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ABSTRACT 

 

 

Humanoid robots are expected to assist humans in the future. As for any robot with 

mobile characteristics, autonomy is an invaluable feature for a humanoid interacting with its 

environment. Autonomy, along with components from artificial intelligence, requires 

information from sensors. Vision sensors are widely accepted as the source of richest 

information about the surroundings of a robot. Visual information can be exploited in tasks 

ranging from object recognition, localization and manipulation to scene interpretation, gesture 

identification and self-localization.  

Any autonomous action of a humanoid, trying to accomplish a high-level goal, 

requires the robot to move between arbitrary waypoints and inevitably relies on its self-

localization abilities. Due to the disturbances accumulating over the path, it can only be 

achieved by gathering feedback information from the environment. 

This thesis proposes a path planning and correction method for bipedal walkers based 

on visual odometry. A stereo camera pair is used to find distinguishable 3D scene points and 

track them over time, in order to estimate the 6 degrees-of-freedom position and orientation of 

the robot. The algorithm is developed and assessed on a benchmarking stereo video sequence 

taken from a wheeled robot, and then tested via experiments with the humanoid robot 

SURALP (Sabanci University Robotic ReseArch Laboratory Platform). 
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ÖZET 

 

 

 İnsansı robotların, yakın gelecekte insanlara yardımcı olmaları beklenmektedir. 

Gezgin karakteristiğe sahip her robotta olduğu gibi, insansı robotlarda da otonom hareket 

kabiliyeti çevreyle etkileşimde büyük rol oynamaktadır. Otonomluk, yapay zeka öğeleriyle 

birlikte algılayıcı verisine ihtiyaç duyar. Robotun çevresi ile ilgili en zengin bilgiyi sağlayan 

algılayıcılar, görsel bilgi içeren kameralar olarak kabul görmektedir. Görsel bilgi, nesneleri 

tanıma, yerlerini belirleme ve hareket ettirme gibi uygulamaların yanında sahne 

anlamlandırılması, jest tanıma ve özkonumlandırma gibi problemlerin çözümünde 

kullanılabilmektedir. 

Bir insansı robotun üst seviye bir amaca hizmet etmek üzere gerçekleştireceği 

herhangi bir otonom hareket, bulunduğu çevre içerisinde belirli noktalara gitmesini 

gerektirmekte, ve dolayısıyla robotu özkonumlandırma yeteneğine bağımlı kılmaktadır. 

Hareketin sürdürüldüğü yol üzerinde gelen etkenlerin yarattığı hataların üstüste eklenmesi 

sonucu, çevreden bir geri beslemeye ihtiyaç duyulmaktadır. 

Bu tez, görsel odometri tabanlı bir yürüyüş yörüngesi düzeltme algoritması 

sunmaktadır. Bahsedilen yöntemde bir stereo kamera çifti tarafından algılanan üç boyutlu 

noktalar zaman içinde takip edilerek kamera setinin 6 serbestlik dereceli konum ve 

oryantasyonu tahmin edilmektedir. Algoritma, geliştirilme aşamasında önceden kaydedilmiş 

videolar vasıtasıyla denenmiş ve son halini aldığında insansı robot SURALP (Sabancı 

Üniversitesi Robot Araştırmaları Laboratuvar Platformu) üzerinde test edilmiştir. 
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Chapter 1 

 

 

 

 

1. INTRODUCTION 

 

The worldwide research interest towards humanoid robots has been growing for 

the past few decades. As the computational power and memory gets cheaper, scientists 

and engineers are encouraged to venture further possibilities to create more human-like 

machines. The humanoids are expected to assist and/or replace humans in many fields 

including, but not limited to, heavy-duty professions (e.g. mining, construction), service 

and healthcare industries, or even in our homes. Hence, mimicking the human form and 

functions is possibly advantageous as humans design their surroundings in favor of their 

own capabilities. But creating a human analogue from inanimate objects is an ambitious 

goal, especially because the human brain is a miraculous “machine”. Even if the 

computational power was not an issue, there is still a lot of ground to cover before a 

robot can match the versatility of a human-being. 

Achieving complete (or at least sufficient with respect to their purpose) 

autonomy for robots should be the first stepping stone towards the ultimate goal. They 

should be able to make the necessary decisions and adjustments themselves to be able to 

help humans. A robot can be said to be autonomous if it can perform its desired tasks in 

an unstructured and unsupervised scenario. This criterion can be satisfied if necessary 

thresholds are passed in research fields like artificial intelligence and cognitive robotics. 

But applications in these fields also need reliable information to work on; hence 

progress in lower level data acquisition and information extraction tools is crucial.   

Vision sensors, namely cameras, generate huge amounts of data depicting the 

environment. If these data are processed and converted to bits of meaningful 

information, higher level tasks can then be pursued. These sensors should be at utmost 

importance for humanoids. Any human environment, or a scenario including a human-

robot interaction, inherently contains important visual cues as the human brain and 

anatomy is evolved to favor the visual data over other senses. With that being said, 

robust and generic vision applications are very rare for robots, as the sensor data 
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depends heavily on environmental conditions and the computational costs of machine 

vision algorithms are still sometimes out of reach. Nevertheless, a large amount of 

research effort worldwide is directed at these challenges and successful examples exist 

in applications including object recognition, localization and manipulation, human 

identification, gesture recognition and self-localization.  

Self-localization is a problem that is encountered by every autonomous mobile 

robot that is trying to accomplish a given task that requires visiting an arbitrary number 

of waypoints. As a couple of application examples; a humanoid robot taking care of an 

ill person would have to go find the necessary medicine and bring it back to him/her, or 

a robot serving as a waiter in a restaurant would have to patrol between tables and 

occasionally go to the kitchen. Although these tasks seem trivial to a human-being, they 

are highly challenging problems for robots and gather attention from numerous 

researchers around the world.  

Estimating the change in position and orientation over time from a moving 

sensor set is generally called odometry. In a mobile robot application, these sensor sets 

often include inertial measurement units (accelerometers and gyroscopes), cameras, 

laser rangefinders, LIDARs and sonar sensors. A more specific method relying solely 

(or heavily) on the data from the cameras is called visual odometry.  Estimating the 

trajectory of a set of cameras in space (detached from robotics context) is often called 

egomotion estimation or camera pose estimation. 

In this work, a visual odometry algorithm using a stereo camera pair is 

developed and applied to the humanoid robot SURALP to correct for trajectory 

deviations during a walk in a static scene. The visual odometry algorithm includes 

feature detection and matching between the stereo pair, 3D reconstruction, feature 

tracking via optical flow and nonlinear least squares techniques to estimate the absolute 

position and orientation of the camera set relative to its initial pose. The development 

stage needed a ground truth trajectory to compare; hence a benchmarking video 

sequence recorded on a wheeled robot is utilized. The comparison between the 

algorithm results against the ground truth trajectory is presented. 

The organization of this thesis is as follows. 

The next chapter contains a literature survey on egomotion estimation in general 

and its applications in robotics. Several examples of humanoid robots with self-

localization methods are given. 
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Chapter 3 describes the experimental robot SURALP. The structure and 

hardware, walking reference generation and basic walking control routines are briefly 

presented. 

3D reconstruction and stereo vision basics are introduced in Chapter 4. Pinhole 

camera model is presented to show the relation between 3D points and camera pixel 

coordinates of the related features in the images and the necessary information needed 

to reconstruct a 3D point from its stereo correspondences. Calibration, undistortion and 

rectification are discussed as the necessary steps before the actual 3D reconstruction can 

begin. Finally, last part of this chapter explains how features are found and matched in 

stereo images and converted to 3D world coordinates. 

Chapter 5 contains an outline to the implemented visual odometry algorithm. 

Tracking of 3D points and the role of optical flow methods are presented. The camera 

pose estimation parameterized by a unit quaternion is defined as a nonlinear least 

squares problem with a nonlinear constraint and a few possible solutions are evaluated. 

The necessity of robust estimation techniques and an estimation refinement step 

including a probabilistic filtering (namely an Extended Kalman Filter) or a bundle 

adjustment process, are discussed. Finally, a comparison between possible solutions is 

carried out by assessing them using the benchmarking video sequence and its ground 

truth trajectory. 

The implementation of the visual odometry algorithm on the humanoid robot 

SURALP and the obtained results are presented in the Chapter 6. 

The last chapter summarizes the work carried out. Comments on the obtained 

results, conclusion remarks and directions for the future work are given in this part. 
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Chapter 2 

 

 

 

 

2. A SURVEY ON EGOMOTION ESTIMATION AND ITS APPLICA TIONS IN 

ROBOTICS 

 

 

This chapter presents a literature survey on the egomotion estimation and its 

application to robotics to establish the ground of this thesis among related research 

areas. In the first section, several methods of egomotion estimation and the application 

areas in computer vision systems in general are pointed out. The following sections 

sample the mobile robotics and visual odometry research area and finally, going from 

general to specific, the state-of-the-art humanoid robots with self-localization abilities 

are identified. 

 

2.1. Methods and Application Areas 

 

The egomotion estimation is defined as the process of calculating the observer’s 

motion using the visual data. Several solutions to this problem exist in the literature and 

there are multiple categories that divide them: motion estimation level (linear and 

angular velocities vs. the absolute position and orientation of the camera), camera setup 

(single vs. multiple views) and the motion of the scene (static vs. dynamic). 

Early works in this field deal with relating image velocities to linear and angular 

velocities of a single camera. They commonly make two main assumptions; the 

apparent motion of the scene is generated by the camera itself and instantaneous 

velocities of the projected points can be observed.  

One of the pioneer works is given in [1] where the authors decouple the 

observed motion from scene depth in order to create a bilinear constraint on linear and 

angular velocity of the camera. Their method is one of the many that relies on optical 

flow estimation for representing image velocities. Soon after, this work is followed by a 

series of methods [2-7] that are built on the estimation of the focus of expansion (FOE). 
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The observation is when the observer is purely translating, the projected motion vectors 

of the points in the scene converge to (or diverge from) a single point (FOE), and in the 

case of a complex motion FOE can be used to decouple the estimation of rotation and 

translation. Finally, [8] presents a notable work based on motion parallax and 

decoupling the translation from rotation from image deformations. A comparison in 

performance of some of these methods is given in [9]. 

Another approach is to use the epipolar constraint between the two views taken 

by a single calibrated camera at different time steps. These methods result in discrete-

time estimations of the motion parameters (translational and rotational displacement of 

the camera between frames) and some examples are given in [10-13]. They are closely 

related to structure-from-motion (SFM) applications where the 3D structure of the scene 

and the motion parameters of the camera are simultaneously estimated. The SFM 

applications generally are finalized by an offline batch processing with bundle 

adjustment [14] to refine the resulting 3D reconstruction and the camera trajectory. The 

bundle adjustment is adopted by robotics community to be applied in real-time (which 

will be discussed in the next section) and also implemented in this thesis’ work. 

It is important to note that the methods introduced so far suffer from the 

ambiguity in translation and scale created by the projective geometry, since they do not 

benefit from an auxiliary view of the scene. In this thesis work, a stereo camera pair is 

utilized to overcome this problem; hence these methods are not considered. 

A family of algorithms known as Perspective-N-Points (PnP) exists to solve for 

the absolute position and orientation of the camera given the projections of n known 

scene points to the image plane. Linear solutions exist in the literature for P3P [14] and 

P4P [15], but above 5 points the solution can be obtained using Direct Linear Transform 

(DLT) [16]. An important note on these algorithms is P3P solutions contain an 

ambiguity and result in 4 possible solutions, whereas P4P algorithms (and above) have a 

unique solution as long as the points are non-coplanar. Another major concern is 

computational efficiency as these algorithms are generally iterative. An efficient version 

(EPnP) is introduced in [17] to match the needs of a real-time system. Although these 

algorithms relate scene points to a single calibrated camera, a stereo system could be 

used to initially estimate the 3D scene structure, and solve for camera poses by tracking 

these features over time. The authors of [18] provide a visual odometry pipeline 

utilizing these algorithms and a performance comparison between them. 
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Up to this point, all of the above mentioned algorithms dealt with projections of 

the scene points onto the image plane, whereas with a multiple-view camera rig 

estimations of the 3D scene points are available at any time. Therefore, finding the 

transformation between the estimated 3D points in the camera frame and their known 

world frame coordinates is possible. This can be seen as a data alignment problem and a 

solution is described in [19]. This is the closest solution to the one implemented in this 

thesis work where the transformation between 3D points are estimated at each step. It 

also provides the insight that the translation and rotation between the point clouds can 

be decoupled by moving the centroids of them to the origin. 

Another notable application, along with SFM and robotics, is the augmented 

reality (AR) systems. AR systems aim at inserting computer generated images 

(generally of 3D graphic models) onto real video sequences. Although they often adopt 

a marker with a known geometry placed into the scene to estimate the camera pose, 

there is a growing research interest in marker-less AR. These marker-less AR 

applications also benefit from egomotion estimation techniques and solutions provided 

are closely related to the ones used in robotics research. An example of such a system is 

given in [20] dealing with partially known dynamic scenes. 

 

2.2. Literature Survey on Visual Odometry in Mobile Robotics 

 

Odometry is a term used in navigation and robotics for estimating the actual 

position and orientation of a moving vehicle/robot using the onboard sensor data. The 

simplest odometry is achieved by integrating the estimated velocity of the vehicle over 

time and this method is called dead reckoning.  

For a wheeled robot, an example dead reckoning method could be measuring the 

wheel speeds and converting them to linear speed which is then integrated over time. 

But this method has an obvious flaw; we are assuming that the exact speeds of the 

wheels can be measured, and that the velocity of the ground is the same as the wheel’s 

tangential velocity at the point of contact, which means no slipping. These assumptions 

very rarely (if not never) hold true. Hence we integrate the errors along with the 

estimations and the estimated position drifts from the actual one very rapidly. This 

drifting issue exists for any kind of odometry actually, so the performances of the 

methods are evaluated as the percentage of drift in a distance traveled.  
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Motion in 3D world has 6 degrees-of-freedom (DOF), so one needs to specify 3 

position and 3 orientation components to fully define a body in space. Hence, full visual 

odometry has to estimate all 6 DOF to allow the robot to move freely. There are 

however, some works in the literature that benefit from a simplification of the motion 

parameters. These are generally wheeled or tracked robots, or automated cars which are 

assumed to move strictly on the ground plane. Examples of two wheeled robots with 

3DOF (planar) visual odometry systems are given in [21], [22] and [23]. These robots 

adopt a single camera attached to their body watching ground movement and use optical 

flow fields gathered from the ground texture to estimate their motion. Very similar 

approaches are presented in [24] and [25] applied on automated cars. Although these 

approaches should yield more robust results than a full 6DOF estimation (because there 

are less parameters to estimate), their use is limited to these occasions and even then, 

the imperfections on the ground (level differences, bumps) could affect the outcome 

significantly. 

Another popular approach is Monte Carlo Localization (MCL), and it is used to 

localize the robot given the map of its environment. This method is an application of the 

particle filters in robot localization and it is based on randomly sampling the space of all 

possible configurations, and updating the probability of correctness of each sample with 

coming sensor data. In [26], an application of this method on a shopping companion 

wheeled robot equipped with an omnidirectional camera is described. Their approach 

requires the robot to be led through the environment once as a training session to build 

the necessary map. Another such example is given in [27], where the robot is a 

quadruped competing in the RoboCup football challenge. The environment is a mini 

football field and it is encoded as a map into the robot. Although the method is 

extendable to localize the robot in 6DOF, sampling the possible configurations in the 6-

dimensional space is costly (curse of dimensionality); hence these examples also 

estimate the 3DOF position and orientation of the robot on the ground plane. 

Apart from the previously discussed methods, the visual odometry techniques 

adopted by the robotics community share a large amount of common steps. They are 

based on reconstructing the 3D scene (dense or sparse) by triangulation and tracking the 

obtained 3D points over time to solve for the absolute position and orientation of the 

robot in the world coordinate frame. Random Sample Consensus (RANSAC) is also 

very popular for dealing with outliers created by false matches and tracking errors. Few 

of many examples of such systems in wheeled locomotion are given in [28] and [29].  
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Flying robots like quadrotors are generally designed for outdoor applications and 

rely on GPS data for self-localization. There is however a respectable amount of 

research aimed to apply visual odometry methods on these machines for either getting a 

finer estimation of the robot position, or to be used in GPS-denied indoor applications. 

Authors of [30] applied visual odometry methods on a quadrotor flying in an indoor 

environment and their results show the drastic drift in estimation for such rapidly 

moving machines even with a refining bundle adjustment process.  

The bundle adjustment is a powerful technique and as mentioned before, it is 

widely used in SFM applications to refine the final 3D reconstruction and camera 

trajectory simultaneously. Although the systems of equations tend to get really large 

even for two consecutive frames, recently there has been a significant progress towards 

achieving online bundle adjustment. So called Sparse Bundle Adjustment (SBA) [31] 

method is based on abusing the sparse structure of the system created by the lack of 

interaction between the 3D scene points and solving the problem efficiently. The 

authors of [32] implemented SBA on a mobile robot with a sliding window approach to 

minimize the drift. Their sliding window resembles the batch operation of SFM 

applications using only a small number of consequent images. One key remark on their 

algorithm is that they do not estimate the egomotion using images before the bundle 

adjustment, they use the odometry estimation acquired from the other sensors of the 

robot (dead reckoning result) as an initial guess for SBA. Their results show that this 

approach is feasible and satisfactory. 

Recently, there has been a very successful and renowned example of 

autonomous robots benefiting from visual odometry techniques: the NASA Mars 

Exploration Rovers Spirit and Opportunity. These robots spent 2 years on the surface of 

Mars, moving autonomously (as the communication delay does not allow human 

supervision). Their method is described in [33] and [34], and the evaluation of the 

system performance on Mars is published in [35]. They have adopted an Expectation 

Maximization (EM) method to calculate the robot trajectory in 6DOF, by defining a 

normally distributed error over the reconstructed 3D points. This error modeling 

technique is introduced in [36] and forms a basis for the necessary robust estimation of 

visual odometry over very long distances. Although the resulting drift in estimated 

position is minimal, it still exists as a threat against long distance navigation. Hence, 

they have relied on a sun sensor to crudely localize the absolute position of the robot on 
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the planet surface and prevented the drift from growing unboundedly [37]. A computer 

generated image of a NASA Mars Exploration Rover is shown in the Figure 2.1. 

 

 

 

Figure 2.1. A computer generated image of a NASA Mars Exploration Rover 

 

 

The drift in visual odometry is counter-intuitive in a sense that the 3D 

measurements seem to be coming from a static world and localization among them 

should be trivial. One has to take into account that the measurements of the 3D points in 

the world rely on the exact knowledge of the motion parameters of the camera set. This 

creates a “chicken or egg” problem because estimation of the camera pose also depends 

on the 3D scene information. That is to say, while estimating the 3D point locations and 

the egomotion of the camera set on the fly, the incoming 3D point coordinates contain 

errors caused by prior inaccurate camera motion parameters. Regarding this issue, there 

is a great deal of research effort spent to create Simultaneous Localization and Mapping 

(SLAM) systems. 

SLAM researchers rightfully claim that localization and mapping form a coupled 

problem and cannot be solved separately. The provided solutions often contain 

information from various sensors including inertial measurement units (IMU), laser 

rangefinders, LIDARs and sonar sensors along with multiple cameras (color and 

grayscale). Hence SLAM solutions can be seen as higher level probabilistic algorithms 
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utilizing visual odometry estimations. Equivalently, the visual odometry techniques can 

be seen as local estimators and SLAM algorithms as global ones. In this thesis work, 

SLAM methods are not explored, but they are worth mentioning to establish the current 

research trends. 

SLAM is first introduced in 1986 by the authors of [38] and [39], and actually 

spent a rather quite time during the 1990s with few researchers working on a solution 

because of the necessary computational power. In the early 2000s, advances in 

computer hardware enabled SLAM algorithms to be solved in acceptable time steps and 

the research interest grew exponentially.  

The key concept of SLAM is the so-called “loop closures”. These loop closures 

are the points on which the robot comes to a previously visited waypoint and recognizes 

the features from a memorized, permanent map. These maps, which typically consist of 

thousands of geometric features, are refined on these loop closure points to prevent 

unbounded growth of drift. The central problem of visual SLAM arises immediately as 

the recognition of 3D features from different points of view, which requires appropriate 

descriptors for each geometric feature. Because of the required computational power to 

process large maps, SLAM problem is often reduced to refining a bird’s eye view map 

of the environment and the robot’s motion parameters are expressed in 3DOF planar 

coordinates. Nevertheless, there are applications in the literature which work with full 

3D maps.  The refinement process is generally carried out with probabilistic methods 

like particle filters or Extended Kalman Filters (EKF). EKF-SLAM is especially 

popular because it creates a framework to merge data coming from various sensors 

along with modeling the robot dynamics. 

Very few examples of the existing SLAM research and applications are given in 

this survey, because trying to cover the SLAM literature exhaustively would require a 

significant amount of time and effort and actually is out of focus of this thesis. 

Wheeled or tracked robots are the ones that attract most SLAM researchers, 

because of the simplicity of locomotion. These robots allow engineers to make 

simplifying assumptions that prove to be valuable for online SLAM applications. An 

application of EKF-SLAM with a wheeled robot moving in an outdoor environment is 

given in [40]. They utilize data from vision sensors along with GPS and dead reckoning 

to find a statistically optimal map with EKF. The authors of [41] implemented a Rao-

Blackwellised Particle Filter (RBPF) based SLAM on a wheeled robot in an indoor 

environment. The results of their work clearly show the difference between visual 
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odometry estimation and SLAM correction. These robots work with planar maps as they 

assume the robot trajectory (both in position and orientation) does not leave the ground 

plane.  

Flying robots (namely quadrotors) are also considered as SLAM application 

candidates. An EKF-SLAM system on a quadrotor moving in GPS-denied indoor 

environments is presented in [42]. The existing sensors of the described system are a 

stereo camera rig, a laser rangefinder and an IMU. The EKF returns a state estimate in 

4DOF (3 translation and yaw orientation) combining the sensor data. This is a similar 

simplification to a wheeled robot moving on the ground plane, only the plane that 

quadrotor is moving is assumed to be parallel to the ground rather than coincident. This 

assumption is achievable by their adopted feedback loop to correct for roll and pitch 

angles of the robot measured by the IMU. A very recent and notable SLAM example 

with a quadrotor micro air vehicle (MAV) is given in [43]. The presented system works 

with a single RGB-D (color and depth) camera to create a dense 3D model of the 

environment. This work shows the impact of advances in sensor technology on higher-

level tasks. Their resulting 6DOF trajectory estimation and the environment map are 

impressive. A photograph of the MAV is shown in Figure 2.2. 

 

 

 

Figure 2.2. A quadrotor MAV with and RGB-D camera 

 

 

Swimming robot research in general is smaller than the other branches, so their 

SLAM applications are even rarer. The SLAM problem of swimming robots does not 

allow any simplifying assumption as the underwater world has inherently 6DOF. The 
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dynamic nature of the medium and the sensor behavior underwater add up to the 

challenge. Pioneer works on this problem are very recent (dating back to 2004) and are 

presented in [44-48]. The amphibious robot from [48] is shown in Figure 2.3. 

 

 

 

Figure 2.3. An amphibious robot using stereo cameras 

 

 

Legged robots subdivide into bipeds, quadrupeds and hexapods (with few 

exceptions). Visual odometry and SLAM applications in bipeds are analyzed in the next 

section. In the case of quadrupeds and hexapods, there is a surprisingly small amount of 

research aimed towards the SLAM problem. This lack of research interest could be 

caused by the purpose of such multi-legged structures. The multi-legged locomotion is 

inherently more stable than the bipedal one; hence the research areas of these types of 

robots are mainly shifted to stable walking and path planning in outdoor rough terrains. 

The outdoor scene is proven to cause a great amount of challenge against visual 

odometry techniques and the added erratic motion of the robot walking on rough terrain 

is a deal-breaker for vision systems.  

An example work on quadrupeds aiming at modeling the rocky terrain while 

localizing the robot is given in [49]. They have mounted a stereo camera rig on a 

commercially available quadruped known as LittleDog to gather 3D points from the 

terrain. Their work differs from traditional SLAM approaches, because they use point 

cloud matching via Iterative Closest Point (ICP) algorithm to build a consistent 3D map 

of the rocky terrain and localize the robot. Although their results are very good, this 

approach is very computationally costly and not suitable for real-time requirements of 
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dynamic walking, so the described scenario requires the robot to move in discrete steps. 

The LittleDog and the stereo camera setup depicted in this publication are shown in 

Figure 2.4. 

 

 

 

Figure 2.4. LittleDog and the stereo camera setup [49] 

 

 

A very recent work on hexapods and SLAM is presented in [50]. A single 

camera is mounted on the hexapod and the visual data is combined with the reference 

trajectory to calculate the actual trajectory of the robot. Their results are not very clear, 

but they provide very useful insights. They claim that for such small robotic systems, 

the onboard computational power is always relatively low; so the proposed methods 

should be able to keep track of the robot even at very low frame rates. Another 

important issue pointed out is the effect of abrupt changes in motion due to the legged 

locomotion on the visual SLAM. 

 

2.3. Literature Survey on the Self-Localization Problem in Humanoid Robots 
 

Studies show that humans rely on visual data to localize themselves in their 

environment. In a recent study [51], experiments with a number of human subjects are 

carried out to see if they can reach a target distance while blindfolded. The results show 

that even the subjects tried to repeat a trajectory they had walked minutes ago while 

they were seeing; the drift in direction and distance traveled was significant and 
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proportional to the length of the test. This result encourages the use of vision sensors in 

humanoid robots to generate feedback from the environment. 

An extensive study on human perception of visual motion is given in [52]. The 

study claims there is evidence that the humans perceive movement from optical flow 

and use that information along with depth perception generated by binocular disparity to 

sense their egomotion as well as the motion of the other dynamic objects. These 

observations point out the similarities between the human perception of egomotion and 

the methods applied on a humanoid robot in this thesis. 

In the research field of humanoid robotics, there are a number of bipedal 

walking machines, but few of them have full-body structure needed to perform high-

level tasks. The humanoids with self-localization capabilities are even rarer and form an 

elite group among the other ones. 

The self-localization problem of humanoids is very similar to the other types of 

mobile robots; but it is generally more challenging as the vibrations and abrupt motions 

caused by bipedal locomotion are significant. These disturbances highly affect the data 

gathered by any onboard sensor and threaten the health of any kind of odometry 

estimation. The magnitude of these disturbances and their effect on low-end vision 

sensors are clearly shown in [53]. In the implementation of this thesis work, the motion 

blur effect is not filtered but minimized by using cameras with high image acquisition 

frame rates and low exposure times. Even though the images are clean, estimating the 

motion parameters going under such high frequency changes is a challenging work. 
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Figure 2.5. Two commercial humanoid robots ASIMO and REEM-B 

 

 

As mentioned before, there are only a handful of humanoid robots capable of 

localizing themselves in their environment. One of the most popular ones, ASIMO [54] 

is known to be able to perform tasks that require self-localization, but there are no 

publications in the literature explaining the details. 

REEM-B [55] is another commercial humanoid robot that has the ability to build 

maps of indoor environments and localize itself using these maps. REEM-B has a stereo 

camera rig that can locate objects in 3D, but it is only used as auxiliary information for 

self-localization task. It uses two laser sensors located on its feet and walking trajectory 

reference to build 2D local maps, and DP-SLAM algorithm to merge the local maps into 

a global one. Once the map building process is finalized, 3DOF self-localization is 

performed using MCL. If the degree of confidence in localization drops under a certain 

level, visual landmarks recorded while building the map are compared to the camera 

data. Photographs of ASIMO and REEM-B are shown in Figure 2.5. 

HRP family [56] of humanoid robots includes a few of the most advanced 

humanoid robots and they have been used by various research groups. A photo showing 

HRP-2, HRP-3 and HRP-4 is given in Figure 2.6. 
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Figure 2.6. A photograph of HRP-2, HRP-3 and HRP-4 respectively 

 

 

The authors of [57] and [58] present a visual EKF-SLAM method using a single 

camera applied on HRP-2. They point out that the necessary lateral motion of the body 

for a stable walking pattern can also be used to create a parallax effect between two 

frames taken with a single camera. Whereas the same robot is used in [59] and RBPF-

SLAM method is applied on a stereo vision system to generate a grid-based map of the 

environment.  

Another humanoid that has been the test bed of various successful self-

localization algorithms is the H7 [60]. Figure 2.7 shows photographs of H7. 

MCL approach has been implemented in a way very similar to that of REEM-B 

in [61]. The method uses stereo vision to reconstruct 3D points in the scene, and project 

the scene points to the ground plane to be used as a map for 3DOF MCL estimation.  

The state of the art for visual self-localization in humanoid robots is accepted to 

be the work described in [62] and [63]. Their method uses stereo vision and visual 

odometry to create 3D local maps to be used in an EKF-SLAM context to estimate the 

trajectory of the robot in 6DOF. The visual odometry estimation method described in 

these publications form the basis of the work implemented in this thesis. So, their 

methods will be explained in more detail. 
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The system described in both publications starts by finding the dense depth map 

of the scene from the stereo cameras. Because dense depth maps often contain a high 

level of noise, they have provided a preprocessing technique to filter out the outliers in 

the depth data. The dense depth map is not used for visual odometry estimation, but to 

build a dense 3D map of the environment. The visual odometry calculation is carried 

out by tracking point features in the scene. They have used a Kanade-Lucas-Tomasi 

(KLT) feature tracker which is a fairly standard method based on finding features with 

Shi-Tomasi corner detector [64] and tracking them over time using Lucas-Kanade 

optical flow [65]. The estimation of the transformation between the 3D camera frame 

coordinates of the tracked features and their positions in the 3D world frame map is 

solved as a registration problem. Because of the errors in triangulation and tracking, 

they have devised a robust estimation method using RANSAC with a rigid body motion 

constraint. The difference in approaches described in both publications is that the 

method presented in [62] estimates the rotation and translation of the camera set 

simultaneously, while in [63], these motion parameters are decoupled and estimated 

separately. Further details on both of these approaches will be given in the Chapter 5. 

 

 

 

Figure 2.7. The humanoid robot H7 

 

The next chapter introduces the experimental humanoid robot SURALP and 

gives a brief overview on hardware and stable walking control methods utilized by the 

robot. 
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Chapter 3 

 

 

 

 

3. THE EXPERIMENTAL HUMANOID SURALP 

 

 

SURALP is a human-sized full-body robot designed and constructed at Sabanci 

University Robotics Laboratory. This robot is introduced in this chapter with a special 

attention to its reference generation method for changing the direction of the walk on 

the fly. 

 

3.1. Hardware 
 

A picture and dimensional drawings of the robot are shown in Figure 3.1. It is 

designed in human proportions with 29 DOF, including 6-DOF legs, 6-DOF arms, 1 

DOF hands, a 2-DOF neck and a 1-DOF waist [66]. The kinematic arrangement is 

presented in Figure 3.2. The weight of the robot is 114 kg. Various dimensions are 

tabulated in Table 3.1. DC motors are used as actuators. Motor drivers are in the trunk. 

Belt-pulley systems transmit the motor rotary motion to Harmonic Drive reduction 

gears (Table 3.2). The sensor system of SURALP includes encoders measuring the 

motor angular positions, six-axes force/torque sensors positioned at the ankles and 

wrists, a rate gyro, an inclinometer, and a linear accelerometer mounted at the robot 

torso. Two CCD cameras are mounted to the head of the robot for visual information. 

Table 3.3 shows the sensor working ranges, mounting locations and allocated 

communication channels. 

The control hardware of SURALP consists of a modular dSpace digital signal 

processing system in a backpack configuration Figure 3.3. The controller cycle time 

employed is 1 milliseconds.  

 



 19 

 
 

 
 

Figure 3.1. Humanoid robot SURALP, dimensions. 
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Figure 3.2. Kinematic arrangment of SURALP 

 

 

 

Table 3.1. Lenght and weight information of links 

Upper Leg Length 280mm 

Lower Leg Length 270mm 

Sole-Ankle Distance 124mm 

Foot Dimensions 240mm x 150mm 

Upper Arm Length 219mm 

Lower Arm Length 255mm 

Robot Weight 114 kg 
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Table 3.2. Joint actuator specifications 

Joint 
Motor 
Power 

Pulley 
Ratio 

HD 
Ratio Joint Range 

Hip-Yaw 90W 3 120 -50 to 90 deg 

Hip-Roll 150W 3 160 -31 to 23 deg 

Hip-Pitch 150W 3 120 -128 to 43 deg 

Knee 1-2 150W 3 160 -97 to 135 deg 

Ankle-Pitch 150W 3 100 -115 to 23 deg 

Ankle Roll 150W 3 120 -19 to 31 deg 

Shoulder Roll 1 150W 2 160 -180 to 180 deg 

Shoulder Pitch 150W 2 160 -23 to 135 deg 

Shoulder Roll 2 90W 2 120 -180 to 180 deg 

Elbow 150W 2 120 -49 to 110 deg 

Wrist Roll 70W 1  74 -180 to 180 deg 

Wrist Pitch 90W 1 100 -16 to 90 deg 

Gripper 4W 1 689 0 to 80 mm 

Neck Pan 90W 1 100 -180 to 180 deg 

Neck Tilt 70W 2 100 -24 to 30 deg 

Waist 150W 2 160 -40 to 40 deg 

 

Table 3.3. Sensor system of SURALP 

 Sensor Number of Channels Range 

All joints Incremental 
optic encoders 

1 channel per joint 500 pulses/rev 

Ankle F/T sensor 
6 channels per ankle 

± 660 N (x, y-axes) 

± 1980 N (z-axis) 

± 60 Nm (all axes) 

Torso 

Accelerometer 3 channels ± 2 G 

Inclinometer 2 channels ± 30 deg 

Rate gyro 3 channels ± 150 deg/s 

Wrist F/T sensor 
6 channels per wrist 

± 65 N (x, y-axes) 

± 200 N (z-axis) 

± 5 Nm (all axes) 

Head CCD camera 2 channels 640x480 pixels (30 fps) 
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Figure 3.3. The hardware architecture of SURALP 

 

 

3.2. Walking Reference Generation 
 

A ZMP based walking reference generation technique is employed. Firstly, 

references for straight walk are considered. In order to change the direction of the walk, 

a modification which maps straight walk references on arc shaped paths is employed. 

The next two subsections discuss the straight walk references and the mapping for 

direction changes. 

 

3.2.1. Straight Walk 
 

The Linear Inverted Pendulum Model (LIPM), with its simple structure, is 

suitable for reference generation purposes. A point mass is assigned to the robot center 

of mass (COM) and it represents the trunk of the robot. The point mass is linked to a 

stable contact point on the ground via a massless rod, which is idealized model of a 

supporting leg. With the assumption of a fixed height for the COM, a linear system 

which is decoupled in the x and y directions is obtained. The system described above is 

shown in Figure 3.4. T
zyx cccc )(=  represents the position of the point mass.  
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The obtained expression for the COM x directional component is [70]: 
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where cn zg≡ω . 

[70] finds the y directional component of the COM as 
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The curves obtained for ref
xc and ref

yc are shown in Figure 3.6 together with the 

corresponding ZMP references defined in Figure 3.5. The infinite sums in (3.3) and 

(3.5) are approximated by finite sums of 24 terms. In Figure 3.6, the following 

parameter values are used: 1.0=A  m, 1.0=B  m, 04.0=b  m, 1=T s and 2.0=τ s. 

Foot position reference trajectories have to be designed too. Firstly foot placement 

timing and world frame foot position and orientation references are defined. Typical x  

and z -direction components of the foot trajectories used in this thesis are shown in 

Figure 3.7. dT  and sT  represent the double and single support periods, respectively.       
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( τ2=dT , τ−=TTs .) B  is the step size from Figure 3.5. The y direction trajectories 

are constant at A−  and A  for the right and left feet, respectively, where A  is half of 

the foot to foot y direction distance also shown in Figure 3.5. sh  is the step height 

parameter. The foot orientation references are generated in such a way that the feet are 

parallel to the even ground.  

The joint position references are obtained through inverse kinematics from COM 

and swing foot references defined in world frame coordinates. The process of reference 

generation is explained in detail in [70]  and [71]. 

  



 

 

 

 

Figure 3.
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.6. x  and y -direction COM and ZMP referen

 

rences  
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Figure 3.7. x  and z -direction foot frame references in as expressed in the world frame. 
Solid curves belong to the right foot, dashed curves indicate left foot trajectories. (The

y -directional foot references are not shown are equal to A−  and A , respectively.) 

 

 

3.2.2. Walk on Circular Arc Shaped Paths 
 

The straight walk trajectory briefed in the previous section is exploited in this 

section to generate a walking reference which follows a circular arc as shown in Figure 

3.8.  

 
 

 
Figure 3.8. SURALP CAD model on a arc shaped walking trajectory. 
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a) 

 

b) 

 
Figure 3.9. Mapping of foot placement locations of a straight walk onto the foot 

placement locations of a circular arc-following walk. a) Straight walk b) Circular arc-
following walk. 
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The method first considers the ground level line which connects the body frame 

origin projections on the ground at the beginning and at the end of the straight walk 

references (Figure 3.9.a). The right and left foot landing locations in the lateral 

direction are symmetric with respect to this line. The robot body and the feet are 

always kept parallel to it. The distance covered by the robot on this line can be 

computed as  

BNs )1( −= , (3.7) 

where N  stands for the number of swings in the step sequence and B  is the step 

size. This distance is mapped on a circular arc (Figure3.9.b ) to cover the angle  

c
total r

BN )1( −=ψ . (3.8) 

Here, cr  is the radius of the turning circle. The body and feet are kept parallel to the 

arc. This, with (), results in a turn of the robot to the right by the angle totalψ  in N  

steps. The smaller the radius cr  the acute is the turn. A very large radius corresponds 

to an almost straight walk. 

In implementations with SURALP, cr  is a command variable interfaced to a 

human used through a joystick. Neutral joystick lateral position corresponds to a radius 

of 1000 m: This is a straight walk command. Other joystick lateral positions decrease 

the turning radius. Negative radius values are interpreted as commands for turning left. 

In this thesis, the joystick commands are replaced by radius reference values computed 

by the proposed visual path correction system. 

 

3.3. Basic Walking Control Algorithms 
 

The basic control actions, also presented in [66] are shortly described below. 

Figure 3.10 shows the block diagram of control actions. 
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3.3.1. Joint Level Control 

 

The references for the leg joint positions are generated through inverse kinematics 

from Cartesian foot references and the ZMP based COM reference trajectory [70]. 

Independent PID controllers are used for joint position control. The PID controller gains 

are obtained via trial and error. 

 

3.3.2. Foot Roll Control 

 

The scheme computes ankle roll joint angle reference modifications in such a way 

that the feet are aligned parallel to the ground when they are in contact with the ground. 

The reference modification is the form of a first order filter applied on the foot to 

ground contact torques. The following reference modification law in the Laplace 

domain is employed for the two ankles separately. 

( ) )()()( ssKss rollrollrollrollroll τλθθ ++= , (3.9) 

Here s is the Laplace variable. rollθ  is the ankle roll joint reference angle 

computed by inverse kinematics. rollθ  is the reference ankle roll angle after the 

reference modification. tollτ is the torque about the roll axis due to the interaction of the 

foot with the ground. This torque is measured by torque sensors positioned at the ankle 

in an experimental work. rollK  and rollλ  are low pass filter constants which are 

determined by trial and error in our approach. In the digital implementation, the Laplace 

domain transfer function in (4.18) is approximated by a difference equation.  

 

3.3.3. Ground Impact Compensation 

 

Another important problem in achieving stable walking is the impact generated at 

the landing of the swing foot. A shock absorbing control law is employed as a solution. 

This control law is activated with every landing of the swing foot. In effect, a virtual 

mass-spring-damper system is positioned between the hip and ankle. The following 

second order relation modifies the distance between the hip and sole of the landing foot. 
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Here l  represents the hip-to-sole distance reference obtained from Cartesian foot 

reference trajectories. l  is its shock absorber modified version. zF  is the z  direction 

component of the ground interaction force acting on the foot. Again, an ankle-mount 

force sensor measures this force. lm , lb  and lk  are the desired mass, damping and 

stiffness parameters of the mechanical impedance relation described in (4.19). These 

reference modification laws are applied for the two legs independently. 

 

3.3.4. Early Landing Modification 

 

One of the main problems of early landing of a swing foot is that when it is on the 

ground before the planned beginning of the double support phase, it will go on moving 

forward. In effect, the two feet on the ground will try to push the robot trunk in two 

different directions. The feet will slip; the robot will turn and possibly lose its balance. 

In order to avoid such a condition, the x - direction references are modified in the case 

of an early landing. Specifically, this modification “stops” the x  direction references of 

the feet at their values they had at the instant of early landing. These references are kept 

fixed until the next walking cycle and start from their fixed values, whenever the 

planned x  direction references (as expressed in the body frame) reach them again.  
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Figure 3.10. The walking controller block diagram 
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Chapter 4 

 

 

 

 

4. 3D RECONSTRUCTION VIA STEREO VISION 

 

 

This chapter summarizes the 3D reconstruction algorithm needed for the visual 

odometry estimation technique described in the Chapter 5. Initially, the pinhole camera 

model used to relate the 3D points to pixel coordinates is introduced and the necessary 

information needed to invert the perspective projection is discussed. Brief summary of 

stereo camera calibration, undistortion and rectification steps are given as an offline 

procedure before the actual reconstruction is done. Finally, the online part of the 

algorithm is dissected into feature detection, finding stereo correspondences and 

disparity to depth conversion with calibrated and rectified stereo camera pairs. 

 

4.1. The Pinhole Camera Model 
 

 The pinhole camera model [16] is a widely used simplification that relates the 

camera frame coordinates of the scene points to the projected points on the image plane 

of an ideal pinhole camera. It assumes that the scene points (��) are connected to their 

projections on the image plane (��) with lights of ray passing through the camera’s 

center of projection (�). The pinhole camera model is often replaced by the frontal 

pinhole camera model to avoid the inversion of the image plane coordinates in the 

camera frame. This substitution is also valid for this thesis and the stated equations are 

from the frontal case. 

The pinhole and frontal pinhole camera models are shown in Figures 4.1 and 4.2 

respectively. These models consider a 2D1D perspective projection case where the 2D 

world lies on the page and the image plane is replaced by a line (). Triangle similarity 

is used to derive the equation (3.1).  

� = �� 	 (4.1) 
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where � is the 1D image coordinate, 	 is the camera frame coordinate of the scene point 

in the same direction as �, � is the camera frame coordinate of the scene point in the 

direction of projection (depth) and � is the distance between the camera center and the 

image plane (focal length). The focal length is a property of the optic lens present in the 

camera setup, and is often fixed in machine vision applications. 

 

 

 

Figure 4.1. The pinhole camera model 

 

 

Figure 4.2. The frontal pinhole camera model 
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For the 3D 2D perspective projection case, since the coordinates are decoupled, 

this equation can be generalized onto the secondary axis to get the equation (4.2). 

A = �� B (4.2) 

Then, the perspective projection from a pinhole camera can be expressed in 

vector notation using homogeneous coordinates: 

�C = D � 0� 01 0��� (4.3) 

where C and �� are defined as: 

C = ��A1� (4.4) 

�� = �	B�1� (4.5) 

The equation (4.3) defines a relationship between the image plane and the 3D 

coordinates of the point. Bear in mind that the pixel coordinates of a digital camera, are 

not the same as the image plane coordinates. The difference between the coordinate 

frames comes from various factors: 

− The units in the image plane coordinates are the same as the real world 

units (e.g. meters); on the other hand the pixel coordinates are measured in pixels. 

− The origin of the image plane coordinates is projection of the camera 

center (or the intersection of the plane with the principal axis), whereas the origin of the 

pixel coordinates is generally taken to be the top-left corner of the CCD. 

− Cheap CCD sensors might not have perfectly rectangular pixels, so the 

transformation between the skewed pixel coordinates and the ideal image plane 

coordinates can be an affine one. 

Figure 4.3 depicts the relation between the CCD sensor and the ideal image 

plane, where (�, �) are the pixel coordinates and (��, ��) are the coordinates of the 

principal axis with respect to the pixel coordinate frame origin. 
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Figure 4.3. The pixel and the image plane coordinate frames 

 

Then, the relation between the 3D camera frame and the corresponding CCD 

pixel coordinates of a scene point is often given as: 

�C = !"#|%&�� (4.6) 

where  

C = ���1� (4.7) 

! = D'�� ( ��'�� ��1 � (4.8) 

� is called the inverse depth parameter and # is a 3-by-3 identity matrix. ! is the 

intrinsic matrix of the camera and contains information about the focal length, the 

physical size of the pixels ('�, '�), the skewness factor (() and the position of the 

principal axis.  

The equation (4.6) can be reduced into a more compact form by defining a 3-by-

4 camera projection matrix ) as in: 

�C = )�� (4.9) 
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The model up to now dealt with the 3D points expressed in the camera frame. 

However, the need of a common world frame requires additional camera pose 

parameters. In the context of this thesis, these parameters are the ones to be estimated 

from visual odometry. The equation relating the world frame coordinates to camera 

frame ones is given in (3.10). 

�� = *+�� ,��% 1 -�� (4.10) 

where �� is the homogeneous 3D coordinates of the scene point in the world camera 

frame and +�� and ,��are the rotation matrix and translation vector carrying the world 

coordinates to camera frame ones. The homogeneous transform matrix containing the +�� and ,�� is called the extrinsic matrix. 

Using the equations (3.9) and (3.10), we can write the equation (3.11) which 

finalizes the camera model by relating the world coordinates to pixel coordinates. 

�C = ) *+�� ,��% 1 -�� (4.11) 

 

4.2. Lens Distortion 

 

The real optic lenses cannot be manufactured perfectly and they introduce a 

distortion effect on the images. The simulated distortion types are shown in Figure 4.4. 

 

 

Figure 4.4. Types of distortion (barrel, pincushion and mustache distortion 

respectively) 

 



 39 

This effect has to be estimated and corrected to be able to get correct 

measurements of the 3D points. Brown’s distortion model [72] is a widely used 

mathematical model to estimate and correct the lens distortion effect. The model fits a 

polynomial function depending on the distance of a pixel to the principal axis to get the 

distorted coordinates	(�/, �/).  
The model is given in the following equations: 

�/ = � + (� − ��)(2345 + 2546 +⋯)+ 893(45 + 2(� − ��)5) + 295(� − ��);� − ��<=(1 + 9>45 +⋯) 
 (4.12) 

�/ = � + ;� − ��<(2345 + 2546 +⋯)+ ?95 @45 + 2;� − ��<5A + 293(� − ��);� − ��<B (1 + 9>45 +⋯) 
 (4.13) 

where 

4 = C(� − ��)5 + ;� − ��<5 (4.14) 

23…2D are the radial and 93…9Dare the tangential distortion parameters. 

Although the model contains infinite series, for practical applications 23, 25 and 93, 95 

are enough for most optic lenses. 

 

4.3. Necessary Information for 3D Reconstruction 

 

The pinhole camera and the lens distortion models allow us to reproject given 

3D scene points onto our CCD sensor and find pixel coordinates, if we know the 

intrinsic and the extrinsic parameters of the camera.  

On the other hand, the perspective projection is not an invertible process, so we 

cannot find a unique 3D scene point given the pixel coordinates in a single camera. 

Hence, auxiliary views of the scene are needed.  

To sum up, at least 2 cameras with known intrinsic (! matrix and the distortion 

coefficients) and extrinsic parameters are needed to fully reconstruct a 3D point free of 

any ambiguities. 
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4.4. Stereo Camera Calibration 

 

Camera calibration is the process of determining the intrinsic parameters of a 

camera. The widely used method for camera calibration is Zhang’s camera calibration 

method given in [73]. It is carried out by gathering several images of an object with 

known geometry (traditionally a checkerboard pattern) to simultaneously solve for the 

distortion model coefficients and the intrinsic matrix. 

The stereo calibration is preceded by separate calibration of the cameras to get 

the intrinsic parameters and then it estimates the relative rotation and translation 

between them. The method is similar to single camera calibration and uses a 

checkerboard pattern that is scene by both of the cameras simultaneously.  

The estimated relative extrinsics are sufficient for reconstructing the 3D point in 

either one of the camera’s coordinate frame. 

In the implementation of this thesis, the OpenCV version of the renowned 

“Bouguet’s camera calibration toolbox for Matlab” [74] is used for both single and 

stereo camera calibration. A screenshot from the stereo calibration process is given in 

Figure 4.5. 

 

 

 

 

Figure 4.5. The stereo calibration process 
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4.5. Stereo Rectification 

 

Full-frontal-parallel configuration in stereo camera pairs defines a relative 

orientation that has epipoles at infinity. Full-frontal-parallel and row-aligned adds the 

constraint that the epipolar lines should be horizontal and hence the intrinsic matrices of 

the cameras should be identical (same pixel scale, focal length and principal axis 

coordinates). Figure 4.6 depicts this configuration. 

 

 

 

Figure 4.6. Full-frontal-parallel and row-aligned stereo camera pair [75] 

 

 

It is widely known that the efficient way of searching for stereo correspondences 

is looking for them on the epipolar lines [16]. The full-frontal-parallel and row-aligned 

camera pairs allow this search to be done on a single row of pixels which adds even 

more efficiency and robustness to finding matches between the camera images. 

Although useful, this configuration is almost impossible to achieve with real 

camera sets. So, researchers have devised an algorithm, called stereo rectification, 

which creates a virtual camera pair in this configuration by applying a transformation on 

the images grabbed by the real camera pair [76]. The transformed images are then can 
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be used as they were grabbed by a full-frontal-parallel and row-aligned stereo camera 

rig. 

The rectified stereo camera set can be defined by a common focal length �, the 

principal axis location (��, ��) and the translation between the cameras E. This absolute 

value of this translation is the length of the baseline, and the sign depends on which 

camera is chosen to be the main one (which defines the coordinate frame in which the 

3D points are expressed). From here on, the right one is assumed to be the main camera. 

Following this assumption, the rectified projection matrices ()F+, )FG) are given in 

equations (4.15) and (4.16). 

)F+ = D � �� 0� �� 01 0� (4.15) 

)FG = D � �� �E� �� 01 0 � (4.16) 

It is important to note that the 3D reconstruction performed with rectified images 

results in 3D point coordinates expressed in the rectified camera frames. 

The implementation of stereo rectification in the OpenCV creates an image 

warping map which contains information from rectification and undistortion 

estimations. This map is then can be used to transform the grabbed images (with a 

backwards bilinear interpolation) performing rectification and undistortion 

simultaneously. The result of this mapping is shown in Figure 4.7. 
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Figure 4.7. The undistortion and rectification step [75] 

 

 

4.6. 3D Reconstruction Using Rectified Stereo Camera Pairs 

 

It is important to note that the 3D reconstruction algorithm explained in this 

section is designed to recover a sparse set of 3D points rather than a dense one. Dense 

3D reconstruction algorithms aim to create depth maps covering every pixel in the 

images and they often contain a high level of noise. 

3D reconstruction using multiple cameras with known intrinsic and extrinsic 

parameters is carried out by triangulation. The triangulation procedure is basically 

intersecting rays of light originating from the camera centers and passing through the 

image plane coordinates of the matching features. Rectified stereo camera pairs 

facilitate this triangulation step by introducing a concept called binocular disparity. 

The binocular disparity (H) is the difference between the horizontal coordinates 

of the stereo correspondences as in: H = �I − �J (4.17) 

 This disparity information is enough to recover depth from triangle similarity. 

The geometry of the problem is shown in Figure 4.8. 
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Figure 4.8. Triangulation with rectified stereo cameras 

 

 

When this triangle similarity is solved, the inverse depth � can be injected to the 

equation (4.9) to solve for the 3D coordinates. An efficient matrix-vector product 

method to perform this calculation is given in [75]. Using the disparity to augment the 

corresponding 2D homogeneous pixel coordinates in the right camera: 

CK = D�J�JH1 � (4.18) 

The reconstruction of the 3D coordinates in the right camera frame �+ is given 

in the following equations.  

�K+ = LCK (4.19) 

 

L = MNN
NO 1 −��1 −��0 �−1/E 0 QRR

RS (4.20) 
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�K+ = �	TBT�̅V� (4.21) 

Then, 

�+ = �K+V = �	B�1� (4.22) 

The equation (4.22) normalizes the homogeneous coordinates to recover the 3D 

scene point. 

It can be seen by inspection that the matrix Q encodes all the necessary 

information to define the rectified stereo pair.  

After this point, the 3D reconstruction algorithm only needs a feature point in 

the right camera image and a disparity value attached to it. The final two sections of this 

chapter address these issues. 

 

4.7. Feature Detection 

 

There are a large number of tools for feature detection in the literature. Harris 

corner detector [77] is one of the oldest methods and it is still widely used. Shi-Tomasi 

[64] detects corners that are easier to track, and this method is actually the choice of the 

visual odometry algorithm of H7 [62-63]. Recent, state-of-the-art feature detection 

algorithms mostly address on finding scale and orientation invariant features for robust 

matching. SIFT [78] and SURF [79] are popular examples. 

The problem of searching for stereo correspondences is easier than most feature 

matching problems, especially in a rectified system. The images are almost identical 

and there is a very good guess on where to search for matching features. This makes 

scale, orientation and illumination invariance properties offered by high-end descriptors 

simply redundant. Considering the trade-off between the computational cost and the 

quality of the resulting features, it is just not worth it. 

FAST feature detector [80], which is a recent algorithm, has been the choice of 

the author of this thesis. This algorithm is specifically designed for real-time vision 

systems with relatively low computational power and it has gained instant popularity 
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among mobile device applications. Naturally, the trade-off between speed and quality 

applies to this situation also; the algorithm results in a relatively higher number of false 

corners. But, the epipolar constraint is deemed to be sufficient for eliminating the 

unreliable features. The algorithm is also much faster than the alternatives like Harris or 

Shi-Tomasi corner detectors. 

The OpenCV implementation of the FAST feature detector has been adopted and 

utilized. An example set of resulting features is shown in Figure 4.9. 

 

 

 

Figure 4.9. FAST corner features 

 

 

The FAST feature detector has only one parameter, which is the threshold that 

needs to be surpassed for a pixel to be labeled as a corner feature. The threshold is 

related to the difference in intensity between the candidate corner features and their 

neighborhoods, so it can be seen that the low contrast parts in the image do not respond 

as corners. 
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4.8. Subpixel Corner Estimation 

 

The FAST feature detector results in integer pixel coordinates that are estimated 

to contain corners. Considering that the camera resolutions are low (640x480) for real-

time applicability, the integer coordinates for corners are too discrete to perform reliable 

3D reconstruction. 

OpenCV has an iterative subpixel corner refinement method [75] 

implementation and although it results in good estimations; the computational cost 

makes this step the bottleneck of the feature detection and matching step of the 

algorithm. Hence, the detected features are not refined into subpixel corners unless they 

can be matched to the left image. Once they are matched, the subpixel corner estimation 

steps in before the actual disparity to depth conversion happens. 

 

4.9. Stereo Matching 

 

The implemented feature matching algorithm is tailored to work with features 

from rectified stereo images. The algorithm takes the features found in the right camera 

and starts a linear search on the horizontal epipolar line to the right, evaluating a sum of 

squared differences (SSD) cost function around a neighborhood. The linear search is 

also limited to a very few number of pixels between a minimum and a maximum 

allowed disparity. The candidate with the lowest SSD score is chosen to be the 

matching feature in the left image. If the minimum SSD score is above a certain 

threshold W, the algorithm decides that the best match candidate is unreliable and 

eliminates the feature from the right camera image.  

The SSD score of a match candidate (�I , �I) against a corner feature in the right 

camera image (�J , �J), for a given neighborhood size X is defined as: 

Y ≜ (X − 1)/2 (4.23) 

[[\ = ] ] "^J(�J + _, �J + `) − Î(�I + _, �I + `)&5a
bcda

a
ecda  (4.24) 

The notation ̂�(�, �) in the equation (4.24) is the intensity level at the pixel 

coordinates (�, �) in the image grabbed by the camera �. 
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The SSD score is usually a very crude metric for robust feature matching and not 

feasible to be used when the match is searched on the whole image. Thanks to the 

rectification process and the limited search on the epipolar line this method proved to be 

sufficient for finding stereo matches. 

The algorithm has a considerable amount of parameters, but tuning them to work 

indefinitely on a specific vision system (cameras and lenses) is possible. 

The window size and the matching threshold are quite intuitive. They offer a 

trade-off between performance and reliability. As the window size parameter gets 

larger, the probability of falsely matching any other neighborhood drops significantly; 

but the computational cost increases. As for the threshold W, this parameter sets a 

confidence level target on the possible matches and as it gets larger a smaller amount of 

more robust feature matches are found. 

The minimum and maximum disparity values to be searched are dependent on 

the baseline of the stereo system, the camera resolutions and the focal lengths of the 

optics used. 

Since the disparity is inversely proportional to depth, minimum disparity sets an 

upper limit to the scene depth of searched points and similarly maximum disparity sets a 

lower limit. In order to choose these limits, plotting depth against disparity for the 

stereo vision system is useful. The depth vs. disparity plot of the stereo camera rig used 

on SURALP is shown in Figure 4.10.  
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Figure 4.10. Depth vs. disparity plot of the stereo camera rig on SURALP 

 

 

Since the relation is nonlinear, the resolution in depth is varying and it gets 

coarser as the points go further away. This stereo camera set has a narrow baseline 

(6cm), very similar to that of humans and fairly wide-angle lenses (with focal lengths of 

5mm).  

First important remark to make is the depth estimation changes drastically 

between pixels for far away objects. This is a dangerous behavior as even the subpixel 

level noise in estimation of the corner features can move the estimated 3D points in the 

order of meters and can destabilize the visual odometry estimation. The finite difference 

of the depth vs. disparity function is taken to clearly see the error sensitivity of the depth 

estimation and is shown as a plot against depth in Figure 4.11. 
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Figure 4.11. Depth sensitivity vs. disparity plot 

 

 

Looking at the two figures, 6 meters of depth is chosen as the upper limit and 

hence the minimum disparity has been decided to be 10 pixels. 

As for the maximum disparity value, the first concern is where in depth the optic 

lenses are focused. High frequency corner features cannot come from unfocused depths 

and any matched feature would probably be an outlier. Another major issue is the 

asymptotic behavior of the curve; as the points get closer to the camera set more and 

more disparity occurs between them. This adds an exponential increase in 

computational cost to search for nearer points. Figure 4.12 shows the change in depth 

between disparities 50 and 70.  
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Figure 4.12. Zoomed depth vs. disparity plot 

 

 

The plot shows that 20 more pixels have to be evaluated to explore points ~0.4m 

nearer to the camera set, and this ratio gets larger really fast. Hence, a minimum depth 

of ~1m is deemed to be sufficient and the maximum disparity is chosen to be 60. 

A screenshot of the resulting stereo correspondences is shown in Figure 4.13. 

 

 

 

Figure 4.13. Stereo Correspondences found by SSD 
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Note that the epipolar lines are horizontal and the correspondences could be 

found on the same row. This result shows the success of the calibration, undistortion 

and the rectification steps. 

Another important remark should be given on the necessity of the time 

synchronization between the cameras. When the image acquisition signals of the 

cameras are not synchronized, the grabbed images could (and actually would) belong to 

different camera pair poses. As this configuration would be different than the one 

estimated during the calibration steps, the initialized rectification maps would no longer 

transform the images into a full-frontal-parallel and row-aligned form. 

This section finalizes the 3D Reconstruction via Stereo Vision chapter. The next 

chapter describes the proposed solution to the visual odometry estimation problem. 
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Chapter 5 

 

 

 

 

5. VISUAL ODOMETRY 

 

 

This chapter introduces the proposed solution for the 6DOF visual odometry 

estimation problem. First two sections provide an outline of the algorithm and present 

the evaluation method used in the development stage. The following sections explore 

the details on tracking of the 3D points, camera pose estimation, robust estimation with 

RANSAC and bundle adjustment as an estimation refinement technique.  

It is important to note that the scene is assumed to be static, and all the apparent 

motion of the scene features are created by the egomotion of the camera pair. 

Egomotion estimation in dynamic scenes requires further precautions to be taken and is 

out of focus of this thesis’ work. 

The core of the proposed algorithm is the camera pose estimation step. The 2 

methods from [62] and [63] along with a novel approach proposed by the author of the 

thesis are presented. The results with a SLAM benchmarking video are shown. 

 

5.1. Algorithm Workflow 

 

The offline part of the algorithm starts with stereo camera calibration and 

rectification. Once the intrinsic and extrinsic parameters are estimated, undistortion and 

rectification maps are initialized.  

The online visual odometry estimation deals with 4 images at each cycle; the 

previous right and left and the current right and left images. The camera pose related to 

the previous image set is assumed to be known, since at each step the camera pose is 

updated according to the current images and the current images are copied on the 

previous ones. 

Initially the world coordinate frame is coincident with the right camera frame; 

hence all the future estimations of the camera poses are relative to the initial pose. A 
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general outline of one cycle of the algorithm that is applicable to all 3 implemented 

methods is as following: 

1. Grab new images from both cameras. 

2. Apply the undistortion and rectification map. 

3. If there are not enough tracked 3D points,  

i. Detect new features in the previous right camera image. 

ii.  Find their matches on the previous left camera image. 

iii.  Estimate the subpixel corners. 

iv. Reconstruct 3D points expressed in the right camera frame. 

v. Convert the camera frame coordinates to the world frame using 

the current estimation of the camera pose. 

4. Track the image features corresponding to the 3D points in the next frame. 

i. Eliminate any point that could not be tracked (out of view, 

occlusions, tracking failures). 

ii.  Eliminate any point whose image coordinates in both cameras do 

not lie on the same row. 

5. Reconstruct the tracked points from their new pixel coordinates. 

6. Find the optimal camera pose that aligns the new 3D camera frame points to 

their world coordinate frame expressions. 

7. Refine the estimated camera pose. 

8. Replace the previous images with the current ones. 

9. Replace the previous pixel coordinates of the tracked features with the new ones.  

The major difference between this visual odometry algorithm and a SLAM 

framework occurs in the 4th step of the algorithm. The features that cannot be tracked 

are immediately deleted and forgotten; whereas in a SLAM application they are stored 

in a permanent map. This is why a visual odometry solution is a local estimator and 

suffers from inevitable drift. 

 In the following sections 3 different methods covering the 6th and the 7th steps 

of this outline will be presented.  
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5.2. Ground Truth Data 

 

The development of such a system requires a ground truth for comparing the 

results and debugging accordingly. On the other hand, establishing a ground truth for 

visual odometry applications is a challenging task. Since it could not be obtained from 

the humanoid robot SURALP, a SLAM benchmark dataset from Rawseed’s Project [81] 

is used.  

The used capture session is coded “Bicocca_2009-02-25b” and it contains 

various sensor data gathered from a moving wheeled robot. The provided sensory 

information includes data from 3 grayscale cameras, 1 color camera, SONAR, 4 laser 

rangefinders (2 sets of different brands, located front and rear), IMU and robot 

odometry. 

The robot moves through an indoor environment which is lit artificially mostly 

by fluorescent lights and the scene is static throughout the capture session. 

The ground truth data is gathered by external sensory systems, but since it is a 

dataset aimed at benchmarking SLAM algorithms, only 3DOF planar trajectory of the 

robot is provided. The time synchronization of the sensor data and the ground truth is 

achieved via Precision Clock Synchronization Protocol for Networked Measurement 

and Control Systems (PTP). 

For the evaluation of the work described in this thesis, the right and left 

grayscale cameras’ image sequences are used to estimate the visual odometry. The 

stereo calibration of the cameras is carried out using the provided calibration session 

images. The results are compared with the ground truth. Although the ground truth 

contains only 3DOF information, no such assumption is made and egomotion is 

estimated in 6DOF, the comparison is then carried out between the matching planar 

motion parameters. 

The image sequences contain 26,335 pairs of images which span around 29 

minutes. Although the robot mostly moves around in an environment rich with image 

features (narrow halls, libraries …etc.), there are more than several occasions where the 

robot faces a blank wall and turns. These short periods with no image features are 

enough to disrupt a visual odometry or even a visual SLAM algorithm. Since the visual 

odometry algorithm that is being tested using these sequences is not expected to work 

over long distances, a relatively short sequence of images is chosen as a test bed.  
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Figure 5.1. Samples from the benchmark image sequence 

 

 

A 600 frame sequence starting from the 7200th frame is proved to be a valid test 

for the visual odometry algorithm. During this ~40 seconds, robot moves around in a 
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library full of image features and performs two sharp 90-degree clockwise turns to 

follow an almost rectangular trajectory. 

A summary of the chosen image sequence grabbed from the right camera is 

shown in Figure 5.1. 

 

5.3. Tracking Corner Features in Time 

 

The features are tracked between the previous and the current left and right 

images using the Pyramidal implementation of the Lucas-Kanade Optical Flow [82]. 

This method is designed for the OpenCV library and gathered quick interest and became 

a standard for sparse optical flow estimation in various applications. 

This optical flow algorithm is chosen because it is more robust to large amount 

of motion between the frames compared to the other well-known optical flow 

estimators. Considering that the visual odometry algorithm is designed to be 

implemented on a humanoid robot, abrupt changes in motion caused by the walking 

dynamics should be expected. On the other hand, the designed algorithm contains 

iterative optimization techniques, where the convergence time could be slow when the 

initial guesses are far from the local minimum. This would create some jumps between 

the frames and could possibly cause the other optical flow estimators to fail. 

 

5.4. Camera Pose Estimation 

 

The camera pose estimation is approached as a registration problem aiming to 

find the optimal rigid body transformation that aligns the camera frame coordinates of 

the 3D points to their world coordinate frame expressions. This approach is also used in 

the visual odometry algorithm of the H7 [62-63].  

From here on the right camera frame is to be referred as simply the camera 

frame, as it is chosen to be the main camera in the stereo pair. 

The relation between the camera frame coordinates (��) and the world frame 

ones (��) are given in the equation (5.1). 

�� = +�� �� + ,��  (5.1) 

Note that this equation describes the inverse transformation of the equation in 

(4.10), and the coordinates are not expressed in the homogeneous form. 
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Estimating a 6DOF rigid body transformation (+��  and ,�� ) is well-known to 

require measurements of at least 3 non-collinear points and their transformed locations. 

In other words, the points should define a unique plane in the 3D world. Conversely, 

given 3 such points, not all possible target locations define a rigid body transformation. 

The equation (5.2) describes the basic rigid body transformation constraint where �Ke are 

transformed versions of the 3D points �e.  
g�e − �bg = g�Ke − �Kbg ∀_, ` (5.2) 

The equation simply points out that a rigid body transformation should not 

change the distances between any points going through the same transformation. This 

constraint is used in [62-63] to detect outliers in the data. 

Considering the case where 3 points define an exact rigid body transformation, 

the augmented system of equations contains 6DOF and 9 equations (3 points, 3 

components in each of them), hence the system resembles an overdetermined system 

where actually 3 of these equations are inherently linearly dependent. 

Bearing in mind that with a set of 3D points estimated from image features, one 

could never get a perfect set that agrees on a rigid body transformation. So solving for +��  and ,��  should be addressed as a least squares problem. The least squares 

formulation with i points is stated in the equation (5.3). 

j4kl_m+no ,,no ]g��e − (+�� ��e + ,�� )gpq
rcs  (5.3) 

The problem with this formulation is that it requires all 9 elements of the 

rotation matrix to be estimated separately for a mere 3DOF orientation representation. 

Another issue is that since the points will never define an exact rotation, the estimated 

matrix elements will probably not form a rotation matrix. So the estimated matrix 

should then be reprojected onto [t(3). 
Orientation parameterization is a widely encountered problem. Although axis-

angle representations and exponential maps perform adequately, the unit quaternions 

are shown to be better orientation representatives. They do not suffer from any 

representation singularities, and are argued to be more numerically stable. 

Let v be a unit quaternion representing the +�� .  
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v ≜ ?wxvyB (5.4) 

vy ≜ zw�w�w{| (5.5) 

The equation (5.6) defines the relation between v and +�� . 

+�� = D1 − 2w�5 − 2w{52(wxw{ + w�w�)2(w�w{ − wxw�)
2(w�w� − wxw{)1 − 2w�5 − 2w{52(wxw� + w�w{)

2(wxw� + w�w{)2(w�w{ − wxw�)1 − 2w�5 − 2w�5� (5.6) 

The least squares problem is then redefined in the equation (5.7). 

j4kl_mv,,no ]g��e − (+�� (v)��e + ,�� )gpq
rcs  (5.7) 

One could also use the unit quaternion as a rotation operator utilizing the 

quaternion multiplication. But that method is not considered in this thesis as defining 

the rotation matrix as a function of the unit quaternion is enough for parameterization. 

The solution to this nonlinear least squares problem is carried out by the 

Levenberg-Marquardt method. The details on the theory and implementation of a 

generic Levenberg-Marquardt algorithm are given in the Appendix A. 

Reviving the concerns about estimating a rotation matrix and keeping it in [t(3) in the process; +�� (v) is a rotation matrix as long as v is a unit quaternion. 

Hence, the least squares definition given in (5.7) is actually incomplete. The complete 

version should include the unit quaternion constraint to result in a nonlinear least 

squares optimization problem with a nonlinear constraint as given in the equation (5.8). 

j4kl_mv,,no ]g��e − (+�� (v)��e + ,�� )gpq
rcs 									'. W.		‖v‖ = 1 (5.8) 

The authors of [83] address this unit quaternion constraint issue. Although their 

solution is not adopted in the work of this thesis, they give quite useful insights on the 

subject.  

The proposed solution is using a penalty method to iteratively force the system 

to converge to a minimum where the constraint is satisfied. The unit quaternion 

constraint is embedded into the cost function [ using a weighting coefficient ~ as 

shown in the equation (5.9). 
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[ =]g��e − (+�� (v)��e + ,�� )gpq
rcs + 	~g1 − ‖v‖g5 (5.9) 

The initial value of ~ starts relatively small and gets larger at each iteration until 

the obtained solution is acceptable. The pseudo-code for the penalty method using 

Levenberg-Marquardt is shown in the table 5.1 

 

 

Table 5.1 Pseudo-code for solving constrained NLLS using penalty method. 

Constrained_NLLS(alpha_initial, alpha_max, 

alpha_growth, q_error_max) 

alpha ← alpha_initial 
beta ← initial guess on position and orientation 
feasible ← false 
failed ← false 
 

while (alpha < alpha_max && not feasible && not 

failed) 

    Levenberg_Marquardt(alpha, beta) 

    if(Levenberg_Marquardt failed) 

        failed ← true 
    else 

        q_current ← extract quaternion from beta 
        q_error ← 1-norm(q_current) 
        if(q_error < error_max) 

            feasible ← true 
        else 

            alpha ← alpha*alpha_growth 
 

if(alpha >= alpha_max) 

    failed ← true 
else 

    extract q and t from beta 
 

return q, t, failed 
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The Levenberg-Marquardt method requires the cost function [ given in (5.9) to 

be rearranged on vectors � and F containing all i points and the weighted unit 

quaternion constraint as shown in the equation (5.10).  

[ = ‖�� − ��‖5 (5.10) 

�� =
MN
NN
O��3��5⋮���√~QR

RR
S
 (5.11) 

�� =
MNN
NNO

�K�3�K�5⋮�K��√~‖v‖QRR
RRS (5.12) 

�K�e = +�� ��e + ,��  (5.13) 

As mentioned before, 3 different methods for camera pose estimation will be 

presented in this section, hence �� and �� are subscripted I to avoid confusion in 

notation with the other methods. 

The parameter vector � to be updated by the Levenberg-Marquardt iterations is 

given in the equation (5.14). 

�� = "W� W� W{ wx w� w� w{&� (5.14) 

Since the rigid body transform equation (5.13) only contains a small amount of 

parameters, the Jacobian matrix � is derived analytically by symbolic derivation and it is 

hardcoded into the implemented Levenberg-Marquardt routine. 

The authors of [62] suggest that this estimation has to be carried out in a 

RANSAC manner for robustness against outliers in the data. A generic implementation 

of RANSAC is given in the Appendix B. 

The gross outliers arise from false matches between the right and left images, 

but it has been observed that these outliers occurred rarely and even then, they are 

quickly eliminated because they cannot maintain the epipolar constraint when the robot 

is moving (see the 4th step of the algorithm workflow). 
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The main contribution of RANSAC comes from the fact that during the course 

of the robot, different sets of 3D points are added when the number of tracked points 

falls below a certain threshold. So, different sets are estimated at separate time steps 

with different errors in camera pose estimation; hence they do not really belong to the 

same point cloud. When a single point cloud estimated in the camera frame is tried to be 

aligned to a skewed set of points, the least squares estimation may converge to nonsense 

values. RANSAC finds the largest set that is consistent in the mixed point cloud. 

Although RANSAC finds the largest set with no problem, if the number of 

consistent groups in the data is large and their populations are low, none of the 

estimated models can contain enough number of potential inliers to be considered as a 

valid hypothesis. Bundle adjustment method [14] is then used from time to time to 

merge these different sets into a single consistent point cloud. 

Bundle adjustment is the process of minimizing the reprojection error to 

simultaneously adjust the projection parameters along with the reconstructed 3D points. 

The minimization of the reprojection error given is traditionally done via Levenberg-

Marquardt method. The parameters to be estimated generally include all the intrinsic 

and extrinsic parameters of the cameras and the 3D points. But in this work, the intrinsic 

parameters and the geometric relation between cameras are assumed to be constant and 

known as they were estimated by the stereo calibration step; hence only the motion 

parameters of the stereo camera pair are refined along with the 3D points. Since the unit 

quaternions are used to represent the orientation of the camera pair, the bundle 

adjustment is also done using the penalty method solving the constrained nonlinear least 

squares problem given in (5.14). 

j4kl_mv,,no ,�n� ]gC�Je − C Je gpq
rcs +]gC�Ie − C Ie gpq

rcs 									'. W. ‖v‖ = 1 (5.14) 

where C�Je  and C�Ie  are the observed pixel coordinates of the point ��e  in the rectified 

right and left images, and C Je  and C Ie  are the reprojections of the ��e  onto the rectified 

right and left cameras using the following equations. 

C Je = )F+ *+�� ,��% 1 -��e�Je  
(5.15) 
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C Ie = )FG *+�� ,��% 1 -��e�Ie  
(5.16) 

where )F+ and )FG are the rectified projection matrices which are defined in the Chapter 

4.  

Please note that +�� and ,�� define the inverse of the rigid body transformation 

estimated from (5.8) and their relation is given in (5.17) and (5.18). 

+�� =	 (+�� )� (5.17) 

,�� =	−(+�� )�,��  (5.18) 

One last note on the bundle adjustment process is the Jacobian matrix needed for 

the Levenberg-Marquardt iterations is not derived analytically because the expressions 

were too large to be hardcoded. Computing it numerically with discrete differentiation 

over the parameters is a common approach in bundle adjustment applications and it is 

done so in this thesis. 

To sum up, solving the constrained nonlinear least squares problem given in the 

equation (5.8), using the parameter vector (5.13) in a RANSAC context, and refining 

the results via bundle adjustment will be referred as the Method I. The results with the 

benchmark image sequence for Method I are given below. The solid lines belong to the 

ground truth and the dashed ones are the estimated values. 

Figure 5.2 shows the estimated position in x, y and z-axis in time. The ground 

truth does not contain z-axis information, but since the robot is a wheeled one, � = 0 

line is drawn on the figure for the sake of completeness. 
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Figure 5.2. Method I position estimation (dashed) and ground truth (solid) vs. time 
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Figure 5.3 shows both the ground truth and the estimated angle against time. The drift in 

orientation estimation can be seen clearly on this plot. Considering that the robot moves 

only forward and not in lateral directions, the drift in orientation estimation hinders the 

position estimation greatly. 

Robot’s ground truth trajectory and its estimation are shown in Figure 5.4. 

Although the position estimations look good when plotted against time, this figure gives 

a more complete understanding of the data and shows the drift in position over time.  

 

 

 

 

Figure 5.3. Estimated angle (dashed) and the ground truth (solid) vs. time 

0 5 10 15 20 25 30 35 40
-200

-150

-100

-50

0

50

Time (s)

Y
aw

 a
ng

le
 [

de
gr

ee
s]



 66 

 

Figure 5.4. Estimated (dashed) and ground truth (solid) robot trajectories 

 

 

Method II is the implementation of the approach described in [63]. The problem 

formulation and aim are actually the same with the previous method, but the camera 

pose estimation is carried out in a decoupled way. ��∗  and ��∗  are defined as the centroids of the two point clouds to be aligned as 

in 

��∗ = 1i]��e
�
ec3  (5.19) 

and  

��∗ = 1i]��∗
�
ec3 . (5.20) 

Then, the centroids are aligned on the origin to eliminate the translation, and estimate 

only the rotation from nonlinear least squares. The new, translated point clouds �F�r  and �F�r are defined as �F�r = ��r − ��∗  (5.21) 
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and  

�F�r = ��r −��∗ . (5.22) 

Hence, the least squares formulation for rotation estimation between the new point 

clouds is given as 

j4kl_mv]g�F�r − +�� (v)	�F�r gpq
rcs 									'. W.		‖v‖ = 1. (5.23) 

The solution to this optimization problem is handled identically to the one in (5.8), 

changing the � and � vectors to estimate only the rotation as in 

�� = "wx w� w� w{&� (5.24) 

��� =
MNN
NNO

�K�3�K�5⋮�K��√~‖v‖QRR
RRS (5.25) 

where 

�K�e = +�� �F�r . (5.26) 

Then the translation estimation is given as 

,�� = ��∗ − +�� ��∗ . (5.26) 

This new formulation ends up with a smaller system only estimating 4 

parameters in Levenberg-Marquardt, which would possibly converge faster than the 

problem stated in (5.8). Also, the translation estimation is clearly related to the average 

translation of the points in closed form. In an ideal rigid body transformation, the points 

would share exactly the same translation and the average translation would be same as 

the original translation. For an estimated point cloud, the translation component is not 

the same for every point, so taking the average corresponds to a least squares solution. 

This approach is used in RANSAC model estimations and the system is bundle 

adjusted when needed as in Method I. The results of the Method II with the benchmark 

image sequence are given in Figures 5.5, 5.6 and 5.7. 

The results are very similar to those of Method I. Although they look a bit better 

on the documented runs, the nondeterministic nature of RANSAC prevents a clear cut 
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comparison between the two methods. That is to say, the differences between different 

runs of the same method are of the same magnitude as the shown difference between the 

two methods. 

 

 

Figure 5.5. Method II position estimation (dashed) and ground truth (solid) vs. time 
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Figure 5.6. Estimated angle by Method II (dashed) and the ground truth (solid) vs. time 

 

 

Figure 5.7. Estimated trajectory by Method II (dashed) and ground truth (solid)  
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Although these results are satisfactory, this is partly because the speed and 

efficiency of the algorithm does not affect the quality of offline processing on a pre-

recorded video. This would not be the case with a real-time visual odometry task. When 

the time difference between the frames gets larger, initial guesses on camera pose 

parameters get farther away from the actual ones and cause Levenberg-Marquardt to 

converge to nonsense values. 

The execution times of the two aforementioned methods are very similar. The 

cycles in which bundle adjustment is not needed are completed at 5~6 FPS on average 

on a notebook computer, but the bundle adjustment adds a huge load on the algorithm 

and the video typically freezes for a few seconds. This is not acceptable for a humanoid 

robot application. 

The proposed Method III is a novel approach developed by the author of this 

thesis. It aims to eliminate the need for RANSAC and the bundle adjustment to get 

much faster cycle times at acceptable performance. 

The idea is correcting the camera frame 3D point estimations so that they will 

align on a perfect rigid body transformation originating from the tracked world camera 

coordinates. So random sampling would not be needed to find a valid rigid body motion 

and keeping the estimation from converging to nonsense values. The method comes 

down to finding more robust compromises between the point clouds added at different 

time steps. Since different sets can be used together, the bundle adjustment process is 

also eliminated. 

Although bundle adjustment seems to correct for the mistakes done by the 

egomotion estimation along the trajectory, it only finds possible solutions given the 

initial guess and arranges the “temporary map” of the environment accordingly. Since 

the initial guess on motion parameters is incorrect, it actually corrupts the correct 3D 

world points. The cause of the drift in position and orientation estimation is this 

corruption of the temporary map.  

The proposed method solves for the same nonlinear least squares problem stated 

in (5.8) with an approach inspired by the bundle adjustment. The camera frame 3D 

point estimates are also estimated with the initial guess provided by the 3D 

reconstruction step. The problem is restated in (5.27). 
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j4kl_mv,,no ,�o� ]g��e − (+�� (v)��e + ,�� )gpq
rcs 									'. W.		‖v‖ = 1 (5.27) 

The solution method is the same penalty method with Levenberg-Marquardt 

iterative minimization algorithm. The only difference with the prior method is the 

parameter vector �, which is given as 

���� = 8W� W� W{ wx w� w� w{ ��3� ��5� … ����=�. (5.28) 

The parameter vector is of size 7 + 3i, i being the number of points included 

in the process. The system to be optimized is considerably larger and similar to the size 

of a bundle adjustment process when carried out with the whole set of tracked points. 

Considering that the camera frame points are reconstructed at each cycle, the refined 

versions will never be used again, so one could perform this minimization over a subset 

of the tracked points. The selection of the number of points to be included in the camera 

pose estimation process becomes a tool for performance optimization. 

The results of Method III are given in Figures 5.8, 5.9 and 5.10. The method’s 

performance in speed exceeded the previous ones with an execution at 12 FPS on 

average and the estimated trajectory is fairly smoother. The drift is increased 

considerably, but still manageable. 

Note that by changing the motion parameters and the reconstructed camera 

frame points, one can find infinitely many solutions. The algorithm could easily move 

the camera frame points exactly on the world frame ones to get identity transformation, 

but it does not do so because it converges to the closest feasible solution to the initial 

guess. As the initial guess on the motion parameters comes from the previous camera 

pose estimation, the algorithm finds a compromise by transferring some of the motion 

to the 3D points and this accelerates the drift in estimation. 

Visual odometry algorithms are never the complete solution for the self-

localization problem, and the drift is inevitable. In a complete solution provided by a 

SLAM application, visual odometry estimation of the motion parameters and the local 

map would be refined anyway. So, fast and smooth visual odometry estimation could be 

more viable to be used in a SLAM context rather than a slow and more accurate one. 
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Figure 5.8. Method III position estimation (dashed) and ground truth (solid) vs. time 
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Figure 5.9. Estimated angle (dashed) and the ground truth (solid) vs. time with Method 

III 

 

Figure 5.10. Estimated trajectory by Method III (dashed) and ground truth (solid)  
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Chapter 6 

 

 

 

 

6. IMPLEMENTATION ON SURALP 

 

 

The planned walking path of a humanoid robot cannot always be exactly 

realized. Disturbance forces and torques coming from the ground contact often add up 

and detour the robot from its trajectory. This effect can be seen on humans trying to 

walk blindfolded also, since without any feedback from the environment, the direction 

of the walk cannot be controlled.  

The scenario, in which the visual odometry estimation is tested, is based on this 

problem. A control method to correct for the orientation around the z-axis (out of 

ground plane, referred as yaw) is devised based on the orientation estimation of the 

visual odometry algorithm.  

The control method acts on the arc walk curvature radius 4� (measured in meters) 

which is mentioned in the Chapter 3. 

The yaw estimate ( and a desired yaw orientation (/ is used to form a yaw error �� as in 

�� = (/ − (. (6.1) 

The control action 4�is simply calculated as 

4� =
���
��
���
� ∞ _�	���� ≤ ��eD
4��� − 4�eD���� − ��eD (�� − ��eD) _�	��eD < �� ≤ ����
−4��� − 4�eD���� − ��eD (�� + ��eD) _�	−���� ≤ �� < −��eD

'km;��<4�eD _�	���� > ����

� (6.2) 
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The control input is a bit counter-intuitive as 4� is inversely proportional to the 

angular velocity created on the yaw axis. For a perfectly straight walk, 4� must be 

infinity, since this is not possible to program, a practical substitute for infinity is chosen 

to be 1000m. ��eD defines a dead zone in the controller to prevent the noise on yaw estimation 

to overact on the walk trajectory.  So if the error in yaw is smaller than a predefined 

control parameter, the controller does not act to correct the trajectory. ���� is the limit of error magnitude after which the controller performs the 

maximum allowed control action. The maximum action occurs when 4� = 4�eD, and 4�eD is chosen to be 0.5m which is the minimum radius that SURALP can turn without 

showing any sign of imbalance. 4��� is the largest radius to be performed and is the 

equivalent of the action the robot must take right on the boundary of the dead zone. 

Any magnitude of �� between ���� and ��eD creates an interpolated arc walk 

radius for SURALP to follow. The visualization of the control method is shown in 

Figure 6.1. 

 

Figure 6.1. The arc walk curvature radius decision visualization 
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The Figure 6.2 shows a series of snapshots from a walking experiment 

consisting of 10 steps with the yaw orientation controller turned off. SURALP starts 

with its feet parallel to the lines marked on the floor and it is commanded to walk 

straight, but cannot keep its direction and walks onto the floor markers. 

 

 

Figure 6.2. SURALP walking experiment with the yaw controller turned off. 
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The same experiment is carried out with the yaw orientation controller turned 

on. The control action decided by the designed controller is shown in Figure 6.3. 

Because the control action is inversely proportional to the decided arc walk radius 4�, 1/4� is plotted for visualization purposes. 

 

 

 

Figure 6.3. Inverse of the arc walk radius decided by the controller 

 

 

Figure 6.4 shows snapshots from a walking experiment with the yaw orientation 

controller turned on. The improvement is clearly visible from the floor markers. 
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Figure 6.4. SURALP walking experiment with the yaw controller turned on. 
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Chapter 7 

 

 

 

 

7. CONCLUSIONS 

 

 

This thesis concentrates on the walking reference correction with visual 

feedback for humanoid robots. The task for the humanoid robot is to simply walk on a 

straight path looking at its environment. This task requires the robot to localize itself 

using visual data gathered from a stereo camera pair. 

A visual odometry algorithm is developed using a set of real images grabbed by 

a wheeled robot and comparing the estimations with the ground truth trajectory 

provided. The proposed algorithm finds distinct corners in the environment and 

reconstructs their 3D positions using the stereo camera pair. Then these 3D points are 

tracked in time to continuously localize the robot with respect to their observed 

positions in the camera coordinate frame. For the camera pose estimation problem, two 

different methods from the literature are tried and a novel approach is proposed. Finally, 

a simple yaw orientation controller is designed to correct the robots walking path 

direction. 

Walking experiments with and without the yaw orientation controller are carried 

out with the humanoid robot SURALP for comparison. The results show that the robot 

was able to correct its trajectory with the generated visual feedback. 

The developed visual odometry algorithm is deemed to be a good local estimator 

for position and orientation. But the inevitable drift in estimation inhibits its use as a 

stand-alone solution for long term self-localization. The promising results suggest its 

potential to be used in a more sophisticated Simultaneous Localization and Mapping 

method utilizing multiple sensors.  

The 3D reconstruction algorithm implemented as a part of this thesis’ work is 

the first stereo vision application that has been employed for SURALP. It created a 

framework for other 3D vision applications which may allow the robot to perform 

higher level tasks in the future. 
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APPENDIX A 

 

 

 

 

 

A. THE LEVENBERG-MARQUARDT METHOD 

 

 

Levenberg-Marquardt method is an iterative, hybrid optimization method which 

seamlessly moves between the Newton’s method and a form of Gradient Descent. This 

allows the solution to converge much faster than the Gradient Descent, and prevents it 

from diverging where the Hessian is not “well-behaving”, as Newton’s method would. 

Consider a generic nonlinear least squares problem given a set of observation 

pairs �3…�� and A3…A� and a nonlinear model curve �(�e, �) relating them, the 

problem of finding the parameter vector � minimizing the least squared error is stated 

as 

j4kl_m�]‖Ae − �(�e , �)‖5�
ec3 . (A.1) 

At each iteration of the Levenberg-Marquardt method, δ, an update to the 

parameter vector β is calculated. Defining a cost function [(�) as 

[(�) =]‖Ae − �(�e, �)‖5�
ec3  (A.2) 

or equivalently 

[(�) = ‖� − �‖5 (A.3) 

where 

� = zA3⋮A�| (A.4) 
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� = z�(�3, �)⋮�(�� , �)|. (A.5) 

Then δ that would decrease [(� + �	) is calculated from the following equation 

(��� + �H_jk(���))  = ��(� − �) (A.6) 

Where � is the Jacobian matrix obtained from 

� = 	 ¡�¡� (A.7) 

This Jacobian matrix can be obtained by taking the derivative analytically, or 

performing discrete differentiation numerically. Although the analytic option would 

possibly perform faster as it is non-iterative, it may not always be possible or practical 

to get. 

The pseudo-code for Levenberg-Marquardt algorihm is given in Table A.1. 
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Table A.1. Pseudo-code for Levenberg-Marquardt algorithm 

Levenberg_Marquardt(x, y, beta, ksi_growth, ksi_max) 

iter ← 0 
converged ← false 
failed ← false 
error_old ← infinity 
ksi ← small number (e.g. 0.00001) 
Y ← stack y on top of each other 
while converged = false 

    iter ← iter + 1 
    F ← compute f for all x using beta, stack them 
    if iter = max_iter 

        converged ← true 
        failed ← true, could not converge in given iterations 
    else 

        error_decreased	← false 
        J ← compute J from F and beta (analytic or numerical) 
        while error_decreased = false 

            delta ← perform equation A.6 
            beta_new ← beta + delta 
            error ← compute the cost function with beta_new 
            if error < error_old 

                error_decreased ← true 
                beta ← beta_new 
                ksi	←	ksi/ksi_growth  
            else 

                ksi←ksi*ksi_growth 
 

            if ksi > ksi_max // error cannot be decreased 

                 converged ← true  
                 break error_decreased iteration 

    return !failed 
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APPENDIX B 

 

 

 

 

 

B. RANSAC 

 

 

RANSAC is a robust estimation method that aims to fit a model to data possibly 

containing gross outliers. The pseudo-code for a generic RANSAC is given in Table 

B.1.  

The parameters of the algorithm are the minimum number of data needed to fit a 

model (n), number of iterations to be performed (max_iter), a threshold to decide 

whether model fits a datum (epsilon), minimum number of inliers needed to establish a 

hypothesis model (minN). 

 

Table B.1. RANSAC pseudo-code 

RANSAC(data, n, max_iter, epsilon, minN) 

    iter←0 
    best_model←null 
    best_error←infinity 
 

    while iter < max_iter  

        consensus ← null 
        random_data← n randomly selected data points 
        model ← fit a model to random_data 
        for each point in data 

            error←calculate error with model 
            if error < epsilon 

                consensus←add point to consensus 
        if consensus size > minN 

        consensus_model ← fit a model again to all the 
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points in the consensus 

        consensus_error ← calculate the total error in the 
consensus with the consensus_model 

        if consensus_error < best_error 

            best_model ← consensus_model 
            best_error ← consensus_error 
        iter ← iter + 1 
return best_model 

  

 


