves of binary hash vector of length: 2048
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Figure 5.11: DET curve for AT&T dataset, hash vector of length 2048.
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5.3.2 FERET dataset

For this task we crop FERET dataset images into semi-elliptic frame around the center

of the face and then down-sampled the images to the size 75 × 65 pixels. Figure 5.12

shows some some samples of this dataset.

Some images from the training set
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Figure 5.12: Some samples of FERET dataset.

Figure 5.13 shows changing of EER for validation set and Energy (mean of the energy

for the batches.) in each epoch.
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Figure 5.13: Changing of loss function and EER on validation data of the FERET
database.



Experiments and Results 40

Figures 5.14 and 5.15 show angular distances between pre-hash vectors for each pairs of

training and testing set respectively. Here we arrange data points such that all members

of each class stick together and all class have equal number of members.

The plot of Detection Error Trade-off (DET) curve of PCA pre-hash vectors in compar-

ison with pre-hash vectors obtained from deep learning method is shown in Figure5.16.
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Figure 5.14: Mutual distances between FERET pre-hash codes from train subset.
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Figure 5.15: Mutual distances between FERET pre-hash codes from test subset.

DET curves for hash vectors of length 128, 256, 512, 1024 and 2048 are provided in

Figures: 5.17 ,5.18,5.19,5.20 and 5.21 respectively.
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Figure 5.16: DET curve for FERET dataset of pre-hash with angular distance .

As we expect for this dataset too, using more bits for the biohash, the performance of

the deep network gets better as compared to the PCA based one.
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Figure 5.17: DET curve for FERET dataset, hash vector of length 128.
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DET curves of binary hash vector of length: 256
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Figure 5.18: DET curve for FERET dataset, hash vector of length 256.
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Figure 5.19: DET curve for FERET dataset, hash vector of length 512.
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DET curves of binary hash vector of length: 1024
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Figure 5.20: DET curve for FERET dataset, hash vector of length 1024.
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Figure 5.21: DET curve for FERET dataset, hash vector of length 2048.
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5.3.3 CMU dataset

Figure 5.22 shows some samples of this dataset.

Some images from the training set
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Figure 5.22: Some samples of CMU dataset.

The plot of Detection Error Trade-off (DET) curve of PCA pre-hash vectors in compar-

ison with pre-hash vectors obtained from deep learning method is shown in Figure5.23.
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Figure 5.23: DET curve for cmu dataset of pre-hash with angular distance .

Figure 5.24 shows changing of EER for validation set and Energy (mean of the energy

for the batches.) in each epoch.
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Figure 5.24: Changing of Energy and EER through learning over validation set of
CMU dataset.

DET curves for hash vectors of length 128, 256, 512, 1024 and 2048 are provided in

Figures: 5.25 ,5.26,5.27,5.28 and 5.29 respectively.

Here again, using more bits for the biohash, the performance of the deep network gets

better as compared to the PCA based one.
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Figure 5.25: DET curve for CMU dataset, hash vector of length 128.
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DET curves of binary hash vector of length: 256
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Figure 5.26: DET curve for CMU dataset, hash vector of length 256.
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DET curves of binary hash vector of length: 512
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Figure 5.27: DET curve for CMU dataset, hash vector of length 512.
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DET curves of binary hash vector of length: 1024
  EER train deep : 0.11022 EER test deep : 0.071642

 EER train PCA : 0.13399 EER test PCA : 0.12275
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Figure 5.28: DET curve for CMU dataset, hash vector of length 1024.

  1     2     5     10    20    40    60    80    90  
  1   

  2   

  5   

  10  

  20  

  40  

  60  

  80  

  90  

False Alarm probability (in %)

M
is

s 
pr

ob
ab

ili
ty

 (
in

 %
)
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Figure 5.29: DET curve for CMU dataset, hash vector of length 2048.
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5.3.4 M2VTS dataset

Figure 5.30 shows some some samples of this dataset.

Our method on this dataset is not as good as the results on previous datasets, although

our purposed method still outperforms PCA based method on this dataset too. The

reason may lay on visual similarity between the subjects.

Some images from the training set
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Figure 5.30: Some samples of M2VTS dataset.

Figure 5.31 shows changing of EER for validation set and Energy (mean of the energy

for the batches) in each epoch. The plot of Detection Error Trade-off (DET) curve of

PCA pre-hash vectors in comparison with pre-hash vectors obtained from deep learn-

ing method. According to theorem 4.1 using Angular distance give better measure to

compare deep-learning-based and pca-based method 5.32.

Here again, using more bits for the biohash, the performance of the deep network gets

better as compared to the PCA based one.

The EER of different subsets of dataset in this experiment have larger value compared

to the previous datasets obtained by our purposed method, The reason for that may lay

in small number of images for each subject and comparably large number of subjects.

Different Hash vector length can be achieved by changing the dimension of the random

projection matrix R. Here we have DET curves for hash vectors of length 128, 256, 512,

1024 and 2048 are provided in Figures: 5.33 ,5.34,5.35,5.36 and 5.37 respectively.
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Figure 5.31: Changing of Energy and EER through learning over validation set of
M2VTS dataset.
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Figure 5.32: DET curve for M2VTS dataset of pre-hash with angular distance .
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DET curves of binary hash vector of length: 128
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Figure 5.33: DET curve for M2VTS dataset, hash vector of length 128.
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DET curves of binary hash vector of length: 256
  EER train deep : 0.16197 EER test deep : 0.16632
 EER train PCA : 0.14466 EER test PCA : 0.14777
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Figure 5.34: DET curve for M2VTS dataset, hash vector of length 256.
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DET curves of binary hash vector of length: 512
  EER train deep : 0.10317 EER test deep : 0.16701

 EER train PCA : 0.14628 EER test PCA : 0.1299
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Figure 5.35: DET curve for M2VTS dataset, hash vector of length 512.
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DET curves of binary hash vector of length: 1024
  EER train deep : 0.11762 EER test deep : 0.1989
 EER train PCA : 0.13999 EER test PCA : 0.13196
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Figure 5.36: DET curve for M2VTS dataset, hash vector of length 1024.
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DET curves of binary hash vector of length: 2048
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Figure 5.37: DET curve for M2VTS dataset, hash vector of length 2048.
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5.4 Discussion

In this section, we discuss various parameters for Siamese neural network learning and

their affects on the performance of the system. Since our models deals with several

millions of parameter to work well, training procedure is quite important.

5.4.1 Number of Epochs

One interesting phenomena we witnessed in this research was the effect of number of

epochs on performance of the network. We saw that the networks performance decrease

by increasing number of epoch and training time. There is a discussion in [50] under

the label Early stopping which claims that :

“Early stopping can be seen as restricting the optimization procedure to a relatively

small volume of parameter space that corresponds to a local basin of attraction of the

supervised cost function, by constraining the optimization procedure to a region of the

parameter space that is close to the initial configuration of parameters.”

The effect of different number of iteration for training the network on loss and perfor-

mance (EER)of the network in one experiment using AT&T dataset 5.38 confirms the

claim above.

Here the loss values are obtained over training data and EER is computed on validation

set. In order to find the best point stop, we halt the algorithm whenever EER value

starts to increase.
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Figure 5.38: Effect of number of iteration on EER and loss.
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5.4.2 Effect of the parameter α

In section 4.3.2 we discussed about the properties of the energy function. One of the

properties obtained in [38] and [36] empirically is that there should be a bound for

moving apart dissimilar pairs, i.e. if a dissimilar pair mapped to vectors are farther

than a fixed threshold (called α) then it is necessary to penalize the network for this

particular pair. Figure 5.39 show effect of different values for α EER of the network on

test set and both train and test set.

The experiment results suggest that larger bounds, (α) will improve the performance of

the system which may be expected, since when using smaller values of α the algorithm

will stop updating its weights as soon as images belonging to different subjects map to

vectors farther than α, which increases the possibility of error.
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Figure 5.39: Effect of of α on EER on test and train set.

5.4.3 Effect of Batch size

As we said before in Section 3.2, mini-batch stochastic gradient method benefits from

speed of calculation relative to the full batch method and also higher accuracy com-

pared to the stochastic gradient method. We can think about batch stochastic gradient

method with a fixed batch-size as a point on a spectrum with extremes on full gradient

(offline method) and stochastic gradient (each batch only have one data point). In our

experiments using smaller batches in training improves the performance of the network

5.40.
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Figure 5.40: Effect of Batch size on EER and Energy.

5.4.4 Pretraining effect

Here are the results of three different methods for pretraining of the neural net, Random

initialization, PCA coefficient for the first layer and initialized using stacked autoen-

coder. In contrary to some other machine learning task pretraining does not improves

the performance of the networks and surprisingly randomly initialized net show better

results.

This experiment is conducted over AT&T dataset. Here we had a 5-layer neural network

of [300,100,40,100,256] unit in each layer respectively For all experiments the training

stops after 10 iterations. The results are shown in Figures 5.41, 5.42.
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Figure 5.41: Energy and EER for randomly initialized, with PCA coefficients and
deep auto encoder.
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Figure 5.42: EER for randomly initilized, with PCA coefficients and deep auto en-
coder.
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5.4.5 Importance of specialized loss using the angular distance

According to Theorem 4.1 angular distance approximates the Hamming distance after

quantization properly, so we expect that the hash vectors obtained from networks with

angular distance-base objective function outperform hash codes obtained with the same

structure but objective function of different metric like in this experiment Euclidean

distance.

This experiment is conducted over AT&T dataset. Here we had a 4-layer neural network

of [1000,400,100,256] unit in each layer respectively. 5.43, 5.44,5.45 and 5.46
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Figure 5.43: DET curves for pre-hash codes obtained from networks trying to decrease
Euclidean distance versus angular distance.

As we expect, DET curves after applying binarization follows the result for pre-hash

data.



Experiments and Results 58

  1     2     5     10    20    40    60    80    90  
  1   

  2   

  5   

  10  

  20  

  40  

  60  

  80  

  90  

False Alarm probability (in %)

M
is

s 
pr

ob
ab

ili
ty

 (
in

 %
)

DET curves of binary hash vector of length: 1024
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Figure 5.44: DET curves for Hash codes of length 1024 obtained from networks trying
to decrease Euclidean distance versus angular distance.
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DET curves of binary hash vector of length: 2048
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Figure 5.45: DET curves for Hash codes of length 2048 obtained from networks trying
to decrease Euclidean distance versus angular distance.
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Figure 5.46: Energy and EER for networks trying to decrease Euclidean distance and
angular distance on validation set of AT&T dataset.



Chapter 6

Conclusion and summary

Our experiments and results suggests that Siamese neural networks can lead to good

results on biometric hashing and for face images with proper setting and training can

outperform an existing method such as PCA based method. The manifold learned by

Siamese model can learn invariances in complex classes and exclude dissimilar samples

even in a complex case like face images.

Choosing a good metric can improve the result dramatically. In this case angular distance

improves the results.

Since our model potentially has huge number of elements, regularization plays important

role in training. In our special case, it seems that the error surface is highly nonlinear

with lots of local minima(based on the results by trying to escape shallow local minima

we may be trapped in even shallower local minima.). Early stopping can help improve

the results, we can guess the number of required iteration by cross-validation.

Good initialization is another vital parameter. Despite the popularity of autoencoder

initialization in some pattern recognition tasks, this initialization does not improve the

result in this case and random initialization leads to better results.

6.1 Future work

The system we introduced here for biometric hashing can be also used for different

biometric data, like voice, signature, etc.. These areas could be explored in future

60
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research.

Another important challenge in this area of research is to find better energy functions

for purposes like the ones we had in this project.
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