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ABSTRACT 

The common goal of various protein immobilization techniques has been to bypass the intrinsic 

drawbacks of utilizing free enzymes as catalytic materials in industry. Crosslinked enzyme 

aggregates (CLEAs), one of the most successful, easily and widely applicable techniques 

developed so far, has greatly improved the storage and operational stability of enzyme 

preparations as well as permitted their easy recovery and thus reuse. Involving the seemingly 

simple semi-specific chemical cross linking of protein aggregates forced out of solution, the 

general applicability of typical CLEA methods has occasionally been challenged by protein-

specific anomalies, reflecting intrinsic structural and functional traits, altering the effectiveness of 

aggregation and crosslinkability, as well as the resultant bioactivity of the material. 

In this work, the described limitations, have been addressed using two particularly CLEA-

unfriendly protein starting materials, namely, native pepsin and urease. 

In case of urease, conventional CLEA methods led to dramatically low aggregation and cross 

linking yields, and displayed statistically insignificant catalytic activity in the immobilized 

product. Critical breakthrough was achieved by enforcing protein aggregation via lyophilization 
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as opposed to routine precipitation. The subsequent crosslinking of the lyophilizate (yielding a 

CLEL) in a suitable antisolvent led to a much improved crosslinking yield and catalytic activity. 

In case of pepsin, the problematic step was achieving covalent crosslinking by conventional 

CLEA methods, as pepsin bears a single surface lysyl residue and predictably was relatively 

unresponsive to all crosslinking attempts of surface amino groups. The problem was alleviated by 

appropriate choice of a rather large crosslinker, i.e., dextran polyaldehyde, and the use of the 

subzero crosslinking temperatures, therefore permitting the formation of the first ever 

catalytically competent pepsin CLEA.  

Novel immobilized formulations presented herein, are expected to contribute as alternatives to 

many established industrially important applications, involving challenging protein systems. 

Furthermore, these also could be utilized to prompt greener processes, such as the syntheses of 

industrially important commodity compounds. 
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ÖZET 

Çeşitli protein immobilizasyon tekniklerinin ortak amacı serbest enzimlerin endüstride katalitik 

malzemeler olarak kullanılmasındaki esas engelleri aşmaktır. Çapraz bağlı enzim agregatlar 

(CLEA), şimdiye kadar geliştirilmiş en başarılı ve uygulaması oldukça kolay tekniklerden biri 

olarak, enzim preparatlarının depolama ve operasyonel stabilitelerini iyileştirmekte olup, aynı 

zamanda geri kazanım ve yeniden kullanılabilmesine imkan vermiştir. Süreç çözünmüş 

proteinlerin agregat halinde elde edilip, yarı-spesifik olarak kimyasal çapraz bağlama 

adımlarından oluşmaktadır. CLEA metodunun genel uygunabilirliği bazı durumlarda protein 

türüne spesifik olan, yapısal ve fonksiyonel özelliklerine bağlı olarak oluşan anomalilerden dolayı 

sınırlı kalmaktadır. Bu durum agregasyon ve çapraz bağlama verimine, ayrıca sonuç olarak elde 

edilen biyoaktiviteye olumsuz yansımaktadır.  

Bu çalışmada söz konusu olan sınırlamalar, özellikle CLEA süreci için uygunluğu fazlasıyla 

düşük olan pepsin ve üreaz proteinleri kullanılarak ele alınmıştır. 

Üreaz durumunda, geleneksel CLEA yöntemleri önemli ölçüde düşük agregasyon ve çapraz 

bağlama verimlerine sebep olmuş, ve immobilize üründe ihmal edilebilir katalitik aktivite 

gözlemlenmiştir. Rutin çöktürme yerine liyofilizasyon yöntemi kullanılarak agregasyon 
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gerçekleştirilmesi bu soruna önemli çözüm getirmiştir. Liyofilizatların uygun antiçözücü 

içerisinde çapraz bağlanmasıyla yüksek çapraz bağlama ve sonuç katalitik aktivite verimlerine 

sahip çapraz bağlı protein liyofilizatlar (CLEL) elde edilmiştir. 

Pepsin durumunda, tek serbest lizin grubu taşıyıp amino gruplarına yönelik çapraz bağlama 

denemelerinin zorlu olmasından kaynaklanarak, zorlu adım kovalent çapraz bağlama adımı 

olmuştur. Bu sorun, oldukça büyük bir çapraz bağlayıcı olan, dekstran polialdehit seçimiyle ve 

sıfır-altı çapraz bağlama sıcaklığı kullanılarak çözülmüştür. Böylece ilk katalitik olarak 

fonksiyonel olan pepsin CLEA üretimi gerçekleştirilmiştir. 

Burada sergilenen yenilikçi immobilizasyon formülasyonları, özellikle zorlu protein sistemler 

durumunda, önemli endüstriyel uygulamalarda kullanılan geleneksel yöntemlere alternatif olarak 

katkı sağlaması beklenmektedir. Bunun dışında, bu çalışmada geliştirilmiş olan yöntemler, 

endüstriyel olarak önemli olan bileşik üretimi için yeşil sentez süreci oluşturulmasında 

kullanılabilir.  
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CHAPTER 1  Introduction  

 

1.1 Protein Immobilization  

While protein catalyst has been conventianally shown highly beneficial on a wide range of 

industrial, analytical and biomedical applications, the utilizability of native protein formulations 

is challenged by a number of factors including mechanical and chemical stability under 

conditions varying from those physiologically prescribed by the source of the particular protein 

and its specifications. The main aim of numerous protein immobilization techniques developed, 

has been to improve protein stability under conditions varying from the native proteins optimum 

but necessary for a given application, such as temperature, pH, ionic strength, organic solvent etc. 

Furthermore, immobilization should also achieve increased shelf life and provide reusability of 

the catalyst, while retaining catalytic activity [1-3].  

 Many approaches have been successfully attempted to achieve this goal over the years. The 

developed techniques can be generally classified as physical adsorption, encapsulation, and 

surface immobilization and cross linking [4, 5]. Out of these categories cross linking forms the 

method of interest in this work and will be discussed in further detail. 

1.1.1 Crosslinking 

Crosslinking is the process of chemically joining two or more molecules by a covalent bond. 

Covalent modification and crosslinking of proteins is achieved via various chemical reagents 

facilitating reaction with functional groups naturally occurring in proteins structure. These are 

protein amino acid side residues, namely amino-, carboxy- and sulfhydryl. The later is generally 

used in cases where specific modification is favored, while charged amino- and carboxy- groups 

due to their abundance on the surface of a globular protein are target to non-specific multiple 

covalent modifications. These alterations serve to stabilize the protein integrity by preventing 

disrupting conformational changes. Nevertheless, sub-optimal crosslinking type or degree may 

inhibit/decline native activity of the protein by directly altering of the interior residues 

responsible for binding or catalysis or by restricting necessary conformational mobility [6]. 
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Primary amines are present at the N-terminus of a polypeptide chain (α-amine) and in the side 

chain of lysine (Lys) residues (ε-amine) and are conventionally subjected to modification with N-

hydroxy succinimide esters, imidoesters and aldehydes. For the purposes of inter-protein 

conjugation, bifunctional crosslinking reagents are employed. In this study aldehyde type 

reagents have been employed. 

 

Figure 1-1 Common amino acid functional groups targeted for bioconjugation [7] 

 

Glutaraldehyde is the most abundantly used reagent for the purpose [8]. In cases of proteins with 

less abundant surface lysine content, dextran polyaldehyde has shown higher yield. It also 

provides milder reaction conditions, and reduces toxicity risk, therefore preferred in many 

biomedical applications [9]. Yet another important rationale mentioned in literature is use of this 

crosslinker as an alternative to low molecular weight glutaraldehyde in order to prevent 

modification of lysine side residues, present in the active sites of many enzymes.  

The reaction mechanism of aldehydes with amino residues is assumed to proceed through 

dehydration upon formation of Schiff bases intermediate (Figure 1-2). This assumption is the 

result of over simplification while in reality glutaraldehyde forms various species in an aqueous 

solution particularly depending on the pH value, therefore various reaction mechanisms are 

expected to contribute to the overall modification [10, 11]. Under general conditions the reaction 

is reversible and requires further reduction with sodium cyanoborohydride or sodium 

borohydride.  



3 

 

 

Figure 1-2 Reductive amination reaction of aldehydes 

 

 

Figure 1-3 Structures of glutaraldehyde (left) and dextran polyaldehyde (right) 

 

Carboxyl- residues are present at the C-terminus of a polypeptide chain and in the side chains of 

aspartic acid (Asp) and glutamic acid (Glu) and are reactive towards carboiimides, this technique 

has been widely applied in case of peptide synthesis.   

Carbodiimides act through carboxyl group activation leading to zero length amide bond 

formation (Figure 1-4). Since o-acylisourea intermediate is unstable, the reaction is often aided by 

reagents such as hydroxysuccinimide that protect target carboxyl group through ester, which 

allows further conjugation with amino residue [6].  
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Figure 1-4 Carboxyl activation – amide formation 

 

In case of heterogeneous reaction physical proximity of opposing groups is less probable, which 

makes the method less efficient, but with the use of the said aid or combined with amino- residue 

oriented crosslinker can prove very useful. 

 

Figure 1-5 Structure of N,N’-Dicyclohexylcarbodiimide 

 

While non-specific or semi-specific crosslinking of protein in solution state are effectively 

applied targeting many applications, the product often results in greatly diminished or inhibited 

catalytic activity. This can be readily explained by susceptibility of flexible proteins in aqueous 
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solution. This issue has been addressed by introduction of crosslinked protein crystals and 

aggregates in an exceptionally successful manner. 

1.1.2 Crosslinked Enzyme Crystals (CLEC) 

Crosslinked enzyme crystal formulations are one of the most efficient examples of mentioned 

crosslinking method, and have been developed since 1960s [12]. The technique was initially 

developed as the means of protein stabilization for X-ray diffraction studies. In the course of the 

study it has been realized that CLEC possessed retained and in many cases enhanced catalytic 

activity, nevertheless the follow up research has not been continued up to last two decades. 

Currently CLEC form the golden standard of crosslinked enzyme formulations [13, 14]. These 

provide an exceptionally stable formulation with advantage of very pure enzyme content, 

therefore providing high catalyst to weight ratio.  That being said, formulations involve a very 

laborious synthesis process and require enzymes of very high purity, implying very high costs of 

large scale productions. Furthermore, the technique is obviously limited to only certain 

(crystallizable) enzymes.  

 

Figure 1-6 Illustration of CLEC formation 
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1.1.3 Crosslinked Enzyme Aggregates (CLEA) 

Addressing the described drawbacks of CLECs cross linked enzyme aggregate technology has 

been pioneered by Roger Sheldon et. al. [15]. CLEA retain very good stability while based on a 

very general user friendly synthesis process which can also be applied to a very wide range of 

proteins. The process is also suitable for technical grade protein stocks, while in fact also 

facilitating further purification as a part of the process. 

In a typical preparation, soluble monomeric protein starting materials is crash precipitated out of 

the solution, forming macroscopic aggregates. For this purpose saturated inorganic salt solutions 

are used, making use of salting-out principle. Just as well, water-miscible organic solvents 

(antisolvents) are employed. Other conventional protein precipitation techniques, such as polymer 

and isoelectric point precipitations have proved less efficient, but can be incorporated with the 

methods above during optimization.  

The choice of precipitation medium is target protein dependent, affecting both aggregation yield 

and enzymatic activity of the end product. Efficiency of the further crosslinking procedure is also 

a factor. Co-precipitation and addition of protectants is employed to further stabilize the protein 

throughout crash precipitation step. 

 

Figure 1-7 Presentation of CLEA production procedure 
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The obtained soft solids are generally further subjected to cross linking directly in the aggregation 

medium, using the suitable reagent, to yield final CLEA product. The aggregation and 

crosslinking steps are conducted in a manner that permites retention, and in many cases, 

improvement of biological activity. 

1.2 Nanosizing and Alternative CLEA Production Methods 

The topic of this study forms a part of TÜBİTAK 1001 project no 111M680 “Crosslinked Protein 

Nanoaggregates” [16]. Technique developed in-house, within the scope of this project, was 

inspired by the conventional CLEA methodology and aimed to address problems arising in 

micron and higher size heterogeneous catalyst systems, such as mass transport limitations, 

reduced access to catalytic centers, restricted catalytic turnover due to crosslinking. One approach 

to mitigate these issues has rested on limiting the particle size to the nanoscale. Various bottom-

up approaches have been established, by bringing together individual protein units, yielding 

nanoscale enzyme particles. While effective, such attempts have generally proven very laborious, 

expensive, protein-specific, lossy, and impractical towards various target proteins [17, 18]. In 

contrast, herein this issue was successfully addressed with a generalized procedure suitable for 

wide range of proteins and applications, namely physical nanonization of crosslinked protein 

aggregate particles by application mechanical and hydrodynamic shear, thereof forming the first 

top-down approach in this area. The principle lies within limiting the particle size to the 

nanoscale so as to optimize substrate turnover, while retaining all the stability advantages 

associated with crosslinking.  

In the course of this study conventional CLEA approach was pursued in synthesis of precursor 

materials. Optimization of these processes has been performed aiming to better accommodate 

following downsizing procedure.  

Alternative formulations have also been developed, to address particularly challenging enzyme 

types in terms of aggregation and crosslinking capabilities aiming highly enhanced overall 

synthesis yield, and in some cases prevent dramatic loss of catalytic activity. Furthermore these 

formulations aided plausible alternative to conventional CLEAs, overall successful but yielding 
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suboptimal (less than 100%) production yields which could be observed on the examples of 

trypsin and chymotrypsin. 

The case of particularly aggregation unfriendly proteins was partially resolved by solution-phase 

crosslink-assisted aggregation method. In which case the conventional procedure supplemented 

addition of very small amount of crosslinker to aqueous solution prior to precipitation and main 

cross linking steps [16]. 

 

Figure 1-8 Presentation of solution-phase crosslink-assisted aggregation method 

 

Use of lyophilizates in place of crash precipitated aggregates has been incorporated as the means 

of handling protein solutions that either showed low aggregation efficiencies and/or did not 

withstand aggregation step resulting in dramatic activity loss (Zakharyuta, A., PhD Thesis, 

Nanosized Crosslinked Protein Aggregates (nano-CLPA)). It was rationalized that the aggregate 

state could be achieved through lyophilization, as a conventional widely applicable technique, 

where crash precipitation did not lead to desirable result. In this procedure, optimally formulated 

protein solutions were lyophilized and immersed in a medium suitable for further crosslinking 

step, generally an organic solvent, yielding Crosslinked Enzyme Lyophilizates (CLEL). This new 

method, provided optimum process steps, has been noted efficient for all formulations tested, 

generally leading to higher overall yield, with more predictable enzymatic activity and easily 

handled final product for further manipulation. 
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Figure 1-9 Presentation of CLEL formation procedure 

 

These methods were generally conducted alongside co-precipitation incorporation; aid both 

aggregation and protection of protein structure to sustaining enzymatic activity, and optimization 

of crosslinker choice and physical conditions of the process. 

It followed to reason that urease and pepsin formed ideal candidates for further optimization of 

CLEA/CLEL formulations, by incorporation of the described novel methods. 

Both enzymes have no established covalent immobilization techniques so far, due to their 

structural anomalies: 

The reason for the poor protein precipitability of urease was not clear, but the poor crosslinking 

outcome appeared to be related to an unusual structure, which discouraged surface functional 

group interactions with crosslinker [19]. 

Protein aggregation, in case of pepsin, proceeded routinely. The problematic step was achieving 

covalent crosslinking by conventional CLEA methods. The reason was again related to structure, 

as pepsin bears a single lysyl residue. Given that the formation of a crosslinked mass would 

demand two and at times three reactive groups per monomer, it was not surprising that pepsin 

was relatively unresponsive to all crosslinking attempts mediated by surface amino groups. 
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Development of optimum CLEA/CLEL formulations for pepsin and urease forms the focus of 

this work.  

1.3 Applications of CLEA and nano CLEA 

CLEAs form plausible alternatives as industrial biocatalyst systems, in terms of their economic 

and environmental benefits. The well explored application fields such as detergent, textile, leather 

industry, food, animal feed industry and biodiesel production and waste treatment are well suited 

for these formulations. More specific fields such as organic synthesis, sensory and diagnostic test 

enzymes, chromatography media, and artificial antibodies production are also benefiting from 

this method, with the largely growing need for stable biocatalyst throughout development of the 

related fields. Particularly the case of nano-CLEAs could potentially be in biomedical 

applications along with biosensors, including both systemic and local therapeutics, aiming topical 

and internal delivery systems [20, 21] [22] [23]. 

Urease is widely used as analytical tool, for urea content analysis in blood, urine, alcoholic 

beverages, natural water and environmental wastewaters. Moreover it has been employed for 

removal of urea from artificial kidney dialyzates [24]. It has also been utilized for production of 

ammonia or carbon dioxide through urea hydrolysis. The use of stabilized urease formulations 

could be used as the means of more sophisticated organic synthesis catalyst: 

Conventional syntheses of industrially important reagents such as dimethyl carbonate, ethylene 

carbonate and carbodihydrazide are challenged by factors such as low efficiency due to side 

reactions, mandatory use of toxic starting materials, high energy input, and inconvenient reaction 

conditions [19]. In view of the strategic importance of such compounds, alternative production 

methods boasting higher productivity and lower cost remain a subject of much interest. In theory, 

urease could prompt formation of the above desired products by enforcing reaction between the 

inexpensive substrate urea, and a non-water nucleophile such as methanol, ethylene glycol or 

hydrazine.  

Pepsin is conventionally used in food and feed industries, in the processing of meat, fish, and 

milk and vegetable proteins (in the production of non-dairy foods).  It also has wide applications 
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in leather industry, for removal of residual hair and tissue. They are employed for research and 

biomedical purposes, as the means of antibody cleavage and within formulation of digestive aids 

[25]. Furthermore, pepsin esterase activity, of stabilized immobilized formulations, could be used 

as organic synthesis catalyst. 
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CHAPTER 2  Urease Cross Linked Enzyme Aggregates (CLEA) and Nano Cross Linked 

Enzyme Aggregates (nano CLEA) 

2.1 Introduction 

Ureases (urea amidohydrolases, EC 3.5.1.5), whose catalytic function is to hydrolyse urea into 

carbonic acid and ammonia as final products and which are widely found in nature, are a group of 

highly proficient enzymes [26]. Ureases are produced from bacteria, fungi, yeast and plant [27]. 

As a primary function, ureases allow plant and bacteria to utilize urea in a proper way and also 

have a crucial role in nitrogen’s metabolism of nature [28]. In 1926, the first crystal structure of 

urease was obtained from Jack bean (Canavalia ensiformis; JBU) [29] and this work gained a 

Nobel Prize in Chemistry  in 1946.  In Sumner’s work, two different aspects have been well 

emphasized; the proof about the proteinaceous nature of enzyme and the crystallization ability of 

proteins. Urea, the substrate of urease, has also had a historical significance as being the first 

organic compound synthesized in 1828 [30].   

There are some structural differences between ureases produced from plants and bacteria. Plant 

ureases are made up of single-chain polypeptide whereas bacterial ureases are made up of two or 

three polypeptides designated as α, β, and γ. In here, we have worked on JBU plant urease. It has 

been described in 3D structure of JBU that there are found two Ni ions separated by 3.7 Å [27]. 

Balasubramanian et al. described Ni binding in active site of JBU such that His519 , His545 and 

Lys490 residues liganded to N1  and His407, His409, Asp 633 and Lys490 residues liganded to 

Ni2[27]. As shown in Figure 2-1 [27], Lys490 residue is carbamylated and acted as to form a 

bridge between two Ni residues[27]. As described in activation mechanisms of other enzymes 

[31], there has been found a mobile flap in 3D structure of JBU. This mobile flap, existed 

between Met590 and His607 as a TIM-barrel, covers the active site of JBU and directly controls 

the entrance of substrate and the release of products [27]. Upon the changes in 3D conformations 

of this mobile flap, the active site of JBU becomes accessible and this change has been associated 

with the chemical modification and rearrangement of some residues, which can be accounted as a 

part of activation mechanism of JBU. It has been reported that Cys592, located in a mobile flap of 
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JBU, is well conserved among many ureases [32] and is one of three Cys residues in JBU, which 

underwent a chemical modification to alter enzymatic activity. It has been reported for JBU that 

36 Cys residues have been found but only 3 of 36 (Cys59, Cys207 & Cys592) have undergone 

chemical modification that triggers the enzymatic activity. 

 

Figure 2-1 Active site of JBU (Jack Bean Urease) [27] 

 

Up to now, two different activation mechanism have been proposed in literature for urease 

activity. First of all, the activation mechanism of urease has been proposed as the carbonyl 

oxygen atom of urea bind to Ni1 in active site of urease and it triggers the closed conformation of 

mobile flap. Then, the Ni2-bound to –OH group acted as a nucleophile to attack carbonyl carbon 

atom of urea, already polarized through coordination with Ni1. Upon formation and coordination 

of tetrahedral intermediate in active site, His320 acts as a general acid and leads to release of 

ammonia[33]. Benini et al. proposed another activation mechanism for ureases that urea binds 

Ni1 through bidentate manner with its carbonyl oxygen and immediately one of the amino group, 

bound to Ni2, replaces with tree water moieties and only the bridging hydroxide is left [34]. Upon 
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the attack of this hydroxide toward urea, the tetrahedral transition state is formed and it leads to 

formation of ammonia and carbamate. 

Urease immobilization serves a challenging way of synthesis due to the restrictions on the active 

site shown in Figure 2-1. The surface residue numbers are respectively listed like; Lys: 37, Asp: 

36 and Glu: 38. Furthermore, the total volume, total surface area and total solvent accessibility 

are listed respectively; 100073.0, 31071.8 and 32501.9 Å.  

Even though there is a significant number of Lys groups present on the surface of urease both 

aggregation and crosslinking prove highly challenging. Urease is a moderately water soluble 

protein (up to 50 mg/ml). Furthermore, as can be observed from the surface structure majority of 

lysil residues are juxtaposed to carboxyl acid side chain baring amino acids. It can be said that 

urease is neither extensively hydrophilic nor hydrophobic; therefore the precipitation through 

depletion of available water surroundings is highly inefficiently. Furthermore, the challenged 

crosslinking could also be explained in the similar fashion, in terms that majority of the surface 

amine residues are not available due to intra molecular salt bridge interactions. 

In this chapter, the production of the first urease (JBU) CLEAs is described through a modified 

aggregation procedure. Moreover, urease crosslinked enzyme lyophylizates (CLEL) assisted by 

incorporation with albumin are synthesized in order to further overcome difficulties related to 

urease processing. 
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Figure 2-2 pdb structure of urease (pdb code: 3la4); Lys: Magenta, Asp: Blue, Glu: Green 

[27]  

 

 

Figure 2-3 Presentation of the active site of urease (3D structure) (pdb code: 3la4); Lys: 

Magenta, Asp: Blue, Glu: Green, active site residues: Red [27] 
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As mentioned in Chapter 1, there are several ways to immobilize enzymes for obtaining enhanced 

enzymatic activity and stability. Cross-linked enzyme/protein nanoaggregates have been 

produced in-house by a top-down methodology. In order to prepare the crosslinked 

nanoaggregates, the enzyme is normally subjected to crash-precipitation (via either salting out or 

antisolvent addition methods), crosslinking, and nanonization by hydrodynamic shear. Additives 

such as grinding aids, lyoprotectants, and cryoprotectants are introduced to facilitate the 

nanonization step and to promote optimal activity. This top-down nanonization approach is 

unique in the preparation of crosslinked enzyme nanoparticles, and it has been observed to 

prompt increased stability and activity in aqueous and non-aqueous media [35] [16]. 

Furthermore, cross linked urease lyophylizates were used in several reactions of urea as a way of 

catalyst. Reactions of urea with different reagents end up with significant chemicals like dimethyl 

carbonate, ethylene carbonate and carbodihydrazide. Accompanied by catalysts, yields of these 

reactions were not sufficient and also some drawbacks like difficulty of handling, expensiveness 

and toxic material exposure were faced [19]. Especially for synthesizing dimethyl carbonate 

(DMC) which is referred to as a green product, different ways to produce has drawn much 

attention in the previous years. DMC can be used as a substitute for chemicals such as phosgene 

for carbonylation processes and dimethyl sulfate (DMS) or methyl chloride for methylation 

reactions [36]. 
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Figure 2-4 Targeted nucleophilic transformations of urea 

 

2.2 Materials 

Instrumentation:  

Beckman Coulter centrifuge 

Eppendorf centrifuge 5415D 

Eppendorf centrifuge 5804 Eppendorf thermomixer® comfort 

New Brunswick Scientific Innova 40 incubator shaker series 

Homogenizer Heidolph silent crusher M 

Christ brand ALPHA 1-2 LD plus laboratory scale freeze-dryer (Martin Christ 

Gefriertrocknungsanlagen GmbH, Germany). 

Leo G34-Supra 35 VP Scanning Electron Microscope 
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Malvern Instruments Zetasizer Nanoseries Nano ZS Dynamic Light Scatter 

Shimadzu UV-3150 UV-VIS-NIR Spectrophotometer 

Emitech K950X Carbon Vacuum Evaporator 

Cressington Sputter Au/Pd Coater 108 auto 

GC-MS QP2010 Ultra Shimadzu (column RTx-5MS guard, 30m, 10 um, 0.25 mm). 

 

Chemical reagents and proteins:  

Jack Bean Urease (EC 3.5.1.5) was obtained from Sigma-Aldrich. Urease from Canavalia 

ensiformis (Jack bean), Type IX, powder, 50,000-100,000 units/g solid  

Bovine Serum Albumin was obtained from Sigma-Aldrich. Bovine Serum Albumin, heat shock 

fraction, pH 7, ≥98%  

Glutaraldehyde, 25% aqueous solution, hydrazinium hydroxide (about 80% N2H5OH) and 

ninhydrin GR for analysis were obtained from Merck. 

N,N’-dicyclohexylcarbodiimide was obtained from Sigma-Aldrich. 

N-Hydroxysuccinimide, 98% was obtained from abcr GmbH&Co. 

KGUrea was purchased from MP Biomedicals, LLC.  

Ammonium sulphate was from Panreac Quimica S.A.U.  

Sodium borohydride was obtained from Acros.  

Ammonium carbonate was obtained from VWR. 

 

Other reagents and solvents used were analytical or high performance liquid chromatography 

(HPLC) grade. All substances were directly withdrawn from their original stock and used without 

pre-treatment or further purification. 
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2.3 Methods 

2.3.1 Urease CLPA Synthesis 

2.3.1.1 Method A: Solution-phase crosslink-assisted aggregation & CLEA formation 

 

Urease powder (10-50 mg/ml) was dissolved by mild agitation in phosphate buffer (100 mM, pH 

7.4, 4 ˚C) and albumin powder (0-100 mg/ml) was subsequently added. The proteins in solution 

were pre-stabilized by addition of trace amount crosslinker directly into solution (10-40 l, 

25wt% , pH 5 / 20-80 l, 12.5wt%, pH 9.2 glutaraldehyde or 10 µl 4 mg/ml aqueous N,N’-

dicyclohexylcarbodiimide solution) and brief incubation (3 min, 4 oC). Mixture was precipitated 

thereafter by direct addition into crosslinking reagent containing solution of ammonium sulphate 

(4M; 4 oC) with continual stirring; With good stirring, protein solution was dropped into 

aggregation medium containing glutaraldehyde (100-400 l, 25wt%, pH 5 / 200-800 l, 

12.5wt%, pH 9.2) or aqueous N,N’-dicyclohexylcarbodiimide solution (100 µl 4 mg/ml), and the 

main crosslinking reaction step was subsequently permitted for 20 h (4 oC). The crosslinked 

material was recovered as a pellet following centrifugation (5 min, 10 krpm), the pellet was 

treated with a freshly made aqueous solution of sodium borohydride (1000 l, 1mg/ml dH2O, 30 

min), centrifuged (10 krpm, 5 min), and twice reconstituted (1000 l, RT, 5 min) and centrifuged 

(10 krpm, 5 min) in distilled water to remove traces of reagent. The wet pellet was dried under 

vacuum (RT, 12 h).  

 

Crosslinker reagents and protein composition variants for solution-phase crosslink-assisted 

method are summarized in the table below: 
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Table 2-1 Enzyme concentration, crosslinker and aggregation medium information for 

CLEA formation via solution-phase crosslink-assisted aggregation method 

Enzyme 

concentration 

code 

E1 E2 E3 E4 

Enzyme 

concentration 

/ml 

50 mg urease 
50 mg urease 

50 mg albumin 

10 mg urease 

100 mg albumin  

25 mg urease 

100 mg albumin 

Aggregation 

medium code 

A1 A2   

Aggregation/c

rosslinking 

medium 

4M ammonium 

sulfate 
1,4-dioxane   

Crosslinker 

code 

C1 C2 C3 C4 

Crosslinkers 

Glutaraldehyde 

25% pH 5 

Glutaraldehyde 

12.5% pH 9.2 

N,N’-

dicyclohexylcarbodiimide/ 

N,N’-

dicyclohexylcarbodiimide 

N,N’-

dicyclohexylcarbodiimide/ 

Glutaraldehyde 25% pH 5 
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2.3.1.2 Method B: Lyophilization-mediated aggregation & CLEL formation 

 

Starting solution was prepared with urease powder (20-50 mg/ml) and albumin (0-100 mg/ml) in 

phosphate buffer (100 mM, pH 7.4, 4 oC). The solution was transferred into 2mL capacity 

Eppendorf tubes, and the tube rack was submerged in liquid nitrogen followed by lyophilization 

(24h). After the lyophilization procedure, the lyophilizates were dropped into crosslinker-

precipitant mixture (25% glutaraldehyde pH 5 / 12.5% glutaraldehyde pH 9.5 – 

dioxane/acetone/isopropanol/4M ammonium sulphate). Except for reactions performed in 

dioxane (4h, RT, 200 rpm), all the reactions took place under 4 oC (20 h, 500 rpm). The 

crosslinked material was recovered as a pellet following centrifugation (5 min, 10 krpm), the 

pellet was treated with a freshly made aqueous solution of sodium borohydride (1000 l, 1mg/ml 

dH2O, 30 min), centrifuged (10 krpm, 5 min), and twice reconstituted (1000 l, RT, 5 min) and 

centrifuged (10 krpm, 5 min) in distilled water to remove traces of reagent. The wet pellet was 

dried under vacuum (RT, 12 h). 

 

Crosslinker reagents and protein composition variants for solution-phase crosslink-assisted 

method are summarized in the table below: 
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Table 2-2 Enzyme concentration, crosslinker and aggregation medium information for 

CLEA formation via lyophilization method 

Enzyme 

solution code 

E1  E2 E3 E4 E5 E6 E7 

Concentration 

/ml 

20 mg urease 
20 mg urease 

20 mg albumin 

20 mg  

urease 

60 mg 

albumin 

20 mg 

urease 

100 mg 

albumin  

 

20 mg  

urease 

20 mg  

albumin  

50 mg 

sucrose 

20 mg  

urease 

60 mg  

albumin 

50 mg 

sucrose 

20 mg  

urease 

100 mg 

albumin  

50 mg  

sucrose 

Crosslinking 

medium code 

M1 M2 M3 M4    

Crosslinking 

medium 

4M 

ammonium 

sulfate 

1,4-dioxane Acetone Isopropanol    

Crosslinker 

code 

C1 C2      

Crosslinker 

Glutaraldehyde 

25% pH 5 

Glutaraldehyde 

12.5% pH 9.2 
     

 

Crosslinkers 

Glutaraldehyde 

Glutaraldehyde was applied at concentrations of 2.12 x 10-5 mol per mg protein (dry weight 

equivalent). Glutaraldehyde is typically stored and sold at slightly acidic pH values, which serves 

to reduce its optimal reactivity. In this work, commercial glutaraldehyde stocks (25wt%, pH 5) 

were directly used without pH adjustment. Alternatively, water-diluted stocks (12.5wt%, adjusted 

to pH 9.2 using 0.1M sodium carbonate buffer and pH 7.4 using 0.1M sodium phosphate buffer) 

were used. 
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N,N'-dicyclohexylcarbodiimide 

N,N'-dicyclohexylcarbodiimide (DCC) was applied at 1.9x10-5 mol concentrations per mg protein 

(dry weight equivalent). 

 

 

 

Figure 2-5 Representation of lyophilization method in freeze-drier 

 

2.3.1.3 Organic Reactions of Urea with Urease CLEL 

For preparing precursor solutions, 75 mg urea/1 ml methanol and 108 mg urea/1 ml ethylene 

glycol were dissolved under heat and sonication (30 min, 50 oC). 

0.622 ml hydrazine was first dissolved in 20 mL methanol and 20 mL ddH2O giving hydrazine-

methanol and hydrazine-H2O solutions. Afterwards, 120 mg urea/1 ml hydrazine-methanol, 120 

mg urea/1 ml hydrazine- H2O were dissolved.  

3.5 mg of CLEA (E3.M1.C2 sample, See Table 2-2) was placed into 2 mL Eppendorf tubes with 

1 mL of 75 mg/ml methanol/urea, 108 mg/ml ethylene glycol/urea and 120 mg/ml 
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hydrazine/methanol/urea – hydrazine/ H2O/urea solutions for the synthesis of dimethyl carbonate, 

ethylene carbonate and carbodihydrazide (4h, 25/50 oC). 

The molar ratios of the reactions can be seen on the table below: 

Table 2-3 Molar ratios of urea reactions 

  Mol Molar ratio 

Reaction I Urea 0.012 
20 

Methanol 0.25 

Reaction II Urea 0.02 
10 

Ethylene glycol 0.18 

Reaction III Urea 0.02 
1 

Hydrazine 0.02 

 

2.3.2 Nano CLEA Generation 

Nanonization was achieved via hydrodynamic shear application using homogenizer (Heidolph 

silent crusher M) with varying processing time and shear conditions. In a typical run, CLEA (2.5 

mg) was dispersed in 1 ml 30% aqueous glycerol solution or 100% ethanol and nanonization was 

performed using different instrumental settings and times (10-21 krpm; 30-60 min). Given the 

thermal stability of CLEAs, no elaborate steps were taken to avoid incidental heating of the 

dispersion during nanonization.  

 

The labeled nano-CLPA samples were transferred into 1.5 ml eppendorf tubes with the dialysis 

membrane replacing the top of the tube cap, tubes were further secured with parafilm tape to 

avoid any leakage. All samples prepared as described were dialyzed against pH 7.4 phophate 

buffer, with constant agitation, for the period of 6 hours, repeated 4 times. (Snake Skin® Dialysis 

Tubing, 3.5K MWCO, 35 mm dry I.D, 35 feet was obtained from Thermo Scientific). 
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Figure 2-6 Representation of dialysis method in 1.5 ml Eppendorf tubes 

 

2.3.3 Characterization of CLPA and Nano CLPA 

The instrumental analysis was performed via Dynamic Light Scattering and Scanning Electron 

Microscopy. 

2.3.3.1 Dynamic Light Scattering Measurements 

The sample was diluted 10 fold in medium corresponding to their homogenization conditions. 

DLS data was collected on samples equilibrated at 25 ºC in 2ml disposable cuvettes, as a result of 

3 consecutive scans, Malvern Zetasizer NANO ZS. Absorption of each sample was measured at 

633 nm and included in DLS measurement protocol. Particle refractive index of 1.5 was assumed 

for all CLPA samples and refractive index of corresponding medium was included in the 

protocol. Data was analyzed using protein analysis model, Malvern Zetasizer software. 

2.3.3.2 Scanning Electron Microscopy Analysis 

CLPA powder was subjected to treatment in a Cressington Sputter Au/Pd Coater. An 

approximate coating thickness of 2-3nm was targeted. The processed samples were loaded into 
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the vacuum chamber of a ZEISS brand LEO SUPRA 35VP model SEM with GEMINI column. 

An electron gun voltage of 2kV was employed throughout the analyses. 

2.3.3.3 Urease Catalytic Activity Assay Protocol 

For the determination of the urease activity, a colorimetric assay based on ninhydrin color yield 

was applied to the samples to detect the free amines. A 3h activity assay reaction at room 

temperature took place for 2 mg/ml crosslinked protein nanoaggregates and isopropanolic 

ninhydrin solution (50 µl; 1 wt%) was used as the reagent for the supernatant of the samples (50 

µl) and after 1h incubation at 70 oC, the UV-Vis spectrophotometric measurements (595 nm) 

were done for all the samples. Relative activity (%) was compared by assessing the urease mass 

fraction within each coCLEA against an equal mass of freely soluble native urease. The native 

urease was arbitrarily assigned a value of 100%. 

2.3.3.4 Colorimetric Analysis of Urea Conversion Efficiency for Urea Reactions 

For the determination of the urea conversion rate of the reactions, a colorimetric assay based on 

ninhydrin colour yield was applied to the samples to detect the free amines. Isopropanolic 

ninhydrin solution (50 µl; 1 wt%) was used as the reagent for the supernatant of the reaction 

samples (50 µl) and after 1h incubation at 70 oC, the UV-Vis spectrophotometric measurements 

(595 nm for methanol and ethylene glycol, 470 nm for hydrazine) were done for all the samples. 

Relative activity (%) was compared by assessing each sample against methanol/urea, ethylene 

glycol/urea and hydrazine/methanol/urea - hydrazine/H2O/urea blank solutions. The absorption 

values were converted into concentration values using ammonia calibration curve.  

2.3.3.5 Gas Chromatography-Mass Spectroscopy (GC-MS) Analysis for Urea Reactions 

In here, just the dimethyl carbonate reaction product was subjected to gas chromatography-mass 

spectroscopy analysis. The supernatant of the reaction sample was diluted 1:10 in methanol. The 

oven temperature program was: initial temperature 27 °C, hold for 5 minutes, ramp at 10 °C/min 

to 240 °C, hold for 5 minutes. The injector transfer line temperature was set to 150 °C. 

Measurements were performed in split–split mode (split ratio 10:1) using helium as the carrier 
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gas (flow rate 0.70 mL/min). For the mass spectra, solvent cut time was 2.5 minutes. Ion source 

temperature was 200 °C and the interface temperature was 250 °C. 

2.4 Results and Discussion 

Initial attempts to crosslink urease via conventional CLEA method were met with difficulties 

which were due to a protein-related difficulty in efficiently precipitating and possibly 

crosslinking the precipitated urease. The problem of crosslinking in particular was presumed to 

be related to a high tendency to form relatively inert intra molecular ammonium carboxylate 

bridges as well as few notable attachment points (Figure 2-1), as implied by the pdb structure of 

urease. Consequently, variants of established methods to prepare urease CLEAs were devised in 

hopes to bypass this impasse. Amongst the attempted methods, the most promising results were 

obtained via a solution-phase crosslink-assisted coaggregation method, and co-lyophilization 

method both accompanied by co-precipitation with albumin. With the first method in particular, 

urease and the readily-precipatatable albumin were initially allowed to crosslink in aqueous 

solution by introducing traces of glutaraldehyde or more surprisingly traces of the organic-soluble 

N,N’-dicyclohexylcarbodiimide. Both reagents are known to link reactive functional groups, and 

the nature of their chemistry substantially differs [6]. By way of this unorthodox strategy, an 

easily or readily co-precipatatable urease-albumin derivative was afforded, which could then be 

crosslinked via normal CLEA methods and subsequently transformed into nanoparticles via a 

top-down method as specified by Taralp [35]. In the second method, urease and albumin as 

carrier protein were co-lyophilized and the resultant powder was rapidly dispersed into different 

aqueous phase crosslinker media comprising of glutaraldehyde or possibly glutaraldehyde and an 

additional crosslinking reagent. The insoluble powder afforded could once again be retrieved via 

centrifugation and nanonized. The advantage of the second method was based on the premise that 

lyophilization would necessarily enforce a 100% solute-to-powder transition, hence bypassing 

any possibility of material loss. Hence by means of either method, urease was obtained in 

insoluble powder form of coaggregate together with albumin. The above work was also 

significant in the general sense that either method shows promise as an alternative to crosslink 

other proteins, which do not efficiently precipitate using established crash-precipitation (using 

anti-solvent and salting-out methods). 
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Herein the performance of desolubilized micron- and nanosized urease powders has been 

presented following crosslinking by each of the two methods. Subsequently, urease formulations 

were utilized as a hydroxyalkyl-de-amination and hydrazino-de-amination [37, 38], transforming 

urea into dimethylcarbonate, ethylenecarbonate and carbodihydrazide by selective addition of 

methanol, ethylene glycol, or hydrazine, respectively (Figure 2-4). It is hoped that further 

development of these methods will yield biologically optimized CLEAs from urease as well as 

other user-unfriendly proteins, opening a door to the routine preparation of industrially important 

chemical feedstocks. 

2.4.1 Urease CLEA Synthesis 

2.4.1.1  CLEA synthesis via solution phase crosslink assisted aggregation method 

 

Figure 2-7 Effect of urease to albumin weight ratios and glutaraldehyde reagent pH on 

relative catalytic activities of urease CLEA. (Crash precipitation facilitated by saturated 

ammonium sulphate solution) 
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Figure 2-7 illustrates the activity of equal amounts of urease nano CLEAs coprecipitated in 

aqueous ammonium sulphate using different amounts of albumin as stabilizing additive. In all 

cases, activity noted was higher for alkaline crosslinking. Moreover, the absolute activity was 

seen to incrementally increase with the amount of albumin present. The root cause of the varied 

apparent bioactivity was not specifically investigated, but it is likely related to differences in 

spatial distribution and interaction between urease and albumin, allowing for better active site 

access, higher fraction of catalytically competent protein, and/or higher intrinsic catalytic 

efficiency with increasing albumin loadings. Amongst some potential factors, one contributor 

might have been an enhancement of the surface availability of urease with increasing albumin 

content. Another possibility was that albumin imparted an activating /protecting effect in the 

sense that larger amounts of albumin permitted urease to retain higher activity, via any number of 

secondary effects such as better retention of native structure. It is also possible that the course 

chemical crosslinking could follow an albumin-loading dependency, leading to variations in 

specific site reactions along the surface of urease, as well as varied protein conformation and 

rigidity. Since nano-CLEAs were shown in-house to not have diffusional limitations in the case 

of small substrates, it follows to reason that a potential catalytic or conformation-protecting effect 

of BSA is at least the major contributor as opposed to differences in particle morphology and 

porosity, which would in turn directly influence mass transfer and active site accessibility by 

substrate. 
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Figure 2-8 Effect of urease to albumin weight ratios and glutaraldehyde reagent pH on 

relative catalytic activities of urease CLEA. (Crash precipitation facilitated by 1,4-dioxane)  

 

Figure 2-8 shows the relative activity (%) of same amounts of urease CLPAs precipitated in the 

solvent 1,4-dioxane with the help of changing amounts of carrier protein BSA. 1:1 weight ratio 

acidic co-precipitate gave around 14% activity whereas the others were unable to show some 

activity in the solvent 1,4-dioxane crash precipitation. 

The relatively high bioactivity of 1:1 urease/albumin CLEAs would be consistent with the action 

of albumin carriers in promoting stability and bioactivity In keeping with this argument, larger 

loadings of albumin must have encapsulated the urease units to the point of precluding substrate 

access. This explanation is particularly suitable given the ability of 1,4-dioxane to prompt 
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structural rigidity. The precise reason is unclear why 1:1 urease/albumin crosslinked in acidic 

glutaraldehyde yielded 14% activity whereas the basic glutaraldehyde yielded near-zero activity.  

However, difference of glutaraldehyde species formation in aqueous and organic media could be 

attributed to these results as compared to aqueous crosslinking conditions demonstrated on the 

previous graph. Therefore, these results could be related to differences in crosslink location, 

crosslink density, chemical inactivation, and conformational disruption.

 

Figure 2-9 Effect of aggregation medium on relative catalytic activity of urease CLEA. (1:4 

urease to albumin weight ratio, crosslinking facilitated by glutaraldehyde pH 9.2) 

 

Figure 2-9 presents a graph of relative activity (%) changing via aggregation medium. For this 

assay, 1:5 (Urease:Albumin; w:w) sample crosslinked with basic glutaraldehyde was used. 4M 
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ammonium sulfate showed a significant difference on the activity as compared to other mediums 

(1,4-dioxane, acetone and isopropanol). 

Partial aqueous-phase crosslinking prior to 1,4-dioxane precipitation served to confirm the 

veracity of the overall method, however, in light of challenges posed by the use of 1,4-dioxane as 

anti-solvent, the brunt of the work was continued using a more universal and well-established 

salting out agent. In particular, aqueous ammonium sulphate was selected.  

1,4-dioxane was initially used, as it proved to be the only anti-solvent, which could near-

quantitatively precipitate urease (not shown) as well as the initial solution phase pre-crosslinked 

urease. That being said, the urease CLEAs thus showed no activity. The situation was notably 

ameliorated by the equi-weight presence of albumin but no advantage was noted in proceeding to 

higher albumin/urease ratios, as has been shown above (Figure 2-8). 

Work using ammonium sulphate proved noteworthy in comparison to initial trials using 1,4-

dioxane. Given the more positive apparent activities, ammonium sulphate clearly allowed for a 

greater retention of catalytically competent sites or greater average intrinsic reactivity. The root 

cause is likely related to more dynamic and possibly looser aggregate formation in ammonium 

sulphate compared to 1,4-dioxane, which might have changed the course of crosslinking as well 

as imparted increased conformational flexibility of the ensuing structures and better active site 

accessibility. 
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Figure 2-10 Effect of cross linking reagent on relative catalytic activity of urease CLEA. 

(1:1 urease to albumin weight ratio, crash precipitation facilitated by saturated ammonium 

sulphate solution) 

 

Figure 2-10 illustrates changes of relative activity (%) as a function of different crosslinking 

media. In all cases, a 1:1 urease/albumin ratio was used prior to ammonium sulphate 

precipitation. As shown, the highest activity was observed for N,N’-

dicyclohexylcarbodiimide/Acidic glutaraldehyde, with glutaraldehyde present in trace amounts. 

Comparing the relative activities, the highest value belongs to the sample crosslinked with N,N’-

carbodiimide/Acidic glutaraldehyde pair. N,N’-dicyclohexylcarbodiimide/N,N’-

dicyclohexylcarbodiimide and acidic glutaraldehyde/acidic glutaraldehyde crosslinker pairs 

didn’t show the same high activity. Neither did basic glutaraldehyde/basic glutaraldehyde pair. 
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This can only be explained by the trace amount of a “different” croslinker effect in the solution, 

activating a number of carboxyl residues and subsequent zero-length covalent bond formation 

with the juxtaposing amino- groups in addition to the covalent species formed in the main 

crosslinking step. 

2.4.1.2 CLEL synthesis via lyophilization method 

While the method described as “solution phase crosslink assisted aggregation” has facilitated 

formation of CLEA, unachievable through conventional procedure, the overall synthesis yields 

and resultant catalytic activity remained dramatically low. Results bellow present much improved 

efficiency in both catalytic activity and the overall yield, arising from substitution of aggregate 

formation with lyophylzation. 

 

Figure 2-11 Effect of urease to albumin weight ratio and glutaraldehyde reagent pH on 

relative catalytic activity of urease CLEL. (Crosslinking medium- saturated ammonium 

sulphate solution) 
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Figure 2-11 presents the relative catalytic activity dependent on urease:albumin (w:w) ratio. The 

urease to albumin weight ratios are changing through 1:0, 1:1, 1:3 and 1:5. Moreover, there are 

two different pH values for the crosslinker glutaraldehyde (acidic and basic). The highest activity 

is assigned to 1:5 urease:albumin which was crosslinked with alkaline glutaraldehyde. 

Herein two factors are assumed to significantly contribute to the results in Figure 2-11: Firstly, 

much like the results of solution phase crosslink assisted method have shown, albumin had an 

important influence on the activity results. This occurs due to the protective effect of albumin 

over urease on crosslinking. Comparing the 1:1 and 1:5 results, it is seen that 1:5 possesses higher 

catalytic yield. The second factor contributing to the results is that when basic glutaraldehyde was 

preferred to acidic one for the crosslinking step, a notable change on the relative activity was 

observed. The observed effect could be attributed to formation of highly reactive polymeric 

glutaraldehyde species at basic pH in aqueous media, facilitating higher number of overall 

crosslinking degree and thereof enhancing the stabilization effect. 
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Figure 2-12 Effect of sucrose incorporation into co-lyophilizate composition and 

glutaraldehyde reagent pH on relative catalytic activity of urease CLEL. (1:5 urease to 

albumin weight ratio, crosslinking medium-saturated ammonium sulphate solution) 

 

Figure 2-12 presents the relative catalytic activity change via sucrose addition and crosslinker pH 

change. The graph shows the effects on the urease:albumin, 1:5 (w:w) 4M ammonium sulphate 

CLEL preparation. As seen from the graph, sucrose addition, which initially was incorporated as 

a cryoprotectant, resulted in a decrease of the relative catalytic activity. Again, glutaraldehyde pH 

9.2 results in higher catalytic activities compared to glutaraldehyde pH 5. 
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Figure 2-13 Effect of crosslinking medium and glutaraldehyde reagent pH on relative 

catalytic activity of urease CLEL. (1:5 urease to albumin weight ratio) 

 

Fig 2-13 illustrates a graph of catalytic relative activity (%) changing via crosslinking medium. 

For this assay, 1:5 (Urease:Albumin; w:w) trials were conducted using crosslinking with both 

glutaraldehyde pH 5 and pH 9.2. As can be remembered from the solution phase crosslink 

assisted aggregation method catalytic relative activity graph (effect of aggregation medium), 4M 

ammonium sulphate was the medium that provides the highest relative activity (%) compared to 

the anti-solvents; 1,4-dioxane, acetone and isopropanol. Herein, the same effect can be observed 

from the graph. 4M ammonium sulphate, with the effect of the crosslinker glutaraldehyde pH 9.2, 

gives the highest activity. The results could similarly be rationalized, through further tightening 

of lyophylizate materials in antisolvent medium and therefore restriction of resultant crosslink 

material flexibility.  
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2.4.1.3 Stability of the Cross Linked Enzyme Lyophilizates 

Upon catalytic activity measurements on previously synthesized cross linked urease lyophilizates 

(up to 6 months), no loss of activity was observed, affectively underlining shelf life stability of 

the developed formulations. 

2.4.2 Nano Urease CLPL Synthesis 

 

 

Figure 2-14 DLS result of nano crosslinked urease lyophilizate homogenized in absolute 

ethanol, at 21 krpm for 30 min (E3.M1.C1 – See Table 2-2) 

 

Figure 2-14 presents a DLS measurement of supernatant (1krpm) of a urease CLEA suspended 

and homogenized in 100% ethanol. This data provided evidence of nanoparticle content 

generation upon nanonization procedure. 
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Figure 2-15 SEM imagery of crosslinked urease lyophilizate (CLEL), presenting the 

morphology of micro particle units; 2.00 KX, EHT = 2.00 kV, WD = 8 mm, Secondary 

electron detector 

 

A general morphology of homogenization product is observe on Figure 2-15. SEM results are 

illustrated on Figure 2-16 presenting the morphology and approximate size order of 

heterogeneously nanosized cross linked urease lyophilizates and interior of the generated particles 

on Figure 2-17. The finely structured heterogeneouse size nano particles with the average size 

around 200 nm can be observed (Figure 2-16). The particles of similar morphology have been 

observed in the previous study (Zakharyuta, A., PhD Thesis, Nanosized Crosslinked Protein 

Aggregates (nano-CLPA)). Nevertheless, in the case of urease the majority of the material is of 

the appearence visualized on Figure 2-17. This morphology also reflects the interior of the finely 

structured particles demonstrated, thereof providing evidence of mechanical integrity loss of the 

major part of crosslinked material in the course of homogenization process.    
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Figure 2-16 SEM imagery of nano crosslinked urease lyophilizate (nano CLEL), presenting 

the inferior morphology of nano particle units; 70.00 KX, EHT = 2.00 kV, WD = 8 mm, 

Secondary electron detector 
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Figure 2-17 SEM imagery of nano crosslinked urease lyophilizate (nano CLEL), presenting 

the interior morphology of the nano particle unit; 50.00 KX, EHT = 2.00 kV, WD = 10 mm, 

Secondary electron detector (Sample E6.M1.C1) 
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Figure 2-18 Catalytic activity comparison of urease CLEL and nano CLEL (1:3 urease to 

albumin weight ratio, crosslinking medium-saturated ammonium sulphate solution) 

 

Nanonization procedure was performed in both 100% ethanol and 30% glycerol aqueous solution. 

As can be seen from Figure 2-18, nano CLEL products homogenized in 100% ethanol and 30% 

glycerol aqueous solutions show a deteriorated relative catalytic activity. Nano CLEA/CLEL 

catalysts are expected to enhance catalytic activities (%), by reducing the diffusion limitations 

[16] but it can be clearly observed that for urease CLEL samples, homogenization process in 

100% ethanol and 30% glycerol aqueous solutions resulted diversely. 

In the previous study (Zakharyuta, A., PhD Thesis, Nanosized Crosslinked Protein Aggregates 

(nano-CLPA)) it was shown that lyophilizate based formulations resulted in “softer” crosslinked 

end products, due to the higher porosity of the lyophilizate network as compared to that of an 

aggregate. Therefore, utilization of aqueous glycerol solutions as homogenization medium was 
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replaced by absolute ethanol. The first medium induced behaviour which could not be tolerated 

by these softer materials and resulted in irreversible conformational deformations, the second 

provided the “dry” environment resulting in brittle fracture of forming nano-particles and 

avoiding conformational deformation within the network under shear conditions. The described 

results were obtained on much more crosslinking friendly proteins, and it is safe to assume that 

the failure to retain catalytic activity upon nanonization urease CLEL is related to significantly 

lower crosslinking degree achieved. Therefore, it is clear that the large portion of the material did 

not withstand conditions dictated by shear forces necessary to generate nano particles. 

2.4.3 Organic Reactions of Urease CLPA 

 

Figure 2-19 Urea conversion yield for dimethyl carbonate reaction 
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Figure 2-19 shows the urea conversion yields for dimethyl carbonate synthesis from urea and 

methanol with the reaction conditions 25 oC (with urease CLEL), 50 oC (with urease CLEL),  and 

50 oC control (without urease CLEL). As the boiling point of methanol is 60 oC, the highest 

reaction temperature was set as 50 oC. It is obviously seen that at higher temperatures, the urea 

conversion yield is higher with urease CLEL. Comparing the 50 oC urease CLEL and control 

samples, the urease CLEL is seen to double the yield of the control sample.  

 

Figure 2-20 Urea conversion yield for ethylene carbonate reaction 

 

Figure 2-20 shows the urea conversion yields for ethylene carbonate synthesis from urea and 

ethylene glycol with the reaction conditions 25 oC (with urease CLEL), 50 oC (with urease 

CLEL),  and 50 oC control (without urease). It is obviously seen that at higher temperatures, the 
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urea conversion yield is higher with urease CLEL. Comparing the 50 oC urease CLEL and control 

samples, the urease CLEL is seen to be four times higher than the yield of the control sample.  

 

Figure 2-21 Urea conversion yield for carbodihydrazide reactions 

 

Figure 2-21 shows the urea conversion yields for carbodihydrazide synthesis from urea and 

hydrazine performed in methanol and H2O with the reaction conditions 25 oC (with urease 

CLEL), 50 oC (with urease CLEL),  and 50 oC control (without urease CLEL). As the boiling 

point of methanol is 60 oC, the highest reaction temperature was set as 50 oC. It is obviously seen 

that at higher temperatures, the urea conversion yield is higher with urease CLEL.  

 



46 

 

 

Figure 2-22 Gas chromatography for dimethyl carbonate product (2-30 min) 

 

In figure 2-22, the gas chromotogram of the dimethyl carbonate product from the reaction of 

methanol and urea is shown. The broad peak around 15-20 minutes belongs to urea which has a 

high melting of 160 oC. Dimethyl carbonate has a 90 oC and methanol has a 60 oC of boiling 

points. They are both observed at the peaks around 2-3 minutes.  
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Figure 2-23 Gas chromatography for dimethyl carbonate product (2.5-3.3 min) 

 

Zooming on the peaks around 2-3 minutes, shown on Figure 2-23, it was observed that the sharp 

peaks at 2.65 and 2.85 minutes belongs to the solvent, methanol, which contains isopropanol as 

an impurity of 1%. Dimethyl carbonate was hardly seen at minute 3.085 peak after several 

programs due to the fact that the solvent shades the peak of the final product. 
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Figure 2-24 Fragment details for mass spectrum 

 

Figure 2-25 Mass spectrum for the peak retention time 3.085 

 

Figure 2-25 shows the mass spectrum of the dimethyl carbonate. Checking the fragment details of 

the reagents from figure 2-24, it is quite obvious that we need to see the 59 and 31 peaks as a 
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proof of dimethyl carbonate. Because of the fact that the highest peak in the mass spectrum is 45, 

we can conclude that there is still urea in the reaction medium and it is not fully converted into 

product. The relative intensities (%) of the dimethyl carbonate peaks 59 and 31 are respectively 

7% and 22% while the relative intensity (%) of the 45 peak, belonging to urea, is 100%. Although 

the urea conversion is not very high for this reaction, this data can be integrated with the data 

coming from Figure 2-18. At 25 oC, the urea conversion yield is not very high compared to the 

yield of the reaction at 50 oC.  

2.5 Concluding Remarks 

In this chapter, conventional urease CLEA methods were described. These methods led to 

dramatically low aggregation and cross linking yields, and displayed statistically insignificant 

catalytic activity of the immobilized urease product. The reason for poor precipitability of urease 

solutions remains unclear. The greatly declined catalytic activity of recovered CLEA, are 

explained by failure to stabilize the protein within the aggregation procedure prior to 

crosslinking. Furthermore, the poor crosslinking outcome appeared to be related to an unusual 

structure, which discouraged surface functional group interactions with crosslinker. The situation 

was markedly improved by the partial crosslinking of urease in the solution phase prior to 

aggregation and heterogeneous phase crosslinking. More importantly, however, a critical 

breakthrough was achieved by through substitution of aggregate precursors by lyophylizates and 

subsequent cross linking in an antisolvent or salt, providing near complete protein recovery. 

Moreover, the subsequent crosslinking of the lyophilizate (yielding a CLEL) in a suitable 

antisolvent bearing the crosslinker led to a much improved crosslinking yield and catalytic 

activity.  

Applicability of urease CLEA in synthesis catalyst in an organic solvent has been shown. 

Improvement of catalysis rate remains the subject for further optimization in the future work. 
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CHAPTER 3  Pepsin Cross Linked Enzyme Aggregates (CLEA) and Nano Cross Linked 

Enzyme Aggregates (nano CLEA) 

3.1 Introduction 

Pepsin, acidic protease, is one of the most widely used industrial proteases[39]. It has been 

routinely used in food, pharmaceutical, leather, cosmetic and textile industries[40]. However, 

some limitations exist in application spectra of pepsin enzyme in industry in terms of pH stability, 

thermal stability and etc. These limitations lead to need for improvements of enzymatic activity 

of pepsin with several engineering methods as mentioned in Chapter I. In here, we produced the 

first cross-linked pepsin nanoaggregates in order to alter the enzymatic properties of this catalyst 

for further applications.   

Firstly, the active site of pepsin has been well described by Sielecik et al. upon refinement of its 

crystal structure. It has been indicated that Asp32 and Asp215 residues are located on 

hydrophobic core of pepsin and acted as catalytic residues. It has been proposed that the 

hydrogen networking has been formed around active site residues such as Asp32-Ser35 with 2.8 

Å and Asp215-Thr218 with 3.4 Å [41]. In active site cleft of pepsin, there are found solvent 

sites[41]. Sielecki et al. described the activation mechanism of pepsin by the fact that the 

nucleophilic attack on the carbonyl carbon atom of substrate have been performed by catalytic 

residues and this catalytic pathway requires the presence of water in active cleft where the 

enzyme-substrate complex bound[41]. In active cleft of pepsin, there were found two specific 

water molecules and these water molecules are interacted with Glu107 and Ser104, located in 

hydrophobic cavity of pepsin. In here, Glu 107 is pointed toward the hydrophobic cavity and 

contributed to strong hydrogen networking. Thus, this contribution results in protonation of 

Glu107, acted as proton donor to another water molecule at hydrophobic cleft in further step. 

Moreover, the importance of salt concentration of environment on catalytic activity of pepsin was 

reported. It has been revealed that high salt concentrations disrupt the conformation of active site 

cleft of pepsin and lead to great reduction in its enzymatic activity. However, as the optimum pH 

environment was provided to pepsin enzyme, the favourable interaction between Glu287 and 
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substrate was formed upon the protonation of this residue. As similar to other aspartyl proteases, 

the active site cleft of pepsin is long enough to coordinate substrate through seven or eight 

residues. Sielecki et al. also described the substrate binding mechanism of pepsin and revealed 

that  there were found two large flats in pdb structure of pepsin[41]. In the first flap, Tyr75 and 

Thr77 residues interact with substrate and there are found Val291 and Leu298 residues in the 

second flap, which are directly interacted with amino portion of substrate[41].  

While no significant challenge was posed by pepsin in terms of aggregation, the crosslinking step 

is highly challenged. The obvious explanation can be derived by observing the structure, namely 

appearance of a single Lys residue available for conjugation.  

 

 

Figure 3-1 pdb structure of pepsin (pdb code: 5pep); Lys: Magenta, Asp: Blue, Glu: Green 

[41] 
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Figure 3-2 Presentation of the active site of pepsin (pdb structure) (pdb code: 5pep); Asp: 

Blue, Glu: Green [41] 

 

3.2 Materials 

Instrumentation:  

Thermo Scientific Nanodrop 2000 Spectrophotometer 

The rest of the instrumentation can be seen in Chapter 2.2 Materials section. 

 

Chemicals: 

Pepsin (EC 3.4.23.1), from porcine gastric mucosa was obtained from Sigma-Aldrich. 

Bovine Hemoglobin was obtained from Sigma-Aldrich. Hemoglobin from bovine blood, suitable 

for protease substrate, substrate powder. 

Trichloroacetic acid solution 6.1 N was obtained from Sigma-Aldrich. 

Dextran (native) was obtained from abcr GmbH&Co. 

The rest of the chemical reagents can be seen in Chapter 2.2 Materials section. 
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3.3 Methods 

3.3.1 Pepsin CLEA Synthesis 

Starting solution was prepared with pepsin powder (50 mg/ml) and albumin (0-50 mg/ml) in 10 

mM CaCl2/10 mM HCl pH4 buffer (4 oC). 

Herein, both the lyophilization and the aggregation methods were attempted.  

3.3.1.1 Pepsin CLEL Synthesis via Lyophilization Method 

For the lyophilization method, the solution was transferred into 2mL capacity Eppendorf tubes, 

and the tube rack was submerged in liquid nitrogen followed by lyophilization (24h). After the 

lyophilization procedure, the lyophilizates were dropped into crosslinker-precipitant mixture 

(25% glutaraldehyde pH 5 / 12.5% glutaraldehyde pH 9.5 / dextran polyaldehyde / N,N’-

dicycylohexylcarbodiimide – acetone / isopropanol / 4M ammonium sulphate). The reactions 

took place under 4 oC / -20 oC (20 h, 500 rpm). Following the centrifugation (5 min, 10 krpm), 

the pellet was treated with a freshly made aqueous solution of sodium borohydride (1000 l, 

1mg/ml dH2O, 30 min), centrifuged (10 krpm, 5 min), and twice reconstituted (1000 l, RT, 5 

min) and centrifuged (10 krpm, 5 min) in distilled water to remove traces of reagent. The wet 

pellet was dried under vacuum (RT, 12 h). 

Crosslinker reagents, aggregation mediums and protein composition variants for pepsin CLEL 

products are summarized in the table below: 
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Table 3-1 Enzyme concentration, crosslinker and aggregation medium information for 

pepsin CLEL formation via lyophilization method 

Enzyme 

solution code 

P1 P2   

Concentration 

/ml 

50 mg pepsin 
50 mg pepsin  

50 mg albumin 
  

Crosslinking 

medium code 

M1 M2 M3  

Crosslinking 

medium 

4M 

ammonium 

sulfate 

Isopropanol Acetone  

Crosslinker 

code 

C1 C2 C3 C4 

Crosslinker 

Glutaraldehyde 

25% pH 5 

Glutaraldehyde 

12.5% pH 9.2 

Dextran 

polyaldehyde 

N,N’-

dicyclohexylcarbodiimide 

 

3.3.1.2 Pepsin CLEA Synthesis via Aggregation Method 

For the aggregation method, protein solutions were dropwise added into a saturated ammonium 

sulfate solution (salting out) or an anti-solvent (isopropanol, acetone) under constant stirring 

conditions at v:v ratio of 1:9 or 1:5 and left to stir for 20-30 min at 400-550 rpm, at 4 ºC. 

Following this procedure, the crosslinker, 12.5 wt% pH 9.2 glutaraldehyde, N,N’-

dicyclohexylcarbodiimide, dextran polyaldehyde was dropped into enzyme aggregate 

crosslinking reaction step was subsequently permitted for 20 h (4 oC / -20 oC). The biological 

material was recovered as a pellet following centrifugation (5 min, 10 krpm), the pellet was 

treated with a freshly made aqueous solution of sodium borohydride (1000 l, 1mg/ml dH2O, 30 

min), centrifuged (10 krpm, 5 min), and twice reconstituted (1000 l, RT, 5 min) and centrifuged 
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(10 krpm, 5 min) in distilled water to remove traces of reagent. The wet pellet was dried under 

vacuum (RT, 12 h).  

 

Crosslinker reagents, aggregation mediums and protein composition variants for pepsin CLEA 

products are summarized in the table below: 

Table 3-2 Enzyme concentration, crosslinker and aggregation medium information for 

pepsin CLEA formation via aggregation method 

Enzyme 

solution code 

P1 P2   

Concentration 

/ml 

50 mg pepsin 
50 mg pepsin  

50 mg albumin 
  

Crosslinking 

medium code 

M1 M2 M3  

Crosslinking 

medium 

Acetone Isopropanol   

Crosslinker 

code 

C1 C2 C3 C4 

Crosslinker 

Glutaraldehyde 

12.5% pH 9.2 

N,N’-

dicyclohexylcarbodiimide 

Dextran 

polyaldehyde 
 

 

Crosslinkers 

Glutaraldehyde 

Glutaraldehyde was applied at concentrations of 2.12 x 10-5 mol per mg protein (dry weight 

equivalent). Glutaraldehyde is typically stored and sold at slightly acidic pH values, which serves 

to reduce its optimal reactivity. In this work, commercial glutaraldehyde stocks (25wt%, pH 5) 

were directly used without pH adjustment. Alternatively, water-diluted stocks (12.5wt%, adjusted 
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to pH 9.2 using 0.1M sodium carbonate buffer and pH 7.4 using 0.1M sodium phosphate buffer) 

were used. 

Dextran polyaldehyde (PDA) 

Dextran polyaldehyde was synthesized in house according to the following procedure:  

Dextran 1.65 g was dissolved in 80 mL of water, and 3.85 g sodium metaperiodate were added. 

The resulting solution was stirred at room temperature during 90 min. Subsequently, the solution 

was dialyzed five times, using a MW cutoff of 10 KDa against 5 L of water each time at room 

temperature during 2 hrs and under stirring. The final volume of the dextran polyaldehyde was 87 

mL. 

Dextran polyaldehyde was applied at concentration of 0.76 mg per mg protein (dry weight 

equivalent) for all samples, if not stated otherwise in the text. 

N,N'-dicyclohexylcarbodiimide 

N,N'-dicyclohexylcarbodiimide (DCC) was applied at 1.9x10-5 mol concentrations per mg protein 

(dry weight equivalent), with prior addition of N-hydroxysuccinimide (2.8x10-5 mol). 

3.3.2 Nano Pepsin CLPA Generation 

Nanonization was achieved via hydrodynamic shear application using homogenizer (Heidolph 

silent crusher M) with varying processing time and shear conditions. In a typical run, CLEA (2.5 

mg) was dispersed in 1 ml 30% aqueous glycerol solution or 100% ethanol and nanonization was 

performed using different instrumental settings and times (10-21 krpm; 30-60 min). Given the 

thermal stability of CLEAs, no elaborate steps were taken to avoid incidental heating of the 

dispersion during nanonization.  

The nano-CLPA samples were transferred into 1.5 ml eppendorf tubes with the dialysis 

membrane replacing the top of the tube cap, tubes were further secured with parafilm tape to 

avoid any leakage. All samples prepared as described were dialyzed against 10 mM CaCl2 10 

mM HCl pH4 buffer, with constant agitation, for the period of 6 hours, repeated 4 times. (Snake 
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Skin® Dialysis Tubing, 3.5K MWCO, 35 mm dry I.D, 35 feet was obtained from Thermo 

Scientific). 

3.3.3 Characterization of Pepsin CLPA and Nano Pepsin CLPA 

The instrumental analysis was performed via Dynamic Light Scattering and Scanning Electron 

Microscopy. 

3.3.3.3 Dynamic Light Scattering Measurements 

The sample was diluted 10 fold in medium corresponding to their homogenization conditions. 

DLS data was collected on samples equilibrated at 25 ºC in 2ml disposable cuvettes, as a result of 

3 consecutive scans, Malvern Zetasizer NANO ZS. Absorption of each sample was measured at 

633 nm and included in DLS measurement protocol. Particle refractive index of 1.5 was assumed 

for all CLPA samples and refractive index of corresponding medium was included in the 

protocol. Data was analyzed using protein analysis model, Malvern Zetasizer software. 

3.3.3.4 Scanning Electron Microscopy Analysis 

CLPA powder was subjected to treatment in a Cressington Sputter Au/Pd Coater. An 

approximate coating thickness of 2-3nm was targeted. The processed samples were loaded into 

the vacuum chamber of a ZEISS brand LEO SUPRA 35VP model SEM with GEMINI column. 

An electron gun voltage of 2kV was employed throughout the analyses. 

3.3.3.5 Pepsin Catalytic Activity Assay Protocol 

For the determination of the pepsin activity, modified Worthington assay based on the stop-point 

assay of hemoglobin degradation developed by Anson (1938) was applied to the samples [42]. 

1 ml of 1 mg/ml CLEA and 1 ml of 1 mg/ml native pepsin solutions in 0.01 N HCl were dropped 

into 5 ml of 2.5 w/v hemoglobin (4:1 diluted with 0.3 N HCl). After 20 minutes of incubation at 

37 oC, 10 ml of trichloro acetic acid (TCA) was added to the solutions. After 5 minutes of 

incubation, samples were spinned for 5 minutes at 13 krpm. The absorbance values of the 

supernatants were measured at Thermo Scientific Nanodrop 2000 Spectrophotometer. Relative 
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activity (%) was compared by assessing the pepsin mass fraction within each CLEA against an 

equal mass of freely soluble native pepsin. The native pepsin was arbitrarily assigned a value of 

100%. 

3.4 Results and Discussion 

In this chapter, challenges associated with crosslinking step of cross-linked pepsin aggregates 

were addressed. 

Both CLEA and CLEL formulations have been considered, but as opposed to urease formulation 

no dramatic improvement was observed with incorporation of CLEL technique. On the other 

hand crosslinker choice and physical reaction conditions appeared much more influential.  

3.4.1 Pepsin CLPA Synthesis 

The crash precipitation efficiencies of pepsin appeared highly dependent on the medium, with 

most conventional saturated ammonium sulphate precipitation leading to intolerable protein 

losses. The most efficient antisolvents, in terms of precipitation yields were isopropanol and 

acetone, yielding an average of 80-90% of initial protein amount in the form of aggregate (results 

not shown). Subsequent cross linking step was successfully facilitated in isopropanol, while 

crosslinking in acetone led to dramatically declined yield. Significant decrease in catalytic 

activity of obtained CLEA was observed in case of both antisolvents, more dramatically 

pronounced with the use of acetone (Figure 3-2). Therefore for all further formulations 

isopropanol was utilized as the aggregation medium.      

Furthermore co-precipitation of pepsin with albumin did not lead to significant improvement, in 

terms of aggregation and crosslinking efficiency. On the other hand, while statistically 

comparable, results obtained from co-precipitate CLEAs were generally exceeding those of 

pepsin aggregates. Therefore, data corresponding to co-precipitate samples is presented herein.     
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Figure 3-3 Effect of aggregation medium and glutaraldehyde reagent pH on relative 

catalytic activity of pepsin CLEA 

 

Comparison of different crosslinker reagents efficiency has led to the conclusion that dextrane 

polyaldehyde was the most suitable reagent in terms of catalytic activity conservation (Figure 3-

3), as retention of 70-80% catalytic activity could be achieved. Most conventional glutaraldehyde 

reagent at various reagent pH values all yielded 0-10% of native enzyme activity, with pH 9.2 

providing the highest value. Utilization of carbodiimide reagent has led to slight improvement of 

activity retention as compared to glutaraldehyde. The most plausible results were obtained 

through incorporation of reaction intermediate stabilizing hydrosuccinimide reagent reaching the 

maximum of 30%, as described in methods section of this Chapter.   
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Furthermore, incorporation of subzero temperature conditions throughout the crosslinking 

procedure did not benefit glutaraldehyde and carbodiimide crosslinking modes. On the other 

hand, dextrane polyaldehyde crosslinking at -20 oC provided CLEA with somewhat increased 

catalytic activity as compared to products of reactions conducted at conventional 4 oC.   

 

Figure 3-4 Effect of cross linking reagent and cross linking temperature on relative catalytic 

activitiy of pepsin CLEA. (Crash precipitation facilitated by isopropanol) 

 

It followed to reason that a combination of the large bulk and low temperature could have 

permitted the close interaction of protein and crosslinker, leading to secondary benefits such as 

crosslinker interactions with surface hydroxyl groups, and mechanical fastening of the structures 

to one another by way of encapsulation and intertwining. Indeed, substitution of dextran 

polyaldehyde by the more established glutaraldehyde resulted in a much poorer outcome, 

attesting to the importance of steric bulk. 
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One of the main reasons behind improved enzymatic activity is that low temperature contributes 

to maintain a fixed superstructure of an enzyme, which can be further preserved upon cross-

linking agents [15]. The highest level of structural preservation at low temperature makes 

possible that cross-linked agent reaches the fixed super-structure of an enzyme, which contributes 

to preservation of enzyme activity. Furthermore, much declined autolysis should be expected 

throughout the crosslinking period, leading to more efficient preservation of overall structural 

integrity of the pepsin aggregate bulk. 

It has been well indicated in literature that there are some limitations in cross-linking of enzyme 

in an effective ways such that the limiting number of binding sites or steric inaccessibility in 

enzyme structures [43]. As shown in Figure 3-4, there is only one lysyl residue on surface of the 

protein, which is essential for cross-linking reaction.  

As mentioned before, the enzyme precipitation is one of the integral parts of cross-linking 

procedures. Up to now, many different ways have been reported to precipitate enzymes 

effectively such as cooling, pH adjustments, addition of organic solvents, immunoprecipitants 

and etc. Among these factors, cooling in organic solvents is one of the most effective methods for 

protein precipitation since the synergistic effects of low temperature and organic solvent are well 

observed.  In organic solvents, some diffusional limitations are observed due to excess rigidity of 

enzymes [44] but the high stability of enzymes are mostly reported upon improvements of intra-

molecular forces in enzyme. When the diffusional limitation and low solubility of enzymes due to 

organic solvent and low temperature, respectively, were well combined, the synergistic effects are 

clearly observed and report to improvements in cross-linked enzyme activity.  To overcome the 

rigidity problem of enzymes in organic solvent, as well known in literature, organic solvent 

imposes some degree of rigidity on enzyme structure. In order to solve this problem effectively, 

some practical solutions are reported such as addition of small amount of water to reaction 

environment. It has been already reported in literature that the addition of small amount of water 

to reaction environment provides enough flexibility for proper enzyme functioning without 

altering chemical reaction type [45]. Thus, this became the motivation to perform cross-linking 

reaction in 95-5 % (v/v) organic solvent: water environment to provide enough structural 

flexibility to the enzyme also for further proper functioning. The cross-linking results performed 
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at -20 oC in 95/5 % tells us that the addition of 5% water to reaction environment works well in 

terms of providing required flexibility to enzyme, especially Lys residues available on surface 

and we get effectively cross-linked enzyme aggregates. The reason behind improved CLEA 

activity in 95/5 % (v/v) reaction environment can be explained by the fact that the addition of 

small amount of water, as 5%, leads to lesser rigidity on surface of (pepsin/urease) compared with 

that of in 100% organic solvent. In addition to surface rigidity, addition of 5% water to reaction 

environment might  Thus, Lys residues located on surface, crucial and essential for cross-linking, 

have had a high degree of freedom for any possible chemical attack in 95-5% (v/v) organic 

solvent-water environment, compare with that of in 100% organic solvent environment. 

Moreover, addition of 5% water to reaction environment contributes to preservation of catalytic 

site as if it is in water environment. Compared to 100% organic solvent environment, it is 

expected to observe less exposition of catalytic triad toward solvent in 95/5 % (v/v), compared 

with 100% organic solvent. Thus, the high degree of catalytic triad preservation is well combined 

with higher degree of flexibility of Lys (surface) with 95/5 % system. Providing higher degree of 

flexibility to Lys residues on surface contributes well to cross-linking efficiency of enzyme. 

Keeping with the argument above, ironically, anti-solvent induced rigidity and neighbor- and 

crosslinker-induced restrictions of conformational freedom will also reduce the protein’s entropy 

per unit time. The end result would be Gibbs ground state elevation of individual proteins in the 

CLEA, yielding more reactive catalysts. This statement would support the enhanced overall 

rigidity effect in favor of CLEA catalytic activity. Furthermore, incorporation of aqueous fraction 

into crosslinking medium could potentially contribute to some enhancement of earlier mentioned 

autolysis of the protease, through introduced flexibility. 

While the weight-averaged contributions of these terms are subject to variability, it would appear, 

given the net rise of activity in dextran polyaldehyde facilitated CLEAs in case of both 4˚C 100% 

anti-solvent induced aggregates and 95% anti-solvent crosslinked at -20˚C, that catalytic losses 

due to rigidity of an aggregate precursor had not substantially contributed. Nevertheless, the 

discussion above provides further opportunities to optimization of the procedure, aiming full 

retention or even relative increase in pepsin CLEAs. 
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Figure 3-5 Effect of cross linking reagent on relative catalytic activitiy of pepsin CLEL. 

(Crosslinking medium-isopropanol, 4 OC) 

 

As can be observed from Figure 3-5, method of lyophylizate crosslinking (yielding CLEL) earlier 

rather successfully demonstrated on the example of urease, has not proved beneficial in case of 

pepsin formulations. The obvious advantage of dextrane polyaldehyde utilization is once again 

well pronounced in resultant CLEL formulations.  It could be rationalized, that the rigidity of an 

aggregate system formulation as opposed to, porosity related, relative flexibility of lyophilizates, 

introduces the necessary thermodynamic stress contributing to improvement of catalytic activity. 

Furthermore more closely packed structure of aggregates facilitated the necessary proximity of 

available juxtaposed crosslinkable groups, therefore maximizing the overall crosslinking degree. 
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3.4.2 Nano Pepsin CLPA Synthesis 

 

 

Figure 3-6 DLS result of nano crosslinked pepsin aggregate homogenized in absolute 

ethanol, at 21krpm for 30 min (nano CLPA) (Albumin:Pepsin 1:1 (w:w) Acetone, 

glutaraldehyde pH 9.2 case) 

 

Figure 3-6 presents a DLS measurement of supernatant (1krpm) of a urease CLEA suspended and 

homogenized in 100% ethanol. This data provided evidence of nanoparticle content generation 

upon nanonization procedure. 

Nevertheless, size reduction of pepsin CLEA and CLEL formulations failed to improve catalytic 

activity of the material, although to a less pronounced degree as compared to that of urease nano-

CLEL. Some activity retention through nanonization was observed in case of CLEL formulation 

originally yielding near zero catalytic activity. Glutaraldehyde crosslinked CLEA was also 

nanonized to yield some activity improvement, while the most successful example of dextran 

polyaldehyde crosslinked formulations have suffered a decline in activity upon nanonization. 

It can be generalized that small degree of crosslinking, specific to pepsin due to low availability 

of crosslinkable surface residues, results in much softer final product as compared to more 

CLEA/CLEL method friendly proteins described in the “crosslinked protein nanoaggregates” 

project [16]. Therefore, even the method of homogenization under milder absolute ethanol 



65 

 

medium conditions, which proved very useful while working with softer formulations 

(Zakharyuta, A., PhD Thesis, Nanosized Crosslinked Protein Aggregates (nano-CLPA)), appears 

too harsh in the case of pepsin formulations. It follows to reason that these formulations are 

irreversibly damaged by the shear force necessary for successful nanonization. Improvement of 

crosslinking degree of pepsin CLEA formulations could provide the necessary mechanical 

integrity for further nanonization trials. Slight improvement in catalytic activity of some initially 

less successful CLEA/CLEL formulations through nanonization, might be explained due to 

release, and therefore improved surface availability, of catalytically preserved units within the 

crosslinked protein bulk during distortion of the macroscopic structure. 

 

Figure 3-7 SEM imagery of crosslinked pepsin lyophilizate (CLEL), presenting the 

morphology of micro particle units; 2.00 KX, EHT = 2.00 kV, WD = 8 mm, Secondary 

electron detector 

 

A general morphology of homogenization product is observe on Figure 3-7. SEM results are 

illustrated on Figure 3-8 presenting the morphology and approximate size order of 
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heterogeneously nanosized cross linked urease lyophilizates and interior of the generated particles 

on Figure 3-9. The finely structured heterogeneouse size nano particles with the average size 

around 200 nm can be observed (Figure 3-8). The particles of similar morphology have been 

observed in the previous study (Zakharyuta, A., PhD Thesis, Nanosized Crosslinked Protein 

Aggregates (nano-CLPA)). Nevertheless, in the case of pepsin, as has been oberved in the case of 

urease, the majority of the material is of the appearence visualized on Figure 3-9. This 

morphology also reflects the interior of the finely structured particles demonstrated, thereof 

providing evidence of mechanical integrity loss of the major part of crosslinked material in the 

course of homogenization process. The similarity in failure to achieve structural integrity in both 

cases arises from low crosslinking degree of both urease and pepsin crosslinked formulations.   

 

 

Figure 3-8 SEM imagery of nano crosslinked pepsin lyophilizate (nano CLEL), presenting 

the inferior morphology of nano particle units; 70.00 KX, EHT = 2.00 kV, WD = 8 mm, 

Secondary electron detector 
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Figure 3-9 SEM imagery of nano crosslinked pepsin lyophilizate (nano CLEL), presenting 

the interior morphology of nano particle units; 70.00 KX, EHT = 2.00 kV, WD = 8 mm, 

Secondary electron detector 
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Figure 3-10 Catalytic activity comparison of pepsin CLEA/CLEL and nano CLEA/CLEL in 

relation to crosslinking reagent effect (aggregation/crosslinking medium-isopropanol) 

 

3.5 Concluding Remarks 

Most efficient aggregation and catalytic activity yields were obtained in case of utilization of 

isopropanol as aggregation medium. Not surprisingly, the problematic step appeared to be 

covalent crosslinking of pepsin, due to availability of only one lysine residue for cross link 

formation. The satisfactory solution was achieved through incorporation of dextran polyaldehyde 

as the cross linking reagent, and the use of the subzero crosslinking temperatures. Plausible 

results obtained from this optimum formulation may be facilitated by incorporation of surface 

hydroxyl groups into overall cross linking species. Formation of the first catalytically competent 

pepsin CLEA has been thereof achieved. 
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CHAPTER 4  Conclusion 

 

Protein catalysts have had been widely utilized for a great range  of industrial, analytical and 

biomedical applications for several decades, whereas the applicability of native protein 

formulations is limited and challenged by a number of factors including mechanical and chemical 

stability under harsh reaction conditions differing from those acceptable for a native protein due 

to its source and native specifications. In order to overcome these drawbacks and to enhance the 

enzymatic and catalytic properties of native proteins, the different immobilization techniques 

were developed to improve the protein stability under conditions varying from the native proteins 

optimum but necessary for a given application, such as temperature, pH, ionic strength, organic 

solvent etc. Furthermore, immobilization has been shown as an effective way to manipulate 

mechanical and enzymatic properties of native proteins that results in increased shelf life and 

provide reusability of the catalyst, while retaining catalytic activity of the enzyme in a proper 

way. The topic of this thesis forms a part of TÜBİTAK 1001 project no 111M680 “Crosslinked 

Protein Nanoaggregates” [16]. The main motivation of this project is to address challenges 

arising in micron and higher size heterogeneous catalyst systems, such as mass transport 

limitations, reduced access to catalytic site and etc., through the conventional and further 

optimized CLEA methodology via limiting the particle size to the nanoscale.  

As described in Chapter 2, the conventional CLEA methods have failed to facilitate effective 

urease formulation. The results show us that low aggregation and crosslinking yields of urease 

CLEA led to statistically insignificant catalytic activity, compared with native one.  The reason 

behind the poor catalytic activity of urease CLEA were well explained by the fact that urease 

displayed extremely poor protein precipitability which prevented protein stabilization and CLEA 

formation. Moreover, urease displayed unusual surface properties, i.e.; the conformation of 

functional groups required for crosslinking are pointing towards the hydrophobic core of urease 

and these conformations are not suitable to establish a proper interaction with the crosslinker. In 

order to facilitate originally impaired precipitability, urease was partially cross linked through the 

solution-phase crosslink-assisted aggregation method (CLEA). Results although somewhat 
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improved in terms of final product formation yield, still yielded a maximum of about 14% 

relative catalytic activity at its best formulation. The solution to the problem was finally achieved 

by enforcing protein aggregation via flash-freezing and lyophilization as opposed to routine 

precipitation from aqueous media by introduction of a suitable anti-solvent or salt. In this way, 

protein recovery as an aggregate was near-quantitative. Moreover, the subsequent crosslinking of 

the lyophilizate (yielding a CLEL) in a suitable anti-solvent bearing the crosslinker led to a much 

improved crosslinking yield and catalytic activity, yielding about 270% in the best obtained 

CLEL formulation. Therefore, the production of the first crosslinking mediated immobilization of 

urease has been established as urease CLEL. 

Applicability of urease CLEL in organic synthesis has been demonstrated, resulting in modest 

reaction yields while still significantly facilitating the reaction catalyst.  By prolonging reaction 

periods and making use the enhanced thermal stability of immobilized urease formulation, by 

increasing reaction temperatures the synthesis yield could be further enhanced. 

In Chapter 3, the problematic covalent crosslinking of pepsin was addressed by modification of 

conventional CLEA methods. Structural challenge of pepsin towards conventional surface 

modification lies within appearance of only one lysine group, necessary for covalent cross link 

formation. Given that the formation of a crosslinked mass would demand two and at times three 

reactive groups per monomer, it was not surprising that pepsin was relatively unresponsive to all 

crosslinking attempts mediated by surface amino groups. This drawback has been bypassed by 

appropriate choice of a rather bulky dextran polyaldehyde reagent, which in some cases 

combined with the use of the subzero crosslinking temperatures resulted in much improved 

formation yields and has allowed the relative catalytic activity retention of about 80% in the best 

obtained formulation. It followed to reason that a combination of the large bulk and low 

temperature could have permitted the close interaction of protein and crosslinker, leading to 

secondary benefits such as crosslinker interactions with surface hydroxyl groups, and mechanical 

fastening of the structures to one another by way of encapsulation and intertwining. These 

secondary effects appeared to have tipped the scale, permitting the formation of the first ever 

catalytically competent pepsin CLEA. The successful production of first pepsin CLEA in 

literature was achieved.  
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Nanonization trials for both, urease and pepsin, CLEA/CLEL have been met with difficulties. 

While effective generation of nano particles has been achieved in both cases, resultant nano 

materials failed to achieve the expected increase in relative catalytic activity. Furthermore, 

significant decline in catalytic activity of urease nano CLEL was observed. It follows to reason 

that mechanical integrity of both materials was not sufficient to withstand the homogenization 

conditions dictated by nano particle generation requirements, which is readily rationalized by 

limited number of covalent crosslinks formed due to structural restrictions of both proteins. 

Further improvement of cross linking method, and thereof facilitation of mechanical stability 

necessary for harsh nanonization conditions, lies within the scope of future work.     

It follows to reason that the novel immobilization protocols presented herein will add to the 

general knowledge base and potentially serve as a crucial alternative method in the case of other 

user-unfriendly protein systems important to industry. These could also be utilized to prompt 

greener processes, such as the enzymatic or semi-enzymatic syntheses of industrially important 

commodity compounds. 
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