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Abstract

Visual sensor networks (VSNs) form a new research area that merges computer vision

and sensor networks. VSNs consist of small visual sensor nodes called camera nodes,

which integrate an image sensor, an embedded processor, and a wireless transceiver.

Having multiple cameras in a wireless network poses unique and challenging problems

that do not exist either in computer vision or in sensor networks. Due to the resource

constraints of the camera nodes, such as battery power and bandwidth, it is crucial

to perform data processing and collaboration efficiently.

This thesis presents a number of sparse-representation based methods to be used

in the context of surveillance tasks in VSNs. Performing surveillance tasks, such

as tracking, recognition, etc., in a communication-constrained VSN environment is

extremely challenging. Compressed sensing is a technique for acquiring and recon-

structing a signal from small amount of measurements utilizing the prior knowledge

that the signal has a sparse representation in a proper space. The ability of sparse

representation tools to reconstruct signals from small amount of observations fits
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well with the limitations in VSNs for processing, communication, and collaboration.

Hence, this thesis presents novel sparsity-driven methods that can be used in action

recognition and human tracking applications in VSNs.

A sparsity-driven action recognition method is proposed by casting the classifica-

tion problem as an optimization problem. We solve the optimization problem by

enforcing sparsity through l1 regularization and perform action recognition. We have

demonstrated the superiority of our method when observations are low-resolution,

occluded, and noisy. To the best of our knowledge, this is the first action recognition

method that uses sparse representation. In addition, we have proposed an adaptation

of this method for VSN resource constraints. We have also performed an analysis of

the role of sparsity in classification for two different action recognition problems.

We have proposed a feature compression framework for human tracking applications

in visual sensor networks. In this framework, we perform decentralized tracking: each

camera extracts useful features from the images it has observed and sends them to a

fusion node which collects the multi-view image features and performs tracking. In

tracking, extracting features usually results a likelihood function. To reduce com-

munication in the network, we compress the likelihoods by first splitting them into

blocks, and then transforming each block to a proper domain and taking only the

most significant coefficients in this representation. To the best of our knowledge,

compression of features computed in the context of tracking in a VSN has not been

proposed in previous works. We have applied our method for indoor and outdoor

tracking scenarios. Experimental results show that our approach can save up to 99.6%

of the bandwidth compared to centralized approaches that compress raw images to

v



decrease the communication. We have also shown that our approach outperforms

existing decentralized approaches.

Furthermore, we have extended this tracking framework and proposed a sparsity-

driven approach for human tracking in VSNs. We have designed special overcomplete

dictionaries that exploit the specific known geometry of the measurement scenario

and used these dictionaries for sparse representation of likelihoods. By obtaining

dictionaries that match the structure of the likelihood functions, we can represent

likelihoods with few coefficients, and thereby decrease the communication in the net-

work. This is the first method in the literature that uses sparse representation to

compress likelihood functions and applies this idea for VSNs. We have tested our

approach for indoor and outdoor tracking scenarios and demonstrated that our ap-

proach can achieve bandwidth reduction better than our feature compression frame-

work. We have also presented that our approach outperforms existing decentralized

and distributed approaches.
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Serhan Coşar
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Tez Danışmanı: Doç. Dr. Müjdat Çetin

Anahtar Sözcükler: Görsel algılayıcı ağları, kamera ağları, seyrek temsil, insan
takibi, olabilirlik fonksiyonlarının sıkıştırılması, hareket tanıma

Özet

Görsel algılayıcı ağları (GAAlar), görüntü işleme ve algılayıcı ağları konularını birleş-

tiren yeni bir araştırma alanıdır. GAAlar, bir imge algılayıcı, bir gömülü işlemci ve

bir kablosuz alıcı/vericiden oluşan kamera düğümleri denilen küçük görsel algılayıcı

düğümlerinden oluşmaktadır. Bir kablosuz ağda birden fazla kameranın bulunması,

görüntü işlemede ya da algılayıcı ağlarında olmayan, kendine has ve zor problem-

ler yaratmaktadır. Kamera düğümlerindeki pil gücü ve bantgenişliği gibi kaynak

kısıtları nedeniyle, veri işlemenin ve kameralar arasındaki işbirliğinin verimli bir

şekilde yapılması çok önemlidir.

Bu tezde, GAAlarda gözetleme işlerinde kullanılmak üzere seyrek-temsil tabanlı yön-

temler anlatılmaktadır. Haberleşmenin kısıtlı olduğu GAA ortamında, hedef takibi,

tanıma, vb. gözetleme işleri yapmak son derece zordur. Sıkıştırılmış algılama, bir

işaretin uygun bir uzayda seyrek temsili olduğu ön bilgisine kullanarak çok az sayıdaki

gözlem verisinden işareti geri çatmak için kullanılan bir tekniktir. Seyrek temsil
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araçlarının az sayıdaki gözlem verisinden işaretleri geri çatma özelliği, GAAlarda

işleme, haberleşme ve işbirliği yaparken ortaya çıkan sınırlamalara çok uygundur.

Dolayısıyla, bu tez GAAlardaki hareket tanıma ve insan takibi uygulamarında kul-

lanılabilecek yeni seyreklik-güdümlü yöntemler sunmaktadır.

İlk olarak, sınıflandırma problemini bir optimizasyon problemine çeviren seyreklik-

güdümlü bir hareket tanıma yöntemi önerilmiştir. Optimizasyon problemi l1 düzenleş-

tiricisi ile seyreklik zorlayarak çözülmekte ve hareket tanıma gerçekleştirilmektedir.

Yöntemimizin üstünlüğü gözlem verilerinin düşük-çözünürlükte, engellenmiş ve gürül-

tülü olduğu durumlarda gösterilmiştir. Bildiğimiz kadarıyla, bu yöntem seyrek tem-

sil kullanan ilk hareket tanıma yöntemidir. Ek olarak, bu yöntem GAA kaynak

kısıtlarına uygun bir hale de dönüştürülmüştür. Ayrıca, iki farklı hareket tanıma

problemi kullanılarak seyrekliğin sınıflandırmadaki etkisi incelenmiştir.

İkinci olarak, görsel algılayıcı ağlarındaki insan takibi uygulamaları için bir öznitelik

sıkıştırma yöntemi önerilmiştir. Bu yöntemde, merkezi olmayan takip işlemi gerçekleş-

tirilmiştir: her kamera kendi elde ettiği imgelerden önemli öznitelikleri çıkartır ve

onları, çok-görüşlü imge özniteliklerini toplayan ve takibi gerçekleştiren bir füzyon

düğümüne gönderir. Takip işleminde, öznitelik çıkartmak genelde bir olabilirlik

fonksiyonu yaratmaktadır. Ağdaki haberleşmeyi azaltmak için, bu fonksiyonlar, önce

bloklara ayırılarak, her blok uygun bir uzaya dönüştürülerek ve bu temsildeki sadece

en önemli katsayıları alınarak, sıkıştırılmaktadır. Bildiğimiz kadarıyla, GAAlar-

daki takip uygulamalarında elde edilen özniteliklerin sıkıştırılması daha önce hiç

önerilmemiştir. Yöntemimiz, iç mekan ve dış mekan takip senaryolarında uygu-

lanmıştır. Deneysel sonuçlar göstermektedir ki, yöntemimiz haberleşmeyi azaltmak
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için imgeleri sıkıştıran merkezi yöntemlere kıyasla bantgenişliğinin %99.6’sını kazandı-

rabilmektedir. Ayrıca, yöntemimizin varolan merkezi olmayan yöntemlerden daha iyi

çalıştığı da gösterilmiştir.

Son olarak, yukarıdaki takip yöntemi geliştirilmiş ve GAAlarda insan takibi için

seyreklilik-güdümlü bir yöntem önerilmiştir. Gözlem senaryosundaki belirgin ge-

ometriden yararlanan özel sözlükler tasarlanmış ve bu sözlükler olabilirlik fonksiyon-

larının seyrek temsilinde kullanılmıştır. Olabilirlik fonksiyonlarının yapısına uyumlu

sözlükler elde ederek, fonksiyonlar çok az sayıda katsayı ile temsil edebilmekte, böylece

ağdaki haberleşme azaltılabilmektedir. Bu yöntem seyrek temsil kullanarak ola-

bilirlik fonksiyonlarını sıkıştıran ve GAAlarda bu fikri uygulayan literatürdeki ilk

yöntemdir. Yöntemimiz iç mekan ve dış mekan takip senaryolarında test edilmiştir ve

yöntemimizin öznitelik sıkıştırma yöntemimizden daha çok bantgenişliği kazandırdığı

gösterilmiştir. Ayrıca, yöntemimizin var olan merkezi olmayan ve dağıtık yöntemlerden

da daha iyi çalıştığı gösterilmiştir.
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1 INTRODUCTION

The word system has a long history which can be traced back to Plato, Aristotle,

and Euclid. It had meant “total“, “crowd”, or ”union“. In modern times, in nat-

ural sciences and information technology, we basically define a system as a set of

components forming an integrated whole that has inputs, outputs, and a processor.

As in the first use of the term in natural sciences by the French physicist Nicolas

Lonard Sadi Carnot in 19th century for thermodynamic systems, a system is built

by integrating the components physically. With the advances in telecommunication

technology, physical integration of components become unnecessary. Now, we are in

an era in which the robotic rover Curiosity in Mars, that takes commands (inputs)

from Earth and sends its observations (outputs) back, can be defined as a system.

This telecommunication breakthrough together with the advances in microelectrome-

chanical technology has resulted in the production of autonomous systems that can

monitor physical or environmental conditions, such as temperature, sound, pressure,

etc., cooperatively process the data and transmit extracted information to remote

locations. These systems are called wireless sensor networks. More recently, the

availability of inexpensive hardware such as CMOS cameras that are able to capture

visual data from the environment has supported the development of Visual Sensor

Networks (VSNs), i.e., networks of wirelessly interconnected devices that acquire
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video data. This new technology provides a number of potential applications, rang-

ing from security to monitoring, and 3D modeling to telepresence.

In the past two decades, the increase of theft, organized crime and terrorist attacks

has created the need for new security systems that use surveillance cameras. A huge

number of cameras have been installed, and are still being installed, in the streets of

big cities. Even in a small grocery store, there are a number of security cameras to

prevent theft. Mostly, the cameras are installed on networks in which surveillance

cameras act as independent peers that continuously send video streams to a central

processing server, where the video is analyzed by a human operator and recorded.

But, as the number of cameras increases video analysis becomes a challenge. Al-

though this vast number of cameras are usually installed in wired networks, with

the availability of tiny small smart cameras such as Google Glass, the community

will switch to VSNs and we will benefit from lots of potential applications that will

come in to the stage with VSNs. For the wired camera networks, maintenance is

very hard and the non-flexible system does not allow changing the locations of the

cameras. Together with wireless mobility, VSNs bring out new security applications

that are portable and easily deployable. For instance, it is possible to setup flexible

and mobile autonomous surveillance systems for monitoring and securing concerts,

demonstrations, etc. Such systems can also provide an important support for special

operations of police forces and surveillance of borders. An important application of

VSNs is swarm robotics. In applications that involve multiple mobile robots, such as

humanoids, unmanned aerial vehicles (UAVs) and autonomous underwater vehicles

(AUVs), it is crucial to perform tasks in a collaborative manner. Since a network of

mobile robots resembles visual sensor networks, the technologies developed for VSNs
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can potentially be used for swarm robotics.

Visual sensor networks are capable of local image processing and data communi-

cation. Different from traditional camera-based surveillance networks where cameras

simply stream their image data to a centralized server for processing, cameras in

VSNs form a distributed system, performing information extraction and collabo-

rating on application-specific tasks. Due to the resource constraints of the camera

nodes such as restricted computation capacity, remaining battery power, and avail-

able bandwidth, VSNs usually need to limit the amount of data being exchanged

among the camera nodes and the complexity of algorithms running on the camera

nodes. Thus, performing surveillance tasks, such as tracking, recognition, etc., in a

communication-constrained VSN environment is extremely challenging.

Parsimony has a rich history as a guiding principle for inference [11]. One of its

most celebrated examples, the principle of minimum description length in model se-

lection, enables choosing a limited subset of features or models from the training

data, rather than directly using the data for representing or classifying an input sig-

nal. In statistical signal processing, over the last ten years, the idea of searching for

parsimony led to an alternative sampling/sensing theory, called “compressed sensing”

and ”sparse representation”, makes it possible to recover signals, images, and other

data from small amount of observations. This thesis aims at developing algorithms

for action recognition and human tracking in VSNs by using the ideas of compressed

sensing and sparse representation.
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1.1 Problem Definition and State-of-the-art

Using a camera in a wireless network leads to unique and challenging problems that

are more complex than the traditional multi-camera video analysis systems and wire-

less sensor networks might have. In wireless sensor networks, most sensors provide

measurements of temporal signals that represent physical quantities such as temper-

ature. On the other hand, in VSNs, at each time instant image sensors provide a

2D set of data points, which we see as an image. This richer information content

increases the complexity of data processing and analysis. The requirements of re-

sources such as energy and bandwidth forms one of the main problems.

In this thesis, we focus on problems caused by the communication constraint for

action recognition and human tracking applications in VSNs. In most of the multi-

camera systems, a centralized approach, in which the raw data acquired by cameras

are compressed, collected in a central unit and analyzed to perform the task of in-

terest, is followed. With a data compression perspective, the common approach is

to compress images in the process of transmitting them to the central unit. In this

strategy, the main aim is on low-level communication. The communication load is

decreased by compressing the raw data without considering the final inference goal

based on the information content of the data. Compressing images will affect the

quality of the images and using compressed images may decrease the performance of

further inference tasks. Thus, for performing complex tasks, such as tracking, recog-

nition, etc., this strategy is not appropriate.

To minimize the amount of data to be communicated, in some methods simple fea-
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tures are used for communication. For instance, 2D trajectories are used in [12]. In

[13], 3D trajectories together with color histograms are used. Hue histograms along

with 2D position are used in [14]. Moreover, there are decentralized approaches in

which cameras are grouped into clusters and tracking is performed by local cluster

fusion nodes using the features extracted by the cameras in the cluster. This kind of

approaches have been applied to the multi-camera target tracking problem in various

ways [15, 7, 16]. To further increase scalability and to reduce communication costs,

there are distributed methods that perform processing and analysis in all cameras in

a distributed fashion, without local fusion centers. Each camera performs estimation

locally and transmits to its neighbors. The received estimates are used to refine the

next-camera estimates, and these refined estimates are then transmitted to the next

neighbor [9, 17].

Previous works proposed for VSNs have some handicaps. The methods in [12, 13, 14]

that use simpler features may be capable of decreasing the communication, but they

are not capable of maintaining robustness. In order to adapt to bandwidth con-

straints, these methods choose to change the features from complex and robust to

simpler but not so effective ones. For instance, since color information extracted by

each camera depends on the lightning conditions and image sensor, there may be

variability for the color of the same person at each camera view. Thus, color his-

tograms are not robust features. Using color histograms may fail association of the

information coming from cameras. As in [15, 7, 16], performing local processing and

collecting features to the fusion node may not satisfy the bandwidth requirements

in a communication-constrained VSN environment. In particular, depending on the

size of image features and the number of cameras in the network, even collecting
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features to the fusion node may become expensive for the network. In such cases,

further approximations on features are necessary. An efficient approach that reduces

the bandwidth requirements without significantly decreasing the quality of image fea-

tures is needed. A disadvantage of distributed methods in [9, 17] is that the inference

is drawn in a distributed fashion. In order to use such algorithms in a VSN environ-

ment, we need to implement existing centralized trackers in a distributed way. To do

that, we have to change each step from feature extraction to final inference, which is

not a straight-forward task and which can affect the performance of the tracker.

In this thesis, we propose different strategies that are better matched to the final

inference goals, that, in the context of this thesis, are action recognition and track-

ing.

1.2 Contributions

The main goal of this thesis is to propose novel sparsity-driven methods to solve com-

munication constraint problems for action recognition and human tracking systems

in VSNs. We have made three distinct contributions:

• A sparse representation based action recognition method

• A feature compression framework for human tracking

• A sparse representation framework for human tracking

For the action recognition problem, based on the assumption that a test sample can

be written as a linear combination of training samples from the class it belongs, we
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cast the classification problem as an optimization problem and solve it by enforc-

ing sparsity through l1 regularization. In addition, we have proposed an approach

to adapt this method for VSN resource constraints. In recent studies, the role of

sparsity in classification has been questioned and it has been argued that l1-norm

constraint may not be necessary [18, 19]. Following these studies, we have also ana-

lyzed the role of sparsity in classification for two different action recognition problems.

A feature compression framework is proposed to overcome communication problems

of human tracking systems in visual sensor networks. In this framework, tracking

is performed in a decentralized way: each camera extracts useful features from the

images it has observed and sends them to a fusion node which collects the multi-view

image features and performs tracking. In tracking, extracting features usually results

in a likelihood function. Instead of sending the likelihood functions themselves to the

fusion node, we compress the likelihoods by first splitting them into blocks, and then

transforming each block to a proper domain and taking only the most significant

coefficients in this representation. By sending the most significant coefficients to the

fusion node, we decrease the communication in the network.

As an extension of this framework, we have proposed a sparsity-driven approach

for human tracking applications. We have designed special overcomplete dictionaries

that are matched to the structure of the likelihood functions and used these dic-

tionaries for sparse representation of likelihoods. In particular our dictionaries are

designed by exploiting the specific known geometry of the measurement scenario and

by focusing on the problem of human tracking. Each element in the dictionary for

each camera corresponds to the likelihood that would result from a single human at a
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particular location in the scene. Hence, by using these dictionaries, we can represent

likelihoods with few coefficients, and thereby decrease the communication between

cameras and fusion nodes.

The tracking frameworks fit well to the needs of the VSN environment in two as-

pects: i) the processing capabilities of cameras in the network are utilized by extract-

ing image features at the camera-level, ii) using only the most significant coefficients,

obtained either from block-based compression scheme or sparse representation of

likelihoods, in network communication saves energy and bandwidth resources. We

have achieved a goal-directed compression scheme for the tracking problem in VSNs

by performing local processing at the nodes and compressing the resulting likelihood

functions which are related to the tracking goal, rather than compressing raw images.

Another advantage of these frameworks is that they are generic frameworks that

do not require the use of a specific tracking method. Usually in tracking, a likelihood

function is obtained in order to perform estimation. Thus, our frameworks can work

together with any kind of probabilistic tracking algorithm. Without making signif-

icant changes on existing tracking methods, which may degrade the performance,

existing methods can be used within our frameworks in VSN environments.

1.3 Outline

In Chapter 2, we provide some technical background about topics on which the thesis

is based. Chapter 3 presents our novel multi-camera action recognition method that is

based on sparse representation. A feature compression framework that is applied for
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likelihood functions is described in Chapter 4. In Chapter 5, we extend this feature

compression framework and describe our sparse representation based framework for

tracking. Finally, in Chapter 6 we draw conclusions and talk about ideas for future

directions.
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2 BACKGROUND

In this chapter, topics that provide a basis for this thesis are reviewed. In the first

section, the theory of compressed sensing and sparse representation is described and

some examples for applications on computer vision problems are discussed. In the

second section, the new field of visual sensor networks is introduced and the problems

of setting up a surveillance system in visual sensor networks are described in detail.

2.1 Sparse Representation and Compressed Sens-

ing

2.1.1 Overview

The Shannon/Nyquist sampling theory, which states that the number of samples re-

quired to capture a signal must be at least twice the maximum frequency present in

the signal, is one of the central principles of signal processing. However, it is well

known that the Nyquist rate is a sufficient, but not a necessary, condition. Over the

last ten years, an alternative sampling/sensing theory, known as “compressed sens-

ing”, has been proposed to recover signals, images, and other data from what appear

to be undersampled observations [20].
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Two important observations are at the heart of this new approach. The first is

that the Shannon/Nyquist signal representation uses only minimal prior knowledge

about the signal being sampled, i.e. its bandwidth. However, most signals we are

interested in are structured and depend upon a smaller number of degrees of freedom

than the bandwidth suggests. In other words, most signals of interest are sparse or

compressible in the sense that they can be encoded with just a few numbers without

much numerical or perceptual loss. The second observation is that the useful infor-

mation in compressible signals can be captured via sampling or sensing protocols that

directly condense signals into a small amount of data. A surprise is that many such

sensing protocols do nothing more than linearly correlate the signal with a fixed set of

signal-independent waveforms. These waveforms, however, need to be “incoherent”

with the family of waveforms in which the signal is compressible. One then typically

uses numerical optimization to reconstruct the signal from the linear measurements.

Although parsimony is a long lasting phenomenon in philosophy, it also has a rich

history in statistical inference. It is used as a principle for choosing a limited subset

of features or models from the training data, rather than directly using the data for

representing or classifying an input signal [11]. In the statistical signal processing

community, starting from the linear transforms, such as Fourier, DCT, to non-linear

transfoms such as, STFT, Gabor, Wavelets, we have searched for compaction which

will later be replaced with sparsity. More recently, searching for parsimony corre-

sponds to the algorithmic problem of computing sparse linear representations with

respect to an overcomplete dictionary of base elements or signal atoms. Since, it is

known that natural images can be sparsely represented in wavelet domain [21], sparse

representation (SR) of signals became a very popular field.
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As it is expressed above, compressed sensing (CS) is a technique for acquiring and

reconstructing a signal from small amount of measurements utilizing the prior knowl-

edge that the signal has a sparse representation in a proper space. To make this pos-

sible, CS relies on two principles: sparsity, which is related to the signals of interest,

and incoherence, which is about the sensing modality. Sparsity expresses the idea

that the “information rate“ of a continuous time signal may be much smaller than

suggested by its bandwidth, or that a discrete-time signal depends on a number of

degrees of freedom which is comparably much smaller than its (finite) length. More

precisely, CS exploits the fact that many natural signals are sparse or compressible in

the sense that they have concise representations when expressed in the proper basis.

Incoherence extends the duality between time and frequency and expresses the idea

that signals having a sparse representation in the proper basis must be spread out in

the domain in which they are acquired, just as a Dirac or a spike in the time domain

is spread out in the frequency domain. In other words, incoherence says that unlike

the signal of interest, the sampling/sensing waveforms have an extremely dense rep-

resentation in the proper basis. Further, there is a way to use numerical optimization

to reconstruct the full-length signal from the small amount of collected data.

Following the technical aspects above, CS and SR have become important signal

recovery techniques because of their success for acquiring, representing, and com-

pressing high-dimensional signals in various application areas [2, 22, 23, 24]. This

success is mainly due to the fact that important classes of signals such as audio and

images have naturally sparse representations with respect to fixed bases (i.e., Fourier,

wavelet). In addition, efficient and effective algorithms based on convex optimization
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or greedy pursuit are available for computing such representations [25]. In the past

few years, variations and extensions of l1 minimization have been applied to many vi-

sion tasks, including face recognition [11], denoising and inpainting [22], background

modeling [26], and image classification [27]. In almost all of these applications, using

sparsity as a prior leads to state-of-the-art results [3].

Consider a signal f which is obtained by linear functionals recording the values:

bk = 〈f, φk〉, k = 1, ...,m. (2.1)

That is, we simply correlate the object we wish to acquire with the waveforms φk.

This is a standard setup. If the sensing waveforms are Dirac delta functions, for

example, then b is a vector of sampled values of f in the time or space domain. If

the sensing waveforms are sinusoids, then b is a vector of Fourier coefficients. We

are interested in undersampled situations in which the number m of available mea-

surements is much smaller than the dimension (n) of the signal f . For a variety of

reasons, this is a common case in most of the problems. For instance, the number

of sensors may be limited or the measurements may be extremely expensive as in

certain imaging processes. As one would need to solve an underdetermined linear

system of equations, recovering the signal f looks rather a difficult task. Letting Φ

denote the m × n sensing matrix with the vectors φ1, · · · , φm as rows, the process

of recovering f ∈ Rn from b = Φf ∈ Rm is ill-posed in general when m < n: there

are infinitely many candidate signals f̃ for which Φf̃ = b. But one could perhaps

imagine a way out by relying on realistic models of signals f which naturally exist.

As we have expressed previously, many natural signals have concise representations
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when expressed in a convenient basis. Mathematically, we have a vector f ∈ Rn

which we expand in an orthonormal basis Ψ = [ψ1ψ2...ψn] as follows:

f =
n∑
i=1

xiψi, (2.2)

where x is the coefficient vector of f , xi = 〈f, ψi〉. It will be convenient to express f

as Ψx (where Ψ is the n×n matrix with ψ1 ψ2...ψn as columns). If many of the values

in the coefficient vector, xi, are close to or equal to zero, this implies the sparsity

of f . When a signal has a sparse expansion, one can discard the small coefficients

without much perceptual loss. Formally, consider fS obtained by keeping only the

terms corresponding to the S largest values of (xi) in the expansion in Eq. 2.2. By

definition, fS = ΨxS, where xS is the vector of coefficients (xi) with all but the largest

S elements set to zero. This vector is sparse in a strict sense since all but a few of its

entries are zero; we will call S–sparse to such signals with at most S nonzero entries.

Since Ψ is an orthonormal basis, we have ||f − fS||2 = ||x− xS||2, and if x is sparse

or compressible in the sense that the sorted magnitudes of the (xi) decay quickly,

then x is well approximated by xS and, therefore, the error ||f − fS||2 is small. In

simple terms, one can “throw away“ a large fraction of the coefficients without much

loss. This principle is, of course, what underlies most modern lossy coders such as

JPEG-2000 [28] and many others.

Ideally, we would like to measure all the n coefficients of f , but we only observe

a subset of these and collect the data

bk = 〈f, φk〉, k ∈ {1, ...,m}, m < n (2.3)
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With this information, we can recover the signal by first finding the sparse repre-

sentation x and then multiplying it with the basis functions, f = Ψx. By putting

l0-norm, which counts the number of nonzero entries in a vector, constraint on x we

can find the sparse representation:

min
x∈Rn
||x||0 subject to bk = 〈φk,Ψx〉, ∀k ∈ {1, · · · ,m} (2.4)

However, the problem of finding the sparsest solution of an underdetermined system

of linear equations is NP-hard. But, following the theories of CS and SR, it is shown

that if the solution x is sparse enough, the solution of the l0-minimization problem

in Eq. 2.4 is equal to the solution to the following l1-minimization problem [29] (

||x||1 =
∑

i |xi| ):

min
x∈Rn
||x||1 subject to bk = 〈φk,Ψx〉, ∀k ∈ {1, · · · ,m} (2.5)

That is, among all signals f ∗ = Ψx∗ consistent with the data, where x∗ is the solution

of the problem above, we pick that whose coefficient sequence has minimal l1 norm.

When we have noisy observations, we have the linear system of bk = 〈f, φk〉 + e,

where e is an unknown error term. In such a case, the optimization problem in Eq.

2.5 becomes as follows:

min
x∈Rn
||x||1 subject to ||b− Ax||2 ≤ ε, (2.6)

where ε bounds the amount of noise in data and the matrix A = ΦΨ ∈ Rm×n is an

overcomplete dictionary matrix, i.e. a matrix which has more columns than its rows.

The term of sparse enough above is vague. In [30], suppose the coefficients x of
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f ∈ Rn in the basis Ψ is S − sparse, it is shown that if we select

m ≥ C · µ2(Φ,Ψ) · S · log n (2.7)

measurements in random, the solution to Eq. 2.5 is exact to the solution to Eq. 2.4.

µ(Φ,Ψ) represents the coherence between the sending basis Φ and the representation

basis Ψ and defined by measuring the largest correlation between any two elements

of Φ and Ψ as

µ(Φ,Ψ) =
√
n · max

1≤k,j≤n
|〈ψk, ψj〉| (2.8)

This implies the relation between incoherence and the number of measurements re-

quired: the smaller the coherence, the fewer samples are needed.

After seeing the theoretical aspects of CS and SR, one may ask about how to solve

the optimization problem in Eq. 2.5. The algorithms to solve such problems are ex-

plained in Section 2.1.2. While forming the matrix A, we may need to go further than

wavelet transforms provide us. In Section 2.1.3, we have discussed about learning

strategies to form the matrix A that fits our requirements. Some examples on how

the CS and SR phenomenons are applied on computer vision problems are described

in Section 2.1.4.

2.1.2 Algorithms

In this section, we step to the practical aspects of CS and SR and go through the

well-known algorithms that are used to solve l1-minimization problems (For more

details, please refer to [31]). The performance analysis for these algorithms can be

found in experiments in Section 5.2.
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First, we are going to discuss a classical solution to the l1-min problem in Eq. 2.5,

called the primal-dual interior-point method. A compact version of the problem in

Eq. 2.5 is as follows:

min
x∈Rn
||x||1 subject to b = Ax (2.9)

For the sake of simplicity, assuming that the sparse solution x is nonnegative. Under

this assumption, it is easy to see that the problem can be converted to the standard

primal and dual forms in linear programming:

Primal (P) Dual (D)
minx c

Tx maxy,z b
Ty

subj. to Ax = b subj. to ATy + z = c
x ≥ 0 z ≥ 0

(2.10)

where for l1-minimization, c = ~1. The primal-dual algorithm simultaneously solves

for the primal and dual optimal solutions [32]. It was proposed in [33] that (P) can

be converted to a family of logarithmic barrier problems:

(Pµ) :
minx c

Tx− µ
∑n

i=1 log xi
subj. to Ax = b, x > 0

(2.11)

Clearly, a feasible solution x to (Pµ ) cannot have zero coefficients. Therefore, we

define the interiors of the solution domains for (P) and (D) as:

P++ = {x : Ax = b, x > 0}, (2.12)

D++ = {(y, z) : ATy + z = c, z > 0},

S++ = P++ ×D++ (2.13)

Assuming that the above sets are non-empty, it can be shown that (Pµ) has a unique

global optimal solution x(µ) for all µ > 0. As µ→ 0, x(µ) and (y(µ), z(µ)) converge
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to optimal solutions of problems (P) and (D) respectively [34, 35].

The primal-dual interior-point algorithm seeks the domain of the central trajectory

for the problems (P) and (D) in S++, where the central trajectory is defined as the

set S = (x(µ), y(µ), z(µ)) : µ > 0 of solutions to the following system of equations:

XZ~1 = µ~1, Ax = y, ATw + z = c,

x ≥ 0, z ≥ 0. (2.14)

where X and Z are square matrices with the coefficients of x and z as its diagonal,

respectively, and zero otherwise ( e.g. X = diag(x1, x2, · · · , xn) ∈ Rn×n ). The above

condition is also known as the Karush-Kuhn-Tucker (KKT) conditions for the convex

program (Pµ) [35, 36]. Hence, the update rule on the current value (x(k), y(k), z(k)) is

defined by the Newton direction (∆x,∆y,∆z), which is computed as the solution to

the following set of linear equations:

Z(k)∆x+X(k)∆z = µ̂1−X(k)z(k),

A∆x = 0,

AT∆y + ∆z = 0 (2.15)

where µ̂ is a penalty parameter that is generally different from µ in (Pµ).

Algorithm 1 summarizes a conceptual implementation of the interior-point meth-

ods 1.

1The CVX library at http://cvxr.com/cvx/ is a primal-dual interior-point solver implemented
in MATLAB.
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Algorithm 2.1: Primal-Dual Interior-Point Algorithm (PDIPA)

input : A full rank matrix A ∈ Rm×n , m < n, a vector b ∈ Rm , initialization
(x(0), y(0), z(0) ). Iteration k ← 0. Initial penalty µ and a decreasing
factor 0 < δ < n.

repeat
k ← k + 1, µ← µ(1− δ/n) ;

Solve Eq. 2.15 for (∆x,∆y,∆z) ;

x(k) ← x(k−1) + ∆x , y(k) ← y(k−1) + ∆y , z(k) ← z(k−1) + ∆z ;

until stopping criteria is satisfied.;

output: x∗ ← x(k)

Gradient Projection Methods

Gradient projection (GP) methods try to find a sparse representation x along a

certain gradient direction, which induces much faster convergence speed. In this ap-

proach, the l1-min problem (Eq. 2.6) is reformulated as a quadratic programming

(QP) problem.

The l1-min problem is equivalent to the so-called LASSO problem [37]:

min
x
||b− Ax||22 subject to ||x||1 ≤ σ, (2.16)

where σ > 0 is an appropriately chosen constant. Using the Lagrangian method, the

problem can be rewritten as an unconstrained problem:

x∗ = arg min
∞

1

2
||b− Ax||22 + λ||x||1, (2.17)

where λ is the Lagrangian multiplier.

By using truncated Newton interior-point method (TNIPM) [38] 2, the problem in

2A MATLAB Toolbox for TNIPM called L1LS is available at http://www.stanford.edu/~boyd/
l1_ls/.
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Eq. 2.17 is transformed to a quadratic problem but with inequality constraints:

min
1

2
||Ax− b||22 + λ

n∑
i=1

ui

subject to − ui ≤ xi ≤ ui, i = 1, · · · , n (2.18)

Then a logarithmic barrier for the constraints −ui ≤ xi ≤ ui can be constructed [33]:

Φ(x, u) = −
∑
i

log(ui + xi)−
∑
i

log(ui − xi) (2.19)

Over the domain of (x, u), the central path consists of the unique minimizer (x∗(t), u∗(t))

of the convex function

Ft(x, u) = t(||Ax− b||22 + λ
n∑
i=1

ui) + Φ(x, u), (2.20)

where the parameter t ∈ [0,∞).

Using PDIPA, explained above, the optimal search direction using Newton’s method

is computed by

∇2Ft(x, u) ·
[
∇x
∇u

]
= −∇Ft(x, u) ∈ R2n (2.21)

For large-scale problems, directly solving Eq. 2.21 is computationally expensive. In

[38], the search step is accelerated by a preconditioned conjugate gradients (PCG)

algorithm, where an efficient preconditioner is proposed to approximate the Hessian

of 1
2
||Ax− |b|22.
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Homotopy Methods

One of the drawbacks of the PDIPA method is that they require the solution sequence

x(µ) to be close to a “central path“ as µ→ 0, which sometimes is difficult to satisfy

and computationally expensive in practice. There is an approach called Homotopy

methods [39, 40] that can lessen these issues.

We recall that Eq. 2.6 can be written as an unconstrained convex optimization

problem:

x∗ = arg min
∞

F (x) = arg min
∞

f(x) + λg(x), (2.22)

where f(x) = 1
2
||b− Ax||22 , g(x) = ||x||1 , and λ > 0 is the Lagrange multiplier. On

one hand, with respect to a fixed λ, the optimal solution is achieved when 0 ∈ ∂F (x).

On the other hand, similar to the interior-point algorithm, if we define

χ = {x∗λ : λ ∈ [0,∞)} (2.23)

χ identifies a solution path that follows the change in λ: when λ→∞, x∗λ = 0; when

λ→ 0, x∗λ converges to the solution of Eq. 2.9.

The Homotopy methods exploit the fact that the objective function F (x) under-

goes a homotopy from the l2 constraint to the l1 objective in Eq. 2.22 as λ decreases.

One can further show that the solution path χ is piece-wise constant as a function of

λ [39, 41]. Therefore, in constructing a decreasing sequence of λ, it is only necessary

to identify those ”breakpoints” that lead to changes of the support set of x∗λ, namely,

either a new nonzero coefficient added or a previous nonzero coefficient removed.
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The algorithm operates in an iterative fashion with an initial value x(0) = 0. In

each iteration, given a nonzero λ, we solve for x satisfying ∂F (x) = 0. The first sum-

mand f in Eq. 2.22 is differentiable: ∇f = AT (Ax − y) = −c(x). The subgradient

of g(x) = ||x||1 is given by:

u(x) = ∂||x||1 =

{
u ∈ Rn :

u1 = sgn(xi), xi 6= 0
ui ∈ [−1, 1], xi = 0

}
(2.24)

Thus, the solution to ∂F (x) = 0 is also the solution to the following equation:

c(x) = AT b− ATAx = λu(x) (2.25)

By the definition in Eq. 2.24, the sparse support set at each iteration is given by

I = {i : |c(l)i | = λ} (2.26)

The algorithm then computes the update for x(k) in terms of the direction and the

magnitude separately. Specifically, the update direction on the sparse support d(k)(I)

is the solution to the following system:

ATI AId
(k)(I) = sgn(c(k)(I)) (2.27)

where AI is a submatrix of A that collects the column vectors of A with respect to I,

and c(k)(I) is a vector that contains the coefficients of c(k) with respect to I. For the

coefficients whose indices are not in I, their update directions are manually set to

zero. Along the direction indicated by d(k), there are two scenarios when an update

on x may lead to a breakpoint where the condition in Eq. 2.25 is violated. The

first scenario occurs when an element of c not in the support set would increase in

magnitude beyond λ:

γ+ = min
i/∈I

{
λ− ci

1− aTi AId(k)(I)
,

λ+ ci
1 + aTi AId

(k)(I)

}
(2.28)
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The index that achieves γ+ is denoted as i+. The second scenario occurs when an

element of c in the support set I crosses zero, violating the sign agreement:

γ− = min
i∈I
{−xi/di} (2.29)

The index that achieves γ− is denoted as i−. Hence, the homotopy algorithm marches

to the next breakpoint, and updates the sparse support set by either appending I

with i+ or removing i−:

x(k+1) = x(k) + min{γ+, γ−}d(k) (2.30)

The algorithm terminates when the relative change in x between consecutive itera-

tions is sufficiently small. Algorithm 2 summarizes an implementation of the Homo-

topy methods 3.

Algorithm 2.2: Homotopy

input : A full rank matrix A = [a1, · · · , an] ∈ Rm×n , m < n, a vector b ∈ Rm

, initial Lagrangian parameter λ = 2||AT b||∞
Initialization: k ← 0. Find the first support index:
i = arg minnj=1 ||aTj b||, I = {i} ;

repeat
k ← k + 1 ;

Solve for the update dictionary d(k) in Eq. 2.27 ;
Compute the sparse support updates in Eq. 2.28 and Eq. 2.29:
γ∗ ← min{γ+, γ−} ;

Update x(k), I, and λ← λ− γ∗.
until stopping criteria is satisfied.;

output: x∗ ← x(k)

In overall, solving Eq. 2.27 using a Cholesky factorization and the addition/removal

of the sparse support elements dominate the computation. Since one can keep track

3A MATLAB implementation can be found at http://users.ece.gatech.edu/~sasif/
homotopy/.
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of the rank-1 update of ATI AI in solving Eq. 2.27 using O(m2) operations in each

iteration, the computational complexity of the homotopy algorithm is O(km2+kmn).

It has been shown that Homotopy shares some connections with two greedy l1-min

approximations: least angle regression (LARS) [41] and polytope faces pursuit (PFP)

[42]. For instance, if the coefficient vector x has at most k non-zero components with

k � n, all three algorithms can recover it in k iterations. On the other hand, LARS

never removes indices from the sparse support set during the iteration, while Homo-

topy and PFP have mechanisms to remove coefficients from the sparse support. More

importantly, Homotopy provably solves l1-min in Eq. 2.9, while LARS and PFP are

only approximate solutions.

Iterative Shrinkage-Thresholding (IST) Methods

Although Homotopy employs a more efficient iterative update rule that only involves

operations on those submatrices of A corresponding to the support sets of x, it may

not be as efficient when the sparsity k and the observation dimension m grow pro-

portionally with the signal dimension n. In such scenarios, one can show that the

worst-case computational complexity is still bounded by O(n3). In this section, we

discuss Iterative Shrinkage-Thresholding (IST) methods [43, 44], whose implemen-

tation mainly involves simple operations such as vector algebra and matrix-vector

multiplications. This is in contrast to most past methods that all involve expensive

operations such as matrix factorization and solving linear least squares problems.

Concisely, IST considers Eq. 2.9 as a special case of the following composite ob-
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jective function:

min
x
F (x) = f(x) + λg(x), (2.31)

where f : Rn → R is a smooth and convex function, and g : Rn → R as the

regularization term is bounded from below but not necessarily smooth nor convex.

For l1-min in particular, g is also separable, that is,

g(x) =
n∑
i=1

gi(xi) (2.32)

Clearly, let f(x) = 1
2
||b − Ax||22 , g(x) = ||x||1. Then the objective function in Eq.

2.31 becomes the unconstrained basis pursuit de-noising (BPDN) problem [45].

The update rule to minimize Eq. 2.31 is computed using a second-order approxi-

mation of f [46, 47]:

x(k+1) = arg minx{f(x(k)) + (x− x(k))T∇f(x(k))

+1
2
||x− x(k)||22 · ∇2f(x(k)) + λg(x)}

= arg minx{(x− x(k))T∇f(x(k))

+α(k)

2
||x− x(k)||22 + λg(x)}

= arg minx{12 ||x− u
(k)||22 + λ

α(k) g(x)},

= Gα(k)(x(k)) (2.33)

where

u(k) = x(k) − 1

α(k)
∇f(x(k)) (2.34)

In Eq. 2.33, the Hessian ∇2f(x(k)) is approximated by a diagonal matrix α(k)I.
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If we replace g(x) in Eq. 2.33 by the l1-norm ||x||1, which is a separable function,

then Gα(k)(x(k)) has a closed-form solution with respect to each component:

x
(k+1)
i = arg minxi{

(xi−u
(k)
i )2

2
+ λ|xi|

α(k) }

= soft
(
u
(k)
i , λ

α(k)

)
, (2.35)

where

soft(u, a) = sgn(u) max{|u| − a, 0}

=

{
sgn(u)(|u| − a) if |u| > a

0 otherwise
(2.36)

is the soft-thresholding or shrinkage function [48].

There are two free parameters in Eq. 2.33, namely, the regularizing coefficient λ

and the coefficient α(k) that approximates the Hessian matrix ∇2f . Different strate-

gies for choosing these parameters have been proposed. Since αI mimics the Hessian

∇2f , we require that α(k)(x(k)− x(k−1)) ≈ ∇f(x(k))−∇f(x(k−1)) in the least-squares

sense. Hence,

α(k+1) = arg minα ||α(x(k) − x(k−1))

− ∇f(x(k))−∇f(x(k−1))||22

= (x(k)−x(k−1))T (∇f(x(k))−∇f(x(k−1))

(x(k)−x(k−1))(x(k)−x(k−1))
(2.37)

For choosing λ, instead of using a fixed value, several papers have proposed a contin-

uation strategy [44, 49], in which Eq. 2.33 is solved for a decreasing sequence of λ.
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As mentioned in Section 2.1.2, Eq. 2.33 recovers the optimal 11-min solution when

λ→ 0.

The IST algorithm is summarized in Algorithm 3 4.

Algorithm 2.3: Iterative Shrinkage-Thresholding (IST)

input : A full rank matrix A ∈ Rm×n , m < n, a vector b ∈ Rm , Lagrangian
parameter λ0, initial values for x(0) and α(0), k ← 0

Generate a reducing sequence λ0 > λ1 > · · · > λN ;

for i = 0, 1, · · · , N do
λ← λi ;

repeat
k ← k + 1 ;

x(k) ← G(x(k−1)) ;

Update α(k) using Eq. 2.37.
until The objective function F (x(k)) decreases.;

end

output: x∗ ← x(k)

Proximal Gradient (PG) Methods

PG algorithms represent another class of algorithms that solve convex optimization

problems of the form in Eq. 2.31. Assume that our cost function F (·) can be decom-

posed as the sum of two functions f and g, where f is a smooth convex function with

Lipschitz continuous gradient, and g is a continuous convex function. The principle

behind these algorithms is to iteratively form quadratic approximations Q(x, y) to

F (x) around a carefully chosen point y, and to minimize Q(x, y) rather than the

original cost function F .

4A MATLAB implementation called Sparse Reconstruction by Separable Approximation (SpaRSA)
[47] is available at http://www.lx.it.pt/~mtf/SpaRSA/.
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For our problem, we define g(x) = ||x||1 and f(x) = 1
2
||b − Ax||22. We note that

∇f(x) = AT (Ax − b) is Lipschitz continuous with Lipschitz constant Lf = ||A||2.

Define Q(x, y) as:

Q(x, y) = f(y) + 〈f(y), x− y〉+
Lf
2
||x− y||2 + λg(x) (2.38)

It can be shown that F (x) ≤ Q(x, y) for all y, and

arg min
x
Q(x, y) = arg min

x

{
λg(x) +

Lf
2
||x− u||22

}
(2.39)

where u = y− 1
Lf
∇f(y) by the same trick used in Eq. 2.33. For the 11-min problem in

Eq. 2.9, Eq. 2.39 has a closed-form solution given by the soft-thresholding function:

arg min
x
Q(x, y) = soft

(
u,

λ

Lf

)
(2.40)

However, unlike the iterative thresholding algorithm described earlier, we use a

smoothed computation of the sequence yk. It has been shown that choosing

y(k) = x(k) +
tk−1 − 1

tk

(
x(k) − x(k−1)

)
(2.41)

where {tk} is a positive real sequence satisfying t2k − tk ≤ t2k−1, achieves an acceler-

ated non-asymptotic convergence rate of O(k−2) [50, 46]. To further accelerate the

convergence of the algorithm, one can also make use of the continuation technique

described in Section 2.1.2. Finally, for large problems, it is often computationally

expensive to directly compute Lf = ||A||2. A backtracking line-search strategy [46]

can be used to generate a scalar sequence {Lk} that approximates Lf . We define

QL(x, y) = f(y) + (x− y)T∇f(y) +
L

2
||x− y||2 + λg(x) (2.42)
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Suppose that η > 1 is a pre-defined constant. Then, given y(k) at the kth iteration, we

set Lk = ηjLk−1, where j is the smallest nonnegative integer such that the following

inequality holds:

F (GLk(y
(k))) ≤ QLk(GLk(y

(k)), y(k)), (2.43)

where GL(y) = arg minxQL(x, y) = soft
(
u, λ

L

)
for u = y − 1

L
∇f(y).

The algorithm, named FISTA in [46], is summarized as Algorithm 4 5.

Algorithm 2.4: Fast Iterative Shrinkage-Threshold Algorithm (FISTA)

input : b ∈ Rm, A ∈ Rm×n

Set x(0) ← 0, x(1) ← 0, t0 ← 1, t1 ← 1, k ← 1 ;

Initialize L0, λ1, β ∈ (0, 1), λ̄ > 0 ;

while not converged do

y(k) ← x(k) + tk−1−1
tk

(x(k) − x(k−1)) ;

Update Lk using Eq. 2.43 with y(k);

u(k) ← y(k) − 1
Lk
AT (Ay(k) − b);

x(k+1) ← soft
(
u(k), λ

Lk

)
;

tk+1 ←
1+
√

4t2k+1

2
;

λk+1 ← max(βλk, λ̄) ;
k ← k + 1

end

output: x∗ ← x(k)

Augmented Lagrange Multiplier (ALM) Methods

Lagrange multiplier methods are a popular class of algorithms in convex program-

ming. The basic idea is to eliminate equality constraints and instead add a penalty

term to the cost function that assigns a very high cost to infeasible points. Augmented

5An implementation of FISTA is provided at http://www.eecs.berkeley.edu/~yang/software/
l1benchmark/index.html
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Lagrange Multiplier (ALM) methods differ from other penalty-based approaches by

simultaneously estimating the optimal solution and Lagrange multipliers in an iter-

ative fashion.

We consider the general 11-min problem in Eq. 2.9 with the optimal solution x∗.

The corresponding augmented Lagrange function is given by

Lµ(x, y) = ||x||1 + 〈y, b− Ax〉+
µ

2
||b− Ax||22 (2.44)

where µ > 0 is a constant that determines the penalty for infeasibility, and y is a

vector of Lagrange multipliers. Let y∗ be a Lagrange multiplier vector satisfying the

second-order sufficiency conditions for optimality (see [51] for more details). Then,

for sufficiently large µ, it can be shown that

x∗ = arg min
x
Lµ(x, y∗) (2.45)

The main problem with this solution is that y∗ is unknown in general. Furthermore,

the choice of µ is not straightforward from the above formulation. It is clear that to

compute x∗ by minimizing Lµ(x, y), we must choose y close to y∗ and set µ to be a

very large positive constant. The following iterative procedure has been proposed in

[51] to simultaneously compute y∗ and x∗ :

{
x(k+1) = arg minx Lµk(x, y

(k))
y(k+1) = y(k) + µk(b− Ax(k+1))

(2.46)

where {µk} is a monotonically increasing positive sequence. We note that the first

step in the above procedure is itself an unconstrained convex optimization problem.

Thus, the above iterative procedure is computationally efficient only if it is easier to
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minimize the augmented Lagrangian function compared to solving the the original

constrained optimization problem in Eq. 2.9 directly.

We focus our attention on solving the first step of Eq. 2.46 for the l1-min prob-

lem. Although it is not possible to obtain a closed-form solution, the cost function

has the same form as described in Eq. 2.31. Furthermore, the quadratic penalty

term is smooth and has a Lipschitz continuous gradient. Therefore, we can solve it

efficiently using proximal gradient methods (e.g., FISTA) described in Section 2.1.2.

The entire algorithm is summarized as Algorithm 5, where τ represents the largest

eigenvalue of the matrix ATA, and ρ > 1 is a constant.

Algorithm 2.5: Augmented Lagrange Multiplier (ALM)

input : b ∈ Rm, A ∈ Rm×n

while not converged (k = 1, 2, · · · ) do
t1 ← 1, z1 ← x(k), u(1) ← x(k) ;

while not converged (l = 1, 2, · · · ) do

u(l+1) ← soft
(
zl − 1

τ
AT
(
Azl − b− 1

µk
y(k)
)
, 1
µkτ

)
;

tl+1 ← 1
2

(
1 +

√
1 + 4t2l

)
;

zl+1 ← u(l+1) + tl−1
tl+1

(u(l+1) − u(l)) ;

end

x(k+1) ← u(l+1);

y(k+1) ← y(k) + µk(b− Ax(k+1));
µk+1 ← ρ · µk

end

output: x∗ ← x(k)

Algorithm 5 summarizes the ALM method applied to the primal problem in Eq.

2.9, which is referred to as Primal ALM (PALM). Interestingly, the principles of ALM
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can also be applied to its dual problem [52]:

max
y
bTy subject to ATy ∈ B∞1 , (2.47)

where B∞1 = {x ∈ Rn : ||x||∞ ≤ 1}. Under certain circumstances, this may result in

a more computationally efficient algorithm.

Simple computation shows that DALM solves the following problem:

min
y,x,z

−bTy − xT (z − ATy) + β
2
||z − ATy||22

subject to z ∈ B∞1 (2.48)

Here, x as the primal variable becomes the associated Lagrange multiplier in the dual

space [52]. Since it is difficult to solve the above problem simultaneously with respect

to y, x and z, we adopt a strategy by alternately updating the primal variable x and

the dual variables y and z.

On one hand, for x = x(k) and y = y(k) , the minimizer zk+1 with respect to z is

given by

zk+1 = PB∞1 (ATy(k) + x(k)/β), (2.49)

where PB∞1 represents the projection operator onto B∞1 . On the other hand, given

x = x(k) and z = zk+1, the minimization with respect to y is a least squares problem,

whose solution is given by the solution to the following equation:

βAATy = βAzk+1 − (Ax(k) − b). (2.50)

Suppose that AAT is invertible. Then, we directly use its inverse to solve Eq. 2.50.

However, for large scale problems, this matrix inversion can be computationally ex-

pensive. Therefore, in such cases, we can approximate the solution with one step of
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the Conjugate Gradient algorithm in the y direction at each iteration, as proposed

in [52].

The basic iteration of the DALM algorithm is given by 6


zk+1 = PA∞1 (ATy(k) + x(k)/β),

y(k+1) = (AAT )−1(Azk+1 − (Ax(k) − b)/β),
y(k+1) = x(k) − β(zk+1 − ATy(k+1)),

(2.51)

2.1.3 Dictionary Learning

An overcomplete dictionary that leads to sparse representations can either be chosen

as a prespecified set of functions (e.g. Wavelet tramsforms) or designed by adapting

its content to fit a given set of signal examples. Choosing a prespecified transform

matrix is appealing because it is simpler. Also, in many cases it leads to simple and

fast algorithms for the evaluation of the sparse representation. The success of such

dictionaries in applications depends on how suitable they are to sparsely describe the

signals in question.

Dictionary training is a recent approach that has been strongly influenced by the

latest advances in sparse representation theory and algorithms [53]. The aim of

learning dictionary elements is to out-perform commonly used predetermined dictio-

naries by using methods that adapt dictionaries for special classes of signals. The

most recent training methods focus on l0 and l1 sparsity measures, which lead to

simple formulations and enable the use of recently developed efficient sparse-coding

techniques [45, 43, 38, 54].

6The PALM and DALM algorithms in MATLAB can be downloaded from http://www.eecs.
berkeley.edu/~yang/software/l1benchmark/index.html.
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Starting with the work of Olshausen and Field [55], dictionary training approaches

have become a popular approach to dictionary design. The method in [55] is based

on maximizing the likelihood (ML) that a natural image, b, arises from the overcom-

plete dictionary, D, when the generative image model is considered as sparse image

decomposition into dictionary elements. Therefore, the ML method solves the opti-

mization problem D∗ = maxD P (b|D), for b = D · x. The optimization is solved in

two iterative steps: the sparse coding step, where the dictionary is kept fixed and the

sparse coefficient vector, x, that best approximates the image is found; and a dictio-

nary update step, where x is kept fixed and the dictionary is updated to maximize

the objective maximum likelihood function using gradient descent.

Method of Optimal Directions

The Method of Optimal Directions (MOD) was introduced by Engan et al. in 1999

[56], and was one of the first methods to implement what is known today as a sparsi-

fication process. Given a set of examples B = [b1b2 · · · bn], the goal of the MOD is to

find a dictionary D and a sparse matrix X which minimize the representation error,

arg min
D,X
||B −DX||2F subject to ||xi||0 ≤ T,∀i, (2.52)

where {xi} represent the columns of X, and the l0 sparsity measure || · ||0 counts

the number of non-zeros in the representation. The resulting optimization problem is

combinatorial and highly non-convex, and thus we can only hope for a local minimum

at best. Similar to other training methods, the MOD alternates sparse-coding and

dictionary update steps. The sparse-coding is performed for each signal individually

using any standard technique. For the dictionary update, 2.52 is solved via the an-

alytic solution of the quadratic problem, given by D = BX+ with X+ denoting the

34



Moore-Penrose pseudo-inverse.

The MOD typically requires only a few iterations to converge, and is overall a very

effective method. The method suffers, though, from the relatively high complexity of

the matrix inversion. Several subsequent works have thus focused on reducing this

complexity, leading to more efficient methods.

Union of Orthobases

Training a union-of-orthobases dictionary was proposed in 2005 by Lesage et al. [57]

as a means of designing a dictionary with reduced complexity and which could be

more efficiently trained. The process also represents one of the first attempts at

training a structured overcomplete dictionary –a tight frame in this case. The model

suggests training a dictionary which is the concatenation of k orthogonal bases, so

D = [D1D2 · · ·Dk] with the {Di} unitary matrices. Sparse-coding over this dic-

tionary can be performed efficiently through a Block Coordinate Relaxation (BCR)

technique [58].

A drawback of this approach is that the proposed model itself is relatively restrictive,

and in practice it does not perform as well as more flexible structures. Interestingly,

there is a close connection between this structure and the more powerful General-

ized PCA (GPCA) model, described next. The GPCA also arises from a union of

orthogonal spaces model, though it deviates from the classical sparse representation

paradigm. Identifying such relations could thus prove valuable in enabling a merge

between the two forces.
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Generalized PCA

Generalized PCA, introduced in 2005 by Vidal, Ma and Sastry [59], offers a different

and very interesting approach to overcomplete dictionary design. The GPCA view is

basically an extension of the original PCA formulation, which approximates a set of

examples by a low-dimensional subspace. In the GPCA setting, the set of examples

is modeled as the union of several low-dimensional subspaces –perhaps of unknown

number and variable dimensionality –and the algebraic-geometric GPCA algorithm

determines these subspaces and fits orthogonal bases to them.

The GPCA viewpoint differs from the sparsity model described as b = Dx, as each

example in the GPCA setting is represented using only one of the subspaces; thus,

atoms from different subspaces cannot jointly represent a signal. This property has

the advantage of limiting over-expressiveness of the dictionary, which characterizes

other overcomplete dictionaries; on the other hand, the dictionary structure may be

too restrictive for more complex natural signals.

A unique property of the GPCA is that as opposed to other training methods, it

can detect the number of atoms in the dictionary in certain settings. Unfortunately,

the algorithm may become very costly this way, especially when the amount and

dimension of the subspaces increases. Indeed, intriguing models arise by merging the

GPCA viewpoint with the classical sparse representation viewpoint: for instance, one

could easily envision a model generalizing 2.52 where several distinct dictionaries are

allowed to co-exists, and every signal is assumed to be sparse over exactly one of

these dictionaries.
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The K-SVD Algorithm

The desire to efficiently train a generic dictionary for sparse signal representation

led Aharon, Elad and Bruckstein to develop the K-SVD algorithm in 2006 [60]. The

algorithm aims at the same sparsification problem as the MOD in Eq. 2.52, and

employs a similar block-relaxation approach. The main contribution of the K-SVD

is that the dictionary update, rather than using a matrix inversion, is performed

atom-by-atom in a simple and efficient process. Further acceleration is provided by

updating both the current atom and its associated sparse coefficients simultaneously.

The result is a fast and efficient algorithm which is less demanding than the MOD.

The K-SVD algorithm takes its name from the Singular-Value-Decomposition (SVD)

process that forms the core of the atom update step, and which is repeated K times,

as the number of atoms. For a given atom k, the quadratic term in Eq. 2.52 is

rewritten as ∥∥∥∥∥B −∑
j 6=k

djx
T
j − dkxTk

∥∥∥∥∥
2

F

= ||Ek − dkxTk ||2F (2.53)

where {xTj } are the rows of X, and Ek is the residual matrix. The atom update is

obtained by minimizing 2.53 for dk and xTk via a simple rank-1 approximation of Ek .

To avoid introduction of new non-zeros in X, the update process is performed using

only the examples whose current representations use the atom dk .

In practice, the K-SVD is an effective method for representing small signal patches.

However, the K-SVD, as well as the MOD, suffer from a few common weaknesses.

The high non-convexity of the problem means that the two methods will get caught in
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local minima or even saddle points. Also, the result of the training is a non-structured

dictionary which is relatively costly to apply, and therefore these methods are suit-

able for signals of relatively small size. In turn, in recent years several parametric

dictionary training methods have begun to appear, and aim to address these issues

by importing the strengths of analytic dictionaries to the world of example-based

methods.

2.1.4 Applications in Computer Vision

In this section, we are going to introduce compressed sensing and sparse representa-

tion based methods that are applied to various problems in computer vision.

Single Pixel Camera

As we have described above, CS combines sampling and compression into a single

non-adaptive linear measurement process [61]. Rather than measuring pixel sam-

ples of the scene under view, the authors of [1] measure inner products between the

scene and a set of test functions. Interestingly, random test functions play a key

role, making each measurement a random sum of pixel values taken across the entire

image. When the scene under view is compressible by an algorithm like JPEG or

JPEG2000, the CS theory enables us to stably reconstruct an image of the scene

from fewer measurements than the number of reconstructed pixels. In this manner

they achieve sub-Nyquist image acquisition.

Following this observation, they propose ’single-pixel’ CS camera architecture that

is basically an optical computer (comprising a DMD, two lenses, a single photon

detector, and an analog-to-digital (A/D) converter) that computes random linear
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Figure 2.1: Compressed Sensing (CS) camera block diagram [1].

measurements of the scene under view (Fig. 2.1). The image is then recovered or

processed from the measurements by a digital computer. The camera design reduces

the required size, complexity, and cost of the photon detector array down to a single

unit, which enables the use of exotic detectors that would be impossible in a conven-

tional digital camera. The random CS measurements also enable a tradeoff between

space and time during image acquisition. Finally, since the camera compresses as it

images, it has the capability to efficiently and scalably handle high-dimensional data

sets from applications like video and hyperspectral imaging.

Mathematically, the single-pixel camera sequentially measures the inner products

b[m] = 〈f, φm〉 between an N -pixel sampled version f of the incident light-field from

the scene under view and a set of two-dimensional (2-D) test functions {φm} [1].

As shown in Figure 2.1, the light-field is focused by a biconvex lens onto a digital

micromirror device consisting of an array of N tiny mirrors.

Each mirror corresponds to a particular pixel in f and φm and can be independently
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Figure 2.2: (a) 256×256 conventional image, (b) Single-pixel camera reconstructed

image from M = 1300 random measurements [2].

oriented either towards the lens (corresponding to a one at that pixel in φm ) or away

from the lens (corresponding to a zero at that pixel in φm ). The reflected light is

then collected by the lens and focused onto a single photon detector (the single pixel)

that integrates the product f [n]φm[n] to compute the measurement b[m] = 〈f, φm〉

as its output voltage. This voltage is then digitized by an A/D converter. Values of

φm between zero and one can be obtained by dithering the mirrors back and forth.

To compute CS randomized measurements b = Φf as in 2.3, they set the mirror

orientations φm randomly using a pseudorandom number generator, measure b[m],

and then repeat the process M times to obtain the measurement vector b. After they

collect the measurements, they obtain the sparse representation x by solving the

problem in Eq. 2.6 and reconstruct the the image f ∗ = Ψx∗. Figure 2.2 illustrates a

target object (a black-and-white printout of an “R“) f and reconstructed image f ∗

taken by the single-pixel camera prototype in Figure 2.1 using N = 256 × 256 and

M = N/50.
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Classification via Sparse Representation

Automatic face recognition remains to be one of the most visible and challenging

application domains in vision. In this section, we will see how sparse representation

and sparse error correction can be used to achieve robust face recognition in scenarios

where well-controlled training images can be collected [11, 3]. The key idea is a wise

choice of dictionary: representing the test signal as a sparse linear combination of

the training signals themselves. We will see how this approach leads to simple and

effective algorithms for face recognition. In turn, the face recognition example reveals

new theoretical phenomena in sparse representation that may at first seem surprising.

The authors of [11] assumes that there is an access to well-aligned training images

of each subject, taken under varying illumination. For a detailed explanation of how

such images can be obtained, please see [62]. They stack the given Ni training im-

ages from the ith class as columns of a matrix: Ai = [ai,1, ai,2, · · · , ai,Ni ] ∈ Rm×Ni ,

each normalized to have unit l2-norm. One classical observation from computer vi-

sion is that images of the same face under varying illumination lie near a special

low-dimensional subspace [63], often called a face subspace. So, given a sufficiently

expressive training set Ai , a new image of subject i taken under different illumination

and also stacked as a vector b ∈ Rm can be represented as a linear combination of

the given training: b ≈ Aixi for some coefficient vector xi ∈ RNi .

The problem becomes more challenging if the identity of the test sample is initially

unknown. They define a new matrix A for the entire training set as the concatenation
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of the N =
∑

iNi training samples of all c object classes

A = [A1, A2, · · · , Ac] = [a1,1, a1,2, · · · , ak,Nk ] (2.54)

Then, the linear representation of b can be rewritten in terms of all training samples

as

b = Ax0 ∈ Rm (2.55)

where x0 = [0, · · · , 0, xTi , 0, · · · , 0] ∈ RN is a coefficient vector whose entries are all

zero except for those associated with the ith class. The special support pattern of this

coefficient vector is highly informative for recognition: ideally, it precisely identifies

the subject pictured. However, in practical face recognition scenarios, the search

for such an informative coefficient vector x0 is often complicated by the presence of

partial corruption or occlusion: gross errors affect some fraction of the image pixels.

In this case, they modify the above linear model in Eq. 2.55 as

b = b0 + e0 = Ax0 + e0 (2.56)

where e0 ∈ Rm is a vector of errors –a fraction ρ of its entries are nonzero.

Thus, face recognition in the presence of varying illumination and occlusion can

be treated as the search for a certain sparse coefficient vector x0 , in the presence of

a certain sparse error e0. The number of unknowns in Eq. 2.56 exceeds the number

of observations, and we cannot directly solve for x0. However, under mild conditions

[64], the desired solution (x0, e0) is not only sparse, but also it is the sparsest solution

to the system of Eq. 2.56

(x0, e0) = arg min ||x||0 + ||e||0 subject to b = Ax+ e (2.57)
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Figure 2.3: Overview of the face recognition approach [3].

Here, the l0-“norm“ || · ||0 counts the number of nonzeros in a vector. Originally

inspired by theoretical results on equivalence between l1 -and l0- minimizations [29,

65, 66], the authors of [11] proposed to seek this informative vector x0 by solving the

convex relaxation

min ||x||1 + ||e||1 subject to b = Ax+ e (2.58)

where ||x||1 =
∑

i |xi|. This work demonstrates empirically an interesting tendency

of the l1-minimizer: as visualized in Fig. 2.3, sparse representation separates the

identity of the face (red coefficients) from the error due to corruption or occlusion.

Once the l1-minimization problem has been solved (e.g., [45, 38]), classification (iden-

tifying the subject pictured) or validation (determining if the subject is present in the

training database) can proceed by considering how strongly the recovered coefficients

concentrate on any one subject (please refer to [11] for details). Here, we present

only a few representative results; a more thorough empirical evaluation can be found

in [11]. Fig. 2.4 (left) compares the recognition rate of this approach (labeled SRC)

with several popular methods on the Extended Yale B Database [63] under varying
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Figure 2.4: Face recognition and validataion [3].

levels of synthetic block occlusion.

Fig. 2.4 compares the sparsity-based approach outlined here with several popular

methods from the literature: the principal component analysis (PCA) approach of

[67], independent component analysis (ICA) architecture I [68], and local nonnegative

matrix factorization (LNMF) [69]. The first method provides a standard baseline of

comparison, while the latter two methods are more directly suited for occlusion, as

they produce lower dimensional feature sets that are spatially localized. Fig. 2.4

(left) also compares to the nearest subspace method [70], which makes similar use of

linear illumination models, but does not correct sparse errors.

The l1-based approach achieves the highest overall recognition rate of the methods

tested, with almost perfect recognition up to 30% occlusion and a recognition rate

above 90% with 40% occlusion. Fig. 2.4 (right) shows the validation performance of

the various methods, under 30% contiguous occlusion, plotted as a receiver operating

characteristic (ROC) curve. At this level of occlusion, the sparsity-based method is
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the only one that performs significantly better than chance. The performance under

random pixel corruption is also strong (Fig. 2.3 (bottom)), with recognition rates

above 90% even at 70% corruption.

The empirical results seem to demand a correspondingly strong theoretical justifi-

cation. However, a more thoughtful consideration reveals that the underdetermined

system of linear equation in Eq. 2.56 does not satisfy popular sufficient conditions

for guaranteeing correct sparse recovery by l1-minimization.

In face recognition, the columns of A are highly correlated: they are all images

of some face. As m becomes large (i.e., the resolution of the image becomes high),

the convex hull spanned by all face images of all subjects is only an extremely tiny

portion of the unit sphere Sm−1 . For example, the images (in 96× 84 resolution) in

Fig. 2.3 lie on S8063. The smallest inner product with their normalized mean is 0.723;

they are contained within a spherical cap of volume ≤ 1.47 × 10−229. These vectors

are tightly bundled together as a ”bouquet”, whereas the standard pixel basis ±I

with respect to which we represent the errors e forms a ”cross” in Rm , as illustrated

in Fig. 2.5. The incoherence and restricted isometry properties that are so useful in

providing performance guarantees for l1-minimization therefore do not hold for the

“cross-and-bouquet“ matrix [A I] [3]. Also, the density of the desired solution is not

uniform either: A is usually a very sparse nonnegative vector, but e could be dense

(with a fraction nonzeros close to one) and have arbitrary signs. Existing results for

recovering sparse signals suggest that l1-minimization may have difficulty in dealing

with such signals, contrary to its empirical success in face recognition.
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Figure 2.5: The ”cross-and-bouquet” model [3].

In an attempt to better understand the face recognition example outlined above, the

authors of [3] consider the more abstract problem of recovering such a nonnegative

sparse signal x0 ∈ RN from highly corrupted observations b ∈ Rm

b = Ax0 + e0 (2.59)

where e0 ∈ Rm is a vector of errors of arbitrary magnitude. The model for A ∈ Rm×N

should capture the idea that it consists of small deviations about a mean, hence a

”bouquet”. This can be modeled by assuming the columns of A are independent

identically distributed (i.i.d.) samples from a Gaussian distribution

A = [a1, a2, · · · , aN ] ∈ Rm×N , ai ∼i.i.d. N
(
µ,
ν2

m
Im

)
||µ||2 = 1, ||µ||∞ ≤ Cµm

−1/2 (2.60)

Together, the two assumptions on the mean force µ to remain incoherent with the

standard basis (or “cross”) as m→∞.

In [3], it has been proven that, as long as the bouquet is sufficiently tight, asymptot-

ically l1-minimization recovers any nonnegative sparse signal from almost any error
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with support size less than 100%. This provides some theoretical confirmation to the

strong empirical results observed in the face recognition example, especially in the

presence of random corruption.

The face recognition approach described here assumes that the training images have

been carefully controlled and that the number of samples per class is sufficiently large.

Outside these operating conditions, and in particular when only a single sample per

class is available, it should not be expected to perform well.

Although the cross-and-bouquet model explains much of the error correction abil-

ity of l1 minimization, the discriminative power of the sparse representation still

lacks rigorous mathematical justification. This remains a wide open topic for future

investigation.

Image Denoising

In the previous section, we have examined an application in vision and machine learn-

ing in which a sparse representation in an overcomplete dictionary consisting of the

samples themselves yielded semantic information. This is an extremely useful idea for

clustering and classification, especially for problems such as face recognition where

the data have linear or piecewise linear structure. However, for applications such as

inpainting or denoising, the identity of the given training samples is less important.

In such applications, it may be possible to learn more relevant dictionaries by opti-

mizing a task-specific objective function.

As detailed in the previous sections, sparse modeling calls for constructing efficient
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representations of data as a (often linear) combination of a few typical patterns

(atoms) learned from the data itself. As we have explained in previous sections,

significant contributions to the theory and practice of learning such collections of

atoms (usually called dictionaries or codebooks), e.g., [60, 56, 55], and of represent-

ing the actual data in terms of them, e.g., [45, 43, 41], have been developed in recent

years, leading to state-of-the-art results in many signal and image processing tasks

[71, 72, 73, 74].

The dictionary plays a critical role, and it has been shown that learned dictionaries

significantly outperform off-the-shelf ones such as wavelets [53]. Current techniques

for obtaining such dictionaries mostly involve their optimization in terms of the task

to be performed, e.g., representation [56], denoising [60, 74], and classification [73].

Let B ∈ Rm×N be a set of N column data vectors bj ∈ Rm (e.g., image patches),

and D ∈ Rm×K be a dictionary of K atoms represented as columns dk ∈ Rm. Each

data vector bj will have a corresponding vector of reconstruction coefficients xj ∈ RK ,

which we will treat as columns of a matrix

X = [x1 · · · xN ] ∈ RK×N : (2.61)

The goal of sparse modeling is to design a dictionary D such that B ' DX with

||xj||0 sufficiently small (usually below some threshold) for all or most data samples bj.

As we have explained in Section 2.1.3, let’s begin with the standard l0 or l1 penalty

modeling problem

(X∗, D∗) = arg min
X,D
||B −DX||2F + λ||X||p (2.62)
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where || · ||F denotes Frobenius norm and p = 0, 1. The cost function to be minimized

in Eq. 2.62 consists of a quadratic fitting term and an l0 or l1 regularization term for

each column of X, the balance of the two being defined by the penalty parameter λ .

The l1-norm can be used as an approximation to l0, making the problem convex in X

while still encouraging sparse solutions [37]. While for reconstruction the l0 penalty

is found to often produce better results, l1 leads to more stable active sets and is

preferred for the classification tasks.

Since Eq. 2.62 is not simultaneously convex in {X,D}, coordinate-descent-type op-

timization techniques have been proposed [60, 56]. These approaches have been

extended for multiscale dictionaries and color images in [74], leading to state-of-the-

art results. In Fig. 2.6 an example of color image denosing with this approach is

given. For more examples, comparisons, and applications in image demosaicing, im-

age inpainting, and image denoising, please refer [22, 74]. An example of a learned

dictionary of K = 256 atoms is also shown in Fig. 2.6. It is important to note that

for image denoising, overcomplete dictionaries are used K > m, and the patch sizes

vary from 7 × 7, m = 49, to 20 × 20, m = 400 (for color image denoising), with a

sparsity of about one tenth of the signal dimension m.

2.2 Visual Sensor Networks

2.2.1 Overview

For many years now, networks of cameras have been used for surveillance and secu-

rity. These networked cameras, which are unable to process any data locally, send

their individual streams to a centralized location and rely upon human vision and
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Figure 2.6: Image denoising via sparse modeling and dictionary learned from a

standard set of color images.
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Figure 2.7: The nodes in VSNs consist of image sensor, embedded processor and

wireless transceiver.

cognition to detect events and anomalies. Advances in computational technologies

have allowed for much improvement in the hardware of these systems, such as higher

picture quality and motorization capabilities. However, only recently there have been

attempts to integrate the latest research developments in human and computer vision

into current sensor technologies.

With the advances in image sensor technology, low-power image sensors have ap-

peared in a number of products, such as cell phones, toys, computers, and robots.

Furthermore, recent developments in sensor networking and distributed processing

have encouraged the use of image sensors in these networks, which has resulted in

a new ubiquitous paradigm - visual sensor networks [75]. Visual sensor networks

(VSNs) consist of small visual sensor nodes called camera nodes, which integrate the

image sensor, embedded processor, and wireless transceiver (Figure 2.7). Following

the trends in low-power processing, wireless networking, and distributed sensing, vi-

sual sensor networks have developed as a new technology with a number of potential

applications, ranging from security to monitoring to telepresence.

In a visual sensor network, a large number of camera nodes form a distributed system,
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where the camera nodes are able to process image data locally and to extract relevant

information, to collaborate with other cameras on the application-specific task, and

to provide the system’s user with information-rich descriptions of captured events.

With current trends moving toward development of distributed processing systems

and with an increasing number of devices with built-in image sensors, a question of

how these devices can be used together appears [75].

2.2.2 Challenges in VSNs

Visual sensor networks are in many ways unique and more challenging compared to

other types of wireless sensor networks. These differences add another dimension to

existing problems in wireless sensor networks. For instance, most sensors provide

measurements as temporal signals that represent physical quantities such as temper-

ature. On the other hand, at each time instant image sensors provide a 2D set of

data points, which we see as an image. This results in richer information content as

well as in a higher complexity of data processing and analysis.

As in other types of sensor networks, requirements of resources such as energy and

bandwidth forms one of the main problems in visual sensor networks. The constraints

in hardware architecture (power of local processors, availability of larger memories,

etc.) affects the complexity of the algorithms that can be run on cameras. More com-

plex algorithms output higher level information which reduces the amount of data to

be transmitted. In most of the applications, data flow is required to be in real-time.

In one hand, real-time performance of visual sensor networks is related to power of

local processors. On the other hand, it is related to transmission of the processed

data throughout the network which is constrained by the wireless channel limita-
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tions (available bandwidth, modulation, data rate), employed wireless standard, and

by the current network condition. Time synchronization may become important for

tasks that involve multiple cameras. Camera locations are required for most of the

multi-camera image processing algorithms. It is also important to know the vision

graph of the network to decide efficient communication rules. In addition, calibrated

cameras are needed in some of the multi-camera algorithms. In a network of cameras

constrained by limited resources, camera collaboration should be managed intelli-

gently.

We believe that camera calibration and time synchronization problems are not related

to the scope of this thesis. In our experiments, we assume that all cameras in VSNs

are already calibrated and synchronized when our approach is used. Sensor selection

and sensor resource management (sensor tasking) are also out of scope of this thesis.

We have assumed that one of the camera nodes, relatively more powerful one, has

been selected as the fusion node. In the next subsections the problems which are in

the scope of this thesis are explained in detail.

Energy & Bandwidth Constraints

The lifetime of battery-operated camera nodes is limited by their energy consumption,

which is proportional to the energy required for sensing, processing, and transmit-

ting the data. Given the large amount of data generated by the camera nodes, both

processing and transmitting image data are quite costly in terms of energy, much

more so than for other types of sensor networks. Furthermore, visual sensor net-

works require large bandwidth for transmitting image data. Thus both energy and

bandwidth are even more constrained than in other types of wireless sensor networks.
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In visual sensor networks, the processor in camera nodes give us the ability to pro-

cess images directly on the camera, thereby remove the requirements of collecting

images in a central processor and decrease communication needs. In order not to

ruin this, the feature extraction algorithms that run on the processors should not be

heavy-weight. Computationally, they should be light, but they are supposed to be

robust as well. VSNs provides us the opportunity of having more than one cameras

to cover an area, thereby providing us much more information about the scene. But

this opportunity may create bottlenecks in communication while fusing the multi-

view information. For this reason, the features that will be shared and fused should

be small in size.

Following the points mentioned above, the feature extraction algorithms that run

on camera nodes are supposed to be light-weight, robust and the resulting features

should be small in size.

Collaboration Between Cameras

Visual sensor networks are envisioned as distributed and autonomous systems, where

cameras collaborate and, based on exchanged information, reason autonomously

about the captured event and decide how to proceed. Through collaboration, the

cameras relate the events captured in the images, and they enhance their under-

standing of the environment.

As we have pointed before, the collaboration of cameras provides richer information

about the scene and it may also create a burden in the communication of the network.
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Therefore, the approach for running inference on the information shared among cam-

eras is very important. This collaborative inference should include all the cameras

without overloading the network. Since collecting all the information in a single node

will create bottlenecks in the communication, the inference should not be centralized.

In the next section, we have given more details about how inference should be run

by going through the methods proposed for surveillance applications.

2.2.3 Building a Surveillance System in VSNs

Surveillance is the main application field for VSNs in this thesis. Thus, in this section,

we discuss about human tracking and action recognition methods. First, we describe

the estimation algorithms that are proposed for performing collaborative processing.

Then, we give examples of such algorithms applied for human tracking and action

recognition tasks in VSNs.

Let us consider a network C = {C1, · · · , Cc, · · · , CN} of N cameras monitoring T

targets. Let the state of target i at time k be defined as xik. The elements composing

the state depend on the application. For tracking, in the simplest case, the state is

defined by the position of the target. In more complex cases, the state contains other

elements such as, for example, shape and velocity parameters. For action recognition,

the state describes the action performed by ith person. The goal is to estimate the

target state xik by fusing the data gathered from the cameras. In tracking, target

state estimation aims to associate noisy measurements Zi
k = {zi1, · · · , zik} belonging

to the same person over time to obtain the trajectory X i
k = {xi1, · · · , xin} for each

person i. In action recognition, the activity of person i, xik, is obtained by classifying
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the features extracted from the measurements from the cameras, yi = {yi1, · · · , yiN}.

In both tracking and action recognition applications, the amount and type of in-

formation sharing for state estimation differs from method to method. Depending

on the algorithm, type of cameras in the network, and on the strategy adopted for

data fusion, multicamera approaches incur different computation and communica-

tion costs. Moreover, the data-gathering (fusion) strategy has a significant influence

on the scalability of the network and on the communication cost, thus affecting the

applicability of a method. Multicamera approaches can be categorized, based on in-

tersensor communication, into three main groups [76], centralized, decentralized, and

distributed estimation.

Centralized estimation is performed in a single node that receives (raw or processed)

data from each camera in the network. Although centralized approaches can exploit

directly existing single-camera trackers/action classifiers on the fused data [77, 4],

the presence of a single global fusion center leads to high data-transfer rates and to

a lack of scalability and energy efficiency.

In decentralized estimation, cameras are grouped into clusters and member nodes

only communicate with their local fusion centers, which are nodes in a network that

collect data from the cameras within a cluster and perform state estimation [78, 79]

(Figure 2.8). The use of fusion nodes favors scalability and reduces the overall com-

munication load by limiting the flow of measurements from nearby nodes within a

cluster and among fusion nodes. Features are extracted in each camera view and

then projected to the fusion nodes for multi-view estimation. Finally, fusion nodes
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Figure 2.8: In decentralized approaches cameras are grouped into clusters.

communicate with each other to handoff tracking/action recognition tasks over the

network [7]. Energy efficiency can be improved by selectively activating only cluster

members that are expected to observe the targets of interest.

Fusion nodes can be chosen a priori (fixed fusion nodes) or dynamically. Fixed fusion

nodes are generally used in networks where some nodes have higher processing power

and energy supply [78]. Although fixed fusion nodes reduce the computational cost

for cluster members and increase the lifespan of the overall network, in some cases,

they do not necessarily use the cameras with the best view of a target and, hence,

may generate lower-quality observations. To compensate for this limitation, fusion

nodes can be chosen dynamically based on trackability measures that evaluate the ef-

fectiveness of the features observed by a camera [80]. However, dynamic fusion nodes

can select the best view in a cluster, which may not necessarily be the best cameras

for tracking among all cameras. There might be cameras belonging to another clus-

ter that can better observe the target. Since the cluster members are fixed and the

tracking task has not yet been handed off to their cluster, these cameras may not be

used. To avoid such cases, camera clustering should be adapted online, and cameras

should be added to and removed from the clusters based on target observability [7].
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Figure 2.9: In distributed approaches there are no local fusion centers.

To further increase scalability and to reduce communication costs, distributed es-

timation operates without local fusion centers. The estimates generated in a camera

are transmitted to its immediate neighbors only (Figure 2.9). The received estimates

are used to refine the next-camera estimates, and these refined estimates are then

transmitted to the next neighbor [81, 82, 9, 17]. This process is completed after a

predefined number of steps after all cameras viewing the target are visited or when

the uncertainty has decreased below a desired value.

Other than the approaches classified in three groups above, there has been some

simple work that uses basic features or techniques to adapt centralized approaches

to VSNs. For instance, visual hulls are used in [83, 84] to detect the presence and

number of humans. But, since visual hull presents the largest volume in which a

human can reside, the exact number of humans cannot be determined when humans

come closer. To minimize the amount of data to be communicated between cameras,

in some methods simple features are used for communication. For instance, 2D tra-

jectories are used in [12]. In [13], 3D trajectories together with color histograms are

used. Hue histograms along with 2D position are used in [14].

In the following subsections, decentralized and distributed approaches proposed to
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Figure 2.10: The flow diagram of decentralized approaches.

perform tracking/action recognition tasks in VSNs are discussed in detail.

Decentralized Approaches

Traditional trackers/action classifiers can be extended to exploit multicamera data

and used in fusion nodes (cluster heads), which receive raw or filtered data from the

cameras in a cluster (Figure 2.10). Decentralized approaches can be implemented

easily by using existing centralized approaches in a fusion node.

These kind of approaches have been applied to multi-camera target tracking problem

in various ways [15, 7, 16]. For a nonoverlapping camera setup, tracking is performed

by matching the people in the scene with the entry/exit zones in camera views. This

is done by maximizing the similarity between the observed features from each camera

and minimizing the long-term variation in appearance using graph matching at the

fusion node [15]. They pose the problem of tracking in a camera network as a multi-
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objective optimization problem. Based on the centralized approach in [85], the first

objective is to choose the tracks such that they maximize the similarity between the

observed features in a local neighborhood. To make the method robust to changes in

lighting and pose, scene clutter and occlusions, they introduce a second optimization

objective that minimizes the long-term variation in appearance and identity of the

tracked objects over the entire camera network. When a person disappears or a new

person enters, the features are sent to a fusion node to perform integration over space

and time between cameras. Since the setup in this work is nonoverlapping cameras,

tracking is performed by a single camera that observe the person. For this reason,

the data fusion that will burden the communication in the network occasionally hap-

pens. Thus, it is not clear whether this method will decrease the communication

when there is a overlapping camera setup in the network.

For an overlapping camera setup, a cluster-based Kalman filter in a network of wire-

less cameras is proposed in [7, 16]. Local measurements of the target acquired by

members of the cluster are sent to the fusion node. Then, fusion node estimates the

target position via an extended Kalman filter, relating the measurements acquired by

the cameras to the actual position of the target by nonlinear transformations. In [7],

when a target is detected, cameras that can observe the same target interact with one

another to form a cluster and elect a cluster head. Local measurements of the target

acquired by members of the cluster are sent to the cluster head, which then estimates

the target position via Kalman filtering. The underlying clustering protocol of their

earlier work [86] allows the current state and uncertainty of the target position to be

easily handed off among clusters as the person is being tracked. In the experiments,

the method is applied on a network of cameras that are mounted in the ceiling of

60



their laboratory. In this camera setup, person detection is an easy task compared

to detection problem in standard camera setups and avoid noisy/uncertain observa-

tions. For this reason this makes the experiments unrealistic for many surveillance

applications. In [16], by using the same clustering protocol face tracking is performed

by Kalman filtering.

A user-programmable framework that processes multi-camera data along with prior

context information to infer activities is proposed in [87]. Their approach does not

look at body gestures but at more macroscopic (higher level) activities conducted in

the context of a building or a city map. Instead of applying complex image-processing

techniques to maximize the information extracted from each camera sensor node, they

use lightweight algorithms [88] to detect a person’s position with respect to a set of

predefined areas in a building. In order to translate raw sensing data to high-level in-

terpretations, such as human activities, they use probabilistic context-free grammars

(PCFGs), which is a syntactic pattern recognition technique, organized in hierarchies

to classify spatial and temporal patterns from simple low-level sensor measurements.

The inference on PCFGs is run on the fusion node, but the bandwidth requirements

of the approach are not specified. In the experiments, as it is done in the previous

method, a network of cameras mounted in the ceiling, which is an unnatural situation

for many surveillance applications, are used.

A distributed and lightweight activity classification algorithm is proposed in [89].

At each camera, similar to [90] multi-view spatio-temporal histogram features are

extracted and test histograms are transmitted to all cameras. Then, each camera

in the network calculates the distance between the multi-view test histograms and
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multi-view training histograms and transmits the distance values to a fusion node in

order to find the label of the performed action.

A method, focused more on human body parts, for human pose estimation is proposed

in [91]. Inspired by the concepts from the top-down and bottom-up approaches, they

propose a layered analysis for human pose estimation. The bottom-up approach fits

well to the requirement of local processing, since image data are locally reduced to

body part descriptors or image features that are affordable for network transmission.

The body model of the top-down approach embodies up-to-date information from

both current and historical observations of all cameras in a concise way. They per-

form feature extraction such as color-based segmentation and ellipse fitting to body

parts in each camera view. The shape fitting results are transmitted to the fusion

node to construct the pose.

In [92], a multi-view human tracking algorithm that is based on collaborative sig-

nal processing mechanisms is proposed. At each camera node, foreground of the

scene is detected using the approach of [93] and human classification is performed to

locate the people on the foreground [94]. The observations from each node are repre-

sented as Gaussian distributions and fused from one node to another in a distributed

way to obtain a multi-view likelihood function. Once a node receives observations

from other nodes, it integrates these with its own observations and searches for an

optimal node by considering the communication costs (link bandwidth, transmission

latency, etc.), location, direction and observation accuracy of nodes. When the en-

tropy of fused likelihood functions exceeds a threshold, the last node sends the final

likelihood function to the fusion node. In the fusion node, tracking is performed using
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Figure 2.11: The flow diagram of distributed approaches.

a particle-filter that obtains a transition model from radial basis functions trained

with previous estimation results.

Distributed Approaches

Unlike decentralized approaches, distributed trackers/action classifiers have no spe-

cific local fusion centers: each node fuses its estimates with information received from

its neighbors and projects the updated estimates to the next neighbor until the last

node is reached or a desired accuracy is achieved (Figure 2.11).

In [9], by leveraging upon concepts of consensus that have been studied in the context

of multiagent systems, a distributed scene analysis method that is focused on track-
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ing and action recognition is proposed. Each camera estimates certain parameters

based upon its own sensed data which is then shared locally with the neighboring

cameras in an iterative fashion, and a final estimate is arrived at in the network using

consensus algorithms. For multitarget tracking in a distributed camera network, they

show how the Kalman-Consensus algorithm [95] can be adapted to take into account

the directional nature of video sensors and the network topology. For the activity

recognition problem, they derive a probabilistic consensus scheme that combines the

similarity scores of neighboring cameras to come up with a probability for each action

at the network level.

A wireless embedded smart camera system for cooperative human tracking and detec-

tion of composite, semantically high-level and user-defined events is proposed in [17].

At each camera lightweight and robust foreground detection [96] and color histogram

based tracking [97] algorithms are implemented and run on the microprocessor of the

camera board. To solve data association problem, the field of view lines of cameras

are used to check if a person is being tracked by another camera and a label for the

person is requested to achieve consistent labeling. To address limited energy, limited

memory and bandwidth issues, every frame or trajectory is not saved or transferred.

Important portions of video and trajectories are determined by detecting events of

interest that are pre-defined beforehand by users. Three primitive events are defined:

motion detection, occurs when motion is detected in a region of interest; tripwire

crossing, occurs if a person crosses a specified line in the specified direction; aban-

doned object occurs in a specified region when there is an object abandoned for more

than a specified time. More complex scenarios are also defined by sequencing the

primitive events. Communication in the network is minimized by sending messages
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only when an event of interest occured or to assign labels to tracked people. But,

how action recognition is performed in a distributed way is not clear.
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3 ACTION RECOGNITION USING

SPARSE REPRESENTATION

As we have seen in Section 2.1.4, in some applications sparse representation has been

used as a classification method. In this section, we present our novel multi-camera

action recognition method that is based on sparse representation [98]. This method

is one of the contributions of this thesis. To the best of our knowledge, this is the

first action recognition method that uses sparse representation. As in [11, 99], we

assume that a test sample can be written as a linear combination of training samples

from the class it belongs to. In other words, a test sample has a sparse representation

in the space covered by the training samples. Based on this assumption, we cast the

classification problem as an optimization problem and solve it by enforcing sparsity

through l1 regularization. We develop two parallel perspectives one based on regular

sparsity and the other one based on so called group sparsity. The sparse approach is

based on the idea that a test sample can be represented by a small number of training

samples, regardless of the class labels of the training samples. On the other hand,

the group sparse approach imposes more structure, imposing sparsity across classes

(i.e., allowing only a small number of classes to be active in the representation) while

allowing the use of a large number of training samples from the active classes. In the

experimental results, we demonstrate the superiority of our method, especially when
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observations are low resolution, occluded, and noisy and when the feature dimension

is reduced. We present our action recognition method and experimental results in

Section 3.1.

Since our action recognition method is based on a centralized approach and the

data (feature) transmission in the network requires high bandwidth, application of

such a system in VSNs will be problematic. In Section 3.2, we describe our proposed

solution to overcome this problem. Recently, the role of sparsity in classification has

been questioned and for the face recognition problem, it has been shown that the

l1-norm constraint may not be necessary [18, 19]. Based on these studies, we have

analyzed this issue for two different action recognition problems and obtained similar

observations showing that optimization based on l2 regularization can also achieve a

level of accuracy close to l1 based regularization. Our analysis and observations are

presented in Section 3.3.

3.1 Classification via Sparse Representation

Subspace modelling is a well-known approach applied in many classification prob-

lems such as face recognition [67, 63, 70], object recognition [100] and facial expres-

sion recognition [101]. Similarly, in the feature space, we assume that each action

class satisfies a low–dimensional subspace model. If a valid test sample can be rep-

resented as a linear combination of all training samples, the dominant coefficients in

the sparsest representation correspond to the training samples from the underlying

action class, and hence they indicate the membership of the test sample.
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As we have seen in Section 2.1.4, mathematically we express this as follows: in

a feature space of m dimensions, given Ni training samples of the ith action class,

there is a relation between a test sample, y ∈ Rm, and the training samples, {vi,j}Nij=1,

from the same class:

y = αi,1vi,1 + αi,2vi,2 + · · ·+ αi,nivi,Ni (3.1)

where αi,j ∈ R, j = 1, 2, · · · , Ni.

Writing the training samples of ith class as the columns of a matrix, we obtain

the matrix ψi = [vi,1, vi,2, · · · , vi,Ni ] ∈ Rm×Ni . Since we do not know the class of the

test sample initially, by concatenating the N training samples of all k object classes,

we obtain the following matrix ψ:

ψ
.
= [ψ1, ψ2, · · · , ψk] ∈ Rm×N N = Σk

i=1Ni (3.2)

As in [11, 99], by rewriting the relation in Eq. 3.1 using the matrix ψ, we obtain the

following linear representation of y in terms of all training samples:

y = ψx ∈ Rm (3.3)

where x = [0, · · · , 0, αi,1, αi,2, · · · , αi,ni , 0, · · · , 0]T ∈ RN is a coefficient vector, all of

whose entries except those corresponding to the ith class are zero. Thus, solving the

system in Eq. 3.3 for x gives the identity of the test sample y. In practice, since

real data are noisy, it may not be possible to express the test sample exactly as a

superposition of the training samples. In other words, a noise term can be added to

the linear system in Eq. 3.3:

y = ψx+ z (3.4)
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where z ∈ Rm is a noise term with bounded energy ||z||2 < ε.

For a large number of object classes, this representation is naturally group sparse

– meaning that there are non-zero coefficients corresponding to a particular group

(class) of training samples and zeros elsewhere. Different from the procedure in

[11, 99], we define a vector, x′, as follows:

x′ = [x′1, x
′
2, · · · , x′k] ∈ Rk x′i = ||{αi,j}Nij=1||2 (3.5)

Namely, the ith element of the vector x′ is the l2 norm of the coefficients corresponding

to training samples of the ith class. Since the vector x is group sparse, x′ is a sparse

vector. Therefore, to classify the test sample, we are interested in finding the group

sparse solution to y = ψx+ z by solving the following optimization problem:

x̂ = arg min
x
||x′||0 subject to ||y − ψx||2 < ε (3.6)

where ||.||0 denotes the l0 norm and counts the number of nonzero entries in a vector.

However, the problem of minimizing the l0 norm is NP-hard. Recent development in

the emerging theory of compressed sensing [29, 65, 66] reveals that if the vector x′ is

sparse enough, the solution of the l0-minimization problem in Eq. 3.6 is equal to the

solution to the following l1-minimization problem:

x̂ = arg min
x
||x′||1 subject to ||y − ψx||2 < ε (3.7)

In fact, we optimize the Lagrangian form of this problem:

x̂ = arg min
x
||y − ψx||2 + λ||x′||1 (3.8)

where λ is the regularization parameter. This optimization problem is convex [102,

103, 104] and it can be efficiently solved via second-order cone programming [32]
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After finding the group sparse representation x̂ of the test sample y, we classify it

based on how well the coefficients associated with all training samples of each action

class reproduce y. For each class i, let δi : Rn −→ Rn be the characteristic function

that selects the coefficients associated with the ith class. For x ∈ Rn, δi(x) ∈ Rn is

a new vector whose only nonzero entries are the entries in x that are associated with

class i. Using only the coefficients associated with the ith class, one can approximate

the given test sample y as ỹ = ψδi(x̂i). We then classify y based on these approxi-

mations by assigning it to the object class that minimizes the residual between y and

ỹ:

î = arg min
i
ri(y)

.
= arg min

i
||y − ψδi(x̂i)||2 (3.9)

In [11, 99], it is assumed that the test sample can be represented by a small number

of training samples from the same class and hence the vector x is considered as

sparse (rather than group sparse) (Section 2.1.4). A similar formulation could be

obtained in our setting by replacing x′ by x in Eqs. 3.7 and 3.8. After finding the

sparse representation, the test sample can be classified again by using Eq. 3.9. We

also present the results of this sparsity-based approach and compare it to the group

sparsity based approach described above.

3.1.1 MHVs and Action Descriptors

Motion history volumes are extensions of 2-D motion templates, first introduced by

Bobick and Davis in [105], to 3-D [4]. They represent the dynamics of the motion in

3-D.
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At each camera, after acquiring the images, silhouettes are extracted. The silhouette

images obtained from multiple cameras are used to create visual hulls at each time

instance. By using these visual hulls an occupancy function, D(x, y, z, t), that repre-

sents the presence of a person in space and time, is defined. D(x, y, z, t), is set to 1

if the point (x, y, z) is 1 in the visual hull created at time t, and set to 0 otherwise.

By using this occupancy function, a motion history volume is constructed as follows:

vτ (x, y, z, t) ={
τ if D(x, y, z, t) = 1

max(0, vτ (x, y, z, t− 1)− 1) o.w.
(3.10)

where τ is the maximum duration of the motion at point (x, y, z) [4].

With respect to the duration of an action, the volumes found by Eq. 3.10 are nor-

malized and final motion history volumes are obtained:

v(x, y, z) =
vτ=tmax−tmin(x, y, z, tmax)

tmax − tmin
(3.11)

where tmin and tmax are start and end time of an action. tmin and tmax are estimated

by searching for the local minima in the global motion energy of MHVs [4]. An

example of MHV constructed for “kicking“ action is shown in Figure 3.1-a. To

be able to recognize actions robustly, a method that is invariant to rotation, scale

and translation is needed. But, since MHVs encode space occupancy, they are not

invariant. Because of the nature of human motions, it is reasonable to assume that

similar actions only differ by rigid transformations composed of scale, translation, and

rotation around the z-axis [4]. We express MHVs in a cylindrical coordinate-system:

v(
√
x2 + y2, tan−1

(y
x

)
, z) −→ v(r, θ, z) (3.12)
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(a) (b)

Figure 3.1: (a) An example of MHV constructed for “kicking“ action. Color indi-

cates the values of MHV. (b) Action descriptors are constructed by taking Fourier

transform over θ for couples of values (r, z) in cylindrical coordinates and concate-

nating the Fourier magnitudes.

Thus rotations around the z-axis results in cyclical translation shifts:

v(x · cosθ0 + y · sinθ0,−x · sinθ0 + y · cosθ0, z) −→ v(r, θ + θ0, z) (3.13)

The absolute values of 1-D Fourier transform along the θ dimension for each value of

r and z, |V (r, kθ, z)|, are used as motion descriptors:

V (r, kθ, z) =

∫ π

−π
v(r, θ, z)e−j2πkθθdθ (3.14)

Motion descriptor extraction for ”kicking” is illustrated in Figure 3.1-b.

By the shift property of Fourier transform, a shift in the θ dimension corresponds

to phase modulation in frequency domain. As a result, 1-D Fourier magnitudes are

invariant to rotation along θ. Before taking the Fourier transform, the location and

scale dependencies of MHVs are removed by centering around the center of mass, and

scale normalization. Therefore, the motion descriptors obtained by this procedure
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Figure 3.2: Example views from the IXMAS dataset recorded by five synchronized

and calibrated cameras [4].

are invariant to rotation, scale and translation. We use these descriptors as features

in our method.

3.1.2 Experimental Results

Setup

We test our method on the publicly available IXMAS dataset [4], which is a popu-

lar dataset used for evaluating multi-view action recognition methods. The dataset

consists of 11 actions (check watch, cross arms, scratch head, sit down, get up, turn

around, walk, wave, punch, kick, point) and each action is performed three times

with free orientation and position by 10 different actors. Actions are recorded by five

synchronized and calibrated cameras. Example views from the dataset are shown in

Figure 3.2. We use the visual hulls provided with the dataset on a 64x64x64 voxel

grid. While constructing the MHVs, the motion segmentation method in [4] is used.

Action descriptors are created on a 32x32x32 voxel grid. The classification results

presented here are based on leave-one-out cross-validation, i.e., we train on data from

9 actors and test on the remaining actor; repeat this for all combinations of actors;

and average the results.

We have compared our method with the method in [4]. In [4], first principal compo-
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nent analysis (PCA) is applied for dimensionality reduction and then, three different

procedures are performed to classify action descriptors: 1) a new action is classified

according to the Euclidean distance to class means; 2) a new action is classified ac-

cording to the Mahalanobis distance to class means; 3) Fisher linear discriminant

analysis (LDA) is performed to maximize the between-class scatter and minimize

the within-class scatter, then a new action is classified according to the Euclidean

distance to class means.

Comparison of l1-minimization Solvers

In Section 2.1.2, we have seen that solving optimization problems with l1 constraint

has become a well-established research area. There are many solver algorithms that

has been proposed for l1-minimization. In order to choose a solver that is fast and

accurate for our sparse representation based classification framework, we have com-

pared the solvers described in Section 2.1.2.

In the comparison, we have used the experimental setup that we have explained

in previous section. PDIPA(CVX) [106], Homotopy [107], L1LS [38], SpaRSA [47],

FISTA [108] and ALM [109] algorithms have been used to solve the optimization

problem in Eq. 3.8 using the sparse approach (replacing x′ by x). The regularization

parameter in Eq. 3.8, λ, is set to 1. The average run-times of the solvers in seconds

and average accuracy rates obtained after classifying test samples using the sparse

solution has been shown in Table 3.1. To avoid trivial solutions, we have also checked

the number of iterations of each algorithm . The average iteration count solvers are

also given in Table 3.1.
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Accuracy Run-time (sec.) Iteration Count

PDIPA(CVX) [106] 92.42% 16.2551 11.3152

Homotopy [107] 79.39% 0.2990 33.0061

L1 LS [38] 92.42% 8.7521 10.2061

SpaRSA [47] 8.79% 4.3625 566.6940

FISTA [108] 55.45% 0.5398 13.7848

ALM [109] 17.87% 0.0210 2

Table 3.1: Average run-times, iteration counts of solvers and accuracy rates for

action recognition.

We can see that ALM, FISTA and Homotopy algorithms are the fastest solvers. But,

ALM and FISTA could not achieve good performance in classification. Especially for

ALM, average iteration counts show that it finds the trivial solution. When we look

at the Homotopy algorithm, we can see that, it works fast, but obtains a reasonable

level of accuracy. On the other hand, both CVX and L1LS algorithms achieves high

level of accuracy in reasonable run-times. Since the current version of L1LS algorithm

is implemented to solve only the sparse approach in Section 3.1, it does not allow us

to define x′ variable in Eq. 3.8 and solve the group sparse approach. Based on these

observations, we select the CVX algorithm for our action recognition experiments.

Action Recognition Results

Table 3.2 presents the performance of our method and the method in [4] for each

action and averaged over all actions. For the framework proposed in this paper,

we presented the results of both the group sparse approach based on Eq. 3.8 as

well as the sparse approach. We have empirically set the regularization parameter

in Eq. 3.8, λ, to 500 and 100 for the group sparse and sparse approaches, respec-

tively. For the results of [4] in Table 3.2, the column titled ”PCA” corresponds to
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The method in [4] SR

Action LDA PCA Maha. Group Sparse Sparse

Check watch 83.33% 46.66% 86.66% 80.00% 83.33%

Cross arms 100.00% 83.33% 100.00% 100.00% 100.00%

Scratch head 93.33% 46.66% 93.33% 96.66% 96.66%

Sit down 93.33% 93.33% 93.33% 96.66% 96.66%

Get up 90.00% 83.33% 93.33% 90.00% 90.00%

Turn around 96.66% 93.33% 96.66% 96.66% 96.66%

Walk 100.00% 100.00% 100.00% 100.00% 100.00%

Wave hand 90.00% 53.33% 80.00% 83.33% 86.66%

Punch 93.33% 53.33% 96.66% 96.66% 96.66%

Kick 93.33% 83.33% 96.66% 96.66% 96.66%

Pick up 83.33% 66.66% 90.00% 90.00% 90.00%

Average 92.42% 66.36% 93.33% 93.33% 93.93%

Table 3.2: Accuracies of the method in [4] and our SR based method for each action.

Bold values represent the best accuracy for each action.

the Euclidean distance-based approach in [4] and the other two columns correspond

to the LDA and Mahalanobis distance-based versions. It can be seen that in three

actions our method achieves a better level of accuracy than the method in [4]. In

six actions, our method and the method in [4] achieves the same results. Just for

”check watch” and ”wave hand” actions, the method in [4] achieves better results.

In the average, group sparse version of our method achieves the best level of accuracy.

We have also performed tests under various conditions. In the next subsections,

the results of experiments when action descriptors are low resolution, when data are

noisy, when there is occlusion are presented.
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Low Resolution Data

In this experiment, action descriptors created in lower voxel grid sizes are used to

test the robustness of our method in the case of resolution loss. Our method and

the method in [4] are tested by using action descriptors in 16x16x16 and 8x8x8 voxel

grid sizes. The average accuracies obtained in these experiments together with the

average accuracies obtained using the 32x32x32 action descriptors are presented in

Table 3.3.

These results show that even when the action descriptors have very low resolution

our method achieves reasonable level of accuracy. For the 16x16x16 grid size, the

performance of the method in [4] degrades much more dramatically than that of our

method. While the method in [4] achieves reasonable level of accuracy (78.18%),

our method achieves better accuracy level (90.00%). When the action descriptors

have a resolution of 8x8x8, the method in [4] exhibits an unacceptable level of accu-

racy. PCA and Mahalanobis procedures achieve only random assignment accuracies

(9.09%), whereas our method achieves a reasonable level of accuracy (73.64%). These

experiments demonstrate the robustness and superiority of our proposed approach in

the case of low resolution data.

In Table 3.3, we have also presented the results of the sparse version of our ap-

proach. When the action descriptors have a resolution of 16x16x16, sparse version

performs slightly better than the group sparse version (90.61%). But for the resolu-

tion of 8x8x8, the sparse version achieves a lower level of accuracy than the group

sparse version (67.88%).
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The method in [4] SR

y LDA PCA Maha. Group Sparse Sparse

[32] 92.42% 66.36% 93.33% 93.33% 93.93%

[16] 78.18% 44.55% 77.27% 90.00% 90.61%

[8] 20.91% 9.09% 9.09% 73.64% 67.88%

Table 3.3: Average accuracies of the method in [4] and our SR based method when

action descriptors are low-resolution. Bold values represent the best accuracy for

each row.

Corrupted Data

Poor performance in temporal segmentation affects the values of the MHVs. If the

start and/or end times of the motion is miscalculated, the values of MHVs will be

inaccurate (Eq. 3.11). To test the robustness of our method for such perturbations,

we have corrupted the MHVs with zero-mean Gaussian noise. The test sample is

created by extracting the action descriptors from these corrupted MHVs. Training

samples are created by using the original MHVs. We have performed experiments

with various noise variances which are specified in terms of percentages of the maxi-

mum values of the MHVs.

Average accuracies achieved by the method in [4] and our method for various noise

levels are presented in Table 3.4 and Figure 3.3. The results obtained from the orig-

inal data (0% corruption) are also shown for comparison. It can be observed that

our method outperforms the method in [4] for all noise variances considered in this

experiment. The lowest accuracy achieved by our method is when the noise variance

is 90% of the maximum of the MHV and it is a reasonable rate (81.82%). For all

variances, we also observe that group sparse and sparse versions of our approach
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The method in [4] SR

y Corruption LDA PCA Maha. Group Sparse Sparse

[32] 0% 92.42% 66.36% 93.33% 93.33% 93.93%

[32] 10% 89.39% 42.42% 90.30% 92.73% 93.33%

[32] 20% 65.15% 16.06% 63.03% 93.03% 92.73%

[32] 30% 25.76% 9.09% 24.55% 91.52% 90.61%

[32] 40% 11.52% 9.09% 13.33% 92.42% 92.42%

[32] 50% 11.21% 9.09% 12.42% 90.91% 90.30%

[32] 60% 10.00% 9.09% 10.30% 89.39% 90.30%

[32] 70% 10.61% 9.09% 10.00% 86.67% 86.36%

[32] 80% 9.70% 9.09% 9.39% 83.94% 83.94%

[32] 90% 9.70% 9.09% 9.09% 81.82% 80.91%

[32] 100% 9.39% 9.09% 9.09% 84.55% 83.94%

Table 3.4: Average accuracies of the method in [4] and our method on data corrupted

by zero-mean Gaussian noise with variance specified in terms of percentages of the

maximum value of the MHV. Bold values represent the best accuracy for each row.
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Figure 3.3: Accuracies of the method in [4] and our method on data corrupted

by zero-mean Gaussian noise with variance specified in terms of percentages of the

maximum value of the MHV.

achieve similar results. On the other hand, there is a significant performance drop

for the method in [4] as the data become more noisy (most notably when the noise

variance increases from 20% to 30%). For the tests in which the noise variance is

selected equal to or greater than 60% of the maximum of the MHV, the best accuracy

obtained by the method in [4] is close to random assignment accuracy (9.09%). These

results show that our method is robust to reductions in data quality, which may be

the result of, e.g., failures in temporal segmentation.

Occluded Data

Occlusion is one of the most common and important problems in real world scenarios.

Occlusion occurs most commonly through an object occluding parts of the person in

the scene. Since the visual hulls are constructed by using these occluded silhouettes,
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they will also be occluded and, consequently, MHVs will be occluded as well.

In this experiment, we have examined how the occlusion in MHVs affects the recog-

nition accuracy. Starting from the center of the MHV, we have occluded (set to

zero) the MHVs in various levels, from 5 percent to 90 percent. Test samples are

created by extracting the action descriptors from these occluded MHVs and training

samples are created by using the original MHVs. Due to the steps involved in feature

extraction, occlusion of MHVs has a non-trivial effect in the feature space [4]. In

particular, this effect involves all feature components rather than being limited to

occlusion of a subset of the feature components. Given this non-trivial effect, in all

of our experiments with all techniques, we assume the presence of a perfect occlusion

detector for the sake of simplicity. The occluded points have not been taken into

account in feature extraction steps of both our method and the method in [4].

In Table 3.5 and Figure 3.4, the average accuracies obtained by the method in [4] and

our method for various levels of occlusion are presented. The results obtained from

the original data (0% occlusion) are also presented for comparison. The results show

that our method performs better than the method in [4] for all levels of occlusion.

For occlusion levels up to 60%, the accuracies of the method in [4] are close to the

accuracies of our method. But, for higher occlusion levels, our method is definitely

better than the method in [4].

The accuracies of the sparse version are also presented in Table 3.5. Compar-

ing the results of the group sparse and sparse versions, it can be observed that the

two versions achieve similar accuracy levels.
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The method in [4] SR

y Occlusion LDA PCA Maha. Group Sparse Sparse

[32] 0% 92.42% 66.36% 93.33% 93.33% 93.93%

[32] 5% 91.21% 66.97% 90.91% 91.21% 91.52%

[32] 10% 88.18% 65.15% 88.18% 89.70% 90.61%

[32] 20% 89.09% 64.24% 89.39% 91.52% 90.91%

[32] 30% 86.06% 64.24% 88.18% 90.00% 89.39%

[32] 40% 86.36% 62.12% 86.67% 87.27% 87.88%

[32] 50% 85.15% 61.52% 83.33% 85.76% 85.45%

[32] 60% 83.33% 57.88% 82.42% 85.45% 84.55%

[32] 70% 75.76% 59.39% 75.15% 79.39% 80.61%

[32] 80% 70.30% 60.61% 70.61% 76.06% 73.03%

[32] 90% 47.88% 46.36% 47.58% 56.67% 53.94%

Table 3.5: Average accuracies of the method in [4] and our method for various levels

of occlusion. Bold values represent the best accuracy for each row.

Figure 3.4: The plot of accuracies of the method in [4] and our method for various

levels of occlusion.
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3.2 Action Recognition in VSNs

3.2.1 Constructing MHVs from MHIs

In [4], MHVs are constructed by concatenating visual hulls in time and visual hulls

are constructed by using silhouettes obtained from multiple cameras at each time

instance (see Figure 3.5-a). While constructing MHVs, only the visual hulls that

involve motion are used. Therefore, at each time instance, visual hulls are cre-

ated and the instances involving motion are detected. In a centralized approach,

this procedure requires sending all silhouettes obtained at each time instance to

a central node. Naturally, the network communication load increases by sending

all silhouettes to the central node without knowing whether there is a motion at

that time instance or not. Therefore, this procedure adds an unnecessary load

to the communication in the network. Specifically, the load can be calculated as

Height of image×Width of image× Pixel DepthBit× Fps. For the dataset used

in Section 3.1.2, the resulting bandwidth is 291× 390× 1× 23 = 2.610Mbit/s. Con-

sidering the resource constraints of VSNs (Section 2.2.2), the way of constructing

MHVs is not suitable for a setup in VSN.

In the method [4], each camera node sends the silhouettes (features) it obtained, in-

stead of sending the raw image data. Hence, the method is suitable for decentralized

action recognition (illustrated in Figure 2.8). But, as explained above, transmitting

silhouettes to the fusion node will again overload the network. One may think of a

distributed classification approach that can overcome this problem. But, both our

sparsity-driven approach and the method in [4] is not suitable for a distributed ap-

proach in which each camera performs action recognition by the results of a neighbor
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(a)

(b)

Figure 3.5: Flow diagram of constructing MHVs in (a) by first combining silhouettes

and then visual hulls (b) by directly combining MHIs.
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node and its own observations and shares the results with another neighboring node

(Section 2.2.3).

To overcome the large bandwidth requirement, we have changed the way of con-

structing the MHVs. Instead of sending all information (silhouettes) to the fusion

node at each time instance, we propose constructing motion history images (MHI)

[105] at each camera and sending these images to the fusion node when there is mo-

tion in the scene (see Figure 3.5-b). Then, MHVs are constructed using MHIs similar

to creating a visual hull from multiple silhouettes: i) a 3D point in the volume is set

to a value greater than zero if the projection of the point to all MHIs corresponds

to a value greater than zero, ii) the value of that 3D point is calculated by summing

the values of its projections in MHIs. To detect the intances of motion, similar to

the procedure applied on visual hulls in [4], we search for the local minima of the

motion energy of MHIs. With this new line of work, there will only be a load in

the network communication when a motion is detected. Since MHIs are constructed

at each camera individually, one question can be about the synchronization of the

detected motion instances. We think that a simple voting procedure among cameras

can deal with the synchronization problem.

The duration of a motion depends on the type of the motion (walking, kicking,

etc.). For this reason, the number of MHIs that will be sent to the fusion node, in

other words the bandwidth required for our approach depends on the type of the mo-

tion. Thus, we approximate the bandwidth by using an average motion duration time.

Specifically, assuming there is no image compression, the bandwidth can be calculated

as Height of image×Width of image×Pixel DepthBit/AverageMotion T ime. As-
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suming that the duration of a single motion takes 3 seconds in average, the resulting

bandwidth is 291 × 390 × 8/3 = 302.6Kbit/s. In other words, we save around 89%

of the bandwidth.

3.2.2 Experimental Results

Decreasing the communication requirements so much may cause a trade-off between

robustness and communication. We have tested the performance of our sparse repre-

sentation framework and the method in [4] using the MHVs constructed from MHIs

for both training and testing data. We have empirically set the regularization pa-

rameter in Eq. 3.8, λ, to 500 and 100 for the group sparse and sparse approaches,

respectively. The resulting average rate of accuracies are given in Table 3.6. We

have also presented the average rate of accuracies obtained using the original MHVs

constructed from silhouettes. We have observed that when the MHVs constructed

from MHIs are used, there occurs a small degradation in the average accuracies, but

we still achieve a high level of accuracy (90.00%) and our sparse representation based

method works better than the method in [4]. Considering the amount of saving in

bandwidth, we think that the degradation is at a neglectful level. In conclusion we

can say that, by changing the way of constructing features, we have adapted the

action recognition method to VSN resource constraints, without degrading the per-

formance significantly.

Similar to the experiments in Section 3.1.2, we have also performed tests using

the MHVs constructed from MHIs under various conditions, such as when action

descriptors are low resolution, when data are noisy, when there is occlusion. In Ta-

ble 3.7, the performance of both the method in [4] and our sparse representation
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The method in [4] SR

MHVs y LDA PCA Maha. Group Sparse Sparse

from Sil. [32] 92.42% 66.36% 93.33% 93.33% 93.93%

from MHIs [32] 88.79% 69.39% 88.48% 90.00% 89.70%

Table 3.6: Average accuracies of the method in [4] and our method obtained by

using MHVs that are constructed from MHIs.

The method in [4] SR

y LDA PCA Maha. Group Sparse Sparse

[32] 88.79% 69.39% 88.48% 90.00% 89.70%

[16] 71.82% 48.18% 73.03% 88.48% 87.88%

[8] 15.45% 9.09% 9.70% 71.82% 69.70%

Table 3.7: Average accuracies of the method in [4] and our SR based method when

MHVs constructed from MHIs are used and action descriptors are low-resolution.

Bold values represent the best accuracy for each row.

framework using action descriptors in 16x16x16 and 8x8x8 voxel grid sizes are pre-

sented. We have also presented the average accuracies obtained using the 32x32x32

action descriptors are presented. The results show that while using the MHVs con-

structed from MHIs and the action descriptors have very low resolution, our method

achieves reasonable level of accuracy. When the action descriptors have a resolution

of 16x16x16, the performance of the method in [4] degrades much more dramatically

than that of our method. Although the method in [4] still achieves a reasonable

level of accuracy (73.03%), our method with group sparse approach achieves a bet-

ter accuracy level (88.48%). For the 8x8x8 grid size, the method in [4] obtains an

unacceptable level of accuracy. PCA and Mahalanobis procedures achieve only ran-

dom assignment accuracies (9.09% 9.70%), whereas our method with group sparse
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approach achieves a reasonable level of accuracy (71.82%). In both 16 and 8 voxel

grid resolutions, our group sparse approach works slightly better than our sparse ap-

proach. These experiments demonstrate that, by construction MHVs from MHIs and

using our sparse representation approach, we can both decrease the communication

in the network and perform action recognition in the case of low resolution data.

We have also tested the robustness of our method for perturbations in MHVs caused

by the miscalculation of the start and/or end times of the motion in MHIs. We have

created the test samples by extracting the action descriptors from theMHVs, that

are constructed from MHIs, corrupted with zero-mean Gaussian noise. Training sam-

ples are created by using the clean MHVs constructed from MHIs. In Table 3.8, we

have presented the average accuracies achieved by the method in [4] and our method

for various noise levels. The results obtained from the clean data (0% corruption)

are also shown for comparison. It can be seen that for all noise levels our method

outperforms the method in [4]. Even the noise variance is 90% of the maximum

of the MHV, our method achieves a reasonable level of accuracy (73.64%). For all

variances, we observe that group sparse and sparse versions of our approach achieve

similar results. For the method in [4], there is a significant performance drop as the

data become more noisy (most notably when the noise variance increases from 10%

to 20%). When the noise variance is selected equal to or greater than 40% of the

maximum of the MHV constructed from MHIs, the best accuracy obtained by the

method in [4] is close to random assignment accuracy (9.09%). The results show

that our method is robust to failures in motion detection and it can be used in VSNs

without overloading the network.
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The method in [4] SR

y Corruption LDA PCA Maha. Group Sparse Sparse

[32] 0% 88.79% 69.39% 88.48% 90.00% 89.70%

[32] 10% 63.64% 36.97% 66.97% 89.70% 90.00%

[32] 20% 16.67% 17.27% 18.18% 87.58% 88.48%

[32] 30% 9.39% 13.33% 10.61% 89.39% 88.48%

[32] 40% 9.09% 11.21% 9.09% 87.88% 86.67%

[32] 50% 9.09% 9.70% 9.09% 86.36% 84.55%

[32] 60% 9.09% 9.09% 9.09% 85.15% 84.85%

[32] 70% 9.09% 9.09% 9.09% 80.61% 81.21%

[32] 80% 9.09% 9.09% 9.09% 74.85% 72.12%

[32] 90% 9.09% 9.09% 9.09% 73.64% 72.73%

[32] 100% 9.09% 9.09% 9.09% 67.88% 65.45%

Table 3.8: Average accuracies of the method in [4] and our method on MHVs

constructed from MHIs and corrupted by zero-mean Gaussian noise with variance

specified in terms of percentages of the maximum value of the MHV. Bold values

represent the best accuracy for each row.
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When there is an occlusion in silhouettes, MHIs are also occluded, which also causes

occlusion in MHVs. We have examined how the occlusion in MHVs constructed from

MHIs affects the recognition accuracy. Test samples are created by extracting the

action descriptors from the MHVs, starting from the center, occluded (set to zero) in

various levels, from 5 percent to 90 percent. Training samples are created by using

the clean MHVs. As in Section 3.1.2, we assume the presence of a perfect occlusion

detector. In Table 3.9, the average accuracies obtained by the method in [4] and

our method for various levels of occlusion are presented. The results obtained from

the original data (0% occlusion) are also presented for comparison. The results show

that our method performs better than the method in [4] for all levels of occlusion.

For occlusion levels up to 60%, the method in [4] achieves very close accuracy rates

to our method. But, for higher occlusion levels, our method is definitely better than

the method in [4]. It can also be observed that the group sparse and sparse versions

of our method achieve very similar accuracy levels.

Based on the experimental results we have obtained, we can say that by constructing

MHVs from MHIs and using our sparse representation framework, we can perform

action recognition in VSNs without overloading the network, even in limitations in

data quality and quantity.

3.3 Role of the Sparsity Constraint in Classifica-

tion Problems

Recently, the importance of sparsity constraint in Eq. 3.7 has been questioned for

face recognition problem [18, 19]. It has been shown that rather than a sparsity
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The method in [4] SR

y Occlusion LDA PCA Maha. Group Sparse Sparse

[32] 0% 88.79% 69.39% 88.48% 90.00% 89.70%

[32] 5% 87.58% 66.36% 86.67% 86.67% 87.27%

[32] 10% 88.88% 68.18% 87.27% 87.88% 87.88%

[32] 20% 87.58% 64.85% 87.88% 89.39% 88.48%

[32] 30% 84.85% 65.15% 84.85% 85.76% 84.85%

[32] 40% 83.03% 63.94% 83.03% 87.27% 86.06%

[32] 50% 80.30% 60.91% 81.82% 83.64% 84.24%

[32] 60% 81.52% 63.64% 80.61% 82.73% 82.12%

[32] 70% 76.36% 56.67% 75.76% 79.09% 76.36%

[32] 80% 69.70% 56.67% 68.18% 74.55% 74.24%

[32] 90% 54.85% 47.58% 55.76% 63.33 % 60.30%

Table 3.9: Average accuracies of the method in [4] and our method using MHVs

constructed from MHIs under various levels of occlusion. Bold values represent the

best accuracy for each row.
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constraint imposed by l1 norm, using a standard l2 regularization term also achieves

similar level of accuracy. This is a very interesting observation that questions the

necessity of imposing sparsity for classification problems. In this section, we have

analyzed the role of sparsity constraint for two different action recognition problems.

In order to use the l2 regularization term, mathematically, we change the optimization

problem in Eq. 3.7 as the following regularized least squares problem:

x̂ = arg min
x
||y − ψx||2 + λ||x||2 (3.15)

The solution of the above problem can be analytically derived as:

x̂ =
(
ψTψ + λ · I

)−1
ψTy (3.16)

After we find the solution of the regularized least squares problem using Eq. 3.16,

we classify the test sample, y, by assigning it to the object class that minimizes the

residual between y and approximation ỹ as in Eq. 3.9.

3.3.1 Analysis for the 3-D Action Recognition Problem

By using the same features and dataset explained in Section 3.1.1 and Section 3.1.2,

we have tested the performance of the classifier based on l2 regularization for the 3-D

action recognition problem.

Table 3.10 shows the action classification results of l2 regularization and sparse repre-

sentation using both sparsity and group sparsity constraints. As mentioned in Section

3.1.2, the regularization parameter in Eq. 3.8, λ, is set to 500 and 100 for the group
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The method in [4] SR l2-norm

Action LDA PCA Maha. Group Sparse Sparse

Check watch 83.33% 46.66% 86.66% 80.00% 83.33% 80.00%

Cross arms 100.00% 83.33% 100.00% 100.00% 100.00% 100.00%

Scratch head 93.33% 46.66% 93.33% 96.66% 96.66% 90.00%

Sit down 93.33% 93.33% 93.33% 96.66% 96.66% 96.66%

Get up 90.00% 83.33% 93.33% 90.00% 90.00% 93.33%

Turn around 96.66% 93.33% 96.66% 96.66% 96.66% 96.66%

Walk 100.00% 100.00% 100.00% 100.00% 100.00% 100.00%

Wave hand 90.00% 53.33% 80.00% 83.33% 86.66% 80.00%

Punch 93.33% 53.33% 96.66% 96.66% 96.66% 96.66%

Kick 93.33% 83.33% 96.66% 96.66% 96.66% 93.33%

Pick up 83.33% 66.66% 90.00% 90.00% 90.00% 90.00%

Average 92.42% 66.36% 93.33% 93.33% 93.93% 92.42%

Table 3.10: Accuracies of the method in [4] and our methods based on sparse

representation and l2 regularization for each action. Bold values represent the best

accuracy for each action.

sparse and sparse approaches, respectively. For the regularized least squares prob-

lem, we have set λ to 1, 102, 103, 104, 105 and run the classifier. We have observed

that we obtain the same classification accuracy for all λ values. This implies that

classification based on l2 regularization does not require much effort for parameter

selection. We have also presented the performance of the original method in [4].

It can be seen that we can also achieve high level of accuracy via classification based

on l2 regularization. For 6 actions (cross arms, sit down, turn around, walk, punch,

pick up), the l2 regularizer obtains the same level of accuracy with the sparse repre-

sentation based classifier. Just for 4 actions (check watch, scratch head, wave hand,

kick), it obtains worse accuracy rates. On the other hand, for the “get up“ action, it

achieves slightly better level of accuracy.
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The method in [4] SR l2-norm

y LDA PCA Maha. Group Sparse Sparse

[32] 92.42% 66.36% 93.33% 93.33% 93.93% 92.42%

[16] 78.18% 44.55% 77.27% 90.00% 90.61% 83.03%

[8] 20.91% 9.09% 9.09% 73.64% 67.88% 71.21%

Table 3.11: Average accuracies of the method in [4] and our methods based on sparse

representation and l2 regularization when action descriptors are low-resolution. Bold

values represent the best accuracy for each row.

As in Section 3.1.2, we have tested the performance of the l2 regularizer under var-

ious conditions. Table 3.11, Table 3.12 and Table 3.13 present the results obtained

using action descriptors in 16x16x16 and 8x8x8 voxel grid sizes, using MHVs cor-

rupted by zero-mean Gaussian noise with variance specified in terms of percentages

of the maximum value of the MHV and using MHVs under various levels of occlu-

sion, respectively. We have presented the performance of the original method in [4]

and sparse representation based classifiers. We can observe that l2 regularizer also

achieves high level of accuracy in various conditions including low-resolution data,

occlusion and noise. Except for action descriptors in 16x16x16 voxel grid size, highly

corrupted and occluded cases, l2 regularizer achieves very close level of accuracy with

the sparse representation based classifier. Interestingly, for the extreme occluded

case, it achieves slightly better level of accuracy.

3.3.2 Analysis for 2-D Action Recognition Problem

We have also analyzed the performance of classification based on l2 regularization

for a different action recognition problem. We have used the well-known 2-D action
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The method in [4] SR l2-norm

y Corruption LDA PCA Maha. Group Sparse Sparse

[32] 0% 92.42% 66.36% 93.33% 93.33% 93.93% 92.42%

[32] 10% 89.39% 42.42% 90.30% 92.73% 93.33% 91.82%

[32] 20% 65.15% 16.06% 63.03% 93.03% 92.73% 90.61%

[32] 30% 25.76% 9.09% 24.55% 91.52% 90.61% 87.88%

[32] 40% 11.52% 9.09% 13.33% 92.42% 92.42% 90.00%

[32] 50% 11.21% 9.09% 12.42% 90.91% 90.30% 86.06%

[32] 60% 10.00% 9.09% 10.30% 89.39% 90.30% 86.67%

[32] 70% 10.61% 9.09% 10.00% 86.67% 86.36% 79.39%

[32] 80% 9.70% 9.09% 9.39% 83.94% 83.94% 76.06%

[32] 90% 9.70% 9.09% 9.09% 81.82% 80.91% 75.45%

[32] 100% 9.39% 9.09% 9.09% 84.55% 83.94% 70.00%

Table 3.12: Average accuracies of the method in [4] and our methods based on

sparse representation and l2 regularization on data corrupted by zero-mean Gaussian

noise. Bold values represent the best accuracy for each row.

recognition method in [10] that is based on space-time interest points and bag-of-

features model. In the following subsections, we describe the details of this method

and present the result of the analysis on the role of sparsity constraint.

Space-time features and Bag-of-features Model

The method in [10] is based on the idea that the Harris interest point detector in the

spatial domain can be extended into the spatio-temporal domain by requiring the

image values in space-time. Points with such properties are defined as spatial inter-

est points that have distinct locations in time corresponding to local spatio-temporal

neighborhoods with non-constant motion.

To model a spatio-temporal image sequence, a function f : R2 × R → R is used
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The method in [4] SR l2-norm

y Occlusion LDA PCA Maha. Group Sparse Sparse

[32] 0% 92.42% 66.36% 93.33% 93.33% 93.93% 92.42%

[32] 5% 91.21% 66.97% 90.91% 91.21% 91.52% 90.91%

[32] 10% 88.18% 65.15% 88.18% 89.70% 90.61% 89.70%

[32] 20% 89.09% 64.24% 89.39% 91.52% 90.91% 88.18%

[32] 30% 86.06% 64.24% 88.18% 90.00% 89.39% 88.48%

[32] 40% 86.36% 62.12% 86.67% 87.27% 87.88% 85.76%

[32] 50% 85.15% 61.52% 83.33% 85.76% 85.45% 84.85%

[32] 60% 83.33% 57.88% 82.42% 85.45% 84.55% 79.39%

[32] 70% 75.76% 59.39% 75.15% 79.39% 80.61% 74.85%

[32] 80% 70.30% 60.61% 70.61% 76.06% 73.03% 63.33%

[32] 90% 47.88% 46.36% 47.58% 56.67% 53.94% 57.88%

Table 3.13: Average accuracies of the method in [4] and our methods based on

sparse representation and l2 regularization for various levels of occlusion. Bold values

represent the best accuracy for each row.

and its linear scale-space representation L : R2×R×R2
+ → R is constructed by con-

volution of the image sequence, I(x, y, t), with an anisotropic Gaussian kernel with

distinct spatial variance σ2
l and temporal variance τ 2l

L(·;σ2
l , τ

2
l ) = g(·;σ2

l , τ
2
l ) ∗ I(·), (3.17)

where the spatio-temporal separable Gaussian kernel is defined as

g(x, y, t, ;σ2
l , τ

2
l ) =

exp(−(x2 + y2)/2σ2
l − t2/2τ 2l )√

(2π)3σ4
l τ

2
l

(3.18)

In [10], similar to the Harris point detector, the spatio-temporal second-moment ma-

trix, which is a 3-by-3 matrix composed of first order spatial and temporal derivatives
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averaged with a Gaussian weighting function g(·;σ2
i , τ

2
i ), is considered.

µ = g(·;σ2
i , τ

2
j ) ∗

 L2
x LxLy LxLt

LxLy L2
y LyLt

LxLt LyLt L2
t

 (3.19)

where the integration scales are in multiple-levels, σ2
i = 2(1+i)/2, i = 1, · · · , 6 and τ 2j =

2j/2, j = 1, 2, while the first-order derivatives are defined as Lξ(·;σ2
l , τ

2
l ) = ∂ξ(g ∗ I).

Interest points are detected by searching for regions in I having significant eigen-

values λ1, λ2, λ3 of µ. In order to find such regions, the Harris corner function defined

for the spatial domain is extended into the spatio-temporal domain by combining the

determinant and the trace of µ in the following way

H = det(µ)− ktrace3(µ) = λ1λ2λ3 − k(λ1 + λ2 + λ3)
3 (3.20)

In [10], they define the ratios α = λ2/λ1 and β = λ3/λ1 (assuming λ1 ≤ λ2 ≤ λ3).

To show that the positive local maxima of H correspond to points with high values

of λ1, λ2, λ3, they rewrite H = λ31(αβk(1 + α + β)3). Then, the requirement H ≥ 0

implies that k ≤ αβ/(1 +α+ β)3 and it follows that as k increases towards its maxi-

mal value k = 1/27, both ratios α and β tend to one. For sufficiently large values of

k, positive local maxima of H correspond to points with high variation of the image

gray-values in both the spatial and the temporal dimensions. Thus, spatio-temporal

interest points of I can be found by detecting local positive spatio-temporal maxima

in H. An example of interest points detected by this approach for walking motion

are presented in Figure 3.6.

To characterize motion and appearance of local features, they compute histogram de-

scriptors of space-time volumes in the neighborhood of detected points in [10]. The
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(a) (b)

Figure 3.6: Space-time features detected for a walking pattern: (a) 3-D plot of a

spatio-temporal leg motion (up side down) and corresponding features (in black); (b)

Features overlaid on selected frames of a sequence.

size of each volume (δx , δy , δt ) is related to the detection scales by δx, δy = 2mσ,

δt = 2mτ (they set m to 9 in the experiments). For each volume they compute coarse

histograms of oriented gradient (HoG) and optic flow (HoF). Then, normalized his-

tograms are concatenated into HoG and HoF descriptor vectors.

Given a set of spatio-temporal features, extracted as above, they build a spatio-

temporal bag-of-features (BoF) model. This requires the construction of a visual

vocabulary. In the experiments they cluster a subset of 100k features sampled from

the training videos with the k-means algorithm. They empirically set the number of

clusters to k = 4000. The BoF representation then assigns each feature to the clos-

est (using the Euclidean distance) vocabulary word and computes the histogram of

visual word occurrences over a space-time volume corresponding to the entire video

sequence. This histogram is used as a descriptor to represent the on going motion in
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Figure 3.7: Examples of sequences corresponding to different types of actions and

scenarios in KTH-dataset [5].

the video sequence.

Results

In the experiments, we have used the KTH-dataset in [5] containing six types of

human actions (walking, jogging, running, boxing, hand waving and hand clapping)

performed several times by 25 subjects in four different scenarios: outdoors s1, out-

doors with scale variation s2, outdoors with different clothes s3 and indoors s4. Sam-

ple images from the dataset is presented in Figure 3.7. All sequences are taken over

homogeneous backgrounds with a static camera with 25fps frame rate. The sequences

are downsampled to the resolution of 160 × 120 pixels and have a length of four sec-

onds in average.

In [10, 5], the spatio-temporal BOF descriptors are classified using nearest-neighbor

(NN) classifier and a non-linear support vector machine (SVM) with a multi-channel
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χ2 kernel. For NN, we have used 16 subjects for training and 9 subjects for testing.

For SVM, we divided the dataset into a training set (8 people), a validation set (8

people) and a test set (9 people). SVM is trained on a training set while the vali-

dation set is used to optimize its parameters. The presented recognition results are

obtained on the test set. Similarly, we have used 16 people for training and 9 people

for testing in our sparse representation based classifier with both group sparse and

sparse approach and in the l2 regularizer based classifier. The regularization param-

eter in Eq. 3.8 and Eq.3.16, λ, is empirically set to 0.1 for both group sparse, sparse

and l2 approaches. For l2 regularizer based classifier, again we have observed that we

obtain the same classification accuracy for different λ values.

Table 3.14 shows the action recognition results for all methods. It can be seen that

both three approaches (group sparse, sparse and l2) achieve better level of accura-

cies on average compared to the method in [10]. Among these three approaches, the

sparse approach works slightly better than the others. We can also see that l2 reg-

ularization based classifier again achieves high level of accuracy. Except the boxing

action, it achieves identical results with the sparse approach. Interestingly, it obtains

the identical level of accuracies with the group sparse approach. Only for hand clap-

ping action, SVM works slightly better than all other methods.

3.3.3 Conclusion on Analysis for the Role of Sparsity

In Section 3.3.1 and 3.3.2, we have analyzed the role of sparsity constraint for two

different action recognition problems. In the light of these experimental results, we
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The method in [10] SR l2-norm

Action NN SVM Group Sparse Sparse

Boxing 97.22% 97.00% 94.44% 97.22% 94.44%

Hand Clapping 94.29% 95.00% 94.29% 94.29% 94.29%

Hand Waving 97.22% 91.00% 97.22% 97.22% 97.22%

Jogging 91.67% 89.00% 94.44% 94.44% 94.44%

Running 66.67% 80.00% 83.33% 83.33% 83.33%

Walking 97.22% 99.00% 100.00% 100.00% 100.00%

Average 90.71% 91.83% 93.96% 94.42% 93.96%

Table 3.14: Accuracies of the method in [10] and our methods based on sparse

representation and l2 regularization for each action. Bold values represent the best

accuracy for each action.

can say that sparse representation based classification is an important technique that

outperforms existing action recognition methods especially in the case of limitations

in data quality and quantity. On the other hand, although we could not see a case in

which it works better than sparse representation based classifier, we have seen that

l2 regularization based classification also achieves high level of accuracies.

There is a common idea behind both approaches: to express a test sample as a linear

combination of training samples. Experimental results also show that this common

idea is the trigger force that provides robust action recognition performance. In order

to have a complete conclusion, we believe that this analysis should be performed for

different classification problems other than action recognition problem which are not

in the scope of this thesis.
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4 HUMAN TRACKING IN VSNS

VIA FEATURE COMPRESSION

In this chapter, we describe our feature compression framework proposed to over-

come communication problems of human tracking systems in visual sensor networks.

This framework is another contribution of this thesis. As we have seen in Section

2.2.3, because of the energy and bandwidth constraints in VSNs, rather than central-

ized approaches, decentralized and distributed approaches have been proposed [76].

Following these studies, we propose a decentralized approach in which a feature com-

pression framework is used to reduce the communication in the network. In Section

4.1, we describe our decentralized approach and the multi-camera tracking algorithm

that we use in our framework.

Section 4.2 presents our feature compression framework. Instead of directly send-

ing features to the fusion node, block-based compression is performed on features

by transforming each block to an appropriate domain. Then, only the significant

coefficients in this new representation are sent to the fusion node. Here, we perform

goal-directed compression. In the tracking context, this is achieved by performing

local processing at the nodes and compressing the resulting features which are re-

lated to the tracking goal, rather than compressing raw images. To the best of our
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knowledge, compression of features computed in the context of tracking in a VSN

has not been proposed in previous work.

The selection of the domain that we transform the blocks of features is very impor-

tant. The properties of an appropriate domain is discussed in Section 4.3. In order to

choose an appropriate domain, we have performed a comparison between well-known

transforms. In Section 4.4, both qualitative and quantitative results together with

our analysis on domain selection are provided.

4.1 Overview

4.1.1 Decentralized Human Tracking

As we have described in Section 2.2.3, in a traditional setup of camera networks

(centralized tracking), each camera acquires an image and sends this raw data to

a central unit. In the central unit, relevant features are extracted from multi-view

data, by using these features, the positions of the humans are estimated. Hence,

integration of multi-view information is done in raw-data level by pooling all images

in a central unit. With a data compression perspective, the common approach to get

over high-bandwidth requirements is to compress images and collect them in a central

unit to perform the tasks of interest. In this strategy, the main goal is to focus on

low-level communication. The communication load is decreased by compressing the

raw data without regard to the final inference goal based on the information content

of the data. Since such a strategy will affect the quality of the transmitted data, it

may decrease the performance of further inference tasks.
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The decentralized approaches fit very well to VSNs in many aspects. The processing

capability of each camera is utilized by performing feature extraction at camera-level.

Since cameras are grouped into clusters, the communication overhead is reduced by

limiting the cooperation within each cluster and among fusion nodes. In other words,

by a decentralized approach, feature extraction and communication are distributed

among cameras in clusters, therefore, efficient estimation can be performed. One

may argue that distributed approaches have more ability to decrease communication

than decentralized methods. Although, in theory this is true, in practice distributed

methods require an inference approach totally different from decentralized methods.

Therefore, we need to propose tracking algorithms based on distributed estimation.

On the other hand, by using decentralized strategy, it is easier to have decentralized

trackers by making small modifications on centralized trackers. For this reason, we

base our framework on decentralized tracking.

Modeling the dynamics of humans in a probabilistic framework is a common per-

spective of many multi-camera human tracking methods [6, 110, 111, 112]. In track-

ing methods based on a probabilistic framework, data and/or extracted features are

represented by likelihood functions, p(y|x) where y ∈ Rd and x ∈ Rm are the obser-

vation and state vectors, respectively. Human tracking is performed by estimating

the posterior probability of state of humans given observations:

p(x|y) ∝ p(y|x)p(x) (4.1)

When we have C cameras, assuming the observations from cameras (y = {y1, · · · , yC})

are independent, we obtain the likelihood function by taking the product of marginal
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Figure 4.1: The flow diagram of our decentralized tracker.

distributions

p(y|x) =
C∏
c=1

p(yc|x) (4.2)

In other words, for each camera, a likelihood function is defined in terms of the

observations obtained from its field of view. In centralized tracking, of course, the

likelihood functions are computed after collecting the image data of each camera at

the central unit. For a decentralized approach, since each camera node extracts local

features from its field of view, these likelihood functions, p(yc|x), can be evaluated

at the camera nodes and they can be sent to the fusion node. Then, in the fusion

node the likelihoods can be combined (Eq. 4.2) and tracking can be performed in

the probabilistic framework (Eq. 4.1). A flow diagram of the decentralized approach

is illustrated in Figure 4.1.
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4.1.2 The Tracking Algorithm

In this section we describe the tracking method of [6], as we apply our decentralized

approach within in the context of this method. In [6], the visible part of the ground

plane is discretized into a finite number G of regularly spaced 2D locations. Let

Lt = (L1
t , ..., L

N∗
t ) be the locations of individuals at time t, where N∗ stands for

the maximum allowable number of individuals. Given T temporal frames from C

cameras, I = (I1, ..., IT ) where It = (I1t , ..., I
C
t ), the goal is to maximize the posterior

conditional probability:

P (L1 = l1, ...,LN∗ = lN
∗|I) = P (L1 = l1|I)

N∗∏
n=2

P (Ln = ln|I,L1 = l1, ...,Ln−1 = ln−1) (4.3)

where Ln = (Ln1 , ..., L
n
T ) is the trajectory of person n. Simultaneous optimization of

all the Lis would be intractable. Instead, one trajectory after the other is optimized.

Ln is estimated by seeking the maximum of the probability of both the observations

and the trajectory ending up at location k at time t:

Φt(k) = max
ln1 ,...,l

n
t−1

P (I1, L
n
1 = ln1 , ..., It, L

n
t = k) (4.4)

Under a hidden Markov model, the above expression turns into the classical recursive

expression:

Φt(k) = P (It|Lnt = k)︸ ︷︷ ︸
Appearance model

max
τ

P (Lnt = k|Lnt−1 = τ)︸ ︷︷ ︸
Motion model

Φt−1(τ) (4.5)

The motion model P (Lnt = k|Lnt−1 = τ) is a distribution into a disc of limited radius

and center τ , which corresponds to a loose bound on the maximum speed of a walking
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human.

From the input images It, by using background subtraction, foreground binary masks,

Bt, are obtained. Let the colors of the pixels inside the blobs are denoted as Tt and

X t
k be a Boolean random variable denoting the presence of an individual at location

k of the grid at time t. It is shown in [6] that the appearance model in Eq. 4.5 can

be decomposed as:

Appearance model︷ ︸︸ ︷
P (It|Lnt = k) ∝ P (Lnt = k|X t

k = 1,Tt)︸ ︷︷ ︸
Color model

P (X t
k = 1|Bt)︸ ︷︷ ︸

Ground plane occupancy

(4.6)

In [6], humans are represented as simple rectangles and these rectangles are used to

create synthetic ideal images that would be observed if people were at given locations.

Within this model, the ground plane occupancy is approximated by measuring the

similarity between ideal images and foreground binary masks.

Let T ct (k) denote the color of the pixels taken at the intersection of the foreground

binary mask, Bc
t , from camera c at time t and the rectangle Ack corresponding to

location k in that same field of view. Say we have the reference color distributions

(histograms) of the N∗ individuals present in the scene, µc1, ..., µ
c
N∗ . The color model

of person n in Eq. 4.6 can be expressed as:

Color model︷ ︸︸ ︷
P (Lnt = k|X t

k = 1,Tt) ∝ P (Tt|Lnt = k) = P (T 1
t (k), ..., TCt (k)|Lnt = k)

=
∏C

c=1 P (T ct (k)|Lnt = k) (4.7)
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In [6], by assuming the pixels whose colors are represented by T ct (k) are independent,

P (T ct (k)|Lnt = k) is evaluated by a product of the marginal color distribution µcn at

each pixel,– P (T ct (k)|Lnt = k) =
∏

r∈T ct (k)
µcn(r). In this approach, a patch with con-

stant color intensity corresponding to the the mode of the color distribution would be

most likely. Hence, this approach may fail to capture the statistical color variability

represented by the full probability density function estimated from a spatial patch.

Instead, we represent P (T ct (k)|Lnt = k) by comparing the observed and reference

color distributions, which is a well known approach used in many computer vision

methods [113, 114, 115]. In particular, we compare the estimated color distribu-

tion (histogram) of the pixels in T ct (k) and the color distribution µcn with a distance

metric – P (T ct (k)|Lnt = k) ∝ exp(−S(Hc,k
t , µcn)) where Hc,k

t denotes the histogram

of the pixels in T ct (k) and S(.) is a distance metric. As a distance metric, we use

the Bhattacharya coefficient between two distributions. In this way, we can evaluate

the degree of match between the intensity distribution of an observed patch and the

reference color distribution.

By performing a global search with dynamic programming using Eq. 4.5, the trajec-

tory of each person can be estimated.

4.2 Compressing Likelihood Functions

The bandwidth required for sending local likelihood functions depends on the size of

likelihoods (i.e., the number of ”pixels” in a 2D likelihood function) and the number

of cameras in the network. To make the communication in the network feasible,

we propose a feature compression framework. In our framework, similar to image
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compression, we compress the likelihood functions by transforming them to a proper

domain and keeping only the significant coefficients, assuming significant parts of the

likelihood functions are sufficient for performing tracking. At each camera node, we

first split the likelihood function into blocks. Then, we transform each block to a

proper domain and take only the significant coefficients in the new representation.

Instead of sending the function itself, we send this new representation of each block.

In this way, we reduce the communication in the network.

Mathematically, we have the following linear system:

ybc = A · xbc (4.8)

where ybc and xbc represent the bth block of the likelihood function of camera c (for a

person of interest in a particular time instant, P (T ct (k)|Lnt = k) in Eq. 4.7) and its

representation, respectively, and A is the domain we transform ybc to. In most of the

compression methods, the matrix A is chosen to be a unitary matrix. Hence, we can

obtain xbc by multiplying ybc with the Hermitian transpose of A:

xbc = A∗ · ybc (4.9)

Figure 4.2 illustrates our likelihood compression scheme. Based on existing work

on VSN hardware platforms [116, 117, 118, 119], it is reasonable to expect that the

computational power of cameras in VSNs is sufficient for performing the camera-level

computations required by our approach.

Notice that in our feature compression framework, we do not require the use of spe-

cific image features or likelihood functions. The only requirement is that the tracking
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Figure 4.2: Our Likelihood compression scheme. On the left, there is a local like-

lihood function (P (T ct (k)|Lnt = k) in Eq. 4.7). First, we split the likelihood into

blocks, then we transform each block to the domain represented by matrix A and ob-

tain the representation xbc. We only take significant coefficients in this representation
and obtain a new representation x̃bc. For each block, we send this new representation

to fusion node. Finally, by reconstructing each block we obtain the whole likelihood

function on the right.

method should be based on a probabilistic framework, which is a common approach

for modeling the dynamics of humans. Hence, our framework is a generic framework

that can be used with many probabilistic tracking algorithms in a VSN environment.

In all camera nodes and fusion nodes, the matrix A is common, therefore, at the

fusion node, likelihood functions of each camera can be reconstructed simply by mul-

tiplying the new representation with the matrix A. In general, this may require an

offline coordination step to decide the domain that is matched with the task of inter-

est. In the next subsection, we go through the question of which domain should be

selected in Eq. (4.8).
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4.3 A Proper Domain for Compression

By sending the compressed likelihoods to the fusion node, our goal is to decrease

the communication in the network without affecting the tracking performance sig-

nificantly. On one hand, we want to send less coefficients, on the other hand, we

do not want to decrease the quality of the likelihoods, i.e., we want to have small

reconstruction error. For this reason, we need to select a domain that is well-matched

to the likelihood functions, providing the opportunity to accurately reconstruct the

likelihoods back using a small number of coefficients.

Image compression using transforms is a mature research area. Numerous transforms

such as the discrete cosine transform (DCT), the Haar transform, symmlets, coiflets

have been proposed and proven to be successful [120, 121, 122]. DCT is a well-known

transform that has the ability to analyze non-periodic signals. Haar wavelet is the

first known wavelet basis that consists of orthonormal functions. In wavelet theory,

number of vanishing moments and size of support are two important properties that

affect the ability of wavelet bases to approximate a particular class of functions with

few non-zero wavelet coefficients [123]. In order to reconstruct likelihoods accurately

using from a small number of coefficients, we wish wavelet functions to have large

number of vanishing moments and small size of support. Coiflets [124] are a wavelet

basis with large number of vanishing moments and Symmlets [125] are a wavelet ba-

sis that have minimum size of support. The performance of these domains has been

analyzed in the context of our experiments and a proper domain has been selected

accordingly as described in Section 4.4.2.
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4.4 Experimental Results

4.4.1 Setup

In the experiments, we have simulated the VSN environment by using the indoor and

outdoor multi-camera dataset in [6]. Indoor dataset includes four people sequentially

entering a room and walking around. The sequence was shot by four synchronized

cameras in a 50 m2 room. The cameras were located at each corner of the room. In

this sequence, the area of interest was of size 5.5 m× 5.5 m ' 30 m2 and discretized

into G = 56 × 56 = 3136 locations, corresponding to a regular grid with a 10cm

resolution. Outdoor dataset was shot in university campus and it includes up to four

individuals appear simultaneously. This sequence was shot by three synchronized

cameras. The area of interest at this sequence is of size 10 m× 10 m and discretized

into G = 40× 40 = 1600 locations, corresponding to a regular grid with a resolution

of 25cm.

For the correspondence between camera views and the top view, the homography

matrices provided with the dataset are used. The size of the images are 360 × 288

pixels and the frame rate for all of the cameras is 25 fps. A sample set of images for

indoor and outdoor dataset is shown in Figure 4.3.

From the formulation in Section 4.1.2, we can see that there are two different likeli-

hood functions defined in the tracking method [6]. One is the ground plane occupancy

map (GOM), P (X t
k = 1|Bt), approximated using the foreground binary masks. The

other is the ground plane color map (GCM), P (Lnt = k|X t
k = 1,Tt), which is a

multi-view color likelihood function defined for each person individually. This map is
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(a)

Cam-1 Cam-2 Cam-3

(b)

Figure 4.3: A sample set of images from (a) indoor and (b) outdoor multi-camera

datasets [6].
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obtained by combining the individual color maps, P (T ct (k)|Lnt = k), evaluated using

the images each camera acquired. Since foreground binary masks are simple binary

images that can be easily compressed by a lossless compression method, they can be

directly sent to the fusion node without overloading the network. Therefore, we keep

these binary images as in the original method and GOM is evaluated at the fusion

node. In our framework, we evaluate GCM in a decentralized way (as presented in

Figure 4.1): At each camera node (c = 1, · · · , C), the local color likelihood function

for the person of interest (P (T ct (k)|Lnt = k)) is evaluated by using the image acquired

from that camera. Then, these likelihood functions are sent to the fusion node. At

the fusion node, these likelihood functions are integrated to obtain the multi-view

color likelihood function (GCM) (Eq. 4.7). By combining GCM and GOM with the

motion model, the trajectory of the person of interest is estimated at the fusion node

using dynamic programming (Eq. 4.5). The whole process is run for each person in

the scene.

Fusion node selection and sensor resource management (sensor tasking) is out of

scope of this thesis. We have assumed that one of the camera nodes, relatively more

powerful one, has been selected as the fusion node. Since each camera keeps a ref-

erence color histogram individually for each person in the scene, data association

between different people is performed at the camera level. Then, at the fusion node,

assuming there is only one person in the scene in the beginning of the tracking pro-

cess, we assign an ID number for each likelihood function coming from cameras to

the fusion node. Likelihoods with the same ID number from different cameras are

associated with one another at the fusion node.
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4.4.2 Comparison of Domains

As discussed in Section 4.3, it is very important to select a domain (matrix A in

Eq. (4.8)) that can compress the likelihood functions effectively. To select a proper

domain, we have performed a comparison between DCT, Haar, Symmlet, and Coiflet

domains and examined the errors in reconstructing the likelihoods using various num-

ber of coefficients. For the Symmlet domain, the size of support is set to 8 and for the

Coiflet domain, the number of vanishing moments is set to 10. In the comparison, we

have used 20 different likelihood functions obtained from the tracker in [6]. We have

also analyzed the effect of block size by choosing two different block sizes: 8×8 and

4×4. After we transform each block to a domain, we have reconstructed the blocks

by using only 1, 2, 3, 4, 5, and 10 most significant coefficient(s). In total, for a block

size of 8×8, taking the most significant 2 coefficients results in 98 coefficients overall.

According to the structure of the likelihood functions, the elements in a block may

all be zero. For such a block all the coefficients will be zero, thereby we do not need

to take coefficients. Thus, we may end up with even smaller number of coefficients.

Figure 4.4 shows the average of reconstruction errors of each domain for different

block sizes. As explained above, the total number of significant coefficients used for

reconstruction may change depending on the structure of likelihoods. For this reason,

the x-axis in Figure 4.4 corresponds to the average of number of coefficients obtained

by taking the 1, 2, 3, 4, 5 and 10 most significant coefficient(s) per block. We can

see that using DCT with a block size of 8×8 outperforms other domains. Following

this observation, in our tracking experiments, this setting has been used.
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Figure 4.4: The average reconstruction errors of DCT, Haar, Symmlet, and Coiflet

domain for block sizes of 8×8 and 4×4 using 1, 2, 3, 4, 5 and 10 most significant

coefficient(s) per block.

4.4.3 Indoor Tracking Results

In this subsection, we present the performance of our method used for multi-view

multi-person tracking. In the experiments, we have compared our method with

the traditional centralized approach of compressing raw images and a decentralized

method in which, similar to [7], a Kalman filter is used in the fusion node to estimate

the position of a person in the scene using the observations coming from cameras. In

the centralized approach, after the raw images are acquired by the cameras, similar to

JPEG compression, each color channel in the images are compressed and sent to the

central node. In the central node, features are extracted from the reconstructed im-

ages and tracking is performed using the method in [6]. In the decentralized method,

after likelihood functions are computed, each camera sends the peak point of the

distribution to the fusion node as observation. In the fusion node, the observations
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of each camera are spatially averaged and using the average position as observation,

a Kalman filter is applied to estimate the position of the person on ground plane.

The position of all people in the scene is estimated by running an individual Kalman

filter for each person.

For both our method and the centralized approach we have used DCT domain with

a block size of 8×8 and took only the 1, 2, 3, 4, 5, 10, and 25 most significant coef-

ficient(s). Consequently, in our method with the likelihoods of 56×56 size, at each

camera in total we end up with at most 49, 98, 147, 196, 245, 490 and 1225 coefficients

per person. Since there are four individuals in the scene at maximum, each camera

sends at most 196, 392, 588, 784, 980, 1960 and 4900 coefficients. As mentioned in

the previous section, these are the maximum number of coefficients, since there may

be some all-zero blocks. To make a fair comparison, in the centralized approach we

compress the images with 360×288 size and 3 color channels. Hence, at each camera

we end up with 4860, 9720, 14580, 19440, 24300, 48600 and 121500 coefficients. In

the decentralized method that uses Kalman filter, for each person, each camera sends

only 2 points, xy-point of the peak point, to the fusion node. In total, we end up

with 8 points in maximum for four individuals.

A groundtruth for this sequence is obtained by manually marking the people on

ground plane, in intervals of 25 frames. Tracking errors are evaluated via Euclidean

distance between the tracking and manual marking results (in intervals of 25 frames).

Figure 4.5 presents the average of tracking errors over all people versus the total num-

ber of significant coefficients used in communication for the centralized approach and

for our method. Since the total number of significant coefficients sent by a camera
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in our method may change depending on the structure of likelihood functions and

the number of people at that moment, the maximum is shown in Figure 4.5. It

can be clearly seen that the centralized approach is not capable of decreasing the

communication without affecting the tracking performance. It needs at least 121500

significant coefficients in total to achieve an error of around 1 pixel in the grid on

average. On the other hand, our method, down to using 3 significant coefficients per

block, achieves an error of around 1 pixel in the grid on average. In our experiments,

this led to sending at most 408 coefficients for four people. Taking less than 3 co-

efficients per block affects the performance of the tracker and produces an error of

11.5 pixels in the grid on average. But in overall, our method significantly outper-

forms the centralized approach. In Figure 4.5, we also present the performance of the

decentralized Kalman approach. We can see that, by using this approach, we can ob-

tain a huge reduction in the communication, but we cannot perform robust tracking.

Our framework is also advantageous over an ordinary decentralized approach that

directly sends likelihood functions to the fusion node. In such an approach, we send

each data point in the likelihood function, resulting a need of sending 12544 values

for tracking four people. The performance of this approach is also given in Figure

4.5. It can be seen that we can both achieve the same level of tracking accuracy and

decrease the communication in the network.

The tracking errors for each person and the tracking results, obtained by the central-

ized approach using 48600 coefficients in total, are given in Figure 4.6-a and Figure

4.6-b, respectively. It can be seen that although the centralized approach can track

the first and the second individuals very well, there is an identity association prob-

lem for the third and fourth individuals. Figure 4.7 shows the tracking errors of each
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person and tracking results obtained by the decentralized Kalman approach. It can

be seen that it fails to track the people in the scene. Nearly for all people, there

occurs identity association problems. In some frames, it loses the track of the person

and starts tracking a virtual person in the scene (frame no. 1173 in Figure 4.7-b).

The reason of these failures are that the amount of information coming from cameras

is not enough to perform robust tracking. Before combining multi-view likelihoods,

the peak point of the likelihood function of each view does not provide accurate in-

formation about the location of the person. Because of these inaccurate observations

the method fails to track people in the scene. In Figure 4.8-a and Figure 4.8-b, we

present the tracking errors for each person and the tracking results obtained by our

method using 3 coefficients per block, respectively. Clearly, we can see that all people

in the scene can be tracked very well by our method. The reason of the peak error

value in the third person is because the tracking starts a few frames after the third

person enters the room. For this reason, there is a big error at the time third person

enters the room. When the number of coefficients taken per block is less then 3, we

also observe identity problems. But by selecting the number of coefficients per block

greater than or equal to 3, we can track all the people in the scene accurately. The

centralized approach, in total, requires at least more than two orders of magnitude

coefficients to achieve this level of accuracy. Unlike the decentralized Kalman ap-

proach, our compression scheme enables us to decrease the communication and at

the same time keep sufficient information to perform robust tracking.

In the light of the results we obtained, we can say that our framework successfully de-

crease the communication in the network without affecting the tracking performance

significantly. For the same tracking performance, our framework saves 99.6% of the
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Figure 4.5: Indoor sequence: The average tracking errors vs. the number of coef-

ficients for the centralized approach (blue), our framework (red), the decentralized

Kalman approach that is similar to the method in [7] (purple) and another decen-

tralized method (green) that directly sends likelihood functions.

bandwidth compared to the centralized approach and achieves saving up to 96.75%

compared to the ordinary decentralized approach.

4.4.4 Outdoor Tracking Results

The performance of our method for outdoor multi-person tracking is presented in this

subsection. Again, we have compared our method with the traditional centralized

approach using DCT domain with a block size of 8×8 and the decentralized Kalman

approach that is similar to the method in[7]. For our method, we took only the 5,

10, 15, 20, 30 and 50 most significant coefficient(s) per block. Consequently, with

the likelihoods of 40×40 size, at each camera in total we end up with at most 125,

250, 375, 500, 750 and 1250 coefficients per person. Since there are four individuals
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(a)

(b)

Figure 4.6: (a) The tracking errors for each person and (b) tracking results for the

indoor dataset obtained by the centralized approach using 48600 coefficients in total

in communication.
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(a)

(b)

Figure 4.7: (a) The tracking errors for each person and (b) tracking results for the

indoor dataset obtained by the decentralized Kalman approach.122



(a)

(b)

Figure 4.8: (a) The tracking errors for each person and (b) tracking results for the

indoor dataset obtained by our framework using 3 coefficients per block in commu-

nication.
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in the scene at maximum, each camera sends at most 500, 1000, 1500, 2000, 3000,

and 5000 coefficients to the fusion node. Again, these are the maximum number of

coefficients since in some blocks the elements may all be zero, thereby we do not take

coefficients from these blocks. In the centralized method, we compress the images

by taking only the 1, 2, 3, 4, 5, 10, and 25 most significant coefficient(s) for each

block in image. By compressing the images with 360×288 size and 3 color channels,

at each camera we end up with 4860, 9720, 14580, 19440, 24300, 48600 and 121500

coefficients. As we have mentioned in Section 4.4.3, in the decentralized Kalman

approach, each camera sends only 2 points per person, xy-point of the peak point,

to the fusion node. In total, we end up with 8 points in maximum for four individuals.

As in the indoor sequence, tracking errors are evaluated via the Euclidean distance

between the tracking and manual marking results. Figure 5.6 presents the average

of tracking errors over all people versus the total number of significant coefficients

used in communication for our feature compression framework. Again, the maximum

number of coefficients is shown here. The performance of the centralized approach

is also presented in Figure 5.6. It can be clearly seen that the centralized approach

fails to maintain robust tracking while decreasing communication load in the net-

work. It requires at least 121500 significant coefficients in total to achieve an error

of around 3 pixels in the grid on average. Using less coefficients with this approach

causes identity association problems. On the other hand, by using our framework we

achieve an error of 2 pixels in the grid in average with 15 coefficients per block. In

our experiments, this led to sending at most 1500 coefficients for four people. Taking

less than 15 coefficients per block affects the performance of the tracker and produces

an error of 8 pixels in the grid on average. But it can be observed that, our method
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significantly outperforms the centralized approach. In Figure 5.6, we also present

the performance of the decentralized Kalman approach. We can see that, by using

this approach, we can obtain a huge reduction in the communication, but we can-

not perform robust tracking. Our framework is also advantageous over an ordinary

decentralized approach that directly sends likelihood functions to the fusion node.

In such an approach, we send each data point in the likelihood function, resulting a

need of sending 6400 values for tracking four people. The performance of this ap-

proach is also given in Figure 4.5. It can be seen that we can both achieve the same

level of tracking accuracy with the ordinary decentralized method and decrease the

communication in the network as well.

The tracking errors for each person and the tracking results, obtained by the central-

ized approach using 48600 coefficients in total, are given in Figure 4.10-a and Figure

4.10-b, respectively. It can be seen that although the centralized approach can track

the second and the fourth individuals very well, there is an identity association prob-

lem for the third, fifth individuals and at the end of first person. Figure 4.11 shows

the tracking errors of each person and tracking results obtained by the decentralized

Kalman approach. It can be seen that it fails to track the people in the scene. Nearly

for all people, there occurs identity association problems. Usually, it loses the track

of the person and starts tracking a virtual person in the scene (Figure 4.7-b). As in

Section 4.4.3, the reason of these failures are that the amount of information coming

from cameras is not enough to perform robust tracking. The peak point of the likeli-

hood function of each view does not provide accurate information about the location

of the person. Thus, the method fails to track people in the scene. In Figure 4.12-a

and Figure 4.12-b, we present the tracking errors for each person and the tracking re-
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Figure 4.9: Outdoor sequence: The average tracking errors vs. the number of co-

efficients for the centralized approach (blue), our framework (red), the decentralized

Kalman approach that is similar to the method in [7] (purple) and another decen-

tralized method (green) that directly sends likelihood functions.
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sults obtained with our method using 15 coefficients per block, respectively. Clearly,

we can see that all people in the scene can be tracked very well by our method. The

reason of the peak error value in the first, third and fourth person is that the people

leaves or enters the scene. Either the tracking starts a few frames after the person

enters the scene or stops a few frames before the person leaves the scene. For this

reason, there is a big error at these time instances. When the number of coefficients

taken per block are less then 15, we also observe identity problems. But by selecting

the number of coefficients per block greater than or equal to 15, we can track all the

people in the scene accurately. The centralized approach, in total, requires almost

two orders of magnitude coefficients to achieve this level of accuracy.

Based on these results, we can say that our framework successfully decreases the com-

munication in the network without affecting the tracking performance significantly.

For the same tracking performance, our framework saves 98.7% of the bandwidth

compared to the centralized approach and achieves 76.5% saving compared to the

decentralized approach.
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(a)

(b)

Figure 4.10: (a) The tracking errors for each person and (b) tracking results for

the outdoor dataset obtained by the centralized approach using 48600 coefficients in

total in communication.
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(a)

(b)

Figure 4.11: (a) The tracking errors for each person and (b) tracking results for the

outdoor dataset obtained by the decentralized Kalman approach.129



(a)

(b)

Figure 4.12: (a) The tracking errors for each person and (b) tracking results for

the outdoor dataset obtained by our framework using 15 coefficients per block in

communication.
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5 A SPARSE REPRESENTATION

FRAMEWORK FOR HUMAN

TRACKING IN VSNS

This chapter presents our sparse representation framework for human tracking in

visual sensor networks. Although this framework attacks the same problem with the

framework in Chapter 4, this is a different approach that uses sparse representation

tools and is another contribution of this thesis. As we have explained in Chapter 4,

decentralized approaches fit well to VSNs. Rather than a block-based likelihood com-

pression scheme, here we design special overcomplete dictionaries that are matched

to the structure of the likelihood functions and use these dictionaries for sparse rep-

resentation of likelihoods. By using these dictionaries, we can represent likelihoods

with few coefficients, and thereby decrease the communication between cameras and

fusion nodes. In Section 5.1, we describe how we design the dictionaries. To the best

of our knowledge, this is the first method in which likelihood functions computed in

the context of tracking in a VSN are compressed by sparse representation.

As we have seen in Section 2.1.2, the implementation of solvers for sparse repre-

sentation is an important step in real-world applications. Based on this observation,

we have performed a bench-marking analysis on l1 solvers in order to find the best
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method in time and accuracy for our sparse representation framework.

The performance of our sparse representation framework is presented in Section 5.3

by comparing with our framework in Chapter 4 and a distributed tracking algorithm

[9] via both qualitative and quantitative results.

5.1 Sparse Representation of Likelihoods

In Chapter 4, we have shown that likelihood compression through orthogonal trans-

forms of blocks of the likelihood functions can achieve bandwidth reduction. Also, we

have seen that there are some limitations of this framework. After a certain level of

bandwidth reduction, we cannot reduce further without decreasing the tracking per-

formance (Section 4.4). The reason is that this approach does not take into account

the structure of the likelihood functions. Although such transforms provide some

level of sparsity, they certainly do not fully exploit the structure of the likelihood

functions. For computational reasons, these orthogonal transforms are applied to

blocks of the likelihood functions, leading to blocking artifacts in the reconstructed

likelihoods. Most of the wavelet transforms try to extract the edge regions in the

image. But the likelihood functions have rarely edge regions. Focusing on scenar-

ios involving extreme bandwidth constraints, we believe that we can achieve much

more bandwidth reduction by representing likelihood functions sparsely in an ap-

propriate domain. Considering the fact that the domain is the key component that

determines the level of sparsity, thereby the level of reconstruction accuracy, we need

a special dictionary that is matched with the structure of the full likelihood functions.
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In fact, the likelihood functions we obtain from the color model in [6] have a spe-

cial structure. As it has been explained in Section 4.1.2, the color model likelihood

functions for a person of interest are obtained by comparing the color histogram of

rectangular patches in foreground image and a template color histogram of the person

of interest. In Figure 5.1, two sample foreground images and the likelihood functions

obtained from these foreground images are given. Figure 5.1-a and Figure 5.1-c show

foreground images captured from two different camera views when there is only one

person in the scene and when the scene is crowded, respectively. The likelihood

function obtained from these image are given in Figure 5.1-b and Figure 5.1-d. We

can clearly see that likelihood functions consist of quadrilateral-shaped components.

A person in the scene creates a quadrilateral-shaped component in the likelihood

function. One of the important properties of these components is that their shape

do not depend on the value of the foreground pixels. The values inside the quadri-

lateral changes according to the color pixels in foreground image. But the shape of

the trapezoid only depends on the camera view and the position of the foreground

pixels. For this reason, we can say that these quadrilateral-shaped components are

building blocks of likelihood functions. By creating an overcomplete dictionary from

these building blocks, we can naturally and properly utilize the structure of the whole

likelihood functions.

In Section 4.3, we have discussed about parameters that measure the abilities of

wavelet transforms in frequency and time domain for representing functions. Simi-

larly, while creating this dictionary, it is very important to cover all possible types of

likelihood functions. In order to find all the building blocks of likelihood functions,

we need to create likelihood functions from all possible foreground images. We start
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(a) (b)

(c) (d)

Figure 5.1: Foreground images captured from two different camera views (a) when

there is only one person in the scene, (c) when the scene is crowded and (b,d) color

model likelihood functions obtained from the images .
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(a) (b)

Figure 5.2: (a) A sample foreground image that is all-black except a white pixel

(pointed with a red arrow) and (b) the likelihood function obtained from this fore-

ground.

by a foreground image that is all-black except a single white pixel, which can be de-

scribed as a building block of foreground images. By using a flat template histogram,

we obtain a likelihood function from this image. We assume that, since it is obtained

from the building block of foreground images, this likelihood function is one of the

building blocks of likelihood functions (Figure 5.2). By changing the position of the

white pixel and re-evaluating the likelihood function from that foreground image,

we can create a pool composed of building blocks. For each camera, we create the

dictionary matrix (Ac in Eq. 5.1) by arranging the building blocks of likelihoods as

the columns of the matrix.

Using these overcomplete dictionaries, we can build the following sparse representa-

tion framework:

min
xc
||yc − Ac · xc||2 + λ||xc||1 (5.1)
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where yc and xc represents the likelihood function of the camera c (for a person of

interest in a particular time instant) and its sparse coefficients, respectively, and Ac

is the dictionary that we have created for camera c.

To obtain the sparse representation of the likelihood function, at each camera we

solve the optimization problem in Eq. 5.1. Then, each camera sends this sparse rep-

resentation to fusion node. At the fusion node, likelihood functions of each camera

can be reconstructed simply by multiplying the new representation with the matrix

Ac and used in tracking.

As in our feature compression framework, our sparse representation framework does

not require the use of specific image features or likelihood functions.

5.2 Comparison of Solvers for l1-minimization

As we have seen in Section 2.1.2, solving optimization problems with l1 constraint has

become a well-established research area. Many solver algorithms has been proposed

for l1-minimization. In [109], the solvers we have described in Section 2.1.2 have

been compared in order to find the fastest solver to be used in sparsity-driven face

recognition. Following this work, we have compared these solvers in order to choose

a solver that is fast and accurate for our sparse representation framework.

In the comparison, we have used 20 different likelihood functions obtained from the

tracker in [6] as a test set. Our special design dictionaries, that have been created us-

ing the approach in the previous section, have been used as the Ac matrix in Eq. 5.1.
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λ = 0.1 λ = 0.5 λ = 1 λ = 10 λ = 100 λ = 200

Homotopy [107] 0.60133 0.64638 0.62925 0.62143 0.49892 0.32343

L1 LS [38] 816.1898 134.1769 81.6986 30.0675 13.7835 12.8253

SpaRSA [47] 24.695 22.9193 22.1939 21.7195 22.0352 0.063627

FISTA [108] 636.0806 381.3541 343.2617 206.3525 130.385 131.4214

ALM [109] 0.085406 0.078551 0.079087 0.078963 6.8105 127.8755

Table 5.1: Average run-times of solvers in seconds for different regularization pa-

rameters.

Homotopy [107], L1LS [38], SpaRSA [47], FISTA [108] and ALM [109] algorithms

have been used to solve the optimization problem in Eq. 5.1 and find the sparse

representation of likelihood functions in the test set. The regularization parameter

in Eq. 5.1, λ, is set as 0.1, 0.5, 1, 10, 100, 200. The average run-times of the solvers

in seconds for different λ values has been shown in Table 5.1. To avoid trivial solu-

tions, we have also checked the number of iterations of each algorithm . The average

iteration count solvers for different λ values are given in Table 5.2.

We can see that ALM algorithm for λ values between 0.1−10 and SpaRSA algorithm

for λ = 200 are the fastest solvers. But, average iteration counts of ALM and SpaRSA

show that they find the trivial solution. When we look at the Homotopy algorithm,

we can see that, independent of the λ parameter, Homotopy algorithm works both

fast and accurate. We have observed that selecting λ = 0.1 enforces enough level of

sparsity to achieve reasonable results. Therefore, we select the Homotopy algorithm

and set λ = 0.1 in our tracking experiments.
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λ = 0.1 λ = 0.5 λ = 1 λ = 10 λ = 100 λ = 200

Homotopy [107] 15.4792 15.4792 15.4792 15.1042 8.6354 1.3125

L1 LS [38] 20.8333 17.9479 18.8542 21.1979 20.5104 21.5833

SpaRSA [47] 833.5938 848.9271 833.5729 813.4583 826.0208 0.5

FISTA [108] 269.9688 144.4583 121.9375 47.7917 7.8542 4.75

ALM [109] 2 2 2 2 206.0313 3498.6563

Table 5.2: Average iteration count of solvers for different regularization parameters.

5.3 Experimental Results

5.3.1 Comparison with the Block-based Compression Frame-

work

In this subsection, we have presented experimental results that we obtained using

the tracking framework in [6] (Section 4.1.2). We have compared our method with

the block-based compression framework in Chapter 4.

Setup

In the experiments, as we did in Section 4.4, we have simulated the VSN environment

by using the indoor and outdoor multi-camera dataset in [6].

Using the procedure explained in Section 5.1, we have created the dictionaries for

each view. Since the foreground images are in size of 360x288, we obtain 3 and 4

overcomplete dictionaries with 103680 atoms for the outdoor and indoor datasets

respectively. We have observed that, because of the overlap between rectangular

patch and white pixel in the foreground image, some atoms are all-zero or same with

other atoms. As a post-processing step, we remove these atoms from the matrix. For
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the indoor dataset, we end-up with dictionaries with 36073, 46986, 28155 and 30195

atoms for first, second, third and fourth view, respectively. For the outdoor dataset,

we end-up with dictionaries with 12777, 11984, and 19846 atoms for first, second,

and third view, respectively.

Following our observations in previous section, we have solved the optimization prob-

lem using the Homotopy algorithm [107] with λ is set as 0.1 for all dictionaries.

Indoor Tracking Results

In this subsection, we present the performance of our method used for indoor multi-

person tracking. In the experiments, we have compared our method with the block-

based compression framework in Chapter 4. Here we consider the version of the

framework that uses DCT for feature compression with a block size of 8×8 and took

only the 1, 2, 3, 4, 5, 10, and 25 most significant coefficient(s) per block. Conse-

quently, with the likelihoods of 56×56 size, at each camera in total we end up with

at most 49, 98, 147, 196, 245, 490 and 1225 coefficients per person. Since there are

four individuals in the scene at maximum, each camera sends at most 196, 392, 588,

784, 980, 1960 and 4900 coefficients. As we have mentioned in Section 4.4, according

to the structure of the likelihood functions, the elements in a block may all be zero.

For this reason, these are the maximum number of coefficients. In our method, after

sparse representation of color model likelihood of a person of interest is found, we

only took 10, 15, 20, 25, 50 and 100 most significant coefficients. This provides that,

since there are four individuals in the scene at maximum, each camera sends at most

40, 60, 80, 100, 200 and 400 coefficients to the fusion node.
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As we have stated in Section 4.4, a groundtruth for this sequence is obtained by

manually marking the people in the ground plane, in intervals of 25 frames. Tracking

errors are evaluated via Euclidean distance between the tracking and manual marking

results (in intervals of 25 frames). Figure 5.3 presents the average of tracking errors

over all people versus the total number of significant coefficients used in communica-

tion for our sparse representation framework. Since the total number of significant

coefficients sent by a camera may change depending on the number of people at that

moment, the maximum is shown in Figure 5.3. The performance of our block-based

compression framework is also presented in Figure 5.3. It can be clearly seen that by

using the custom-designed dictionaries, our sparse representation framework achieves

much more bandwidth reduction than using the block-based compression framework.

To achieve an error of 1 pixel in the grid in average, our sparse representation frame-

work using custom-designed dictionaries needs at least 20 coefficients per person,

whereas the block-based compression framework needs at least 147 coefficients per

person.

The tracking results of the block-based compression framework using 49 coefficients

per person and our sparse representation framework using 20 coefficients per person

are given in Figure 5.4 and Figure 5.5, respectively. It can be seen that, although

the block-based compression approach can track the first and the second individuals

very well, there is an identity association problem for the third and fourth individ-

uals. Clearly, we can see that all people in the scene can be tracked very well by

our sparse representation framework. The reason of the peak error value in the third

person is because the tracking starts a few frames after the third person enters the

room. For this reason, there is a big error at the time third person enters the room.
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Figure 5.3: Indoor sequence: The average tracking errors vs. the number of co-

efficients for our block-based compression framework in Chapter 4 (red), our sparse

representation framework (blue) and a decentralized method (green) that directly

sends likelihood functions.
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When the number of coefficients taken per person are less then 20, we also observe

identity problems. But by selecting the number of coefficients per person greater

than or equal to 20, we can track all the people in the scene accurately. The block-

based compression framework, in total, requires at least five times more coefficients

to achieve this level of accuracy.

In the light of the results we obtained, for the same tracking performance, our sparse

representation based method saves 80.39% of the bandwidth used by the block-based

compression approach. Our method representation based is also advantageous over

an ordinary decentralized approach that directly sends likelihood functions to the

fusion node. In such an approach, we send each data point in the likelihood function,

resulting a need of sending 12544 values for tracking four people. The performance

of this approach is also given in Figure 5.3. Our approach uses only 1.25% of the

bandwidth needed by the decentralized approach.

Outdoor Tracking Results

The performance of our sparse representation based method for outdoor multi-person

tracking is presented in this subsection. Again, we have compared our sparse repre-

sentation framework with the block-based compression framework in Chapter 4 using

DCT domain with a block size of 8×8. For this approach, we took only the 5, 10,

15, 20, 30, and 50 most significant coefficient(s) per block. Consequently, with the

likelihoods of 40×40 size, at each camera in total we end up with at most 125, 250,

375, 500, 750 and 1250 coefficients per person. Since there are four individuals in the

scene at maximum, each camera sends at most 500, 1000, 1500, 2000, 3000, and 5000

coefficients. Again, these are the maximum number of coefficients since the elements
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(a)

(b)

Figure 5.4: (a) The tracking errors for each person and (b) tracking results for

the indoor dataset obtained by the block-based compression framework in Chapter 4

using 49 coefficients per person used in communication.
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(a)

(b)

Figure 5.5: (a) The tracking errors for each person and (b) tracking results for the

indoor dataset obtained by our sparse representation framework using 20 coefficients

per person used in communication.

144



in a block may all be zero. In our method, after sparse representation of color model

likelihood of a person of interest is found, we only took 5, 10, 15, 20, 25, 50 and 100

the most significant coefficients. This provides that, since there are four individuals

in the scene at maximum, each camera sends at most 20, 40, 60, 80, 100, 200 and

400 coefficients to the fusion node.

As in the indoor sequence, tracking errors are evaluated via the Euclidean distance

between the tracking and manual marking results. Figure 5.6 presents the average

of tracking errors over all people versus the total number of significant coefficients

used in communication for our sparse representation framework. Again, the max-

imum number of coefficients is shown here. The performance of our block-based

compression framework is also presented in Figure 5.6. It can be clearly seen that

our sparse representation framework works better in decreasing the communication

than the block-based compression framework. The block-based compression frame-

work requires at least 375 coefficients per person to achieve an error of 2 pixel in the

grid in the average. Using less coefficients with this approach causes identity asso-

ciation problems. On the other hand, by using our sparse representation framework

we achieve same tracking performance with 10 coefficients per person.

The tracking results of the block-based compression framework using 250 coefficients

per person and our sparse representation based approach with custom-designed dic-

tionaries using 10 coefficients per person are given in Figure 5.7 and Figure 5.8,

respectively. It can be seen that, the block-based compression fails to preserve iden-

tities. Especially, when a person leaves the scene and comes back, the person cannot

be recognized and he or she is considered as a new person in the scene. Clearly, we
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Figure 5.6: Outdoor sequence: The average tracking errors vs. the number of

coefficients for our block-based compression framework in Chapter 4 (red), our sparse

representation framework (blue) and a decentralized method (green) that directly

sends likelihood functions.
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can see that all people in the scene can be tracked very well by our approach with

custom-designed dictionaries using 30 times less coefficients.

Based on these results, we can say that, by using the special design dictionaries,

our sparse representation framework successfully decreases communication load in

the network without significantly degrading tracking performance. It also works

better than the block-based compression framework in Chapter 4. Our sparse repre-

sentation based method is also advantageous over an ordinary decentralized approach

that sends 6400 values for tracking four people (Figure 5.6). Our approach uses only

0.63% of the bandwidth needed by the decentralized approach.

5.3.2 Comparison with a Distributed Approach

In this subsection, we present the results of comparing our method with a distributed

approach in which each camera node fuses its observations with tracking results re-

ceived from its neighbors and sends the updated estimates to the next neighbor. We

have used the distributed tracking method in [9] for the comparison.

In [9], as we have mentioned in Section 2.2.3, at each camera node the position

of people on ground plane is estimated by applying individual Kalman-consensus fil-

ters [95] on its own observations together with observations and estimates coming

from neighboring cameras. The state of each person in the Kalman-consensus fil-

ter is a four-element vector representing the position and velocity on x and y axes

on ground plane. We obtain the observation of each camera by using the human

detection algorithm in [126]. The human detector outputs a probability map that

represents the probable locations of people on image plane. As in [77], we project this
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(a)

(b)

Figure 5.7: (a) The tracking errors for each person and (b) tracking results for the

outdoor dataset obtained by the block-based compression framework in Chapter 4

using 10 coefficients per block in communication.

148



(a)

(b)

Figure 5.8: (a) The tracking errors for each person and (b) tracking results for the

outdoor dataset obtained by our sparse representation framework using 10 coefficients

per person in communication.

149



probability map onto the ground plane (Z=0) and onto planes at different heights

(Z=200, 400, · · · , 1600) that are parallel to the ground. Then, we combine these

multi-layered projected probability maps and obtain a likelihood function for a cam-

era view. The observation vector of each camera that is used in Kalman-consensus

filter, is obtained by finding the local maximum points of its likelihood function.

At each time step, camera nodes share their observation vector and observation co-

variance together with predicted states of each person. As in [9], the association of

observations to people is achieved based upon appearance (color) and motion infor-

mation.

In our framework, at each camera node we find the sparse representation of the

likelihood function, that is obtained by combining multi-layered projected probabil-

ity maps, using Eq. 5.1 and send this representation to the fusion node. As we have

described in Section 5.1, we design a dictionary for each camera by using the building

blocks of the likelihood functions. For this tracking method, we create the building

blocks by setting a 100×30 rectangular patch in an all-zero probability map ’1’ and

projecting this map onto ground plane. Similar to the procedure in Section 5.1, as we

shift this rectangular patch, we can create a pool of building blocks and consequently

build the dictionary. In the fusion node, the likelihoods are reconstructed using the

the sparse representation sent by cameras. As we explained in previous chapters, the

posterior probability is obtained by combining the likelihood with a motion model

and the position of people are estimated by running dynamic programming on the

posterior probability.
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Cam-1 Cam-2 Cam-3 Cam-4

Figure 5.9: A sample set of images from PETS 2009 benchmark dataset [8].

Setup

In the experiments, again we have simulated the VSN environment by using the

PETS 2009 benchmark dataset [8]. The dataset was shot in a university campus and

it includes many people appearing simultaneously. We have used the four cameras

that cover a rectangular region on ground. The area of interest at this sequence is of

size 6 m × 6 m and discretized into G = 40× 40 = 1600 locations, corresponding to

a regular grid with a resolution of 15 cm.

The calibration parameters for each camera are provided within the dataset. The

size of the images are 720× 576 pixels and the frame rate for all of the cameras is 7

fps. A sample set of images for the dataset is shown in Figure 5.9.

We have created the dictionaries for each view using the procedure explained above.

We obtain dictionaries with 6932, 7870, 7768 and 6844 atoms for first, second, third

and fourth view, respectively. Again following our observations in previous section,

we have solved the optimization problem using the Homotopy algorithm [107] with

λ is set as 0.1 for all dictionaries.
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Tracking Results

The results of the comparison between our method and the distributed method in

[9] is presented in this subsection. In the distributed approach, each camera shares

the observation vector (2 element vector) and observation covariance (2×2 matrix)

together with the predicted states (4 element vector) with neighboring cameras. In

total, 10 elements per person is shared among cameras. Since there are four indi-

viduals in the scene at maximum, each camera sends at most 40 elements. In our

method, after sparse representation of likelihood of a person of interest is found, we

only took 30, 40, 50, 75, 100 most significant coefficients. This provides that, since

there are four individuals in the scene at maximum, each camera sends at most 120,

160, 200, 300, and 400 coefficients to the fusion node.

A groundtruth for this sequence is obtained by manually marking the people in

the ground plane. Tracking errors are evaluated via Euclidean distance between the

tracking and manual marking results. Figure 5.10 presents the average of track-

ing errors over all people versus the total number of significant coefficients used in

communication for our sparse representation framework. Since the total number of

significant coefficients sent by a camera may change depending on the number of peo-

ple at that moment, the maximum is shown in Figure 5.10. The performance of the

distributed approach in [9] is also presented in Figure 5.10. It can be clearly seen that

the distributed approach enables to make a huge reduction in communication in the

network, but it cannot perform robust tracking. Our sparse representation framework

achieves a bandwidth reduction less than the distributed approach, but, by using the

custom-designed dictionaries, our framework has the ability to decrease the commu-
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nication without affecting the tracking performance significantly. By using at least

50 coefficients per person, our sparse representation framework achieves an error of

2.5 pixel in the grid in average, whereas the distributed approach has a tracking error

of 24 pixel in the grid in average. Our method is also advantageous over an ordinary

decentralized approach that directly sends likelihood functions to the fusion node. In

such an approach, we send each data point in the likelihood function, resulting a need

of sending 6400 values for tracking four people. The performance of this approach is

also given in Figure 5.10. Naturally, by using all the information in likelihoods, the

ordinary decentralized approach achieves slightly better tracking performance than

our method. However, our framework enables to decrease the communication in the

network and achieve a tracking performance very close to performance of the original

method.

The tracking results of the distributed approach in [9] per person and our sparse

representation framework using 50 coefficients per person are given in Figure 5.11

and Figure 5.12, respectively. It can be seen that, the distributed approach fails to

preserve identities. For all people in the scene, there occurs identity switches. One

of the main reason of this problem is that the observations extracted from single

view likelihood functions are not accurate and are not enough to represent the whole

likelihood function. In the distributed approach, the fusion of observation is done

after the observations are extracted from single view likelihoods. Since the obser-

vations are not extracted after fusing the multi-view likelihoods, noisy single view

likelihoods creates inaccurate observations. An example for such a case is given in

Figure 5.13. We can see that, since the observations extracted from likelihoods of

each view are noisy, the estimated position of the person is not accurate. Hence, the

153



Figure 5.10: PETS 2009 sequence: The average tracking errors vs. the number

of coefficients for the distributed approach in [9] (red), our sparse representation

framework (blue) and a decentralized method (green) that directly sends likelihood

functions.
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distributed approach cannot robustly track the people. On the other hand, in our

sparse representation framework, we first fuse the single view likelihoods and then use

the multi-view likelihood function in tracking. By using the custom-designed dictio-

naries, we represent the likelihood functions with small number of coefficients without

affecting the amount of information they contain. Thus, the multi-view likelihood

obtained by fusing the reconstructed single view likelihoods is enough to perform

robust tracking. In Figure 5.12, it can be seen that our framework can successfully

preserve identities and track all people in the scene robustly. Even if a person leaves

the scene and comes back (the first person in Figure 5.12-b), he or she is recognized

and true label is assigned to the person. Because the tracking starts a few frames

after the person enters the scene or ends before the person leaves the scene, we see

some peak points in tracking error plots. When the number of coefficients taken

per person are less then 50, we also observe identity problems. But by selecting the

number of coefficients per person greater than or equal to 50, we can track all the

people in the scene accurately.

In the light of the results we obtained, we can say that our sparse representation based

method outperforms the distributed approach in [9]. By using the custom-designed

dictionaries, we can both decrease the communication in the network and perform

robust tracking. Our method requires only 3.12% of the bandwidth needed by the

ordinary decentralized method in order to achieve a tracking performance very close

to ordinary decentralized method. Another advantage of our framework is that it is

possible to find a balance between robust tracking and reduction in communication.

Whereas, in the distributed approach in [9] it is not easy to modify the algorithm

in order to increase the tracking performance. The algorithm should be extended in
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(a)

(b)

Figure 5.11: (a) The tracking errors for each person and (b) tracking results for the

PETS 2009 dataset obtained by the distributed approach in [9].
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(a)

(b)

Figure 5.12: (a) The tracking errors for each person and (b) tracking results for

the PETS 2009 dataset obtained by our sparse representation framework using 50

coefficients per person used in communication.
157



Figure 5.13: The illustration of the inaccurate observations in the distributed ap-

proach in [9]. White stars represent the observation extracted from likelihood function

at each view and blue star represent the estimated position of the person.

a way to share more information between cameras, thereby obtain better tracking

results.
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6 CONCLUSION

6.1 Summary

Visual sensor networks (VSNs) constitute a new paradigm that merges two well-

known topics: computer vision and sensor networks. A network of wirelessly con-

nected cameras poses unique and challenging problems that do not exist either in

computer vision or in sensor networks. VSNs consist of camera nodes, which inte-

grate the image sensor, embedded processor, and wireless transceiver. Due to the

resource constraints of the camera nodes, such as battery power and bandwidth, it

is crucial to perform data processing and collaboration efficiently.

Over the last decade, an alternative sampling/sensing theory, known as compressed

sensing, has been proposed to recover signals, images, and other data from what

appear to be undersampled observations. Compressed sensing is a technique for ac-

quiring and reconstructing a signal from small amount of measurements utilizing the

prior knowledge that the signal has a sparse representation in a proper space. As a

consequence, compressed sensing and sparse representation (SR) have become impor-

tant signal recovery techniques because of their success for acquiring, representing,

and compressing high-dimensional signals.
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Following the success of sparse representation, in this thesis we have proposed three

distinct sparse representation based ideas on existing problems of VSNs. The ability

of sparse representation tools for reconstructing signals from small amount of ob-

servations fits well with the limitations in VSNs for processing, communication and

collaboration. Hence, this thesis presents novel sparsity-driven methods that can be

used to perform action recognition and human tracking applications in VSNs.

For action recognition, we have assumed that a test sample can be written as a

linear combination of training samples from the class it belongs. In other words, a

test sample has a sparse representation in the space covered by the training samples.

Based on this assumption, we have cast the classification problem as an optimization

problem and solved it by enforcing sparsity through l1 regularization. We have devel-

oped two parallel perspectives one based on regular sparsity and the other one based

on so called group sparsity. The sparse approach is based on the idea that a test

sample can be represented by a small number of training samples, regardless of the

class labels of the training samples. On the other hand, the group sparse approach

imposes more structure, imposing sparsity across classes (i.e., allowing only a small

number of classes to be active in the representation) while allowing the use of a large

number of training samples from the active classes. Furthermore, a new approach

has been proposed to adapt this method for VSN resource constraints. The role of

sparsity in classification has been questioned in recent studies. It has been argued

that the l1-norm constraint may not be necessary. Following these studies, we have

also analyzed the role of sparsity in classification for two different action recognition

problems.
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We have proposed a feature compression framework to overcome communication

problems of human tracking systems in visual sensor networks. In our framework, we

perform tracking in a decentralized way: each camera extracts useful features from

the images it has observed and sends them to a fusion node which collects the multi-

view image features and performs tracking. Usually, in tracking, extracting features

results a likelihood function. Instead of sending the likelihood functions themselves

to the fusion node, the likelihoods have been compressed by first splitting them into

blocks, and then transforming each block to a proper domain and taking only the

most significant coefficients in this representation. Sending the most significant co-

efficients to the fusion node has allowed us to decrease the communication in the

network. To the best of our knowledge, compression of features computed in the

context of tracking in a VSN has not been proposed in previous work.

As an extension of this framework, we have proposed a sparsity-driven approach

for human tracking applications. Special overcomplete dictionaries that are matched

to the structure of the likelihood functions have been designed and they have been

used for sparse representation of likelihoods. In particular, we have designed our

dictionaries to exploit the specific known geometry of the measurement scenario for

the problem of human tracking. Each element in the dictionary for each camera

corresponds to the likelihood that would result from a single human at a particu-

lar location in the scene. Hence, actual likelihoods extracted from real observations

from scenes containing multiple individuals can be very sparsely represented in our

approach. Thereby, we can decrease the communication between cameras and fu-

sion nodes. To the best of our knowledge, this is the first method that uses sparse

representation to compress likelihood functions and applies this idea for VSNs. This
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framework fits well with the needs of the VSN environment. By extracting image

features at the camera-level, the processing capabilities of cameras are utilized. Using

only the most significant coefficients, obtained either from block-based compression

scheme or sparse representation of likelihoods, in communication saves energy and

bandwidth resources. We have achieved a goal-directed compression scheme for the

tracking problem in VSNs by performing local processing at the nodes and compress-

ing the resulting likelihood functions which are related to the tracking goal, rather

than compressing raw images.

Another advantage of these frameworks is that they do not require the use of a spe-

cific tracking method. Since tracking methods usually process likelihood functions for

estimation, our framework can work together with any kind of probabilistic tracking

method. Existing methods can be used within our framework in VSN environments

without making significant changes (e.g., using simpler features, etc.) which may

degrade their performance. In our experiments, we have used two different tracking

algorithms and achieved bandwidth reduction in the network without degrading the

tracking performance significantly.

6.2 Future Directions

In Chapter 3, we have proposed a sparse representation based classification method

for action recognition. But, we have also shown that rather than an l1 constraint, it

also is possible to obtain high level of accuracy using an l2 constraint. Based on the

results we have obtained for both 2-D and 3-D action recognition problems, saying

one is better than the other is not possible. We believe it is essential to investigate
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different classification problems in order to find special cases in which one is better

than the other.

In chapter 5, we have designed overcomplete dictionaries for sparse representation

of likelihood functions. As explained in Section 2.1.3, there are some approaches that

are used to learn dictionaries from a training data in order to adapt the dictionaries

to signals. It would be interesting to analyze the performance of dictionaries learned

via such methods.

Furthermore, another approach for compressing likelihood functions in human track-

ing applications can be representing likelihoods as binary signals. Analyzing the per-

formance of this approach and comparing with our feature compression and sparse

representation frameworks would be a very intresting future direction.

In our sparse representation based likelihood compression framework, we design dic-

tionaries according to the geometric configuration of cameras. Dictionary design is

an off-line process that is only performed once before tracking starts. However, when

the camera setup (e.g. camera location, camera view, etc.) changes, it is required to

design the dictionaries again. It would be very interesting to work on a method to

update the custom-design dictionaries according to the changes in camera setup.

In both action recognition and human tracking problems, the number of atoms of

overcomplete dictionaries used in optimization problems (matrix ψ in Eq. 3.8 and

matrix Ac in Eq. 5.1) are in the range of 10,000-50,000. In the case of much bigger

dictionaries (e.g. matrices with more than 100,000 columns), standard well-known
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algorithms (Section 2.1.2) may have difficulties in handling such very large-scale

problems, thereby cannot work fast and efficiently. To overcome this issue, an in-

teresting approach can be on exploiting the hierarchical structure of dictionaries

[127, 128, 129, 130].

In chapter 4 and 5, we have proposed two frameworks for compressing likelihood

functions in tracking applications in VSNs. In our frameworks, there is no assump-

tion on the dimensionality of likelihood functions. We believe our frameworks can

be used to compress any kind of likelihood function obtained by the measurements

from any kind of sensor. Following this idea, another future direction would be to use

our likelihood compression frameworks in wireless sensor network applications that

includes different kinds of sensors, such as humidity sensors, temperature sensors,

seismic sensors, etc.
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