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ABSTRACT

Humanoid robots are expected to assist humanseiriutiare. As for any robot with
mobile characteristics, autonomy is an invaluabkgure for a humanoid interacting with its
environment. Autonomy, along with components fromtifiaial intelligence, requires
information from sensors. Vision sensors are widabtcepted as the source of richest
information about the surroundings of a robot. isinformation can be exploited in tasks
ranging from object recognition, localization andmipulation to scene interpretation, gesture
identification and self-localization.

Any autonomous action of a humanoid, trying to agglish a high-level goal,
requires the robot to move between arbitrary waygoand inevitably relies on its self-
localization abilities. Due to the disturbances uscualating over the path, it can only be
achieved by gathering feedback information fromeheironment.

This thesis proposes a path planning and correatiethod for bipedal walkers based
on visual odometry. A stereo camera pair is usdthtbdistinguishable 3D scene points and
track them over time, in order to estimate the @greéles-of-freedom position and orientation of
the robot. The algorithm is developed and assessedbenchmarking stereo video sequence
taken from a wheeled robot, and then tested via rempats with the humanoid robot

SURALP SabanciUniversityRobotic ResArch L aboratoryPlatform).



OZET

Insansi robotlarin, yakin gelecekte insanlara yasdisimalari beklenmektedir.
Gezgin karakterisge sahip her robotta ol@u gibi, insansi robotlarda da otonom hareket
kabiliyeti cevreyle etkilgmde biyuk rol oynamaktadir. Otonomluk, yapay zékeleriyle
birlikte algilayici verisine ihtiya¢ duyar. Robotgevresi ile ilgili en zengin bilgiyi $gayan
algilayicilar, gorsel bilgi iceren kameralar olatedbul gormektedir. Gorsel bilgi, nesneleri
tanima, yerlerini belirleme ve hareket ettirme gibiygulamalarin yaninda sahne
anlamlandiriimasi, jest tanima ve oOzkonumlandirmidi goroblemlerin  ¢ézimiinde
kullanilabilmektedir.

Bir insansi robotun (st seviye bir amaca hizmet e&tniizere gercek$drecesi
herhangi bir otonom hareket, bulugdu cevre icerisinde belirli noktalara gitmesini
gerektirmekte, ve dolayisiyla robotu 6zkonumlandiryetengine baimh kilmaktadir.
Hareketin surdurtldiil yol Uzerinde gelen etkenlerin yargtthatalarin tstiste eklenmesi
sonucu, ¢evreden bir geri beslemeye ihtiyac duyktathr.

Bu tez, gorsel odometri tabanli bir ylrgylyoringesi dizeltme algoritmasi
sunmaktadir. Bahsedilen yontemde bir stereo kargétiatarafindan algilanan ¢ boyutlu
noktalar zaman iginde takip edilerek kamera setifiinserbestlik dereceli konum ve
oryantasyonu tahmin edilmektedir. Algoritma, geliime asamasinda dnceden kaydedigmi
videolar vasitasiyla denergnve son halini alggnda insansi robot SURALPSdbanci

UniversitesiRobotArastirmalariL aboratuvaPlatformu) tizerinde test edilwtir.
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Chapter 1

1. INTRODUCTION

The worldwide research interest towards humandidtohas been growing for
the past few decades. As the computational powegmaemory gets cheaper, scientists
and engineers are encouraged to venture furtheilplitses to create more human-like
machines. The humanoids are expected to assistramghlace humans in many fields
including, but not limited to, heavy-duty professso(e.g. mining, construction), service
and healthcare industries, or even in our homescéjanimicking the human form and
functions is possibly advantageous as humans désggnsurroundings in favor of their
own capabilities. But creating a human analogumfroanimate objects is an ambitious
goal, especially because the human brain is a oloas “machine”. Even if the
computational power was not an issue, there isastibt of ground to cover before a
robot can match the versatility of a human-being.

Achieving complete (or at least sufficient with pest to their purpose)
autonomy for robots should be the first steppirmnsttowards the ultimate goal. They
should be able to make the necessary decisionagjnstments themselves to be able to
help humans. A robot can be said to be autononfausan perform its desired tasks in
an unstructured and unsupervised scenario. ThHriom can be satisfied if necessary
thresholds are passed in research fields lika@adiintelligence and cognitive robotics.
But applications in these fields also need reliainl®rmation to work on; hence
progress in lower level data acquisition and infation extraction tools is crucial.

Vision sensors, namely cameras, generate huge asnotintata depicting the
environment. If these data are processed and dmavelo bits of meaningful
information, higher level tasks can then be purstidse sensors should be at utmost
importance for humanoids. Any human environment gcenario including a human-
robot interaction, inherently contains importansual cues as the human brain and
anatomy is evolved to favor the visual data ovéreptsenses. With that being said,

robust and generic vision applications are verye rir robots, as the sensor data



depends heavily on environmental conditions andctiraputational costs of machine
vision algorithms are still sometimes out of reablevertheless, a large amount of
research effort worldwide is directed at these lehgkes and successful examples exist
in applications including object recognition, Idzation and manipulation, human
identification, gesture recognition and self-lozation.

Self-localization is a problem that is encountebgdevery autonomous mobile
robot that is trying to accomplish a given task tieguires visiting an arbitrary number
of waypoints. As a couple of application exampksiumanoid robot taking care of an
il person would have to go find the necessary miadiand bring it back to him/her, or
a robot serving as a waiter in a restaurant woulk hta patrol between tables and
occasionally go to the kitchen. Although these $astem trivial to a human-being, they
are highly challenging problems for robots and gath#ention from numerous
researchers around the world.

Estimating the change in position and orientatioerofme from a moving
sensor set is generally calledometry In a mobile robot application, these sensor sets
often include inertial measurement units (acceletens and gyroscopes), cameras,
laser rangefinders, LIDARs and sonar sensors. Aerspecific method relying solely
(or heavily) on the data from the cameras is calisdal odometry Estimating the
trajectory of a set of cameras in space (detactwd fobotics context) is often called
egomotion estimatioar camera pose estimation

In this work, a visual odometry algorithm using tereo camera pair is
developed and applied to the humanoid robot SURA&Pcorrect for trajectory
deviations during a walk in a static scene. Theaialisodometry algorithm includes
feature detection and matching between the stee@q BD reconstruction, feature
tracking via optical flow and nonlinear least sgsatechniques to estimate the absolute
position and orientation of the camera set relatovés initial pose. The development
stage needed a ground truth trajectory to comphesce a benchmarking video
sequence recorded on a wheeled robot is utilizdte €omparison between the
algorithm results against the ground truth trajects presented.

The organization of this thesis is as follows.

The next chapter contains a literature survey amgion estimation in general
and its applications in robotics. Several exampdéshumanoid robots with self-

localization methods are given.



Chapter 3 describes the experimental robot SURAILRe structure and
hardware, walking reference generation and baslkingacontrol routines are briefly
presented.

3D reconstruction and stereo vision basics areduiced in Chapter 4. Pinhole
camera model is presented to show the relationdstvBD points and camera pixel
coordinates of the related features in the imagestlhe necessary information needed
to reconstruct a 3D point from its stereo correspoieds. Calibration, undistortion and
rectification are discussed as the necessary btdpse the actual 3D reconstruction can
begin. Finally, last part of this chapter explaimswv features are found and matched in
stereo images and converted to 3D world coordinates

Chapter 5 contains an outline to the implementeiali odometry algorithm.
Tracking of 3D points and the role of optical flamethods are presented. The camera
pose estimation parameterized by a unit quatermodefined as a nonlinear least
squares problem with a nonlinear constraint aneMagossible solutions are evaluated.
The necessity of robust estimation techniques amdestimation refinement step
including a probabilistic filtering (namely an Ertded Kalman Filter) or a bundle
adjustment process, are discussed. Finally, a cosomabetween possible solutions is
carried out by assessing them using the benchngatkdeo sequence and its ground
truth trajectory.

The implementation of the visual odometry algoritom the humanoid robot
SURALP and the obtained results are presenteckilCtiapter 6.

The last chapter summarizes the work carried oatni@ents on the obtained

results, conclusion remarks and directions forftibere work are given in this part.



Chapter 2

2. A SURVEY ON EGOMOTION ESTIMATION AND ITS APPLICA TIONS IN
ROBOTICS

This chapter presents a literature survey on tl@megion estimation and its
application to robotics to establish the groundtlo$ thesis among related research
areas. In the first section, several methods ofregimn estimation and the application
areas in computer vision systems in general aretgmiout. The following sections
sample the mobile robotics and visual odometryaedearea and finally, going from
general to specific, the state-of-the-art humanolabts with self-localization abilities

are identified.

2.1. Methods and Application Areas

The egomotion estimation is defined as the prooéssalculating the observer’s
motion using the visual data. Several solutionthi® problem exist in the literature and
there are multiple categories that divide them: iomotestimation level (linear and
angular velocities vs. the absolute position anentation of the camera), camera setup
(single vs. multiple views) and the motion of tlverse (static vs. dynamic).

Early works in this field deal with relating imagelocities to linear and angular
velocities of a single camera. They commonly mak® tmain assumptions; the
apparent motion of the scene is generated by theera itself and instantaneous
velocities of the projected points can be observed.

One of the pioneer works is given in [1] where thathors decouple the
observed motion from scene depth in order to cradiginear constraint on linear and
angular velocity of the camera. Their method is ohéhe many that relies on optical
flow estimation for representing image velociti®son after, this work is followed by a
series of methods [2-7] that are built on the estiom of the focus of expansion (FOE).



The observation is when the observer is purely kaéing, the projected motion vectors
of the points in the scene converge to (or divérge) a single point (FOE), and in the
case of a complex motion FOE can be used to deedhbpl estimation of rotation and
translation. Finally, [8] presents a notable workséd on motion parallax and
decoupling the translation from rotation from imadgformations. A comparison in
performance of some of these methods is given]in [9

Another approach is to use the epipolar constiz@tiveen the two views taken
by a single calibrated camera at different tim@st@hese methods result in discrete-
time estimations of the motion parameters (tramslat and rotational displacement of
the camera between frames) and some examplesvar igi [10-13]. They are closely
related to structure-from-motion (SFM) applicatiovisere the 3D structure of the scene
and the motion parameters of the camera are sinadtesly estimated. The SFM
applications generally are finalized by an offlifmatch processing with bundle
adjustment [14] to refine the resulting 3D recamstion and the camera trajectory. The
bundle adjustment is adopted by robotics commuioitige applied in real-time (which
will be discussed in the next section) and also @m@nted in this thesis’ work.

It is important to note that the methods introdused far suffer from the
ambiguity in translation and scale created by tlogeptive geometry, since they do not
benefit from an auxiliary view of the scene. Insthiesis work, a stereo camera pair is
utilized to overcome this problem; hence these nustlame not considered.

A family of algorithms known as Perspective-N-Psi{PnP) exists to solve for
the absolute position and orientation of the canggvan the projections afi known
scene points to the image plane. Linear soluticis & the literature for P3P [14] and
P4P [15], but above 5 points the solution can kainbd using Direct Linear Transform
(DLT) [16]. An important note on these algorithms P3P solutions contain an
ambiguity and result in 4 possible solutions, wherE4P algorithms (and above) have a
unique solution as long as the points are non-oc@plaAnother major concern is
computational efficiency as these algorithms areegaly iterative. An efficient version
(EPnP) is introduced in [17] to match the needa oéal-time system. Although these
algorithms relate scene points to a single calatratamera, a stereo system could be
used to initially estimate the 3D scene structare] solve for camera poses by tracking
these features over time. The authors of [18] pl®va visual odometry pipeline

utilizing these algorithms and a performance corsparbetween them.



Up to this point, all of the above mentioned altforis dealt with projections of
the scene points onto the image plane, whereas avithultiple-view camera rig
estimations of the 3D scene points are availablangt time. Therefore, finding the
transformation between the estimated 3D pointhéndamera frame and their known
world frame coordinates is possible. This can lem $s a data alignment problem and a
solution is described in [19]. This is the clossslution to the one implemented in this
thesis work where the transformation between 3Dipaare estimated at each step. It
also provides the insight that the translation estdtion between the point clouds can
be decoupled by moving the centroids of them tootiggn.

Another notable application, along with SFM andatods, is the augmented
reality (AR) systems. AR systems aim at insertingmputer generated images
(generally of 3D graphic models) onto real videqusnces. Although they often adopt
a marker with a known geometry placed into the sdenestimate the camera pose,
there is a growing research interest in marker-l8&6& These marker-less AR
applications also benefit from egomotion estimatiechniques and solutions provided
are closely related to the ones used in robotmsareh. An example of such a system is

given in [20] dealing with partially known dynanscenes.

2.2. Literature Survey on Visual Odometry in Mobile Robotics

Odometry is a term used in navigation and robdiicsestimating the actual
position and orientation of a moving vehicle/rolising the onboard sensor data. The
simplest odometry is achieved by integrating thereged velocity of the vehicle over
time and this method is callegad reckoning

For a wheeled robot, an example dead reckoningadetbuld be measuring the
wheel speeds and converting them to linear speechws then integrated over time.
But this method has an obvious flaw; we are assgrthiat the exact speeds of the
wheels can be measured, and that the velocityeofitbund is the same as the wheel's
tangential velocity at the point of contact, whitieans no slipping. These assumptions
very rarely (if not never) hold true. Hence we grede the errors along with the
estimations and the estimated positinifts from the actual one very rapidly. This
drifting issue exists for any kind of odometry adty, so the performances of the

methods are evaluated as the percentage of daftistance traveled.



Motion in 3D world has 6 degrees-of-freedom (DCGd6),0ne needs to specify 3
position and 3 orientation components to fully defa body in space. Hence, full visual
odometry has to estimate all 6 DOF to allow the tolmomove freely. There are
however, some works in the literature that berfeditn a simplification of the motion
parameters. These are generally wheeled or trachels, or automated cars which are
assumed to move strictly on the ground plane. Exeenpf two wheeled robots with
3DOF (planar) visual odometry systems are give[2i, [22] and [23]. These robots
adopt a single camera attached to their body wagotmiound movement and use optical
flow fields gathered from the ground texture toireate their motion. Very similar
approaches are presented in [24] and [25] applre@wdomated cars. Although these
approaches should yield more robust results thaill BDOF estimation (because there
are less parameters to estimate), their use iselilio these occasions and even then,
the imperfections on the ground (level differendasmps) could affect the outcome
significantly.

Another popular approach is Monte Carlo Localizat{MCL), and it is used to
localize the robot given the map of its environmdihtis method is an application of the
particle filters in robot localization and it iss&d on randomly sampling the space of all
possible configurations, and updating the probhalf correctness of each sample with
coming sensor data. In [26], an application of tmisthod on a shopping companion
wheeled robot equipped with an omnidirectional cais described. Their approach
requires the robot to be led through the envirortnoece as a training session to build
the necessary map. Another such example is give[27h where the robot is a
quadruped competing in the RoboCup football chgltenThe environment is a mini
football field and it is encoded as a map into tbbot. Although the method is
extendable to localize the robot in 6DOF, samptirgypossible configurations in the 6-
dimensional space is costly (curse of dimensioyalihence these examples also
estimate the 3DOF position and orientation of tieot on the ground plane.

Apart from the previously discussed methods, trseiali odometry techniques
adopted by the robotics community share a largeuatmof common steps. They are
based on reconstructing the 3D scene (dense aeyday triangulation and tracking the
obtained 3D points over time to solve for the ab&obposition and orientation of the
robot in the world coordinate frame. Random Santpimsensus (RANSAC) is also
very popular for dealing with outliers created lysé matches and tracking errors. Few

of many examples of such systems in wheeled locomate given in [28] and [29].



Flying robots like quadrotors are generally destiyfog outdoor applications and
rely on GPS data for self-localization. There is boer a respectable amount of
research aimed to apply visual odometry methodhese machines for either getting a
finer estimation of the robot position, or to bedisn GPS-denied indoor applications.
Authors of [30] applied visual odometry methods amuadrotor flying in an indoor
environment and their results show the drastict dnf estimation for such rapidly
moving machines even with a refining bundle adj@sthprocess.

The bundle adjustment is a powerful technique andnantioned before, it is
widely used in SFM applications to refine the firgD reconstruction and camera
trajectory simultaneously. Although the systemseqbiations tend to get really large
even for two consecutive frames, recently thereldesn a significant progress towards
achieving online bundle adjustment. So called Sp&wsndle Adjustment (SBA) [31]
method is based on abusing the sparse structutteeasystem created by the lack of
interaction between the 3D scene points and solvirey problem efficiently. The
authors of [32] implemented SBA on a mobile robahva sliding window approach to
minimize the drift. Their sliding window resembleése batch operation of SFM
applications using only a small number of consetjuaages. One key remark on their
algorithm is that they do not estimate the egonmotising images before the bundle
adjustment, they use the odometry estimation aeduirom the other sensors of the
robot (dead reckoning result) as an initial guessSBA. Their results show that this
approach is feasible and satisfactory.

Recently, there has been a very successful andwret example of
autonomous robots benefiting from visual odometghhiques: the NASA Mars
Exploration RoversSpirit andOpportunity These robots spent 2 years on the surface of
Mars, moving autonomously (as the communicatiorayledoes not allow human
supervision). Their method is described in [33] 4Bd], and the evaluation of the
system performance on Mars is published in [35fyrhave adopted an Expectation
Maximization (EM) method to calculate the robotj@écdory in 6DOF, by defining a
normally distributed error over the reconstructed Boints. This error modeling
technique is introduced in [36] and forms a basrstlie necessary robust estimation of
visual odometry over very long distances. Althougk resulting drift in estimated
position is minimal, it still exists as a threataagst long distance navigation. Hence,

they have relied on a sun sensor to crudely logdhe absolute position of the robot on



the planet surface and prevented the drift fronwgrg unboundedly [37]. A computer
generated image of a NASA Mars Exploration Roveshiswn in the Figure 2.1.

Figure 2.1.A computer generated image of a NASA Mars ExpioraRover

The drift in visual odometry is counter-intuitiven ia sense that the 3D
measurements seem to be coming from a static warttl localization among them
should be trivial. One has to take into account tih@ measurements of the 3D points in
the world rely on the exact knowledge of the mopanameters of the camera set. This
creates a “chicken or egg” problem because estimati the camera pose also depends
on the 3D scene information. That is to say, whggmating the 3D point locations and
the egomotion of the camera set on the fly, thenmog 3D point coordinates contain
errors caused by prior inaccurate camera motioanpaters. Regarding this issue, there
IS a great deal of research effort spent to cr8atmiltaneous Localization and Mapping
(SLAM) systems.

SLAM researchers rightfully claim that localizatiand mapping form a coupled
problem and cannot be solved separately. The pedvidolutions often contain
information from various sensors including inertrabasurement units (IMU), laser
rangefinders, LIDARs and sonar sensors along witlitiple cameras (color and

grayscale). Hence SLAM solutions can be seen dsehigvel probabilistic algorithms



utilizing visual odometry estimations. Equivalentilge visual odometry techniques can
be seen as local estimators and SLAM algorithmgl@lsal ones. In this thesis work,

SLAM methods are not explored, but they are wordntioning to establish the current
research trends.

SLAM is first introduced in 1986 by the authors[88] and [39], and actually
spent a rather quite time during the 1990s with fesearchers working on a solution
because of the necessary computational power. énelrly 2000s, advances in
computer hardware enabled SLAM algorithms to begesbin acceptable time steps and
the research interest grew exponentially.

The key concept of SLAM is the so-called “loop cleess”. These loop closures
are the points on which the robot comes to a pteshovisited waypoint and recognizes
the features from a memorized, permanent map. Tin@ps, which typically consist of
thousands of geometric features, are refined osetheop closure points to prevent
unbounded growth of drift. The central problem ual SLAM arises immediately as
the recognition of 3D features from different psioff view, which requires appropriate
descriptors for each geometric feature. Becaugbeofequired computational power to
process large maps, SLAM problem is often reduoeefining a bird’s eye view map
of the environment and the robot’s motion paransetee expressed in 3DOF planar
coordinates. Nevertheless, there are applicatioribe literature which work with full
3D maps. The refinement process is generally ezhrout with probabilistic methods
like particle filters or Extended Kalman Filters KE). EKF-SLAM is especially
popular because it creates a framework to merge daming from various sensors
along with modeling the robot dynamics.

Very few examples of the existing SLAM research apglications are given in
this survey, because trying to cover the SLAM &tare exhaustively would require a
significant amount of time and effort and actualyut of focus of this thesis.

Wheeled or tracked robotsare the ones that attract most SLAM researchers,
because of the simplicity of locomotion. These tsballow engineers to make
simplifying assumptions that prove to be valualde dnline SLAM applications. An
application of EKF-SLAM with a wheeled robot movingan outdoor environment is
given in [40]. They utilize data from vision sens@aong with GPS and dead reckoning
to find a statistically optimal map with EKF. Thathors of [41] implemented a Rao-
Blackwellised Particle Filter (RBPF) based SLAM anwheeled robot in an indoor

environment. The results of their work clearly shtve difference between visual
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odometry estimation and SLAM correction. These tslvaork with planar maps as they
assume the robot trajectory (both in position anentation) does not leave the ground
plane.

Flying robots (namely quadrotors) are also considered as SLAMicgtion
candidates. An EKF-SLAM system on a quadrotor mgvin GPS-denied indoor
environments is presented in [42]. The existingsees of the described system are a
stereo camera rig, a laser rangefinder and an IMig. EKF returns a state estimate in
4DOF (3 translation and yaw orientation) combinihg sensor data. This is a similar
simplification to a wheeled robot moving on the wgrd plane, only the plane that
quadrotor is moving is assumed to be parallel éogitound rather than coincident. This
assumption is achievable by their adopted feedhamx to correct for roll and pitch
angles of the robot measured by the IMU. A veryent@nd notable SLAM example
with a quadrotor micro air vehicle (MAV) is given j43]. The presented system works
with a single RGB-D (color and depth) camera toatea dense 3D model of the
environment. This work shows the impact of advanoesensor technology on higher-
level tasks. Their resulting 6DOF trajectory estiora and the environment map are

impressive. A photograph of the MAV is shown in g 2.2.

Figure 2.2.A quadrotor MAV with and RGB-D camera

Swimming robot research in general is smaller than the other hemjcso their
SLAM applications are even rarer. The SLAM problefmrswimming robots does not

allow any simplifying assumption as the underwaterld has inherently 6DOF. The

11



dynamic nature of the medium and the sensor behawnderwater add up to the
challenge. Pioneer works on this problem are vecgmt (dating back to 2004) and are

presented in [44-48]. The amphibious robot from [48&hown in Figure 2.3.

Figure 2.3. An amphibious robot using stereo cameras

Legged robots subdivide into bipeds, quadrupeds and hexapodsh (v
exceptions). Visual odometry and SLAM applicatiaombipeds are analyzed in the next
section. In the case of quadrupeds and hexapaelg, iha surprisingly small amount of
research aimed towards the SLAM problem. This latkesearch interest could be
caused by the purpose of such multi-legged strastufhe multi-legged locomotion is
inherently more stable than the bipedal one; héneaesearch areas of these types of
robots are mainly shifted to stable walking anchgalinning in outdoor rough terrains.
The outdoor scene is proven to cause a great ammuphallenge against visual
odometry techniques and the added erratic motidheofobot walking on rough terrain
is a deal-breaker for vision systems.

An example work on quadrupeds aiming at modelirg ritcky terrain while
localizing the robot is given in [49]. They have unted a stereo camera rig on a
commercially available quadruped known as LittleDoggather 3D points from the
terrain. Their work differs from traditional SLAMparoaches, because they use point
cloud matching via Iterative Closest Point (ICR)acaithm to build a consistent 3D map
of the rocky terrain and localize the robot. Althbutdpeir results are very good, this

approach is very computationally costly and notadle for real-time requirements of
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dynamic walking, so the described scenario requiresobot to move in discrete steps.
The LittleDog and the stereo camera setup depiictatlis publication are shown in
Figure 2.4.

Figure 2.4.LittleDog and the stereo camera setup [49]

A very recent work on hexapods and SLAM is presénte [50]. A single
camera is mounted on the hexapod and the visualisatombined with the reference
trajectory to calculate the actual trajectory of tbbot. Their results are not very clear,
but they provide very useful insights. They claimattfor such small robotic systems,
the onboard computational power is always relafivelv; so the proposed methods
should be able to keep track of the robot eveneay Yow frame rates. Another
important issue pointed out is the effect of abrlminges in motion due to the legged
locomotion on the visual SLAM.

2.3. Literature Survey on the Self-Localization Prblem in Humanoid Robots

Studies show that humans rely on visual data taliwe themselves in their
environment. In a recent study [51], experimentthwa number of human subjects are
carried out to see if they can reach a targetmtstavhile blindfolded. The results show
that even the subjects tried to repeat a trajedtoey had walked minutes ago while
they were seeing; the drift in direction and distaritaveled was significant and
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proportional to the length of the test. This resmtourages the use of vision sensors in
humanoid robots to generate feedback from the enwient.

An extensive study on human perception of visualionois given in [52]. The
study claims there is evidence that the humansep&ranovement from optical flow
and use that information along with depth percepgienerated by binocular disparity to
sense their egomotion as well as the motion of dtieer dynamic objects. These
observations point out the similarities betweentibman perception of egomotion and
the methods applied on a humanoid robot in thisishe

In the research field of humanoid robotics, there a number of bipedal
walking machines, but few of them have full-bodsusture needed to perform high-
level tasks. The humanoids with self-localizatiapa&bilities are even rarer and form an
elite group among the other ones.

The self-localization problem of humanoids is vemyilar to the other types of
mobile robots; but it is generally more challengasggthe vibrations and abrupt motions
caused by bipedal locomotion are significant. Thdiseurbances highly affect the data
gathered by any onboard sensor and threaten théh hefaany kind of odometry
estimation. The magnitude of these disturbancesthenl effect on low-end vision
sensors are clearly shown in [53]. In the impleragonh of this thesis work, the motion
blur effect is not filtered but minimized by usiocgmeras with high image acquisition
frame rates and low exposure times. Even thoughntlages are clean, estimating the

motion parameters going under such high frequehanges is a challenging work.
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Figure 2.5.Two commercial humanoid robots ASIMO and REEM-B

As mentioned before, there are only a handful of dmwid robots capable of
localizing themselves in their environment. Onéh&f most popular ones, ASIMO [54]
is known to be able to perform tasks that requek-lscalization, but there are no
publications in the literature explaining the distai

REEM-B [55] is another commercial humanoid robeitthas the ability to build
maps of indoor environments and localize itselhggshese maps. REEM-B has a stereo
camera rig that can locate objects in 3D, but d@ri/ used as auxiliary information for
self-localization task. It uses two laser sensocated on its feet and walking trajectory
reference to build 2D local maps, and DP-SLAM ailfpon to merge the local maps into
a global one. Once the map building process islified, 3DOF self-localization is
performed using MCL. If the degree of confidencdoitalization drops under a certain
level, visual landmarks recorded while building thap are compared to the camera
data. Photographs of ASIMO and REEM-B are showFigre 2.5.

HRP family [56] of humanoid robots includes a few tbe most advanced
humanoid robots and they have been used by vamsesarch groups. A photo showing
HRP-2, HRP-3 and HRP-4 is given in Figure 2.6.
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Figure 2.6.A photograph of HRP-2, HRP-3 and HRP-4 respedtivel

The authors of [57] and [58] present a visual EHFAB method using a single
camera applied on HRP-2. They point out that trees®ary lateral motion of the body
for a stable walking pattern can also be used ¢atera parallax effect between two
frames taken with a single camera. Whereas the sabw is used in [59] and RBPF-
SLAM method is applied on a stereo vision systergdoerate a grid-based map of the
environment.

Another humanoid that has been the test bed ofowsrisuccessful self-
localization algorithms is the H7 [60]. Figure 2iows photographs of H7.

MCL approach has been implemented in a way verylairo that of REEM-B
in [61]. The method uses stereo vision to recosBD points in the scene, and project
the scene points to the ground plane to be usadvep for 3SDOF MCL estimation.

The state of the art for visual self-localizationhumanoid robots is accepted to
be the work described in [62] and [63]. Their metheses stereo vision and visual
odometry to create 3D local maps to be used inkdR-ELAM context to estimate the
trajectory of the robot in 6DOF. The visual odorgetstimation method described in
these publications form the basis of the work impmated in this thesis. So, their

methods will be explained in more detalil.
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The system described in both publications startBriiing the dense depth map
of the scene from the stereo cameras. Because dep#ie maps often contain a high
level of noise, they have provided a preprocesgognique to filter out the outliers in
the depth data. The dense depth map is not usedsioal odometry estimation, but to
build a dense 3D map of the environment. The visg@imetry calculation is carried
out by tracking point features in the scene. Thayehused a Kanade-Lucas-Tomasi
(KLT) feature tracker which is a fairly standardthud based on finding features with
Shi-Tomasi corner detector [64] and tracking thewerotime using Lucas-Kanade
optical flow [65]. The estimation of the transfortioa between the 3D camera frame
coordinates of the tracked features and their positin the 3D world frame map is
solved as a registration problem. Because of tharsein triangulation and tracking,
they have devised a robust estimation method IRAYSAC with a rigid body motion
constraint. The difference in approaches descripethoth publications is that the
method presented in [62] estimates the rotation wadslation of the camera set
simultaneously, while in [63], these motion paraengtare decoupled and estimated
separately. Further details on both of these agbesawill be given in the Chapter 5.

Figure 2.7.The humanoid robot H7

The next chapter introduces the experimental huidarmbot SURALP and
gives a brief overview on hardware and stable wallaontrol methods utilized by the
robot.
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Chapter 3

3. THE EXPERIMENTAL HUMANOID SURALP

SURALP is a human-sized full-body robot designed annstructed at Sabanci
University Robotics Laboratory. This robot is intumeéd in this chapter with a special
attention to its reference generation method fonghay the direction of the walk on
the fly.

3.1. Hardware

A picture and dimensional drawings of the robot sttewn in Figure 3.1. It is
designed in human proportions with 29 DOF, inclgd6iDOF legs, 6-DOF arms, 1
DOF hands, a 2-DOF neck and a 1-DOF waist [66]. Kinematic arrangement is
presented in Figure 3.2. The weight of the robolid kg. Various dimensions are
tabulated in Table 3.1. DC motors are used as @etidotor drivers are in the trunk.
Belt-pulley systems transmit the motor rotary metim Harmonic Drive reduction
gears (Table 3.2). The sensor system of SURALPuied encoders measuring the
motor angular positions, six-axes force/torque gengositioned at the ankles and
wrists, a rate gyro, an inclinometer, and a lineecelerometer mounted at the robot
torso. Two CCD cameras are mounted to the healeofdbot for visual information.
Table 3.3 shows the sensor working ranges, mountougtions and allocated
communication channels.

The control hardware of SURALP consists of a moddidpace digital signal
processing system in a backpack configuration Eigii8. The controller cycle time

employed is 1 milliseconds.
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Figure 3.1.Humanoid robot SURALP, dimensions.
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Figure 3.2.Kinematic arrangment of SURALP

Table 3.1.Lenght and weight information of links

Upper Leg Length 280mm
Lower Leg Length 270mm
Sole-Ankle Distance 124mm
Foot Dimensions 240mm x 150mm
Upper Arm Length 219mm
Lower Arm Length 255mm
Robot Weight 114 kg
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Table 3.2 Joint actuator specifications

sont_| peter [Pty | o, | ot mange
Hip-Yaw 90w 3 120 -50 to 90 deg
Hip-Roll 150W 3 160 -31 to 23 deg
Hip-Pitch 150W 3 120 -128 to 43 deg
Knee 1-2 150w 3 160 -97 to 135 deg
Ankle-Pitch 150W 3 100 -115 to 23 deg
Ankle Roll 150W 3 120 -19 to 31 deg
Shoulder Roll 1 150W 2 160 -180 to 180 deg
Shoulder Pitch| 150W 2 160 -23 to 135 deg
Shoulder Roll 2 90W 2 120 -180 to 180 deg
Elbow 150w 2 120 -49 to 110 deg
Wrist Roll 70W 1 74 -180 to 180 deg
Wrist Pitch oow 1 100 -16 to 90 deg
Gripper 4W 1 689 0 to 80 mm
Neck Pan 90w 1 100 -180 to 180 deg
Neck Tilt 70w 2 100 -24 to 30 deg
Waist 150w 2 160 -40 to 40 deg

Table 3.3 Sensor system of SURALP
Sensor Number of Channels Range
All joints | Incremental 1 channel per joint 500 pulses/rev

optic encoders

6 channels per ankle

+ 660 N (X, y-axes)
+ 1980 N (z-axis)

Ankle F/T sensor
+ 60 Nm (all axes)
Accelerometer 3 channels +2G
Inclinometer 2 channels + 30 deg
Torso
Rate gyro 3 channels + 150 deg/s
+ 65 N (X, y-axes)
. N i
Wrist /T sensor 6 channels per wrist + 200 N (z-axis)
+ 5 Nm (all axes)
Head CCD camera

2 channels

640x480 pixels (30 fp

)
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Figure 3.3.The hardware architecture of SURALP

3.2. Walking Reference Generation

A ZMP based walking reference generation techniguemployed. Firstly,
references for straight walk are considered. Ireotd change the direction of the walk,
a modification which maps straight walk referenoesarc shaped paths is employed.
The next two subsections discuss the straight walkrences and the mapping for
direction changes.

3.2.1. Straight Walk

The Linear Inverted Pendulum Model (LIPM), with igSmple structure, is
suitable for reference generation purposes. A poiass is assigned to the robot center
of mass (COM) and it represents the trunk of thetobhe point mass is linked to a
stable contact point on the ground via a massledswhich is idealized model of a
supporting leg. With the assumption of a fixed heifpr the COM, a linear system

which is decoupled in theandy directions is obtained. The system described ai®ve

shown in Figure 3.4c=(c, c, c,)’ represents the position of the point mass.

22



¢ z =z, plane

Figure 3.4 The linear inverted pendulum model

The ZMP is deined as thex-y plane point on which n horizontal torqu

components exist. Fohe structure shown iFigure 3.4 the exprissions for the ZMl
coordinatesp, and p, are [67]
(3.1)
P =~ (z/ 9k,
py =c, —(z/g)e,. (3.2)
Here, Z. is the height ¢ the plane where the motion of the point ;s is constrained ai

g is the gravity consant. Suitable ZMP trajectories can be ¢rated fr reference
generation purpose [689]. As the stability constraint, the ZMFhould always lie ii
the supporting polyge defined by the foot or feet touching tground. Figure3.5
shows a ZMP referen: trajectory[70]. Firstly, support foot locatins are chosel A in
the figure is the dista:e between the foot centers in y direction, B is the step size
andT is the half of th: walking period in this figureb defines thke range of the ZM
motion under the soleThe double support phase is introduced.sing the paramet
T.

Having defined 1e curves, and hence the mathematicattions forthe ZMP

referencesthe next stp is obtaining CM reference curve:?.:{(ef (t) and cryef (t) from

p' (t) and pi" (t), respectively. Fourier seri of the ZMP refrences pef(t) and

p{,ef (t) are used in thiprocess 1 obtain Fourier series’ for theandy components of

the COM trajectories.
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The obtained expression for the CGMirectional component is [70]:
cref :—B(t—I)+@ +>a, cos{ﬂ)t@ sin@t) (3.3)
T 20 2 3 T T

The coefficientsr, /2, a, 1+ m°k?/afT? (for k= 123---) of p®(t) are zero, and

2
B = nzkﬁTaﬁl'z 2 { 01{_ 7005(27.:-“) + 2-;( Sin(z?_-(r)}

+a{ rcosg)—z(cos{zirjj—z; sin(ZI_:G) } }
wherew, =./9/z, .

[70] finds the y directional component of the COM a

(3.4)

cf (1) = i cos(z—) +b, sm(m-(t (3.5)

ay/2 anda, (1+ (7°k?)/(«fT?)) (for k=123.--) are zero. The remaining

coefficients are obtained as

W’T? ZA{ {_<l (_) rcos&)ﬂ

WfT? + mk? 7K 7K

(T-1)

b, = { &) cos%)} } if kisodd (36

0 ifkiseven

The curves obtained foc* and c* are shown in Figure 3.6 together with the

corresponding ZMP references defined in Figure Bite infinite sums in (3.3) and
(3.5) are approximated by finite sums of 24 terrms.Figure 3.6, the following
parameter values are usedl=01 m, B=01m,b=004 m, T =1s andr = 0.2s.

Foot position reference trajectories have to bégdes too. Firstly foot placement
timing and world frame foot position and orientati@ierences are defined. Typical
and z -direction components of the foot trajectories ugedhis thesis are shown in

Figure 3.7. Ty and T, represent the double and single support pericsperctively.
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(Ty=2r, T,=T-1.) B is the step size from Figure 3.5. Tlyalirection trajectories
are constant at A and A for the right and left feet, respectively, wheheis half of
the foot to footy direction distance also shown in Figure 3tB.is the step height
parameter. The foot orientation references arergétein such a way that the feet are
parallel to the even ground.

The joint position references are obtained thromgkrse kinematics from COM
and swing foot references defined in world framerdoates. The process of reference

generation is explained in detail in [70] and [71]
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Foot references in x-direction

Time

Foot references in z-direction

Time

Figure 3.7. x and z -direction foot frame references in as expressedarworld frame.
Solid curves belong to the right foot, dashed csimeéicate left foot trajectories. (The
y -directional foot references are not shown are keilgua A and A, respectively.)

3.2.2. Walk on Circular Arc Shaped Paths

The straight walk trajectory briefed in the presosection is exploited in this

section to generate a walking reference which fadlewcircular arc as shown in Figure

3.8.

Figure 3.8.SURALP CAD model on a arc shaped walking trajector
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The method first considers the ground level line clvhconnects the body frame
origin projections on the ground at the beginning at the end of the straight walk
references (Figure 3.9.a). The right and left ftaotding locations in the lateral
direction are symmetric with respect to this lifdwe robot body and the feet are
always kept parallel to it. The distance covereditliy robot on this line can be

computed as

s=(N-1)B, (3.7)

where N stands for the number of swings in the step sempi@andB is the step

size. This distance is mapped on a circular agufie3.9.b ) to cover the angle

(//total = w : (38)

r

c

Here, r, is the radius of the turning circle. The body &eet are kept parallel to the
arc. This, with (), results in a turn of the robotthe right by the angl¢,,, in N

steps. The smaller the radigsthe acute is the turn. A very large radius coroesis
to an almost straight walk.
In implementations with SURALPy, is a command variable interfaced to a

human used through a joystick. Neutral joysticledak position corresponds to a radius
of 1000 m: This is a straight walk command. Otlwssfick lateral positions decrease
the turning radius. Negative radius values arepméted as commands for turning left.
In this thesis, the joystick commands are repldnedadius reference values computed

by the proposed visual path correction system.

3.3. Basic Walking Control Algorithms

The basic control actions, also presented in [6@&] shortly described below.

Figure 3.10 shows the block diagram of controlaargi
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3.3.1. Joint Level Control

The references for the leg joint positions are gaed through inverse kinematics
from Cartesian foot references and the ZMP basedl G€ference trajectory [70].
Independent PID controllers are used for joint fp@sicontrol. The PID controller gains

are obtained via trial and error.
3.3.2. Foot Roll Control

The scheme computes ankle roll joint angle refexenodifications in such a way
that the feet are aligned parallel to the grounémthey are in contact with the ground.
The reference modification is the form of a firsder filter applied on the foot to
ground contact torques. The following reference ification law in the Laplace

domain is employed for the two ankles separately.

Bron (5) = G (9) + (Kroll S+ Aol )Tron (s), (3.9)

Here s is the Laplace variabled,, is the ankle roll joint reference angle
computed by inverse kinematic#],, is the reference ankle roll angle after the

reference modificationz,,, is the torque about the roll axis due to the irdgoa of the
foot with the ground. This torque is measured bguersensors positioned at the ankle
in an experimental workK,,, and A, are low pass filter constants which are

determined by trial and error in our approachhedigital implementation, the Laplace

domain transfer function in (4.18) is approximalgdh difference equation.
3.3.3. Ground Impact Compensation

Another important problem in achieving stable wadkis the impact generated at
the landing of the swing foot. A shock absorbingtoariaw is employed as a solution.
This control law is activated with every landingtbe swing foot. In effect, a virtual
mass-spring-damper system is positioned betweerhifheand ankle. The following

second order relation modifies the distance betweeihip and sole of the landing foot.
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T(s) = I(S) - 1 3.10
[(s) = I(s) " F,(s) (3.10)

Here | represents the hip-to-sole distance referencenautdrom Cartesian foot
reference trajectoried. is its shock absorber modified versidh, is the z direction
component of the ground interaction force actingtlon foot. Again, an ankle-mount
force sensor measures this foreg., b and k; are the desired mass, damping and

stiffness parameters of the mechanical impedanie¢iare described in (4.19). These

reference modification laws are applied for the tegs independently.
3.3.4. Early Landing Modification

One of the main problems of early landing of a gifimot is that when it is on the
ground before the planned beginning of the doubppesrt phase, it will go on moving
forward. In effect, the two feet on the ground vt} to push the robot trunk in two
different directions. The feet will slip; the robwill turn and possibly lose its balance.
In order to avoid such a condition, tixe direction references are modified in the case
of an early landing. Specifically, this modificatiéstops” thex direction references of
the feet at their values they had at the instamiaoly landing. These references are kept
fixed until the next walking cycle and start fromeir fixed values, whenever the

plannedx direction references (as expressed in the bodydyaeach them again.
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Figure 3.10.The walking controller block diagram
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Chapter 4

4. 3D RECONSTRUCTION VIA STEREO VISION

This chapter summarizes the 3D reconstruction ghgorneeded for the visual
odometry estimation technique described in the Gneptinitially, the pinhole camera
model used to relate the 3D points to pixel coatha is introduced and the necessary
information needed to invert the perspective ptopecis discussed. Brief summary of
stereo camera calibration, undistortion and rexetifon steps are given as an offline
procedure before the actual reconstruction is ddéieally, the online part of the
algorithm is dissected into feature detection, figdistereo correspondences and

disparity to depth conversion with calibrated aectified stereo camera pairs.

4.1. The Pinhole Camera Model

The pinhole camera model [16] is a widely usedp$iication that relates the
camera frame coordinates of the scene points tprihjected points on the image plane
of an ideal pinhole camera. It assumes that theespeints P,) are connected to their
projections on the image plang:J with lights of ray passing through the camera’s
center of projectiond). The pinhole camera model is often replaced byftbetal
pinhole camera model to avoid the inversion of ithage plane coordinates in the
camera frame. This substitution is also valid fos thesis and the stated equations are
from the frontal case.

The pinhole and frontal pinhole camera models hosva in Figures 4.1 and 4.2
respectively. These models consider aAID perspective projection case where the 2D
world lies on the page and the image plane is cepldy a linef). Triangle similarity

is used to derive the equation (3.1).

. %X 4.1)
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wherex is the 1D image coordinat¥,is the camera frame coordinate of the scene point
in the same direction as Z is the camera frame coordinate of the scene poittie
direction of projectiondeptl) andf is the distance between the camera center and the
image planeffcal length. The focal length is a property of the optic Igmesent in the
camera setup, and is often fixed in machine visioplications.

Figure 4.1.The pinhole camera model

4

Figure 4.2.The frontal pinhole camera model
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For the 305+2D perspective projection case, since the coore@ate decoupled,
this equation can be generalized onto the secoradds\to get the equation (4.2).
f (4.2)

=Ly
Y=z

Then, the perspective projection from a pinhole @@mcan be expressed in

vector notation using homogeneous coordinates:

f 0
1 0
wherex and X are defined as:
X
= yl (4.4)
1
X
_|Y (4.5)
Xc = 7
1

The equation (4.3) defines a relationship betwéenimage plane and the 3D
coordinates of the point. Bear in mind that theespooordinates of a digital camera, are
not the same as the image plane coordinates. Tferetice between the coordinate
frames comes from various factors:

- The units in the image plane coordinates are theesas the real world
units (e.gmeter$; on the other hand the pixel coordinates are nredsnpixels

- The origin of the image plane coordinates is ptajacof the camera
center (or the intersection of the plane with thagipal axis), whereas the origin of the
pixel coordinates is generally taken to be thelédpeorner of the CCD.

- Cheap CCD sensors might not have perfectly rectangpxels, so the
transformation between the skewed pixel coordinaed the ideal image plane
coordinates can be an affine one.

Figure 4.3 depicts the relation between the CCDs@enand the ideal image
plane, wherg(u,v) are the pixel coordinates arfd,,c,) are the coordinates of the

principal axis with respect to the pixel coordinftame origin.
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Image Plane

A 4

Figure 4.3.The pixel and the image plane coordinate frames

Then, the relation between the 3D camera framethadorresponding CCD
pixel coordinates of a scene point is often given a

A% = K[1|0]X, (4.6)
where
u
% = H (4.7)
1
Sxf y Cx
K = syf Cy (4.8)
1

A is called the inverse depth parameter Aigda 3-by-3 identity matrixK is the
intrinsic matrix of the camera and contains infotiova about the focal length, the
physical size of the pixelgs,,s, ), the skewness factdiy) and the position of the
principal axis.

The equation (4.6) can be reduced into a more conipam by defining a 3-by-

4 camera projection matri® as in:

A% = PX, (4.9)

37



The model up to now dealt with the 3D points expeesin the camera frame.
However, the need of a common world frame requiadslitional camera pose
parameters. In the context of this thesis, thesanpeters are the ones to be estimated
from visual odometry. The equation relating the le/drame coordinates to camera

frame ones is given in (3.10).

Xcz[R?’ t?’] X, (4.10)
0 1

whereX,, is the homogeneous 3D coordinates of the scene pothe world camera
frame andR} andt? are the rotation matrix and translation vector yiag the world
coordinates to camera frame ones. The homogeneansfdrm matrix containing the
RY andt? is called the extrinsic matrix.

Using the equations (3.9) and (3.10), we can whte equation (3.11) which

finalizes the camera model by relating the worldrdinates to pixel coordinates.

w w
AZ =P [ROC t{ ]XW (4.11)

4.2. Lens Distortion

The real optic lenses cannot be manufactured pbrfanod they introduce a

distortion effect on the images. The simulatedadigin types are shown in Figure 4.4.
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Figure 4.4.Types of distortion (barrel, pincushion and mulsédistortion

respectively)
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This effect has to be estimated and corrected toalle to get correct
measurements of the 3D points. Brown’s distortiondet [72] is a widely used
mathematical model to estimate and correct the déstsrtion effect. The model fits a
polynomial function depending on the distance pbxl to the principal axis to get the
distorted coordinate@:,, vy).

The model is given in the following equations:

Ug =u+ (u—c)(kyr? + kr* + )
+ [pl(rz +2(u—c)?) + 2py(u — Cx)(v - Cy)](l +par?+-)

(4.12)

Vg =V + (v - cy)(klrz + kyrt 4+ )
+ [Pz (rz +2(v— Cy)z) +2p,(u—c)(v — Cy)] (1+pgr?+ )

(4.13)
where

= \/(u — )+ (v— cy)z (4.14)

ky...k, are the radial ant,...p,are the tangential distortion parameters.
Although the model contains infinite series, foagtrcal application;, k, andp, p,

are enough for most optic lenses.
4.3. Necessary Information for 3D Reconstruction

The pinhole camera and the lens distortion modésvaus to reproject given
3D scene points onto our CCD sensor and find peagrdinates, if we know the
intrinsic and the extrinsic parameters of the camer

On the other hand, the perspective projection tsananvertible process, so we
cannot find a unique 3D scene point given the poardinates in a single camera.
Hence, auxiliary views of the scene are needed.

To sum up, at least 2 cameras with known intrigKienatrix and the distortion
coefficients) and extrinsic parameters are needddlly reconstruct a 3D point free of
any ambiguities.
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4.4, Stereo Camera Calibration

Camera calibration is the process of determiningiinsic parameters of a
camera. The widely used method for camera caldmwas Zhang's camera calibration
method given in [73]. It is carried out by gatherisgyveral images of an object with
known geometry (traditionally a checkerboard paiteéo simultaneously solve for the
distortion model coefficients and the intrinsic mat

The stereo calibration is preceded by separatbratibn of the cameras to get
the intrinsic parameters and then it estimates rtiative rotation and translation
between them. The method is similar to single camealibration and uses a
checkerboard pattern that is scene by both ofdah@ecas simultaneously.

The estimated relative extrinsics are sufficiemtriconstructing the 3D point in
either one of the camera’s coordinate frame.

In the implementation of this thesis, the OpenC\Vsiwm of the renowned
“Bouguet’s camera calibration toolbox for Matlab74] is used for both single and
stereo camera calibration. A screenshot from theestcalibration process is given in

Figure 4.5.
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Figure 4.5.The stereo calibration process
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4.5. Stereo Rectification

Full-frontal-parallel configuration in stereo camera pairs defines ativela
orientation that has epipoles at infinifull-frontal-parallel and row-alignedadds the
constraint that the epipolar lines should be hatiaband hence the intrinsic matrices of
the cameras should be identical (same pixel sdabtsgl length and principal axis

coordinates). Figure 4.6 depicts this configuration

Figure 4.6.Full-frontal-parallel and row-aligned stereo caanpair [75]

It is widely known that the efficient way of seairudp for stereo correspondences
is looking for them on the epipolar lines [16]. Tid-frontal-parallel and row-aligned
camera pairs allow this search to be done on desiogv of pixels which adds even
more efficiency and robustness to finding matchéwdsen the camera images.

Although useful, this configuration is almost impiide to achieve with real
camera sets. So, researchers have devised antlaigoGalled stereo rectification,
which creates a virtual camera pair in this configion by applying a transformation on
the images grabbed by the real camera pair [7&. tfdnsformed images are then can
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be used as they were grabbed by a full-frontalifghrand row-aligned stereo camera
rg.

The rectified stereo camera set can be defined dymanon focal lengtlf, the
principal axis locatior{c,, c,) and the translation between the caméraghis absolute
value of this translation is the length of the ltiase and the sign depends on which
camera is chosen to be the main one (which defimesoordinate frame in which the
3D points are expressed). From here on, the rigati® assumed to be the main camera.
Following this assumption, the rectified projectiomatrices (Pg, P;) are given in
equations (4.15) and (4.16).

f ¢ O

Pp= f ¢ O (4.15)
1 0
f ¢ ST

P, = f ¢ 0 (4.16)
1 0

It is important to note that the 3D reconstructp@nformed with rectified images
results in 3D point coordinates expressed in théfied camera frames.

The implementation of stereo rectification in th@e@CV creates an image
warping map which contains information from recéfiion and undistortion
estimations. This map is then can be used to wamsthe grabbed images (with a
backwards bilinear interpolation) performing rdacation and undistortion

simultaneously. The result of this mapping is shawhigure 4.7.
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Figure 4.7.The undistortion and rectification step [75]

4.6. 3D Reconstruction Using Rectified Stereo CamePairs

It is important to note that the 3D reconstructaigorithm explained in this
section is designed to recover a sparse set ofd@misprather than a dense one. Dense
3D reconstruction algorithms aim to create deptlpsneovering every pixel in the
images and they often contain a high level of noise

3D reconstruction using multiple cameras with knowmtrinsic and extrinsic
parameters is carried out by triangulation. Thangulation procedure is basically
intersecting rays of light originating from the oara centers and passing through the
image plane coordinates of the matching featuresctifed stereo camera pairs
facilitate this triangulation step by introducing@ncept callethinocular disparity

The binocular disparityd) is the difference between the horizontal coordigat
of the stereo correspondences as in:

d=u; —ug (4.17)

This disparity information is enough to recoveptihefrom triangle similarity.

The geometry of the problem is shown in Figure 4.8.
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Figure 4.8.Triangulation with rectified stereo cameras

When this triangle similarity is solved, the invemdepthl can be injected to the
equation (4.9) to solve for the 3D coordinates. éfficient matrix-vector product
method to perform this calculation is given in [78king the disparity to augment the

corresponding 2D homogeneous pixel coordinatesdanight camera:
UR
¥ = l’if] (4.18)
1

The reconstruction of the 3D coordinates in thétritamera fram&y, is given
in the following equations.

)_(R = Qx (419)
[1 —Cy
1 —C
= | | (4.20)
o
-1/T 0
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X
Xp=|Y (4.21)
Z
w
Then,
_ X
_Xr_|v (4.22)
2= =1z
1
The equation (4.22) normalizes the homogeneousdowies to recover the 3D
scene point.

It can be seen by inspection that the maftf@ixencodes all the necessary
information to define the rectified stereo pair.

After this point, the 3D reconstruction algorithmly needs a feature point in
the right camera image and a disparity value attéd¢b it. The final two sections of this

chapter address these issues.

4.7. Feature Detection

There are a large number of tools for feature dietedn the literature. Harris
corner detector [77] is one of the oldest methadskiais still widely used. Shi-Tomasi
[64] detects corners that are easier to track,thisdnethod is actually the choice of the
visual odometry algorithm of H7 [62-63]. Recentatstof-the-art feature detection
algorithms mostly address on finding scale andntaigon invariant features for robust
matching. SIFT [78] and SURF [79] are popular ex&sp

The problem of searching for stereo correspondeisceasier than most feature
matching problems, especially in a rectified syst@ime images are almost identical
and there is a very good guess on where to searchmdtching features. This makes
scale, orientation and illumination invariance pdjes offered by high-end descriptors
simply redundant. Considering the trade-off betw#en computational cost and the
guality of the resulting features, it is just natnit it.

FAST feature detector [80], which is a recent atham, has been the choice of
the author of this thesis. This algorithm is spgealfy designed for real-time vision

systems with relatively low computational power andas gained instant popularity
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among mobile device applications. Naturally, tred&-off between speed and quality
applies to this situation also; the algorithm resul a relatively higher number of false
corners. But, the epipolar constraint is deemeddosufficient for eliminating the
unreliable features. The algorithm is also muclhefathan the alternatives like Harris or
Shi-Tomasi corner detectors.

The OpenCV implementation of the FAST feature detdeas been adopted and

utilized. An example set of resulting featureshewsn in Figure 4.9.

Figure 4.9.FAST corner features

The FAST feature detector has only one parameteichnis the threshold that
needs to be surpassed for a pixel to be labeleal @wner feature. The threshold is
related to the difference in intensity between th@didate corner features and their
neighborhoods, so it can be seen that the low asinparts in the image do not respond

as corners.
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4.8. Subpixel Corner Estimation

The FAST feature detector results in integer peagrdinates that are estimated
to contain corners. Considering that the cameralugsns are low (640x480) for real-
time applicability, the integer coordinates forrens are too discrete to perform reliable
3D reconstruction.

OpenCV has an iterative subpixel corner refinememethod [75]
implementation and although it results in good neations; the computational cost
makes this step the bottleneck of the feature teteand matching step of the
algorithm. Hence, the detected features are noteg@finto subpixel corners unless they
can be matched to the left image. Once they arehwedt the subpixel corner estimation

steps in before the actual disparity to depth cosige happens.
4.9. Stereo Matching

The implemented feature matching algorithm is tatioto work with features
from rectified stereo images. The algorithm takkesfeatures found in the right camera
and starts a linear search on the horizontal epipwle to the right, evaluating a sum of
squared differences (SSD) cost function aroundighberhood. The linear search is
also limited to a very few number of pixels betwerminimum and a maximum
allowed disparity. The candidate with the lowestDSScore is chosen to be the
matching feature in the left image. If the minim$D score is above a certain
thresholdt, the algorithm decides that the best match catelitga unreliable and
eliminates the feature from the right camera image.

The SSD score of a match candidatg, v;) against a corner feature in the right

camera imagéug, vg), for a given neighborhood sizeis defined as:
M2 (w-1)/2 (4.23)

M M
SSD = Z Z [g(ug + i, vg + ) — I (u, + i, v, + )]? (4.24)

i=—M j=—M

The notation/;(u,v) in the equation (4.24) is the intensity level la¢ {pixel

coordinategu, v) in the image grabbed by the caméra
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The SSD score is usually a very crude metric fousb feature matching and not
feasible to be used when the match is searchech@mnvhole image. Thanks to the
rectification process and the limited search ongjhipolar line this method proved to be
sufficient for finding stereo matches.

The algorithm has a considerable amount of parasdiat tuning them to work
indefinitely on a specific vision system (camerad Benses) is possible.

The window size and the matching threshold areequituitive. They offer a
trade-off between performance and reliability. A® twindow size parameter gets
larger, the probability of falsely matching any atimeighborhood drops significantly;
but the computational cost increases. As for thestiold t, this parameter sets a
confidence level target on the possible matchesaaritigets larger a smaller amount of
more robust feature matches are found.

The minimum and maximum disparity values to be ez are dependent on
the baseline of the stereo system, the camerautes® and the focal lengths of the
optics used.

Since the disparity is inversely proportional t@the minimum disparity sets an
upper limit to the scene depth of searched pomtissamilarly maximum disparity sets a
lower limit. In order to choose these limits, piogt depth against disparity for the
stereo vision system is useful. The depth vs. digpalot of the stereo camera rig used
on SURALP is shown in Figure 4.10.
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Depth [meters]

Disparity [pixels]

Figure 4.10.Depth vs. disparity plot of the stereo cameraondgsURALP

Since the relation is nonlinear, the resolutiondepth is varying and it gets
coarser as the points go further away. This stespera set has a narrow baseline
(6cm), very similar to that of humans and fairlydedangle lenses (with focal lengths of
5mm).

First important remark to make is the depth esimmaichanges drastically
between pixels for far away objects. This is a @aogs behavior as even the subpixel
level noise in estimation of the corner features wwve the estimated 3D points in the
order of meters and can destabilize the visual @dgnestimation. The finite difference
of the depth vs. disparity function is taken taaclg see the error sensitivity of the depth

estimation and is shown as a plot against depigare 4.11.
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Depth [meters]

Figure 4.11.Depth sensitivity vs. disparity plot

Looking at the two figures, 6 meters of depth isesd#n as the upper limit and
hence the minimum disparity has been decided ttOh@xels.

As for the maximum disparity value, the first contes where in depth the optic
lenses are focused. High frequency corner feattapsot come from unfocused depths
and any matched feature would probably be an outheother major issue is the
asymptotic behavior of the curve; as the pointsoieger to the camera set more and
more disparity occurs between them. This adds aporential increase in
computational cost to search for nearer pointsureigt.12 shows the change in depth

between disparities 50 and 70.
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Figure 4.12.Zoomed depth vs. disparity plot

The plot shows that 20 more pixels have to be etatuto explore points ~0.4m
nearer to the camera set, and this ratio getsriaegdly fast. Hence, a minimum depth
of ~1m is deemed to be sufficient and the maximuspatity is chosen to be 60.

A screenshot of the resulting stereo correspondeiscghown in Figure 4.13.

Figure 4.13.Stereo Correspondences found by SSD
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Note that the epipolar lines are horizontal and ¢berespondences could be
found on the same row. This result shows the sscoéshe calibration, undistortion
and the rectification steps.

Another important remark should be given on theessity of the time
synchronization between the cameras. When the inazaggisition signals of the
cameras are not synchronized, the grabbed imagés @mnd actually would) belong to
different camera pair poses. As this configuratwould be different than the one
estimated during the calibration steps, the in#é rectification maps would no longer
transform the images into a full-frontal-paralladarow-aligned form.

This section finalizes the 3D Reconstruction viar&b Vision chapter. The next

chapter describes the proposed solution to theh@lometry estimation problem.
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Chapter 5

5. VISUAL ODOMETRY

This chapter introduces the proposed solution hier 8DOF visual odometry
estimation problem. First two sections provide atlimel of the algorithm and present
the evaluation method used in the development siHge following sections explore
the details on tracking of the 3D points, cameraepsimation, robust estimation with
RANSAC and bundle adjustment as an estimationegafant technique.

It is important to note that the scene is assurodektstatic, and all the apparent
motion of the scene features are created by the @gmmof the camera pair.
Egomotion estimation in dynamic scenes requirethéurprecautions to be taken and is
out of focus of this thesis’ work.

The core of the proposed algorithm is the camesse mstimation step. The 2
methods from [62] and [63] along with a novel agmio proposed by the author of the
thesis are presented. The results with a SLAM beacking video are shown.

5.1. Algorithm Workflow

The offline part of the algorithm starts with stereamera calibration and
rectification. Once the intrinsic and extrinsic gaeters are estimated, undistortion and
rectification maps are initialized.

The online visual odometry estimation deals witiméges at each cycle; the
previous right and left and the current right aefd images. The camera pose related to
the previous image set is assumed to be knowne siheach step the camera pose is
updated according to the current images and theemiurmages are copied on the
previous ones.

Initially the world coordinate frame is coincidewtth the right camera frame;
hence all the future estimations of the camera pase relative to the initial pose. A
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general outline of one cycle of the algorithm tigpplicable to all 3 implemented
methods is as following:
1. Grab new images from both cameras.
2. Apply the undistortion and rectification map.
3. If there are not enough tracked 3D points,
I. Detect new features in the previous right cameiagen
ii. Find their matches on the previous left camera enag
iii. Estimate the subpixel corners.
Iv. Reconstruct 3D points expressed in the right carinanae.
v. Convert the camera frame coordinates to the wodthé using
the current estimation of the camera pose.
4. Track the image features corresponding to the 3Bt the next frame.
I. Eliminate any point that could not be tracked (@ftview,
occlusions, tracking failures).
ii. Eliminate any point whose image coordinates in loatimeras do
not lie on the same row.
5. Reconstruct the tracked points from their new peaardinates.
6. Find the optimal camera pose that aligns the newe@bDera frame points to
their world coordinate frame expressions.
7. Refine the estimated camera pose.
8. Replace the previous images with the current ones.
9. Replace the previous pixel coordinates of the gddkeatures with the new ones.
The major difference between this visual odometgodthm and a SLAM
framework occurs in the™step of the algorithm. The features that cannotréieked
are immediately deleted and forgotten; whereas $L.AM application they are stored
in a permanent map. This is why a visual odometiyt®n is a local estimator and
suffers from inevitable drift.
In the following sections 3 different methods cawg the 6" and the 7 steps

of this outline will be presented.
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5.2. Ground Truth Data

The development of such a system requires a graunil for comparing the
results and debugging accordingly. On the othedhastablishing a ground truth for
visual odometry applications is a challenging t&Sikce it could not be obtained from
the humanoid robot SURALP, a SLAM benchmark dataset Rawseed’s Project [81]
is used.

The used capture session is coded “Bicocca 2006062-and it contains
various sensor data gathered from a moving wheededt. The provided sensory
information includes data from 3 grayscale cametasplor camera, SONAR, 4 laser
rangefinders (2 sets of different brands, locatezhtf and rear), IMU and robot
odometry.

The robot moves through an indoor environment wischt artificially mostly
by fluorescent lights and the scene is static thihout the capture session.

The ground truth data is gathered by external sgrsgmtems, but since it is a
dataset aimed at benchmarking SLAM algorithms, @GiOF planar trajectory of the
robot is provided. The time synchronization of #emsor data and the ground truth is
achieved via Precision Clock Synchronization Protdor Networked Measurement
and Control Systems (PTP).

For the evaluation of the work described in thissthethe right and left
grayscale cameras’ image sequences are used toatstthe visual odometry. The
stereo calibration of the cameras is carried outguthe provided calibration session
images. The results are compared with the grouwmith.trAlthough the ground truth
contains only 3DOF information, no such assumptienmade and egomotion is
estimated in 6DOF, the comparison is then carriedb@tween the matching planar
motion parameters.

The image sequences contain 26,335 pairs of imagesh span around 29
minutes. Although the robot mostly moves aroundmnenvironment rich with image
features (narrow halls, libraries ...etc.), thereramre than several occasions where the
robot faces a blank wall and turns. These shoribgerwith no image features are
enough to disrupt a visual odometry or even a ViSLAM algorithm. Since the visual
odometry algorithm that is being tested using theespiences is not expected to work

over long distances, a relatively short sequendémagies is chosen as a test bed.
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Figure 5.1.Samples from the benchmark image sequence

A 600 frame sequence starting from the 726@me is proved to be a valid test

for the visual odometry algorithm. During this ~4@conds, robot moves around in a
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library full of image features and performs two r£h&0-degree clockwise turns to
follow an almost rectangular trajectory.
A summary of the chosen image sequence grabbed thentight camera is

shown in Figure 5.1.
5.3.Tracking Corner Features in Time

The features are tracked between the previous laadcurrent left and right
images using the Pyramidal implementation of theasdKanade Optical Flow [82].
This method is designed for the OpenCYV library aathered quick interest and became
a standard for sparse optical flow estimation inotes applications.

This optical flow algorithm is chosen because itnigre robust to large amount
of motion between the frames compared to the othel-known optical flow
estimators. Considering that the visual odometrgohm is designed to be
implemented on a humanoid robot, abrupt changesdtion caused by the walking
dynamics should be expected. On the other handdésegned algorithm contains
iterative optimization techniques, where the cogeace time could be slow when the
initial guesses are far from the local minimum.siould create some jumps between

the frames and could possibly cause the otheralgtav estimators to fail.
5.4. Camera Pose Estimation

The camera pose estimation is approached as aradigis problem aiming to
find the optimal rigid body transformation thatgas the camera frame coordinates of
the 3D points to their world coordinate frame esgiens. This approach is also used in
the visual odometry algorithm of the H7 [62-63].

From here on the right camera frame is to be refleas simply the camera
frame, as it is chosen to be the main camera istireo pair.

The relation between the camera frame coordinge3 and the world frame

ones(Xy,) are given in the equation (5.1).

Xw =Ry Xc +ty, (5.1)

Note that this equation describes the inverse foamsition of the equation in

(4.10), and the coordinates are not expresseaindmogeneous form.
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Estimating a 6DOF rigid body transformatioRS{ and t§,) is well-known to
require measurements of at least 3 non-collineartp@nd their transformed locations.
In other words, the points should define a uniglzen@ in the 3D world. Conversely,
given 3 such points, not all possible target laoatidefine a rigid body transformation.
The equation (5.2) describes the basic rigid boalysformation constraint whek are

transformed versions of the 3D poikis

|xi - x7|| = || X' — X/ Vi, j (5.2)

The equation simply points out that a rigid bodgnsformation should not
change the distances between any points goingdhrthe same transformation. This
constraint is used in [62-63] to detect outlierthi@ data.

Considering the case where 3 points define an eigidtbody transformation,
the augmented system of equations contains 6DOF Qamdjuations (3 points, 3
components in each of them), hence the system ldssran overdetermined system
where actually 3 of these equations are inherdindarly dependent.

Bearing in mind that with a set of 3D points esti@bfrom image features, one
could never get a perfect set that agrees on a lbigdy transformation. So solving for
RS, and t, should be addressed as a least squares probleen.l€Bist squares

formulation withN points is stated in the equation (5.3).

N
argminge .. Z”X%,V — (R XL + th)HZ (5.3)
i=1

The problem with this formulation is that it reqesr all 9 elements of the
rotation matrix to be estimated separately for aen8OF orientation representation.
Another issue is that since the points will nevefirte an exact rotation, the estimated
matrix elements will probably not form a rotatioratmx. So the estimated matrix
should then be reprojected oi$t6(3).

Orientation parameterization is a widely encouritgoeoblem. Althoughaxis-
angle representationand exponential mapgerform adequately, thenit quaternions
are shown to be better orientation representatifé®y do not suffer from any
representation singularities, and are argued todr@ numerically stable.

Let g be a unit quaternion representing Rfp.
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The equation (5.6) defines the relation betwgamdRY, .

1-2q,%—2q,> 2(qx9y — qs92)  2(qsqy + 4xq2)
Rﬁ/ =|2(qsq, + Qny) 1- Zsz - zqzz Z(quz ~ 5qx) (5.6)
2(qxqz — 4s9y)  2(qs9x + 4y492)  1—2q,° —2q,°

The least squares problem is then redefined iedation (5.7).

N
3 [ [ 2
argminge > [Xiy = (RE, (@)X + 66)] 5.7
i=1

One could also use the unit quaternion as a rotabiperator utilizing the
guaternion multiplication. But that method is nonhsidered in this thesis as defining
the rotation matrix as a function of the unit quaien is enough for parameterization.

The solution to this nonlinear least squares problie carried out by the
Levenberg-Marquardimethod. The details on the theory and implementabf a
generic Levenberg-Marquardt algorithm are givethamAppendix A.

Reviving the concerns about estimating a rotaticatrim and keeping it in
S0(3) in the processRY,(q) is a rotation matrix as long apis a unit quaternion.
Hence, the least squares definition given in (&7gctually incomplete. The complete
version should include the unit quaternion constrao result in a nonlinear least

squares optimization problem with a nonlinear c@mst as given in the equation (5.8).

N
. ; , 2
argming ¢ Z”X%,V — (R (X5 +t5)|| s.t. |lqll = 1 (5.8)
i=1

The authors of [83] address this unit quaterniomst@int issue. Although their
solution is not adopted in the work of this thedi®y give quite useful insights on the
subject.

The proposed solution is using a penalty methoitetatively force the system
to converge to a minimum where the constraint issf&ad. The unit quaternion
constraint is embedded into the cost functibrusing a weighting coefficientt as

shown in the equation (5.9).
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N
5= Y |I%iy — (R @)X + )| + afl1 - llgl]” (5.9)
i=1

The initial value ofa starts relatively small and gets larger at eagtaiton until
the obtained solution is acceptable. The pseudo-éodehe penalty method using

Levenberg-Marquardt is shown in the table 5.1

Table 5.1Pseudo-code for solving constrained NLLS usingafigmrmethod.

Constrai ned_NLLS(al pha_initial, alpha_nax,

al pha_growt h, q_error_nax)

al pha < alpha_initial

beta « initial guess on position and orientation
feasible « fal se

failed « fal se

whil e (al pha < al pha_nax && not feasible && not
fail ed)
Levenber g_Mar quar dt (al pha, beta)
I f (Levenberg_Marquardt failed)
failed « true
el se
g_current < extract quaternion from beta
g_error « 1-norn(g_current)
i f(qg_error < error_max)
feasible « true
el se
al pha < al pha*al pha_growth
i f (al pha >= al pha_nax)
failed « true

el se

extract q and t from beta

return q, t, failed
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The Levenberg-Marquardt method requires the casttion S given in (5.9) to
be rearranged on vectods and F containing allN points and the weighted unit

quaternion constraint as shown in the equatiorDj5.1

S= ¥, - F,|1? (5.10)
Xiy
Xy
v
Va
[ X }
X¢
Fi=| i | (5.12)
L ztal
Vallql|
XL = RS, XL + 5, (5.13)

As mentioned before, 3 different methods for canpae estimation will be
presented in this section, henkg and F, are subscripted to avoid confusion in
notation with the other methods.

The parameter vectg® to be updated by the Levenberg-Marquardt iteratisn
given in the equation (5.14).

B[z[tx ty tz qs qx qy CIZ]T (5-14)

Since the rigid body transform equation (5.13) ozdyitains a small amount of
parameters, the Jacobian majris derived analytically by symbolic derivation aibds
hardcoded into the implemented Levenberg-Marquandine.

The authors of [62] suggest that this estimatios t@ be carried out in a
RANSACmanner for robustness against outliers in the. datgeneric implementation
of RANSAC is given in the Appendix B.

The gross outliers arise from false matches betviieerright and left images,
but it has been observed that these outliers cedurarely and even then, they are
quickly eliminated because they cannot maintaineghipolar constraint when the robot

is moving (see the4step of the algorithm workflow).
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The main contribution of RANSAC comes from the fd@t during the course
of the robot, different sets of 3D points are adddxkn the number of tracked points
falls below a certain threshold. So, different sats estimated at separate time steps
with different errors in camera pose estimatiomdeethey do not really belong to the
same point cloud. When a single point cloud esichat the camera frame is tried to be
aligned to a skewed set of points, the least sgussgmation may converge to nonsense
values. RANSAC finds the largest set that is caastsn the mixed point cloud.

Although RANSAC finds the largest set with no pebl if the number of
consistent groups in the data is large and theiruladipns are low, none of the
estimated models can contain enough number of pakémliers to be considered as a
valid hypothesis. Bundle adjustment method [14}hen used from time to time to
merge these different sets into a single consigteint cloud.

Bundle adjustment is the process of minimizing tie@rojection error to
simultaneously adjust the projection parameters@ioith the reconstructed 3D points.
The minimization of the reprojection error giventiaditionally done via Levenberg-
Marquardt method. The parameters to be estimatadrgky include all the intrinsic
and extrinsic parameters of the cameras and thgo2ids. But in this work, the intrinsic
parameters and the geometric relation between esnage assumed to be constant and
known as they were estimated by the stereo calioragtep; hence only the motion
parameters of the stereo camera pair are refirdavith the 3D points. Since the unit
guaternions are used to represent the orientationhef camera pair, the bundle
adjustment is also done using the penalty methtwhgothe constrained nonlinear least

squares problem given in (5.14).

N N
argming g v, > % - el*+ ) # - 7[*  s.cllql=1 (5.14)
i=1 i=1

where¥, and®. are the observed pixel coordinates of the pdipt in the rectified
right and left images, arl, andx. are the reprojections of té,, onto the rectified

right and left cameras using the following equadion

5 [RY t?’] i
ol _ PR[ 0o 1l%w (5.15)
Xp = P
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_ RW tW ,
PL[ 0 f]X%m (5.16)
A

%=

wherePy andP; are the rectified projection matrices which arérdel in the Chapter
4.

Please note thaRy and t}¥ define the inverse of the rigid body transformation
estimated from (5.8) and their relation is giverf5ri7) and (5.18).

R?/ — (Rﬁ/)T (517)

tf = —(RG)TeG (5.18)

One last note on the bundle adjustment proce$®iddacobian matrix needed for
the Levenberg-Marquardt iterations is not derivadlgically because the expressions
were too large to be hardcoded. Computing it nucadyi with discrete differentiation
over the parameters is a common approach in buadjlestment applications and it is
done so in this thesis.

To sum up, solving the constrained nonlinear lsgstires problem given in the
equation (5.8), using the parameter vector (5.633 RANSAC context, and refining
the results via bundle adjustment will be referasdtheMethod | The results with the
benchmark image sequence for Method | are giveovbelhe solid lines belong to the
ground truth and the dashed ones are the estimaleels.

Figure 5.2 shows the estimated position in X, y a+akis in time. The ground
truth does not contain z-axis information, but sinkbe robot is a wheeled one= 0

line is drawn on the figure for the sake of comgeiss.
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Figure 5.2.Method | position estimation (dashed) and grountht(solid) vs. time
The comparison in orientation is more challengihgnt the position. The

comparison is chosen to be made between the grvutid orientation angle (out of

plane, yaw) and the angle contained in the unitegyn@an’s axis-angle representation.

64



Figure 5.3 shows both the ground truth and thenedéd angle against time. The drift in
orientation estimation can be seen clearly onglus Considering that the robot moves
only forward and not in lateral directions, theftdim orientation estimation hinders the
position estimation greatly.

Robot’'s ground truth trajectory and its estimatiare shown in Figure 5.4.
Although the position estimations look good wheottgld against time, this figure gives

a more complete understanding of the data and sti@ndrift in position over time.
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Figure 5.3.Estimated angle (dashed) and the ground trutidjsdd. time
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Figure 5.4.Estimated (dashed) and ground truth (solid) rofapéectories

Method llis the implementation of the approach describe@3h. The problem
formulation and aim are actually the same with pnevious method, but the camera
pose estimation is carried out in a decoupled way.

Xy, andX are defined as the centroids of the two point ctotadbe aligned as

in
N
* 1 i
=1
and
N
* 1 *
X = NZ X5 (5.20)
=

Then, the centroids are aligned on the origin imiekte the translation, and estimate
only the rotation from nonlinear least squares. fiéw, translated point cloud€, and
XLare defined as

Xt = X4, — X3, (5.21)
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and

XL = XL — X% (5.22)
Hence, the least squares formulation for rotatistineation between the new point
clouds is given as

N
. i i 2
argmmqZ”Xf,V — RS, () X% s.t. |Iqll = 1. (5.23)
i=1

The solution to this optimization problem is hamndidentically to the one in (5.8),

changing th& andp vectors to estimate only the rotation as in

B, =1 4 49y 4" (5.24)

—
| >
ar

e ]

F,o=| (5.25)

where

X = RE, X, (5.26)

Then the translation estimation is given as

tS, = X;y — RS X (5.26)

This new formulation ends up with a smaller systemly estimating 4
parameters in Levenberg-Marquardt, which would jpbgsconverge faster than the
problem stated in (5.8). Also, the translationreation is clearly related to the average
translation of the points in closed form. In analdegid body transformation, the points
would share exactly the same translation and tleeage translation would be same as
the original translation. For an estimated poiwmtud, the translation component is not
the same for every point, so taking the averageesponds to a least squares solution.

This approach is used in RANSAC model estimatiams the system is bundle
adjusted when needed as in Method I. The resultiseoMethod Il with the benchmark
image sequence are given in Figures 5.5, 5.6 and 5.7

The results are very similar to those of Methodlthough they look a bit better

on the documented runs, the nondeterministic nattiRANSAC prevents a clear cut
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comparison between the two methods. That is totbaydifferences between different
runs of the same method are of the same magnititteeahown difference between the

two methods.
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Figure 5.5.Method Il position estimation (dashed) and grotrath (solid) vs. time
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Although these results are satisfactory, this igtlypdecause the speed and
efficiency of the algorithm does not affect the lgyeof offline processing on a pre-
recorded video. This would not be the case witbadtime visual odometry task. When
the time difference between the frames gets laréial guesses on camera pose
parameters get farther away from the actual onescande Levenberg-Marquardt to
converge to nonsense values.

The execution times of the two aforementioned nathare very similar. The
cycles in which bundle adjustment is not neededcarepleted at 5~6 FPS on average
on a notebook computer, but the bundle adjustmeas a huge load on the algorithm
and the video typically freezes for a few secofidhgs is not acceptable for a humanoid
robot application.

The proposedMethod Il is a novel approach developed by the author af thi
thesis. It aims to eliminate the need for RANSAGI dhe bundle adjustment to get
much faster cycle times at acceptable performance.

The idea is correcting the camera frame 3D poititnasions so that they will
align on a perfect rigid body transformation orafing from the tracked world camera
coordinates. So random sampling would not be netxlédd a valid rigid body motion
and keeping the estimation from converging to nossevalues. The method comes
down to finding more robust compromises betweenpitiat clouds added at different
time steps. Since different sets can be used tagetiee bundle adjustment process is
also eliminated.

Although bundle adjustment seems to correct for rifistakes done by the
egomotion estimation along the trajectory, it ofiyds possible solutions given the
initial guess and arranges the “temporary map™hef énvironment accordingly. Since
the initial guess on motion parameters is incorrgécactually corrupts the correct 3D
world points. The cause of the drift in positiondaarientation estimation is this
corruption of the temporary map.

The proposed method solves for the same nonlieeat squares problem stated
in (5.8) with an approach inspired by the bundleusitpent. The camera frame 3D
point estimates are also estimated with the inigmless provided by the 3D
reconstruction step. The problem is restated @&7(5.
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argming e v > Xl = RE@XE + )" st llall =1 (5.27)
i=1

The solution method is the same penalty method Wwéhenberg-Marquardt
iterative minimization algorithm. The only differemonith the prior method is the

parameter vectg#, which is given as

_ T T T 5.28
ﬂ”I_[tx ty t; qs Qx dy 4 Xé X% Xlg] ( )

The parameter vector is of siZet 3N, N being the number of points included
in the process. The system to be optimized is denably larger and similar to the size
of a bundle adjustment process when carried out thieé whole set of tracked points.
Considering that the camera frame points are réarted at each cycle, the refined
versions will never be used again, so one coultbparthis minimization over a subset
of the tracked points. The selection of the nundigroints to be included in the camera
pose estimation process becomes a tool for perfuzenaptimization.

The results of Method Il are given in Figures & and 5.10. The method’s
performance in speed exceeded the previous onés amitexecution at 12 FPS on
average and the estimated trajectory is fairly dimero The drift is increased
considerably, but still manageable.

Note that by changing the motion parameters andrélcenstructed camera
frame points, one can find infinitely many solusohe algorithm could easily move
the camera frame points exactly on the world frames to get identity transformation,
but it does not do so because it converges to ltsest feasible solution to the initial
guess. As the initial guess on the motion pararaetemes from the previous camera
pose estimation, the algorithm finds a compromigéransferring some of the motion
to the 3D points and this accelerates the driéistimation.

Visual odometry algorithms are never the completéut®n for the self-
localization problem, and the drift is inevitabla.a complete solution provided by a
SLAM application, visual odometry estimation of thmtion parameters and the local
map would be refined anyway. So, fast and smoahaliodometry estimation could be

more viable to be used in a SLAM context rathenthalow and more accurate one.
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Figure 5.8.Method Il position estimation (dashed) and grotnuth (solid) vs. time
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Chapter 6

6. IMPLEMENTATION ON SURALP

The planned walking path of a humanoid robot carmldtays be exactly
realized. Disturbance forces and torques coming fiteenground contact often add up
and detour the robot from its trajectory. This effean be seen on humans trying to
walk blindfolded also, since without any feedbaak the environment, the direction
of the walk cannot be controlled.

The scenario, in which the visual odometry estiorais tested, is based on this
problem. A control method to correct for the orain around the z-axis (out of
ground plane, referred as yaw) is devised basetherorientation estimation of the
visual odometry algorithm.

The control method acts on the arc walk curvatadiusr, (measured in meters)
which is mentioned in the Chapter 3.

The yaw estimatg and a desired yaw orientatigp is used to form a yaw error

e, asin
e, =Ya—7. (6.1)
The control actiom.is simply calculated as
( oo if |e,,| < emin
Tmin .
Tmax — (ey - emin) lf Emin < ey < €max
€max — €min
Te =9 (6.2)
Tmin .
“Tmax — (ey + emin) lf —Cmax = ey < —€nin
€max — €min
\ sgn(ey)rmm if |ey| > emax
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The control input is a bit counter-intuitive asis inversely proportional to the
angular velocity created on the yaw axis. For degodly straight walk,. must be
infinity, since this is not possible to progranpractical substitute for infinity is chosen
to be 1000m.

emin defines a dead zone in the controller to preveatibise on yaw estimation
to overact on the walk trajectory. So if the enmoryaw is smaller than a predefined
control parameter, the controller does not acotoect the trajectory.

emax 1S the limit of error magnitude after which the totler performs the
maximum allowed control action. The maximum actmecurs whenr, = r,,,;,,, and
Tmin 1S Chosen to be 0.5m which is the minimum radnz SURALP can turn without
showing any sign of imbalance,,, is the largest radius to be performed and is the
equivalent of the action the robot must take rmithe boundary of the dead zone.

Any magnitude ofe, betweene,,,, ande,,;, creates an interpolated arc walk
radius for SURALP to follow. The visualization dfig¢ control method is shown in

Figure 6.1.

—Einin

€min

€max —Cmax

Te = Tmin Te = Thin

|
ep,=0|

Figure 6.1.The arc walk curvature radius decision visualization
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The Figure 6.2 shows a series of snapshots fromakking experiment
consisting of 10 steps with the yaw orientation toaller turned off. SURALP starts
with its feet parallel to the lines marked on th&of and it is commanded to walk
straight, but cannot keep its direction and walkdhe floor markers.

Dﬂa'@kl_, nu:u_!-.t.:: ; !

Figure 6.2.SURALP walking experiment with the yaw controllarried off.
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The same experiment is carried out with the yawnrdation controller turned
on. The control action decided by the designedrobat is shown in Figure 6.3.
Because the control action is inversely proportidoahe decided arc walk radiug,

1/r, is plotted for visualization purposes.
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Figure 6.3.Inverse of the arc walk radius decided by the @bletr

Figure 6.4 shows snapshots from a walking experimghtthe yaw orientation

controller turned on. The improvement is clearlsilvie from the floor markers.
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Figure 6.4.SURALP walking experiment with the yaw controllarried on.

78



Chapter 7

7. CONCLUSIONS

This thesis concentrates on the walking referencgection with visual
feedback for humanoid robots. The task for the moitarobot is to simply walk on a
straight path looking at its environment. This tasiuires the robot to localize itself
using visual data gathered from a stereo camera pai

A visual odometry algorithm is developed using acdgeal images grabbed by
a wheeled robot and comparing the estimations g ground truth trajectory
provided. The proposed algorithm finds distinct news in the environment and
reconstructs their 3D positions using the stereuera pair. Then these 3D points are
tracked in time to continuously localize the rohwith respect to their observed
positions in the camera coordinate frame. For Hmera pose estimation problem, two
different methods from the literature are tried anabvel approach is proposed. Finally,
a simple yaw orientation controller is designedctwrect the robots walking path
direction.

Walking experiments with and without the yaw oran controller are carried
out with the humanoid robot SURALP for comparisohe Tesults show that the robot
was able to correct its trajectory with the geretatisual feedback.

The developed visual odometry algorithm is deemodokta good local estimator
for position and orientation. But the inevitableftdin estimation inhibits its use as a
stand-alone solution for long term self-localizatid’he promising results suggest its
potential to be used in a more sophisticated Sanelbus Localization and Mapping
method utilizing multiple sensors.

The 3D reconstruction algorithm implemented as @ phathis thesis’ work is
the first stereo vision application that has beepleyed for SURALP. It created a
framework for other 3D vision applications which ynallow the robot to perform
higher level tasks in the future.
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APPENDIX A

A. THE LEVENBERG-MARQUARDT METHOD

Levenberg-Marquardt method is an iterative, hyloptimization method which
seamlessly moves between the Newton’s method dodraof Gradient Descent. This
allows the solution to converge much faster tha@nadient Descent, and prevents it
from diverging where the Hessian is not “well-beingV, as Newton’s method would.

Consider a generic nonlinear least squares probjieen a set of observation
pairs x; ...xy andy; ...yy and a nonlinear model curv&x;, B) relating them, the
problem of finding the parameter vecf®minimizing the least squared error is stated

as

N
argming ) llyi — i BII. (A1)

At each iteration of the Levenberg-Marquardt meth&dan update to the

parameter vectd is calculated. Defining a cost functig) as

N
SB) = ) llyi = f G B (A2)
or equivalently
S(B) =Y - F||? (A.3)
where
V1
Y =|: (A.4)
YN
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(A.5)

f(xl,ﬁ)]
F=| 1 |

fCn B)

Thend that would decreas®(f + 8 ) is calculated from the following equation

U] + Ediag(J"N)8 = J7 (¥ — F) (A6)

Where] is the Jacobian matrix obtained from

oF
— A7
I= 35 (A7)

This Jacobian matrix can be obtained by taking tmeivative analytically, or
performing discrete differentiation numerically. tidugh the analytic option would
possibly perform faster as it is non-iterativemiay not always be possible or practical
to get.

The pseudo-code for Levenberg-Marquardt algorihgivien in Table A.1.
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Table A.1.Pseudo-code for Levenberg-Marquardt algorithm

Levenberg_Mrquardt(x, y, beta, ksi_growh, ksi_max)
iter « 0

converged « false

failed « fal se

error_old « infinity

ksi « small nunmber (e.g. 0.00001)

Y « stack y on top of each ot her
whi |l e converged = fal se
iter «iter + 1
F « compute f for all x using beta, stack them
if iter = max_iter
converged « true

failed « true, could not converge in given iterations
el se

error_decreased « fal se
J < compute J fromF and beta (anal ytic or nunerical)
whil e error_decreased = fal se
delta « performequation A 6
beta_new « beta + delta
error « conpute the cost function with beta_new
if error <error_old
error_decreased « true
beta « beta_new
ksi «ksi/ksi_growh
el se

ksi «ksi *ksi _growt h

if ksi > ksi_nmax // error cannot be decreased
converged « true
break error_decreased iteration

return !fail ed
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APPENDIX B

B. RANSAC

RANSAC is a robust estimation method that aimstta model to data possibly
containing gross outliers. The pseudo-code for rzege RANSAC is given in Table
B.1.

The parameters of the algorithm are the minimumbrmof data needed to fit a
model (n), number of iterations to be performed Xni&r), a threshold to decide
whether model fits a datum (epsilon), minimum numidfeinliers needed to establish a

hypothesis model (minN).

Table B.1.RANSAC pseudo-code

RANSAC(data, n, max_iter, epsilon, mnN)
iter<0
best nodel «nul |

best _error«infinity

while iter < max_iter
consensus « nul |
random data«< n randonly sel ected data points

nodel « fit a nodel to random data
for each point in data

error«<cal culate error with nodel

if error < epsilon

consensus<add point to consensus
i f consensus size > mnN

consensus_nodel « fit a nodel again to all the
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points in the consensus
consensus_error « calculate the total error in the

consensus with the consensus_nodel

i f consensus _error < best _error
best nodel « consensus_nodel
best _error « consensus_error

iter « iter + 1

return best nodel
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