

VISUALLY-GUIDED WALKING REFERENCE MODIFICATION FOR
HUMANOID ROBOTS

by
KAAN CAN F İDAN

Submitted to the Graduate School of Engineering and Natural Sciences
 in partial fulfillment of

 the requirements for the degree of
Master of Science

Sabanci University
August 2012

III

ABSTRACT

Humanoid robots are expected to assist humans in the future. As for any robot with

mobile characteristics, autonomy is an invaluable feature for a humanoid interacting with its

environment. Autonomy, along with components from artificial intelligence, requires

information from sensors. Vision sensors are widely accepted as the source of richest

information about the surroundings of a robot. Visual information can be exploited in tasks

ranging from object recognition, localization and manipulation to scene interpretation, gesture

identification and self-localization.

Any autonomous action of a humanoid, trying to accomplish a high-level goal,

requires the robot to move between arbitrary waypoints and inevitably relies on its self-

localization abilities. Due to the disturbances accumulating over the path, it can only be

achieved by gathering feedback information from the environment.

This thesis proposes a path planning and correction method for bipedal walkers based

on visual odometry. A stereo camera pair is used to find distinguishable 3D scene points and

track them over time, in order to estimate the 6 degrees-of-freedom position and orientation of

the robot. The algorithm is developed and assessed on a benchmarking stereo video sequence

taken from a wheeled robot, and then tested via experiments with the humanoid robot

SURALP (Sabanci University Robotic ReseArch Laboratory Platform).

IV

ÖZET

 İnsansı robotların, yakın gelecekte insanlara yardımcı olmaları beklenmektedir.

Gezgin karakteristiğe sahip her robotta olduğu gibi, insansı robotlarda da otonom hareket

kabiliyeti çevreyle etkileşimde büyük rol oynamaktadır. Otonomluk, yapay zeka öğeleriyle

birlikte algılayıcı verisine ihtiyaç duyar. Robotun çevresi ile ilgili en zengin bilgiyi sağlayan

algılayıcılar, görsel bilgi içeren kameralar olarak kabul görmektedir. Görsel bilgi, nesneleri

tanıma, yerlerini belirleme ve hareket ettirme gibi uygulamaların yanında sahne

anlamlandırılması, jest tanıma ve özkonumlandırma gibi problemlerin çözümünde

kullanılabilmektedir.

Bir insansı robotun üst seviye bir amaca hizmet etmek üzere gerçekleştireceği

herhangi bir otonom hareket, bulunduğu çevre içerisinde belirli noktalara gitmesini

gerektirmekte, ve dolayısıyla robotu özkonumlandırma yeteneğine bağımlı kılmaktadır.

Hareketin sürdürüldüğü yol üzerinde gelen etkenlerin yarattığı hataların üstüste eklenmesi

sonucu, çevreden bir geri beslemeye ihtiyaç duyulmaktadır.

Bu tez, görsel odometri tabanlı bir yürüyüş yörüngesi düzeltme algoritması

sunmaktadır. Bahsedilen yöntemde bir stereo kamera çifti tarafından algılanan üç boyutlu

noktalar zaman içinde takip edilerek kamera setinin 6 serbestlik dereceli konum ve

oryantasyonu tahmin edilmektedir. Algoritma, geliştirilme aşamasında önceden kaydedilmiş

videolar vasıtasıyla denenmiş ve son halini aldığında insansı robot SURALP (Sabancı

Üniversitesi Robot Araştırmaları Laboratuvar Platformu) üzerinde test edilmiştir.

V

To my loving family.

VI

ACKNOWLEDGMENTS

Initially, I would like to express my gratitude towards my thesis advisor Prof.

Kemalettin Erbatur, who always found patience to enable my enthusiasm. I was able to pursue

my graduate study thanks to his belief in my abilities, and I will always be grateful for this

chance. His eagerness to share his immense knowledge and experience, his ability to create a

wonderful working environment and the value and time he granted to our often frivolous

ideas made his guidance invaluable.

I would also like to thank the rest of my thesis committee: Prof. Asif Sabanovic, Prof.

Aytül Erçil, Prof. Gözde Ünal and Prof. Müjdat Çetin for their detailed review, constructive

criticism and overall interest that they have shown for my research.

I would like to name fellow SURALP team members Tunç Akbaş, Utku Seven, Emre

Eskimez and Selim Özel. I could not imagine better companions to go through this journey. I

would also like to thank all the souls dedicated to FENS 1093, especially İlker Sevgen, for

their support and friendship.

I am sincerely thankful to Osman Rahmi Fıçıcı and Serhan Coşar who gave their

unending support and helped me realize this thesis' work.

Last but not least, to my parents Zekai and Canan Fidan, my little sister Özgecan and

my soulmate Nihan Aydın: Thank you for being in my life, I love you.

VII

TABLE OF CONTENTS

 Page

ABSTRACT III

ACKNOWLEDGMENTS VI

TABLE OF CONTENTS VII

LIST OF FIGURES IX

LIST OF TABLES XI

1. INTRODUCTION 1

2. . A SURVEY ON EGOMOTION ESTIMATION AND ITS APPLICATIONS IN

ROBOTICS

4

2.1. Methods and Application Areas 4

2.2. Literature Survey on Visual Odometry in Mobile Robotics 6

2.3. Literature Survey on the Self-Localization Problem in Humanoid Robots 13

3. THE EXPERIMENTAL HUMANOID SURALP 18

3.1. Hardware 18

3.2. Walking Reference Generation 22

3.2.1. Straight Walk 22

3.2.2. Walk on Circular Arc Shaped Paths 28

3.3. Basic Walking Control Algorithms 30

3.3.1. Joint Level Control 31

3.3.2. Foot Roll Control 31

3.3.3. Ground Impact Compensation 31

3.3.4. Early Landing Modification 32

4. 3D RECONSTRUCTION VIA STEREO VISION 34

4.1. The Pinhole Camera Model 34

4.2. Lens Distortion 38

4.3. Necessary Information for 3D Reconstruction 39

4.4. Stereo Camera Calibration 40

4.5. Stereo Rectification 41

4.6. 3D Reconstruction Using Rectified Stereo Camera Pairs 43

4.7. Feature Detection 45

VIII

4.8. Subpixel Corner Estimation 47

4.9. Stereo Matching 47

5. VISUAL ODOMETRY 53

5.1. Algorithm Workflow 53

5.2. Ground Truth Data 55

5.3. Tracking Corner Features in Time 57

5.4. Camera Pose Estimation 57

6. IMPLEMENTATION ON SURALP 74

7. CONCLUSIONS 79

REFERENCES 80

APPENDIX A - THE LEVENBERG-MARQUARDT METHOD 88

APPENDIX B - RANSAC 91

IX

LIST OF FIGURES

 Page

Figure 2.1. A computer generated image of a NASA Mars Exploration Rover 9

Figure 2.2. A quadrotor MAV with and RGB-D camera 11

Figure 2.3. An amphibious robot using stereo cameras 12

Figure 2.4. LittleDog and the stereo camera setup 13

Figure 2.5. Two commercial humanoid robots ASIMO and REEM-B 15

Figure 2.6. A photograph of HRP-2, HRP-3 and HRP-4 respectively 16

Figure 2.7. The humanoid robot H7 17

Figure 3.1. Humanoid robot SURALP, dimensions. 19

Figure 3.2. Kinematic arrangment of SURALP 20

Figure 3.3. The hardware architecture of SURALP 22

Figure 3.4. The linear inverted pendulum model 23

Figure 3.5. Forward moving ZMP references with pre-assigned double support

phases.

24

Figure 3.6. x and y-direction COM and ZMP references 27

Figure 3.7. x and z-direction foot frame references in as expressed in the world

frame.

28

Figure 3.8. SURALP CAD model on a arc shaped walking trajectory. 28

Figure 3.9. Mapping of foot placement locations of a straight walk onto the foot

placement locations of a circular arc-following walk.

29

Figure 3.10. The walking controller block diagram 33

Figure 4.1. The pinhole camera model 35

Figure 4.2. The frontal pinhole camera model 35

Figure 4.3. The pixel and the image plane coordinate frames 37

Figure 4.4. Types of distortion 38

Figure 4.5. The stereo calibration process 40

Figure 4.6. Full-frontal-parallel and row-aligned stereo camera pair 41

Figure 4.7. The undistortion and rectification step 43

Figure 4.8. Triangulation with rectified stereo cameras 44

Figure 4.9. FAST corner features 46

Figure 4.10. Depth vs. disparity plot of the stereo camera rig on SURALP 49

X

Figure 4.11. Depth sensitivity vs. disparity plot 50

Figure 4.12. Zoomed depth vs. disparity plot 51

Figure 4.13. Stereo Correspondences found by SSD 51

Figure 5.1. Samples from the benchmark image sequence 56

Figure 5.2. Method I position estimation (dashed) and ground truth (solid) vs. time 64

Figure 5.3. Estimated angle (dashed) and the ground truth (solid) vs. time 65

Figure 5.4. Estimated (dashed) and ground truth (solid) robot trajectories 66

Figure 5.5. Method II position estimation (dashed) and ground truth (solid) vs. time 68

Figure 5.6. Estimated angle by Method II (dashed) and the ground truth (solid) vs.

time

69

Figure 5.7. Estimated trajectory by Method II (dashed) and ground truth (solid) 69

Figure 5.8. Method III position estimation (dashed) and ground truth (solid) vs. time 72

Figure 5.9. Estimated angle (dashed) and the ground truth (solid) vs. time with

Method III

73

Figure 5.10. Estimated trajectory by Method III (dashed) and ground truth (solid) 73

Figure 6.1. The arc walk curvature radius decision visualization 75

Figure 6.2. SURALP walking experiment with the yaw controller turned off 76

Figure 6.3. Inverse of the arc walk radius decided by the controller 77

Figure 6.4. SURALP walking experiment with the yaw controller turned on. 78

XI

LIST OF TABLES

 Page

Table 3.1. Lenght and weight information of links 20

Table 3.2. Joint actuator specifications 21

Table 3.3. Sensor system of SURALP 21

Table 5.1 Pseudo-code for solving constrained NLLS using penalty method 60

Table A.1. Pseudo-code for Levenberg-Marquardt algorithm 90

Table B.1. RANSAC pseudo-code 91

 1

Chapter 1

1. INTRODUCTION

The worldwide research interest towards humanoid robots has been growing for

the past few decades. As the computational power and memory gets cheaper, scientists

and engineers are encouraged to venture further possibilities to create more human-like

machines. The humanoids are expected to assist and/or replace humans in many fields

including, but not limited to, heavy-duty professions (e.g. mining, construction), service

and healthcare industries, or even in our homes. Hence, mimicking the human form and

functions is possibly advantageous as humans design their surroundings in favor of their

own capabilities. But creating a human analogue from inanimate objects is an ambitious

goal, especially because the human brain is a miraculous “machine”. Even if the

computational power was not an issue, there is still a lot of ground to cover before a

robot can match the versatility of a human-being.

Achieving complete (or at least sufficient with respect to their purpose)

autonomy for robots should be the first stepping stone towards the ultimate goal. They

should be able to make the necessary decisions and adjustments themselves to be able to

help humans. A robot can be said to be autonomous if it can perform its desired tasks in

an unstructured and unsupervised scenario. This criterion can be satisfied if necessary

thresholds are passed in research fields like artificial intelligence and cognitive robotics.

But applications in these fields also need reliable information to work on; hence

progress in lower level data acquisition and information extraction tools is crucial.

Vision sensors, namely cameras, generate huge amounts of data depicting the

environment. If these data are processed and converted to bits of meaningful

information, higher level tasks can then be pursued. These sensors should be at utmost

importance for humanoids. Any human environment, or a scenario including a human-

robot interaction, inherently contains important visual cues as the human brain and

anatomy is evolved to favor the visual data over other senses. With that being said,

robust and generic vision applications are very rare for robots, as the sensor data

 2

depends heavily on environmental conditions and the computational costs of machine

vision algorithms are still sometimes out of reach. Nevertheless, a large amount of

research effort worldwide is directed at these challenges and successful examples exist

in applications including object recognition, localization and manipulation, human

identification, gesture recognition and self-localization.

Self-localization is a problem that is encountered by every autonomous mobile

robot that is trying to accomplish a given task that requires visiting an arbitrary number

of waypoints. As a couple of application examples; a humanoid robot taking care of an

ill person would have to go find the necessary medicine and bring it back to him/her, or

a robot serving as a waiter in a restaurant would have to patrol between tables and

occasionally go to the kitchen. Although these tasks seem trivial to a human-being, they

are highly challenging problems for robots and gather attention from numerous

researchers around the world.

Estimating the change in position and orientation over time from a moving

sensor set is generally called odometry. In a mobile robot application, these sensor sets

often include inertial measurement units (accelerometers and gyroscopes), cameras,

laser rangefinders, LIDARs and sonar sensors. A more specific method relying solely

(or heavily) on the data from the cameras is called visual odometry. Estimating the

trajectory of a set of cameras in space (detached from robotics context) is often called

egomotion estimation or camera pose estimation.

In this work, a visual odometry algorithm using a stereo camera pair is

developed and applied to the humanoid robot SURALP to correct for trajectory

deviations during a walk in a static scene. The visual odometry algorithm includes

feature detection and matching between the stereo pair, 3D reconstruction, feature

tracking via optical flow and nonlinear least squares techniques to estimate the absolute

position and orientation of the camera set relative to its initial pose. The development

stage needed a ground truth trajectory to compare; hence a benchmarking video

sequence recorded on a wheeled robot is utilized. The comparison between the

algorithm results against the ground truth trajectory is presented.

The organization of this thesis is as follows.

The next chapter contains a literature survey on egomotion estimation in general

and its applications in robotics. Several examples of humanoid robots with self-

localization methods are given.

 3

Chapter 3 describes the experimental robot SURALP. The structure and

hardware, walking reference generation and basic walking control routines are briefly

presented.

3D reconstruction and stereo vision basics are introduced in Chapter 4. Pinhole

camera model is presented to show the relation between 3D points and camera pixel

coordinates of the related features in the images and the necessary information needed

to reconstruct a 3D point from its stereo correspondences. Calibration, undistortion and

rectification are discussed as the necessary steps before the actual 3D reconstruction can

begin. Finally, last part of this chapter explains how features are found and matched in

stereo images and converted to 3D world coordinates.

Chapter 5 contains an outline to the implemented visual odometry algorithm.

Tracking of 3D points and the role of optical flow methods are presented. The camera

pose estimation parameterized by a unit quaternion is defined as a nonlinear least

squares problem with a nonlinear constraint and a few possible solutions are evaluated.

The necessity of robust estimation techniques and an estimation refinement step

including a probabilistic filtering (namely an Extended Kalman Filter) or a bundle

adjustment process, are discussed. Finally, a comparison between possible solutions is

carried out by assessing them using the benchmarking video sequence and its ground

truth trajectory.

The implementation of the visual odometry algorithm on the humanoid robot

SURALP and the obtained results are presented in the Chapter 6.

The last chapter summarizes the work carried out. Comments on the obtained

results, conclusion remarks and directions for the future work are given in this part.

 4

Chapter 2

2. A SURVEY ON EGOMOTION ESTIMATION AND ITS APPLICA TIONS IN

ROBOTICS

This chapter presents a literature survey on the egomotion estimation and its

application to robotics to establish the ground of this thesis among related research

areas. In the first section, several methods of egomotion estimation and the application

areas in computer vision systems in general are pointed out. The following sections

sample the mobile robotics and visual odometry research area and finally, going from

general to specific, the state-of-the-art humanoid robots with self-localization abilities

are identified.

2.1. Methods and Application Areas

The egomotion estimation is defined as the process of calculating the observer’s

motion using the visual data. Several solutions to this problem exist in the literature and

there are multiple categories that divide them: motion estimation level (linear and

angular velocities vs. the absolute position and orientation of the camera), camera setup

(single vs. multiple views) and the motion of the scene (static vs. dynamic).

Early works in this field deal with relating image velocities to linear and angular

velocities of a single camera. They commonly make two main assumptions; the

apparent motion of the scene is generated by the camera itself and instantaneous

velocities of the projected points can be observed.

One of the pioneer works is given in [1] where the authors decouple the

observed motion from scene depth in order to create a bilinear constraint on linear and

angular velocity of the camera. Their method is one of the many that relies on optical

flow estimation for representing image velocities. Soon after, this work is followed by a

series of methods [2-7] that are built on the estimation of the focus of expansion (FOE).

 5

The observation is when the observer is purely translating, the projected motion vectors

of the points in the scene converge to (or diverge from) a single point (FOE), and in the

case of a complex motion FOE can be used to decouple the estimation of rotation and

translation. Finally, [8] presents a notable work based on motion parallax and

decoupling the translation from rotation from image deformations. A comparison in

performance of some of these methods is given in [9].

Another approach is to use the epipolar constraint between the two views taken

by a single calibrated camera at different time steps. These methods result in discrete-

time estimations of the motion parameters (translational and rotational displacement of

the camera between frames) and some examples are given in [10-13]. They are closely

related to structure-from-motion (SFM) applications where the 3D structure of the scene

and the motion parameters of the camera are simultaneously estimated. The SFM

applications generally are finalized by an offline batch processing with bundle

adjustment [14] to refine the resulting 3D reconstruction and the camera trajectory. The

bundle adjustment is adopted by robotics community to be applied in real-time (which

will be discussed in the next section) and also implemented in this thesis’ work.

It is important to note that the methods introduced so far suffer from the

ambiguity in translation and scale created by the projective geometry, since they do not

benefit from an auxiliary view of the scene. In this thesis work, a stereo camera pair is

utilized to overcome this problem; hence these methods are not considered.

A family of algorithms known as Perspective-N-Points (PnP) exists to solve for

the absolute position and orientation of the camera given the projections of n known

scene points to the image plane. Linear solutions exist in the literature for P3P [14] and

P4P [15], but above 5 points the solution can be obtained using Direct Linear Transform

(DLT) [16]. An important note on these algorithms is P3P solutions contain an

ambiguity and result in 4 possible solutions, whereas P4P algorithms (and above) have a

unique solution as long as the points are non-coplanar. Another major concern is

computational efficiency as these algorithms are generally iterative. An efficient version

(EPnP) is introduced in [17] to match the needs of a real-time system. Although these

algorithms relate scene points to a single calibrated camera, a stereo system could be

used to initially estimate the 3D scene structure, and solve for camera poses by tracking

these features over time. The authors of [18] provide a visual odometry pipeline

utilizing these algorithms and a performance comparison between them.

 6

Up to this point, all of the above mentioned algorithms dealt with projections of

the scene points onto the image plane, whereas with a multiple-view camera rig

estimations of the 3D scene points are available at any time. Therefore, finding the

transformation between the estimated 3D points in the camera frame and their known

world frame coordinates is possible. This can be seen as a data alignment problem and a

solution is described in [19]. This is the closest solution to the one implemented in this

thesis work where the transformation between 3D points are estimated at each step. It

also provides the insight that the translation and rotation between the point clouds can

be decoupled by moving the centroids of them to the origin.

Another notable application, along with SFM and robotics, is the augmented

reality (AR) systems. AR systems aim at inserting computer generated images

(generally of 3D graphic models) onto real video sequences. Although they often adopt

a marker with a known geometry placed into the scene to estimate the camera pose,

there is a growing research interest in marker-less AR. These marker-less AR

applications also benefit from egomotion estimation techniques and solutions provided

are closely related to the ones used in robotics research. An example of such a system is

given in [20] dealing with partially known dynamic scenes.

2.2. Literature Survey on Visual Odometry in Mobile Robotics

Odometry is a term used in navigation and robotics for estimating the actual

position and orientation of a moving vehicle/robot using the onboard sensor data. The

simplest odometry is achieved by integrating the estimated velocity of the vehicle over

time and this method is called dead reckoning.

For a wheeled robot, an example dead reckoning method could be measuring the

wheel speeds and converting them to linear speed which is then integrated over time.

But this method has an obvious flaw; we are assuming that the exact speeds of the

wheels can be measured, and that the velocity of the ground is the same as the wheel’s

tangential velocity at the point of contact, which means no slipping. These assumptions

very rarely (if not never) hold true. Hence we integrate the errors along with the

estimations and the estimated position drifts from the actual one very rapidly. This

drifting issue exists for any kind of odometry actually, so the performances of the

methods are evaluated as the percentage of drift in a distance traveled.

 7

Motion in 3D world has 6 degrees-of-freedom (DOF), so one needs to specify 3

position and 3 orientation components to fully define a body in space. Hence, full visual

odometry has to estimate all 6 DOF to allow the robot to move freely. There are

however, some works in the literature that benefit from a simplification of the motion

parameters. These are generally wheeled or tracked robots, or automated cars which are

assumed to move strictly on the ground plane. Examples of two wheeled robots with

3DOF (planar) visual odometry systems are given in [21], [22] and [23]. These robots

adopt a single camera attached to their body watching ground movement and use optical

flow fields gathered from the ground texture to estimate their motion. Very similar

approaches are presented in [24] and [25] applied on automated cars. Although these

approaches should yield more robust results than a full 6DOF estimation (because there

are less parameters to estimate), their use is limited to these occasions and even then,

the imperfections on the ground (level differences, bumps) could affect the outcome

significantly.

Another popular approach is Monte Carlo Localization (MCL), and it is used to

localize the robot given the map of its environment. This method is an application of the

particle filters in robot localization and it is based on randomly sampling the space of all

possible configurations, and updating the probability of correctness of each sample with

coming sensor data. In [26], an application of this method on a shopping companion

wheeled robot equipped with an omnidirectional camera is described. Their approach

requires the robot to be led through the environment once as a training session to build

the necessary map. Another such example is given in [27], where the robot is a

quadruped competing in the RoboCup football challenge. The environment is a mini

football field and it is encoded as a map into the robot. Although the method is

extendable to localize the robot in 6DOF, sampling the possible configurations in the 6-

dimensional space is costly (curse of dimensionality); hence these examples also

estimate the 3DOF position and orientation of the robot on the ground plane.

Apart from the previously discussed methods, the visual odometry techniques

adopted by the robotics community share a large amount of common steps. They are

based on reconstructing the 3D scene (dense or sparse) by triangulation and tracking the

obtained 3D points over time to solve for the absolute position and orientation of the

robot in the world coordinate frame. Random Sample Consensus (RANSAC) is also

very popular for dealing with outliers created by false matches and tracking errors. Few

of many examples of such systems in wheeled locomotion are given in [28] and [29].

 8

Flying robots like quadrotors are generally designed for outdoor applications and

rely on GPS data for self-localization. There is however a respectable amount of

research aimed to apply visual odometry methods on these machines for either getting a

finer estimation of the robot position, or to be used in GPS-denied indoor applications.

Authors of [30] applied visual odometry methods on a quadrotor flying in an indoor

environment and their results show the drastic drift in estimation for such rapidly

moving machines even with a refining bundle adjustment process.

The bundle adjustment is a powerful technique and as mentioned before, it is

widely used in SFM applications to refine the final 3D reconstruction and camera

trajectory simultaneously. Although the systems of equations tend to get really large

even for two consecutive frames, recently there has been a significant progress towards

achieving online bundle adjustment. So called Sparse Bundle Adjustment (SBA) [31]

method is based on abusing the sparse structure of the system created by the lack of

interaction between the 3D scene points and solving the problem efficiently. The

authors of [32] implemented SBA on a mobile robot with a sliding window approach to

minimize the drift. Their sliding window resembles the batch operation of SFM

applications using only a small number of consequent images. One key remark on their

algorithm is that they do not estimate the egomotion using images before the bundle

adjustment, they use the odometry estimation acquired from the other sensors of the

robot (dead reckoning result) as an initial guess for SBA. Their results show that this

approach is feasible and satisfactory.

Recently, there has been a very successful and renowned example of

autonomous robots benefiting from visual odometry techniques: the NASA Mars

Exploration Rovers Spirit and Opportunity. These robots spent 2 years on the surface of

Mars, moving autonomously (as the communication delay does not allow human

supervision). Their method is described in [33] and [34], and the evaluation of the

system performance on Mars is published in [35]. They have adopted an Expectation

Maximization (EM) method to calculate the robot trajectory in 6DOF, by defining a

normally distributed error over the reconstructed 3D points. This error modeling

technique is introduced in [36] and forms a basis for the necessary robust estimation of

visual odometry over very long distances. Although the resulting drift in estimated

position is minimal, it still exists as a threat against long distance navigation. Hence,

they have relied on a sun sensor to crudely localize the absolute position of the robot on

 9

the planet surface and prevented the drift from growing unboundedly [37]. A computer

generated image of a NASA Mars Exploration Rover is shown in the Figure 2.1.

Figure 2.1. A computer generated image of a NASA Mars Exploration Rover

The drift in visual odometry is counter-intuitive in a sense that the 3D

measurements seem to be coming from a static world and localization among them

should be trivial. One has to take into account that the measurements of the 3D points in

the world rely on the exact knowledge of the motion parameters of the camera set. This

creates a “chicken or egg” problem because estimation of the camera pose also depends

on the 3D scene information. That is to say, while estimating the 3D point locations and

the egomotion of the camera set on the fly, the incoming 3D point coordinates contain

errors caused by prior inaccurate camera motion parameters. Regarding this issue, there

is a great deal of research effort spent to create Simultaneous Localization and Mapping

(SLAM) systems.

SLAM researchers rightfully claim that localization and mapping form a coupled

problem and cannot be solved separately. The provided solutions often contain

information from various sensors including inertial measurement units (IMU), laser

rangefinders, LIDARs and sonar sensors along with multiple cameras (color and

grayscale). Hence SLAM solutions can be seen as higher level probabilistic algorithms

 10

utilizing visual odometry estimations. Equivalently, the visual odometry techniques can

be seen as local estimators and SLAM algorithms as global ones. In this thesis work,

SLAM methods are not explored, but they are worth mentioning to establish the current

research trends.

SLAM is first introduced in 1986 by the authors of [38] and [39], and actually

spent a rather quite time during the 1990s with few researchers working on a solution

because of the necessary computational power. In the early 2000s, advances in

computer hardware enabled SLAM algorithms to be solved in acceptable time steps and

the research interest grew exponentially.

The key concept of SLAM is the so-called “loop closures”. These loop closures

are the points on which the robot comes to a previously visited waypoint and recognizes

the features from a memorized, permanent map. These maps, which typically consist of

thousands of geometric features, are refined on these loop closure points to prevent

unbounded growth of drift. The central problem of visual SLAM arises immediately as

the recognition of 3D features from different points of view, which requires appropriate

descriptors for each geometric feature. Because of the required computational power to

process large maps, SLAM problem is often reduced to refining a bird’s eye view map

of the environment and the robot’s motion parameters are expressed in 3DOF planar

coordinates. Nevertheless, there are applications in the literature which work with full

3D maps. The refinement process is generally carried out with probabilistic methods

like particle filters or Extended Kalman Filters (EKF). EKF-SLAM is especially

popular because it creates a framework to merge data coming from various sensors

along with modeling the robot dynamics.

Very few examples of the existing SLAM research and applications are given in

this survey, because trying to cover the SLAM literature exhaustively would require a

significant amount of time and effort and actually is out of focus of this thesis.

Wheeled or tracked robots are the ones that attract most SLAM researchers,

because of the simplicity of locomotion. These robots allow engineers to make

simplifying assumptions that prove to be valuable for online SLAM applications. An

application of EKF-SLAM with a wheeled robot moving in an outdoor environment is

given in [40]. They utilize data from vision sensors along with GPS and dead reckoning

to find a statistically optimal map with EKF. The authors of [41] implemented a Rao-

Blackwellised Particle Filter (RBPF) based SLAM on a wheeled robot in an indoor

environment. The results of their work clearly show the difference between visual

 11

odometry estimation and SLAM correction. These robots work with planar maps as they

assume the robot trajectory (both in position and orientation) does not leave the ground

plane.

Flying robots (namely quadrotors) are also considered as SLAM application

candidates. An EKF-SLAM system on a quadrotor moving in GPS-denied indoor

environments is presented in [42]. The existing sensors of the described system are a

stereo camera rig, a laser rangefinder and an IMU. The EKF returns a state estimate in

4DOF (3 translation and yaw orientation) combining the sensor data. This is a similar

simplification to a wheeled robot moving on the ground plane, only the plane that

quadrotor is moving is assumed to be parallel to the ground rather than coincident. This

assumption is achievable by their adopted feedback loop to correct for roll and pitch

angles of the robot measured by the IMU. A very recent and notable SLAM example

with a quadrotor micro air vehicle (MAV) is given in [43]. The presented system works

with a single RGB-D (color and depth) camera to create a dense 3D model of the

environment. This work shows the impact of advances in sensor technology on higher-

level tasks. Their resulting 6DOF trajectory estimation and the environment map are

impressive. A photograph of the MAV is shown in Figure 2.2.

Figure 2.2. A quadrotor MAV with and RGB-D camera

Swimming robot research in general is smaller than the other branches, so their

SLAM applications are even rarer. The SLAM problem of swimming robots does not

allow any simplifying assumption as the underwater world has inherently 6DOF. The

 12

dynamic nature of the medium and the sensor behavior underwater add up to the

challenge. Pioneer works on this problem are very recent (dating back to 2004) and are

presented in [44-48]. The amphibious robot from [48] is shown in Figure 2.3.

Figure 2.3. An amphibious robot using stereo cameras

Legged robots subdivide into bipeds, quadrupeds and hexapods (with few

exceptions). Visual odometry and SLAM applications in bipeds are analyzed in the next

section. In the case of quadrupeds and hexapods, there is a surprisingly small amount of

research aimed towards the SLAM problem. This lack of research interest could be

caused by the purpose of such multi-legged structures. The multi-legged locomotion is

inherently more stable than the bipedal one; hence the research areas of these types of

robots are mainly shifted to stable walking and path planning in outdoor rough terrains.

The outdoor scene is proven to cause a great amount of challenge against visual

odometry techniques and the added erratic motion of the robot walking on rough terrain

is a deal-breaker for vision systems.

An example work on quadrupeds aiming at modeling the rocky terrain while

localizing the robot is given in [49]. They have mounted a stereo camera rig on a

commercially available quadruped known as LittleDog to gather 3D points from the

terrain. Their work differs from traditional SLAM approaches, because they use point

cloud matching via Iterative Closest Point (ICP) algorithm to build a consistent 3D map

of the rocky terrain and localize the robot. Although their results are very good, this

approach is very computationally costly and not suitable for real-time requirements of

 13

dynamic walking, so the described scenario requires the robot to move in discrete steps.

The LittleDog and the stereo camera setup depicted in this publication are shown in

Figure 2.4.

Figure 2.4. LittleDog and the stereo camera setup [49]

A very recent work on hexapods and SLAM is presented in [50]. A single

camera is mounted on the hexapod and the visual data is combined with the reference

trajectory to calculate the actual trajectory of the robot. Their results are not very clear,

but they provide very useful insights. They claim that for such small robotic systems,

the onboard computational power is always relatively low; so the proposed methods

should be able to keep track of the robot even at very low frame rates. Another

important issue pointed out is the effect of abrupt changes in motion due to the legged

locomotion on the visual SLAM.

2.3. Literature Survey on the Self-Localization Problem in Humanoid Robots

Studies show that humans rely on visual data to localize themselves in their

environment. In a recent study [51], experiments with a number of human subjects are

carried out to see if they can reach a target distance while blindfolded. The results show

that even the subjects tried to repeat a trajectory they had walked minutes ago while

they were seeing; the drift in direction and distance traveled was significant and

 14

proportional to the length of the test. This result encourages the use of vision sensors in

humanoid robots to generate feedback from the environment.

An extensive study on human perception of visual motion is given in [52]. The

study claims there is evidence that the humans perceive movement from optical flow

and use that information along with depth perception generated by binocular disparity to

sense their egomotion as well as the motion of the other dynamic objects. These

observations point out the similarities between the human perception of egomotion and

the methods applied on a humanoid robot in this thesis.

In the research field of humanoid robotics, there are a number of bipedal

walking machines, but few of them have full-body structure needed to perform high-

level tasks. The humanoids with self-localization capabilities are even rarer and form an

elite group among the other ones.

The self-localization problem of humanoids is very similar to the other types of

mobile robots; but it is generally more challenging as the vibrations and abrupt motions

caused by bipedal locomotion are significant. These disturbances highly affect the data

gathered by any onboard sensor and threaten the health of any kind of odometry

estimation. The magnitude of these disturbances and their effect on low-end vision

sensors are clearly shown in [53]. In the implementation of this thesis work, the motion

blur effect is not filtered but minimized by using cameras with high image acquisition

frame rates and low exposure times. Even though the images are clean, estimating the

motion parameters going under such high frequency changes is a challenging work.

 15

Figure 2.5. Two commercial humanoid robots ASIMO and REEM-B

As mentioned before, there are only a handful of humanoid robots capable of

localizing themselves in their environment. One of the most popular ones, ASIMO [54]

is known to be able to perform tasks that require self-localization, but there are no

publications in the literature explaining the details.

REEM-B [55] is another commercial humanoid robot that has the ability to build

maps of indoor environments and localize itself using these maps. REEM-B has a stereo

camera rig that can locate objects in 3D, but it is only used as auxiliary information for

self-localization task. It uses two laser sensors located on its feet and walking trajectory

reference to build 2D local maps, and DP-SLAM algorithm to merge the local maps into

a global one. Once the map building process is finalized, 3DOF self-localization is

performed using MCL. If the degree of confidence in localization drops under a certain

level, visual landmarks recorded while building the map are compared to the camera

data. Photographs of ASIMO and REEM-B are shown in Figure 2.5.

HRP family [56] of humanoid robots includes a few of the most advanced

humanoid robots and they have been used by various research groups. A photo showing

HRP-2, HRP-3 and HRP-4 is given in Figure 2.6.

 16

Figure 2.6. A photograph of HRP-2, HRP-3 and HRP-4 respectively

The authors of [57] and [58] present a visual EKF-SLAM method using a single

camera applied on HRP-2. They point out that the necessary lateral motion of the body

for a stable walking pattern can also be used to create a parallax effect between two

frames taken with a single camera. Whereas the same robot is used in [59] and RBPF-

SLAM method is applied on a stereo vision system to generate a grid-based map of the

environment.

Another humanoid that has been the test bed of various successful self-

localization algorithms is the H7 [60]. Figure 2.7 shows photographs of H7.

MCL approach has been implemented in a way very similar to that of REEM-B

in [61]. The method uses stereo vision to reconstruct 3D points in the scene, and project

the scene points to the ground plane to be used as a map for 3DOF MCL estimation.

The state of the art for visual self-localization in humanoid robots is accepted to

be the work described in [62] and [63]. Their method uses stereo vision and visual

odometry to create 3D local maps to be used in an EKF-SLAM context to estimate the

trajectory of the robot in 6DOF. The visual odometry estimation method described in

these publications form the basis of the work implemented in this thesis. So, their

methods will be explained in more detail.

 17

The system described in both publications starts by finding the dense depth map

of the scene from the stereo cameras. Because dense depth maps often contain a high

level of noise, they have provided a preprocessing technique to filter out the outliers in

the depth data. The dense depth map is not used for visual odometry estimation, but to

build a dense 3D map of the environment. The visual odometry calculation is carried

out by tracking point features in the scene. They have used a Kanade-Lucas-Tomasi

(KLT) feature tracker which is a fairly standard method based on finding features with

Shi-Tomasi corner detector [64] and tracking them over time using Lucas-Kanade

optical flow [65]. The estimation of the transformation between the 3D camera frame

coordinates of the tracked features and their positions in the 3D world frame map is

solved as a registration problem. Because of the errors in triangulation and tracking,

they have devised a robust estimation method using RANSAC with a rigid body motion

constraint. The difference in approaches described in both publications is that the

method presented in [62] estimates the rotation and translation of the camera set

simultaneously, while in [63], these motion parameters are decoupled and estimated

separately. Further details on both of these approaches will be given in the Chapter 5.

Figure 2.7. The humanoid robot H7

The next chapter introduces the experimental humanoid robot SURALP and

gives a brief overview on hardware and stable walking control methods utilized by the

robot.

 18

Chapter 3

3. THE EXPERIMENTAL HUMANOID SURALP

SURALP is a human-sized full-body robot designed and constructed at Sabanci

University Robotics Laboratory. This robot is introduced in this chapter with a special

attention to its reference generation method for changing the direction of the walk on

the fly.

3.1. Hardware

A picture and dimensional drawings of the robot are shown in Figure 3.1. It is

designed in human proportions with 29 DOF, including 6-DOF legs, 6-DOF arms, 1

DOF hands, a 2-DOF neck and a 1-DOF waist [66]. The kinematic arrangement is

presented in Figure 3.2. The weight of the robot is 114 kg. Various dimensions are

tabulated in Table 3.1. DC motors are used as actuators. Motor drivers are in the trunk.

Belt-pulley systems transmit the motor rotary motion to Harmonic Drive reduction

gears (Table 3.2). The sensor system of SURALP includes encoders measuring the

motor angular positions, six-axes force/torque sensors positioned at the ankles and

wrists, a rate gyro, an inclinometer, and a linear accelerometer mounted at the robot

torso. Two CCD cameras are mounted to the head of the robot for visual information.

Table 3.3 shows the sensor working ranges, mounting locations and allocated

communication channels.

The control hardware of SURALP consists of a modular dSpace digital signal

processing system in a backpack configuration Figure 3.3. The controller cycle time

employed is 1 milliseconds.

 19

Figure 3.1. Humanoid robot SURALP, dimensions.

 20

Figure 3.2. Kinematic arrangment of SURALP

Table 3.1. Lenght and weight information of links

Upper Leg Length 280mm

Lower Leg Length 270mm

Sole-Ankle Distance 124mm

Foot Dimensions 240mm x 150mm

Upper Arm Length 219mm

Lower Arm Length 255mm

Robot Weight 114 kg

 21

Table 3.2. Joint actuator specifications

Joint
Motor
Power

Pulley
Ratio

HD
Ratio Joint Range

Hip-Yaw 90W 3 120 -50 to 90 deg

Hip-Roll 150W 3 160 -31 to 23 deg

Hip-Pitch 150W 3 120 -128 to 43 deg

Knee 1-2 150W 3 160 -97 to 135 deg

Ankle-Pitch 150W 3 100 -115 to 23 deg

Ankle Roll 150W 3 120 -19 to 31 deg

Shoulder Roll 1 150W 2 160 -180 to 180 deg

Shoulder Pitch 150W 2 160 -23 to 135 deg

Shoulder Roll 2 90W 2 120 -180 to 180 deg

Elbow 150W 2 120 -49 to 110 deg

Wrist Roll 70W 1 74 -180 to 180 deg

Wrist Pitch 90W 1 100 -16 to 90 deg

Gripper 4W 1 689 0 to 80 mm

Neck Pan 90W 1 100 -180 to 180 deg

Neck Tilt 70W 2 100 -24 to 30 deg

Waist 150W 2 160 -40 to 40 deg

Table 3.3. Sensor system of SURALP

 Sensor Number of Channels Range

All joints Incremental
optic encoders

1 channel per joint 500 pulses/rev

Ankle F/T sensor
6 channels per ankle

± 660 N (x, y-axes)

± 1980 N (z-axis)

± 60 Nm (all axes)

Torso

Accelerometer 3 channels ± 2 G

Inclinometer 2 channels ± 30 deg

Rate gyro 3 channels ± 150 deg/s

Wrist F/T sensor
6 channels per wrist

± 65 N (x, y-axes)

± 200 N (z-axis)

± 5 Nm (all axes)

Head CCD camera 2 channels 640x480 pixels (30 fps)

 22

Figure 3.3. The hardware architecture of SURALP

3.2. Walking Reference Generation

A ZMP based walking reference generation technique is employed. Firstly,

references for straight walk are considered. In order to change the direction of the walk,

a modification which maps straight walk references on arc shaped paths is employed.

The next two subsections discuss the straight walk references and the mapping for

direction changes.

3.2.1. Straight Walk

The Linear Inverted Pendulum Model (LIPM), with its simple structure, is

suitable for reference generation purposes. A point mass is assigned to the robot center

of mass (COM) and it represents the trunk of the robot. The point mass is linked to a

stable contact point on the ground via a massless rod, which is idealized model of a

supporting leg. With the assumption of a fixed height for the COM, a linear system

which is decoupled in the x and y directions is obtained. The system described above is

shown in Figure 3.4. T
zyx cccc)(= represents the position of the point mass.

Figu

The ZMP is defi

components exist. For th

coordinates xp and yp

Here, cz is the height of

g is the gravity consta

generation purpose [68,

the supporting polygon

shows a ZMP reference

the figure is the distance

and T is the half of the

motion under the sole. T

τ .

Having defined th

references, the next step

)(tpref
x and)(tpref

y , res

)(tpref
y are used in this

the COM trajectories.

23

igure 3.4. The linear inverted pendulum model

efined as the x-y plane point on which no

r the structure shown in Figure 3.4, the expres

 are [67]

() xcxx cgzcp &&−= ,

() ycyy cgzcp &&−= .

of the plane where the motion of the point mass

stant. Suitable ZMP trajectories can be gener

, 69]. As the stability constraint, the ZMP sh

on defined by the foot or feet touching the g

ce trajectory [70]. Firstly, support foot location

nce between the foot centers in the y direction

he walking period in this figure. b defines the

. The double support phase is introduced by u

 the curves, and hence the mathematical func

tep is obtaining COM reference curves (tcref
x

respectively. Fourier series’ of the ZMP refer

is process to obtain Fourier series’ for the x an

no horizontal torque

ressions for the ZMP

(3.1)

(3.2)

ass is constrained and

nerated for reference

 should always lie in

e ground. Figure 3.5

ons are chosen. A in

on, B is the step size

he range of the ZMP

 using the parameter

nctions for the ZMP

)t and)(tcref
y from

ferences)(tpref
x and

and y components of

Figure 3.5. Forward mo

a) Foot locations and

directional Z

24

a)

b)

c)

moving ZMP references with pre-assigned doub

and forward moving ZMP in single support pha

l ZMP reference. c) The y -directional ZMP ref

uble support phases.

hases. b) The x -

reference.

 25

The obtained expression for the COM x directional component is [70]:

)
2

sin()
2

cos(
2

)
2

(
1

0

T

nt

T

ntT
t

T

B
c k

n
k

ref
x

πβπαα +++−= ∑
∞

=
 (3.3)

The coefficients 2/0α , 22221(Tk nk ωπα + (for L,3,2,1=k) of)(tp ref
x′ are zero, and

 .)
2

sin(
2

2

cos
2

)
2

cos(

)
2

sin(
2

)
2

cos(
2

2

12222

22

−

−

+

 +−

+
=

T

k

k

T

T

kT

T

k

T

k

k

T

T

k

kTk

T

n

n
k

τπ
π

τπτπτσ

τπ
π

τπτσ
πωπ

ωβ
 (3.4)

where cn zg≡ω .

[70] finds the y directional component of the COM as

)
2

2
sin()

2

2
cos(

2
)(

1

0

T

kt
b

T

kt
a

a
tc k

k
k

ref
y

ππ ++= ∑
∞

=
. (3.5)

2/0a and))()(1(2222 Tka nk ωπ+ (for L,3,2,1=k) are zero. The remaining

coefficients are obtained as

 −−+

 −

+

=

 even is if 0

odd is if)
)(

cos()cos(

)cos()sin(
22

2222

22

k

k
T

Tk

T

k

T

k

T

k

k

T

k

A

kT

T

b

n

n

k
τπτπ

τπττπ
πτππω

ω

. (3.6)

The curves obtained for ref
xc and ref

yc are shown in Figure 3.6 together with the

corresponding ZMP references defined in Figure 3.5. The infinite sums in (3.3) and

(3.5) are approximated by finite sums of 24 terms. In Figure 3.6, the following

parameter values are used: 1.0=A m, 1.0=B m, 04.0=b m, 1=T s and 2.0=τ s.

Foot position reference trajectories have to be designed too. Firstly foot placement

timing and world frame foot position and orientation references are defined. Typical x

and z -direction components of the foot trajectories used in this thesis are shown in

Figure 3.7. dT and sT represent the double and single support periods, respectively.

 26

(τ2=dT , τ−=TTs .) B is the step size from Figure 3.5. The y direction trajectories

are constant at A− and A for the right and left feet, respectively, where A is half of

the foot to foot y direction distance also shown in Figure 3.5. sh is the step height

parameter. The foot orientation references are generated in such a way that the feet are

parallel to the even ground.

The joint position references are obtained through inverse kinematics from COM

and swing foot references defined in world frame coordinates. The process of reference

generation is explained in detail in [70] and [71].

Figure 3.

27

.6. x and y -direction COM and ZMP referen

rences

 28

Figure 3.7. x and z -direction foot frame references in as expressed in the world frame.
Solid curves belong to the right foot, dashed curves indicate left foot trajectories. (The

y -directional foot references are not shown are equal to A− and A , respectively.)

3.2.2. Walk on Circular Arc Shaped Paths

The straight walk trajectory briefed in the previous section is exploited in this

section to generate a walking reference which follows a circular arc as shown in Figure

3.8.

Figure 3.8. SURALP CAD model on a arc shaped walking trajectory.

 29

a)

b)

Figure 3.9. Mapping of foot placement locations of a straight walk onto the foot

placement locations of a circular arc-following walk. a) Straight walk b) Circular arc-
following walk.

 30

The method first considers the ground level line which connects the body frame

origin projections on the ground at the beginning and at the end of the straight walk

references (Figure 3.9.a). The right and left foot landing locations in the lateral

direction are symmetric with respect to this line. The robot body and the feet are

always kept parallel to it. The distance covered by the robot on this line can be

computed as

BNs)1(−= , (3.7)

where N stands for the number of swings in the step sequence and B is the step

size. This distance is mapped on a circular arc (Figure3.9.b) to cover the angle

c
total r

BN)1(−=ψ . (3.8)

Here, cr is the radius of the turning circle. The body and feet are kept parallel to the

arc. This, with (), results in a turn of the robot to the right by the angle totalψ in N

steps. The smaller the radius cr the acute is the turn. A very large radius corresponds

to an almost straight walk.

In implementations with SURALP, cr is a command variable interfaced to a

human used through a joystick. Neutral joystick lateral position corresponds to a radius

of 1000 m: This is a straight walk command. Other joystick lateral positions decrease

the turning radius. Negative radius values are interpreted as commands for turning left.

In this thesis, the joystick commands are replaced by radius reference values computed

by the proposed visual path correction system.

3.3. Basic Walking Control Algorithms

The basic control actions, also presented in [66] are shortly described below.

Figure 3.10 shows the block diagram of control actions.

 31

3.3.1. Joint Level Control

The references for the leg joint positions are generated through inverse kinematics

from Cartesian foot references and the ZMP based COM reference trajectory [70].

Independent PID controllers are used for joint position control. The PID controller gains

are obtained via trial and error.

3.3.2. Foot Roll Control

The scheme computes ankle roll joint angle reference modifications in such a way

that the feet are aligned parallel to the ground when they are in contact with the ground.

The reference modification is the form of a first order filter applied on the foot to

ground contact torques. The following reference modification law in the Laplace

domain is employed for the two ankles separately.

())()()(ssKss rollrollrollrollroll τλθθ ++= , (3.9)

Here s is the Laplace variable. rollθ is the ankle roll joint reference angle

computed by inverse kinematics. rollθ is the reference ankle roll angle after the

reference modification. tollτ is the torque about the roll axis due to the interaction of the

foot with the ground. This torque is measured by torque sensors positioned at the ankle

in an experimental work. rollK and rollλ are low pass filter constants which are

determined by trial and error in our approach. In the digital implementation, the Laplace

domain transfer function in (4.18) is approximated by a difference equation.

3.3.3. Ground Impact Compensation

Another important problem in achieving stable walking is the impact generated at

the landing of the swing foot. A shock absorbing control law is employed as a solution.

This control law is activated with every landing of the swing foot. In effect, a virtual

mass-spring-damper system is positioned between the hip and ankle. The following

second order relation modifies the distance between the hip and sole of the landing foot.

 32

)(
1

)()(
2

sF
ksbsm

slsl z
lll ++

−= (3.10)

Here l represents the hip-to-sole distance reference obtained from Cartesian foot

reference trajectories. l is its shock absorber modified version. zF is the z direction

component of the ground interaction force acting on the foot. Again, an ankle-mount

force sensor measures this force. lm , lb and lk are the desired mass, damping and

stiffness parameters of the mechanical impedance relation described in (4.19). These

reference modification laws are applied for the two legs independently.

3.3.4. Early Landing Modification

One of the main problems of early landing of a swing foot is that when it is on the

ground before the planned beginning of the double support phase, it will go on moving

forward. In effect, the two feet on the ground will try to push the robot trunk in two

different directions. The feet will slip; the robot will turn and possibly lose its balance.

In order to avoid such a condition, the x - direction references are modified in the case

of an early landing. Specifically, this modification “stops” the x direction references of

the feet at their values they had at the instant of early landing. These references are kept

fixed until the next walking cycle and start from their fixed values, whenever the

planned x direction references (as expressed in the body frame) reach them again.

 33

Figure 3.10. The walking controller block diagram

 34

Chapter 4

4. 3D RECONSTRUCTION VIA STEREO VISION

This chapter summarizes the 3D reconstruction algorithm needed for the visual

odometry estimation technique described in the Chapter 5. Initially, the pinhole camera

model used to relate the 3D points to pixel coordinates is introduced and the necessary

information needed to invert the perspective projection is discussed. Brief summary of

stereo camera calibration, undistortion and rectification steps are given as an offline

procedure before the actual reconstruction is done. Finally, the online part of the

algorithm is dissected into feature detection, finding stereo correspondences and

disparity to depth conversion with calibrated and rectified stereo camera pairs.

4.1. The Pinhole Camera Model

 The pinhole camera model [16] is a widely used simplification that relates the

camera frame coordinates of the scene points to the projected points on the image plane

of an ideal pinhole camera. It assumes that the scene points (��) are connected to their

projections on the image plane (��) with lights of ray passing through the camera’s

center of projection (�). The pinhole camera model is often replaced by the frontal

pinhole camera model to avoid the inversion of the image plane coordinates in the

camera frame. This substitution is also valid for this thesis and the stated equations are

from the frontal case.

The pinhole and frontal pinhole camera models are shown in Figures 4.1 and 4.2

respectively. These models consider a 2D1D perspective projection case where the 2D

world lies on the page and the image plane is replaced by a line (). Triangle similarity

is used to derive the equation (3.1).

� = �� 	 (4.1)

 35

where � is the 1D image coordinate, 	 is the camera frame coordinate of the scene point

in the same direction as �, � is the camera frame coordinate of the scene point in the

direction of projection (depth) and � is the distance between the camera center and the

image plane (focal length). The focal length is a property of the optic lens present in the

camera setup, and is often fixed in machine vision applications.

Figure 4.1. The pinhole camera model

Figure 4.2. The frontal pinhole camera model

 36

For the 3D 2D perspective projection case, since the coordinates are decoupled,

this equation can be generalized onto the secondary axis to get the equation (4.2).

A = �� B (4.2)

Then, the perspective projection from a pinhole camera can be expressed in

vector notation using homogeneous coordinates:

�C = D � 0� 01 0��� (4.3)

where C and �� are defined as:

C = ��A1� (4.4)

�� = �	B�1� (4.5)

The equation (4.3) defines a relationship between the image plane and the 3D

coordinates of the point. Bear in mind that the pixel coordinates of a digital camera, are

not the same as the image plane coordinates. The difference between the coordinate

frames comes from various factors:

− The units in the image plane coordinates are the same as the real world

units (e.g. meters); on the other hand the pixel coordinates are measured in pixels.

− The origin of the image plane coordinates is projection of the camera

center (or the intersection of the plane with the principal axis), whereas the origin of the

pixel coordinates is generally taken to be the top-left corner of the CCD.

− Cheap CCD sensors might not have perfectly rectangular pixels, so the

transformation between the skewed pixel coordinates and the ideal image plane

coordinates can be an affine one.

Figure 4.3 depicts the relation between the CCD sensor and the ideal image

plane, where (�, �) are the pixel coordinates and (��, ��) are the coordinates of the

principal axis with respect to the pixel coordinate frame origin.

 37

Figure 4.3. The pixel and the image plane coordinate frames

Then, the relation between the 3D camera frame and the corresponding CCD

pixel coordinates of a scene point is often given as:

�C = !"#|%&�� (4.6)

where

C = ���1� (4.7)

! = D'�� (��'�� ��1 � (4.8)

� is called the inverse depth parameter and # is a 3-by-3 identity matrix. ! is the

intrinsic matrix of the camera and contains information about the focal length, the

physical size of the pixels ('�, '�), the skewness factor (() and the position of the

principal axis.

The equation (4.6) can be reduced into a more compact form by defining a 3-by-

4 camera projection matrix) as in:

�C =)�� (4.9)

 38

The model up to now dealt with the 3D points expressed in the camera frame.

However, the need of a common world frame requires additional camera pose

parameters. In the context of this thesis, these parameters are the ones to be estimated

from visual odometry. The equation relating the world frame coordinates to camera

frame ones is given in (3.10).

�� = *+�� ,��% 1 -�� (4.10)

where �� is the homogeneous 3D coordinates of the scene point in the world camera

frame and +�� and ,��are the rotation matrix and translation vector carrying the world

coordinates to camera frame ones. The homogeneous transform matrix containing the +�� and ,�� is called the extrinsic matrix.

Using the equations (3.9) and (3.10), we can write the equation (3.11) which

finalizes the camera model by relating the world coordinates to pixel coordinates.

�C =) *+�� ,��% 1 -�� (4.11)

4.2. Lens Distortion

The real optic lenses cannot be manufactured perfectly and they introduce a

distortion effect on the images. The simulated distortion types are shown in Figure 4.4.

Figure 4.4. Types of distortion (barrel, pincushion and mustache distortion

respectively)

 39

This effect has to be estimated and corrected to be able to get correct

measurements of the 3D points. Brown’s distortion model [72] is a widely used

mathematical model to estimate and correct the lens distortion effect. The model fits a

polynomial function depending on the distance of a pixel to the principal axis to get the

distorted coordinates	(�/, �/).
The model is given in the following equations:

�/ = � + (� − ��)(2345 + 2546 +⋯)+ 893(45 + 2(� − ��)5) + 295(� − ��);� − ��<=(1 + 9>45 +⋯)
 (4.12)

�/ = � + ;� − ��<(2345 + 2546 +⋯)+ ?95 @45 + 2;� − ��<5A + 293(� − ��);� − ��<B (1 + 9>45 +⋯)
 (4.13)

where

4 = C(� − ��)5 + ;� − ��<5 (4.14)

23…2D are the radial and 93…9Dare the tangential distortion parameters.

Although the model contains infinite series, for practical applications 23, 25 and 93, 95

are enough for most optic lenses.

4.3. Necessary Information for 3D Reconstruction

The pinhole camera and the lens distortion models allow us to reproject given

3D scene points onto our CCD sensor and find pixel coordinates, if we know the

intrinsic and the extrinsic parameters of the camera.

On the other hand, the perspective projection is not an invertible process, so we

cannot find a unique 3D scene point given the pixel coordinates in a single camera.

Hence, auxiliary views of the scene are needed.

To sum up, at least 2 cameras with known intrinsic (! matrix and the distortion

coefficients) and extrinsic parameters are needed to fully reconstruct a 3D point free of

any ambiguities.

 40

4.4. Stereo Camera Calibration

Camera calibration is the process of determining the intrinsic parameters of a

camera. The widely used method for camera calibration is Zhang’s camera calibration

method given in [73]. It is carried out by gathering several images of an object with

known geometry (traditionally a checkerboard pattern) to simultaneously solve for the

distortion model coefficients and the intrinsic matrix.

The stereo calibration is preceded by separate calibration of the cameras to get

the intrinsic parameters and then it estimates the relative rotation and translation

between them. The method is similar to single camera calibration and uses a

checkerboard pattern that is scene by both of the cameras simultaneously.

The estimated relative extrinsics are sufficient for reconstructing the 3D point in

either one of the camera’s coordinate frame.

In the implementation of this thesis, the OpenCV version of the renowned

“Bouguet’s camera calibration toolbox for Matlab” [74] is used for both single and

stereo camera calibration. A screenshot from the stereo calibration process is given in

Figure 4.5.

Figure 4.5. The stereo calibration process

 41

4.5. Stereo Rectification

Full-frontal-parallel configuration in stereo camera pairs defines a relative

orientation that has epipoles at infinity. Full-frontal-parallel and row-aligned adds the

constraint that the epipolar lines should be horizontal and hence the intrinsic matrices of

the cameras should be identical (same pixel scale, focal length and principal axis

coordinates). Figure 4.6 depicts this configuration.

Figure 4.6. Full-frontal-parallel and row-aligned stereo camera pair [75]

It is widely known that the efficient way of searching for stereo correspondences

is looking for them on the epipolar lines [16]. The full-frontal-parallel and row-aligned

camera pairs allow this search to be done on a single row of pixels which adds even

more efficiency and robustness to finding matches between the camera images.

Although useful, this configuration is almost impossible to achieve with real

camera sets. So, researchers have devised an algorithm, called stereo rectification,

which creates a virtual camera pair in this configuration by applying a transformation on

the images grabbed by the real camera pair [76]. The transformed images are then can

 42

be used as they were grabbed by a full-frontal-parallel and row-aligned stereo camera

rig.

The rectified stereo camera set can be defined by a common focal length �, the

principal axis location (��, ��) and the translation between the cameras E. This absolute

value of this translation is the length of the baseline, and the sign depends on which

camera is chosen to be the main one (which defines the coordinate frame in which the

3D points are expressed). From here on, the right one is assumed to be the main camera.

Following this assumption, the rectified projection matrices ()F+,)FG) are given in

equations (4.15) and (4.16).

)F+ = D � �� 0� �� 01 0� (4.15)

)FG = D � �� �E� �� 01 0 � (4.16)

It is important to note that the 3D reconstruction performed with rectified images

results in 3D point coordinates expressed in the rectified camera frames.

The implementation of stereo rectification in the OpenCV creates an image

warping map which contains information from rectification and undistortion

estimations. This map is then can be used to transform the grabbed images (with a

backwards bilinear interpolation) performing rectification and undistortion

simultaneously. The result of this mapping is shown in Figure 4.7.

 43

Figure 4.7. The undistortion and rectification step [75]

4.6. 3D Reconstruction Using Rectified Stereo Camera Pairs

It is important to note that the 3D reconstruction algorithm explained in this

section is designed to recover a sparse set of 3D points rather than a dense one. Dense

3D reconstruction algorithms aim to create depth maps covering every pixel in the

images and they often contain a high level of noise.

3D reconstruction using multiple cameras with known intrinsic and extrinsic

parameters is carried out by triangulation. The triangulation procedure is basically

intersecting rays of light originating from the camera centers and passing through the

image plane coordinates of the matching features. Rectified stereo camera pairs

facilitate this triangulation step by introducing a concept called binocular disparity.

The binocular disparity (H) is the difference between the horizontal coordinates

of the stereo correspondences as in: H = �I − �J (4.17)

 This disparity information is enough to recover depth from triangle similarity.

The geometry of the problem is shown in Figure 4.8.

 44

Figure 4.8. Triangulation with rectified stereo cameras

When this triangle similarity is solved, the inverse depth � can be injected to the

equation (4.9) to solve for the 3D coordinates. An efficient matrix-vector product

method to perform this calculation is given in [75]. Using the disparity to augment the

corresponding 2D homogeneous pixel coordinates in the right camera:

CK = D�J�JH1 � (4.18)

The reconstruction of the 3D coordinates in the right camera frame �+ is given

in the following equations.

�K+ = LCK (4.19)

L = MNN
NO 1 −��1 −��0 �−1/E 0 QRR

RS (4.20)

 45

�K+ = �	TBT�̅V� (4.21)

Then,

�+ = �K+V = �	B�1� (4.22)

The equation (4.22) normalizes the homogeneous coordinates to recover the 3D

scene point.

It can be seen by inspection that the matrix Q encodes all the necessary

information to define the rectified stereo pair.

After this point, the 3D reconstruction algorithm only needs a feature point in

the right camera image and a disparity value attached to it. The final two sections of this

chapter address these issues.

4.7. Feature Detection

There are a large number of tools for feature detection in the literature. Harris

corner detector [77] is one of the oldest methods and it is still widely used. Shi-Tomasi

[64] detects corners that are easier to track, and this method is actually the choice of the

visual odometry algorithm of H7 [62-63]. Recent, state-of-the-art feature detection

algorithms mostly address on finding scale and orientation invariant features for robust

matching. SIFT [78] and SURF [79] are popular examples.

The problem of searching for stereo correspondences is easier than most feature

matching problems, especially in a rectified system. The images are almost identical

and there is a very good guess on where to search for matching features. This makes

scale, orientation and illumination invariance properties offered by high-end descriptors

simply redundant. Considering the trade-off between the computational cost and the

quality of the resulting features, it is just not worth it.

FAST feature detector [80], which is a recent algorithm, has been the choice of

the author of this thesis. This algorithm is specifically designed for real-time vision

systems with relatively low computational power and it has gained instant popularity

 46

among mobile device applications. Naturally, the trade-off between speed and quality

applies to this situation also; the algorithm results in a relatively higher number of false

corners. But, the epipolar constraint is deemed to be sufficient for eliminating the

unreliable features. The algorithm is also much faster than the alternatives like Harris or

Shi-Tomasi corner detectors.

The OpenCV implementation of the FAST feature detector has been adopted and

utilized. An example set of resulting features is shown in Figure 4.9.

Figure 4.9. FAST corner features

The FAST feature detector has only one parameter, which is the threshold that

needs to be surpassed for a pixel to be labeled as a corner feature. The threshold is

related to the difference in intensity between the candidate corner features and their

neighborhoods, so it can be seen that the low contrast parts in the image do not respond

as corners.

 47

4.8. Subpixel Corner Estimation

The FAST feature detector results in integer pixel coordinates that are estimated

to contain corners. Considering that the camera resolutions are low (640x480) for real-

time applicability, the integer coordinates for corners are too discrete to perform reliable

3D reconstruction.

OpenCV has an iterative subpixel corner refinement method [75]

implementation and although it results in good estimations; the computational cost

makes this step the bottleneck of the feature detection and matching step of the

algorithm. Hence, the detected features are not refined into subpixel corners unless they

can be matched to the left image. Once they are matched, the subpixel corner estimation

steps in before the actual disparity to depth conversion happens.

4.9. Stereo Matching

The implemented feature matching algorithm is tailored to work with features

from rectified stereo images. The algorithm takes the features found in the right camera

and starts a linear search on the horizontal epipolar line to the right, evaluating a sum of

squared differences (SSD) cost function around a neighborhood. The linear search is

also limited to a very few number of pixels between a minimum and a maximum

allowed disparity. The candidate with the lowest SSD score is chosen to be the

matching feature in the left image. If the minimum SSD score is above a certain

threshold W, the algorithm decides that the best match candidate is unreliable and

eliminates the feature from the right camera image.

The SSD score of a match candidate (�I , �I) against a corner feature in the right

camera image (�J , �J), for a given neighborhood size X is defined as:

Y ≜ (X − 1)/2 (4.23)

[[\ =]] "^J(�J + _, �J + `) − Î(�I + _, �I + `)&5a
bcda

a
ecda (4.24)

The notation ̂�(�, �) in the equation (4.24) is the intensity level at the pixel

coordinates (�, �) in the image grabbed by the camera �.

 48

The SSD score is usually a very crude metric for robust feature matching and not

feasible to be used when the match is searched on the whole image. Thanks to the

rectification process and the limited search on the epipolar line this method proved to be

sufficient for finding stereo matches.

The algorithm has a considerable amount of parameters, but tuning them to work

indefinitely on a specific vision system (cameras and lenses) is possible.

The window size and the matching threshold are quite intuitive. They offer a

trade-off between performance and reliability. As the window size parameter gets

larger, the probability of falsely matching any other neighborhood drops significantly;

but the computational cost increases. As for the threshold W, this parameter sets a

confidence level target on the possible matches and as it gets larger a smaller amount of

more robust feature matches are found.

The minimum and maximum disparity values to be searched are dependent on

the baseline of the stereo system, the camera resolutions and the focal lengths of the

optics used.

Since the disparity is inversely proportional to depth, minimum disparity sets an

upper limit to the scene depth of searched points and similarly maximum disparity sets a

lower limit. In order to choose these limits, plotting depth against disparity for the

stereo vision system is useful. The depth vs. disparity plot of the stereo camera rig used

on SURALP is shown in Figure 4.10.

 49

Figure 4.10. Depth vs. disparity plot of the stereo camera rig on SURALP

Since the relation is nonlinear, the resolution in depth is varying and it gets

coarser as the points go further away. This stereo camera set has a narrow baseline

(6cm), very similar to that of humans and fairly wide-angle lenses (with focal lengths of

5mm).

First important remark to make is the depth estimation changes drastically

between pixels for far away objects. This is a dangerous behavior as even the subpixel

level noise in estimation of the corner features can move the estimated 3D points in the

order of meters and can destabilize the visual odometry estimation. The finite difference

of the depth vs. disparity function is taken to clearly see the error sensitivity of the depth

estimation and is shown as a plot against depth in Figure 4.11.

0 10 20 30 40 50 60 70 80 90
0

2

4

6

8

10

12

Disparity [pixels]

D
ep

th
 [

m
et

er
s]

 50

Figure 4.11. Depth sensitivity vs. disparity plot

Looking at the two figures, 6 meters of depth is chosen as the upper limit and

hence the minimum disparity has been decided to be 10 pixels.

As for the maximum disparity value, the first concern is where in depth the optic

lenses are focused. High frequency corner features cannot come from unfocused depths

and any matched feature would probably be an outlier. Another major issue is the

asymptotic behavior of the curve; as the points get closer to the camera set more and

more disparity occurs between them. This adds an exponential increase in

computational cost to search for nearer points. Figure 4.12 shows the change in depth

between disparities 50 and 70.

0 2 4 6 8 10 12
0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

2

Depth [meters]

D
ep

th
 s

en
si

tiv
ity

 [
m

et
er

s]

 51

Figure 4.12. Zoomed depth vs. disparity plot

The plot shows that 20 more pixels have to be evaluated to explore points ~0.4m

nearer to the camera set, and this ratio gets larger really fast. Hence, a minimum depth

of ~1m is deemed to be sufficient and the maximum disparity is chosen to be 60.

A screenshot of the resulting stereo correspondences is shown in Figure 4.13.

Figure 4.13. Stereo Correspondences found by SSD

50 55 60 65 70

0.2

0.4

0.6

0.8

1

1.2

Disparity [pixels]

D
ep

th
 [

m
et

er
s]

 52

Note that the epipolar lines are horizontal and the correspondences could be

found on the same row. This result shows the success of the calibration, undistortion

and the rectification steps.

Another important remark should be given on the necessity of the time

synchronization between the cameras. When the image acquisition signals of the

cameras are not synchronized, the grabbed images could (and actually would) belong to

different camera pair poses. As this configuration would be different than the one

estimated during the calibration steps, the initialized rectification maps would no longer

transform the images into a full-frontal-parallel and row-aligned form.

This section finalizes the 3D Reconstruction via Stereo Vision chapter. The next

chapter describes the proposed solution to the visual odometry estimation problem.

 53

Chapter 5

5. VISUAL ODOMETRY

This chapter introduces the proposed solution for the 6DOF visual odometry

estimation problem. First two sections provide an outline of the algorithm and present

the evaluation method used in the development stage. The following sections explore

the details on tracking of the 3D points, camera pose estimation, robust estimation with

RANSAC and bundle adjustment as an estimation refinement technique.

It is important to note that the scene is assumed to be static, and all the apparent

motion of the scene features are created by the egomotion of the camera pair.

Egomotion estimation in dynamic scenes requires further precautions to be taken and is

out of focus of this thesis’ work.

The core of the proposed algorithm is the camera pose estimation step. The 2

methods from [62] and [63] along with a novel approach proposed by the author of the

thesis are presented. The results with a SLAM benchmarking video are shown.

5.1. Algorithm Workflow

The offline part of the algorithm starts with stereo camera calibration and

rectification. Once the intrinsic and extrinsic parameters are estimated, undistortion and

rectification maps are initialized.

The online visual odometry estimation deals with 4 images at each cycle; the

previous right and left and the current right and left images. The camera pose related to

the previous image set is assumed to be known, since at each step the camera pose is

updated according to the current images and the current images are copied on the

previous ones.

Initially the world coordinate frame is coincident with the right camera frame;

hence all the future estimations of the camera poses are relative to the initial pose. A

 54

general outline of one cycle of the algorithm that is applicable to all 3 implemented

methods is as following:

1. Grab new images from both cameras.

2. Apply the undistortion and rectification map.

3. If there are not enough tracked 3D points,

i. Detect new features in the previous right camera image.

ii. Find their matches on the previous left camera image.

iii. Estimate the subpixel corners.

iv. Reconstruct 3D points expressed in the right camera frame.

v. Convert the camera frame coordinates to the world frame using

the current estimation of the camera pose.

4. Track the image features corresponding to the 3D points in the next frame.

i. Eliminate any point that could not be tracked (out of view,

occlusions, tracking failures).

ii. Eliminate any point whose image coordinates in both cameras do

not lie on the same row.

5. Reconstruct the tracked points from their new pixel coordinates.

6. Find the optimal camera pose that aligns the new 3D camera frame points to

their world coordinate frame expressions.

7. Refine the estimated camera pose.

8. Replace the previous images with the current ones.

9. Replace the previous pixel coordinates of the tracked features with the new ones.

The major difference between this visual odometry algorithm and a SLAM

framework occurs in the 4th step of the algorithm. The features that cannot be tracked

are immediately deleted and forgotten; whereas in a SLAM application they are stored

in a permanent map. This is why a visual odometry solution is a local estimator and

suffers from inevitable drift.

 In the following sections 3 different methods covering the 6th and the 7th steps

of this outline will be presented.

 55

5.2. Ground Truth Data

The development of such a system requires a ground truth for comparing the

results and debugging accordingly. On the other hand, establishing a ground truth for

visual odometry applications is a challenging task. Since it could not be obtained from

the humanoid robot SURALP, a SLAM benchmark dataset from Rawseed’s Project [81]

is used.

The used capture session is coded “Bicocca_2009-02-25b” and it contains

various sensor data gathered from a moving wheeled robot. The provided sensory

information includes data from 3 grayscale cameras, 1 color camera, SONAR, 4 laser

rangefinders (2 sets of different brands, located front and rear), IMU and robot

odometry.

The robot moves through an indoor environment which is lit artificially mostly

by fluorescent lights and the scene is static throughout the capture session.

The ground truth data is gathered by external sensory systems, but since it is a

dataset aimed at benchmarking SLAM algorithms, only 3DOF planar trajectory of the

robot is provided. The time synchronization of the sensor data and the ground truth is

achieved via Precision Clock Synchronization Protocol for Networked Measurement

and Control Systems (PTP).

For the evaluation of the work described in this thesis, the right and left

grayscale cameras’ image sequences are used to estimate the visual odometry. The

stereo calibration of the cameras is carried out using the provided calibration session

images. The results are compared with the ground truth. Although the ground truth

contains only 3DOF information, no such assumption is made and egomotion is

estimated in 6DOF, the comparison is then carried out between the matching planar

motion parameters.

The image sequences contain 26,335 pairs of images which span around 29

minutes. Although the robot mostly moves around in an environment rich with image

features (narrow halls, libraries …etc.), there are more than several occasions where the

robot faces a blank wall and turns. These short periods with no image features are

enough to disrupt a visual odometry or even a visual SLAM algorithm. Since the visual

odometry algorithm that is being tested using these sequences is not expected to work

over long distances, a relatively short sequence of images is chosen as a test bed.

 56

Figure 5.1. Samples from the benchmark image sequence

A 600 frame sequence starting from the 7200th frame is proved to be a valid test

for the visual odometry algorithm. During this ~40 seconds, robot moves around in a

 57

library full of image features and performs two sharp 90-degree clockwise turns to

follow an almost rectangular trajectory.

A summary of the chosen image sequence grabbed from the right camera is

shown in Figure 5.1.

5.3. Tracking Corner Features in Time

The features are tracked between the previous and the current left and right

images using the Pyramidal implementation of the Lucas-Kanade Optical Flow [82].

This method is designed for the OpenCV library and gathered quick interest and became

a standard for sparse optical flow estimation in various applications.

This optical flow algorithm is chosen because it is more robust to large amount

of motion between the frames compared to the other well-known optical flow

estimators. Considering that the visual odometry algorithm is designed to be

implemented on a humanoid robot, abrupt changes in motion caused by the walking

dynamics should be expected. On the other hand, the designed algorithm contains

iterative optimization techniques, where the convergence time could be slow when the

initial guesses are far from the local minimum. This would create some jumps between

the frames and could possibly cause the other optical flow estimators to fail.

5.4. Camera Pose Estimation

The camera pose estimation is approached as a registration problem aiming to

find the optimal rigid body transformation that aligns the camera frame coordinates of

the 3D points to their world coordinate frame expressions. This approach is also used in

the visual odometry algorithm of the H7 [62-63].

From here on the right camera frame is to be referred as simply the camera

frame, as it is chosen to be the main camera in the stereo pair.

The relation between the camera frame coordinates (��) and the world frame

ones (��) are given in the equation (5.1).

�� = +�� �� + ,�� (5.1)

Note that this equation describes the inverse transformation of the equation in

(4.10), and the coordinates are not expressed in the homogeneous form.

 58

Estimating a 6DOF rigid body transformation (+�� and ,��) is well-known to

require measurements of at least 3 non-collinear points and their transformed locations.

In other words, the points should define a unique plane in the 3D world. Conversely,

given 3 such points, not all possible target locations define a rigid body transformation.

The equation (5.2) describes the basic rigid body transformation constraint where �Ke are

transformed versions of the 3D points �e.
g�e − �bg = g�Ke − �Kbg ∀_, ` (5.2)

The equation simply points out that a rigid body transformation should not

change the distances between any points going through the same transformation. This

constraint is used in [62-63] to detect outliers in the data.

Considering the case where 3 points define an exact rigid body transformation,

the augmented system of equations contains 6DOF and 9 equations (3 points, 3

components in each of them), hence the system resembles an overdetermined system

where actually 3 of these equations are inherently linearly dependent.

Bearing in mind that with a set of 3D points estimated from image features, one

could never get a perfect set that agrees on a rigid body transformation. So solving for +�� and ,�� should be addressed as a least squares problem. The least squares

formulation with i points is stated in the equation (5.3).

j4kl_m+no ,,no]g��e − (+�� ��e + ,��)gpq
rcs (5.3)

The problem with this formulation is that it requires all 9 elements of the

rotation matrix to be estimated separately for a mere 3DOF orientation representation.

Another issue is that since the points will never define an exact rotation, the estimated

matrix elements will probably not form a rotation matrix. So the estimated matrix

should then be reprojected onto [t(3).
Orientation parameterization is a widely encountered problem. Although axis-

angle representations and exponential maps perform adequately, the unit quaternions

are shown to be better orientation representatives. They do not suffer from any

representation singularities, and are argued to be more numerically stable.

Let v be a unit quaternion representing the +�� .

 59

v ≜ ?wxvyB (5.4)

vy ≜ zw�w�w{| (5.5)

The equation (5.6) defines the relation between v and +�� .

+�� = D1 − 2w�5 − 2w{52(wxw{ + w�w�)2(w�w{ − wxw�)
2(w�w� − wxw{)1 − 2w�5 − 2w{52(wxw� + w�w{)

2(wxw� + w�w{)2(w�w{ − wxw�)1 − 2w�5 − 2w�5� (5.6)

The least squares problem is then redefined in the equation (5.7).

j4kl_mv,,no]g��e − (+�� (v)��e + ,��)gpq
rcs (5.7)

One could also use the unit quaternion as a rotation operator utilizing the

quaternion multiplication. But that method is not considered in this thesis as defining

the rotation matrix as a function of the unit quaternion is enough for parameterization.

The solution to this nonlinear least squares problem is carried out by the

Levenberg-Marquardt method. The details on the theory and implementation of a

generic Levenberg-Marquardt algorithm are given in the Appendix A.

Reviving the concerns about estimating a rotation matrix and keeping it in [t(3) in the process; +�� (v) is a rotation matrix as long as v is a unit quaternion.

Hence, the least squares definition given in (5.7) is actually incomplete. The complete

version should include the unit quaternion constraint to result in a nonlinear least

squares optimization problem with a nonlinear constraint as given in the equation (5.8).

j4kl_mv,,no]g��e − (+�� (v)��e + ,��)gpq
rcs 									'. W.		‖v‖ = 1 (5.8)

The authors of [83] address this unit quaternion constraint issue. Although their

solution is not adopted in the work of this thesis, they give quite useful insights on the

subject.

The proposed solution is using a penalty method to iteratively force the system

to converge to a minimum where the constraint is satisfied. The unit quaternion

constraint is embedded into the cost function [using a weighting coefficient ~ as

shown in the equation (5.9).

 60

[=]g��e − (+�� (v)��e + ,��)gpq
rcs + 	~g1 − ‖v‖g5 (5.9)

The initial value of ~ starts relatively small and gets larger at each iteration until

the obtained solution is acceptable. The pseudo-code for the penalty method using

Levenberg-Marquardt is shown in the table 5.1

Table 5.1 Pseudo-code for solving constrained NLLS using penalty method.

Constrained_NLLS(alpha_initial, alpha_max,

alpha_growth, q_error_max)

alpha ← alpha_initial
beta ← initial guess on position and orientation
feasible ← false
failed ← false

while (alpha < alpha_max && not feasible && not

failed)

 Levenberg_Marquardt(alpha, beta)

 if(Levenberg_Marquardt failed)

 failed ← true
 else

 q_current ← extract quaternion from beta
 q_error ← 1-norm(q_current)
 if(q_error < error_max)

 feasible ← true
 else

 alpha ← alpha*alpha_growth

if(alpha >= alpha_max)

 failed ← true
else

 extract q and t from beta

return q, t, failed

 61

The Levenberg-Marquardt method requires the cost function [given in (5.9) to

be rearranged on vectors � and F containing all i points and the weighted unit

quaternion constraint as shown in the equation (5.10).

[= ‖�� − ��‖5 (5.10)

�� =
MN
NN
O��3��5⋮���√~QR

RR
S
 (5.11)

�� =
MNN
NNO

�K�3�K�5⋮�K��√~‖v‖QRR
RRS (5.12)

�K�e = +�� ��e + ,�� (5.13)

As mentioned before, 3 different methods for camera pose estimation will be

presented in this section, hence �� and �� are subscripted I to avoid confusion in

notation with the other methods.

The parameter vector � to be updated by the Levenberg-Marquardt iterations is

given in the equation (5.14).

�� = "W� W� W{ wx w� w� w{&� (5.14)

Since the rigid body transform equation (5.13) only contains a small amount of

parameters, the Jacobian matrix � is derived analytically by symbolic derivation and it is

hardcoded into the implemented Levenberg-Marquardt routine.

The authors of [62] suggest that this estimation has to be carried out in a

RANSAC manner for robustness against outliers in the data. A generic implementation

of RANSAC is given in the Appendix B.

The gross outliers arise from false matches between the right and left images,

but it has been observed that these outliers occurred rarely and even then, they are

quickly eliminated because they cannot maintain the epipolar constraint when the robot

is moving (see the 4th step of the algorithm workflow).

 62

The main contribution of RANSAC comes from the fact that during the course

of the robot, different sets of 3D points are added when the number of tracked points

falls below a certain threshold. So, different sets are estimated at separate time steps

with different errors in camera pose estimation; hence they do not really belong to the

same point cloud. When a single point cloud estimated in the camera frame is tried to be

aligned to a skewed set of points, the least squares estimation may converge to nonsense

values. RANSAC finds the largest set that is consistent in the mixed point cloud.

Although RANSAC finds the largest set with no problem, if the number of

consistent groups in the data is large and their populations are low, none of the

estimated models can contain enough number of potential inliers to be considered as a

valid hypothesis. Bundle adjustment method [14] is then used from time to time to

merge these different sets into a single consistent point cloud.

Bundle adjustment is the process of minimizing the reprojection error to

simultaneously adjust the projection parameters along with the reconstructed 3D points.

The minimization of the reprojection error given is traditionally done via Levenberg-

Marquardt method. The parameters to be estimated generally include all the intrinsic

and extrinsic parameters of the cameras and the 3D points. But in this work, the intrinsic

parameters and the geometric relation between cameras are assumed to be constant and

known as they were estimated by the stereo calibration step; hence only the motion

parameters of the stereo camera pair are refined along with the 3D points. Since the unit

quaternions are used to represent the orientation of the camera pair, the bundle

adjustment is also done using the penalty method solving the constrained nonlinear least

squares problem given in (5.14).

j4kl_mv,,no ,�n�]gC�Je − C Je gpq
rcs +]gC�Ie − C Ie gpq

rcs 									'. W. ‖v‖ = 1 (5.14)

where C�Je and C�Ie are the observed pixel coordinates of the point ��e in the rectified

right and left images, and C Je and C Ie are the reprojections of the ��e onto the rectified

right and left cameras using the following equations.

C Je =)F+ *+�� ,��% 1 -��e�Je
(5.15)

 63

C Ie =)FG *+�� ,��% 1 -��e�Ie
(5.16)

where)F+ and)FG are the rectified projection matrices which are defined in the Chapter

4.

Please note that +�� and ,�� define the inverse of the rigid body transformation

estimated from (5.8) and their relation is given in (5.17) and (5.18).

+�� =	 (+��)� (5.17)

,�� =	−(+��)�,�� (5.18)

One last note on the bundle adjustment process is the Jacobian matrix needed for

the Levenberg-Marquardt iterations is not derived analytically because the expressions

were too large to be hardcoded. Computing it numerically with discrete differentiation

over the parameters is a common approach in bundle adjustment applications and it is

done so in this thesis.

To sum up, solving the constrained nonlinear least squares problem given in the

equation (5.8), using the parameter vector (5.13) in a RANSAC context, and refining

the results via bundle adjustment will be referred as the Method I. The results with the

benchmark image sequence for Method I are given below. The solid lines belong to the

ground truth and the dashed ones are the estimated values.

Figure 5.2 shows the estimated position in x, y and z-axis in time. The ground

truth does not contain z-axis information, but since the robot is a wheeled one, � = 0

line is drawn on the figure for the sake of completeness.

 64

Figure 5.2. Method I position estimation (dashed) and ground truth (solid) vs. time

The comparison in orientation is more challenging than the position. The

comparison is chosen to be made between the ground truth orientation angle (out of

plane, yaw) and the angle contained in the unit quaternion’s axis-angle representation.

5 10 15 20 25 30 35

-5

0

5

Time [s]

X
 [

m
]

5 10 15 20 25 30 35

-5

0

5

Time [s]

Y
 [

m
]

5 10 15 20 25 30 35

-5

0

5

Time [s]

Z
 [

m
]

 65

Figure 5.3 shows both the ground truth and the estimated angle against time. The drift in

orientation estimation can be seen clearly on this plot. Considering that the robot moves

only forward and not in lateral directions, the drift in orientation estimation hinders the

position estimation greatly.

Robot’s ground truth trajectory and its estimation are shown in Figure 5.4.

Although the position estimations look good when plotted against time, this figure gives

a more complete understanding of the data and shows the drift in position over time.

Figure 5.3. Estimated angle (dashed) and the ground truth (solid) vs. time

0 5 10 15 20 25 30 35 40
-200

-150

-100

-50

0

50

Time (s)

Y
aw

 a
ng

le
 [

de
gr

ee
s]

 66

Figure 5.4. Estimated (dashed) and ground truth (solid) robot trajectories

Method II is the implementation of the approach described in [63]. The problem

formulation and aim are actually the same with the previous method, but the camera

pose estimation is carried out in a decoupled way. ��∗ and ��∗ are defined as the centroids of the two point clouds to be aligned as

in

��∗ = 1i]��e
�
ec3 (5.19)

and

��∗ = 1i]��∗
�
ec3 . (5.20)

Then, the centroids are aligned on the origin to eliminate the translation, and estimate

only the rotation from nonlinear least squares. The new, translated point clouds �F�r and �F�r are defined as �F�r = ��r − ��∗ (5.21)

0 1 2 3 4 5 6

-0.5

0

0.5

1

1.5

2

2.5

3

3.5

4

Y [m]

X
 [

m
]

 67

and

�F�r = ��r −��∗ . (5.22)

Hence, the least squares formulation for rotation estimation between the new point

clouds is given as

j4kl_mv]g�F�r − +�� (v)	�F�r gpq
rcs 									'. W.		‖v‖ = 1. (5.23)

The solution to this optimization problem is handled identically to the one in (5.8),

changing the � and � vectors to estimate only the rotation as in

�� = "wx w� w� w{&� (5.24)

��� =
MNN
NNO

�K�3�K�5⋮�K��√~‖v‖QRR
RRS (5.25)

where

�K�e = +�� �F�r . (5.26)

Then the translation estimation is given as

,�� = ��∗ − +�� ��∗ . (5.26)

This new formulation ends up with a smaller system only estimating 4

parameters in Levenberg-Marquardt, which would possibly converge faster than the

problem stated in (5.8). Also, the translation estimation is clearly related to the average

translation of the points in closed form. In an ideal rigid body transformation, the points

would share exactly the same translation and the average translation would be same as

the original translation. For an estimated point cloud, the translation component is not

the same for every point, so taking the average corresponds to a least squares solution.

This approach is used in RANSAC model estimations and the system is bundle

adjusted when needed as in Method I. The results of the Method II with the benchmark

image sequence are given in Figures 5.5, 5.6 and 5.7.

The results are very similar to those of Method I. Although they look a bit better

on the documented runs, the nondeterministic nature of RANSAC prevents a clear cut

 68

comparison between the two methods. That is to say, the differences between different

runs of the same method are of the same magnitude as the shown difference between the

two methods.

Figure 5.5. Method II position estimation (dashed) and ground truth (solid) vs. time

5 10 15 20 25 30 35

-5

0

5

Time [s]

X
 [

m
]

5 10 15 20 25 30 35

-5

0

5

Time [s]

Y
 [

m
]

5 10 15 20 25 30 35

-5

0

5

Time [s]

Z
 [

m
]

 69

Figure 5.6. Estimated angle by Method II (dashed) and the ground truth (solid) vs. time

Figure 5.7. Estimated trajectory by Method II (dashed) and ground truth (solid)

0 5 10 15 20 25 30 35 40
-200

-150

-100

-50

0

50

Time (s)

Y
aw

 a
ng

le
 [

de
gr

ee
s]

0 1 2 3 4 5 6

-0.5

0

0.5

1

1.5

2

2.5

3

3.5

4

Y [m]

X
 [

m
]

 70

Although these results are satisfactory, this is partly because the speed and

efficiency of the algorithm does not affect the quality of offline processing on a pre-

recorded video. This would not be the case with a real-time visual odometry task. When

the time difference between the frames gets larger, initial guesses on camera pose

parameters get farther away from the actual ones and cause Levenberg-Marquardt to

converge to nonsense values.

The execution times of the two aforementioned methods are very similar. The

cycles in which bundle adjustment is not needed are completed at 5~6 FPS on average

on a notebook computer, but the bundle adjustment adds a huge load on the algorithm

and the video typically freezes for a few seconds. This is not acceptable for a humanoid

robot application.

The proposed Method III is a novel approach developed by the author of this

thesis. It aims to eliminate the need for RANSAC and the bundle adjustment to get

much faster cycle times at acceptable performance.

The idea is correcting the camera frame 3D point estimations so that they will

align on a perfect rigid body transformation originating from the tracked world camera

coordinates. So random sampling would not be needed to find a valid rigid body motion

and keeping the estimation from converging to nonsense values. The method comes

down to finding more robust compromises between the point clouds added at different

time steps. Since different sets can be used together, the bundle adjustment process is

also eliminated.

Although bundle adjustment seems to correct for the mistakes done by the

egomotion estimation along the trajectory, it only finds possible solutions given the

initial guess and arranges the “temporary map” of the environment accordingly. Since

the initial guess on motion parameters is incorrect, it actually corrupts the correct 3D

world points. The cause of the drift in position and orientation estimation is this

corruption of the temporary map.

The proposed method solves for the same nonlinear least squares problem stated

in (5.8) with an approach inspired by the bundle adjustment. The camera frame 3D

point estimates are also estimated with the initial guess provided by the 3D

reconstruction step. The problem is restated in (5.27).

 71

j4kl_mv,,no ,�o�]g��e − (+�� (v)��e + ,��)gpq
rcs 									'. W.		‖v‖ = 1 (5.27)

The solution method is the same penalty method with Levenberg-Marquardt

iterative minimization algorithm. The only difference with the prior method is the

parameter vector �, which is given as

���� = 8W� W� W{ wx w� w� w{ ��3� ��5� … ����=�. (5.28)

The parameter vector is of size 7 + 3i, i being the number of points included

in the process. The system to be optimized is considerably larger and similar to the size

of a bundle adjustment process when carried out with the whole set of tracked points.

Considering that the camera frame points are reconstructed at each cycle, the refined

versions will never be used again, so one could perform this minimization over a subset

of the tracked points. The selection of the number of points to be included in the camera

pose estimation process becomes a tool for performance optimization.

The results of Method III are given in Figures 5.8, 5.9 and 5.10. The method’s

performance in speed exceeded the previous ones with an execution at 12 FPS on

average and the estimated trajectory is fairly smoother. The drift is increased

considerably, but still manageable.

Note that by changing the motion parameters and the reconstructed camera

frame points, one can find infinitely many solutions. The algorithm could easily move

the camera frame points exactly on the world frame ones to get identity transformation,

but it does not do so because it converges to the closest feasible solution to the initial

guess. As the initial guess on the motion parameters comes from the previous camera

pose estimation, the algorithm finds a compromise by transferring some of the motion

to the 3D points and this accelerates the drift in estimation.

Visual odometry algorithms are never the complete solution for the self-

localization problem, and the drift is inevitable. In a complete solution provided by a

SLAM application, visual odometry estimation of the motion parameters and the local

map would be refined anyway. So, fast and smooth visual odometry estimation could be

more viable to be used in a SLAM context rather than a slow and more accurate one.

 72

Figure 5.8. Method III position estimation (dashed) and ground truth (solid) vs. time

5 10 15 20 25 30 35

-5

0

5

Time [s]

X
 [

m
]

5 10 15 20 25 30 35

-5

0

5

Time [s]

Y
 [

m
]

5 10 15 20 25 30 35

-5

0

5

Time [s]

Z
 [

m
]

 73

Figure 5.9. Estimated angle (dashed) and the ground truth (solid) vs. time with Method

III

Figure 5.10. Estimated trajectory by Method III (dashed) and ground truth (solid)

0 5 10 15 20 25 30 35 40
-200

-150

-100

-50

0

50

Time (s)

Y
aw

 a
ng

le
 [

de
gr

ee
s]

0 1 2 3 4 5 6

-0.5

0

0.5

1

1.5

2

2.5

3

3.5

4

Y [m]

X
 [

m
]

 74

Chapter 6

6. IMPLEMENTATION ON SURALP

The planned walking path of a humanoid robot cannot always be exactly

realized. Disturbance forces and torques coming from the ground contact often add up

and detour the robot from its trajectory. This effect can be seen on humans trying to

walk blindfolded also, since without any feedback from the environment, the direction

of the walk cannot be controlled.

The scenario, in which the visual odometry estimation is tested, is based on this

problem. A control method to correct for the orientation around the z-axis (out of

ground plane, referred as yaw) is devised based on the orientation estimation of the

visual odometry algorithm.

The control method acts on the arc walk curvature radius 4� (measured in meters)

which is mentioned in the Chapter 3.

The yaw estimate (and a desired yaw orientation (/ is used to form a yaw error �� as in

�� = (/ − (. (6.1)

The control action 4�is simply calculated as

4� =
���
��
���
� ∞ _�	���� ≤ ��eD
4��� − 4�eD���� − ��eD (�� − ��eD) _�	��eD < �� ≤ ����
−4��� − 4�eD���� − ��eD (�� + ��eD) _�	−���� ≤ �� < −��eD

'km;��<4�eD _�	���� > ����

� (6.2)

 75

The control input is a bit counter-intuitive as 4� is inversely proportional to the

angular velocity created on the yaw axis. For a perfectly straight walk, 4� must be

infinity, since this is not possible to program, a practical substitute for infinity is chosen

to be 1000m. ��eD defines a dead zone in the controller to prevent the noise on yaw estimation

to overact on the walk trajectory. So if the error in yaw is smaller than a predefined

control parameter, the controller does not act to correct the trajectory. ���� is the limit of error magnitude after which the controller performs the

maximum allowed control action. The maximum action occurs when 4� = 4�eD, and 4�eD is chosen to be 0.5m which is the minimum radius that SURALP can turn without

showing any sign of imbalance. 4��� is the largest radius to be performed and is the

equivalent of the action the robot must take right on the boundary of the dead zone.

Any magnitude of �� between ���� and ��eD creates an interpolated arc walk

radius for SURALP to follow. The visualization of the control method is shown in

Figure 6.1.

Figure 6.1. The arc walk curvature radius decision visualization

 76

The Figure 6.2 shows a series of snapshots from a walking experiment

consisting of 10 steps with the yaw orientation controller turned off. SURALP starts

with its feet parallel to the lines marked on the floor and it is commanded to walk

straight, but cannot keep its direction and walks onto the floor markers.

Figure 6.2. SURALP walking experiment with the yaw controller turned off.

 77

The same experiment is carried out with the yaw orientation controller turned

on. The control action decided by the designed controller is shown in Figure 6.3.

Because the control action is inversely proportional to the decided arc walk radius 4�, 1/4� is plotted for visualization purposes.

Figure 6.3. Inverse of the arc walk radius decided by the controller

Figure 6.4 shows snapshots from a walking experiment with the yaw orientation

controller turned on. The improvement is clearly visible from the floor markers.

0 100 200 300 400 500 600 700 800 900
-1.5

-1

-0.5

0

0.5

1

1.5

Time [frames]

C
on

tr
ol

 in
pu

t

 78

Figure 6.4. SURALP walking experiment with the yaw controller turned on.

 79

Chapter 7

7. CONCLUSIONS

This thesis concentrates on the walking reference correction with visual

feedback for humanoid robots. The task for the humanoid robot is to simply walk on a

straight path looking at its environment. This task requires the robot to localize itself

using visual data gathered from a stereo camera pair.

A visual odometry algorithm is developed using a set of real images grabbed by

a wheeled robot and comparing the estimations with the ground truth trajectory

provided. The proposed algorithm finds distinct corners in the environment and

reconstructs their 3D positions using the stereo camera pair. Then these 3D points are

tracked in time to continuously localize the robot with respect to their observed

positions in the camera coordinate frame. For the camera pose estimation problem, two

different methods from the literature are tried and a novel approach is proposed. Finally,

a simple yaw orientation controller is designed to correct the robots walking path

direction.

Walking experiments with and without the yaw orientation controller are carried

out with the humanoid robot SURALP for comparison. The results show that the robot

was able to correct its trajectory with the generated visual feedback.

The developed visual odometry algorithm is deemed to be a good local estimator

for position and orientation. But the inevitable drift in estimation inhibits its use as a

stand-alone solution for long term self-localization. The promising results suggest its

potential to be used in a more sophisticated Simultaneous Localization and Mapping

method utilizing multiple sensors.

The 3D reconstruction algorithm implemented as a part of this thesis’ work is

the first stereo vision application that has been employed for SURALP. It created a

framework for other 3D vision applications which may allow the robot to perform

higher level tasks in the future.

 80

REFERENCES

[1] A. R. Bruss and B. K. Horn. “Passive navigation”. Computer Graphics and Image

Processing, 21:3–20, 1983.

[2] J. H. Rieger and D.T. Lawton. “Processing differential image motion”. Journal of

Optical Society America A, 2(2):354–359, 1985.

[3] K. Prazdny. “On the informationin optical flows”. Computer Graphics and Image

Processing, 22:239–259, 1983.

[4] D. J. Heeger and A. D. Jepson.” Subspace methods for recovering rigid motion. i.

algorithm and implementation”. International Journal of Computer Vision,

7(2):95–117, 1992.

[5] E. C.Hildreth.” Recovering heading for visually-guided navigation”. Vision

Research, 32(6):1177–1192, 1992.

[6] A D Jepson and D J Heeger. “A fast subspace algorithm for recovering rigid

motion”. In Proceedings of IEEE Workshop on Visual Motion, pages 124–131,

Princeton, NJ, 1991.

[7] A D Jepson and D J Heeger. “Linear subspace methods for recovering translation

direction”. Spatial Vision in Humans and Robots, pages 39–62.Cambridge

University Press, New York, 1993.

[8] C. Tomasi and J. Shi. "Direction of heading from image deformations". In

Proceedings of IEEE Computer Vision and Pattern Recognition, pages 422–427,

New York, 1993.

[9] T. Y. Yian, C. Tomasi, D. J. Heeger. “Comparison of Approaches to Egomotion

Computation”, In Proceedings of CVPR’96, 1996.

[10] O D Faugeras, F Lustman, and G Toscani. “Motion and structure from motion

from point and line matches”. In Proceedings of the First International Conference

on Computer Vision, pages 25–34, London, 1987.

[11] H. C. Longuet-Higgins. “A computer algorithm for reconstructing a scene from

two projections”. Nature, 293(10):133–135, 1981.

[12] J.Weng, T.S. Huang, andN.Ahuja. “Motion and structure from two perspective

views: Algorithms, error analysis, and error estimation”. IEEE Transactions on

Pattern Analysis and Machine Intelligence, 11(5):451–467, 1989.

 81

[13] J. Weng, N. Ahuja, and T.S. Huang. “Optimal motion and structure estimation”.

IEEE Transactions on Pattern Analysis and Machine Intelligence, 15(9):864–884,

1993.

[14] B. Triggs; P. McLauchlan and R. Hartley and A. Fitzgibbon (1999). “Bundle

Adjustment — A Modern Synthesis”. ICCV '99: Proceedings of the International

Workshop on Vision Algorithms. Springer-Verlag. pp. 298–372.

[15] M. Intell, Ameller, M. Quan, and L. Triggs. “Camera pose revisited: New linear

algorithms”, 2002.

[16] R. I. Hartley and A. Zisserman. “Multiple View Geometry in Computer Vision”.

Cambridge University Press, ISBN: 0521540518, second edition, 2004.

[17] F.Moreno-Noguer, V.Lepetit, and P.Fua. “Accurate Non-Iterative O(n) Solution

To the PnP Problem”. In ICCV, Rio de Janeiro, Brazil, October 2007.

[18] H. Alismail, B. Browning, and M. B. Dias. ”Evaluating Pose Estimation Method

for Stereo Visual Odometry on Robots”. In Proceedings of the 11th International

Conference on Intelligent Autonomous Systems (IAS-11), 2010.

[19] S. Umeyama. “Least-squares estimation of transformation parameters between

two point patterns”. PAMI, 13(4):376–380, 1991.

[20] G. Bleser, H. Wuest, D. Stricker. “Online camera pose estimation in partially

known and dynamic scenes”. In Proceedings of the 5th IEEE and ACM

International Symposium on Mixed and Augmented Reality, pp. 56-65. 2006.

[21] J. Campbell, R. Sukthankar, I. Nourbakhsh, and A. Pahwa, “A robust visual

odometry and precipice detection system using consumer-grade monocular

vision”, in IEEE International Conference on Robotics and Automation, 2005.

[22] M. Zaman. “High Precision Relative Localization Using a Single Camera”, 2007

IEEE International Conference on Robotics and Automation, pp.3908-3914, 10-

14 April 2007

[23] Sunglok Choi; Ji Hoon Joung; Wonpil Yu; Jae-Il Cho; , “What does ground tell

us? Monocular visual odometry under planar motion constraint”, 2011 11th

International Conference on Control, Automation and Systems (ICCAS).,

pp.1480-1485, 26-29 Oct. 2011

[24] Nourani-Vatani, N.; Roberts, J.; Srinivasan, M.V.; , “Practical visual odometry for

car-like vehicles”, Robotics and Automation, 2009. ICRA '09. IEEE International

Conference on , pp.3551-3557, 12-17 May 2009

 82

[25] N. Nourani-Vatani, J. Roberts, and M. V. Srinivasan, “IMU aided 3D visual

odometry for car-like vehicles” in Australasian Conference on Robotics and

Automation, 2008.

[26] Gross, H.-M.; Koenig, A.; Boehme, H.-J.; Schroeter, Ch.; , “Vision-based Monte

Carlo self-localization for a mobile service robot acting as shopping assistant in a

home store” 2002. IEEE/RSJ International Conference on Intelligent Robots and

Systems, vol.1, no., pp. 256- 262 vol.1, 2002

[27] Rofer, T.; Jungel, M.; , “Vision-based fast and reactive Monte-Carlo

localization” 2003. Proceedings. ICRA '03. IEEE International Conference

on Robotics and Automation, vol.1, no., pp. 856- 861 vol.1, 14-19 Sept. 2003

[28] Saeedi, P.; Lawrence, P.; Lowe, D.; , “3D motion tracking of a mobile robot in a

natural environment”. Proceedings. ICRA '00. IEEE International Conference

on Robotics and Automation, vol.2, pp.1682-1687, 2000

[29] Nister, D.; Naroditsky, O.; Bergen, J.; , “Visual odometry” . CVPR 2004.

Proceedings of the 2004 IEEE Computer Society Conference on Computer Vision

and Pattern Recognition, 2004 , vol.1, pp. I-652- I-659, 27 June-2 July 2004

[30] Achtelik, Markus; Bachrach, Abraham; He, Ruijie; Prentice, Samuel; Roy,

Nicholas. “Stereo vision and laser odometry for autonomous helicopters in GPS-

denied indoor environments.” Unmanned Systems Technology XI. Ed. Grant R.

Gerhart, Douglas W. Gage, & Charles M. Shoemaker. Orlando, FL, USA: SPIE,

2009. 733219-10.

[31] M.I.A. Lourakis and A.A. Argyros. “The design and implementation of a generic

sparse bundle adjustment software package based on the levenberg-marquardt

algorithm”. Technical Report 340, Institute of Computer Science - FORTH,

Heraklion, Crete, Greece, Aug. 2004. Available from

http://www.ics.forth.gr/~lourakis/sba.

[32] Sunderhauf, N., Konolige, K., Lacroix, S. & Protzel, P. (2005). “Visual Odometry

using Sparse Bundle Adjustment on an Autonomous Outdoor Vehicle”.

Tagungsband Autonome Mobile Systeme 2005, Reihe Informatik aktuell,

Springer Verlag, pp. 157-163.

[33] Olson, C.F.; , “Probabilistic self-localization for mobile robots”, IEEE

Transactions on Robotics and Automation, vol.16, no.1, pp.55-66, Feb 2000

 83

[34] Clark F. Olson, Larry H. Matthies, Marcel Schoppers, Mark W. Maimone, “Rover

navigation using stereo ego-motion”, Robotics and Autonomous Systems, Volume

43, Issue 4, Pages 215-229, 30 June 2003.

[35] Yang Cheng; Mark Maimone; Larry Matthies; , “Visual odometry on the Mars

Exploration Rovers”, IEEE International Conference on Systems, Man and

Cybernetics, 2005, vol.1, no., pp. 903- 910 Vol. 1, 10-12 Oct. 2005

[36] Matthies, L.; Shafer, S.; , “Error modeling in stereo navigation” , IEEE Journal

of Robotics and Automation, vol.3, no.3, pp.239-248, June 1987

[37] Trebi-Ollennu, A.; Huntsberger, T.; Yang Cheng; Baumgartner, E.T.; Kennedy,

B.; Schenker, P.; , “Design and analysis of a sun sensor for planetary rover

absolute heading detection” , IEEE Transactions on Robotics and Automation ,

vol.17, no.6, pp.939-947, Dec 2001

[38] R. Smith, M. Self, P. Cheeseman. “Estimating uncertain spatial relationships in

robotics”. I.J. Cox, G.T. Wilfong (Eds.), Autonomous Robot Vehnicles, Springer,

Berlin (1990), pp. 167–193

[39] R. Smith, P. Cheeseman. “On the Representationand Estimation of Spatial

Uncertainty”. The International Journal of Robotics Research December 1986 vol.

5 no. 4 56-68

[40] K. Konolige, M. Agrawal, R. C. Bolles, C. Cowan, M. Fischler, and B. P. Gerkey,

“Outdoor mapping and navigation using stereo vision,” in Proc. of the Intl. Symp.

on Experimental Robotics (ISER), July 2006.

[41] R. Sim, P. Elinas, J. J. Little. “A Study of the Rao-Blackwellised Particle Filter

for Efficient and Accurate Vision-Based SLAM”. International Journal of

Computer Vision, vol. 74 , issue 3, pages 303-318, September 2007

[42] M. Achtelik, A. Bachrach, R. He, S. Prentice, and N. Roy,”Autonomous

navigation and exploration of a quadrotor helicopter in GPS-denied indoor

environments,” in Robotics: Science and Systems Conference, June 2008.

[43] A. S. Huang, A. Bachrach, P. Henry, M. Krainin, D. Maturana, D. Fox, and N.

Roy, “Visual odometry and mapping for autonomous flight using an RGB-D

camera,” in Proc. of the Intl. Symp. of Robotics Research (ISRR), (Flagstaff,

USA), August 2011.

[44] Ryan M. Eustice, Large-Area Visually Augmented Navigation for Autonomous

Underwater Vehicles, Massachusetts Institute of Technology, PhD Thesis, June,

2005.

 84

[45] R. Eustice, H. Singh, J. Leonard, M. Walter, and R. Ballard, Visually Navigating

the RMS Titanic with SLAM Information Filters, Proceedings of Robotics

Science and Systems, June 2005.

[46] O. Pizarro, R. Eustice, and H. Singh, Large Area 3D Reconstructions from

Underwater Surveys, OCEANS 2004 MTS/IEEE Conference and Exhibition, vol

2, pp 678-687, Kobe, Japan, November 2004.

[47] SB. Williams, I. Mahon. Simultaneous Localisation and Mapping on the Great

Barrier Reef. IEEE International Conference on Robotics and Automation, April

26-May 1, 2004, New Orleans, USA.

[48] Saez, J.M.; Hogue, A.; Escolano, F.; Jenkin, M.; , “Underwater 3D SLAM

through entropy minimization”. Proceedings of IEEE International Conference on

Robotics and Automation 2006. pp.3562-3567, 15-19 May 2006

[49] Kolter, J. Zico; Youngjun Kim,; Ng, Andrew Y.; , “Stereo vision and terrain

modeling for quadruped robots”. IEEE International Conference on Robotics and

Automation 2009, pp.1557-1564, 12-17 May 2009

[50] Adam Schmidt and Andrzej Kasinski. 2010. “The visual SLAM system for a

hexapod robot”. In Proceedings of the 2010 International Conference on

Computer Vision and Graphics: Part II (ICCVG'10), Leonard Bolc, Ryszard

Tadeusiewicz, Leszek J. Chmielewski, and Konrad Wojciechowski (Eds.).

Springer-Verlag, Berlin, Heidelberg, 260-267.

[51] Durgin, F. H., Akagi, M., Gallistel, C. R., & Haiken, W. (2008). “The precision of

locomotor odometry in humans”. Experimental Brain Research, vol. 193, pages

429–436.

[52] T. Albright, “Cortical processing of visual motion,” in Visual Motion and its Use

in the Stabilization of Gaze, J. Wallman and F. Miles, Eds. New York: Elsevier,

1993, ch. 9, pp. 177–201.

[53] Pretto, A., Menegatti, E., Bennewitz, M., Burgard, W., Pagello, E. “A visual

odometry framework robust to motion blur”. IEEE International Conference on

Robotics and Automation 2009, pp.2250-2257, 12-17 May 2009

[54] Sakagami, Y., Watanabe, R., Aoyama, C., Matsunaga, S., Higaki, N., Fujimura,

K. “The intelligent ASIMO: system overview and integration”. IEEE/RSJ

International Conference on Intelligent Robots and Systems 2002, vol.3, pp. 2478-

2483, 2002

 85

[55] Tellez, R., Ferro, F., Garcia, S., Gomez, E., Jorge, E., Mora, D., Pinyol, D.,

Oliver, J., Torres, O., Velazquez, J., Faconti, D. “Reem-B: An autonomous

lightweight human-size humanoid robot”. 8th IEEE-RAS International

Conference on Humanoid Robots 2008, pp.462-468, 1-3 Dec. 2008

[56] Hirohisa Hirukawa, Fumio Kanehiro, Kenji Kaneko, Shuuji Kajita, Kiyoshi

Fujiwara, Yoshihiro Kawai, Fumiaki Tomita, Shigeoki Hirai, Kazuo Tanie,

Takakatsu Isozumi, Kazuhiko Akachi, Toshikazu Kawasaki, Shigehiko Ota,

Kazuhiko Yokoyama, Hiroyuki Handa, Yutaro Fukase, Jun-ichiro Maeda,

Yoshihiko Nakamura, Susumu Tachi, Hirochika Inoue, “Humanoid robotics

platforms developed in HRP”, Robotics and Autonomous Systems, Volume 48,

Issue 4, 31 October 2004, Pages 165-175

[57] Stasse, O., Verrelst, B., Davison, A., Mansard, N., Vanderborght, B., Esteves, C.,

Saidi, F., Yokoi, K. “Integrating Walking and Vision to Increase Humanoid Robot

Autonomy” IEEE International Conference on Robotics and Automation 2007,

pp.2772-2773, 10-14 April 2007

[58] Olivier Stasse, Andrew J. Davison, Ramzi Sellaouti, Kazuhito Yokoi. “Real-time

3D SLAM for Humanoid Robot considering Pattern Generator Information,”

IEEE/RSJ International Conference on Intelligent Robots and Systems, 2006,

pp.348-355, Oct. 2006

[59] Kwak, N., Stasse, O., Foissotte, T., Yokoi, K. “3D grid and particle based SLAM

for a humanoid robot”. 9th IEEE-RAS International Conference on Humanoid

Robots, pp.62-67, 7-10 Dec. 2009

[60] Nishiwaki, K., Kuffner, J., Kagami, S., Inaba, M., & Inoue, H. “The experimental

humanoid robot H7: A research platform for autonomous behaviour”.

Philosophical Transaction A: Mathematical Physical and Engineering Sciences,

vol. 365, pp. 79–107, 2007.

[61] Thompson, S., Kagami, S. "Humanoid robot localisation using stereo vision" 5th

IEEE-RAS International Conference on Humanoid Robots, pp.19-25, 2005

[62] Ozawa, R., Takaoka, Y., Kida, Y., Nishiwaki, K., Chestnutt, J., Kuffner, J.,

Kagami, J., Mizoguch, H., Inoue, H. "Using visual odometry to create 3D maps

for online footstep planning". 2005 IEEE International Conference on Systems,

Man and Cybernetics, vol.3, pp. 2643- 2648, 10-12 Oct. 2005

 86

[63] Takaoka, Y., Kida, Y., Kagami, S., Mizoguchi, H., Kanade, T. "3D map building

for a humanoid robot by using visual odometry". IEEE International Conference

on Systems, Man and Cybernetics 2004, vol.5, pp. 4444- 4449, 10-13 Oct. 2004

[64] Jianbo Shi, Tomasi, C. "Good features to track". Proceedings of 1994 IEEE

Computer Society Conference on Computer Vision and Pattern Recognition,

pp.593-600, 21-23 Jun 1994

[65] B. D. Lucas and T. Kanade. “An iterative image registration technique with an

application to stereo vision”. IJCAI, 1981.

[66] Erbatur, K., U. Seven, E. Taşkiran, Ö. Koca, M. Yilmaz, G. Kızıltaş, M. Ünel, A.

Sabanovic, A. Onat, "SURALP: A New Full-Body Humanoid Robot Platform",

IEEE/RSJ International Conference on Intelligent Robots and Systems, IROS

2009, St. Louis, MO, USA, October 2009.

[67] Kajita, F. Kahehiro, K. Kaneko, K. Fujiwara, K. Harada, K. Yokoi, H. Hirukawa,

“ Biped walking pattern generation using preview control of the zero-moment-

point”, Proceedings of IEEE International Conference on Robotics and

Automation, pp: 1620 - 1626, vol.2, Taipei, Taiwan, September 2003.

[68] Y. Choi, B. J. You, and S. R. Oh, “On the stability of indirect ZMP controller for

biped robot systems”, Proceedings of International Conferenc on Intelligent

Robots and Systems, pp: 1966 - 1971, vol.2, Sendal, Japan, June 2004.

[69] Erbatur, K. and Kurt, O., “Natural ZMP Trajectories for Biped Robot Reference

Generation”, IEEE Transactions on Industrial Electronics, vol. 56, no. 3, pp. 835-

845, March 2009.

[70] Erbatur, K., O. Koca, E. Taskiran, M. Yılmaz and U. Seven, "ZMP Based

Reference Generation for Biped Walking Robots," presented in International

Conference on Intelligent Control, Robotics, and Automation, ICICRA 2009,

Venice, Italy October 28-30, 2009, published in World Academy of Science

Engineering and Technology, Vol. 58, pp. 546-553, October 2009.

[71] Taskiran, E., M. Yilmaz, O. Koca, U. Seven and K. Erbatur, "Trajectory

Generation with Natural ZMP References for the Biped Walking Robot

SURALP," Proc. 2010 IEEE International Conference on Robotics and

Automation, ICRA 2010, Alaska, USA.

[72] Brown DC "Decentering distortion of lenses.". Photogrammetric Engineering, vol.

7, pp. 444–462, 1966.

 87

[73] hengyou Zhang, "Flexible Camera Calibration by Viewing a Plane from Unknown

Orientations," IEEE International Conference on Computer Vision, vol. 1, p. 666 ,

1999

[74] J.Y.Bouguet. “MATLAB calibration tool”.

http://www.vision.caltech.edu/bouguetj/calib_doc/

[75] G. Bradski and A. Kaehler. “Learning OpenCV”, Sep. 2008

[76] Hartley, Richard I.. “Theory and Practice of Projective Rectification”.

International Journal of Computer Vision, vol. 35, pp. 115-127, 1999.

[77] C. Harris and M. Stephens. “A combined corner and edge detector”, in Proc.

Alvey Conf., pp. 147–151, 1988

[78] Lowe, D.G. "Object recognition from local scale-invariant features". The

Proceedings of the Seventh IEEE International Conference on Computer Vision,

vol.2, pp.1150-1157, 1999

[79] H. Bay, T. Tuytelaars, L. Van Gool, “SURF: speeded up robust features”, in

ECCV, 2006.

[80] E. Rosten and T. Drummond. “Machine learning for high-speed corner detection”.

In Proc. 9th European Conference on Computer Vision (ECCV’06), Graz, May

2006.

[81] Andrea Bonarini, Wolfram Burgard, Giulio Fontana, Matteo Matteucci,

Domenico Giorgio Sorrenti and Juan Domingo Tardos. “RAWSEEDS: Robotics

Advancement through Web-publishing of Sensorial and Elaborated Extensive

Data Sets”. In proceedings of IROS'06 Workshop on Benchmarks in Robotics

Research, 2006.

[82]] J. Bouguet, “Pyramidal Implementation of the Lucas Kanade Feature Tracker:

Description of the Algorithm,” OpenCV Document, Intel, Microprocessor

Research Labs, 2000.

[83] Jochen Schmidt, Heinrich Niemann: “Using Quaternions for Parametrizing 3-D

Rotations in Unconstrained Nonlinear Optimization”. VMV 2001, pp.399-406.

 88

APPENDIX A

A. THE LEVENBERG-MARQUARDT METHOD

Levenberg-Marquardt method is an iterative, hybrid optimization method which

seamlessly moves between the Newton’s method and a form of Gradient Descent. This

allows the solution to converge much faster than the Gradient Descent, and prevents it

from diverging where the Hessian is not “well-behaving”, as Newton’s method would.

Consider a generic nonlinear least squares problem given a set of observation

pairs �3…�� and A3…A� and a nonlinear model curve �(�e, �) relating them, the

problem of finding the parameter vector � minimizing the least squared error is stated

as

j4kl_m�]‖Ae − �(�e , �)‖5�
ec3 . (A.1)

At each iteration of the Levenberg-Marquardt method, δ, an update to the

parameter vector β is calculated. Defining a cost function [(�) as

[(�) =]‖Ae − �(�e, �)‖5�
ec3 (A.2)

or equivalently

[(�) = ‖� − �‖5 (A.3)

where

� = zA3⋮A�| (A.4)

 89

� = z�(�3, �)⋮�(�� , �)|. (A.5)

Then δ that would decrease [(� + �) is calculated from the following equation

(��� + �H_jk(���)) = ��(� − �) (A.6)

Where � is the Jacobian matrix obtained from

� = 	 ¡�¡� (A.7)

This Jacobian matrix can be obtained by taking the derivative analytically, or

performing discrete differentiation numerically. Although the analytic option would

possibly perform faster as it is non-iterative, it may not always be possible or practical

to get.

The pseudo-code for Levenberg-Marquardt algorihm is given in Table A.1.

 90

Table A.1. Pseudo-code for Levenberg-Marquardt algorithm

Levenberg_Marquardt(x, y, beta, ksi_growth, ksi_max)

iter ← 0
converged ← false
failed ← false
error_old ← infinity
ksi ← small number (e.g. 0.00001)
Y ← stack y on top of each other
while converged = false

 iter ← iter + 1
 F ← compute f for all x using beta, stack them
 if iter = max_iter

 converged ← true
 failed ← true, could not converge in given iterations
 else

 error_decreased	← false
 J ← compute J from F and beta (analytic or numerical)
 while error_decreased = false

 delta ← perform equation A.6
 beta_new ← beta + delta
 error ← compute the cost function with beta_new
 if error < error_old

 error_decreased ← true
 beta ← beta_new
 ksi	←	ksi/ksi_growth
 else

 ksi←ksi*ksi_growth

 if ksi > ksi_max // error cannot be decreased

 converged ← true
 break error_decreased iteration

 return !failed

 91

APPENDIX B

B. RANSAC

RANSAC is a robust estimation method that aims to fit a model to data possibly

containing gross outliers. The pseudo-code for a generic RANSAC is given in Table

B.1.

The parameters of the algorithm are the minimum number of data needed to fit a

model (n), number of iterations to be performed (max_iter), a threshold to decide

whether model fits a datum (epsilon), minimum number of inliers needed to establish a

hypothesis model (minN).

Table B.1. RANSAC pseudo-code

RANSAC(data, n, max_iter, epsilon, minN)

 iter←0
 best_model←null
 best_error←infinity

 while iter < max_iter

 consensus ← null
 random_data← n randomly selected data points
 model ← fit a model to random_data
 for each point in data

 error←calculate error with model
 if error < epsilon

 consensus←add point to consensus
 if consensus size > minN

 consensus_model ← fit a model again to all the

 92

points in the consensus

 consensus_error ← calculate the total error in the
consensus with the consensus_model

 if consensus_error < best_error

 best_model ← consensus_model
 best_error ← consensus_error
 iter ← iter + 1
return best_model

