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In this work, we investigate the effect of disorder on the topological properties of multichannel
superconductor nanowires. While the standard expectation is that the spectral gap is closed and
opened at transitions changing the topological property of the ground state, we show that the clos-
ing and opening of a transport gap can also cause topological transitions, even in the presence of
(localized) states at both sides of the transition. Such transport gaps, induced by disorder, can thus
change the topological index, driving a topologically trivial wire into a nontrivial state. We focus on
nanowires exhibiting p-wave superconductivity as well as Rashba semiconductor nanowires in prox-
imity to a conventional superconductor, and obtain analytical formulas for topological transitions in
these wires, valid for generic realizations of disorder, generalizing earlier results. Full tight-binding
simulations show excellent agreement with our analytical results without any fitting parameters.

PACS numbers: 74.78.Na, 74.45.+c, 71.23.-k

I. INTRODUCTION

Topologically nontrivial phases are exotic states of
matter that have an electronic band gap in their bulk
and protected gapless excitations at their boundaries1–3.
Superconductors, being quasiparticle insulators, also fea-
ture topological phases with a quasiparticle gap in the
bulk and edge or surface excitations. For 1D systems,
these edge states are fermionic zero-energy modes called
Majorana states4–8. These states attracted intense at-
tention owing to their non-Abelian nature which led to
the proposals to use them as topological qubits immune
to decoherence9,10. Although predicted to appear in ex-
otic condensed matter systems with unconventional su-
perconducting pairing11–16, recent proposals17–19 involv-
ing hybrid structures of more conventional materials have
appeared20. This led to the recent conductance mea-
surements done on a proximity coupled InSb nanowire21,
which showed some evidence of Majorana end states in
the form of zero bias conductance peaks. Other experi-
ments reported further observations of zero bias peaks in
similar settings22–25. Very recently, scanning-tunneling
spectroscopy experiments on magnetic adatom chains on
a conventional superconductor reported ZBPs at the ends
of the chain26. While it is compelling to interpret the ob-
servation of these ZBPs as signatures of Majorana states,
the issue is still under intense discussion27.

Semiconductor nanowire structures that are proximity-
coupled to superconductors are technologically attrac-
tive platforms for Majorana physics. However, disorder
has been prominently present in all such experimental
samples to date. This led to a renewed interest in dis-
ordered superconducting wires, particularly focusing on
the effects of disorder on Majorana states28–47. These
works focused mostly on disordered p-wave supercon-
ducting wires (PW wires) and showed that disorder is
detrimental to the spectral gap as well as to the for-
mation of Majorana fermions in both strictly 1D sys-
tems28,29,35,41,46,47 and in multichannel wires34,40,42,48.

In a recent study on the experimentally relevant hy-
brid structures with Rashba spin-orbit interaction (SOI)
proximity coupled with an s-wave superconductor (RSW
nanowires for short), some of us showed that disorder
need not be detrimental to and in fact can even create
topological order in 1D wires46. We are not aware of any
study of the effects of disorder on the topological prop-
erties of the multichannel RSW nanowires.

In this Manuscript, we investigate the topological
properties of disordered multichannel RSW and PW
superconductor nanowires. The standard expectation
for these nanowires is that if their topological state is
switched by modifying certain external parameters (such
as gate potential or magnetic field), the spectral gap will
close and open concomitantly with the transition. Here
we show that for disordered nanowires, the closing and
opening of a transport gap can also cause topological
transitions, even in the presence of (localized) states at
both sides of the transition. We thus extend our earlier
work46 to multichannel wires. We first reproduce results
showing reentrant behavior in multichannel PW wires42.
Next we derive analytical expressions of the topological
phase diagram for the experimentally relevant quasi-1D
RSW nanowire. In particular, we find new topological
regions in the phase diagram showing up as additional
reentrant behavior on top of those predicted from PW
wire model. The RSW wires under high magnetic fields
(enough to completely spin-polarize the wire) are well
described by the PW wire model. In agreement with
the earlier results, however, the topological order in this
limit is fragile, and disorder is always detrimental to it.
In contrast, topological order in the low magnetic field
limit, which is robust against disorder, requires full de-
scription of all spin bands, as shown by our analytical
results (see Fig. 3). Our numerical simulations using a
tight-binding (TB) approach show very good agreement
with our analytical formulas.

This Manuscript is organized as follows: We begin the
next section by reviewing the system in question as well
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FIG. 1. The quasi-1D nanowire of width W , which is a PW or
an RSW topological superconductor with a Gaussian disorder
having an average value 〈Vave〉 = 0. In the leads, we take α,
∆ and V (x, y) to be zero, making the leads metallic. Our an-
alytical results assume a semi-infinite wire (L→∞), whereas
in our numerical full tight-binding calculations we use wires
of length L� lMFP, ξ.

as introducing our numerical and analytical methods. In
subsection II A, we consider a spin-orbit coupled quan-
tum wire in proximity to RSW superconductor and its
fully spin polarized limit (effectively a PW superconduct-
ing quasi-1D nanowire), extending previous work42,46 to
multichannel nanowires. We show that a transport gap,
as well as a spectral gap, can generate and protect Ma-
jorana states. In the next subsection (II B), we investi-
gate the case of RSW topological superconductor (TS)
nanowires and find that disorder can even extend the
topologically nontrivial phase in the relevant parameter
space, creating topological order where none would be
expected in a single channel system. Finally, in the Ap-
pendix, we give detailed derivations of our analytical re-
sults.

II. TOPOLOGICAL ORDER IN DISORDERED
QUASI-1D WIRES

In this section, we investigate the topological proper-
ties of long quasi-1D RSW and PW TS nanowires (see
Fig. 1). The quasiparticles in RSW nanowires are de-
scribed by the following Bogoliubov-de Gennes (BdG)
Hamiltonian:

H =

(
p2

2m
+ V (x)− µ+ α(p× σ)

)
τz +Bσx + ∆τx,

(1)

where p = (px, py), V (x) is the on-site potential, µ is
the chemical potential measured from the bottom of the
band of the relevant lead, α is the spin-orbit coupling
(SOC) strength, B is the Zeeman field and ∆ is the s-
wave superconducting gap19. σi (τi) are the Pauli matri-
ces acting on the spin (electron-hole) space. In the limit
of large B, the different spins form completely separate
bands and the low energy limit is an effective p-wave
superconducting Hamiltonian of the form

H =

(
p2

2m
+ V (x, y)− µ

)
τz +

1

2

∑
i=x,y

{∆i, pi}τi. (2)

We assume a spatially homogeneous effective SOC
strength over the PW nanowire, i.e. ∆x = ∆y =
∆eff, reducing the anticommutator term in Eq. (2) to
1
2

∑
i=x,y {∆i, pi}τi = ∆eff p · τ . This effective SOC

strength is related to the corresponding RSW supercon-
ducting gap by ∆eff = ∆α/

√
B2 −∆218. We consider

both PW and RSW cases with disorder in the following
subsections, assuming a Gaussian disorder of the form
〈V (r)V (r′)〉 = γ δ(r− r′) for r, r′ in the wire. Here, γ is
the disorder strength and 〈V (r)〉 = 0.

The Hamiltonians in Eqs. (1) and (2) are both in
Altland-Zirnbauer (AZ) symmetry class D in two dimen-
sions49 with a Z2 topological number. In the absence
of spin-orbit coupling (SOC) along the y-direction, the
Hamiltonian in Eq. (2) also possesses a chiral symme-
try, placing it into class BDI42,50, having a Z topological
number. (1D wires trivially satisfy this condition.) In the
thin wire limit (W � ξ), ∆y � ~/mW chiral symmetry
breaking terms are O

(
(mαW/~)2

)
and can be neglected.

The system has an approximate chiral symmetry50–52,
placing the wire in the BDI class. We refer to a nanowire
in this limit as a quasi -1D wire. The chiral topological
number Qchiral ∈ Z and the class-D topological number
are related as QZ2 = −1Qchiral31. In order to understand
this relation, consider a clean quasi-1D wire, where each
conduction channel in the normal state can be treated as
an effective 1D BDI superconducting wire, possibly sus-
taining Majorana end states. Then, |Qchiral| counts the
number of channels that support Majorana states. For
such a wire with a broken chiral symmetry, these Majo-
rana states pairwise hybridize at each end to form ordi-
nary fermions. Thus, if Qchiral is odd (i.e. QZ2

= −1),
an unpaired Majorana state remains and the wire is in
a topologically nontrivial state. The relevant topological
index that counts the number of Majorana end states are
obtained through Lyapunov exponents31,39,42,46. In the
disordered case, the comparison of a Lyapunov exponent
with ξ−1 determines whether that exponent contributes
to the overall chiral topological index Qchiral. We em-
ploy this method in the following sections to derive the
topological phase diagram in our analytical calculations.
We note in passing that while we work in 2D in this
Manuscript, our methods and our general results should
also apply to 3D cases with an appropriately calculated
mean free path (MFP).

For our numerical simulations, we take the TB form of
the Hamiltonians in Eq. (1) and (2) on a wire of length
L � lMFP, ξ where lMFP is the MFP, having metallic
leads (α = 0, ∆ = 0 and V (x, y) = 0 on the leads).
We plot the phase diagram that we obtain from the nu-
merics over the whole bandwidth, which is 8t for the
PW case with t as the hopping parameter t = ~2/2ma2

and a is the TB lattice spacing. (The bandwidth of the
RSW case depends on the Zeeman field.) As the low en-
ergy limit of the TB model corresponds to the parabolic
dispersion regime, the low µ regions in our plots yield
the parabolic dispersion results. Fulga et al. derive the
topological quantum number of disordered multichannel
wires for various symmetry classes from the scattering
matrices of the wires31. For a semi-infinite wire in the
BDI symmetry class, the topological charge Q is given
by Q = det(r) where r is the reflection matrix. (In this
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FIG. 2. (Color online) µ vs.
√
a2γ vs. Q for a quasi-1D PW

wire with dimensions W = 4a and L = 60000a (L used only
in the numerical tight-binding code) and with α = 0.01~/ma,
where a is the tight-binding lattice spacing. The blue-white
colors in the background are obtained numerically with a
tight-binding method whereas the black-yellow solid lines are
obtained using Eq. (3) with Eq. (6). The fuzziness at higher
disorder values, which disappears as L is increased, is due to
finite size effects. No fitting parameters were used.

limit, the eigenvalues of the reflection matrix must be
equal to ±1 to satisfy unitarity.) We use this relation to
calculate Q in our numerical TB simulations using the
Kwant library53.

A. Disordered quasi-1D p-wave wire

We now investigate the effects of disorder on the topo-
logical order in a quasi-1D PW wire having the Hamilto-
nian in Eq. (2). The superconducting coherence length
ξ is given by ξ = ~/m∆eff. In order to solve the
Schrödinger equation H Ψ = EΨ at E = 0 we follow
Ref.46 and off-diagonalize the Hamiltonian and apply an
imaginary gauge transformation. This allows us to re-
express Qchiral in terms of normal state transport prop-
erties, called Lyapunov exponents Λn, which in essence
specify the localization lenghts of eigenfunctions at a
given energy in a multimode wire54. The result for the
chiral topological index for a dirty wire is42:

Qchiral =

Nopen∑
n=1

Θ

(
ξ − 1

Λn

)
, (3)

where Nopen = bW/π
√

2mµ/~2c is the number of open
channels for the corresponding clean nanowire of width
W in the normal state at energy µ and bxc yields the
largest n ≤ x with n ∈ Z. Note that the Lyapunov
exponents are self averaging as L → ∞, with a mean
value given by

Λ̄n = n/(Nopen + 1)lMFP (4)

where lMFP is the MFP of the disordered wire54 and n ∈
1 . . . Nopen.

In a clean wire, Majorana modes appear if Nopen is
odd and Majorana states fuse to form ordinary Dirac
fermions if Nopen is even. This behavior survives up to a
finite disorder strength. Further increase of the disorder
strength gives a series of transitions between non-trivial
and trivial topological phases as Λn increase and cross
ξ−1. Hence, the number of possible transitions for a dis-
ordered wire is equal to the number of open channels
Nopen of the clean wire in its normal state for a given
value of the chemical potential (see Fig. 2).

In order to obtain l−1
MFP, we employ Fermi’s golden

rule to obtain the inverse momentum lifetime
〈
τ−1
k→k′

〉
(see Appendix) first for a quadratic dispersion relation
ε(k) = ~2k2/2m to obtain the ensemble-averaged inverse

momentum decay length
〈
l−1
MFP(kx,n→k′x,m)

〉
. Summing

over the possible transitions, we obtain

l−1
MFP =

4m2γ

~4πkF
α−1
N , (5)

where kF =
√

2mε/~2 is the Fermi wavevector and α−1
N

is a dimensionless number whose detailed form is given
in Eq. (A.5).

Note that this expression applies for quadratic disper-
sion only. Hence, the numerical TB calculations deviate
from this result for regions away from the bottom of the
band. In order to include the effects of band structure
analytically and to be able to make a comparison of our
formula with numerical results, we also analytically cal-
culate the MFP for the tight-binding dispersion relation
ε(kx) = 2t (2− cos (kxa)− cos (nπa/W )) and obtain

(lTB
MFP)−1 =

γ

NopenWat2
(αTB
N )−1. (6)

The corresponding number of channels is given by
Nopen = b(W/πa) arccos (1− ε/2t)c for 0 < ε < 4t and
byNopen = b(W/πa) arccos (1− (4− ε/2t))c for 4t < ε <
8t. The details of the dimensionless number (αTB

N )−1 is
given in Eq. (A.8).

B. Disordered quasi-1D s-wave wire

Here, we focus on the experimentally relevant quasi-
1D RSW wires decribed by the Bogoliubov-de Gennes
Hamiltonian in Eq. (1). As mentioned above, in the sin-
gle channel limit, the Hamiltonian in Eq. (1) is in symme-
try class BDI46 supporting a Z topological index Qchiral.
For a quasi 1D wire, the system has an approximate chiral
symmetry50–52. Following the treatment detailed in the
appendix of46, we extend the topological charge formula
for the single channel to a quasi-1D case by summing the
contribution of each Lyapunov exponent to the overall
chiral topological charge. For the single channel case, we
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FIG. 3. (Color online) µ vs. V0 =
√
a2γ vs. Q for a quasi-

1D RSW wire. The black-yellow lines, which represent topo-
logical boundaries, are obtained analytically using Eq. (9).
The background blue-white colors are obtained using tight-
binding numerical simulations with L = 60000a. In both
cases, W = 4a,α = 0.015~/ma, ∆ = 0.20t and B = 0.35t,
where t = ~2/2ma2 is the tight-binding hopping parameter
and a is the TB lattice spacing. The fuzziness of the numeri-
cal results at higher disorder values, which disappears as L is
increased, is again due to finite size effects.

FIG. 4. (Color online) µ vs. V0 =
√
a2γ vs. QZ2 for a

quasi-1D RSW wire for different B, obtained analytically us-
ing Eq. (8). a), b) Low magnetic field B & ∆ limit requires a
full RSW model and topological order can survive up to high
disorder strengths. c), d) The spin-polarized system can be
described by a PW model and topological order is completely
destroyed with less disorder. Here, W = 4a, α = 0.015~/ma
and ∆ = 0.20~2/2ma2, and a is the tight-binding lattice spac-
ing.

reproduce the result of Ref.46:

Q1D = sgn

(
ξeff −

1

|Λ(µ+ ε)|

)
×

sgn

(
ξeff −

1

|Λ(µ− ε)|

)
, (7)

where ε =
√
B2 −∆2 and the effective coherence length

is ξeff = ~ε
mα∆ . For a general multichannel wire we obtain:

Qchiral =

Nopen∑
n=1

Θ

(
ξeff −

1

|Λn(µ+ ε)|

)
−

N ′
open∑
n=1

Θ

(
ξeff −

1

|Λn(µ− ε)|

)
(8)

This formula suggests that the multichannel s-wave topo-
logical superconductor wire can be treated as two parallel
PW multichannel topological superconductor wires with
effective “spin polarized” chemical potentials µeff = µ±ε.
These two “wires” each have a corresponding number of
Lyapunov exponents Nopen and N ′open (which need not
be equal to each other) and a set of Lyapunov expo-
nents Λn → Λn(µeff). We caution the reader however
that these “effective” wires have nothing to do with the
channels of the clean wire as these modes are completely
mixed due to disorder. We calculate Λn and Qchiral as
above with the appropriate substitutions and obtain the
class D topological index as Q = (−1)Qchiral , which yields

Q =
∏
n,±

sgn
(
Λn(µ± ε)ξeff − 1

)
. (9)

In Fig. 3, we compare our analytical result with the nu-
merical TB simulations. We note the good agreement be-
tween Eq. 9 and the TB simulations all over the phase di-
agram. In Fig. 4 we see that increasing the magnetic field
spin-polarizes the RSW wire as expected, ultimately sep-
arating the phase diagram into that of two PW wires in
the high magnetic field limit (Fig. 4 c) and 4 d)). More in-
teresting physics occurs in the intermediate regime where
both spin components play a role, depicted in Fig. 3, 4 a)
and 4 b). In this regime, it is no longer possible to re-
duce the system to a simple spinless PW model, but it’s
still possible to get non-trivial topological phases that
support Majorana states. As the disorder strength in-
creases, series of topological transitions occur, similar to
the PW wire. However, unlike the PW wire, the num-
ber of transitions is given by Nopen + N ′open − 1 rather
than the Nopen transitions for PW wire. The increasing
fragility of the wire under rising B and further spin po-
larization is evident in Fig. 4, as the maximum disorder
value above which no topological transition is possible
decreases from Fig. 4 a) to Fig. 4 d).

For completeness, we also investigate how the topologi-
cal phase diagram as a function of magnetic field strength
B and chemical potential µ changes as disorder is in-
creased. In Fig. 5 [Fig. 6], the analytically calculated
phase diagram of a wire with W = a [W = 4a] is plotted
with increasing disorder. We note that the phase diagram
gets fragmented as number of channels are increased.
Moreover, the structure of the phase diagram becomes in-
creasingly complicated as the number of patches of topo-
logical regions increase. Perhaps more importantly, we
also note that for a given amount of disorder, there is a
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FIG. 5. (Color online) µ vs. B vs. QZ2 for varying disorder
strengths for an RSW TS with Gaussian disorder, analytically
calculated using Eq. (8) for a single-channel system. The
parameters used are α = 0.015~/ma and ∆ = 0.2~2/2ma2,
where a is the lattice spacing.

FIG. 6. (Color online) µ vs. B vs. QZ2 for varying disorder
strengths for an RSW TS with Gaussian disorder, analyti-
cally calculated using Eq. (8) for a four-channel TB system.
Subfigure c) matches the numerical data shown in Fig. 7. The
parameters used are α = 0.015~/ma and ∆ = 0.2~2/2ma2,
where a is the lattice spacing.

maximum Zeeman field Bmax above which no topologi-
cal order is present. The reason is that in our numerical
simulations, the localization length is not a monotonous
function of energy: it grows (with increasing energy) un-
til the middle of the band, and after that it decreases as
the energy comes closer to the band edge. This places
an upper magnetic field limit to topological regions since
the superconducting coherence length monotonically in-
creases with B. However for a quadratic dispersion, the
upper limit is infinite. We stress that the upper limit
discussed here has a different origin than that discussed
by Ref.55 for finite-length wires. Our numerical results
for the parameters of Fig. 6 is presented in Fig. 7. The
patchy structure is quite visible and well-correlates with

FIG. 7. (Color online) µ vs. B vs. QZ2 for a four-channel
system (compare with Fig. 6.) The background blue-white
colors are obtained using a numerical tight-binding simulation
with L = 20000a and W = 4a, while the black-yellow lines are
obtained analytically using Eq. (8). Here, V0 =

√
γa2 = 0.2t,

α = 0.015~/ma and ∆ = 0.2t, where t = ~2/2ma2 is the
tight-binding hopping parameter and a is the tight-binding
lattice spacing.

the analytical prediction.

III. CONCLUSION

In summary, we investigated the effect of disorder in
multichannel p-wave and s-wave topological supercon-
ductor nanowires. Our analysis showed that disorder in a
multichanneled wire creates reentrant topological states
in both the p-wave and the s-wave limit. We derived
analytical formulas for topological phase diagrams and
compared our results to numerical tight-binding simula-
tions. We showed that the opening and closing of trans-
port gaps (as opposed to electronic band gaps) due to
disorder can also drive a system to a topologically non-
trivial state. Our formulas also apply to lower magnetic
field regions in the phase diagram, where the p-wave ap-
proximation breaks down. As experimental wires always
have some disorder and can easily gated to have many
conduction channels, we expect our results to be experi-
mentally accessible.
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Appendix: Mean free path

We consider a long wire along the x-axis, having a
length of L and a width of W along the y-direction and
metallic leads at the end, with a Gaussian disorder of the
form 〈V (r)V (r′)〉 = γ δ(r− r′). We obtain the ensemble
average of the matrix element between the nth and mth

transverse channels as k(kx, n)→ k′(k′x,m) as

〈
|Vkk′ |2

〉
=

γ

LW

(
1 +

δn,m
2

)
. (A.1)

We then use Fermi’s golden rule to calculate the inverse
lifetime of a momentum state k, τ−1

k→k′ :

〈
l−1
MFP(kx,n→k′x,m)

〉
=

(
1

~
∂ εk
∂kx

)−1

× 2π

~
γ

LW
×(

1 +
δn,m

2

)
ρ(εk′). (A.2)

where εk gives the dispersion relation and ρ(εk) is the
density of states. We then sum over the initial and final
states k′ in Eq. (A.2) to obtain the total inverse MFP:

〈
l−1
MFP

〉
=
∑

kx,ky ;k′x,k
′
y

〈
l−1
MFP(kx,n→k′x,l)

〉
(A.3)

We first apply Eq. (A.3) to a free electron dispersion
of the form ε(k) = ~2k2/2m = ~2/2m (k2

n,x + n2π2/W 2)
for n ∈ 1, . . . , Nopen where Nopen is the number of open
channels in a clean wire with width W at energy ε. The

resulting total ensemble-averaged inverse MFP is

〈
l−1
MFP

〉
=

Nopen∑
n=1

Nopen∑
l=1

∫
dk′n,x
π/L

m2

~4

2γW

Lπ

(
1 +

δnl
2

)
π

W
×

δ(k′l,x ±
√

2mε/~2 − l2π2/W 2)√
2mε/~2 − n2π2/W 2

√
2mε/~2 − l2π2/W 2

=
4m2γ

~4πkF
α−1
N , (A.4)

where kF =
√

2mε/~2 is the Fermi wavevector,

α−1
N =

3Nopen

2

Nopen∑
n=1

(
W 2k2

F

π2
− n2

)−1

+

2Nopen

Nopen∑
n=1

Nopen∑
l>n

fn fl, (A.5)

and fn =
(
W 2k2F
π2 − n2

)− 1
2

, in agreement with Eq.(8) in

the supporting online material of Ref.42.
We now derive the MFP for a TB dispersion relation

given by

ε(kx,n) = 2t (2− cos (kx,na)− cos (nπa/W )) . (A.6)

The number of channels is given by Nopen =
b(W/πa) arccos (1− ε/2t)c for 0 < ε < 4t and by
Nopen = b(W/πa) arccos (1− (4− ε/2t))c for 4t < ε <
8t. The resulting disorder-averaged inverse MFP reads:〈

(lTB
MFP)−1

〉
=

γ

NopenWat2
(αTB
N )−1 (A.7)

where the dimensionless (αTB
N )−1 is given by

(αTB
N )−1 =

3Nopen

2

Nopen∑
n=1

1

sin2 (kx,n a)
+

2Nopen

Nopen∑
n=1

Nopen∑
l>n

fTB
n fTB

l (A.8)

where fTB
n =

(
sin2 (kx,n a)

)− 1
2 and sin (kx,n) is obtained

using Eq. (A.6)
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