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ABSTRACT 

Nano or micro particle integrated polymeric fibers are commonly produced via so-

called wet spinning process. During the process, particle containing polymer solution is 

exposed to high shear stresses while passing through the spinneret holes, and high shear 

stresses give rise to increased viscosity (shear thickening). In the present work, it was 

aimed to investigate parameters that affect the flow behavior of shear thickening fluids. 

The fluid considered in the simulations was prepared by dispersing silica nanoparticles 

in poly(ethyleneglycol), and the resulting fluid was a complex fluid which shows shear 

thinning until a certain shear rate, and above that shear rate it shows shear thickening. 

The effects of various parameters on the flow properties of the fluid have been 

investigated over a wide range of conditions. The variables studied are: geometry 

(reservoir depth, channel length, contraction width, edge roundness), velocity (0.02-0.12 

m/s). A two-dimensional simulation model based on an Eulerian-Eulerian multiphase 

approach is considered to simulate particle containing polymeric fluid. The governing 

equations and constitutive relations for both phases are solved using the finite volume 

method, by employing the FLUENT software of ANSYS Workbench. Since it would be 

computationally too expensive to model the entire spinneret, only one single hole was 

considered as the computational domain. It was found that reservoir depth and channel 

length have slight effect on the viscosity but at the same time contraction width and 

roundness of the edge of the contraction has a significant effect on the viscosity profile. 

Besides, by increasing velocity fluid viscosity increased as well. 
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Spinneret Geometrisinin Çok Fazlı Polimerik Akışkanların Akış Özellikleri 

Üzerine Etkilerinin Hesaplamalı Akışkanlar Dinamiği Yöntemi ile İncelenmesi 

Dilay Ünal 

MAT, M.Sc. Tezi, 2014 

Tez Danışmanları : Prof. Dr. Yusuf Menceloğlu, Doç. Dr. Mehmet Yıldız 

Anahtar Kelimeler : Hesaplamalı Akışkanlar Dinamiği, FLUENT, çok fazlı akış 

ÖZET 

Nano veya mikro boyutta parçacık içeren polimerik fiberler, yaş çekim yöntemi adı 

verilen bir proses ile üretilebilmektedir. Bu proses esnasında, parçacık içeren polimer 

solüsyonu, spinneret (düze) adı verilen mikron boyutlarındaki deliklerden geçirilirken, 

yüksek kayma gerilimine maruz kalırlar. Polimer solüsyonu üzerine etki eden bu yüksek 

kayma gerilimi viskozite artışına sebep olur. Bu tez kapsamında, kayma kalınlaşması 

gösteren polimerik sıvıların akış özelliklerine etki eden parametreler incelenmiştir. 

Simülasyonlarda kullanılan akışkan, silika nanoparçacıklarının poli(etilenglikol) 

içerisinde dağıtılmasıyla hazırlanmış olup, hazırlanan bu numune, belirli bir kayma 

geriliminin altında kayma incelmesi gösterirken, o kayma geriliminin üzerinde ise 

kayma kalınlaşması göstermektedir. İncelenen parametreler: geometri (rezervuar 

derinliği, kanal uzunluğu, kısılma alanının genişliği, ve köşelerin yuvarlatılması), akış 

hızı (0.03-0.12 m/s). Simülasyonlar iki boyutlu bir geometri kullanılarak, Eulerian-

Eulerian metodu kullanılarak modellenmiştir. Akış özelliklerini tanımlayan denklemler, 

sonlu hacimler metodu kullanılarak, ANSYS FLUENT programı ile çözülmüştür. 

Simülasyonların maliyeti düşünülerek, tüm spinnereti modellemek yerine, yalnızca bir 

adet delik baz alınmış ve hesaplamalar onun üzerinde yapılmıştır. Elde edilen 

sonuçların ışığında, rezervuar derinliği ve kanal uzunluğunun viskozite üzerine çok az 

etkisi olduğu görülmüştür. Bunun yanında, kısılma alanının genişliği ve köşelerin 

keskinliğinin ise viskozite profili üzerinde hatırı sayılır ölçüde değişikliğe sebep olduğu 

gözlemlenmiştir. Ayrıca, akış hızının artırılmasıyla da viskozitenin önemli ölçüde arttığı 

görülmüştür. 
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CHAPTER 1 

INTRODUCTION 

1.1. Motivation 

Natural fibers such as cotton, wool, and silk have been used by humans since ancient 

times. Patenting of artificial silk in 1885 was a milestone which started the modern fiber 

industry. Man-made fibers include materials such as nylon, polyester, rayon, and 

acrylic. The combination of strength, weight, and durability have made these materials 

very important in modern industry [1]. 

Synthetic polymers have been developed that possess superior characteristics, like high 

softening point to allow for ironing, high tensile strength, stiffness, and desirable fabric 

qualities. These polymers are then formed into fibers with various characteristics. Fibers 

are very important applications of polymeric materials. From textiles to bullet-proof 

vests, fibers have become very important in the modern life. As the technology of fiber 

processing expands, new generations of strong and light weight materials will be 

produced [2]. 

Studies on the new generation fiber composites that contain nanoparticle additives have 

been significantly increased over the last decade. Enhancing the thermal performance 

and physical strength of fluids by using nanoparticles was a main motivation for 

creating these composites [3]. 

The process of producing fibers is called spinning. There are three types of spinning, 

namely, melt, dry and wet. All of these methods involve a forced fluid flow through the 

process equipment called spinneret, which consists of hundreds or thousands of micron 

size holes. During the process, particle containing polymer solution is exposed to high 

shear stresses while passing through the spinneret holes, and high shear stresses give 

rise to increased viscosity (shear thickening) [4]. 

The shear thickening phenomena has drawn interest over the last 40 years, which is 

mainly due to the fact that it may cause damage to the processing equipment and 

dramatic change in suspension microstructure, such as particle aggregation. 

javascript:Glossary('tensile_strength',400,175)
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For an industrial manufacturing process, it is crucial to maintain continuous production 

without losing quality of the product. Yet, it is known that nanoparticle containing 

fluids imperils the fiber production process by harming the process equipments, 

clogging or narrowing micro channels, due to the shear thickening, arisen from the 

particle aggregation and coagulation. This causes an enormous and intolerable loss of 

time and money for companies; therefore, addressing this problem remains as of great 

importance. CFD aided studies for investigating various types of multiphase fluid flow 

problems in close conduits and open channels have been increasingly used because of 

the advantages that they provide like rapid evaluation of multiphase flow problems 

under a wide range of conditions, which is almost impossible experimentally [5-7]. 

In light of the above discussion, the motivation behind this study is to investigate and 

understand the processing parameters which promote shear thickening inside the 

channels of die. To this end, in this study, we have numerically scrutinized the effects of 

die geometry and velocity on the flow behavior of shear thickening fluids.  

1.2. Outline of the Thesis 

The rest of this thesis continues as follows. Section 2 briefly provides some information 

about the basics of rheology, and CFD method for multiphase fluid flows. Shear 

thickening phenomenon as well as some relevant studies dedicated to explain this 

phenomenon are discussed in Section 2. In this section, a number of pertinent CFD 

studies are also cited and briefly summarized. In section 3, the governing equations and 

constitutive relations used to numerically model the problem in question are provided in 

detail. Geometry, mesh, material properties and numerical methods are described in 

Section 4. Results of the numerical study are discussed in Section 5. The present work is 

concluded with final remarks and the future work in Section 6. 
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CHAPTER 2 

BACKGROUND 

2.1. Rheology Basics 

Fluids having direct proportionality between shear stress (𝜍) and shear rate (𝛾 ) under a 

simple shear are called as “Newtonian Fluids”. The behavior of these types of fluids are 

expressed by a relation of the form given in equation (1) where 𝜇 is the viscosity, which 

does not depend on the shear rate but might depend on the external factors like 

temperature and pressure. Most low-molecular-weight materials like organic and 

inorganic liquids, molten metals and gases exhibit Newtonian behavior under a simple 

shear [8]. 

 𝜍𝑥𝑦 = 𝜇 ∗ 𝛾 , 
 

(1) 
 

Fluids with non-proportional relationship between shear stress and shear rate are 

referred to non-Newtonian fluids. Shear rate dependent viscosity is one of the most 

important characteristic features of these fluids, where viscosity is time-independent but 

depends on the type and rate of deformation. These fluids can be either shear-thinning 

(pseudo-plastic), where viscosity decreases with increasing shear rate or shear-

thickening (dilatant) where viscosity increases with increasing shear rate. Fluids 

exhibiting a combination of shear thinning and shear thickening behavior are so-called 

complex fluids [9]. 

Shear thinning and shear thickening fluids have been intensely studied and investigated 

by both academy and industry over the last few decades. Shear thinning is the most 

widely encountered type of time-independent non-Newtonian fluid behavior in 

engineering practice and the physics behind shear thinning is far more established 

compared to shear thickening. [10] 

Shear thickening fluids can have supreme applications like shock absorbing and force 

damping skis, tennis rackets and flexible body armor when they are engineered into 

composite materials, but yet they may harm the process equipments by clogging the 

pipes or spraying equipments. Many colloidal suspensions, such as dies, paints, 
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coatings, and lubricants, are subjected to high shear rates during processing. Sometimes, 

shear rate is high enough to drive shear thickening, which means viscosity increases 

discontinuously with small increases in shear rate. This behavior can damage processing 

equipment and provoke changes in the suspension microstructure such as driving 

irreversible flocculation and particle aggregation [11, 12]. 

Many theories have been suggested in the literature in order to explain the origin of the 

shear thickening phenomena. In the early 1970s, Hoffman claimed that, shear 

thickening is a consequence of an order-to-disorder transition (ODT) of the fluid. Below 

a certain shear rate, a colloidal fluid is ordered into layers, and with the applied shear, 

this layered arrangement prevents collisions of colloidal particles and thus reduces 

viscosity. Above the critical shear rate, the layered arrangement is disrupted by intense 

hydrodynamic forces. As a consequence, increased collisions give rise to the 

dramatically elevated viscosity. Hoffman confirmed this theory with his light-scattering 

experiments [13]. 

Even though the ODT theory was well accepted and the study pioneered the curiosity 

towards the shear thickening, thereafter, many studies have been done in this field in 

order to further understand the physics behind the shear thickening phenomena. In a 

review article that Barnes published in 1989, the author claimed that shear thickening 

occurs in all dispersion systems, but this thickening is too marginal in some dispersions 

to be detected with conventional rheometers. Nevertheless, shear thickening in some 

dispersions is so severe and hence can easily be detected with rheometers. According to 

Barnes, the parameters affecting shear thickening are: particle size, particle size 

distribution, particle shape, particle volume fraction, particle-particle interaction, 

continuous phase viscosity, and the type, rate and time of deformation. All of these 

parameters have been studied in the literature so far [14, 15]. 

Some of the studies claimed that order-disorder transition is not necessary for shear 

thickening. They claimed that suspensions that had a disordered arrangement of 

particles at the very beginning, and even suspensions that contain only 2 particles which 

have Brownian motion, may show shear thickening [11].  

The non-Newtonian rheological behavior, e.g., shear thickening and/or shear thinning, 

can be captured using simple equations relating viscosity and shear rate via minimum 

number of parameters. Some of these equations are namely, the Carreau Model, the 
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Cross Model, the Power-Law Model and the Herschel-Bulkley Model. All of those 

models are capable of capturing the fluid as either shear thickening or shear thinning 

fluid. However, some non-Newtonian fluids show divergent behavior between shear 

thickening and shear thinning. These so-called complex fluids, act as shear thinning 

fluids below a certain shear rate, and above that shear rate they act as shear thickening 

fluids. There is no model reported in the literature that is able to capture the complex 

viscosity behavior [16, 17]. It is of great importance to handle the viscosity profile of a 

fluid of interest, accurately. Accordingly, the lack of the constitutive equations 

regarding the complex fluids leaves a challenge behind. In the present study, this 

challenge has been attempted to be addressed. 

2.2. Computational Fluid Dynamics for Multiphase Fluid Flows 

In the field of polymeric materials, computers have been intensively used for industrial 

and research applications. In particular, computational fluid dynamics (CFD) of 

polymeric fluids has received growing attention for understanding the physics of 

processes, thereby making it possible to design better equipments and optimize the 

processing conditions [18]. 

The foundation of the CFD software are based on the principles of fluid mechanics, 

together with improved numerical methods for the solution of the governing equations 

and constitutive relations, which describe the rheological behavior of fluid and particles 

if involved [18]. 

Most of the flow problems encountered in industrial processes involve complex 

kinematics due to different geometries, combined shear and elongation, different time 

dependences and amplitudes of deformations [18]. The physical phenomena of a 

problem considered in this thesis work, are governed by partial differential equations, 

which are rather complex for having analytical solutions, and hence need to be 

discretized numerically. Numerical discretization is transformation of the partial 

differential equations into linear sets of equations which can then be solved by using 

appropriate numerical methods via computer programming. There are three main mesh 

based numerical discretization techniques, namely, finite difference method, finite 

element method and finite volume method [7, 19]. In this study, FLUENT software of 

ANSYS Workbench is used and FLUENT uses the finite volume method for 

discretization of partial differential equations. 
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CFD aided studies for investigating various types of multiphase fluid flow problems in 

close conduits and open channels have been increasingly used. Main advantage of CFD 

aided studies is that three dimensional solid–liquid two phase flow problems under a 

wide range of flow conditions may be evaluated rapidly, which is almost impossible 

experimentally. Particle processing, conveying and separation are of crucial importance 

in industrial processes. Besides empirical correlations and experimental investigations, 

numerical simulations have gained significant attention in studying particle containing 

flows. There are quite much of studies in the literature involving the particle containing 

flows [7]. 

In computational simulations, regardless of the method being used for handling the 

problem of particulate fluid flow, it is mandatory to cover the dominant flow regimes of 

the process accurately. For instance, Ristic et al. simulated the multiphase flow in 

ventilation mill, ventilation channel and centrifugal separator. They started to simulate 

the flow by using Eulerian-Eulerian approach and showed that their numerical model 

did not show any convergent behavior because of the complex geometry and large 

number of grids. Then they have used the mixture model and the Eulerian-Lagrangian 

approach, and obtained results which are in good agreement with the experimental 

results. Their study also showed the importance of using the right approach for handling 

the flow problem [20, 21]. 

Employing a specific multiphase model (the discrete phase, mixture, Eulerian model) to 

handle the momentum transfer depends on the volume fraction of solid particles and on 

the fulfillment of the requirements, which enable the selection of a given model. The 

problem that we investigate is a diluted system. Therefore the discrete phase model, the 

mixture model and the Eulerian model are appropriate in this case. The Eulerian model 

has two versions, namely granular version and the non-granular version. Granular 

version is preferable in our case since non-granular version does not include models for 

handling friction and collisions between particles into account which is believed to be of 

importance in nanoparticulate fluids [22]. 

Most of the studies, regarding to the nanoparticle containing multiphase flows found in 

the literature, have dealt with the heat transfer properties of the flows by using CFD 

methods. Abbassi et al. modeled forced convection of laminar nanofluids flowing 

trough microchannels by using Eulerian-Eulerian multiphase model and FLUENT 
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software. They investigated the influence of concentration and size nanoparticles on the 

Nusselt number and pressure drop [23]. Kamali and Binesh numerically investigated 

multi-wall carbon nanotube (MWCNT) based nanofluids in a straight tube under 

constant heat flux condition. They simulated the nanofluid flow passing through the 

tube by using in-house built numerical code, with the non-Newtonian power-law fluid 

model and found that the heat transfer coefficient is dominated by the wall region due to 

non-Newtonian behavior of nanofluid. [24]. Apart from these, one may find quite many 

studies in the literature, which have focused on the heat transfer properties of 

nanoparticulate multiphase flows [25-27]. 

One may find immense many numbers of experimental studies devoted to understand 

the physics behind the shear thickening phenomena, and the various parameters 

affecting shear thickening. However, there are a limited number of computational 

studies in the literature which have focused on the rheological behavior of shear 

thickening fluids. Out of these computational studies, the majority of the works 

investigated the heat transfer properties of these fluids or some other properties, and 

only a few of them computationally investigated the parameters affecting shear 

thickening, which are of significant importance in fiber spinning processes. This study 

aims to understand parameters, namely geometry and fluid velocity which potentially 

affect the shear thickening behavior inside the spinneret in fiber spinning processes. 

Barigou et al. studied viscous non-Newtonian flow under the influence of a 

superimposed rotational vibration by employing different fluids of the power-law, 

Hershel-Bulkley and Bingham plastic types [28]. Chabbra et al. investigated 

numerically two-dimensional laminar flow of power-law fluids past a long square 

cylinder confined in a planar channel for various Reynolds numbers and blockage 

ratios. They presented extensive numerical results, to elucidate the effects of blockage, 

power-law index and Reynolds number on the drag coefficient, stream function, 

vorticity etc. [29]. Shah and Manzar studied particle conveying Newtonian and non-

Newtonian slurries in straight and coiled pipes by using CFD and showed in their 

studies that shear stress inside the flow domain, increases with increasing values of flow 

rate, particle size, particle density and particle loading. They also found that there is a 

good agreement between near-wall particle concentration and particle shear stress [30]. 
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Non-newtonian fluids have a wide variety of applications in the food industry as well. 

The shear rheology of bread dough was studied by Hicks et al. The geometry consisted 

a sudden contraction where shear rate increased significantly, resulting in increased 

viscosity. Their results showed that shear rate and viscosity tend to be higher nearby the 

walls and contraction areas, and this increase in shear rate and viscosity tends to be 

more tremendous with higher flow rates [31]. Sun and Norton reviewed numerous 

articles and showed the importance of CFD methods for studying thermal and hydraulic 

performance of non-Newtonian fluids in food industry like milk, yogurt, soup etc. [32]. 
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CHAPTER 3 

FORMULATION OF CFD MODEL 

The Eulerian-Eulerian two fluid model was used in the computational studies described 

within this thesis. 

The Eulerian-Eulerian multiphase model assumes that the flow consists of solid “s” and 

fluid “f” phases, that are separate yet they form interpenetrating continua, so that 

𝛼𝑓 + 𝛼𝑠 = 1, here 𝛼𝑓  and 𝛼𝑠 are the volumetric concentrations of fluid and solid phases, 

respectively. The Eulerian-Eulerian model solves two sets of momentum and continuity 

equations for each phase. Coupling between phases is achieved through the pressure and 

interphase exchange coefficients. [33] 

The laminar flow of non-Newtonian fluid containing nanoparticles is assumed to be 

governed by the following equations, which form the basis of the Eulerian-Eulerian 

CFD model used. 

3.1. Conservation of Mass 

The continuity equation for phase q is: 

 
1

𝜌𝑟𝑞
 
𝜕

𝜕𝑡
 𝛼𝑞𝜌𝑞 + 𝛻 ·  𝛼𝑞𝜌𝑞𝑣 𝑞 =  (ṁ𝑝𝑞 −ṁ𝑞𝑝 )

𝑛

𝑝=1

 , 
 

(2) 
 

where 𝑣 𝑞  is the velocity of phase q and 𝑚 q characterizes the mass transfer between p
th 

and q
th

 phase, and 𝑚 pq characterizes the mass transfer from phase q to phase p, and it is 

possible to specify these mechanisms, separately. 

3.2. Conservation of Momentum 

The general form of momentum balance for phase q is:  

 𝜕

𝜕𝑡
 𝛼𝑞𝜌𝑞𝑣 𝑞 + 𝛻 ·  𝛼𝑞𝜌𝑞𝑣 𝑞𝑣 𝑞 = −𝛼𝑞𝛻𝑝 + 𝛻 · 𝜏 𝑞 + 𝛼𝑞𝜌𝑞𝑔 + 

  𝑅  𝑝𝑞 +ṁ𝑝𝑞 𝑣 𝑝𝑞 −ṁ𝑞𝑝𝑣 𝑞𝑝  +  𝐹 𝑞 + 𝐹 𝑙𝑖𝑓𝑡 ,𝑞 + 𝐹 𝑣𝑚,𝑞 ,

𝑛

𝑝=1

 

 

(3) 
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where 𝜏  is the q
th 

phase stress-strain tensor, and this stress-strain tensor is in the 

following form: 

 𝜏 𝑞 = 𝛼𝑞𝜇𝑞 𝛻𝑣 𝑞 + 𝛻𝑣 𝑞
𝑇 + 𝛼𝑞  𝜆𝑞 −

2

3
𝜇𝑞 𝛻 · 𝑣 𝑞𝐼  . 

 

(4) 
 

Here μq and λq are the shear and the bulk viscosity of phase q, 𝐹 𝑞  is an external body 

force, 𝐹 lift,q is a lift force, 𝐹 vm,q is a virtual mass force, 𝑅  pq is an interaction force between 

phases and p is the pressure shared by the all phases. 𝑣 pq is the interphase velocity. 

3.2.1. Fluid-Fluid Momentum Equation 

The conservation of momentum for fluid phase q is like the following: 

 

  
𝜕

𝜕𝑡
 𝛼𝑞𝜌𝑞𝑣 𝑞 + ∇ ∙  𝛼𝑞𝜌𝑞𝑣 𝑞𝑣 𝑞 = −𝛼𝑞∇𝑝 + ∇ ∙ 𝜏 𝑞 + 𝛼𝑞𝜌𝑞𝑔 + 

  𝐾𝑝𝑞  𝑣 𝑝 − 𝑣 𝑞 + 𝑚 𝑝𝑞 𝑣 𝑝𝑞 −𝑚 𝑞𝑝𝑣 𝑞𝑝  +  𝐹 𝑞 + 𝐹 𝑙𝑖𝑓𝑡 ,𝑞 + 𝐹 𝑣𝑚 ,𝑞 

𝑛

𝑝=1

. 

 

(5) 
 

Here 𝑔  is the accelaration due to gravity and 𝜏 𝑞 , 𝐹 𝑞 , 𝐹 𝑙𝑖𝑓𝑡 ,𝑞  and 𝐹 𝑣𝑚,𝑞  are as defined 

above. 

3.2.2. Fluid-Solid Momentum Equation 

The conservation of momentum for the s
th
 solid phase is: 

 

𝜕

𝜕𝑡
 𝛼𝑠𝜌𝑠𝑣 𝑠 + ∇ ∙  𝛼𝑠𝜌𝑠𝑣 𝑠𝑣 𝑠 = −𝛼𝑠∇𝑝 − ∇𝑝𝑠 + ∇ ∙ 𝜏 𝑠 + 𝛼𝑠𝜌𝑠𝑔 + 

  𝐾𝑙𝑠 𝑣 𝑙 − 𝑣 𝑠 + 𝑚 𝑙𝑠𝑣 𝑙𝑠 −𝑚 𝑠𝑙𝑣 𝑠𝑙 +  𝐹 𝑠 + 𝐹 𝑙𝑖𝑓𝑡 ,𝑠 + 𝐹 𝑣𝑚,𝑠 ,

𝑁

𝑙=1

 

 

(6) 
 

where 𝑝𝑠 is the s
th

 solids pressure, Kls=Ksl is the momentum exchange coefficient 

between fluid or solid phase, where l stands for liquid phase and s for solid phase, N is 

the total number of phases, and 𝐹 𝑠, 𝐹 𝑙𝑖𝑓𝑡 ,𝑠 and 𝐹 𝑣𝑚 ,𝑠are as defined above. 

3.3 Carrier Fluid Viscosity  

Non-Newtonian flow behavior of the fluid was modeled by using the below given 

Carreau Model. Where 𝛾  is shear rate, 𝜂∞ is the infinite shear rate viscosity, 𝜂0 is zero 

shear rate viscosity, λ is relaxation time and n is power index. 
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 𝜂 =  𝜂∞ +  𝜂0 − 𝜂∞  1 + 𝛾 2𝜆2 𝑛−1 2  . 
(7) 

 

3.4. The Pressure Correction Equation 

For incompressible multiphase flow, the pressure-correction equation is in the following 

form: 

 
1

𝜌𝑟𝑘
 
𝜕

𝜕𝑡
𝛼𝑘𝜌𝑘 + ∇ ∙ 𝛼𝑘𝜌𝑘𝑣 𝑘

′ + ∇ ∙ 𝛼𝑘𝜌𝑘𝑣 𝑘
∗ −    𝑚 𝑙𝑘 −𝑚 𝑘𝑙  

𝑛

𝑙=1

  = 0,

𝑛

𝑘=1

 

 

(8) 
 

where 𝜌𝑟𝑘  is the phase reference density for the k
th

 phase (defined as the total volume 

average density of phase k), 𝑣 𝑘
′  is the velocity correction for the k

th
 phase, and 𝑣 𝑘

∗ is the 

value of 𝑣 𝑘  at the current iteration. The velocity corrections are expressed as functions 

of the pressure corrections. 

3.5. Volume Fraction Equation 

The description of multiphase flow incorporates the concept of phasic volume fractions, 

denoted here by αq. Volume fractions represent the space occupied by each phase, and 

the laws of conservation of mass and momentum are satisfied by each phase 

individually [33]. 

The volume of phase q, Vq, is defined by:  

 𝑉𝑞 =  𝛼𝑞
𝑉

𝑑𝑉, 

 

(9) 
 

where  

  𝛼𝑞 = 1.

𝑛

𝑞=1

 
 

(10) 
 

The effective density of phase q is 𝜌 q = αq ρq where ρq is the physical density of phase q. 

3.6. Fluid-Solid Exchange Coefficient 

Within particulate fluid flows, fluid-solid exchange can be described by using many 

models which were developed empirically, like Gidaspow [34], Syamlal-O’Brian [35], 

Huilin-Gidaspow [36], Gibilaro [37], and Wen-Yu models. The model developed by 

Wen and Yu was used in our study, since it is the best choice for systems involving 

particles less than twenty percent. For the model of Wen-Yu, the fluid-solid exchange 

coefficient is of the following form: 
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 𝐾𝑠𝑙 =
3

4
𝐶𝐷
𝛼𝑠𝛼𝑙𝜌𝑙  𝑣 𝑠 − 𝑣 𝑙  

𝑑𝑠
𝛼𝑙 − 2.65, 

(11) 
 

where 𝐶𝐷 is as following: 

 𝐶𝐷 =
24

𝛼𝑙𝑅𝑒𝑠
 1 + 0.15 𝛼𝑙𝑅𝑒𝑠 

0.687 . 
 

(12) 
 

In above formulae, 𝛼𝑠 and 𝛼𝑙  stand for volume fraction of solid and liquid phases 

respectively. Reynolds number,𝑅𝑒𝑠, is calculated according to the following equation: 

 𝑅𝑒𝑠 =
𝜌𝑙𝑑𝑠 𝑣 𝑠 − 𝑣 𝑠 

𝜇𝑙
. (13) 

3.7. Solid Shear Stresses 

The solids stress tensor contains shear and bulk viscosities arising from particle 

momentum exchange due to translation and collision. A frictional component of 

viscosity can also be included to account for the viscous-plastic transition that occurs 

when particles of a solid phase reach the maximum solid volume fraction. 

The collisional and kinetic parts and the optional frictional part are added to give the 

solid shear viscosity: 

 

 
𝜇𝑠 = 𝜇𝑠,𝑐𝑜𝑙 + 𝜇𝑠,𝑘𝑖𝑛 + 𝜇𝑠,𝑓𝑟 .. (14) 

3.7.1. Collisional Viscosity 

The collisional part of the shear viscosity is modeled as below, where Θ𝑠 is the granular 

temperature of solid phase. 

 𝜇𝑠,𝑐𝑜𝑙 =
4

5
𝛼𝑠𝜌𝑠𝑑𝑠𝑔0,𝑠𝑠 1 + 𝑒𝑠𝑠  

Θ𝑠
π
 

1 2 

𝛼𝑠 . (15) 

3.7.2. Kinetic Viscosity 

There are two expressions provided by ANSYS FLUENT software for the kinetic part 

of the shear viscosity which were developed by Syamlal et al. [35] and Gidaspow [34] 

et al. The expression derived by Gidaspow was used in our model and is shown below: 
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 𝜇𝑠,𝑘𝑖𝑛 =
10𝜌𝑠𝑑𝑠 Θ𝑠𝜋

96𝛼𝑠 1 + 𝑒𝑠𝑠 𝑔0,𝑠𝑠
 1 +

4

5
𝑔0,𝑠𝑠𝛼𝑠 1 + 𝑒𝑠𝑠  

2

𝛼𝑠 . 

 

(16) 
 

3.7.3. Bulk Viscosity 

The solids bulk viscosity accounts for the resistance of the granular particles to 

compression and expansion. It has the following form from Lun et al [38]. 

 𝜆𝑠 =
4

3
𝛼𝑠𝜌𝑠𝑑𝑠𝑔0,𝑠𝑠 1 + 𝑒𝑠𝑠  

Θ𝑠
𝜋
 

1 2 

. 

 

(17) 
 

3.8. Solver Theory 

ANSYS FLUENT solves the governing integral equations for the conservation of mass 

and momentum. A control-volume-based technique is used that consists of: 

• Division of the computational domain into discrete control volumes using a 

computational mesh. 

• Integration of the governing equations on the individual control volumes to construct 

algebraic equations for the discrete dependent variables such as velocities, pressure, 

viscosity. 

• Linearization of the discretized equations and solution of the resultant linear equation 

system to obtain updated values of the dependent variables. 

The pressure-based solver uses an algorithm, which belongs to a general class of 

methods called the projection method. In the projection method, wherein the constraint 

of mass conservation of the velocity field is achieved by solving a pressure correction 

equation. The pressure correction equation is derived from the continuity and the 

momentum equations in such a way that the velocity field, corrected by the pressure, 

satisfies the continuity. Since the governing equations are nonlinear and coupled to one 

another, the solution process involves iterations wherein the entire set of governing 

equations is solved repeatedly until the solution converges. 

Pressure-based solver is used for low-speed, incompressible flows. Two pressure-based 

solver algorithms are available in ANSYS FLUENT, namely, segregated algorithm, and 

coupled algorithm. Pressure-based coupled algorithm is used for multiphase flow 



14 

 

problems. The pressure-based coupled algorithm solves a coupled system of equations 

comprising the momentum equations and the pressure-based continuity equation. With 

the coupled algorithm, each iteration consists of the steps as outlined below: 

1. Update fluid properties (e.g., density, viscosity) based on the current solution. 

2. Solve the coupled system of momentum and pressure correction equations, using the 

recently updated values of pressure, mass flux and velocity field. 

3. Correct mass fluxes using the pressure correction obtained from Step 2. 

4. Solve the equations for additional scalars, if any, using the current values of the 

solution variables. 

5. Update the source terms arising from the interactions between different phases (e.g., 

source term for the carrier phase due to discrete particles). 

6. Check for the convergence of the equations. 

Since the momentum and continuity equations are solved in a closely coupled manner, 

the rate of solution convergence significantly improves compared to the segregated 

algorithm. However, the memory requirement increases by 1.5 – 2 times that of the 

segregated algorithm since the discrete system of all momentum and pressure-based 

continuity equations needs to be stored in the memory when solving for the velocity and 

pressure fields. 
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CHAPTER 4 

DESCRIPTION OF CFD SIMULATIONS 

All of the simulations described within this thesis were performed by using ANSYS 

Workbench Release 14.0 and solved by using the FLUENT solver component of the 

package. 

4.1. Simulation of Validation Case 

In order to check the validity and the accuracy of the solver, a reference study by Ease 

and Barigou has been considered where the numerical modeling of a flow through 

channels were conducted with the assumptions of 2D, incompressible, isothermal, and 

fully developed flow. The test case modeled in this work as a validation is a flow 

through a straight pipe with the diameter and length of 45 mm, and 600 mm, 

respectively. The geometry was meshed with in total 32000 fine cells. A non-

Newtonian power law fluid model given in Equation (18) was used with the consistency 

index, k, of 0.16 Pa.s
n
 and power-law index, n, of 0.81. The density of the fluid is 1000 

kg/m
3
. Velocity inlet boundary condition was used at the inlet with the value of inlet 

velocity of 0.066 m/s while the zero gauge pressure condition was used at the outlet. 

Walls were considered to have no-slip boundary conditions.  

 𝜂 = 𝑘𝛾 𝑛−1, (18) 

 

Initially, the fluid without any particles was modeled and the results were compared 

with the analytical ones. Governing equations were discretized using SIMPLE 

algorithm and momentum equation was dicretized using second-order upwind 

differencing scheme. Residual target was 10
-5

 and convergence was reached after 

approximately 800 iterations at steady state conditions. 

The shear thickening fluid containing 30% v/v particles with diameter of 2mm was 

modeled and the particle velocity results were compared with the ones in the reference 

paper. Governing equations were discretized using phase coupled SIMPLE algorithm 

and momentum equation was dicretized using second-order upwind differencing 

scheme. Residual target was 10
-4

 and convergence was reached after approximately 130 

time steps, with 10 iterations at each time step, and with a small time step size as 0.05. 
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4.2. Simulations of Single Phase Fluid Flow and Two-Phase Solid-Liquid Flow 

4.2.1. Geometry 

A spinneret is multi-pored equipment through which a plastic polymer melt is drawn to 

form fibers. A representative picture of a spinneret is shown in Figure 1. Spinnerets 

used in acrylic fiber spinning processes consist of thousands of micron-size pores.  

 

Figure 1. A representative image of a spinneret 

Since it would be computationally too expensive and time consuming to model an entire 

spinneret, a single pore was taken into account and was modeled in two dimensions. 

Half of a single pore is shown in Figure 2 with dimensions. Only half of the pore was 

modeled because in 2D right and left boundaries of the pore are symmetric boundaries. 

 

Figure 2. Geometry of the computational domain 
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4.2.2. Mesh 

For two dimensional channel flows, it is recommended to mesh the computational 

domain with tetrahedral elements. Therefore, the mesh was generated with 9791 

tetrahedral elements. The quality of the mesh was 0.9 on a scale from 0 to 1, where 0 

and 1 correspond to the lowest and highest quality, respectively.  

4.2.3. Material Properties 

In the context of this work, it was aimed to investigate the flow behavior of shear-

thickening fluids, flowing through tiny spinneret holes. The shear-thickening fluid 

which was used in simulations was prepared in-house instead of taking an example from 

the literature. As explained in the second section of this thesis, neat fluids do not show 

shear thickening. Therefore, nanoparticle embedded shear thickening fluid was 

prepared. 

Yıldız et al. showed in their recent paper that silica nanoparticle containing 

poly(ethyleneglycol) (PEG) solutions show complex rheological behavior [39]. In the 

light of this study, silica-PEG system was prepared as a baseline fluid with the intention 

of using the rheological data collected from this system in the simulations. Silica 

nanoparticles, which were 400 nm in diameter, were dispersed in PEG, molecular 

weight of 200, by using shear mixer at 1000 rpm for 3 hours. Rheology measurements 

were conducted afterwards on this sample by using Malvern Bohlin 2000 rheometer. 

Sample first showed shear thinning at lower shear rates, and then it started to thicken 

after a certain threshold.  

As discussed in Section 2, non-Newtonian fluids can be modeled by using several 

models like power-law, Carreau and Cross model. However, none of these models are 

capable of expressing the complex viscosity profile (both shear thinning and 

thickening). Therefore, a model was needed to introduce the viscosity of a complex 

fluid to the FLUENT. This was achieved by an in-house developed User Defined 

Function (UDF). The UDF simply defined the viscosity in two parts. If the shear rate is 

below the threshold, shear thinning part of the UDF was used by the software, and if the 

shear rate is above the threshold, shear thickening part of the UDF was used.  

Viscosity profile obtained from the rheometer was first splitted into two as shear 

thinning and shear thickening parts. Afterwards these two parts were curve fitted to the 



18 

 

Carreau Fluid Model which is given in Equation (19) separately by using the Solver 

module of MS Office Excel. By using the data from the curve fittings, the UDF was 

developed and the viscosity was introduced to the FLUENT by using it. Carreau model 

parameters are given in Table 1. The real viscosity profile obtained from the rheometer 

and curve fitted one are shown in Figure 3. The compatibility of these two curves 

indicates that Carreau model formed of two parts is a good representative for our fluid 

sample. 

 𝜇 =  𝜇∞ +  𝜇0 − 𝜇∞  1 + 𝛾 2𝜆2  𝑛−1 2  . (19) 
 

Table 1. Carreau Model Parameters 

Carreau Model Parameters Shear Thinning Part Shear Thickening Part 

𝜇∞  0 0 

𝜇0 9,197351 1,873088 

𝜆 20,61487 0,021371 

𝑛 0,75726 26,67904 

 

 

Figure 3. Viscosity profile of the fluid used in simulations as a function of shear rate, 

and its curve fitting to the Carreau Model 

4.2.4. Description of the Numerical Model 

As discussed in previous sections, nanoparticles were introduced in the continuous 

liquid phase as a second Eulerian phase.  
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The boundary conditions at inlet and outlet were the mass flow rate and pressure outlet, 

respectively. Mass flow rate and particle volume fraction were 0.0185 kg/s and 2% for 

inlet, respectively. Zero gauge pressure was set for the pressure outlet boundary. Right 

and left boundaries of the computational domain were the symmetric boundaries. The 

other parts of the geometry were set as walls. For both liquid and solid phases, no-slip 

condition was used near the walls. Boundaries of the computational domain are simply 

shown in Figure 4. Gravitational acceleration was included in the calculations in the 

opposite direction of the y-axis, where the flow inside the channel is in the positive 

direction of x-axis. 

 

Figure 4. Boundaries of the computational domain 

For multiphase flow problems, interparticle interactions and modeling of these forces 

are of significant importance. The drag force was modeled using the Wen-Yu drag 

model (Equation (11)). For solid concentrations up to 20% v/v, the Wen-Yu model is 

preferable. Numerical convergence under steady state mode was too difficult to achieve 

for solid-liquid flow. Thus, the simulations were run in the transient mode. A small time 

step of 0.001s was used for the sake of easier convergence. Residual target was set to 

the 10
-5

 for all solved equations. Governing equations were discretized using the phase 

coupled SIMPLE algorithm and momentum equation was dicretized using second-order 

upwind differencing scheme. Momentum equation was gradually relaxed with the 

factors in the range of 0.7 to 0.3 in order to ease the convergence. On average, 200 time 

steps were required with 10 iterations per time step, in order to achieve convergence.  
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CHAPTER 5 

RESULTS AND DISCUSSION 

5.1. Validation Case 

In order to ensure the validation and reliability of the commercial code, the study of 

Ease and Barigou [40] was taken as a reference. The results were duplicated and they 

were compared with the analytical results obtained by using equations (20) and (21) 

[41]. 

The volumetric flow rate, Q, of a power law fluid is given by the following equation 

 𝑄 =
𝑛𝜋𝑅3

 3𝑛 + 1 
 
𝑅

2𝑘

𝛥𝑝

𝐿
 

1/𝑛

, 

 

(20) 
 

where R is the pipe radius, and ΔP/L is the pressure drop per unit length. The fluid 

velocity profile can be derived by using the following relation where r is radial position. 

 𝑣 𝑟 =
𝑛

𝑛 + 1
 
𝛥𝑝𝑅

2𝑘𝐿
 

1/𝑛

𝑅  1 −  
𝑟

𝑅
 
 𝑛+1 /𝑛

 . 

 

(21) 
 

All of the variables in Eq. (20) are known including, Q, n, k and R. By inserting all of 

these known variables into the equation, pressure drop per unit length was calculated. 

Then this calculated pressure drop were inserted into the Eq. (21), and by giving 

different values to the r, velocities across the radius were analytically calculated. These 

analytical results were compared to the ones that were obtained from the simulations 

and the results are given in Figure 5. 

Single phase flow simulations were performed for two different cases, where power-law 

parameters and inlet velocity were changed. Analytical and CFD results for these two 

cases were exactly the same as it is shown in Figure 5. This situation indicates that the 

commercial CFD code that we used is capable of modeling non-Newtonian single phase 

flows and the results obtained from the code are reliable. Multiphase flow simulations 

were done for 30% v/v particle containin shear thickening fluid. The particle velocity 

results are given in Figure 6, which are in excellent agreement with that given in the 

reference paper of by Ease and Barigou [40]. These simulations confirmed the validity 

and reliability of the commercial CFD code. 
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Figure 5. Comparison of analytical and CFD velocity profiles for a power law fluid 

flowing alone: (k=0.16 Pa.s
n
, n=0.81), Vin=66mm/s; (k=0.75 Pa.s

n
, n=0.71), 

Vin=33mm/s 

 

Figure 6. Normalised solid-phase velocity profile in shear thickening carrier fluid: 

(k=0.75 Pa.s
n
, n=0.71); d=2mm, ρs=1020 kg/m

3
, Cs=0.30; Vin= 125 mm/s 
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5.2. Two-Phase Solid-Liquid Flow 

5.2.1. Mesh Dependency Analysis 

The mesh independence tests involve refining the initial mesh by increasing the number 

of cells present in the initial mesh by approximately 1-3 folds. For the standard 

geometry (case 1, details given in Table 2), mesh size of 2797 cells was first refined to 

11188 cells and then to 25173 cells, for the entire geometry. There was no further 

improvement found in simulations results, after the number of cells has been increased 

from 2797 to 11188 and 25173. Therefore, optimum mesh was assumed to be the one 

containing 2797 cells and it was computationally the most economical option. Same 

mesh dependence study were also done on the altered geometries as well (cases 2 to 9, 

details given in Table 2), and it was found that refinements didn’t change the 

simulations results. Therefore, non-refined meshes were used for each case. 

5.2.2. Parametric Study 

Initial simulations were conducted on the standard geometry with a standard inlet 

velocity and particle loading as described in section 3.2.1. Afterwards, changes were 

made in the geometry in order to understand the effect of the geometry on the flow 

behavior and viscosity of the fluid. Besides, it is known from the literature that fluid 

and/or particle velocity also affects the shear rate and viscosity. Therefore, different 

inlet velocities were used in simulations in order to observe their effects on the 

viscosity. 

5.2.2.1. Geometry 

In order to investigate the effect of the geometry to the flow behavior of multiphase 

fluid, various forms of the initial geometry were created by modifying certain sections 

(denoted by the letters a, b and c) of the initial geometry as shown in Figure 7. In Table 

2, parameters of these sections are shown in detail. Other sections of the geometry have 

remained unchanged noting that there are some process induced constrains for the 

spinneret geometry such as the hole sizes that controls the fiber diameter. 

In order to see the relative change of viscosity more clearly compared to the zero shear 

rate viscosity, viscosity profiles were normalized using the zero shear viscosity. 

Viscosity profiles are shown across the contraction, and along the spinneret close to the 
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symmetry boundary, and these sections are denoted as Line 1 and Line 2 as shown in 

Figure 7. 

   

 Figure 7. Parts of the geometry that were changed and lines that viscosity was observed 

Table 2. Dimensions of the geometry used at simulations 

Parametric Study Case Number a (μm) b (μm) c (μm) 

Reservoir Depth 

1 500 500 100 

2 600 500 100 

3 700 500 100 

Channel Length 
4 500 600 100 

5 500 700 100 

Contraction 

Width 

6 500 500 150 

7 500 500 200 

Corner Rounding 

   Circle Radius 

8 500 500 50 

9 500 500 100 

 

Here, initially, the results obtained upon changing reservoir depth will be presented for 

both along Line-1 and Line-2. The Figure 8 and Figure 9 give the variation of the fluid 

viscosity along the Line-1 and Line -2 of the computational geometry for different 

reservoir depth.  
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Figure 8. Effect of the reservoir depth on the viscosity profile along the Line-1  

 

Figure 9. Effect of the reservoir depth on the viscosity profile across the contraction 
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As seen from the Figure 8, the viscosity starts to increase inside the spinneret up to 

reaching to contraction section, which can be easily justified recalling Hagen–Poiseuille 

equation where the viscosity is linearly proportional to pressure difference. Getting 

closer towards the contraction, pressure difference gets bigger and bigger as seen in 

Figure 12, which gives the contour plot of total pressure, and this leads to increase in 

the viscosity up to a value nearly 2.5 times greater than the zero shear viscosity. After 

the sudden contraction, pressure drop as well as the shear rate along the Line-2 

decreases, thereby resulting in the decline in the viscosity. Roughly at a distance of 0.1 

mm after the contraction, viscosity profile starts to fluctuate due to the pressure drop 

and fluid acceleration inside the channel, hence leading to local non uniformities in the 

velocity field and in turn fluctuating viscosity profile. This trend was also observed for 

all the cases investigated within the scope of this thesis. Note that upon increasing the 

reservoir depth, the spatial position for the onset of the contraction changes. Therefore, 

in Figure 8, the first peak point in viscosity versus position moves to the right in the 

graph. Otherwise, one can conclude from the figure that the viscosity profile is not 

affected by the reservoir depth. As for the viscosity variation along Line 2, one can see 

from Figure 9 that there is sharp decrease in the viscosity away from the left symmetry 

axis since the velocity gradient and in turn the shear rate is small therein. Towards the 

wall, the velocity gradient and shear rate increases due to the no-slip boundary 

condition, and hence viscosity starts rising up significantly, reaching to a value which is 

nearly 3.5 times greater than the zero shear viscosity. Moreover, one may note the 

viscosity profile along Line-2 is also independent of the reservoir depth as expected.  

In Figure 10 and Figure 11, which yield the viscosity variation along the Line-1 and 

Line-2 respectively, we have scrutinized the effect of channel length on the viscosity 

profile. Figure 10 and Figure 11 both reveal that the viscosity profile is not affected by 

the channel length significantly except that upon increasing channel length, the peak 

viscosity value at the vertical position of 0.5 given in Figure 10 increases slightly, 

which is due to the decrease in the pressure gradient along the channel length in the 

vicinity of the contraction. 
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Figure 10. Effect of the channel length on the viscosity profile along the Line-1 

 

Figure 11. Effect of the channel length on the viscosity profile across the contraction 
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Figure 12. Total pressure contours of the mixture 

 

In Figure 13 and Figure 14 the viscosity profiles along Line-1 and Line-2 are provided 

for three different channel widths namely, 100μm to 150μm and 200μm. It can clearly 

be seen from Figure 13 and Figure 14 that widening the contraction section results in a 

decrease in viscosity, which is due to the fact that when the contraction is larger, 

pressure and velocity gradients become less severe, hence causing lower viscosities. 

Having observed that narrower contraction results in drastic increase in viscosity values, 

for the sake of completeness, it becomes prudent to shed some light on the effect of 

corner geometry on the viscosity profile. To this end, we have also modeled the current 

initial geometry with two different round corners having radius of 50μm and 100μm. 

For these simulations, viscosity profiles are shown in Figure 15 and Figure 16 shows 

that around contraction area, viscosity increases with increasing corner roundness. 

Figure 16 verifies this situation but also it shows that viscosity across contraction 

decreases significantly. The increase in the viscosity near to the symmetry boundary is 

due to the increased pressure gradient therein. Nevertheless Figure 16 shows that the 

viscosity decreases significantly across the contraction, especially at closer parts to the 

corner, as a result of drastic decrease in the velocity gradient and shear rate, as well. For 

case 9, where the contraction is the smoothest, viscosity at the edge decreases to half 

compared to the standard case 1. These results show that, the roundness of a corner of a 

contraction is of great importance for optimizing spinneret geometry. 
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Figure 13. Effect of the contraction width on the viscosity profile along the Line-1 

 

Figure 14. Effect of the contraction width on the viscosity profile across the contraction 
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Figure 15. Effect of the corner roundness on the viscosity profile along the Line-1 

 

Figure 16. Effect of the corner roundness on the viscosity profile across the contraction 
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Figure 17 and Figure 18 show the velocity and dynamic pressure contours of the fluid, 

respectively for case 1. Dynamic pressure increases inside the channel reaching at its 

maximum close to the exit and at the center, due to the area contraction. Expectedly, 

velocity also increases inside the channel reaching at its maximum close to the exit due 

to the dynamic pressure build up, which drives the fluid flow.  

 

 

Figure 17. Velocity contours of the mixture 

 

Figure 18. Dynamic pressure contours of the mixture 
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Viscosity contours of the mixture are given in Figure 19. It can be seen that viscosity is 

higher at the corners of contraction, inside the channel near the walls. It reaches to the 

maximum value near to second contraction where the shear rate on the wall is quite 

high.  

The maximum value of viscosity reached to 1.9 Pa.s which is almost 5.4 fold of the zero 

shear viscosity. This increased viscosity near to the channel exit along brings about the 

possibility of clogging of the exit over the time. Even if clogging does not occur, fiber 

diameter may be reduced due to the sticking of the fluid and particles to the walls. 

 

Figure 19. Viscosity contours of the mixture 
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5.2.2.2. Fluid Velocity 

There is a direct relationship between velocity and viscosity of a fluid. Depending on 

the fluid being Newtonian or non-Newtonian, viscosity profiles change with changing 

velocity. In order to see the changes in viscosity, we increased velocity gradually and 

kept all other flow parameters constantly. 

Table 3. Different velocities used and their correspondence to mass flow rates 

Case Number Velocity (m/s) Mass flow rate (kg/s) 

1 0.03 0.0185 

10 0.06 0.0371 

11 0.12 0.0742 

 

It is already known that shear rate is directly proportional to velocity, thus with 

increasing velocity, shear rate also increases. Recalling once again the Hagen-Poiseuille 

equation, one should expect higher viscosities, with increased velocity gradients. 

Considering this, it was expected to see higher viscosities at higher velocities. Figure 20 

and Figure 21 show the viscosity profiles varying with velocity, along the Line-1 and 

Line-2, respectively. Figure 20 shows severe increase in viscosity with increasing 

velocity, expectedly. Figure 21 also shows a significant increase across the contraction, 

especially at the edge. For case 11, where velocity was 0.12 m/s, viscosity at the edge 

was as high as 9 times according to its zero shear viscosity. 

Simulations were also done with respectively lower velocities. Figure 22 shows the 

viscosity contour plot of the case where inlet velocity was 0.0019 m/s. It can be seen 

from the Figure 22 that very low velocities cause the settlement of particles and fluid as 

well, on to the walls, so it prevents the flow and fails the production.  

From these simulations, varying inlet velocities, it was understood that the velocity is a 

very critical design parameter for both channel flow and wet spinning process. For the 

sake of keeping the viscosity low, and prevent severe shear thickening, velocity should 

be kept low. But at the same time, lower velocities mean lower production rates, thus 

for big scales of mass production of fibers, velocity is even more significant design 

parameter.  
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Figure 20. Effect of the velocity on the viscosity profile along the Line-1 

 

Figure 21. Effect of the velocity on the viscosity profile across the contraction 
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Figure 22. Viscosity contours of the mixture where inlet velocity boundary condition is 

used as 0.0019 m/s  
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CHAPTER 6 

CONCLUDING REMARKS 

This work has investigated several important parameters that affect the flow behavior of 

non-Newtonian shear thickening multiphase fluids. Those parameters were geometry of 

the spinneret and the flow rate. Within the scope of geometry study, reservoir depth, 

channel length, contraction width and corner roundness were varied. The results showed 

that depth of the reservoir does not affect the viscosity profile of the fluid whereas the 

length of the channel has a small influence; nevertheless, none of these two parameters 

can be considered to possess significant importance. Further results showed that sudden 

contractions give rise to higher viscosities inside the spinneret due to higher shear rates, 

and widening the contraction area reduces the increase in the viscosity. It was also 

found that corners inside the geometry are shear rate concentrating areas, and by 

rounding the corners, the effect of corner roundness on the viscosity can be alleviated. 

Another significant outcome of this study is that the higher the flow rate, the viscosity 

increases more dramatically due to the increasing shear rate while at the lower flow 

rates, the decrease in viscosity is observed. However, at fairly lower flow rates, very 

high viscosities were also observed due to the settling.  

6.1. Future Work 

To further improve the context of this study, the investigation of the particle size and 

particle loading on the flow behavior inside the spinneret should be investigated. 

Eulerian-Lagrangian Model and Dense Discrete Phase Model should also be used to be 

able to test if they can provide additional physics for the problem considered in this 

study. The geometry without symmetric boundaries should be used in simulations in 

order to check if buoyancy arising from nanoparticles affects the viscosity and the 

overall solution since there are some studies in the literature that showed the importance 

of buoyancy in particulate non-Newtonian flows. 
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APPENDIX A 

 

As described in section 4.2.3, the fluid used in the simulations was a so-called complex 

fluid which showed shear thinning below a certain shear rate, and above that shear rate 

it showed shear thickening. This complex viscosity behavior was fitted to the Carreau 

fluid model by splitting the data into two parts as shear thinning and shear thickening, 

and identified to the FLUENT by using a UDF, which was coded in-house by using C 

programming language. There is the UDF code given below. 

 

# include <udf.h> 

# include <math.h> 

# include <mem.h> 

# include <sg_mphase.h> 

# include <cmath.h> 

# include <stdio.h> 

 

DEFINE_PROPERTY(D11_PEG200_carreau_visc, c, t) 

{ 

 real strain; 

 real visc; 

 real eta01, eta0r; 

 real eta_inf1, eta_infr; 

 real lambda1, lambdar; 

 real n1, nr; 

 real threshold; 

 real cntrl; 

 threshold=95.78; 

 eta01=0.35517; 

 eta0r=0.23937; 
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 eta_inf1=0; 

 eta_infr=0; 

 lambda1=10.4741; 

 lambdar=0.00562; 

 n1=0.94445; 

 nr=1.67844; 

 strain=C_U_G(c,t)[0]; 

 strain=sqrt(strain*strain); 

 if (strain<=threshold) 

 { 

  visc=eta_inf1+(eta01-eta_inf1)*pow((1+pow(lambda1*strain,2)),(n1-

1)/2); 

 } 

 else 

 { 

  visc=eta_infr+(eta0r-eta_infr)*pow((1+pow(lambdar*strain,2)),(nr-1)/2); 

 } 

 return visc; 

} 
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