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Abstract

In this paper, we study the structure of Rn = (Fp + uFp)[Zn; θ] where u2 = 0 and
θ(u) = −u. As a main result, we prove that this group ring is not Laskerian. Also, we
classify the maximal ideals, prime ideals, and primary ideals and find the ideals that have
primary decomposition. We also find J(Rn), Nil∗(Rn), Nil

∗(Rn), and Nil(Rn) as additional
results.

1 Introduction

We say an ideal I in R has a primary decomposition, if there exists t ∈ N and primary ideals like
Q1, · · · , Qt such that I = Q1Q2 · · ·Qt. The primary ideals can be defined in different ways for a
non-commutative ring. One of the typical and the most common way to define them is that Q
is primary in R, if for each ideals A,B in R such that AB ⊆ Q, then A ⊆ Q or Bn ⊆ Q for some
n ∈ N. The existence of primary decomposition (i.e. being a Laskerian ring) in the monoid rings
and group rings is very important. Because it can help to study the structure of an arbitrary
ideal in more detail. Some examples of existence of primary decomposition can be found in
[30, 31, 29]. In [34], the author investigates the Laskerian condition over the characteristic
one algebras. This subject becomes very interesting, if applied to the decomposition of ideals
in group rings. There has been increasing attention to the group rings and their properties
when the group is finite. Some examples of such works are [15, 16, 17, 18]. Also, some works
appearing in literature, study the primary decomposition in the graded rings and group rings.
As an example, the author in [32] studies the existence of primary decomposition over a special
ring R ⊕ R. Also, in [33], the author aims to find G-primary decomposition for the G-graded
rings, since these rings do not have primary decomposition in general cases. Some finite group
rings are very important in applications such as coding theory and cryptography. For example,
the group rings of the form R[Zn] ≃ R[x]

<xn−1> generate the cyclic codes over a ring R with length
n. Some examples can be found in [2, 12, 6, 4, 11, 10, 3, 8, 13, 7, 14]. Typically, the ring R
is finite in these applications; therefore, the group ring R[Zn] is also finite. We know that if a
ring is commutative Noetherian, then the primary decomposition exists. Thus, there exists a
primary decomposition for each ideal of a finite group ring. However, the structure of primary
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ideals in special rings such as R[Zn] is very important. This is due the fact that the structure of
primary ideals of a ring can help to develope fast algorithms to find the primary decomposition,
which in turn has a key role in numerous coding and cryptographic applications. Some examples
of these algorithms can be found in [25, 23, 26, 27, 28].

Another interesting topic is the structure of primary decomposition in the monoid rings like
R[Z] ≃ R[x]. We know that if R is finite, then R[x] is Noetherian by Hilbert basis theorem. Also,
if S is a totally strictly positively ordered monoid, we also know that R[[S,≤]] is Noetherian,
if and only if R is Noetherian and S is finite generated (see [35]). However, these results are
not directly applicable to skew group rings and skew monoid rings. This is due the fact that
these rings are no longer commutative, and therefore they are not necessarily Laskerian. This
means that even existence of primary decomposition in these rings is not guaranteed. Therefore,
proving the existence of primary decomposition and studying the structure of primary ideals in
these rings are not straightforward. There are some previous works on non-commutative rings
or modules to find necessary or sufficient conditions of being Laskerian. As examples of these
works, we refer the reader to [21, 20, 19, 22] and references therein.

In this paper, we aim to show that the rings Rn := (Fp+uFp)[Zn; θ] and R := (Fp+uFp)[x; θ]
are not Laskerian, where u2 = 0, p is a prime number, θ is an automorphism of Fp + uFp and
n ∈ N. We also give an explicit form for the prime, maximal and primary ideals of both rings
R,Rn. We also find J(R), J(Rn) and Nil∗(R), Nil∗(Rn), Nil

∗(R), Nil∗(Rn), Nil(R), Nil(Rn)
and Z(R), U(R) as additional results.

2 Over the ring (Fp + uFp)[x; θ]

2.1 The center and units of R

From now on, θ will denote an automorphism of S of order o(θ) = |⟨θ⟩| = e > 1.
Since R is a non-commutative ring, it is worth to find its center. The following theorem can

be proved as the Theorem in [14].

Theorem 2.1. The center of R = S[x; θ] is Fp[x
e] for θ ∈ Aut(S) of order e.

So xn − 1 ∈ Z(R) if and only if e|n. The other useful property is division algorithm. The
left and the right division algorithm hold for some elements of R. The proof of the following
theorem is straightforward.

Theorem 2.2. Let f, g ∈ R such that the leading coefficent of g is a unit. Then there exist
unique polynomials q and r in R such that f = qg + r, where r = 0 or deg(r) < deg(g).

Now we shall determine, U(R), the set of all unit elements of R. First we shall prove the
following lemma, which is crucial in over studies later on.

Lemma 2.3. For every g(x) ∈ R, there exists g′(x) ∈ Fp[x] such that ug = g′u.

Proof. Let g(x) =
∑n

i=0 gix
i ∈ R. Since gi ∈ S for each i, there exist g′i and g

′′
i in Fp such that

gi = g′i + ug′′i . So g(x) =
∑

(g′i + ug′′i )x
i. Since u2 = 0, we have

ug(x) =
∑

u(g′i + ug′′i )x
i =

∑
ug′ix

i =
∑
e-i

α−ig′ix
iu+

∑
e|i

g′ix
iu = g′(x)u (2.1)

for some g′(x) ∈ R.
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Notation. For a fixed element g ∈ R, the element g′ ∈ Fp[x] in lemma 2.3 is unique and
hence we call it the partaker of g.

Lemma 2.4. Let AE Fp[x] and A
′ ⊆ Fp[x], such that uA = A′u. Then A′ E Fp[x].

Proof. Let f, g ∈ A′ and h ∈ R. So there exist polynomials l, k ∈ A such that fu = uk and
gu = ul. So (f + g)u = u(l + k) ∈ uA = A′u. Hence f + g ∈ A′. Also hfv = hvk = uh′k, for
some h′ ∈ Fp[x]. Since h

′k ∈ A, hf ∈ A′. Thus A′ is an ideal of R.

Note 1. From now on, we shall call A′ in lemma 2.4, the partaker set of A.

First we shall find U(S). Let a + bu ∈ S be a unit. So there exists c + du ∈ S such that
(a+ bu)(c+du) = 1. So ac = 1 and ad+bc = 0. One can show that these equations have unique
solutions for c and d, if and only if a ∈ F∗

p. So U(S) = F∗
p+uFp. In the next step, we try to find

U(R).

Theorem 2.5. U(R) = {a+ uh(x)|a ∈ F∗
p, h ∈ Fp[x]}.

Proof. Let h(x) =
∑n

i=0 hix
i ∈ Fp[x]. Write h = b + g(x), where b = h0 and g(x) ∈ Fp[x]. We

show that a+ uh(x), where a ∈ F∗
p has the inverse t = (a+ bu)−1 − (a+ bu)−1ug(a+ bu)−1.

((a+ bu) + ug)[(a+ bu)−1 − (a+ bu)−1ug(a+ bu)−1]

= 1− ug(a+ bu)−1 + ug(a+ bu)−1 − ug(a+ bu)−1ug(a+ bu)−1

= 1− ug(a+ bu)−1ug(a+ bu)−1 = 1− u2k(x) = 1 (2.2)

for some k(x) ∈ Fp[x].
Similarly, t is the left inverse of a + uh(x). Thus a + uh is a unit in R. Conversly, let

f ∈ U(R). Then there exists g ∈ R such that fg = gf = 1. Let f = f1 + uf2 and g = g1 + ug2
for fi, gi ∈ Fp[x]. So fg = (f1+uf2)(g1+ug2) = 1 implies that f1g1 = 1 and uf2g1+ f1ug2 = 0.
Hence f1 is a non-zero constant polynomial. That is, f1 ∈ F∗

p. Thus f = f1+uf2, where f1 ∈ F∗
p

and f2 ∈ Fp[x].

2.2 The left maximal and prime ideals of R

In this section, we shall determine the sets Max(R) and Spec(R), the set of all left maximal
and prime ideals of R respectively. For the sake of semplicity, from now on, by an ideal of R we
mean a left ideal of R.

First, we shall show that u is irreducible in R.

Lemma 2.6. Ru is a maximal ideal in R.

Proof. Let u = fg, for some f, g ∈ R. Let f = f1 + uf2 and g = g1 + ug2. Then f1g1 = 0 and

f1ug2 + uf2g1 = u. (2.3)

From f1g1 = 0, we have that f1 = 0 or g1 = 0. If f1 = 0, then uf2g1 = u. So f2g1 = 1. Hence
g is a unit in Fp[x]. If g1 = 0, then by equation (2.3), f1ug2 = u. Let g′2 be the partaker if g2.
Thus fg′2u = u so f1g

′
2 = 1. This implies that f = f1 + uf2 is a unit by theorem 2.5. Therefore,

Rv is a maximal ideal in R.

Now, to determine the sets Max(R) and Spec(R), we shall introduce the following sets,
which in fact are ideals of Fp[x].
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Definition 2.7. Let AER. Define

A[1] = {f ∈ Fp[x]|∃g ∈ Fp[x] such that f + ug ∈ A}
A[2] = {g ∈ Fp[x]|∃f ∈ Fp[x] such that f + ug ∈ A}

Let f ∈ A and f = f1 + uf2, for some f1, f2 ∈ Fp[x]. Since f1 ∈ A[1] and f2 ∈ A[2], we conclude
that A ⊂ A[1] + uA[2].

Lemma 2.8. Let AER. Then A[1] and A[2] are ideals of Fp[x].

Proof. Let f1, f2 ∈ A[1]. Then there exist g1, g2 ∈ Fp[x] such that f1 + ug1, f2 + ug2 ∈ A. Thus
f + g = (f1 + f2) + u(g1 + g2) ∈ A since A E R. Hence f1 + f2 ∈ A[1]. Now for f ∈ A[1] and
g ∈ Fp[x], we show that fg is an element of A[1]. There exists h ∈ Fp[x] such that f1 + uh ∈ A.
So g(f + uh) ∈ A. So gh ∈ A[1] and hence A[1] E Fp[x]. Similarly, A[2] E Fp[x].

Lemma 2.9. For AER, we have
i) uA[1] ER.
ii) uA[1] ⊆ A.
iii) A[1] ⊆ A[2].
iv) If A[1] = A[2] = Fp[x], then A = R.

Proof. i) By lemma 2.8, A1 is an ideal of Fp[x] and since Fp[x] is a PID, there exists a ∈ Fp[x]
such that A[1] = ⟨a⟩.

We only show that if f ∈ R and ug ∈ uA[1], then fug ∈ uA[1]. Let f = f1 + uf2 and
ug = uak for some k ∈ Fp[x]. Then fug = (f1 + uf2)uka = uf ′1ka, where f

′
1 is the partaker of

f1. Since f
′
1, k, a ∈ Fp[x], fuak ∈ uA[1], which shows that uA[1] ER.

ii) Let uk1 ∈ uA[1]. Then there exists k2 ∈ A[2] such that k1+uk2 ∈ A. So uk1 = u(k1+uk2) ∈
A (since AER). So uA[1] ⊆ A.

iii) Since Fp[x] is a PID, A[1] = ⟨f⟩ and A[2] = ⟨g⟩ for some f, g ∈ Fp[x]. Thus there exists
h ∈ Fp[x] such that g + uh ∈ A. So u(g + uh) = ug ∈ A. Thus g ∈ A[2]. That is, A[1] ⊆ A[2].

iv) Since 1 ∈ A[1], 1 + ug(x) ∈ A is a unit in R for g(x) ∈ A[2] by theorem 2.9. Thus
A = R.

We showed that A ⊆ A[1] + uA[2]. This inclusion can be strict, as the following example
shows.

Example 2.10. Let A = R(u+x). Then A[1] =< x > and A[2] =< 1 >. We claim that u is not
in A. Otherwise, let u = (f1+uf2)(x+u) for some f1, f2 ∈ Fp[x]. So xf1 = 0 which means that
f1 = 0. Thus uf2x = u. So xf2 = 1, which is not possible. So there is no such f = f1+uf2 ∈ R
such that u = f(u + x), which means that u is not in A. However, u ∈ A[1] + uA[2]. So
A $ A[1] + uA[2].

Definition 2.11. Let A E R. A is called a first type ideal of R, if A = A[1] + uA[2], and it is
called a second type if A $ A[1] + uA[2].

Example 2.12. This example is a generalization of Example 2.10. We show that A = (f +u)R
is a second type ideal for every 0 ̸= f ∈ Fp[x] which is not unique. Let A = A[1] + uA[2]. Since
f + u ∈ A, 1 ∈ A[2]. So u ∈ A. That is, u = (h1 + uh2)(f + u) for some h1, h2 ∈ Fp[x]. Hence
fh1 = 0, which means that h1 = 0. So u = (uh2)(f + u) = ufh2. So f is a unit in Fp[x] which
is a contradiction. Therefore, A is a second type ideal of Fp[x].
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In the following example, we propose a second type ideal which is not principle.

Example 2.13. In this example, we give a non principle second type ideal A which xn − 1 ∈ A
for some n ∈ N. Note that these ideals are so applicable in encoding and decoding which we
discuss later.

Consider A = R((x3−1)+u)+uFp[x](x
n−1). In this ideal, A[1] =< x3−1 > and A[2] = Fp[x].

First, we show that A is not first ype ideal. Suppose in contrary, A is a first type ideal. Then
u ∈ A which means that there are f, g, h, k ∈ Fp[x] such that

(f + ug)(x3 − 1 + u) + (h+ uk)(u(x− 1)) = u (2.4)

So, f = 0, g(x3 − 1) + h′(x− 1) = 1. Hence, x− 1|1 and it is impossible.
Now, we show that there is no generator for A. Suppose that A = R(f + ug) for some

f, g ∈ Fp[x]. We know that f = x3 − 1 (Otherwise, A[1] ̸=< x3 − 1 >). Also, u(x− 1) ∈ A. So
there exists h, k ∈ Fp[x] such that

(h+ uk)(x3 − 1 + ug) = h(x3 − 1) + uk(x3 − 1) + uh′g = u(x− 1) (2.5)

So h = 0 and therefor the left side is equal to uk(x3 − 1) for some k ∈ Fp[x] which is not equal
to u(x− 1). This contradiction complete the example.

Now we are in a position to give a chacterization of maximal ideals of R.

Theorem 2.14. Let AER. Then A is a maximal ideal of R if and only if
i) A[1] =< f >, for some irreducible polynomial f ∈ Fp[x].
ii) A[2] = Fp[x].
iii) A is of the first type, that is, A = A[1] + uFp[x].

Proof. ⇒) i) We show that A[1] is maximal in Fp[x]. Let A[1] $ B $ Fp[x]. Then A ⊆
A[1]+uFp[x] $ B+uFp[x] $ R, which is a contradiction. So A[1] is maximal in Fp[x] and hence
is generated by an irreducible polynomial f ∈ Fp[x].

ii) Suppose that A[2] $ Fp[x]. We know that A[1] is maximal in Fp[x]. Let B = A[1]+uFp[x].
Then A $ B $ R (since u ∈ B −A and 1 ∈ Fp[x]−B), which is a contradiction.

iii) Let A ̸= A[1] + uA[2]. Then A $ A[1] + uFp[x] $ R, which is a contradiction.
⇐) Since A is a proper ideal, there exists a maximal ideal B containing A. By hypothesis

A[2] = Fp[x]. Since A ⊆ B, A[2] = Fp[x] ⊆ B[2]. That is, B[2] = Fp[x]. Also A[1] ⊆ B[1]. Since
B is proper in R , B[1] ̸= Fp[x] by lemma 2.9(iv). But A[1] =< f >, where f is irreducible in
Fp[x] and if B[1] =< g >, then g|f , which implies that f = ug, for some unit u ∈ Fp[x]. Hence
B[1] = A[1].

Finally B[1] = A[1] =< f >, and B[2] = A[2] = Fp[x]. So by Theorem 2.14, we have
B ⊆ B[1] + uB[2] = A[1] + uA[2] = A, as required.

Lemma 2.15. For A,B ER, we have

A ∩B = (A[1] ∩B[1]) + u(A[2] ∩B[2]).

In particular, the intersection of two first type ideals is again a first type ideal.
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Proof. Let A[1] = a1Fp[x], A[2] = a2Fp[x], B[1] = b1Fp[x] and B[2] = b2Fp[x]. Since a1 ∈ A
and b1 ∈ B, lcm(a1, b1) ∈ A ∩ B. Similarly, lcm(a2, b2) ∈ A ∩ B. Thus lcm(a1, b1)Fp[x] +
uFp[x]lcm(a2, b2) ⊆ A ∩B. Hence

(A[1] ∩B[1]) + u(A[2] ∩B[2]) ⊆ A ∩B. (2.6)

Now, let f ∈ A ∩B. If f = f1 + uf2, for some f1, f2 ∈ Fp[x], then f1 = a1h, f1 = b1g, f2 = a2h
′

and f2 = b2g
′.

So lcm(a1, b1)|f1 and lcm(a2, b2)|f2. Hence, f1 ∈ A[1] ∩ B[1] and f2 ∈ A[2] ∩ B[2]. So
f ∈ (A[1] ∩B[1]) + u(A[2] ∩B[2]), as required.

Corollary 2.16. J(R) = uFp[x].

Proof. By lemma 2.15 and Theorem 2.14, we have

J(R) =
∩

M▹mR

M =
∩

f :irreducibleinFp[x]

< f > +uFp[x] = J(Fp[x]) + uFp[x] = uFp[x]

Now, we shall find the set of all left prime ideals of R. Note that for any A▹R, the equation
< u > A =< uA > holds.

Lemma 2.17. Let Spec(A) be the set of all left prime ideals of R. Then Spec(A) ⊆Max(R)∪
uFp[x].

Proof. Let P be a prime ideal of R. We shall show that P[1] ⊆ P . We know that uP[1] is an
ideal of R such that uP[1] ⊆ P by lemma 2.9. Also we know that < u >< P[1] >⊆< uP[1] >⊆ P .
So < u >⊆ P or < P[1] >⊆ P which means that u ∈ P or P[1] ⊆ P . Assume that u ∈ P . Then
let f ∈ P[1]. So f + ug ∈ P for some g ∈ Fp[x]. Since u ∈ P , f ∈ P which means that P[1] ⊆ P .

We show that P[1] is prime in Fp[x]. Let BC ⊆ P[1], for some ideals B,C in Fp[x]. Thus
uB(C + uC) ⊆ P . So uB ⊆ P or C + uC ⊆ P . Hence uB ⊆ P or C ⊆ P[1].

If uB ⊆ P , then (C + uC)(B + uB) = (BC + uBC) + CuB ⊆ P + uP + CP ⊆ P . So
B + uB ⊆ P or C + uC ⊆ P , which implies that B ⊆ P[1] or C ⊆ P[1]. So in any case B ⊆ P[1]

or C ⊆ P[1], which means that P[1] is prime in Fp[x]. But Fp[x] is a PID, so P[1] is maximal or
the zero ideal. By lemma 2.9(iii), P[1] ⊆ P[2]. So we can have three cases.

i) P[1] = P[2] maximal in Fp[x].
ii) P[2] = Fp[x].
iii) P[1] = 0, that is, P = uP[2].
Suppose that P[1] = P[2] = ⟨π⟩ for some irreducible polynomial π ∈ Fp[x]. Let k ∈ Fp[x] be an

irreducible polynomial in Fp[x] which is different from π. Then (0+ukFp[x])(πFp[x]+uFp[x]) ⊆
ukπFp[x] ⊆ uπFp[x] ⊆ P . But neither ukFp[x] ⊆ P nor πFp[x] + uFp[x], since k ̸= π. So P is
not prime in this case.

Suppose that P[2] = Fp[x] and P[1] = ⟨π⟩ for some irreducible π ∈ Fp[x]. So π + us ∈ P
for some s ∈ Fp[x]. Thus u(π + us) = uπ ∈ P . We show that < u >< π + u >⊆ P . Let
a ∈< u >< π + u >. Then

a =
∑
i

(fi + ugi)v(ki + uli)(π + u) =
∑

fiukiπ ∈< uπ >⊆ P. (2.7)
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Hence < u >⊆ P or < π + u >⊆ P . If u ∈ P , then by Theorem 2.14, P is maximal,
since π ∈ P[1] ⊆ P and hence P = πFp[x] + uFp[x] = P[1] + uP[2]. But if π + u ∈ P , then
uπ = u(π + u) ∈ P and so < uπ >⊆ P . Since < u >< π >⊆< uπ >⊆ P , < u >⊆ P or
< π >⊆ P , in each case P is maximal.

Finally, let P[1] = 0. Then P = uP[2]. Thus P = uρFp[x], for some non-zero ρ ∈ Fp[x]. We
show that ρ is a unit. P can not be zero, as u2 = 0 ∈ P , but u /∈ P . So

(uFp[x])(ρFp[x] + uρFp[x]) ⊆ vρFp[x] = P. (2.8)

Thus (ρFp[x] + uρFp[x]) ⊆ P or uFp[x] ⊆ P . So ρ+ uh ∈ P for some h ∈ Fp[x] or u ∈ P . Since
ρ ∈ P[1] = 0, which in impossible as ρ ̸= 0. Hence u ∈ P . So 1 ∈ P[2] (since 0 + u.1 ∈ P )
and hence P[2] = Fp[x] = ρFp[x]. That is, ρ is a unit. Therefore, P = uFp[x] is required in this
case.

Lemma 2.18. The ideal P = uFp[x] is prime in R.

Proof. Suppose that AB ⊆ P for A,B ER. So A[1]B[1] ⊆ P[1] = 0. Hence, A[1] = 0 or B[1] = 0.
Thus A = uA[2] or B = uB[2]. Therefore, A ⊆ P or B ⊆ P .

Now by the above results we can give a characterisation of all left prime ideals of R.

Theorem 2.19. Spec(R) =Max(R) ∪ u(Fp[x]).

Finally, we try to find Nil(R), Nil∗(R), Nil
∗(R).

Corollary 2.20. Nil∗(R) = Nil(R) = Nil∗(R) = uFp[x]

Proof. Since Nil∗(R) =
∩

P∈Spec(R) P , It is easy to see that Nil∗(R) = uFp[x] by corollary 2.16
and Theorem 2.19. Thus

uFp[x] = Nil∗(R) ⊆ Nil(R) ⊆ Nil∗(R) ⊆ J(R) = uFp[x].

So the result follows.

2.3 The primary ideals of R

In this section, we shall give some characterisations of left primary ideals of R. Recall that
a left (respectively, right) proper ideal Q is called primary if for each left(respectively, right)
ideals A and B such that AB ⊆ Q, then A ⊆ Q or there exists n ∈ N such that Bn ⊆ Q.
(respectively, B ⊆ Q or An ⊆ Q for some n ∈ N), see, for example, [?]. First, we shall show
that the irreducible polynomials of Fp[x] are irreducible in R.

Lemma 2.21. An element f ∈ Fp[x] is irreducible in R if and only if f is irreducible in Fp[x].

Proof. ⇒) Let f ∈ Fp[x] be irreducible in Fp[x], but f = gh, for some g, h ∈ R. Let g = g1+ug2
and h = h1 + uh2, where fi, gi, hi ∈ Fp[x] for i = 1, 2. Then f1 = g1h1. So g1 or h1 is a unit in
Fp[x] and hence g or h is a unit by Theorem 2.5.

⇐) Obvious.

Note 2. Recall that if R is a UFD and π is an irreducible element of R, then < π > is a prime
ideal and < πn > ,n ≥ 1, is a primary ideal, with radical < π >. Conversely, every primary
ideal Q whose radical is < π > is of the form < πn > , n ≥ 1. (see, for example, [1], P.155.)
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Lemma 2.22. Let S be a PID. Then Q ▹ S is primary if and only if for each ideals B,C E S,
if BC ⊆ Q, then B ⊆

√
Q or C ⊆

√
Q.

Proof. ⇒) Obvious.
⇐) Let Q =

∏k
i=1 P

ai
i , the prime factorization of Q into prime ideals of S. If k > 1, then∏k

i=1 P
ai
i ⊆ Q, but neither P a1

1 *
∏k

i=1 Pi =
√
Q nor

∏k
i=2 P

ai
i *

∏k
i=1 Pi =

√
Q, which is

a contradiction with hypothosis. So k = 1 and hence Q is primary, since Q is a power of a
maximal ideal in S.

Theorem 2.23. Let Q be a left primary ideal of R. Then only one of the following cases
occures.

i) There exists a prime ideal P EFp[x] with partaker P ′, where P ′ ⊆ P and positive integers
a, b such that a ≥ b, Q[1] = P a and Q[2] = P b.

ii) There exists a prime ideal P E Fp[x] and integer a > 0 such that Q[1] = P a and Q[2] =
Fp[x].

iii) Q = uFp[x]
iv) Q = 0.

Proof. First, we show that Q[1] is a primary ideal of Fp[x]. Note that Q[1] is a proper ideal of Q
since otherwise, Q = R by lemma 2.9(iv).

Let BC ⊆ Q[1] for B,C E Fp[x]. One can see that uB(C + uC) ⊆ Q. So uB ⊆ Q or
(C + uC)n ⊆ Q for some n ∈ N, since Q is primary and uB,C + uC E R. If (C + uC)n ⊆ Q
for some n ∈ N, then Cn ∈ Q[1]. If uB ⊆ Q, then < u >< B >⊆ ⟨vB⟩ ⊆ Q. So u ∈ Q or
< B >m⊆ Q for some m ∈ N, which implies that Bm ⊆ Q[1]. So we have proved that u ∈ Q
or Bn ⊆ Q[1] or C

m ⊆ Q[1]. Now, we show that u ∈ Q leads to B ⊆
√
Q[1] or C ⊆

√
Q[1]. Let

u ∈ Q. Suppose that k ∈ BC ⊆ Q[1]. So there exist k′ ∈ Q[2] such that k + uk′ ∈ Q. Since
uk′ ∈ Q, k ∈ Q. That is, BC ⊆ Q. Now (B + uB)(C + uC) ⊆ Q. Hence B + uB ⊆ Q or
(C + uC)n ⊆ Q for some n ∈ N. Thus B ⊆ Q[1] ⊆

√
Q[1] or C ⊆

√
Q[1] as required.

Therefore, we have shown that if BC ⊆ Q[1] for B,CEFp[x], then B ⊆
√
Q[1] or C ⊆

√
Q[1].

Since Fp[x] is a PID, lemma 2.22 shows that Q[1] is a primary ideal of Fp[x]. Hence
√
Q[1] = P

is a prime and hence maximal or zero by Theorem 2.19. Thus Q[1] = P a or Q[1] = 0 for some
positive integer a and a non-zero prime ideal P E Fp[x], by Note 2.

First, suppose that Q[1] = P a. Since Q[1] ⊆ Q[2], so Q[2] = P b for some b ≤ a. If b = 0, then
(ii) does hold. Let b > 0. We show that if P ′ + P = Fp[x], where P

′ is the partaker of P , then
Q is not primary. So let P + P ′ = Fp[x], and P = ⟨π⟩, where π is an irreducible polynomial in
Fp[x]. Let k ̸= π be another irreducible polynomial in Fp[x]. Then

(ukFp[x])(π
aFp[x] + uFp[x]) = ukπaFp[x] ⊆ uπaFp[x] ⊆ uP a = uQ[1] ⊆ Q. (2.9)

However, ukFp[x] * Q. So let (πaFp[x] + uFp[x])
r ⊆ Q for some r ∈ N. Hence (πa + u)r ∈ Q for

some r ∈ N. Thus

(πa + u)r = πar + uπa(r−1) + uπa(r−2)(π′)a + · · ·+ u(π′)a(r−1) ∈ Q (2.10)

where π′ is the partaker of π. So (π′)a(r−1) ∈ P b, since uπa(r−i)(π′)ai ∈ P b = Q[1]. But P and

P ′ are coprime, and hence (π′, π) = 1. So π′a(r−1) ∈ P b would be impossible. Hence P ′ ⊆ P
(otherwise, P + P ′ = Fp[x] since P is maximal in Fp[x]).

Now, suppose that Q[1] = 0. Then Q = Q[1] + uQ[2] = uQ[2]. So

uQ[2] = uFp[x](Q[2] + uQ[2]) ⊆ uQ[2] = Q. (2.11)
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Hence uFp[x] ⊆ Q or (Q[2]+uQ[2])
n ⊆ Q for some n ∈ N. Thus Fp[x] ⊆ Q[2] or (Q[2]+uQ[2])

n ⊆
Q. If Fp[x] ⊆ Q[2], then Q[2] = Fp[x] and (iii) is satisfied. However, if (Q[2] + uQ[2])

n ⊆ Q, then
Qn

[2] ⊆ Q[1] = 0. So Q[2] = 0. Therefore, Q = 0 and (iv) is satisfied.

Now, we prove the converse of Theorem 2.23.

Theorem 2.24. Any proper first type ideal Q of R which satisfies each one of the following
cases, is primary.

i) Q = P a + uFp[x] for some prime ideal P of Fp[x] and some positive integer a.
ii) Q = P a + uP b for some non-zero prime ideal P which contains its partiner P ′ and for

some positive integer a, b such that a > b.
iii) Q = uFp[x]
iv) Q = 0.

Proof. i) Suppose that Q = P a + uFp[x], where P is a prime ideal of Fp[x] and a ∈ N. Let
BC ⊆ Q. Then B[1]C[1] ⊆ Q[1] = P a. Since P a is primary, B[1] ⊆ P a or C[1] ⊆

√
P a = P . If

B[1] ⊆ P a, then

B ⊆ B[1] + uB[2] ⊆ P a + uFp[x] = Q. (2.12)

However, if C[1] ⊆ P , we show that (P + uFp[x])
a ⊆ Q for some a ∈ N. Let fi ∈ P + uFp[x] for

i ≤ a. Then
∏

i fi ∈ P a + uFp[x] = Q. Hence, (P + uFp[x])
a ⊆ Q. We assumed that C[1] ⊆ P .

So Ca ⊆ (C[1] + uC[2])
a ⊆ (P + uFp[x])

a ⊆ Q. Thus Q is primary in this case.

ii) Let Q = P a+uP b for some prime P which contains its partaker P ′ and for some a, b ∈ N
with a > b. Let AB ⊆ Q = P a + uP b, for some A,B E R. So (AB)[1] = A[1]B[1] ⊆ P a.
Hence A[1] ⊆ P a or B[1] ⊆ P . Suppose that B[1] ⊆ P and let yi = b1,iπ + ub2,i ∈ B, where
b1,iπ ∈ B[1] ⊆ P and b2,i ∈ B[2].∏

i≤a

yi =
∏
i≤a

(b1,iπ + ub2,i)

=
∏
i≤a

b1,iπ
a +

∏
i≤a

b1,iπ
a−1ub2,i +

∏
i≤a

b1,iπ
a−2ub1,iπb2,i + · · ·+

∏
i≤a

u(b1,iπ)
a−1b2,i

Since P ′ ⊆ P , there exists t ∈ Fp[x] such that π′ = tπ. So there exists b′ ∈ Fp[x] such that∏
i≤a

yi =
∏
i≤a

b1,iπ
a + ub′taπa ∈ πaFp[x] + uπbFp[x] = P a + uP b = Q.

Hence
∏

i≤a yi ∈ Q. That is, Ba ⊆ Q.

Now, let A[1] ⊆ P a. If A[2] ⊆ P b, then A ⊆ P a + uP b = Q, which is done. So let A[2] * P 2.
Hence there exists s ∈ N ∪ {0} such that s < b, πsh ∈ A[2] with gcd(π, h) = 1. So there exists
r ∈ Fp[x] such that rπa + uπsh ∈ A.

Let y = b1 + ub2 ∈ B. Then

(rπa + uπsh)y = rπab1 + rπaub2 + uπshb1 ∈ AB ⊆ Q = P a + uP b.

Now, there exists l ∈ Fp[x] such that rπaub2 = ulπab2. Hence

(rπa + uπsh)y = rπab1 + ulπab2 + uπshb1 ∈ P a + uP b.
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So uπshb1 ∈ vP b, which does hold provided that b1 ∈ P . But, this implies that B[1] ⊆ P , which
we get that Bn ⊆ Q for some n ∈ N, as required.

Let Q = uFp[x], then by lemma 2.18, Q is prime, and hence primary.
Let Q = 0. suppose that AB ⊆ Q. Then A[1]B[1] ⊆ 0. Hence A[1] = 0 or B[1] = 0. Thus

A = uA[2] or B = uB[2]. Let A = uA[2]. Then uA[2]B[1] = AB ⊆ 0. So A[2] = 0 or B[1] = 0. If
A[2] = 0, then A = 0. Else, B = uB[2]. So B

2 = uB[2]uB[2] = 0.

Note: Let f ∈ Fp[x]. Then it can easily be proved that there exists h ∈ Fp[x] such that

ug = hu. We note h by f̂ and call it inverse partaker of f .

Lemma 2.25. Let AER and A is second type. Then, there exists a first type ideal BER such
that B ⊆ A. In particular, if A[1] = ⟨f⟩, A[2] = ⟨g⟩, then ⟨ff̂⟩+ u⟨f⟩ ⊆ A.

Proof. Let f+uh ∈ A for some s ∈ Fp[x]. So uf ∈ A. Also, f̂(f+uh) ∈ A. Hence, f̂f+ufh ∈ A

and this results in ff̂ ∈ A. So ⟨ff̂⟩+ u⟨f⟩ ⊆ A.

Lemma 2.26. Let < π > be a prime ideal of Fp[x]. Then, (π, π̂) = 1.

Proof. Let π|π̂. Then, πh = π̂. Let π =
∑m

i=0 pix
i, π̂ =

∑m
i=0 p̂ix

i and h =
∑r

i=0 hix
i. So for

m+ 1 ≤ r ≤ r +m,
∑r

i=0 piα
ihr−i = 0.

We have r equations and r undetermined, and equations are independent. This results in
h = 0. So π̂ = 0 which means that πu = uπ̂ = 0. So π = 0, which is impossible.

Theorem 2.27. There is not a second type primary ideal in R.

Proof. Let BC ⊆ Q[1]. One can prove that Bm ⊆ Q or Cm′ ⊆ Q or u ∈ Q for some m,m′ ∈ N
in similar to Lemma 2.22.

If u ∈ Q and Q[1] = ⟨f⟩, f ∈ Q by the fact that f+uq ∈ Q for some g ∈ Q[2]. Hence, Q must

be of the first type ideal. So Q[1] is in the form of P l = ⟨π⟩l for some irreducible polynomial in

Fp[x]. Let Q[2] = ⟨π⟩l−s = P l−s. Also one can see that

(⟨ππ̂⟩l + u⟨π⟩l−s)(⟨π⟩s + uFp) ⊆ ⟨πl+sπ̂l⟩+ u⟨π⟩l + u⟨π′π⟩l ⊆ ⟨ππ̂⟩l + u⟨π⟩l ⊆ Q. (2.13)

So ⟨ππ̂⟩l+u⟨π⟩l−s ⊆ Q or (⟨π⟩s+uFp[x])
m ⊆ Q. If ⟨ππ̂⟩l+u⟨π⟩l−s ⊆ Q, then uπl−s ∈ Q and so

πl ∈ Q. Thus Q becomes a first type ideal of R, which is impossible. So (πs + u)m ∈ Q which
results in (π′)s(m−1) + πw ∈ Q[2] for some w ∈ Fp[x]. Hence, there exists some k ∈ Fp[x] such

that (π′)s(m−1) + πw1 = πl−sk. So π|π′ or l − s = 0. π|π′ is not possible by previous lemma.
Thus, Q[2] = Fp[x].

Let L ∈ Fp[x]. So for each c, d ∈ Fp[x], there exists w2 ∈ Fp[x] such that (πl−1π̂l + uπ′)(c+
ud)(π + uL) = πlcπ̂l + uπlw2 ∈ Q. One can see that π̂lπl−1 /∈ Q[1], so π̂

lπl−1 + uπl /∈ Q. So
(π+uL)m ∈ Q for some m ∈ N. So there exists m1,m2 ∈ N such that (π+u)m1 , (π+2u)m2 ∈ Q.
Let m = max{m1,m2}. Hence, (π + 2u)m − (π + u)m ∈ Q. Thus

πm + 2u(
m−1∑
i=0

πi(π′)m−1−i)− πm − u(
m−1∑
i=0

πi(π′)m−1−i) = u
m−1∑
i=0

πi(π′)m−i−1 ∈ Q. (2.14)

Let r = min{α|uπβ ∈ Q for β ≥ α}. So π̂r−1u
∑m−1

i=0 πi(π′)m−i−1 ∈ Q. Considering uπr ∈ Q,
we have uπr−1(π′)m−1 ∈ Q.
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Since (π, π′) = 1, there exists z1, z2 ∈ Fp[x] such that (π′)m−1z1 + πz2 = 1. We know that
uπr ∈ Q, so ẑ2uπ

r ∈ Q. Thus,

uπr−1 = uπr−1(z1(π
′)m−1 + πz2) = u(z1π

r−1(π′)m−1 + z2π
r) = ẑ1uπ

r−1(π′)m−1 + ẑ2uπ
r ∈ Q.

This is a contradiction by definition of r.

According to the above results, we could characterize first type primary ideals. We will study
more about the role of the first and the second type primary ideals in primary decomposition
as follows. First we prove the following lemma.

Theorem 2.28. If AER is a second type ideal and has a primary decomposition, then at least
one of its components in primary decomposition of A must be of second type.

Proof. Let there exists m primary ideals in decomposition of A. We prove the case m = 2. The
general case is followed by induction. Let A = Q ∩ T for some primary ideals Q and T of R. If
both of Q and T are of the first type, then by lemma 2.15

A = Q ∩ T = (Q[1] + uQ[2]) ∩ (T[1] + uT[2]) = (Q[1] ∩ T[1]) + u(Q[2] ∩ T[2])

Which is a first type ideal. So A is a first type ideal which is a contradiction by assumption.

Corollary 2.29. The second type ideals of R do not have primary decomposition. In another
word, the ring R is not Laskerian.

Proof. According to the Theorem 2.28, if a second type ideal has a primary decomposition, one
of its components should be second type. But there is not any second type primary ideal by
Theorem 2.27.

3 Over the ring (Fp + uFp)[Zn]

Our goal in this section is to show the equivalence of ideals of Rn (or the skew cyclic codes over
Fp + uFp) and the ideals of Tn. In the first step, we prove that θ′ is well-defined. We know

θ′ :
Fp[x]

< xn − 1 >
−→ Fp[x]

< xn − 1 >
, θ′(1) = 1, θ′(x) = α−1x, α ∈ Fp

Also, O(α) = O(θ′) (i.e. O(α)|n). Let h, g ∈ Fp[x] such that h = g. So xn − 1|h − g. More-
over, θ′(h) = θ′(

∑
i hix

i) =
∑

i hiθ
′(x)i =

∑
i hiα

−ixi and θ′(g) = θ′(
∑

i gix
i) =

∑
i giθ

′(x)i =∑
i giα

−ixi.
We know xn − 1|

∑
i(hi − gi)x

i, so (α−1x)n − 1|
∑

i(hi − gi)(α
−1x)i. Since αn = 1, xn −

1|
∑

i(hi − gi)α
−ixi. So

∑
i hiα

−ixi =
∑

i giα
−ixi. So θ′(h) = θ′(g). Thus θ′ is well-defined.

Furthemore, θ′ is a ring homomorphism. Suppose that f, g ∈ Fp[x]
<xn−1> . Then, if f =

∑
i fix

i,

g =
∑

i gix
i,

θ′(fg) =θ′((
∑
i

fix
i)(

∑
i

gix
i)) = θ′(

∑
i

∑
j

figix
i+j)

=
∑
i

∑
j

figiθ
′(x)i+j =

∑
i

∑
j

figiα
−i−jxi+j
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=(
∑
i

fiα
−ixi)(

∑
i

giα
−ixi) = θ′(f)θ(g).

Hence, the ring Tn is well-defined by the definition of θ′. Now, it is turn to prove the isomorphism
between Tn, Rn.

Theorem 3.1. Tn ≃ Rn.

Proof. Let ψ : Rn −→ Tn be as follows

ψ(
∑
i

(fi + ulix
i) +R(xn − 1)) = (

∑
i

(fix
i) + Fp[x](x

n − 1)) + (
∑
i

lix
i + Fp[x](x

n − 1))v+ < u2 > .

First, we prove that ψ is well-defined. Let
∑

i(fi+ulix
i)+R(xn−1) =

∑
i(gi+uk

ixi)+R(xn−1).

So xn − 1|
∑

i((fi − gi) + u(li − ki))x
i. Hence, there exists v, w ∈ Fp[x]

<xn−1> , such that

(xn − 1)v + u(xn − 1)w =
∑
i

(fi − gi)x
i + u

∑
i

(li − ki))x
i

Thus, xn − 1|
∑

i(fi − gi)x
i and xn − 1|

∑
i(li − ki)x

i. So
∑

i fix
i + Fp[x](x

n − 1) =
∑

i gix
i +

Fp[x](x
n − 1) and

∑
i lix

i + Fp[x](x
n − 1) =

∑
i kix

i + Fp[x](x
n − 1). So ψ(

∑
i(fi + uli)x

i +
R(xn − 1)) = ψ(

∑
i(gi + uki)x

i +R(xn − 1)). This proves that ψ is well-defined.
Second, we prove that ψ is a ring homomorphism. Let s(x) = (f + ul) + R(xn − 1) ∈ Rn

and v(x) = (g + uk) +R(xn − 1) ∈ Rn. One can see

s(x)v(x) =
(
(f + ul) +R(xn − 1)

)(
(g + uk) +R(xn − 1)

)
= (fg + ulg + uf ′k) +R(xn − 1).

So

ψ(s(x))ψ(v(x))

=
(
(f + Fp[x](x

n − 1)) + (l + Fp[x](x
n − 1))u+ < u2 >

)
×

(
(g + Fp[x](x

n − 1)) + (k + Fp[x](x
n − 1))u+ < u2 >

)
=
(
fg + Fp[x](x

n − 1)
)
+

(
f ′k + Fp[x](x

n − 1)
)
u+ (lg + Fp[x](x

n − 1))u+ < u2 > .

Hence, ψ(sv) = ψ(s)ψ(v). Also, ψ(s+ v) = ψ(s) + ψ(v) is easy to prove.
Third, we prove that psi is an injective map. Let ψ(

∑
i(fi + uli)x

i +R(xn − 1)) = 0. So(∑
i

fix
i + Fp[x](x

n − 1)
)
+ u

(∑
i

lix
i + Fp[x](x

n − 1)
)
+ < u2 >= 0.

Thus, s(x)(xn − 1) =
∑

i fix
i, w(x)(xn − 1) =

∑
i lix

i for some s, w ∈ Fp[x]. Hence, (s(x) +
uw(x))(xn − 1) =

∑
i(fi + uli)x

i. So
∑

i(fi + uli)x
i +R(xn − 1) = 0 +R(xn − 1).

Finally, we prove that ψ is surjective. Let s(x) = h(x) + Fp[x](x
n − 1) + (l(x) + Fp[x])u+ <

u2 >∈ Tn. It is easy to see that

ψ(h(x) + ul(x) +R(xn − 1)) = s(x).
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3.1 Prime ideals of Tn

Let A E R, xn−1 ∈ A. So A
<xn−1> E Rn. Thus, Â = ψ( A

<xn−1>) E Tn. Let f =
(
g+Fp[x](x

n−
1)
)
+

(
h+ Fp[x](x

n − 1)
)
v+ < u2 >. Now, define

A[1] = {g + Fp[x](x
n − 1)|∃h+ Fp[x](x

n − 1) ∈ Fp[x]

< xn − 1 >
,

ψ−1
(
g + Fp[x](x

n − 1) + u(h+ Fp[x](x
n − 1))+ < u2 >

)
∈ A

< xn − 1 >
}

A[2] = {h+ Fp[x](x
n − 1)|∃g + Fp[x](x

n − 1) ∈ Fp[x]

< xn − 1 >
,

ψ−1
(
g + Fp[x](x

n − 1) + u(h+ Fp[x](x
n − 1))+ < u2 >

)
∈ A

< xn − 1 >
}

Theorem 3.2. If A E R is a first type ideal, and xn−1 ∈ A, then ψ( A
<xn−1>) = A[1]+A[2]v+ <

u2 > (Consider A[1], A[2] as subrings of Tn).

Proof. Let A[1] =< f > and A[2] =< g >. So f + ug ∈ A. Hence, ψ(f + ug + R(xn − 1)) ∈
ψ( A

<xn−1>) = Â. So

(f + Fp[x](x
n − 1)) + (g + Fp[x](x

n − 1))u+ < u2 >∈ Â.

It is enough to show that A[1] =< f >,A[2] =< g >. Let k ∈ Â and k = (h+Fp[x](x
n−1))+(l+

Fp[x](x
n − 1))u+ < u2 >. Hence, ψ−1(k) = h+ ul +R(xn − 1). Thus, there exists v, w ∈ Fp[x]

such that

h+ ul + (xn − 1)(v + uw) ∈ A.

So h(x) + u(x)(xn − 1) ∈ A[1] and l(x) + w(x)(xn − 1) ∈ A[2]. This means that f(x)|h(x) +
u(x)(xn − 1) and g(x)|l(x)+w(x)(xn − 1). Considering the fact that f |xn − 1, g|xn − 1, f |h, g|l.
So h = fh1 and l = gl1.

Hence, k = (fh1 + Fp[x](x
n − 1)) + u(gl1 + Fp[x](x

n − 1))+ < u2 >. Thus, A[1] =<

f + Fp[x](x
n − 1) >, A[2] =< g + Fp[x](x

n − 1) >. Considering the fact that (f + Fp[x](x
n −

1)) + u(g + Fp[x](x
n − 1))+ < u2 >∈ Â, Â = A[1] + uA[2]+ < u2 >.

Theorem 3.3. Let A E R , xn − 1 ∈ A and Â = A[1] + uA[2]+ < u2 >. Then A is a first type
ideal of R.

Proof. Let A[1] =< f > and A[2] =< g >. Suppose that (h + Fp[x](x
n − 1)) + (k + Fp[x](x

n −
1))u+ < u2 >∈ Â. So h + uk + R(xn − 1) ∈ A

<xn−1> . Hence, there exists l1, l2 ∈ R such
that f |h + l1(x

n − 1) and g|k + l2(x
n − 1). Thus f |h and g|k. If h = h1f, k = k1g, (h1 +

Fp[x](x
n − 1))(f + Fp[x](x

n − 1)) + (k1 + Fp[x](x
n − 1))(g + Fp[x](x

n − 1))u+ < u2 >∈ Â. So
A[1] =< f + Fp[x](x

n − 1) >, A[2] =< g + Fp[x](x
n − 1) >. This means that (f + Fp[x](x

n −
1)) + (g + Fp[x](x

n − 1))u+ < u2 >∈ Â (Otherwise, Â ̸= A[1] + A[2]u+ < u2 >). Hence,

f + ug + R(xn − 1) = ψ−1((f + Fp[x](x
n − 1)) + (g + Fp[x](x

n − 1))u+ < u2 >) ∈ A
<xn−1> . So

there exists l1 ∈ R such that f + ug + l1(x
n − 1) ∈ A. Considering the fact that xn − 1 ∈ A,

f + ug ∈ A. So A = A[1] +A[2]u. Hence, A is first type.
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We call Â is a first type ideal of Tn, if A is a first type ideal of R. Hence, Â is first type, if
and only if Â = A[1] +A[2]u+ < u2 >. We show it by Â = A[1] +A[2]u for simplicity reasons.

Theorem 3.4. Let A E R, xn − 1 ∈ A. Then A[1], A[2] are ideals of
Fp[x]

<xn−1> .

Proof. Let f+Fp[x](x
n−1) ∈ A[1] and g+Fp[x](x

n−1) ∈ Fp[x]
<xn−1> , So there exists k+Fp[x](x

n−
1) ∈ Fp[x]

<xn−1> such that

ψ−1
(
(f + Fp[x](x

n − 1)) + u(k + Fp[x](x
n − 1))+ < u2 >

)
∈ A

< xn − 1 >
.

Hence, f + uk +R(xn − 1) ∈ A
<xn−1> . So

(
(g +R(xn − 1))(f + uk +R(xn − 1))

)
∈ A

<xn−1> . So

fg + ukg +R(xn − 1) ∈ A
<xn−1> . Thus

ψ
(
fg + ukg +R(xn − 1)

)
∈ Â.

Hence, fg+Fp[x](x
n− 1) ∈ A[1] which means that (f +Fp[x](x

n− 1))(g+Fp[x](x
n− 1)) ∈ A[1].

Thus A[1] is an ideal of
Fp[x]

<xn−1> . In similar way, one can see that A[2] is an ideal of
Fp[x]

<xn−1> .

Theorem 3.5. Let A E R, xn−1 ∈ A. Then ψ(uA[1]) =
A[1][u,θ

′]u

<u2>
E Tn. Moreover,

A[1][u,θ
′]u

<u2>
⊆

Â.

Proof. Let f+Fp[x](x
n−1) ∈ A[1] and u = (g+Fp[x](x

n−1))+(k+Fp[x](x
n−1))u+ < u2 >∈ Tn.

It is enough to show that u
(
(f + Fp[x](x

n − 1))u+ < u2 >
)
∈ A[1][u,θ

′]u

<u2>
. Since, A[1] E Fp[x]

<xn−1>

and f + Fp[x](x
n − 1) ∈ A[1], fg ∈ A[1]. So (g′f + Fp[x](x

n − 1))u+ < u2 >∈ uA[1][u,θ
′]

<u2>
. Hence,(

(f + Fp[x](x
n − 1))u+ < u2 >

)(
(g + Fp[x](x

n − 1)) + (k + Fp[x](x
n − 1))u+ < u2 >

)
=

(
(fg + Fp[x](x

n − 1))u+ < u2 >
)
∈
A[1][u, θ

′]u

< u2 >
.

So
A[1][u,θ

′]u

<u2>
E Tn. Also, let f + Fp[x](x

n − 1) ∈ A[1]. So there exists h + Fp[x](x
n − 1) ∈

Fp[x]
<xn−1> such that ψ−1

(
(f + Fp[x](x

n − 1)) + (h+ Fp[x](x
n − 1))u+ < u2 >

)
∈ A

<xn−1> . Thus

f + uh + R(xn − 1) ∈ A
<xn−1> . Hence, (u + R(xn − 1))(f + uh + R(xn − 1)) ∈ A

<xn−1> . So

uf +R(xn − 1) ∈ A
<xn−1> . So (f + Fp[x](x

n − 1))u+ < u2 >∈ Â. Thus
A[1][v,θ

′]v

<u2>
⊆ Â.

Theorem 3.6. Let A E R, xn − 1 ∈ A. Then A[1] ⊆ A[2].

Proof. Let f + Fp[x](x
n − 1) E A[1]. So there exists h + Fp[x](x

n − 1) ∈ Fp[x]
<xn−1> such that

ψ−1
(
(f +Fp[x](x

n−1))+(h+Fp[x](x
n−1))u+ < u2 >

)
∈ A

<xn−1> . Thus f +uh+R(x
n−1) ∈

A
<xn−1> . So

(u+R(xn − 1))(f + uh+R(xn − 1)) = uf +R(xn − 1) ∈ A

< xn − 1 >

Thus ψ(uf + R(xn − 1)) ∈ Â. This means that (f + Fp[x](x
n − 1))u+ < u2 >∈ Â. So

f + Fp[x](x
n − 1) ∈ A[2]. Hence, A[1] ⊆ A[2].
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Theorem 3.7. If P E R is a prime ideal and xn − 1 ∈ P , then P̂ is a prime in Tn.

Proof. Let ÂB̂ ⊆ P̂ and Â, B̂ are two arbitrary ideal of Tn. Hence, ψ−1(ÂB̂) ⊆ ψ−1(P̂ ). Since ψ
is isomorphism, ψ−1(Â)ψ−1(B̂) ⊆ ψ−1(ÂB̂). So ψ−1(Â)ψ(B̂) ⊆ P

<xn−1> . Thus,
A

<xn−1>
B

xn−1 ⊆
P

xn−1 . So AB ⊆ P . This implies A ⊆ P or B ⊆ P (Since xn − 1 ∈ A,B). So ψ( A
<xn−1>) ⊆ P̂ or

ψ( B
<xn−1>) ⊆ P̂ . Hence, Â ⊆ P̂ or B̂ ⊆ P̂ .

Theorem 3.8. Let P̂ is a prime ideal of Tn, then P is a prime ideal of R.

Proof. Let AB ⊆ P,A,B E R. Suppose that A∗ =< A, xn− 1 > and B∗ =< B, xn− 1 >. Since
xn− 1 ∈ P , A∗B∗ ⊆ P . So A∗

<xn−1>
B∗

<xn−1> ⊆ P
<xn−1> . So Â

∗B̂∗ ⊆ P̂ . This implies that Â∗ ⊆ P̂

or B̂∗ ⊆ P̂ . So A∗

<xn−1> ⊆ P
<xn−1> or B∗

<xn−1> ⊆ P
<xn−1> . Hence, A∗ ⊆ P or B∗ ⊆ P . This

means that A ⊆ P or B ⊆ P . So P is a prime ideal of R.

Corollary 3.9. Let P E R, xn − 1 ∈ P . Then P is a prime ideal of R, iff P̂ is a prime ideal
of Tn.

Corollary 3.10. Let P̂ E Tn be a prime ideal. Then there are two cases.

i) P = ψ
(Fp[x]f+uFp[x]

<xn−1>

)
where f ∈ Fp[x] is an irreducible polynomial such that f |xn − 1.

ii) P = ψ
(Fp[x](xn−1)+uFp[x]

<xn−1>

)
.

Proof. The proof follows from Corollary 3.9 and Theorem 2.19

Proposition 3.11. J(Rn) =<
∏

f :irreducible f > +uFp[x].

Proof. According to correspondence theorem for PID, the maximal ideals of
Fp[x]

<xn−1> are corre-
spondent to the maximal ideals of Fp[x] which contains xn − 1. So

J(Rn) =
∩

mEmRn

m =
∩

mEmR
xn−1∈m

m

< xn − 1 >
.

According to Theorem 2.14, every maximal ideals of R are in the form of < f > +uFp[x] where
f is irreducible. Since xn − 1 ∈ m, f |xn − 1. On the other hand, xn − 1 does not have any
repeated root, so

J(Rn) =
∩

mEmR
xn−1∈m

m

< xn − 1 >
=

<
∏

f :irreducible
f |xn−1

f > +uFp[x]

< xn − 1 >
.

Proposition 3.12. Nil(Rn) =
Fp[x](xn−1)+uFp[x]

<xn−1>

Proof. Let f+ < xn − 1 >∈ Nil(Rn). So there exists m ∈ N such that (f+ < xn − 1)m = 0.
Thus fm ∈< xn − 1 >. Hence xn − 1|fm1 . Since xn − 1 does not have any repeated root in its
split field, xn − 1|f1. So f1+ < xn − 1 >=< xn − 1 >. This means that f = uf2+ < xn − 1 >.

Hence Nil(R) ⊆ Fp[x](xn−1)+uFp[x]
<xn−1> . The converse is easy.

Corollary 3.13. Nil∗(Rn) = Nil(Rn) = Nil∗(Rn).
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Proof. According to Corollary 3.10, we have

Nil∗(Rn) =
∩

P∈Spec(Rn)

P

=

( ∩
f :irreducible

(Fp[x]f + uFp[x]

< xn − 1 >

))
∩
(Fp[x](x

n − 1) + uFp[x]

< xn − 1 >

)
=
Fp[x](x

n − 1) + uFp[x]

< xn − 1 >

Since Nil(Rn) is an ideal, Nil(Rn) = Nil∗(Rn). This and Proposition 3.12 completes the
proof.

3.2 The primary ideals of Tn

First, we start with some lemma to find an equivalence theorem between primary ideals of Tn
and some of primary ideals in R.

Lemma 3.14. Let A E R, xn − 1 ∈ A. Then (ψ−1(Â))m ⊆ ψ−1(Âm).

Proof. Since ψ is an isomorphism, ψ−1(B)ψ−1(C) ⊆ ψ−1(BC) for each ideals of Tn like B,C.
So ψ−1(Â)m ⊆ ψ−1(Âm).

Also, one can prove that easily that Am

<xn−1> = ( A
<xn−1>)

m.

Theorem 3.15. Let Q E R, xn − 1 ∈ Q. If Q̂ is a primary ideal of Tn, then Q is a primary
ideal of R.

Proof. Let AB ⊆ Q. Suppose that A∗ =< A, xn − 1 >,B∗ =< B, xn − 1 >. So A∗B∗ ⊆ Q and
this results in A∗

<xn−1>
B∗

<xn−1> ⊆ Q
<xn−1> . Hence, ψ( A∗

<xn−1>)ψ(
B∗

<xn−1>) ⊆ ψ( Q
<xn−1>). Thus

Â∗B̂∗ ⊆ Q̂. This means that Â∗ ⊆ Q̂ or (B̂∗)m ⊆ Q̂ for some m ∈ N. Hence, ψ−1(Â∗) ⊆ ψ−1(Q̂)

or ψ−1(B̂∗m) ⊆ ψ−1(Q̂). So A∗

<xn−1> ⊆ Q
<xn−1> or ( B∗

<xn−1>)
m ⊆ Q

<xn−1> for some m ∈ N by
lemma 3.14. So A∗ ⊆ Q or (B∗)m ⊆ Q for some m ∈ N. So Q is primary.

Theorem 3.16. Let Q E R, xn − 1 ∈ Q be a primary ideal of R. Then Q̂ is a primary ideal of
Tn.

Proof. Let ÂB̂ ⊆ Q̂. So ψ−1(Â)ψ−1(B̂) ⊆ ψ−1(ÂB̂) ⊆ ψ(Q̂). So AB,xn−1
<xn−1> ⊆ Q

<xn−1> . Hence,
< AB, xn − 1 >⊆ Q. Thus AB ⊆ Q which results in A ⊆ Q or Bm ⊆ Q fr some m ∈ N.
So ψ( A

<xn−1>) ⊆ ψ( Q
<xn−1>) or ψ(B

m,xn−1
<xn−1> ) =

(
ψ( B

<xn−1>)
)m ⊆ ψ( Q

<xn−1>) for some m ∈ N.
Hence, Â ⊆ Q̂ or B̂m ⊆ Q̂ for some m ∈ N. Thus Q̂ is a primary ideal.

Corollary 3.17. Let Q E R, xn − 1 ∈ Q. Then Q is a primary ideal of Q, iff Q̂ is a primary
ideal of Tn. In particular, every primary ideal Q̂ in Tn is the first type ideal and exactly in one
of the following forms.

i) ψ
(Fp[x]fa+uFp[x]

<xn−1>

)
where f ∈ Fp[x] is an irreducible polynomial such that fa|xn − 1 and

a ≥ 0.

ii) ψ
(Fp[x]fa+uFp[x]fb

<xn−1>

)
where f ∈ Fp[x] is an irreducible polynomial such that f b|xn − 1 and

a > b ≥ 0.
iii) 0̂.

Theorem 3.18. Let A E R, xn − 1 ∈ A. If Â has a primary decomposition such that all of its
primary coefficients in decomposition are first type, then Â is a first type ideal.
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Proof. Let Â be a second type ideal. Also Â = Q̂1 ∩ Q̂2 ∩ · · · ∩ Q̂t for some primary ideals Q̂i.
Then ψ−1(Â) = ψ−1(Q̂1) ∩ · · · ∩ ψ−1Q̂t. So A

<xn−1> = Q1

<xn−1> ∩ · · · ∩ Qt

<xn−1> . Asxn − 1 ∈ Qi

for some 1 ≤ i ≤ t, xn − 1 ∈
∩t

i=1Qi. So
A

<xn−1> =
∩t

i=1 Qi

<xn−1> . Hence, A = Q1 ∩ · · · ∩Qt. Thus A

should be a first type ideal by lemma 2.28. So Â is a first type ideal by lemma 3.2.

So if Â is a second type ideal and has a primary decomposition, then there exists at least
one second type primary coefficient in its decomposition. But finding a second type ideal is not
easy and from the computation view, it seems demanding.

Assume a first type ideal Â. So Â = A[1] + uA[2]. Since
Fp[x]

<xn−1> is a Notherian commutative

ring, the unique primary decomposition exists for A[1], A[2].So

Â =
(∩

i

Zi

)
+ u

(∩
i

Yi
)

(3.1)

where Zi, Yi are primary ideals of
Fp[x]

<xn−1> . So there is a characterization for first type ideals of
Tn.

Proposition 3.19. There is no second type primary ideal in Rn.

Proof. According to the Theorem 3.15 and Theorem 3.16, AER, xn − 1 ∈ A is primary, if and
only if ÂE Rn. Let Â be a second type primary ideal in Rn. Then A should be a second type
primary ideal according to Theorems 3.2,3.3. This is impossible according to Theorem 2.27. So
there is not any second type primary ideal in Rn.

Corollary 3.20. The second type ideals of Rn do not have primary decomposition. In particular,
Rn is not Laskerian.

Proof. The proof follows by the Proposition 3.19 and Theorem 3.18.
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