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Abstract

Image guided interventions in angiography are performed with a real-time X-ray

sequences acquired by a C-arm device which provides the surgeon two dimensional

visualization needed to guide the surgical instruments. This visualization may be

augmented by registering a three dimensional preoperative volume with the interven-

tional images to provide additional information such as depth, removal of occlusions

and alternative views of vessel paths. This thesis presents two novel methods for

rigid registration of vascular structures in the preoperative volume to the interven-

tional X-ray image for enhancing visualization in Image Guided Interventions. In

the first part of this thesis, estimation of rotation and translation are decoupled.

Rotation is estimated by comparing rotated projections of the segmented vessels of

the volume with segmented X-ray vessels in frequency domain. Translation is then

estimated by minimizing the distances and maximizing the overlap ratio between

segmented vessels. The registration results are reported in mean Projection Dis-

tances. The second part of the thesis adds separation of out-of-plane translation

estimation to the first part and replaces segmentation by gradients. Rotation and

out-of-plane translation are estimated by comparing rotational projected templates

of volume with depth templates formed by scaling the X-ray image in the Fourier

Magnitude Domain. The in-plane translation is then estimated by a Fourier Phase



correlation. The registration results are evaluated by a Gold Standard dataset on

cerebral arteries. This method is robust against occlusions and noises due to its us-

age of gradients and frequency domain similarity, has high capture range and fast,

fixed computation times for every step due to template based framework.
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Özet

Anjiyografideki görüntü kılavuzlu ameliyatlarda C-arm cihazından alınan gerçek za-

manlı X-ışını görüntüleri doktorun ameliyat cihazlarını yönlendirmesini sağlar. Bu

iki boyutlu görüntüler üç boyutlu ameliyat öncesi alınan görüntülerle çakıştırılarak

derinlik, örtünmelerin kaldırılması ve daha detaylı görünüm gibi ek bilgiler sağlar.

Bu tezde ameliyat öncesi görüntülerdeki damarlarla ameliyat sırasında alınan X-ışını

görüntülerindeki damarların katı çakıstırılması için iki yeni yöntem sunulmuştur.

İlk yöntemde dönme ve ötelenme bulunması ayrılır. Dönme üç boyutlu görüntüden

alınan bölütlenmiş damarların döndürülmüş projeksiyonlarının bölütlenmiş X-ışını

damarlarıyla frekans uzayında karşılaştırılmasıyla bulunur. Ötelenme ise bölütlenmiş

damarlar arasındaki uzaklıkların en aza indirilmesi ve örtüşmenin en yükseğe çıkarılması

ile bulunur. İkinci yöntem ilk yönteme ayrı derinlik hesaplaması getirir ve bölütlenmiş

görüntüler yerine gradyanları kullanır. Dönme ve derinlik hacmin dönme şablonlarıyla

derinlik şablonlarının Fourier Büyüklük uzayında karşılaştırılmalarıyla bulunur. Düzlem

üzerindeki ötelenme ise Fourier Faz korelasyonu ile kestirilir. Çakıştırma sonuçları

beyin damarlarının Altın Standardı veri kümesiyle ölçülür. Bu yöntem örtünme

ve gürültülere gradyanlar ve frekans uzayındaki benzerlik sayesinde dayanıklıdır.

Şablonlar sayesinde büyük yakalama menzili ve her adımı için sabit, hızlı hesaplama

zamanlarına sahiptir.
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Chapter 1

Introduction

1.1 Motivation

Medical 3D-2D registration is generally defined as bringing voxels in a volume and

pixels in a 2D image into correspondence. 3D-2D registration is mainly related

to angiography procedures, where blood vessels, particularly arteries and veins are

visualized by medical imaging techniques such as X-ray, Computed Tomography

(CT) or Magnetic Resonance Imaging (MRI). Typically, a radio-opaque contrast

agent is injected into the blood vessel and imaging is performed through an X-ray

based technique such as fluoroscopy. The aim of 3D-2D rigid registration for angio-

graphic surgical planning is to enable the physician to apply 3-dimensional depth

information and other occluded structures embedded in pre-interventional volumes

such as CT and MRI to 2-dimensional intra-interventional images (fluoroscopy) and

thereby improve visualization and navigation during the intervention. Registration

of the pre-interventional volume and interventional images provides additional valu-

able information to the surgeon in Image Guided Interventions (IGI) such as precise

localization and clearer visualizations of vessel paths during navigation which are

critical in assessment of structure and location of pathological conditions such as

aneurysms, vessel narrowing, clotting and atherosclerosis. The registration should

take place in ideally real-time or near real-time to enable physicians to plan and

act accordingly. The benefits of IGIs are shorter procedure times and prevention of

tissue damage that may result from misplaced catheters, wires and stents as well as

reduced exposure to X-ray radiation of the patient due to potential reduction in the

1



intervention time.

1.2 Problem Statement

Registration is defined as bringing two images into a common coordinate system.

The aim of 3D-2D registration is to find spatial transformation of a structure in three

dimensional space to align it with the projection on two dimensional image plane. In

medical context the volume usually corresponds to a preoperative scan such as CT,

MR, PET (Positron Emission Spectroscopy) or SPECT (Single Photon Emission

Computed Tomography) and the 2D image can be X-ray or Ultrasound acquired

during an intervention. The purpose of 3D-2D Registration in this thesis of either

3D CTA and 2D X-ray images or 3D Rotational Digitally Subtracted Angiography

(RDSA) and 2D X-ray images is estimating the rotation and translation of pre-

interventional volume (CTA or RDSA) through alignment of its projection with a

single X-ray acquired during an intervention. The projection type is perspective for

the purpose of simulating the X-ray machine imaging geometry. In the framework of

this thesis, all other camera parameters such as position of the detector are assumed

to be correct and loaded from the DICOM headers of the given data.

1.3 Overview of Approach

Estimation of rotation and translation parameters of the CTA volume are decoupled

in the first part of this thesis. In this part, the anatomy of interest is the coronary

artery and the medical image modalities are the patient’s CTA image volume in

3D, and the X-ray images in 2D. Rotation is recovered by matching rotated CTA

Digitally Reconstructed Radiography (DRR) templates (described in Chapter 2)

to the segmented X-ray image in frequency domain (See Figure 1.1). In the sec-

ond step, 3D translation is recovered in spatial domain by minimizing the distance

and maximizing the overlap ratio between the 3D vessel model and the 2D vessels.

Only the translation component was optimized in the image plane, by minimiz-

ing a distance-based cost functional. The results are reported as mean Projection

Distance Error.
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Figure 1.1: Illustration of First Contribution

The second contribution of the thesis presents stratified estimation of rotation,

depth and in-plane translation parameters. The medical imaging modalities are

the Rotational Digitally Subtracted Angiography (RDSA) in 3D, and the Digitally

Subtracted Angiography (DSA) images in 2D of cerebral vessels. This part of the

thesis makes use of gradients of the DSA images as inputs instead of segmentations.

Rotational DRRs of the RDSA image are compared to depth templates formed by

scaled X-ray images in Fourier Magnitude domain which is invariant to in-plane

translation. Rotation and depth are recovered from the rotation and scale of the

highest correlated DRR template and X-ray, respectively (See Figure 1.2). The

in-plane translation is found by Fourier Phase Correlation. The 3D translation is

computed by projection matrix equations from in-plane and out-of-plane transla-

tions. The discrete estimates of scale and rotation are interpolated to continuous

values by linear regression and linear interpolation, respectively. This procedure

is repeated twice by changing the resolution of the registration parameters. The

results are compared to the Gold Standard Registration and errors are reported in

three dimensional distance metrics.

3



Figure 1.2: Illustration of Second Contribution

1.4 Contributions

Rotation and depth estimation is difficult in 3D space from a single view with tra-

ditional optimizers due to abundance of local minima in 3D-2D registration. In the

first contribution of the thesis, a novel library and segmentation-based 3D-2D regis-

tration scheme that decouples rotation and translation estimations is presented.

Unlike other segmentation-based approaches, the method requires only a rough

translation initialization since the capture range is increased by rotational CTA

DRR templates. Iterative optimization is applied only in the translation search.

The main contributions of this part are the separation of rotation and translation

estimation, use of rotational templates for estimation of rotation and almost fully

automatic X-ray segmentation method.

The critical issue of monoplane 3D-2D registration is the correct estimation of

the depth component of translation, which was not addressed separately in any

of the previous methods. The second contribution of the thesis adds an improved

depth estimation to the previous work. The estimation of out-of-plane translation is

separated from in-plane translation by creating a discrete scale space of X-rays for

the former and using Fourier phase correlation for the latter. Furthermore a possible

source of error, the segmentation is replaced by gradients of DSAs. The main con-

4



tributions of this method are separate depth, rotation and translation estimations,

fast and fixed computation times and comparison to Gold Standard Registration.

1.5 Thesis Organization

The organization of the thesis is as follows. In chapter 2 background information

on medical registration, clinical setup and related literature review are provided.

Chapter 3 presents a novel segmentation based 3D-2D registration method of coro-

nary arteries using rotational templates. Chapter 4 presents a novel segmentation

free stratified 3D-2D registration method of vessels by separating estimation of ro-

tation, translation and depth in frequency domain. Chapter 5 contains conclusions

and possible future directions in the field.
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Chapter 2

Background

2.1 Overview of Image Registration

Image registration is the process of finding the mapping that brings similar scenes

in different images to the same coordinate space. Three main sources of differences

are such that the two images are: [5]:

1. recorded from the same scene at different times;

2. recorded by different acquisition devices (intermodal);

3. undergone a spatial transformation such as a rigid transformation or a defor-

mation.

The above three scenarios may occur alone or in combination. Examples for

registering images recorded at different times are establishing correspondences be-

tween video frames of a moving object or between two snapshots of a scene that has

undergone a change from its initial state. In medical imaging, changes of tissues in a

pathological region of a patient can be traced by registering images recorded at dif-

ferent times. If these images are from the same modality, they would be considered

as a time series.

Intermodal registration has been most commonly performed among images from

Computer Tomography (CT), Magnetic Resonance Imaging (MRI), Positron Emis-

sion Tomography (PET), X-ray and Ultrasound devices [6] in literature. The goal

is to combine and fuse data from devices that capture the same region of interest

with a different sensor hence different response characteristics. Fusion of data from

6



different devices can provide additional information such as higher precision, depth

gain and removal of occlusions by other organs. Because different modalities pro-

duce different responses to anatomical structures in the same field of view, finding

correspondences between them may require complex operations.

Intermodal registration can aid in clinical imaging of treatment planning through

combining functional and structural imaging, for instance, in assessment and treat-

ment of brain tumors by registration of MRI and PET modalities. The active regions

of the tumor which may not be enhanced in MRI are highlighted in PET. Intermodal

registration can also aid in planning radiation treatment by combining data from

previously acquired high resolution non-planning study such as MR, PET, SPECT

to planning study such as Computer Tomography Scan. Image Guided Surgery

(IGS) combines 3D preoperative volumes with 2D fluoroscopic images during min-

imal interventional procedures. It provides benefits of planning optimal trajectory

of catheter for navigation, reduced risk of tissue damage, shorter procedure times

and more accurate tissue resection, ablation or biopsy [7].

The general form of any registration problem entails an optimization function,

which is a function of the unknown geometric transform T . It penalizes the cost

of a distance between the two images when a second image is mapped by the given

transformation onto the first one. This term is often called a ”data fidelity term”. In

addition to the data term, typically a regularizer term is added to the cost function

in order to constrain the space of solutions, e.g. through a smoothness constraint.

Mathematically, the problem of registration is expressed as:

arg min
T̂
C(T ) = S(I1(x), I2(T (x))) + αRegularizer(T ) (2.1)

where S(.) is the similarity measure, T̂ is the unknown geometric transform between

the two images I1 and I2, which are defined as: I : x ∈ R3 −→ R, as medical imaging

modalities in CT, X-ray, structural MRI, PET and ultrasound yield scalar intensity

measurements in 3-D (or 2-D) space.

Spatial transform registrations can be categorized as 3D-3D, 2D-2D and 3D-2D

with respect to dimension. The most complex type of registration in this scenario is

3D-2D registration which has been studied extensively in the recent literature. 3D-

2D registration can be defined as finding the spatial transformation of a structure

7



in three dimensional space to align it with a projection on two dimensional image

plane. There are two main approaches for registering a 3D structure to 2D image(s).

One method is by projecting the structure onto image plane and computing the

similarity. This can be expressed as:

arg min
T̂
C(T ) = S(I1(x),PF(V(T (x))) + αRegularizer(T ) (2.2)

where V is the 3D structure and PF (.) is the projection operator. This thesis uses

this approach. Another method is by back projecting the 2D image(s) into 3D space

and maximizing the similarity in that space. This can be expressed as:

arg min
T̂
C(T ) = S(PB(I1(x)),V(T (x)) + αRegularizer(T ) (2.3)

where PB(.) is the back projection operator. The regularizer terms in Equations

(2.2) and (2.3) are typically not required for the specific case of rigid registration,

which is the problem of interest in this thesis.

Spatial transform registrations are also classified by their spatial transformation

type which is explained in the next section.

2.1.1 Spatial Transform Types

Main spatial transforms studied in medical imaging are listed from the most re-

stricted to general as:

1. Rigid Transform;

2. Similarity Transform;

3. Affine Transform;

4. Deformable or Elastic Transform.

Rigid transform occurs by translation and rotation of an object. Similarity trans-

form additionally includes a scale difference between objects. Affine transform adds

a shearing effect to the similarity transform where scaling is anisotropic along the

cardinal axes [7]. Affine transform is the most general form of linear transforma-

tions. Deformable or elastic transforms are nonlinear transforms where constraints

are usually needed to improve estimation results and speed. For instance for a
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smooth and realistic mapping, length and smoothness preservation terms may be

added to the cost function. The function may also be written as combination of

polynomials with compact support such as B-Splines, which are inherently smooth.

Thin Plate Splines also have inherent smoothness and length constraints. For a

recent review on deformable registration techniques, see [8].

2.2 Medical Image Registration Types

Medical image registration is divided generally into two main types as intrinsic and

extrinsic [5].

Extrinsic methods mark a certain anatomical part of the patient with foreign

objects. Correspondences between images are derived from the locations of the

markers. This way, calibration and transformation parameters are computed with-

out the need for complex algorithms. Drawback of this type of methods is its invasive

nature that includes for instance screw-mounted markers, which may not be always

permissible. There are markers that are less invasive such as glues attached to skin

but their accuracy drops compared to invasive procedures [6].

Intrinsic registration methods require no introduction of foreign objects and work

only by the content of images. These methods are classified into further categories

as described in the next subsection.

2.2.1 Intrinsic Registration Review

Two main approaches to intrinsic registration are: (i) feature-based and segmentation-

based; (ii) voxel-property or intensity-based.

(i) In feature based registration, points or regions with high visibility are ex-

tracted and then matched. These features are generally very descriptive and dis-

tinctive elements. Features may be geometric or structural. Features can be deter-

mined either fully-automated or semi-automatic [9]. Full-automatic methods search

and match features without any intervention meanwhile semi-automatic methods

may require the user to initialize a few points or approximately mark ROIs. The

coordinates, orientation and curvature of the features may be used as the data term

in the estimation of the spatial transformation between images. Detection and cor-
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respondence of features are implemented by automatic algorithms such as Scale

Invariant Feature Transform, SURF, Laplacian of Gaussian and Hough transform

[10, 11]. Line features are composed of edges, ridges and contours. Canny Edge

Detector and Laplacian of Gaussian are some of the well known edge finders [12].

Point features may be intersections, center of mass, corners, curvature, extremum

responses to signal transforms, inflection points, and so on [9]. Corner detectors are

preferred for their invariance to spatial transformation such as rotation, translation

and scaling. One of the popular signal transforms is wavelets due to their ability

to represent both frequency and spatial information. By choosing the scaling or

wavelet functions appropriately, specific details in images can be extracted [13].

Segmentation based registration separates the Region of Interest (ROI) in med-

ical images and then uses them as the sole inputs to the process [6]. While some

methods use the segmented regions as a whole, others try to fit geometric elements

such as surfaces or contours. Then these elements are matched by an optimization

process. One of the most popular tools in this area is Chamfer Distance Func-

tions. By measuring the distances between geometric entities or shapes, they may

be overlaid. Gradients of shape contours may also be matched by searching for their

best alignment. Moments of segmented structures describe position, orientation and

some geometric qualities of objects [14]. For instance second central moments return

the principle axes which may indicate the orientation of the shape. Many moment

types have been derived which are invariant to noise, distortions and some spatial

transforms. Generally moments up to 3rd degree are used. Hu moments derived

from classical centralized moments are invariant against translation, rotation, scal-

ing and reflection [15]. Orthogonal moments are preferred for their uncorrelated

responses. Affine invariant moments are also found in literature in the field of ob-

ject recognition. In registration framework, moments must be invariant to certain

spatial transforms to determine registration parameters that it is variant to[16]. A

drawback of these methods is their dependence on the segmentation success.

(ii) Voxel property based registration uses voxel or pixel intensities directly after

applying enhancement operations on images [6]. The methods in this category

either use the entire image or the segmented shape intensities. Methods using entire

image content were until recently not very popular in 3D due to high computational
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load and complexity. After the processor speeds, parallel architectures and memory

sizes grew, they became more feasible. Some of the similarity measures are Sum of

Squared Differences, Normalized Cross Correlation, Gradient Correlation, Difference

of Gradients and Mutual Information Quantity [17]. Moments of voxel intensities

may also provide information on the position of shapes. Moments of objects with

dense intensity patterns may indicate center of mass, orientation and other clues

about its spatial state [15]. Moments up to degree 3 are again commonly used.

2.2.2 Medical 3D-2D Registration Review

Markelj et al[18] categorize 3D-2D medical image registration as intrinsic and ex-

trinsic similarly to the general registration categories in § 2.2. Intrinsic methods of

3D-2D registration are further divided as feature, intensity and gradient based.

The following work have utilized extrinsic fiducials for 3D-2D registration and

tracking. Varnavas et al.[19] insert Virtual Fiducial Markers (VFM) to a reference

point in preoperative 3D vertebrae data using the markers physically present in 2D

intraoperative data. The 3D coordinates of VFM are reconstructed by triangulation

of 2D coordinates of flouroscopy images. Using VFMs, they identify the vertebra of

interest, obtain an initial pose estimation and verify the registration results. Initial

pose estimation includes estimates of rotation and out-of-translation parameters.

Otake et al. [20] estimate relative pose between X-ray images and the 3D anatomical

structure using an in-image fiducial and then register CTA with multiple X-rays by

intensity-based mutual information and gradient information similarity measures.

DRR generation and similarity measure computation algorithms were implemented

in GPU, and high success rates were reported in terms of measured mean Target

Registration Errors (mTREs).

In the intrinsic feature-based category of 3D-2D registration, the following pa-

pers utilized either centerlines, the binary mask of the vessels, or a certain point

set extracted from the vessels in their formulations. Metz et al. [21] align coronary

centerlines of CTA and X-ray images using the distance transform on the projected

model and a fuzzy segmentation of X-ray. Their method also accounts for heart beat

and respiratory motion. Rivest-Henault et al. [22] minimize the distances between

centerline points of the projected CTA and X-ray images using different optimization
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algorithms for translation, rigid, and affine transformations. Their method is further

able to perform multi-frame and non-rigid alignment. Turgeon et al. [23] register bi-

narized DRRs of segmented 3D coronary models with segmented X-ray angiography

images using mutual information on both single and dual-plane angiography where

two images are acquired simultaneously from two different viewpoints. Ruijters et

al. [24] compare the distance transform of segmented CTA projection and vesselness

of the X-ray image with Powell optimizer. Groher et al.’s [25] graph-based approach

specifically developed for liver vasculature, registers a 3D segmented vascular model

to the enhanced intra-operative image and simultaneously derives a segmentation

of the 2D image. The approach has been advanced to perform non-rigid alignment

[26]. Baka et al. [27] train a population CTA coronary model by measuring land-

mark coordinates on cardiac surfaces and estimating cardiac motion. They register

the 3D CTA model to X-ray sequence based on distances and orientation differences

between extrapolated 3D vessel points and extracted 2D centerlines and minimized

the cost for all 3D and 2D frames. Temporal alignment between CTA and X-ray

is modeled by a piecewise linear function and respiratory motion was constructed

by quadratic interpolation of poses in first, center and last frames of the sequence.

Continuing with more recent feature-based 3D-2D registration approaches, Metz

et al [28] have proposed a 3D+t/2D+t (t: time) registration method that uses a

patient specific dynamic coronary model derived from the CTA scan by a center-

line extraction and motion estimation. The model is aligned by time varying rigid

transformations to the X-ray sequence which takes breathing motion (which is also

rigid) and temporal relation between CTA and X-ray time points into account. The

cost function at any time point is measured as average centerline distance between

the CTA and the X-ray centerlines. Baka et al. [29] construct Gaussian Mixture

Models (GMM) from moving and scene point-sets of vessel centerlines and use a

similarity metric that minimizes the difference between Gaussian mixture probabil-

ity distributions of both point sets for a 3D-2D registration. Jakobian matrix of the

cost function have been analytically computed. Later, orientations are added to the

point sets to create 4D GMM distributions. Fully automatic feature-based methods

are highly dependent in accurate detection and correspondence of features thus may

not satisfy reliability criteria for IGI applications where conditions may vary.
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Intensity-based 3D-2D registration uses solely information of pixels and vox-

els. Digitally Reconstructed Radiographs (DRR) or Maximum Intensity Projections

(MIP) are commonly used to project the pre-operative 3D volume into 2D planar

space and compare this artificial 2D image to the intra-operative X-ray image(s) by

similarity measures such as mutual information [30], gradient difference [17], pattern

intensity [31], gradient correlation [32] and sum of squared differences [6]. Dong et

al. [33] compared coefficients of orthogonal Zernike moment decompositions instead.

Intensity-based methods generally require close initialization due to presence of local

minima and suffer from high computational complexity despite speed improvements

in new approaches.

In gradient-based methods [34, 35, 36] a small subset of high-magnitude gradients

(the edges of structures of interest) is corresponded between 3D and 2D images

through projection [34], backprojection [35] or reconstruction [36]. The advantage

is that corresponding two subsets of gradients, one of 3D and the other of 2D image,

is more efficient than generating the projection images like DRRs or MIPs, while

a segmentation or feature extraction that may otherwise be modality- or anatomy-

dependent is generally not required. Hybrid feature- and gradient-based method

also emerged, for example, to register 3D and 2D cerebral angiograms Mitrović

et al. [4] performed a model-to-image 3D-2D registration by matching geometric

primitives of the 3D vessels like centerlines, radii and orientations of the vessels to

high-magnitude intensity gradients of biplane X-rays. The aforementioned methods,

however, were mainly used in registration of 3D to biplane or even multiplane X-ray

images.

Reconstruction-based approaches [37, 38] use several X-ray images acquired from

different view points, to generate a 3D model that is then registered to the preoper-

ative volume via 3D-3D registration algorithms. However, in particular for cardiac

applications, the 2D X-ray images need to be acquired at the same time in order

not to create reconstruction artifacts induced by heart motion. Further, as the

number of fluoroscopic images decrease, so does the quality of the reconstructed

model. Serradel at al. [39] use a generative model for CTA from synthetic sam-

ples and simultaneously reconstruct the 3D structure of a non-rigid coronary tree

by estimating point correspondences between an input X-ray image and a reference
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3D shape. Features are nodes generated in 3D and points of interest are extracted

by the vesselness filter in X-ray [40]. The cost function minimizes the reprojection

error by alternating matches of corresponding features and perturbing non-rigid pa-

rameters stored as a Principal Component Analysis (PCA) model [41] . Nodes are

matched by an optimal assignment problem, which uses position, tangent orienta-

tion as features. A 3D generative deformation model in the form of a set of nodes

are created from the CTA or the biplanar angiography images in order to model

possible deformations by Kremer [42]. The method of alignment is similar to that

of Serradel at al.’s [39] except that the curvature information is also used when

matching nodes from 3D to 2D.

2.3 Registration in Frequency Domain

Because optimization algorithms frequently encounter local minima in spatial do-

main, some authors have mapped images to log-polar Fourier domains to estimate

linear registration parameters for generic 2D image registration.

McGuire [43] transforms the images into the Fourier magnitude domain which

is invariant to translation in order to recover the similarity transform. Scaling

and rotation are reflected in Fourier domain as inverse scale and negative rotation,

respectively. Fourier magnitude is mapped to the log-polar space where both pa-

rameters are reduced to 2D translations and decoupled as separate variables. Scale

axis is integrated to remove the scale difference to obtain a 1D signal that stores

the rotation as translation. Scale factor is recovered integrating the rotation axis.

The result is a 1D signal where the scale difference is reduced to a translation and

the normalized cross correlation is used to find the amount of shift. However, since

several peaks appear in the correlation function of the 1D scale signature signal,

scale recovery was considered to be not very reliable.

Wolberg and Zokai [44] map the image into the log-polar space without Fourier

transform to recover a 2D affine transform. They attempt to minimize the differences

in log-polar space with Levenberg-Marquart optimization [45].

Tzimiropolous et al [46] apply the log-polar Fourier domain registration for the

similarity transform using intensity gradients instead of the image function. Nor-
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malized gradient correlation is used rather than the standard correlation for trans-

lational displacement in spatial domain. Gradient images are mapped to log-polar

Fourier magnitude domain where normalized gradient correlations are used to re-

cover scale and rotation stored as 2D translations.

Sarvaiya et al. [47] map images to Fourier log-polar domain for the similarity

transform registration. In addition, Fourier phase correlation is used to find the

spatial translation. They report that these methods are robust against noise and

partial occlusions.

2.4 Clinical Setup in Angiography

Angiography is a medical imaging technique used to visualize blood vessels by fluo-

roscopy. It is performed by inserting a needle into a blood vessel. A catheter is then

selectively advanced inside it to the area of the body that needs to be imaged. Con-

trast material is injected into the blood vessel to highlight the vascular structures

and check for medical conditions. If a condition such as clotting, occlusions and

dilation is detected that requires further treatment, a minimally invasive endovas-

cular intervention is usually performed at the same time. A surgical instrument is

inserted inside the catheter to treat the condition [48]. Atherosclerosis is a vascular

disease where arteries are blocked due to buildup of plaques on the vessel walls. The

minimally invasive intervention for this disease would be carried out by inserting a

stent through the catheter to the narrow section of the artery for allowing the blood

to flow. Before stenting, a balloon angioplasty is performed where a collapsed bal-

loon is inserted into the vessel, is advanced to the stenotic region and is inflated at

the site to widen the narrowed artery [48].

Preoperative images for angiography in this work is CT or RDSA. CT technology

uses computer processing of X-rays to produce tomographic images of a scanned

object. CT device consists of an X-ray source and a detector mounted on a gantry

[49] (See Figure 2.1). The gantry rotates around the object acquiring several X-ray

images by fan beam projection. Images in each rotation form a cross section of

the patient anatomy. Spiral CT machines rotate around the object several times

by sliding the table on which the patient is lying slowly. Multi-slice CTs have
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multiple rows of detectors instead of single one allowing acquisition of multiple

cross sections in each rotation by cone beam projection. The raw data obtained

from the X-ray projections is a sinogram which is reconstructed to an interpretable

volume by inverse Radon Transform. The value of each voxel in the CT image

volume corresponds to the attenuation of the tissue on the Houndsfield scale [49].

In angiography applications, a contrast material is administered in order to highlight

vascular structures.

Figure 2.1: CT Scanner [1]

The intra-operative imaging device used is called the C-arm (See Figure 2.2). A

C-arm device has a c-shaped body consisting of aligned X-ray source and detector

attached to both ends. The patient undergoing surgery is placed on a moving table

between the source and the detector. There are two possible rotation axes of the

gantry, which are cranial-caudal and from left-right. High rotational capability

of C-arms enables imaging of the subject from different viewpoints and its use in

minimally invasive surgeries in cardiac and neurovascular applications [50].

C-arms emit cone-beam of X-rays that travel through the subject, which are

captured and digitized by the detector. When an x-ray beam passes through the

body, some of the radiation is absorbed in a process known as attenuation. Anatomy

that is denser has a higher rate of attenuation than anatomy that is less dense. The

remnant energy of the beam is captured and quantized by the detector which then

determines the intensity value of the X-ray image [49]. C-arms are widely used in
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hospitals for fluoroscopy. Fluoroscopic imaging creates a sequence of images during

interventional procedures. Radio-opaque contrast agents are injected in angiography

applications to highlight the vascular systems during angiography interventions.

Figure 2.2: C-arm Device [2]

C-arms can either be stationary or mobile. Stationary machines have the higher

image quality and need to be calibrated less frequently while mobile C-arms have

the flexibility of movement. Biplane C-arms are equipped with two X-ray detector

systems whereas monoplane C-arms have one detector. Two image planes in bipla-

nar C-arms have usually 90 degrees angle difference between them. Biplane C-arms

are usually employed in neurological surgeries whereas monoplane C-arms are more

common in cardiac and abdominal procedures [3].

The integrated stationary C-arms have the ability to rotate around the patient

to acquire series of images for cone beam CT reconstruction. These tomograms are

referred to as Rotational Angiograms (RA) [51]. In Digitally Subtracted Angiogra-

phy (DSA), the non-contrasted X-ray image is subtracted from the contrasted one

to visualize the vessels only.

2.5 Volume Rendering

Volumes such as CT and Rotational Angiography are visualized by a ray casting

operation called Digitally Reconstructed Radiography (DRR) [7]. DRR rendering

is formed by a ray traveling a straight line from a virtual source through the volume
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to the pixel on the screen as depicted in Figure 2.3.

Figure 2.3: DRR Projection

The pixel value is determined by an integrated function of voxels along the ray’s

path. There are two such functions that determine the value of the intensity of the

pixel in this thesis. Composite DRRs process all the voxel intensities which the ray

hits along its path. Each voxel is assigned an opacity and a color value based on

the tissue type and those values are summed along the ray to determine the final

pixel intensity value. Different assignments for opacity and color maps are used for

different visualization applications [7]. Minimum Intensity Projection (MinIP) and

Maximum Intensity Projection (MIP) put only the value of the minimum and the

maximum voxel intensity along the path to the screen, respectively.

2.6 Error Metrics

Definitions of error metrics used in this thesis to evaluate the results of registration

methods are given below:

mean Projection Distance (mPD): The average of distances between projected

points and corresponding gold standard points on the image plane.

mean Reprojection Distance (mRPD): The average of minimum distances be-

tween the 3D target points and lines back projected to source from the target points

on the image plane.
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mean Target Registration Error (mTRE): The average of distances between

3D gold standard point and corresponding target point.

False Positive: The percentage of area of vessels in the volume projection not

matched by the X-ray vessels.

False Negative: The percentage of area of X-ray vessels not matched by vessels in

the volume projection.

mPD, False Positive and False Negative metrics are used in Chapter 3 whereas

mRPD and mTRE metrics are used in Chapter 4.
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Chapter 3

Template-based CTA to X-ray

Angio Rigid Registration of

Coronary Arteries in Frequency

Domain with Automatic X-Ray

Segmentation

1

3.1 Introduction

A key challenge for image guided coronary interventions is accurate and absolutely

robust image registration bringing together pre-interventional information extracted

from a 3D patient scan and live interventional image information. In this chapter,

a novel scheme for 3D to 2D rigid registration of coronary arteries extracted from a

pre-operative image scan (3D) and a single segmented intra-operative X-ray Angio

frame in frequency and spatial domains for real-time angiography interventions by

C-arm fluoroscopy is presented.

The applications of 3D-2D registration involve spine surgery [19], endovascular

1This chapter is based on the article: T. Aksoy, G. Unal, S. Demirci, N. Navab, and M.

Degertekin, ”Template-based cta to x-ray angio rigid registration of coronary arteries in frequency

domain with automatic x-ray segmentation” Medical Physics, vol. 40, no. 10, 2013.
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IGIs for treatment of pathologies on cardiac [28] and cerebral vasculatures [4], and on

vasculatures in the abdomen (liver [26]), but also further in image-guided radiation

therapy. In most of these applications, it is sufficient to use rigid-body alignment of

the 3D and 2D images, i.e. on rigid anatomy such as bony structures, on cerebral

vasculatures, and even on cardiac vasculatures, if image acquisition is gated to ECG

signals. For vasculatures in the abdomen a non-rigid alignment may be required,

however, the rigid-body alignment is typically used to initialize the pose of 3D image.

Finally, to increase the potential for clinical applications, the 3D-2D registration

should perform fast enough so as to enable the surgeon to plan and act accordingly.

Most existing rigid registration approaches require a close initialization due to

the abundance of local minima and high complexity of search algorithms. This

method eliminates this requirement by transforming the projections into translation-

invariant Fourier domain for estimating the 3D pose. For 3D rotation recovery, tem-

plate Digitally Reconstructed Radiographs (DRR) as candidate poses of 3D vessels

of segmented CTA are produced by rotating the camera (x-ray detector)around the

DICOM angle values with a specific range as in C-arm setup. We have compared the

3D poses of template DRRs with the segmented X-ray after equalizing the scales in 3

domains, namely Fourier magnitude, Fourier phase and Fourier polar. The best ro-

tation pose candidate was chosen by one of the highest similarity measures returned

by the methods in these domains. It has been noted in literature that frequency

domain methods are robust against noise and occlusion which was also validated by

our results. 3D Translation of the volume was then recovered by distance-map based

BFGS optimization well suited to convex structure of our objective function without

local minima due to distance maps. A novel automatic X-ray vessel segmentation

was also performed in this study. Final results were evaluated in 2D projection

space for patient data; and with ground truth values and landmark distances for

the images acquired with a solid phantom vessel. Results validate that rotation

recovery in frequency domain is robust against differences in segmentations in two

modalities. Distance-map translation is successful in aligning coronary trees with

highest possible overlap. Numerical and qualitative results show that single view

rigid alignment in projection space is successful.
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3.2 Methodology

Figure 3.1: 3D-2D Registration Framework of Chapter 3

In this work, 3D-2D registration is performed on segmented vessels. Before

describing the details of the 3D-2D registration depicted in the flowchart of Figure

3.1, 3D coronary vessel segmentation algorithm and our almost fully automatic X-

ray Angiography segmentation is explained.

3.2.1 Segmentation

The most distinct element that determines the position and orientation of vessel pro-

jections is their overall shape rather than intensities or features. In our framework,

3D segmentation was achieved by vessel tractography algorithm [52] that success-

fully segments both left and right coronary artery tree. By employing subsequent

connected components, we are able to select the tree of interest where the Image

Guided Coronary Intervention (IGCI) is performed. Three or four main branches

are extracted by the algorithm; since IGCI is performed only on branches with large

diameters, segmentation results are considered sufficient for registration purpose.

The proposed 2D-segmentation of X-ray angiography (Figure 3.2) is almost fully

automatic. The process starts up by smoothing Gaussian convolution followed by
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Figure 3.2: X-ray Segmentation Pipeline

Weickert Diffusion [53], which preserves edges and produces segmentation-like re-

sults with specific parameters. Frangi filter [40] between scales 2 and 5 was applied

on the output. In order to eliminate responses from tubular non-vascular structures

in the Frangi filter output, we have applied histogram thresholding that removed

2/5 of foreground pixels, 5x5 median filtering (to erase small artifacts like salt and

pepper noise), connected components that remove objects smaller than a ratio of two

largest components area, morphological closing and opening with a disk structuring

element (to eliminate thin vessels and small artefacts). The output of the last oper-

ation still contained some tubular non-vessel structures and the catheter, which also

has tubular appearance. The catheter was removed by finding the smoothest seg-

ment in the thinned skeleton map of the output image, since it is assumed that real

vessels do not follow a smooth path. Initially, the spurs (short outgoing branches)

of the skeleton map were removed and the resulting map was traced from every end

to every other end of the skeleton curve to divide it into segments. The smoothest

segment is found by fitting a conic curve to each segment and measuring the alge-

braic error. Two smoothest segments with lowest algebraic error were assumed to

be catheter or other non-vessel structures to be removed from the map. A limited

user interaction is required for deciding whether the smoothest segments are ves-

sel branches because some X-ray frames may not show the catheter. The resulting
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skeleton curve was enlarged by 10 pixels in both directions and multiplied by the

binary map from the output of the morphological operation step to obtain a seg-

mented vessel image. Figure 3.3 depicts sample images from the described X-ray

segmentation process.

Figure 3.3: X-ray Segmentation Steps (left to right): Original X-ray, Weickert and

Frangi Filtered, Histogram Thresholded and Median Filtered, Skeleton Map, Skele-

ton Map Catheter Removed, Segmented X-ray

3.2.2 3D-2D Registration of Coronary Arteries

In general, 3D-2D rigid body registration estimates the optimal projective trans-

formation P̂ of a 3D volume V such that its projection perfectly aligns with a 2D

image I in terms of a certain similarity measure S:

P̂ = arg min
P
S(P ◦ V, I) (3.1)

where ◦ denotes the application of projection P to V , in particular the multiplication

of P with every image vector of V . The projection transformation P = K[R|t]

consists of the 6-DOF extrinsic parameters [R|t] for rotation (α, β, γ) and translation

(tx, ty, tz) of the 3D volume and the 4-DOF intrinsic imaging parameters

K =


fx 0 x0

0 fy y0

0 0 1

 (3.2)
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of the pinhole projection model [54] with focal length f in x- and y-dimensions

fx = f
sx
, fy = f

sy
(sx, sy is the respective size of a pixel in the target X-ray) and

principal point (x0, y0).

Transferred to the interventional C-arm environment, this theoretical setup has

the following practical setting (see also Figure 3.4). The 6-DOF extrinsic parame-

ters are the intensifier primary and secondary rotation angles, the volume rotation

along world z-axis around its center, and the volume translation along world coor-

dinate x-, y-, and z-axes. x- and y-axes form the coronal plane of the patient. The

intensifier rotation axes are the C-arm detector’s primary (Right Anterior Oblique

to Left Anterior Oblique) and secondary (Cranial to Caudal) angles. As model in-

terventional X-ray imaging systems are fully calibrated, prior information on the

4-DOF intrinsic imaging parameters can be directly accessed via respective DICOM

header tags (e.g. source-detector distance, source-patient distance, pixel and voxel

spacings). In this C-arm setup, the volume origin initially rests at the world origin.

Initial x-ray tube and intensifier world coordinates are determined by source-patient

distance and source-detector distances respectively.

In the following sections, we describe our novel registration scheme that, in con-

trast to existing approaches, separates the recovery of rotation parameters (α, β, γ)

from the translation parameters (tx, ty, tz). In order to bring together V and I in

one world coordinate system as very rough initialization, respective extrinsic param-

eters are filled with values of DICOM tags for intensifier’s primary and secondary

angles and the patient’s orientation. As the intensifier is in motion and patients

are displaced during C-arm Angiography interventions, DICOM header values are

not entirely reliable and are used only as initial parameters before rotation and

translation recovery.

3.2.3 Rotation Recovery

The rotation recovery phase aims to determine gantry rotation angles accurately. We

estimate the rotation angles from a single X-ray frame where the vessel structure

is most visible. Binary DRR projections from CTA are created by rotating the

camera and volume within a specific angle range and sampling rate as in the setup

explained in section 3.2.2. The goal is to find a candidate DRR, which is most
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Figure 3.4: C-arm Setup [3]

similar to the real X-ray image with respect to rotation pose. However, since 3D

translation difference between the CTA volume and patient is not known yet, the

method comparing DRRs and the X-ray image, have to be invariant to translation.

In 2D, the similarity spatial transform between images p and r can be expressed

as:

r(x, y) = p(δx+ s(xcos(θ)− ysin(θ)), δy + s(xcos(θ) + ysin(θ))) (3.3)

where δx, δy are translation distances, θ is rotation angle, and s is the scale

difference.

It is well known that Fourier magnitude or power spectrum of a digital signal is

invariant to translation and large amount of shifts in plane add only noise to the

spectrum [43]. Discrete Fourier transform (DFT) assumes that finite signals are

periodic with their sizes as if the signal repeats itself. So DFT acts as if opposite

edges of the image are actually neighbors. This may lead to artifacts in the transform

appearing as a plus sign shape. If the vessel in an image is touching an edge

as in case of clipping, Fourier transform will respond as if that edge continues at

the other end and the vessel structure changes abruptly. Thus, there will be high

frequency artifacts due to this unintended abrupt change. To prevent that, a low-

pass, blurring, and circular Gaussian filter is applied to remove sudden cutoffs at

edges and decrease the values of high frequency components that account for small

details and noise. Transferring Equ. 3.3 into Fourier domain, the relation between
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p and r images becomes:

Fr(wx, wy) = ej2π(wxδx+wyδy)/ss2Fp((wxcos(θ) + wysin(θ))/s, (wxcos(θ)− wysin(θ))/s)

(3.4)

where Fr denotes the Fourier transform of the image r, Fp denotes the Fourier

transform of the image p, s is the scale difference and (δx, δy) denotes translation

amount. Coming back to our image registration setup, this method returns the

DRR candidate, whose Fourier magnitude is most similar to the real X-ray’s, as

the closest rotation pose after equalizing the scales of DRRs and X-ray in 2D. Scale

differences may result from displacement of arteries along the camera’s optical axis

or some parts remaining outside of the field of view. In order to equalize the scales,

the 0th moments i.e. the areas of binary vessels, then their ratios are computed. The

scale difference is removed by inverse scaling of the real X-ray’s Fourier magnitude

transform as seen in equation 3.4. The reason for scale equalization in Fourier rather

than spatial domain is that the enlarged vessels may move out of the frame. After

the scale and translation differences are eliminated, the dissimilarity between two

spectra can only be due to rotation pose.

A second method for finding potential candidate DRR(s) is analysis of Fourier

phase relations of DRRs and real X-ray image to conclude whether there are any

differences other than pure translation. Images p and r having only 2D translation

motion δx, δy between them, satisfy the following phase, φ relation:

φr(wx, wy) = 2π(wxδx+ wyδy) + φp(wx, wy) (3.5)

Since power spectra of these images are the same, their cross correlation in

Fourier domain Rrp would yield only the phase difference and can be expressed as:

Rrp(wx, wy) = ej2π(wxδx+wyδy) (3.6)

As a result, the inverse Fourier transform of Rrp is a delta dirac function trans-

lated by (δx, δy).

Fourier phase correlation of two shapes differing only by translation would yield

a delta dirac function translated by the same amount in the spatial domain [47]. If

such output is obtained, then, it will be assumed that the shapes in the projections
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differ only by translation. In order to analyze whether this output is a delta dirac

function, 1 is subtracted from the largest real element of the output and the Frobe-

nius norm is computed. This norm measures the distance of all elements of a matrix

from zero. A lower Frobenius norm means that difference from one is closer to a null

matrix and hence to the delta dirac function. Frobenius norms of scale equalized

Fourier phase correlations are computed for all DRRs. The DRR candidate with

the lowest Frobenius norm is selected as the best candidate for rotation pose for

this measure. An advantage of this method is that phase correlation in frequency

domain is robust to noise and occlusions.

As possible third similarity measure, Fourier power spectrum has been mapped

into polar space and integrated along the radial axis (r). In similarity transform,

rotation and scaling in spatial domain result in negative rotation and inverse scaling

in Fourier domain respectively. In Fourier polar domain, rotation reflects as transla-

tion in angle axis (θ), and scaling reflects as inverse scaling multiplied by a constant

amplitude coefficient [44]. This means that rotation and scaling are decoupled into

separate axes in this domain. When the radius axis is integrated, a 1D signal in-

variant to scale and translation differences is obtained. This signal, called rotation

signature stores the rotation angle of a shape as a shift. The amplitude coefficients

in the rotation signature due to scale difference do not need be normalized since nor-

malized cross correlation between two signals are not affected by constant scaling

(variance) and mean values. The highest rotation signature correlation indicates the

closest rotation pose. The integration of the polar Fourier transform signal along

the radius axis (r) is expresses as:

κ(θ) =

∫
M(rcos(θ), rsin(θ))dr (3.7)

where M(wx, wy) = |F (wx, wy)| is the Fourier Magnitude, r =
√

(wx)2 + (wy)2

and θ = atan(wy/wx).

The Euler angles are recovered from the saved angle of the best candidate DRR

returned as described in the next section.
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3.2.4 Similarity Measures for Rotation Recovery

The three methods we presented in Section 3.2.3, provide ways to obtain various

similarity measures between a DRR and the given X-ray image. All binary candidate

DRRs were compared with the segmented X-ray image in order to find the closest

rotation pose by the following similarity measures:

1. Fourier power spectrum correlation;

2. Integrated Fourier polar signal correlation;

3. Frobenius norm of inverse Fourier phase correlation;

3.2.5 Optimization for Translation

Euclidean distance maps of segmented and binarized CTA volume and an X-Ray

image are given as the inputs to the optimization program which is developed using

QT [55], VTK [56], and ITK [57]. After execution of the first part of the method

described in Sections 3.2.3 and 3.2.4, the best DRR candidate’s rotation angles

and initial translation parameters are entered. Rough translation initialization is

necessary because searching algorithms face difficulties in estimating depth in other

words finding translation along the optical axis.

Translation-only optimization is less complex, since minima occur only when

the shapes are correctly aligned. The objective function value needs to decrease

as the overlap measure between the shapes increase. Monotonicity and continuity

for gradient-based optimization is provided by the distance maps of binary vessels

in 2D and 3D, which are the inputs to our registration algorithm. In the distance

maps, the values inside the vessels are 0 and background pixels take the value of the

shortest millimeter distance to the vessel structure in single precision floating point

format.

Gradient based BFGS optimization algorithm [58] is used for translation regis-

tration on x-y-z world coordinates. First order derivatives are computed by central

finite difference scheme. During optimization, MinIP (Minimum Intensity Projec-

tion) in VTK library [56] which is faster than DRR computation has been used to

project the 3D distance map. The energy function to be minimized is the average
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shortest distance of all 2D vessel pixels to the projected 3D vessel plus the average

shortest distance of all projected 3D vessel pixels to the 2D vessel minus the overlap

ratio of both vessels. The overlap ratio measures the percentage of areas of both

vessels matched at the end of registration. The energy function is written as:

E(t) =

∫
φ(I1)I2dx∫
φ(I1)dx

+

∫
φ(I2)I1dx∫
φ(I2)dx

− λ
2
∫
φ(I2)φ(I1)dx∫

φ(I1)dx +
∫
φ(I2)dx

(3.8)

where I1 = PMIP ◦D expresses the projection of the 3D distance map D using

MIP and incorporating the previously recovered optimal rotation R̂ via PMIP =

K[R̂|t]. I2 is the distance map of the real X-ray image, λ a regularization constant

set to 2 and φ(.) is a one-sided delta dirac function:

φ(y) =

1 if y = 0.

0 if y > 0.

3.3 Experiments and Results

The 3D-2D registration method described in this paper, was evaluated on a phantom

vessel, simulated phantom X-rays and clinical datasets. Patient data and phantom

images were acquired with Phillips Brilliance 64 channel CT Scanner, Phillips Allura

Xper FD 10 C-arm device and kindly provided by our partner physicians.

3.3.1 Rotation Recovery

First measure, Fourier Magnitude Correlation was used in this study with exception

of few cases as explained in section 3.4. This measure’s mean and standard deviation

for matched results of 15 patient and 5 phantom registrations are 0.8647 ± 0.0369

and 0.9833± 0.0045 respectively.

3.3.2 Validation on Phantom Dataset

A synthetic solid 3D vessel sized 11cm · 10cm · 6cm, made of plastic material was

printed by ProJetT HD 3000 Professional 3D Printer. The ends of the vessels were

left open for discharging support material (wax) after printing and filling it with

the contrast agent material of diluted Ultravist 370. Eleven radio-opaque localizer
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markers, i.e. metal balls of 2.5 mm diameter, were taped on the phantom vessel.

It was then placed in an open box and tightly attached to it with adhesive tapes

as depicted in Figure 3.5. One CTA scan and several C-arm X-ray images were

acquired at our clinical partner site, Yeditepe University hospital, without changing

the position of markers and the vessel within the box. Phantom CTA and X-ray

images were segmented by thresholding, hole filling and region growing. The 2D

landmark errors were measured after the translation registration had been com-

pleted. This error metric is referred as mean Projection Distance Error (mPDE)

or in-plane error [59, 60]. Although several other studies on 3D-2D registration ap-

proaches have reported results in terms of mean Target Registration Errors (mTREs)

[23, 61, 24, 62, 63], this metric is not suitable for single view registration that lacks

depth information [59]. Therefore, we opted to show our results by means of mPDEs

and difference of actual and recovered angles. Most of the markers were not visi-

ble in a single X-ray frame since they were occluded by the contrast agent. In the

phantom experiment, the DICOM header primary, secondary angles are considered

as the ground truth because the C-arm device was calibrated and there was no in-

tensifier motion during acquisition. Source to patient, source to detector distances

and pixel spacings were also obtained from the DICOM headers as ground truth.

In this dataset, the gantry angle range was set to 30 degrees and sample size

was set to 12 per rotation axis of the intensifier. The volume rotation range was 15

degrees and the sample size was 6. Therefore 12 · 12 · 6 = 864 candidate DRRs were

produced for experiment.

Figure 3.6 depicts registration results in five different views of the phantom

dataset where successful marker alignments are clearly visible. Results in Table 3.1

indicate that actual rotation angles are also close to the recovered rotation angles

from frequency domain registration.

The average mPDEs given in Table 3.2 fall in the interval of [2.3, 4.2] mm and

average to 2.898 mm. Metz et al. [21] and Rivest-Henault et al. [22] have also

reported mPDEs for their coronary artery registrations. Rivest Henault et al. [22]

have performed different optimizers for Rigid Registration. The average mPDE of

this study is lower than the lowest error achieved by Cobyla optimizer (3.43 mm).

Our average mPDE is slightly higher than the mPDEs reported in Metz et al.’s [21]
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Figure 3.5: Phantom Vessel

work which fall in the range of [1.3, 5.1] mm. However experiments in Metz et al.

[21] have started from low offsets set manually before registrations. Our method

does not require close initialization of rotation and only rough manual translation

initialization therefore our method can perform in more difficult scenarios in lack

of close initializations. Recovered rotation angles are close to ground truth rotation

angles obtained from the DICOM header.

To give an idea about the energy function value in the non-registered scenarios, in

Table 1, for the phantom X-ray index 3 (row 3), the initial values before registration

are as follows:

Energy function value: 14.1367, False positive: 77.80, False negative: 77.60, Overlap

ratio: 22.22.

3.3.3 Validation on Synthetic Projections

Ten random rigid transformations in angle range [-90, 90] and translation range [-

40, 40] were generated and DRRs of the phantom vessel were produced with them.

Figure 3.7 shows the produced DRRs and difference images at the end of the reg-

istration. The initial translation offset before registration for all DRRs was (0,0,0).

In this dataset, the gantry angle range and volume rotation range were set to 25 and

12.5 degrees respectively. Sample size is same as in the phantom dataset, therefore

12 · 12 · 6 = 864 candidate DRRs were produced for each experiment which are
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Figure 3.6: Phantom Image Registration Results: X-ray Images and Difference

Images

reported in Table 3.3.

The average 2D landmark matching errors (mPDEs) for phantom DRR regis-

tration given in Table 3.4 fall in the interval of [0.0488, 1.9109] mm and average to

0.8046 mm, which is lower than all rigid registration mPDEs reported in Metz et

al. [21] and Rivest-Henault et al. [22]. This dataset did not require any manual

initialization before registration. Actual and recovered primary and secondary an-

gles are very close in each experiment which are reported in Table 3.3. Recovered

and actual translation values differ significantly in many cases. The high errors in

translation results from the difficulties the optimizer faces in finding depth.

3.3.4 Validation on Deformed Phantom Dataset

To simulate deformed vessel situations and to observe how this rigid registration

algorithm is affected by deformations in the vessel, the phantom CTA image was

deformed by a vector field whose x, y, z components are Gaussian functions with

mean as the center of the volume. Three translation registrations were performed on

three phantom X-rays at the subsection 3.3.3. Figure 3.8 shows the deformed CTA
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Phantom X-ray Index Actual Primary

and Secondary

Angles

Primary

and Sec-

ondary

Angles

Found

False Posi-

tive, False

Negative

(%)

Translation Values Found (mm) Energy

Func-

tion

Value

1 0, 90 0, 90 17.81, 4.02 -20.1434, 2.8437, -17.8150 -1.4627

2 0, -90 -7, -89 26.02,

25.37

19.4380, 4.8225, -18.9541 -1.4885

3 -2, 44.7 -2, 47 11.95, 9.89 35.5469, 0.0592, 23.5023 -1.1820

4 44.7, 0 39, -5 16.25, 5.58 11.4881, -19.5214, 2.7578 -1.5170

5 30.2, 29.7 33, 30 12.99, 5.27 9.6186, 26.9833, 0.9414 -1.5032

Table 3.1: Numerical Results of Phantom Registration

Phantom X-ray Index Number of Visible Landmarks Average and SD mPDE (mm)

1 5 4.2458 ± 1.1651

2 6 2.6713 ± 2.4338

3 6 2.2750 ± 1.7103

4 5 2.3470 ± 0.8921

5 7 3.0546 ± 1.5492

Table 3.2: Landmark Errors of Phantom Registration

and difference images at the end of the registration. Results in Table 3.5 show the

numerical results of deformed registration with higher false positive and negatives as

expected however, as observed in Figure 3.8, the rigid registration results are good

with a qualitative visual evaluation.
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Phantom

DRR

Index

Actual

Primary

and Sec-

ondary

Angles

Primary

and Sec-

ondary

Angles

Found

False Posi-

tive, False

Negative

(%)

Actual Trans-

lation Values

(mm)

Translation Val-

ues Found (mm)

Energy

Function

Value

1 50.75,

-12.25

50.75 , -

10.17

1.83, 6.26 6.83408 -4.60730

-12.8435

9.3975 -5.0618 -

11.6186

-1.8851

2 -50.24 , -

12.97

-50.24 , -

12.97

1.90, 4.54 14.7015 -10.3839

-2.5258

5.5144 -12.9882

5.1076

-1.9090

3 -78.89,

28.48

-78.89,

26.20

3.90, 6.02 14.2919 3.4667 -

9.1532

3.3292, 9.5084, -

6.8852

-1.8630

4 56.31,

37.67

56.31,

37.67

0.42, 4.95 1.73199 -6.8314

17.5547

3.1123 -5.3409

2.8225

-1.9626

5 41.0,

-53.13

41.0,

-53.13

0.40, 5.86 2.4041 -6.3340 -

15.7264

2.777 -6.9845 -

15.4042

-1.9166

6 71.68,

-84.70

71.68,

-82.9

3.30, 10.15 9.0220 -21.1613 -

9.2201

6.690, -15.7458 -

6.0045

-1.9349

7 84.62,

53.04

82.53,

49.80

8.08, 11.67 -13.1714 11.5716

-22.4235

-11.3300,

12.7954, -

22.3988

-1.7769

8 -66.33,

-59.9

-66.33,

-57.8

4.29, 6.94 11.6863 -6.6731 -

10.69213

10.1385, -9.0360,

-9.9316

-1.8177

9 34.29,

66.11

34.29,

68.20

6.13, 7.49 6.8724 -24.5034

5.9510

10.9970, -7.4626,

11.7311

-1.7423

10 24.89,

-44.47

24.89,

-44.47

4.23, 5.23 6.2224, 9.4860, -

22.6618

11.3815, -3.7706,

-9.9220

-1.8542

Table 3.3: Numerical Results of Phantom DRR Registration
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Figure 3.7: Phantom DRR Image Registration Results: DRR Images and Difference

Images after Registration
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Phantom DRR Index Number of Visible Landmarks Average and SD mPDE (mm)

1 6 1.0789 ± 0.7829

2 7 0.7775 ± 0.7350

3 3 0.9942 ± 0.5720

4 7 0.0488 ± 0.1292

5 5 0.4868 ± 0.5882

6 6 0.4449 ± 0.4275

7 7 1.1804 ± 1.0008

8 7 0.8013 ± 0.8195

9 5 1.9109 ± 1.2158

10 4 1.1313 ± 0.5278

Table 3.4: Landmark Errors of Phantom DRR Registration

Figure 3.8: Deformed Phantom Image Registration Results: Deformed CTA and

Difference Images

Phantom X-ray Index False Positive, False Negative (%) Translation Values Found

(mm)

Energy

Func-

tion

Value

3 25.80, 21.32 5.8786, -3.3130, -9.1146 0.130

4 26.55, 16.71 4.5709 -13.2017 -13.1773 -0.002

5 20.62, 15.37 -4.0607, -14.9186, -12.4765 -0.5509

Table 3.5: Numerical Results of Deformed Phantom Registration
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3.3.5 Validation on Clinical Dataset

Clinical experiments were performed on 10 X-ray images of 8 different patients. The

angle ranges and sample size is same as the phantom dataset.

X-ray Image Index DICOM

Primary

and Sec-

ondary

Angles

Primary

and Sec-

ondary

Angles

Found

Translation Parameters Found (mm) Energy Function Value

1 -3.4, 44.1 3, 45 -31.6189, 22.0681, -26.8139 5.5919

2 -40.3, 26.8 -40, 31 -15.8008, -7.7006, 6.8409 6.2534

3 39, 38 54, 35 -17.0615, 13.5423, 13.5953 7.7289

4 -26.2, 43 -33, 55 -22.493, 0.89, 16.788 3.5326

5 -29.0, -11.7 -39, -4 -5.8977, -10.4569, -2.1360 4.9570

6 41.6, 35.7 41, 40 -6.9413, 5.9905, 23.1248 5.7021

7 -40.3, 26.8 -40, 31 -14.883, -17.8963, -13.3422 3.3520

6 -3.4, 44.1 3, 45 -31.6189, 22.0681, -26.8139 5.5919

7 -3.301,

34.4

1, 44 0.6029, -7.984, 12.145 4.320

8 -40.3, 26.8 -40, 31 -14.883, -17.8963, -13.3422 3.3520

9 -8.7, 43.1 3, 45 -14.5022, 0.8477, -3.6518 1.7182

10 -34.3, -20.1 -36, -22 -96.4062, -57.8730, 91.1996 3.7451

Table 3.6: Numerical Results for Patient Registration

As there is no ground truth data available for patient X-ray images, the visual

inspection and cost function values are the only indicators of success. The clinical

data parameters as well as the cost function values in Eq 3.8 are reported in Table

3.6. In the second column, Primary and Secondary Angles from the DICOM head-

ers are the initial values used in our registration method. The estimated angles and

translation parameters are reported in the third and fourth columns of the table.

Because the energy function measures the average pixel distances and overlap ratio,

the energy function values of different datasets are directly comparable. The mini-

mum value that the cost function can take is -2. and the values obtained from the

patient data experiments are reported in the last column of Table 3.6. The registra-

tion results are visualized in Figure 3.9, which show successful overlaps. Our team’s

clinician partners qualitatively evaluated the difference images and expressed that
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the unconformities in alignments are result of non-rigid deformations mainly due to

heart and/or breathing motions.

3.3.6 Effect of λ on Registration Results

The registration results have been evaluated for different values of regularizer λ in

the energy function. The box whisker plots of average CTA distance, average X-ray

distance and overlap ratios for different lambda values are given in Figures 3.10 and

3.11 for 5 phantom and 3 patient registrations. Average CTA distance is the average

distance of all pixels on DRR vessel from X-ray vessel and average X-ray distance

is the average distance of all pixels on X-ray vessel from the DRR vessel.

Plots show that λ values have higher impact on patient data than phantom data.

For both datasets, lambda value 5 yields the largest overlap ratios and smallest

distances between vessels. The plots indicate that setting lambda to a value in the

vicinity of 5 would yield the optimal results. In our experiments lambda was set to

2 to bring the overlap ratio in the same scale with other terms.

3.3.7 Computation Time

Currently, the algorithms are implemented on CPU with a single thread yielding

to average computation times of 4 minutes for template generation, 6-7 minutes

for rotation recovery, and 5-6 minutes for translation recovery. Employing code

parallelization strategies, however, these algorithms can run much faster. Each

template is generated by a DRR computation, which takes 1-2 seconds on average.

Since the templates are unrelated to each other, they can be produced independently.

Rotation recovery essentially consists of a comparison of each template with a given

X-ray image, which takes 1-2 seconds and is again independent. Here, parallel

threads would reduce performance time significantly. Translation recovery is an

inherently sequential optimization search. MinIP is performed several times in every

step for cost function evaluation and DRR is called for visualization. Both MinIP

and DRR are ray casting methods, that can be implemented on GPU for several

fold speed improvement [32].
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Figure 3.9: Patient X-ray Registration Results: X-ray Image and Difference Image
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Figure 3.10: Box Whisker Plots for Phantom X-ray
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Figure 3.11: Box Whisker Plots for Patient X-ray
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3.4 Discussion and Conclusions

In this chapter, a novel 3D-2D registration scheme for IGCI, in particular matching

of 3D coronary artery tree to 2D coronary arteries model is presented. Instead of

recovering all 9 free parameters at the same time, this approach reduces the dimen-

sionality of the parameter space to 6 by including prior knowledge and effectively

separates the recovery of rotation from translation parameters. This way, rotation

can be estimated in Fourier domain, which is faster, more accurate and robust than

existing methods. Translation is eventually estimated in spatial domain via distance

maps. This method was evaluated on phantom, synthetic and patient data.

Among similarity measures for rotation recovery, results showed that the first

measure always returned the closest pose if the main vessels in X-ray images are

not occluded or clipped to a great extent. If a large part of the CTA vessels is not

visible in X-ray, then the second measure yielded the closest result. Inverse Fourier

phase correlation measure yielded the least similar candidates.

CTA and X-ray segmentations of patient arteries may be different for two rea-

sons. First only a part of the whole vessel structure in segmented CTA may be

visible in X-ray image due to vessels not covered by field of view, the contrast agent

not penetrating to all branches of interest, or rare occlusion by other tissues. It is

also possible that CTA segmentation may not segment all vessels especially small

ones that are visible in the X-ray. Because the rotation pose estimation takes place

in the frequency domain and depend on statistical correlation measures, they are

robust against segmentation differences to a certain degree. When large differences

between both images exist, scale ratio can not be computed accurately. In such

cases, rotation signature measure should be used. In this study, the vessels in the

X-ray image were mostly visible and occlusion was not frequent. In experiments,

the second measure was used only twice due to severe occlusion cases, which would

be problematic for most intrinsic registration methods. In the other datasets, the

first measure was used. A source of error in rotation angles is discretization where

the true angle may fall between the sampled angles. Translation errors are due to

inability of the optimization algorithm to estimate the depth accurately.

In the phantom and synthetic dataset, the frequency domain method recovered

the actual primary and secondary angles with small deviations and distance-map
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based BFGS algorithm aligned the shapes successfully. Landmark errors are com-

paratively small with respect to the studies in the literature as reported in Section

3.3.2.

In the clinical dataset, rigid alignment is successful when judged qualitatively.

Segmentation differences may affect translation recovery if there are large detached

structures not present on the other map causing distance map values to vary signifi-

cantly. In such cases, the undesired structures must be removed by connected com-

ponents operation during segmentation. Another reason for imperfect alignments

is that vessels undergo non-rigid deformation due to heart beat motion. Because

patient coronary arterial deformations in C-arm may be different than in CTA vol-

ume, the rigid transform cannot account for all the motion. Equalization of heart

phases can eliminate such deformations.
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Chapter 4

Monoplane 3D-2D Rigid

Registration based on

Stratified Parameter Optimization

Method

1

4.1 INTRODUCTION

Most tasks during Image Guided Interventions (IGI) are carried out under a mono-

plane X-ray. The registration of a 3D volume to a monoplane X-ray is ill-posed,

because out-of-plane translation or differences in depth are difficult to detect in a

monoplane X-ray. The bulk of previously published methods for 3D-2D image reg-

istration consider the use of biplane, or even multiplane, X-rays. Although methods

exist for 3D to monoplane 2D image registration [26, 64], they are typically devised

for a specific application in IGI. A general solution that adequately addresses the

challenges of 3D to monoplane 2D image registration still does not seem to exist.

Modern facilities for IGI are equipped with an X-ray imaging device on a robotic

C-arm system, which can acquire the X-ray projection from almost any arbitrary

view. It is based on several X-rays acquired during a semicircular rotation of the

1This chapter’s contents are in preparation for submission as a journal article in collaboration

with Dr. Ziga Spiclin and Prof.Dr. Franjo Pernus of University of Ljubljana, Slovenia.
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C-arm, and can also generate a 3D cone beam CT (CBCT). Although machine-

based 3D-2D registration [24] is possible on C-arm imaging systems, usually an

initialization of the pose of the 3D image is required, since large alignment errors may

arise from patient or C-arm movement during IGI. When the 3D and 2D imaging

systems are different, the initial pose of the 3D image is roughly established based

on standardized patient position during imaging. However, the initial alignment

errors of the 3D image in the coordinate frame of 2D imaging system can be very

large. Hence, a method for 3D-2D image registration is required, which is capable

of overcoming large initial alignment errors.

Intensity, feature and gradient based methods reviewed in Chapter 2 have draw-

backs for IGI applications for the following reasons. Most of the intensity-based im-

age similarity measures have poor sensitivity with respect to translation of 3D image

along the direction of projection (out-of-plane translation). Futhermore, generating

the projection of raw 3D image is computationally demanding and may represent a

bottleneck for clinical application despite speed improvements in recent GPU imple-

mentations [65]. The accuracy and robustness of feature-based methods are heavily

dependent on the quality of segmentations and extracted features, which must be

devised for each image modality and target anatomy of interest. As varying condi-

tions are usually encountered during IGI, these methods may be unreliable, or may

require case-by-case tuning, and thus seem less suitable for practical use. When

gradient-based methods are used for registration to monoplane X-ray, the similarity

measures employed in these methods, similarly to the intensity-based methods, ex-

hibit poor sensitivity to out-of-plane translations. This can be addressed by carefully

devising the strategy to optimize the similarity measure.

Usually, the 3D-2D image registration is performed by an iterative optimiza-

tion of similarity measures [66], which require a good initial guess of transformation

parameters. Ruijters et al. [24] compared Powell’s and stochastic optimizers and

found that the latter was less likely to get stuck in local optimum. Otake et al. [20]

employed Covariance Matrix Adaptation Evolution Strategy (CMAES), a global

optimization method, which typically requires several thousand similarity measure

evaluations. To further improve the robustness to large initial alignment errors, they

used CMAES with multiple start and re-start strategy [65], which additionally in-
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creased the number of similarity measure evaluations. Florin et al. [67] proposed se-

quential Monte-Carlo sampling to obtain hypothetical rigid-body transforms, which

were coupled to particle filters to get improved transformation. Zikic et al. [68] em-

ployed Markov random fields and discrete optimization, in which the values of each

parameter were sampled from a uniform discrete value range, while during optimiza-

tion, they iteratively refined the value range to achieve sub-millimeter registration

accuracy. These optimization methods primarily address large initial alignment er-

rors, which are common in 3D-2D registration for IGIs due to the use of different 3D

and 2D imaging systems or uncalibrated X-ray imaging systems. Furthermore, these

methods generally require a large number of similarity measure evaluations, which

may also vary because the number of iterations to convergence will vary between

different pairs of 3D and 2D images. Hence, the iterative optimization methods may

easily extend the average computational times beyond what is acceptable for clinical

application in IGIs.

Optimization strategies that stratify the 3D rigid-body parameters into subsets

and perform a consecutive estimation of the subsets of parameters may be employed

to increase the sensitivity of any similarity measure to out-of-plane translation of the

3D image. Namely, the sensitivity is generally the highest when all other rigid-body

parameters are close to their optimal values. Because the dimension of search space

is reduced in the individual consecutive steps, the registration process is usually

faster, while exhaustive search can be applied to overcome large initial alignment

errors.

Using the stratified parameter estimation, several researchers first determined

the in-plane translation parameters by exhaustive grid search [69, 70] or frequency

domain methods [71]. Kerrien et al. [69] found the in-plane translations by optimiz-

ing normalized cross correlation (NCC) over a fixed grid, followed by optimization

of all rigid-body parameters. In a two-stage method, Kita et al. [71] first determined

the in-plane translations by optimizing NCC in the frequency domain. By optimiz-

ing NCC over fixed grids in a three-stage approach, Hentschke and Tönnies [70] first

determined the in-plane translations, then the out-of-plane translation and in-plane

rotation and, finally, the two remaining rotations. Kubias et al. [72] determined the

in-plane prior to the out-of-plane parameters in a multi-resolution and multi-stage
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optimization strategy using low- and high-resolution images in consecutively applied

global and local optimizers, respectively. To recover the rotations and scale, Van

der Bom et al. [73] used projection-slice theorem, followed by phase correlation to

recover the in-plane translations, however, the method resulted in high alignment

errors around 20 mm. Aksoy et al. [64] matched rotation templates (set of DRRs

of segmented 3D image in a discrete set of rotations) to the segmented X-ray image

by a scale and translation invariant measure computed in the frequency domain.

After selecting the optimal rotations, all rigid-body parameters were iteratively op-

timized through minimization of the overlap between the best matching pair of the

segmented DRR and the X-ray. Nevertheless, the estimation of the out-of-plane

translation in monoplane 3D-2D registration was not addressed adequately in any

previous methods.

4.1.1 Contributions

In this chapter, an intrinsic registration method for rigid alignment of a 3D image

to a monoplane 2D projection based on a novel stratified parameter optimization

is proposed. For efficiency, the method employs a small set of high-magnitude in-

tensity gradients in 3D and 2D. The stratified parameter optimization is based on

previously proposed rotation templates [64] to recover 3D rigid-body rotations, while

here we introduce depth templates to recover the out-of-plane translation. The in-

plane translations are found by efficient exhaustive search based on gradient phase

correlation [46]. For objective evaluation of the proposed method we used twenty

pairs of 3D and 2D images of ten patients undergoing cerebral endovascular IGI [4].

Experiments involved 3D to monoplane 2D registrations in a multi-resolution frame-

work with starting poses that had initial mean target registration error up to 100

mm. The registration accuracy was below the image sampling step and the execu-

tion time was constant and below 10 s, while the obtained high success rate of more

than 90% shows a high potential of the proposed method for clinical applications.
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4.2 METHODOLOGY

4.2.1 Geometry of 3D-2D Registration

Let the 3D image V be positioned in 3D by a rigid-body transformation T = T(q)

that has six parameters q = (tx, ty, tz, ωx, ωy, ωz) and is expressed by a 4× 4 matrix

as

T(q) =


tu

Rωx Rωy Rωz tv

tw

0 0 0 1

 . (4.1)

where Rωx , Rωy and Rωz are 3× 3 rotation matrices. For convenience, translations

tx, ty, tz of the 3D volume in world axes xyz will be expressed in the coordinate

system of 2D detector with axes uvw (Fig. 4.1) as

tV = [tu tv tw]T =
[
eu ev ew

]
[tx ty tz]

T (4.2)

where eu, ev and ew are 3× 1 unit vectors of axes uvw in world coordinate system.

The benefit of using this notation is that translation tw expresses the out-of-plane,

while tu and tv express the in-plane translations. Our aim is to recover patient’s

rigid motion between the 3D image V and the X-ray image I represented by rotation

RV = Rωx ·Rωy ·Rωz (4.3)

and translation tV (Eq. (4.2)).

Geometric setup of a C-arm is shown in Fig. 4.1. The projection of 3D points

into the 2D detector plane is determined by calibration of the 2D imaging system,

such as the C-arm in Fig. 4.1. The output of calibration is a 3×4 projection matrix

P, defined as [74]:

P =


−SID 0 −u0

0 −SID −v0
0 0 1




0

RPA RSA 0

−SOD

 , (4.4)

where SID and SOD are the respective source-to-detector and source-to-object

distances, (u0, v0) the coordinates of the principle point on the 2D detector and RPA

and RSA the 3× 3 rotation matrices that describe the C-arm gantry rotation w.r.t.
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primary (PA) and secondary (SA) angles (Fig. 4.1), respectively. The principle

point (u0, v0) is generally in the center of the 2D detector (intensifier) and is thus

set to IS/2, where IS is the intensifier size. The values of parameters SID, SOD,

PA, SA and IS are accessible from the DICOM header of the 2D images.

Given the projection matrix P and rigid-body parameters q, any point p =

[x y z]T in 3D has its corresponding point t = [u v f ] in the 2D detector (normaliza-

tion t/f yields homogeneous 2D coordinates) that is calculated by:

t = P ·T(q) · p. (4.5)

Figure 4.1: Illustration of a C-arm imaging system with indicated geometric param-

eters in (4.4) and axes xw, yw, zw of the world coordinate system, axes xv, yv, xv of

the 3D image and the axes u, v, w of the 2D detector.

4.2.2 3D-2D Registration Method

Here we describe a gradient-based 3D-2D rigid registration based on a novel op-

timization process, which stratifies the 3D rigid-body motion estimation into two

consecutive steps: 1) estimation of rotation RV (Eq.(4.2))and out-of-plane transla-

tion tw and 2) estimation of in-plane translations tu, tv (Eq.(4.1)). The 3D rigid-body

motion estimation is performed in a multi-resolution framework for a discrete set of

image resolutions rk; k = 1, . . . , K. The methodology is outlined by the flowchart

in Figure 4.2. In the following we describe the representation and computation of

gradient images, the estimation of rotations and out-of-plane translations, and the

estimation of in-plane translations.

50



Figure 4.2: Flow chart of the 3D-2D registration method.

4.2.3 Gradient Images

Gradients provide the advantage of extracting the edges of salient, high-contrast

structures and diminishing the contribution of faint, low-contrast structures such as

low frequency noise and blur. Using gradients for image registration may cancel the

need to accurately segment the structures of interest. The 2D intensity gradient ∇I

of the 2D image I is represented by a complex value [46] as

gI(u, v) = eT
u ∇I(u, v) + j eT

v ∇I(u, v)

= Re(gI) + j Im(gI) ,
(4.6)

where, following a Gaussian smoothing of the 2D image, the gradient components

were computed based on finite differences. We base the registration on a small

subset of high-magnitude intensity gradients

gI(u, v) =

 gI(u, v), if |gI(u, v)| ≥Mt

0, if |gI(u, v)| < Mt

, (4.7)
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where Mt is a threshold on gradient magnitude |gI(u, v)|. The projection of intensity

gradients ∇V of the 3D image into 2D is defined as [34]

gV (u, v) ∼
[
eT
u + j eT

v

]
·
∫
λ

λ∇V (p(λ))dλ , (4.8)

where p(λ) are points on a ray from the X-ray source to the 2D detector. For

efficiency, we compute the projected 3D intensity gradients only in those points

(u, v), where |gI(u, v)| ≥Mt.

4.2.4 Invariance to In-plane Translation

We employ the rotation templates, generated from the 3D image, and depth tem-

plates, generated from the 2D image, to simultaneously estimate both the rotations

and the out-of-plane translation. Since the in-plane translations are not known, and

generally cannot be reliably estimated without knowing the rotations and out-of-

plane translation, the method comparing rotation and the depth templates has to

be invariant to in-plane translation.

McGuire [43] transformed the images into Fourier Magnitude domain, which is

invariant to translation, in order to recover a similarity transform. The similarity

spatial transform between 2D complex gradient maps gI(u, v) and gV (u, v) can be

expressed as

gI(u, v) = gv(tu + s (u cosθ − v sinθ),

tv + s (u cosθ + v sinθ))
(4.9)

where tu, tv are translations, θ a rotation, and s the scale.

By transforming the gradient maps into Fourier domain asGI(ξu, ξv) = F{gI(u, v)}

and GV (ξu, ξv) = F{gV (u, v)}, the relation in Eq. (4.9) becomes

GI(ξu, ξv) =s2 ej2π(ξutu+ξvtv)/s

GV

(
(ξucosθ + ξvsinθ)/s,

(ξucosθ − ξvsinθ)/s)
)
.

(4.10)

When the 2D gradient map with the same scale s as the gradient map of 3D

image is compared, the scale difference is eliminated from the equation above and

taking its Fourier Magnitude | · | relates the two sides as:∣∣GI(ξu, ξv)
∣∣ =
∣∣GV (ξucosθ + ξvsinθ,

ξucosθ − ξvsinθ)
∣∣ . (4.11)
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As seen in Eq. (4.11) the Fourier magnitude of two gradient maps differ only by

rotation when scales are equalized.

4.2.5 Estimation of Rigid-body Rotations and Out-of-plane

Translation

For the purpose of 3D-2D image registration the estimates of rotations and out-

of-plane translation are found by maximizing the correlation coefficient of Fourier

magnitudes (MC) between rotation and depth templates. Rotation templates are

obtained by rotating 3D intensity gradients ∇V for a discrete set of rotations Ωi =

{(ωx, ωy, ωz)i}; i = 1, . . . , N and projecting into 2D to yield gradient maps gV (u, v).

Motion of the 3D image along the direction of projection is reflected as a change

in scale of the 2D projection image (Fig. 4.2). In order to determine the out-of-plane

translation, the 2D gradient maps gI(u, v) are scaled, for some expected depth range,

in a discrete set of scales sj; j = 1, . . . ,M , which represent the depth templates.

The optimal rotations Ωi? and scale sj? are obtained by maximizing MC as

(i?, j?) =

argmax
ij

MC
(
|GV (ξu, ξv|Ωi)|, |GI(ξu, ξv|sj)|

)
,

(4.12)

Given the optimal scale sj? , the corresponding out-of-plane translation tw can be

derived based on the projection matrix P of the original 2D image (s = 1). Assuming

that we select the optimal rotation (RV ≈ Id) and, without loss of generality, that

the world and 2D detector’s coordinate systems are aligned (RPARSA ≈ Id, xyz ↔

uvw), then using (4.4) the 3D-2D correspondence becomes:

t =


−SID 0 −u0 u0 SOD

0 −SID −v0 v0 SOD

0 0 1 −SOD

 p . (4.13)

Let p = [u′ v′w′]T. We will also assume that the 2D image is isotropically scaled,

thus we can consider only one of the two 2D coordinates (u,v). For the original 2D

image and coordinate u we have:

u =
−SID (u′ + tu)− u0(w′ + tw − SOD)

w′ + tw − SOD
, (4.14)
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which simplifies to

u+ u0 =
−SID (u′ + tu)

w′ + tw − SOD
. (4.15)

For the scaled 2D image at optimal scale sj? , the out-of-plane translation is required

to match (in scale) the structures in 3D and 2D, hence tw = 0, and (4.15) becomes:

sj? (u+ u0) =
−SID(u′ + tu)

w′ − SOD
. (4.16)

By dividing (4.16) and (4.15) we get the tw for central point of 3D volume as:

tw = (w′ − SOD) · (sj? − 1) . (4.17)

Note that w′−SOD represents the distance from the X-ray source to the position of

center, or any other reference point, of the 3D image. In the axes xyz of the world

coordinate system, the out-of-plane translation is expressed as[
tx ty tz

]T
= tw eT

w ·
[
ex ey ez

]
. (4.18)

The discrete value of the optimal rigid-body rotations Ωi? obtained at maximal

MC is further refined by a linear interpolation scheme. Note that Ωi? is a 3-vector

from a discrete set of rotations, i.e. [ωx ωy ωz]
T
i? . Let Ω represent a 3-vector with

arbitrary values and let ∆ω denote the rotation step used to sample rotation along

all three rotation axes. A refined rotation estimate Ω? is obtained by computing a

matrix of linear weights as:

Wlmn = MC
(
Ωi? + [l,m, n]T ·∆ω

)
, (4.19)

for l,m, n = {−1, 0, 1}. Matrix W is normalized as:

W̃lmn = Wlmn −min
l,m,n
{Wlmn}; ∀l,m, n (4.20)

Then, the refined rotations are obtained as:

Ω? = Ωi? + ∆ω ·
∑1

l,m,n=−1 W̃lmn · [l,m, n]T∑1
l,m,n=−1 W̃lmn

. (4.21)

The discrete value of optimal scale sj? is further refined based on the maximal

MC and neighboring values with the following a linear regression model:

serr = β1d1 + β2d2 + β3 (4.22)
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where serr = st− sj? is the true scale and d1, d2 are the differences the MC value at

neighboring discrete scales, i.e. d1 = MCi?(j?−1) −MCi?j? and d2 = MCi?(j?+1) −

MCi?j? .

The coefficients βi; i = 1, 2, 3 of the linear regression model are determined in

a training phase, which involved the creation of several projected gradient maps

gV (tw) at different out-of-plane translations tw. The MC values of these gradient

maps were computed w.r.t. depth templates, created from a projected gradient

map gV (0) at the current position of the 3D image. For the purpose of training,

the out-of-plane translations tw were randomly sampled in the expected range of

out-of-plane motion, thereby knowing the actual true scale st.

The aim of the regression model is to capture the error serr of discrete scale

estimate sj? , from which a refined ”continuous” estimate is obtained by st = serr +

sj? .

4.2.6 Estimation of In-plane Translation

In-plane translation between the gradient maps gV (u, v|Ωi?) and gI(u, v|sj?) is ob-

tained by phase correlation (PC). When the gradient map gV is obtained from

gI by in-plane translation (tu, tv), their power spectra remains the same (|GIGI | =

|GVGV |), hence, computing normalized correlation in Fourier domain asGIGV /|GIGV |

would yield the phase information as:

PC(ξu, ξv) = GI(ξu,ξv)GI(ξu,ξv)·ej2π(ξutu+ξvtv)
|GI(ξu,ξv)GI(ξu,ξv)·ej2π(ξutu+ξvtv)|

= ej2π(ξutu+ξvtv)

(4.23)

where GV
.
= GI(wx, wy) · ej2π(ξutu+ξvtv). As a result, the inverse Fourier transform

of PC(ξu, ξv) is a Dirac impulse translated by corresponding in-plane translation

(tu, tv) [47]. The use of gradient maps in PC is robust against occlusions and image

noise, while registration performance is stable even if there is small overlap between

the two images [46].

The obtained optimal translations (tu, tv) in the 2D detector plane can be mapped

into the in-plane translations in world coordinate system as follows[
tx ty tz

]T
= −SOD

SID
(tu eT

u + tv eT
v ) ·

[
ex ey ez

]
. (4.24)
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4.3 Experiments and Results

4.3.1 Experiment Description

The experiments involved 10 datasets of cerebral angiograms [4]2. Objective evalua-

tion of the proposed 3D-2D registration method was performed between 3D digitally

subtracted angiograms (3D-DSAs) and 2D-DSA images. These images contained

two common vascular pathologies, i.e. aneurysm and arteriovascular malforma-

tion (AVM). The 2D-DSAs were acquired in the anterior-posterior (AP) and lateral

(LAT) projection views, thus forming 20 pairs of 3D and 2D images. For each

3D-2D image pair a reference or gold standard registration was established by co-

registration of fiducial markers [4].

The experiments involved 3D and 2D image registration by the proposed method

and a recent iterative method based on matching gradient covariances [75]. A set

of starting positions for 3D-2D registration, i.e. the initial rigid-body parameters

of the 3D image, were defined w.r.t. the gold standard registration as described in

the next section. The proposed and the iterative methods were tested as follows:

1) the proposed method was executed with the 3D image in one of the starting

positions; 2) the iterative method was executed with the 3D image in one of the

starting positions; and, finally, 3) the proposed method was executed with the 3D

image in one of the starting positions, and the obtained registered position was

further improved by the iterative method.

The three experimental setups are referred to as the

1. proposed,

2. iterative and

3. combined

registrations.

The proposed method was executed in three resolution stages (r1 = 1.5 mm,

r2 = 1 mm and r1 = 0.5 mm), in each stage improving the rigid-body parameters of

the 3D image over the parameter values obtained at previous stage. In each stage,

2URL: http://lit.fe.uni-lj.si/tools.php?lang=eng
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the discrete set of scales and rotations (Ωi and sj) was updated to a smaller range of

rotations and scales, and to smaller discrete sampling steps ∆ω and ∆s. Rotation

and depth templates were created by using the following rotation and scale ranges

(Ωi and sj, respectively):

1. Ωi = −10 to 10◦ with ∆ω = 5◦ (125 tmplts.)

and sj = 0.75 to 1.15 with ∆s = 0.05 (9 tmplts.)

2. Ωi = −5 to 5◦ with ∆ω = 2.5◦ (125 tmplts.)

and sj = 0.90 to 1.10 with ∆s = 0.025 (9 tmplts.)

3. Ωi = −1 to 1◦ with ∆ω = 1◦ (27 tmplts.)

and sj = 0.95 to 1.05 with ∆s = 0.025 (5 tmplts.)

4.3.2 Registration Evaluation

Registration metrics that underlie the evaluation of 3D-2D registration methods were

based on measuring the quality of initial and final alignment of 3D targets w.r.t.

their gold standard position. The 3D targets were the vessels’ centerlines, extracted

from 3D-DSA in each of the 10 datasets[4]. Initial positions of 3D images were

defined in terms of mean target registration error (mTRE), generated in the range

0–100 mm mTRE w.r.t. the gold standard position by randomly sampling rigid

body transformations. For each 3D-2D image pair, one set of rigid-body parameters

was generated in each 1 mm subinterval of mTRE, hence, in total 100 per dataset.

Translations were randomly sampled in the range [-100, 100] mm, while rota-

tions were sampled in the range [-5, 5] degrees, such that the desired initial mTRE

was achieved. The following ranges of translations and rotations correspond to the

initial misalignment of the pre-operative 3D and intra-operative 2D images that is

expected in a typical interventional C-arm suite [76, 77] and may be due to the use

of uncalibrated C-arm pose, due to C-arm table movement (no external tracking

system) or due to possible patient movement. Since there were 20 pairs of 3D-

and 2D-DSAs and 100 initial rigid-body parameters per each image pair, and three

registration tests were executed, we altogether performed 6000 3D-2D registration

trials.
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After executing 3D-2D registration, accuracy of alignment was measured by

mean reprojection distance (mRPD). The mRPD is the mean of minimal distances

between the 3D target points in the goldstandard position and lines connecting the

X-ray source and the 3D target points in the registered position. The final registra-

tion was considered a successful 3D-2D registration if mRPD was less than 2 mm.

Overall accuracy of the 3D-2D registration was defined as MEAN±STD of mRPD of

all the corresponding successful registrations. Overall success rate (SR) was defined

as the percentage of successful registrations.

Cumulative success rate (cSR) was computed w.r.t. 2 mm subintervals of the

initial mTRE, which consisted of 20 registration trials, such that the cumulative

number of successful registration trials was divided by the number of all registration

trials. Capture range (CR) was defined as the first mRPD subinterval of length

2 mm, in which more than one of the 20 corresponding registrations failed. This

setting corresponds to a 95% confidence level for the CR estimate.

4.3.3 Registration Results

The obtained overall results for the proposed, iterative and combined registration

are reported in Table 4.1 for the experiments on clinical image datasets of cerebral

angiograms involving 20 pairs 3D- and 2D-DSAs, with 10 2D-DSAs in AP and 10

2D-DSAs in LAT projection view. Results per each dataset are shown in Fig. 4.3.

The overall results for registrations by the proposed method involving the AP

projection views were: registration accuracy as mean mRPD of 0.99 ± 0.48, SR of

64.8%, and CR of 4 mm. The results improved significantly with use of combined

registration, i.e. mean mRPD of 0.39±0.32 mm, SR of 96% and CR of 18 mm. The

differences in registration accuracy per each dataset and overall were significant (p-

values << 0.05) according to Mann-Whitney-Wilcoxon non parametric test for the

two unpaired groups (Proposed vs. Combined Registration). On the other hand,

using solely the iterative registration [75] resulted in lower mean mRPD compared

to the proposed method, however, the SR of iterative registration almost halved

compared to the proposed registration (Table 4.1). Fig. 4.4 left shows the cumulative

SR, which is linearly decreasing from 100% to 95% across the 0–30 mm initial mTRE

range and is then nearly constant at slightly above 95%.
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The overall registration results on image pairs involving LAT projection views

were similar to the results on image pairs involving AP projection views. The pro-

posed method achieved registration accuracy with mean mRPD of 1.03 ± 0.47 at

SR of 75.2% and CR of 4 mm, while the respective results for the combined regis-

tration were 0.40±0.18 mm, 98.6% and 100 mm. Again, the iterative registration

was not robust to high initial misalignment, as it had a almost twice lower SR.

The registration accuracy per each dataset and overall improved significantly by the

use of combined registration compared to the proposed registration with p-values

<< 0.05. Fig. 4.4 left shows the cumulative SR, which is around 99% across the

0–100 mm range of mTRE.

Clearly, the combined registration yields a very accurate and robust 3D-2D image

registration in the range from 0–100 mm of initial mTRE. The proposed method

seems very robust for initializing the 3D-2D image registration, based on which

accurate alignment of 3D and 2D images can be achieved by the use of the iterative

registration [75].

Table 4.2 reports computational times of the proposed method w.r.t. three reso-

lution stages, generation of rotation and depth templates and registration execution

time for 3D-2D registration to AP and LAT views. The mean registration times of

the iterative registration were 1.80 s, hence, the overall mean times of the combined

registration were around 12 seconds.

4.4 DISCUSSION

We proposed an intrinsic image-based registration method for rigid alignment of a

3D image to a monoplane 2D projection based on a novel stratified parameter opti-

mization. The dimensional correspondence between 3D and 2D images is achieved

through projection, while the method employs, as registration features, a small set

of high-magnitude intensity gradients in 3D and 2D. In this way, only a small subset

of 3D intensity gradients needs to be projected to 2D, which makes the projection

very efficient. Further, we introduce a novel parameter optimization approach, which

stratifies the 3D rigid-body motion estimation into two consecutive steps; first, the

estimation of rigid-body rotations and out-of-plane translation and, second, the esti-
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Figure 4.3: Results for the proposed, iterative and combined registration on each

of 10 clinical image datasets of cerebral angiograms, reported for 3D- and 2D-DSA

image pairs involving AP (top) and LAT (bottom) projection views. Registration

accuracy as mRPD is shown on the left and success rate on the right.

mation of in-plane translations. The 3D rigid-body motion estimation is performed

in a multi-resolution framework for a discrete set of image resolutions.

The purpose of the stratification of 3D rigid-body parameters into two subsets

and their consecutive estimation was to increase the robustness of parameter esti-

mation. The method employs two gradient-based similarity measures (SMs), both

computed in the frequency domain. The first SM is the correlation coefficient be-

tween Fourier magnitudes (MC) of complex gradient maps, which is used to estimate

the rigid-body rotations and out-of-plane translation. In the second step, in-plane

translations are estimated by gradient phase correlation. By decoupling the es-

timation of 3D rigid-body parameters into two consecutive steps, the estimation

of out-of-plane translation, which may otherwise hamper the joint estimation of 3D

rigid-body parameters via state-of-the-art Similarity Measures [30, 20, 17, 31, 32, 6],

was better posed. The main reason is that the employed MC is invariant to the in-

plane translations, to which the state-of-the-art SMs are generally most sensitive.

Registration of 3D to monoplane 2D projection is difficult because the lack of
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Figure 4.4: Cumulative success rate (cSR) as fraction of registration trials, which

had mRPD < 2 mm, with respect to initial mTRE. The cSR is computed over 10

clinical image datasets that involved registrations of 3D-DSA to 2D-DSA in either

AP (left) or LAT (right) projection views.

depth information in the 2D image renders the estimation of out-of-plane transla-

tion ill-posed. The main reason is that most of the intensity-based image similarity

measures have poor sensitivity with respect to the out-of-plane translation. How-

ever, the sensitivity of (any) similarity measure to out-of-plane translation is gen-

erally the highest when all rigid-body parameters, are close to their optimal values.

Hence, the proposed method can be used to improve the performance of existing,

state-of-the-art registration methods. This was validated by executing the iterative

registration method [75] with or without prior rigid registration with the proposed

method (Table 4.1).

Most of the state-of-the-art 3D-2D image registration methods, for which error

rates were reported smaller than for the proposed method, require that the initial

alignment of 3D and 2D images is very close to the optimal alignment. For this

purpose, manual user interaction with the image-guidance system was generally

required [19], which, however, is not suitable for routine clinical use. The comparison

of the combined method (proposed and iterative) with the iterative method also

showed that the stratified parameter optimization, which is based on a rather limited

sets of rotation and depth templates, can be applied to overcome usually large initial

translation errors encountered with the use of C-arm imaging systems [78].

The registration times of the proposed method compare favorably to state-of-
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Table 4.1: The overall results for registrations on 10 patient datasets of cerebral

angiograms [4] between 3D- and 2D-DSA in either AP or LAT projection views.

Registration accuracy is reported as MEAN±STD of mRPD of successful registra-

tions (mRPD<2 mm), and success rates (SR) computed for registrations over 1000

registrations of 3D and 2D image pairs. Mann-Whitney-Wilcoxon non parametric

test was used to evaluate the difference mRPD between of successful registration

trials.

View Method MEAN ± STD [mm] SR [%]

AP

Proposed 0.99 ± 0.48 64.8

Iterative 0.62 ± 0.41 33

Combined 0.39 ± 0.32† 96.8

LAT

Proposed 1.03 ± 0.47 75.2

Iterative 0.74 ± 0.44 34

Combined 0.40 ± 0.18† 98.6

†p < 10−20

the-art GPU implementations of DRR generation by Otake el at. [65], who reported

high DRR rates up to 22 000 s−1, however, the registration times were more than 6

seconds due to the use of global CMAES optimization methods, including multi-start

and re-start strategies. Such a fast DRR generation was obtained by increasing ray

step length to 3 voxels, while we used 0.5 voxels in our implementation of gradient

projection. Increasing the step length is reasonable for MIP/DRR generation from

images containing relatively large anatomical structures such as vertebrae considered

in [65], however, it may completely obscure tiny structures such as vessels, which

we considered in this work. Since vertebrae are much smaller in size compared to

cerebral angiograms, given equal spatial image sampling, the clinical image of cere-

bral angiograms are much larger and, thus, require more computations for obtaining

a projection image. Opposed to state-of-the-art methods that use general-purpose

optimization techniques, which have variable number of iterations, and thus variable

convergence times, due to varying initial misalignment and image quality conditions,
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Table 4.2: Execution times (MEAN ± STD) of the proposed method in each of

three resolution stages for the generation of rotation and depth templates and reg-

istration execution time computed over all 10 datasets for registration to AP and

LAT projection views.

Stage
Template generation Registation

Rotation [s] Depth [s] times [s]

AP-1 0.22±0.08 0.08±0.11 0.46±0.07

AP-2 1.16±0.25 0.14±0.20 2.80±0.40

AP-3 1.38±0.39 0.14±0.21 2.89±0.42

LAT-1 0.18±0.07 0.06±0.15 0.36±0.10

LAT-2 0.97±0.36 0.11±0.30 2.21±0.61

LAT-3 1.21±0.41 0.11±0.32 2.29±0.67

the proposed method has a fixed number of computations and thus provides image

alignment in nearly constant time.

In conclusion, the main advantages of the proposed method are: (i) improved

estimation of depth or out-of-plane translation; (ii) robustness against image noise

and occlusions; (iii) robustness to high initial alignment errors; (iv) fixed number of

computations. Furthermore, the proposed method does not depend on segmentation

or extraction of features, thereby its performance is less dependent on the quality of

3D and, especially, 2D images. A subset of high-magnitude gradients can be easily

extracted using heuristic techniques, while the projection of a subset of 3D image

gradients into 2D is also very efficient compared to MIP/DRR generation. These

characteristics increase the potential of the proposed method, and of the 3D-2D

image registration technology in general, for a successful translation into routine

use in clinical applications.
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Chapter 5

Conclusions and Outlook

5.1 Summary and Conclusions

This thesis presents two novel methods for 3D-2D registration of vessels from a

single view for Image Guided Interventions (IGI).

Chapter 3 proposes decoupling of rotation and translation in estimation of rigid

transformation parameters. Rotation estimation is based on matching rotational

DRR templates of segmented CTA to the segmented X-ray in the frequency domain.

Translation is estimated by minimization of distances between two segmented vessels

by an optimizer. An initial alignment is not needed since DRR templates and

distance based optimization avoid convergence to local minima. The errors are

measured by distances on the projection plane. The mean error is low, however

because a gold standard is missing three dimensional misalignment distances cannot

be measured. This metric is necessary for validation of IGI applications. The main

strengths of this method are: robustness against initial alignment errors; noise; and

occlusions in the image. The sources of error for this method are: its dependence

on the segmentation success; the discrete estimation of rotation angles; and poor

estimation of depth by the iterative optimization algorithm.

Chapter 4 builds on the method of Chapter 3, and adds the crucial idea of sepa-

ration of depth estimation from in-plane translation, hence dividing the estimation

of rigid parameters into three stages. A second difference is the replacement of

the error prone segmentation by gradients of DSA images. In this way, the full

structure of vessels in both modalities are preserved. Both gradients and frequency
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domain methods provide robustness against partial occlusion and noise in the im-

ages. Scale space of the X-ray DSA images are compared to rotated template DRRs

of Rotational DSA in Fourier domain to recover depth and rotation. The in-plane

translation is recovered by Fourier Phase correlation. The discrete estimates of scale

and rotation are interpolated by linear regression and linear interpolation respec-

tively. The results are reported in mean Reprojection Distance (mRPD) metric.

The results show low alignment errors and indicate that this method can be em-

ployed safely as an initialization for other local registration algorithms. Although

mean mRPD of the proposed method is not high, the success rates can be further

improved by a local optimizer or another stage in the registration process. The com-

putation time compares favorably to other methods implemented on GPU therefore

the proposed method is clinically feasible for IGIs. The main shortcoming of the

method at present is relatively low success rates in mRPD metric. The main ad-

vantages of the method are: (i) improved depth estimation; (ii) robustness against

noise and occlusions; (iii) robustness to high initial alignment offsets. Particularly,

the latter advantage is very important. The state-of-the-art techniques in the litera-

ture, which obtained smaller error rates than the proposed method, all required very

close initialization conditions, which was typically carried out interactively. Further-

more, the method involves fast and fixed number of computations, as opposed to

optimization-based techniques in the literature, which have variable convergence

times due to varying initial conditions and image quality.

5.2 Outlook

The future areas in 3D-2D registration from a single view that need improvement

are the ability to function under changing conditions, large initial alignment errors.

3D-2D registration methods based on a single view, which are not affected by ini-

tial alignment errors and have high final success rates in three dimensional distance

metrics are still open research targets. Some of the intrinsic methods reporting

high success rates and low alignment errors require close initialization. Some of the

methods with low final error rates employ more than one view which may not be

realistic as monoplane interventions are still common. Another deficiency in this

65



area is poor generalization to other applications. Most intensity and feature based

registration methods are designed for specific scenarios and may not be reliable if

conditions and image characteristics change significantly. A single 3D-2D registra-

tion algorithm reliable enough to be employed in all IGI scenarios concerning an

anatomy is still not available. Moreover some of the proposed methods require com-

plex manual interactions from the surgeon during the intervention which may not

be desirable under real-time constraints.

This thesis, particularly the second method proposed in Chapter 4 presented so-

lutions to some of these issues: (i) automatic correction of large initialization errors;

(ii) decreased sensitivity to image noise; (iii) fast and deterministic computation

times.

Taking a template-based approach, as well as focusing on improvement of the

depth (out-of-plane translation) estimation as proposed in this thesis could be the

basis of future research directions in this field. Ideally a robust 3D-2D registration

algorithm should not be sensitive to image noise and artifacts. In order for the

method to perform reliably under variable circumstances, the errors must be low

and predictable. Another bottleneck for IGI applications is complexity. The real

time constraints require the algorithm complexities to be tractable and converge to

optimal solution in few number of steps. Iterative optimization methods have the

drawbacks of possibility of converging to local minima and uncertainty in number

of steps required. A time-wise efficient algorithm should have a bounded worst case

running time, which supports our hypothesis that template-based methods are more

suitable to the solution of the 3D-2D registration problem.
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