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ABSTRACT 

 

 Polymer electrolyte membrane fuel cells (PEMFC) have the potential to reduce 

our pollutant emissions and dependence on fossil fuels. Factors such as complex 

balance-of-plant design and cost still remain as the major barriers to fuel cell. The 

eradication of the two main shortcomings of PEMFC has been targeted in this thesis 

study. The first shortcoming is high cost of the membrane and its water depended low 

operation temperature. The second one is the complex balance-of-plant design of 

PEMFC system.  

 The synthesized, radiation grafted, high temperature proton conducting 

membrane improves the operation temperature of conventional PEMFC (i.e., <80 °C) 

up to 120 °C. The novel, high temperature proton conducting membrane eliminates the 

electrochemical by product water and improves the overall performance of PEMFC. 

Moreover, the synthesized, high temperature proton conducting membrane is cost 

competitive and very well suited for bulk production in any defined size.  

 The dead ended anode (DEA) operation is considered as an alternative to the 

conventional PEMFC system. The operation with a DEA reduces fuel cell system cost, 

weight, and volume since the anode external humidification and recirculation hardware 

can be eliminated. Thus, the conventional PEMFC system is modified according to 

DEA operation in the study. The shortcomings of the commercial membrane in the 

DEA operation have been reduced with the synthesized, high temperature proton 

exchange membrane.  

Additionally, a transient, one dimensional along the channel numerical model is 

developed. The model is used to understand the two phase water transport mechanism 

during a low temperature DEA operation.  
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Tez Danışmanı: Doç. Dr. Selmiye Alkan Gürsel 
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Membranı, Bozulma, Sayısal Modelleme 

 

 Polimer elektrolit membran yakıt hücreleri (PEMFC) artan kirlilik yayılımımızı 

ve fosil yakıtlara bağımlılığımızı azaltma noktalarında çok büyük potansiyele 

sahiptirler. Fakat, karmaşık sistem yapısı ve yüksek maliyet gibi fakörler yakıt 

hücrelerinin yaygınlaşması önündeki önemli engellerdir.Yakıt hücrelerindeki iki ana 

dezavantajın iyileştirilmesi ve geliştirilmesi bu tezin amacı olmuştur. Bunlaradan bir 

tanesi membran maliyeti ve membranın suya bağımlı iyonik iletlenliği nedeni ile 

hücresinin düşük çalışma sıcaklığıdır. İkincisi ise yakıt hücresi sisteminin karmaşık 

dizaynıdır.  

 Bu tez çalışmasında sentezlenen radyasyon başlatmalı aşı kopolimer membralar 

geleneksel yakıt pili çalışma sıcaklığını (< 80 °C) 100 °C üzerine çıkarabilmektedir. 

Bunun yanında sentezlenen yüksek sıcaklık membranların maliyetleri oldukça düşükdür 

ve istenilen boyutlarda kolaylıkla üretilebilmektedir. 

 Anot çıkış kapalı (AÇK) çalışma prensibi, geleneksel yakıt hücresinin karmaşık 

sistem dizaynına alternatif olarak düşünülmüştür. AÇK çalışma prensibi yakıt 

hücresinin maliyetini, ağırlığını ve hacmini azaltma konularında avantajlara sahiptir. 

Anot kısmının harici nemlendirmesi ve hidrojenin sirkülasyon komponentlerinin 

sistemden çıkarılması AÇK çalışma ile mümkündür. Bu nedenle, bu tez çalışmasında 

yakıt hücresi, AÇK çalışacak şekilde modifiye edilmiştir. Ayrıca, AÇK çalışma 

prensibinin ticari membrandan kaynaklanan dezavantajlarının, sentezlenen radyasyon 

başlatmalı aşı kopolimer, iyon değişim yüksek sıcaklık membranları ile giderilmesi de 

yine bu tezin konusudur.Bu çalışmalara ek olarak, zamana bağlı, bir boyutlu ve iki fazlı 

numerik model çalışması yapılmıştır. Numerik model, ticari membran ile düşük sıcaklık 

AÇK prensibinde çalışan iki fazlı suyun incelenmesi için kullanılmıştır. Ayrıca, 

numerik model sentezlenen yüksek sıcaklık membranının AÇK prensibinde çalışmasını 

incelemek için gelecek çalışmalarda kullanılabilecektir. 
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CHAPTER 1 

INTRODUCTION 

 There are two key problems with the continued use of fossil fuels, which meet 

about 80% of the world energy demand today. The first problem is that they are limited 

in amount and sooner or later they will be depleted. Thus, there will be a gap between 

demand and production of fossil fuels. The second problem is that fossil fuels are 

causing serious environmental problems, such as global warming, environmental 

changes, rising sea levels. The hydrogen energy system has been proposed as a solution 

for these two interconnected global problems. Hydrogen can be converted to electricity 

in fuel cells with higher efficiencies than conversion of fossil fuels to mechanical 

energy in internal combustion engines. This unique property of hydrogen made the 

hydrogen fuel cells an alternative choice for car companies. The reason for higher 

efficiency of hydrogen fuel cell is that they are electrochemical engines and not limited 

with the Carnot Efficiency limits. Moreover, unlike the batteries a fuel cell does not 

need recharging as long as fuel supplied from an external source and anode and cathode 

are not consumed during the cell operation. 

 The electrolyte of hydrogen fuel cells defines the key properties, such as 

operating temperature and fuel type of the fuel cell so that fuel cell technologies are 

named by their electrolyte. There are five distinct types of fuel cells; polymer 

electrolyte membrane fuel cell (PEMFC), alkaline fuel cell (AFC), phosphoric acid fuel 

cell (PAFC), molten carbonate fuel cell (MCFC) and solid oxide fuel cell (SOFC). 

Among them, PEMFC has gained great attention due to its major advantages, including 

quick start-up time, pollution free operation and solid-compact construction. 
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1.1 WHAT IS A PEM FUEL CELL? 

 PEMFC is an electrochemical device that converts chemical energy to 

electricity. The device is composed of a membrane electrode assembly (MEA) covered 

by two porous gas diffusion layers (GDL) that are mostly carbon based cloth, paper or 

felt, placed between two current collector plates. Proton exchange membrane plays dual 

roles of gas separation and proton conduction in a PEMFC. Today’s commercial proton 

exchange membrane Nafion
® 

is a perfluorosulfonic acid membrane (PFSA). It has high 

proton conductivity that is strongly correlated with its water content. High water content 

results in low internal resistance to proton conductivity in PEMFC. On the other hand, 

high water content clogs the GDL pores resulting in mass transport losses on both anode 

and cathode. The basic structure of the PEMFC is shown in Figure 1.1. The fuel and 

oxygen are delivered across the active area through gas flow channels. These channels 

are typically CNC machined conductive graphite, allowing electron transfer to the 

current collectors and completion of the electric circuit. The ratio of channel width to 

rib (contact) width, and the channel flow-field pattern are important design parameters 

affecting fuel cell performance.  

 

 

Figure 1.1: Basic PEMFC structure schematic [1] 

 The Gas Diffusion Layer (GDL) is used to evenly distribute the reactant gases 

from the channel to the catalyst surface in the area under the ribs and channels. It is also 

designed to remove the product water from the catalyst area, by treatment of the carbon 
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with a hydrophobic coating (such as PTFE). The catalyst layer where the reaction takes 

place contains platinum (Pt) particles supported on a powdered carbon structure (Figure 

1.2).  

 

Figure 1.2: Idealized structure of catalyst layer 

 For the reaction to take place at the cathode, all three reactants, protons, oxygen, 

and electrons, must be able to reach the Pt catalyst. Protons are conducted through the 

proton exchange membrane, electrons through the carbon support structure, and oxygen 

gas through the pore space. Therefore, each Pt particle must be in contact with all three 

portions of the cell (three phase interface) [1]. A thin micro porous layer (MPL) can 

also be inserted between the GDL and catalyst layer to increase the water removal from 

the catalyst or membrane hydration [2] 

 1.2 OPERATING CELL VOLTAGE  

 The theoretical cell voltage of the hydrogen fuel cell in at a defined temperature 

and pressure is calculated with Nerst equation (Eq. 1.1).  

0 ln  
a b
A B
c d
C D

p p
G G RT

p p
                                                                              (1.1) 

where G is the Gibbs free energy, T temperature, R universal gas constant and  

P is pressure. Since the Gibbs free energy is reversible electrical energy, i.e. Eq. (1.2) 
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Then for hydrogen fuel cells reversible cell voltage at a certain pressure and 

temperature can be written as in Eq. (1.3) 

2 2

2

1/2

,0 ln
H O

rev rev

H O

p pRT
V V

nF p
                                                                                         (1.3) 

 For PEMFC Eq. (1.3) can be written as below Eq. (1.4) and gives the theoretical 

cell voltage at a certain pressure and temperature [3]. 

0.5
, 2 21,482 0.000845 0.0000431In( )T P H OE T P P                                           (1.4) 

 If the fuel cell is supplied with reactant gases, but no current is driven, the 

voltage is called open circuit voltage (OCV) will be lower than the calculated 

theoretical reversible cell voltage, i.e. Eq. (1.4). This suggests that there are some losses 

in the fuel cell even with no external current generated. There are different kinds of 

voltage losses (or polarizations) in PEMFC that are explained in below. 

 

 Activation Losses 

 When hydrogen reacts and splits into electrons and protons at the anode, energy 

is released; however, some energy must be supplied to get over the energy barrier. This 

energy is called activation energy, which is the amount of energy that must be 

subtracted from Gibbs free energy of reaction for the reaction to occur. Activation 

losses are expressed by Tafel equation, Eq. (1.5): 

0

In( )act

RT i
V

F i
                                                                                       (1.5) 

 where α is the charge transfer coefficient. Its value depends on the reaction 

involved and the material the electrode is made from, and it is in range of 0-10. i0 is 

called the exchange current density. If this current density is high, and then the surface 

of the electrode is more active. The exchange current density is critical in controlling 

the performance of fuel cell electrodes. 

 

 Internal Currents and Crossover Losses 

 Although the electrolyte is a polymer membrane and impermeable to reactant 

gases, some small amount of hydrogen diffuses from anode to cathode and some 

electrons may also find a shortcut through the membranes. Each hydrogen molecule that 

diffuses through the membrane and reacts with oxygen on the cathode results in two 

electrons generated. These losses may be insignificant however, when the fuel cell is at 
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open circuit potential or at low current densities these losses have a dramatic effect on 

the cell potential. The total electrical current is the sum of external (useful) current and 

current losses due to the crossover and internal currents, i.e., i=iext+iloss, Eq. (1.5) can be 

rewritten in Eq. (1.6), 

0

In( )ext loss
act

i iRT
V

F i


                                                                                    (1.6) 

 

Ohmic Losses 

Ohmic losses occur because of resistance to the flow of ions in the electrolyte 

and resistance to the flow of electrons through the electrically conductive fuel cell 

components. Ohmic losses follow the Ohm’s Law and are expressed as in Eq. (1.7) 

intohm extV i R                                                                                                    (1.7) 

iext is the current density and Ri is the total internal resistance. The typical values 

for Ri are between 0.1 and 0.2  cm
2
 in a PEMFC. There are three ways of reducing the 

internal resistance: i) using highly conductive electrodes, ii) good cell design in bipolar 

plates and current collectors, iii) reducing the electrolyte thickness as much as possible. 

 

Mass Transport (Concentration) Losses 

 Mass transport is the process of supplying reactants and removing products. In 

the operation, there are two phase transport in PEM fuel cell: i) gas phase transport 

which is the form of reactants ii) Liquid phase transport which is the form of products 

(i.e., water). Poor mass transport can be caused by a change in the concentration of 

reactant and product within the catalyst layer. And, it is know that the electrochemical 

reaction potential changes with partial pressure of the reactants, this relationship is 

given by the Nernst equation. The Nernst equation is modified according to the Fick’s 

Law, the mass transport losses can be written as below Eq. (1.8), 

In( )L
mass

L

iRT
V

F i i



                                                                                       (1.8) 

where iL is the  limiting current density in the catalyst layer, and is the maximum 

current density that can be used to obtain ideal electrode reaction without polarization. 
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Polarization Curve 

A polarization curve is the most important characteristic of a fuel cell and its 

performance. Figure 1.3 shows how the cell polarization curve is formed, by 

subtracting the activation losses, ohmic losses and concentration losses from the OCV. 

It should be noted that in this figure anode and cathode activation losses are lumped 

together, but a majority of the losses occur on the cathode because of the slow oxygen 

reduction reaction.   

 

Figure 1.3: Voltage losses in the fuel cell and resulting polarization curve 

 1.3 FUEL MANAGEMENT AND DEAD ENDED ANODE OPERATION 

 Fuel managements of a PEMFC system can be classified as flow through mode 

(FTA), recirculation mode (RCA), and dead-end mode (DEA). In the FTA and RCA 

mode, excess hydrogen is supplied to the anode due to the electrochemical 

polarizations. Lower hydrogen flow rate may cause hydrogen starvation near the anode 

outlet. The hydrogen starvation could cause reverse-current, resulting in the carbon 

corrosion of the catalyst and degradation of the fuel cell. In the RCA, non-reacted 

residual hydrogen is re-circulated back to the supply line by a pump or an ejector.  
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  There has been worldwide interest in the development and commercialization of 

PEMFC; however the conventional RCA operating system has drawbacks such as 

complex balance-of-plant design. The RCA requires hydrogen grade an ejector/blower, 

water separator, and hydrogen humidification. These components add weight, volume, 

and expense to the system. Moreover, the water must be removed from the hydrogen 

exiting the anode before it goes to the ejector and then the dry hydrogen supplied to the 

anode must be re-humidified to prevent over-drying of the membrane due to the higher 

flow rate. 

 Thus, the DEA operation is an alternative approach to reduce the complexity of 

overall system [4]. The advantages of this design are mostly due to the elimination of 

costly hardware for anode humidification and hydrogen recovery components that 

reduces power density of system by adding weight and volume. 

 In a typical DEA operation, dry hydrogen is fed to the anode by pressure 

regulator, thus channel pressure remains constant (Figure 1.4). On the other hand, the 

cathode is operated in flow through conditions with a stoichiometry ratio (SR) greater 

than one. However, during a DEA operation, nitrogen and vapor/liquid water are 

accumulated in anode GDL and gas flow channels. In the driving mechanism, nitrogen 

is pushed toward the end of the anode channel by the flow of reactants and accumulates. 

The accumulating N2 prevents hydrogen from reaching the catalyst layer [5]. Water 

vapor gradients between the humidified cathode and the dry anode also drive excess 

water into the anode, which can cause significant liquid water accumulation. This liquid 

water accumulation in the channel and GDL blocks the flow of reactants and stops the 

production of electricity in the affected active area of the cell. The gas velocity, driven 

by consumption of hydrogen, pulls nitrogen and water toward the bottom of the 

channel. Gravity helps to stabilize the system as heavier molecules get pushed toward 

the bottom. The mass accumulation physically blocks hydrogen gas from reaching the 

anode catalyst sites, which is the mechanism for the experimentally observed and 

recoverable voltage degradation [5,6,7]. Therefore, a cyclic purging that releases 

accumulated nitrogen and water is needed in a DEA operation. Purging is maintained by 

a solenoid valve at an anode downstream (exit). There are many studies for purge time 

optimization however, on average the purging event occurs between 20-900 ms. After 

the purge, the active area contributing to the reaction increases and hence the measured 

voltage increases.  
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Figure 1.4: Schematic of DEA operated PEMFC 

 A proper water management in a DEA operation is essential in order to keep the 

membrane sufficiently humidified whilst ensuring that the anode does not flood due to 

water accumulation at low operation temperatures of PEMFC ( <100 °C). The control of 

air flow rate, cathode pressure, cathode inlet relative humidity, and stack temperature 

are all tied to control the water management.  

 1.4 ADVANTAGES OF THE HIGH TEMPERATURE OPERATION 

 The shortcomings of the DEA operation might be correlated with the limit on its 

operation temperatures (60-80 °C). This limit largely arise from the current state-of-the-

art PFSA membranes such as Nafion
®
 because of its water dependence for proton 

transport and low glass transition temperature (Tg) that is below 100 °C. However, the 

water inside the PEMFC limits the expensive electrode life time by carbon corrosion. It 

blocks the electrochemical reaction areas and leads to severe voltage losses so that it is a 

major drawback on the PEMFC commercialization.  

 Higher operating temperatures mean that water management is simplified 

significantly as there is only a single (gaseous) phase present. This means that the 

Compressed 

Air

Mass flow 
controller
(MFC)

Load 

A

S

Hydrogen
Fuel Cell

End Plate Heater

TT

Pressure Regulator

Anode water exit can be measured 



 

9 

 

transport of water in the membrane, electrodes and diffusion layer is easier and flow 

field plate design can be simplified.  

 Another effect of the higher temperatures is that the reactant and product gases 

are expected to have increased diffusion rates and with no liquid water present to block 

the electrochemically active surface area thus reaction rate increases. The simplified 

water management means that much simpler flow field designs can be used which 

should help decrease the overall cost of the stack as machining plates should be cheaper. 

Moreover, operating at high temperatures brings another side advantage to the PEMFC. 

Since primary catalyst platinum in PEMFC has a significant affinity for carbon 

monoxide (CO) which is a byproduct of reformation, the catalyst layer is deformed that 

causes power losses in PEMFC. As a result, trace levels of carbon monoxide can cause 

a large decrease in the performance of the PEMFC that operates at temperatures below 

80 °C due to poisoning effect. High temperature operation avoids this problem, at high 

temperatures, the affinity for carbon monoxide is reduced and CO tolerance is 

increased.  

Even though higher operating temperatures have many advantages as listed 

above, there is a concern which could affect commercial viability for automobile 

applications. The concern is the increased start-up time (up to 40 min in some cases). 

The high temperature fuel cell must slowly be brought up to its operating temperature 

which could mean waiting for half an hour after start-up before any current can be 

drawn. As the average driving range is only around 23 miles per day in the UK this 

would rule out high temperature PEMFC use for any short distance driving. Thus, as the 

US Department of Energy (DOE) states there is a gap where the appropriate materials 

are missing for temperatures 80-120 °C so that high temperature proton conducting 

membrane synthesis study in this thesis aims to fill that open window. 

 1.5 SCOPE OF THE THESIS STUDY 

The shortcomings of the conventional PEMFC system represented the point of 

take off for this research, which is to operate PEMFC in DEA mode at high 

temperatures (100-120 °C) with the synthesized high temperature proton exchange 

membranes. DEA operation at temperature above 100 °C will reduce the disadvantages 

of conventional PEMFC system complexity and low temperature listed above. 
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 This thesis study has three parts; proton conducting membrane synthesis for high 

temperature operation, high temperature DEA operation of the synthesized membranes 

and the modeling studies.  

 In the membrane synthesis part, to create water free proton conducting 

mechanism, nitrogen containing monomers 4-vinyl pyridine (4VP), 2-vinyl pyridine 

(2VP) and N-vinyl-2-pyrrolidone (NVP) monomers are graft copolymerized into poly 

(ethylene-alt-tetrafluoroethylene) (ETFE) in an aqueous medium by radiation induced 

grafting. Subsequent phosphoric acid doping was carried out in order to introduce acidic 

functionality required for proton conduction. Due to the interaction between N-H sides, 

a proton hopping mechanism to mobilize the protons is created without any dependence 

of water inside the membrane. Because of the ability of water independent proton 

transport mechanism membranes can operate at high temperature conditions. From this 

point, the proton conduction mechanism differs from that of perflorosulfonic acid 

(PFSA) membranes, i.e., Nafion
®

. Since the radiation grafting method relatively simpler 

than other polymerization methods, alternative and cost competitive proton exchange 

membranes can be manufactured. The resultant high temperature proton exchange 

membranes in the thesis were studied in detail for fuel cell relevant properties including 

proton conductivity, water uptake, mechanical properties and thermal properties. 

Moreover, the phosphorous distribution is also investigated to obtain information about 

the homogeneity of the membranes. 

   In the second part; DEA operation of the synthesized membranes is the main 

focus. FTA and DEA single cell operation of commercial and synthesized high 

temperature proton exchange membranes have been conducted. The fuel cell test station 

Greenlight
®

 FC G50 is modified and calibrated to control the applied load, pressure, 

flow, temperature and relative humidity of the gas streams. The DEA operation of both 

Nafion
®

 membrane and synthesized high temperature proton exchange membrane were 

investigated.   

 In the last part of study, time-depended, one-dimensional, along the channel 

numerical model of DEA operated PEMFC is presented. The model is validated with 

Siegel et al. [8] physical experiment to understand the two phase transport of 

liquid/vapor water in a DEA operated PEMFC at low operating temperatures. The 

model exhibit very well agreement with the experiments. The accumulated liquid water 

amount at anode/cathode gas channels and GDL can be predicted by our two phase 
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transport model. Additionally, the time of onset hydrogen starvation due to the 

accumulated species can be predicted with our numerical model. 

  As summary, the thesis is motivated by the desire to improve the overall 

performance of PEMFC system by operating in DEA mode at temperatures 100-130 °C 

to contribute PEMFC adaptation.  

 The three main part of this thesis study can be summarized in Table 1-1, 

 

Membrane 

 

Membrane Synthesis 

Single Cell Testing 

 Numerical 

Modeling 

Nafion
®
  

Membrane 

Commercial Nafion
® 

membrane was used. 

 

Greenlight
®
 FC  

G50  

test station was  

modified  

and calibrated.  

FTA operated  

PEMFC  

tests of  

Nafion
®
  

membrane  

was conducted. 

Time-

depended, 

1D along the 

channel 

numerical 

model of 

DEA 

operated 

PEMFC at 

low 

operation 

temperatures  

High  

Temperature 

Membrane 

Synthesis  and 

characterization of the 

high temperature proton 

exchange membranes by 

radiation induced 

grafting were performed 

FTA operated  

PEMFC  

tests of   

synthesized 

 high  

temperature  

membranes  

were conducted.  

Is the subject 

of our future 

study. 

 

Table 1-1: Summary of the three main parts in the thesis study 
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CHAPTER 2 

SYNTHESIS AND CHARACTERIZATION OF RADIATION INDUCED 

GRAFT COPOLYMERS 

2.1. INTRODUCTION  

 One of the commonly used methods for modifying the surface and bulk 

properties of polymeric materials is to graft monomers onto them by using an irradiation 

technique known as radiation-induced grafting. Radiation- induced grafting method has 

the advantages such as simplicity, low cost, control over process, and adjustment of the 

materials composition and structure. In addition, this method assures the grafting of 

monomers that are difficult to polymerize by conventional methods without residues of 

initiators and catalyst 9. Radiation-induced grafting is simply based on the irradiation of 

a base polymer either in the presence of a monomer (simultaneous radiation grafting) or 

without a monomer (pre-irradiation grafting) to create active sites as shown 

schematically in Figure 2.1. Radiation grafting can also be used to combine the proton-

conducting properties of a graft component with the thermal and chemical stability of 

the fluoropolymer base films together in membranes suitable for the application in 

PEMFC and other electrochemical devices. The attractiveness of this technique is based 

on the possibility to easily tune and control several parameters in a wide range. The 

radiation grafting involves the use of different radiation types (electron-beam, γ-rays 

and X-rays), and may be carried out using different methods. 

 The radiation grafting was directed towards the use of perfluorinated and 

partially fluorinated polymers in the preparation of proton exchange membranes for fuel 

cell, due to their outstanding and unique combination of useful properties [10, 11] such 

as high thermal stability, hydrophobicity, resistance to ageing and to oxidation, 



 

13 

 

chemical inertness, low permeability to gas, hydrolytic stability, low flammability,  high 

surface energy. Several studies were carried out based on perfluorinated polymers such 

as PTFE [12,13,14] FEP [15-18], PFA [19, 20] and partially fluorinated base materials 

such as PVDF [21, 22], ETFE [10, 23,24] and others [25]. Nevertheless, there are 

similarities and differences between the perfluorinated and partially fluorinated 

polymers due to the existence of C-H bonds in the latter. The high polarity of the C-F 

bond contributes strongly to the observed stability of fluoropolymers [26]. When 

subjected to ionizing radiation, the fluoropolymers may undergo different changes in 

the chemical and physical properties. The mechanism and the extent of changes are 

relative to the nature of the fluoropolymers, their intrinsic properties, and to the 

irradiation conditions. 

 The irradiation of polymers in general leads to the formation of active species, 

which depending on the conditions may be radicals or ionic species [27]. The formed 

active species result from either homolytic or heterolytic bond scission reactions. The 

active sites formed in the long polymer chain tend to be highly selective in nature. Thus, 

the reaction of produced active species is either dominated by crosslinking, chain 

scission, or by other chemical changes (formation of oxidative degradation products 

(hydroperoxide, acid fluoride and many others) [27,28]. For the grafting process, the 

lifetime of the active species (radicals or ions) is of major importance and can be 

controlled easily, either by reducing the temperature or working under vacuum (e.g. 

irradiated ETFE, FEP and PVDF stored from -18 to -60 °C for a periods of 4 months to 

1 year) [29]. 

 It was previously reported that the favorable performance and durability of 

radiation-grafted membranes based on styrene and its derivatives for low-temperature 

PEMFC [30–32]. However, so far, only limited attention has been paid on the 

preparation of proton exchange membranes by radiation grafting for high-temperature 

fuel cell applications [33]. 
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Figure 2.1: Radiation-induced grafting by pre-irradiation method 

 In this study, nitrogen containing vinyl monomers, N-vinyl-2-pyrrolidone 

(NVP), 4-vinyl pyridine (4VP), and 2-vinyl pyridine (2VP) have been proposed as 

alternative grafting monomers to establish strong hydrogen bonding between N-H 

atoms that highly contributes to both ionic conductivity and durability of the 

membranes that will be used in high-temperature PEMFC. Poly(ethylene-alt-

tetrafluoroethylene) (ETFE) has been employed as the base polymer for the preparation 

of membranes by radiation-induced grafting method due to its higher radiation stability 

and superior mechanical properties compared with perfluorinated polymers and better 

compatibility with the graft component [31,34,35]. 

 4VP has been studied previously due to its interesting property changes that can 

result from the presence of the polar pyridine ring. Much previous work was oriented 

toward radiation grafting of 4VP into various base polymers including polyethylene 

[36], polyvinylchloride [37], styrene-butadiene-styrene triblock polymer [38], 

poly(tetrafluoroethylene-co-hexafluoropropylene) [40] and there is only limited 

information available on the optimization of grafting and characterization [36–40]. 

Grafting of NVP onto poly(tetrafluoroethylene) [41], low density polyethylene [42] 

(tetrafluoroethylene- perfluorovinyl ether) copolymer [43], poly(tetrafluoroethylene-

hexafluoropropylene-vinylidenefluoride) [44] and polypropylene [45] by radiation 

grafting was reported earlier only in a few studies. However, up to know, there are only 

two studies on radiation grafting of 2VP [46,47] both are about the grafting of 2VP onto 

isotactic polypropylene. However, no systematic research has been reported on the 

effect of grafting conditions. In addition, these monomers were not employed before for 
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the preparation of proton exchange membranes for fuel cells by radiation grafting 

except for a study in literature in which 4VP was used [37]. 

 It is known that the use of solvents in radiation grafting enhances the 

accessibility of monomer to the grafting sites due to the ability of the solvent to swell 

the base polymer and the nature of the solvent may influence the grafting kinetics, the 

length of grafted chains, and the polymer microstructure. Correct choice of solvents is 

one of the essential elements toward the success of radiation-induced grafting process. 

There are only a few publications on the influence of solvents on radiation-induced 

grafting of different monomer/base film combinations [40,48-51]. However, research is 

still needed for understanding of the effect of solvents on grafting and properties of 

copolymers. 

 Consequently, not only the base polymer used but also grafting process 

(simultaneous radiation grafting, e-beam irradiation, high irradiation doses, grafting in 

aqueous media or bulk grafting, etc. were performed mostly in literature) are very 

different from our current process. Therefore, it is desirable to investigate both the 

grafting of these monomers onto ETFE and characterization of the resultant graft 

copolymers in detail. Preirradiation grafting, which is only suitable for the grafting of 

crystalline base polymers where radicals remain trapped for a long period, is employed. 

Grafting conditions especially the effect of solvents during radiation grafting is 

investigated in detail in this part of thesis study. Moreover, resultant graft copolymers 

are characterized ex situ by Fourier transform infrared (FTIR) spectroscopy, dynamic 

mechanical analysis (DMA), and scanning electron microscopy-energy dispersive 

spectroscopy (SEM-EDAX). 

 2.1. EXPERIMENTAL 

2.1.1. Materials and Method 

 The base polymer poly(ethylene-alt-tetrafluoroethylene), or ETFE, was 

purchased in the form of a 25 µm thick film (Nowoflon ET-6235) from Nowofol GmbH 

(Siegsdorf, Germany). The reagents used during membrane preparation, monomers 

(NVP, 4VP, and 2VP), and solvents (Sigma Aldrich), were used without any further 

purification.  The base polymer, ETFE was cut into 7 cm x 7 cm, washed with ethanol, 



 

16 

 

and then, dried in a vacuum oven at 80 °C for 1 h. The dried films were placed one by 

one in polyethylene zip-lock bags to prevent contamination. 

 Irradiation of the films was performed at γ-Pak Sterilization (Çerkezköy, 

Turkey) using gamma rays from a 
60

Co source. The irradiation was carried out in air at 

room temperature with doses of 10–50 kGy. After exposure, the films were stored at -10 

°C until used. Irradiated films were placed into glass tube reactors and then grafting 

solution composed of monomer and solvent was added to reactors which were then 

purged with dry nitrogen for 30 min. The reactors were subsequently sealed and placed 

in thermostated water bath, and grafting reactions were carried out for certain times to 

achieve reasonable grafting by irradiation dose. The grafted films were washed with the 

solvent used during grafting to remove residual monomer and/or polymer, which were 

not bonded to the base film, then dried at 70 °C and reweighed. The extent of graft 

polymerization, grafting percentage, or graft level (GL) is calculated as follows: 

        
     

  
     

where wi and wg are the weights of the film before and after grafting, respectively. 

2.1.2 Fourier Transform Infrared Spectroscopy  

 The structure of both the base polymer film and the graft copolymer films was 

analyzed by FTIR spectroscopy. Measurements were carried out with a Bruker Equinox 

55 FTIR spectrometer in absorbance mode in a wave number range of 4000 cm
-1

 to 500 

cm
-1

. 

2.1.3 Dynamic Mechanical Analysis  

 Mechanical properties of the resultant graft copolymers were studied by a 

Netzsch 242C dynamic mechanical analyzer (DMA). The measurements were done in 

the tensile mode at an oscillation frequency of 1 Hz. The dimensions of the test films 

were 0.5 cm in width and 2 cm in length. The sinusoidal amplitude of strain was applied 

during the temperature sweep from 25 to 200 °C at a rate of 1 °C/min. The value of 

glass transition temperatures was evaluated from the loss tangent (tan ) curve as the 

maximum of the peak.  
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where E’’ is loss modulus and E’ is storage modulus of the graft copolymer. 

2.1.4 Scanning Electron Microscopy-Energy Dispersive Spectroscopy  

 SEM-EDAX (Supra 35VP, Leo, Germany) measurement was conducted to 

investigate the nitrogen distribution on the surface of the copolymer films. An 

accelerating voltage of 10 kV was used during the measurements. 

 2.3 RESULTS AND DISCUSSION 

2.3.1 Radiation Grafting 

 Radiation-grafted copolymers based on three different nitrogen containing vinyl 

monomers were synthesized in various solvents including; n-propanol, isoproponol, 

benzyl alcohol, methanol, ethanol, cyclohexanone, THF, nitromethane, 1,4-dioxane, and 

n-heptane. The resultant copolymers from 4VP/ETFE, NVP/ETFE, and 2VP/ETFE 

grafting were abbreviated as ETFE-g-P4VP, ETFE-g-PNVP, and ETFE-g-P2VP, 

respectively.  

 Figure 2.2 represents the variation of graft level for 4VP grafting onto ETFE in 

different solvents. Two different 4VP concentrations, 30% (v/v) and 50% (v/ v), were 

applied. Because of the high reactivity of 4VP, desired graft levels can be achieved by 

using short reaction time and low irradiation dose which has the advantage of reduced 

radiation damage to the base polymer. It is evident that higher monomer concentration 

yielded higher graft levels due to the availability of monomer at grafting sites. It was 

found that graft level of the copolymers was strongly dependent on the type of solvent 

used during grafting. Graft levels of ETFE-g-P4VP copolymers decrease in the order of 

cyclohexanone > n-propanol > isoproponol > ethanol > THF > benzyl alcohol > 

nitromethane > methanol > 1,4-dioxane > n-heptane. 
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Figure 2.2: Effect of solvent on graft level (%) for 4VP grafting onto ETFE at different 

4VP concentrations. Grafting conditions: 25µm ETFE, 10 kGy, 60 °C. 

 The radiation grafting reaction is governed by the diffusion of monomers into 

the base film, step growth reaction of the grafted chains, and termination reactions. 

Since the base polymer films are insoluble in all common solvents and barely swell, 

grafting takes place at the film surface and behaves as the grafting front. This grafted 

layer swells in the reaction medium and further grafting proceeds by the progressive 

diffusion of the monomer through this swollen layer and grafting front movement to the 

middle of the film. This mechanism is known as grafting front mechanism [51]. 

Grafting occurs uniformly and smoothly in a solvent which provides the swelling of 

grafting front. The diffusion of the monomer to the base polymer and swelling of 

grafting front are mainly determined by the solubility parameters of the grafting 

components (solvent, monomer/ polymer). As shown in Figure 2.2, high graft levels 

achieved in cyclohexanone, n-propanol, and isopropanol can be explained by the close 

proximity of solubility parameters of these solvents with 4VP and poly(4-vinyl 

pyridine) [53]. Similarly, n-heptane yielded the lowest graft level due to the large 

difference in solubility parameters. Higher graft levels obtained in ethanol compared 

with those in methanol could be also attributed to the much closer solubility parameter 

ethanol than that of methanol. Solubility parameters of solvents employed in this study 

are given in Table 2-1[56]. Although, benzyl alcohol, nitromethane, and 1,4-dioxane 

have similar solubility parameters with 4VP and poly(4-vinyl pyridine), graft levels 

obtained in these solvents were too low. This behavior can be accounted for chain 
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transfer to solvent. It is known that low graft levels are obtained with solvents having 

high chain transfer constants; hence, the growing chains will be readily terminated. 

Benzyl alcohol, nitromethane, and 1,4-dioxane have high chain transfer constants 

leading to lower graft levels. Moreover, significant amount of homopolymer formation 

due to the chain transfer reactions was observed for grafting of 4VP monomer in benzyl 

alcohol, 1,4-dioxane, and nitromethane. Therefore, the graft copolymers obtained in 

these solvents were subsequently washed with solvents and soaked overnight to remove 

homopolymer. On the other hand, as reported earlier [54] for 4VP and 2VP 

polymerizations, the chain transfer constants to aliphatic alcohols were found to be too 

low which can be another reason of high graft levels in n-propanol, isopropanol, and 

ethanol. According to previous findings of styrene/ETFE grafting, significantly 

enhanced graft levels were obtained with the addition of water to isopropanol [55]. 

Polar solvents such as alcohols in combination with water were found to yield high 

grafting rates. This means that the grafting times are short or the irradiation dose of the 

base polymer can be reduced which leads the less radiation damage of the material. 

However, no improvement was detected for 4VP/ETFE grafting in isopropanol–water 

system, since addition of water increases the difference in solubility parameters.  

 

 

 

 

 

 

 

 

 

 

Table 2-1: Solubility parameters of the used solvents [56] 

  

Solvent 
Solubility Parameter 

δ (cal /cm³)
½

 

n-Heptane 7.40 

Tetrahydrofuran(THF) 9.10 

Acetone 9.90 

Cyclohexanone 9.90 

1,4- Dioxane 10.00 

4-Vinyl Pyridine 11.00 

Isopropanol 11.50 

n-propyl alcohol 11.90 

Benzyl alcohol 12.10 

Nitromethane 12.70 

Ethanol 12.70 

Methanol 14.50 

Isopropanol-Water 19.00 
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 Same tendency of graft levels with respect to solvents was observed for both 

4VP concentrations [30% (v/v) and 50% (v/v)] except for THF. Surprisingly, it was 

found that THF yielded reasonable graft levels for 50% (v/v) 4VP, whereas very low 

graft levels were obtained for 30% (v/v) 4VP. It was observed experimentally that at 

low 4VP concentrations [30% (v/v)] homopolymer formation was significant when 

monomer was introduced to THF. Consequently, most of the monomer was converted 

to homopolymer before grafting to base film; so, graft levels were too low in that case. 

At high 4VP concentration, homopolymer formation was still predominant but there 

may be some monomer remained for the grafting to the base film. It was reported 

previously the influence of various solvents on radiation-induced grafting of 4VP onto 

polyethylene [36] poly(vinyl chloride) [37] styrene-butadiene- styrene triblock 

copolymer [38] and  poly(tetrafluoroethylene-co-hexafluoropropylene) (FEP) [40]. 

Compared with our work, the diversity of the results may be due to the differences of 

grafting method (simultaneous grafting used in literature) and base film type. 

 To the best of our knowledge, there were no previous studies on the synthesis of 

NVP-based copolymers by radiation-induced grafting of NVP onto ETFE. Therefore, 

NVP/ETFE grafting was more focused on in this study. Grafting in various solvents, 

several irradiation doses, and different NVP concentrations have been studied. As far as 

the different NVP concentrations are concerned, graft level increases as the monomer 

concentration increases, reaching a maximum value at 50% (v/v) NVP, and then 

decreases abruptly at higher monomer concentration [80% (v/v) NVP] (Figure 2.3a). 

This may be due to the limited diffusion of the monomer into the film, which is low in 

the case of high monomer concentration. At high monomer concentrations, the 

complexity arising from the extensive homopolymerization during the grafting may 

hinder monomer diffusion to the radical sites and may lead to diminishing grafting. This 

may lead to the maxima at specific monomer concentrations, beyond which the grafting 

would decrease rapidly [9,56]. In such a case, the trapped radicals can recombine 

readily and homopolymerization which increases the viscosity of the solution occurs 

intensively. Eventually, the graft level decreases.  

 Figure 2.3a exhibits also that as the irradiation dose increases, graft levels of 

ETFE-g-PNVP copolymer increase dramatically owing to the increased concentration 

of free radicals on the base film [56]. Since desired graft levels were achieved with 50% 

(v/v) NVP concentration and ETFE films irradiated with 50 kGy, these conditions were 

selected as the optimum conditions at which the rest of experiments were performed. 
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 Figure 2.3b indicates the variation of graft level of ETFE-g-PNVP copolymer 

with respect to solvents studied. It was found that graft levels decrease in the following 

sequence: THF > 1,4-dioxane > n-heptane > water > isopropanol > cyclohexanone > n-

propanol > methanol > ethanol > benzyl alcohol > nitromethane. THF and 1,4-dioxane, 

having solubility parameters close to that of poly(N-vinyl 2-pyrrolidone) or PNVP 

(10.1–13.7) [53] are likely to be the suitable solvents for NVP grafting to ETFE. 

Isopropanol, cyclohexanone also yielded reasonable graft levels by the similar reason. 

However, high graft levels obtained in n-heptane and water or very low graft level 

obtained in nitromethane and benzyl alcohol cannot be explained by solubility 

parameters. High chain transfer constants of nitromethane and benzyl alcohol may be 

the reason of low graft levels as found in 4VP/ETFE. Moreover, water serves as a 

suitable solvent for NVP grafting may be due to its low chain transfer constant, which 

enhances graft level or its polarity, which aids the swelling of the grafted layer when the 

hydrophilic monomers were grafted onto ETFE. 

 

 

Figure 2.3: (a) Variation of graft level (%) as a function of irradiation dose for NVP 

grafting onto ETFE at different NVP concentrations. Grafting conditions: 25µm ETFE, 

50 kGy, 60 °C, in 1,4-dioxane. (b) Effect of solvent on graft level (%) for NVP grafting 

onto ETFE. Grafting conditions: 25 µm ETFE, 50 kGy, 60 °C, 50% (v/v) NVP. 
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 Hegazy et al. reported on simultaneous radiation grafting of aqueous NVP onto 

low density polyethylene [41] and poly(tetrafluoroethylene-co-perfluoropropyl vinyl 

ether) [42] previously. They pointed out the significant amount of homopolymer 

formation during grafting if no inhibitor was used. Graft levels about 20% was obtained 

with irradiation dose of 58 kGy and 50% (v/v) NVP that in the presence of CuCl2 as 

inhibitor to prevent homopolymerization in simultaneous grafting in their work. Even 

though preirradiation gives lower graft levels than that of simultaneous irradiation, we 

obtained much better graft levels without using an inhibitor as no homopolymerization 

was observed in our case. In another study, simultaneous-radiation grafting of NVP 

onto poly(tetrafluoroethylene-hexafluoropropylene- vinylidene fluoride) using different 

solvents was described [43]. Although a different base polymer was used. Authors 

found high graft levels in 1,4- dioxane which is in agreement with our study. On the 

contrary, very high graft levels (up to 200%) were reported previously for simultaneous 

grafting of NVP onto polypropylene in dimethyl formamide using an inhibitor [44]. 

 Similar to NVP case, nobody reported on radiation- induced grafting of 2VP 

onto ETFE up to know. From the screening experiments for 2VP grafting onto ETFE, it 

was observed that 2VP is less reactive compared with 4VP and NVP. Thus, as a first 

attempt, relatively high irradiation dose was examined. Figure 2.4a presents the 

variation of graft levels with respect to solvents at two different irradiation doses, 10 

kGy and 50 kGy, that for 2VP grafting onto ETFE. Although higher graft levels were 

obtained at 50 kGy, the improvement was not substantial compared with 10 kGy. This 

may be due to the decomposition of radicals and of recombination or transfer reactions 

that is expected to occur to some extent by an increasing dose. As a second attempt, the 

reaction temperature increased to achieve reasonable graft levels since temperature 

increase is expected to enhance not only the diffusion of monomer toward active sides 

of base film and the advancement of the grafting front but also the reactivity of radicals 

[9,56]. Figure 2.4b shows the variation of graft level with solvents at two different 

grafting temperatures (60 °C and 90 °C). It was found that graft levels obtained at 

different temperatures were not significantly different. In grafting process, grafted zone 

remains swollen which leads to high mobility of the growing chains within polymer 

matrix. Therefore, termination of the two growing chains by mutual combination 

becomes dominant at higher temperatures. At the same time, the primary radical 

termination may also be accelerated by the time the monomer reaches their vicinity. In 

addition to that, the increase of the reaction temperature enhances the production of 
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homopolymer in the grafting solution and then the diffusion of the monomer is hindered 

[56]. All these can be regarded as the reasons of low graft levels. The order of graft 

levels with respect to solvent for 2VP/ETFE grafting at 50 kGy and 60 °C were 

determined as follows: benzyl alcohol > methanol > ethanol > 1,4-dioxane > THF > 

cyclohexanone > isopropanol > n-propanol > n-heptane > water > nitromethane. High 

graft levels obtained in ethanol, 1,4-dioxane, THF, cyclohexanone, isopropanol, and n-

propanol can be ascribed to the closeness of the solubility parameters of these solvents 

to that of poly(2-vinyl pyridine) [10.4 (cal/cm
3
)
1/2

] [57]. The dominance of alcohols in 

high graft levels for 2VP grafting are probably due to low chain transfer constants of 

alcohols based on a similar reasoning as earlier. As the nitrogen atom that is situated at 

the position of pyridine has alone electron pair and shows basic character, its solubility 

is greater in an alcohol. However, except for alcohols, the order of graft levels with 

respect to solvent type was found to be significantly different for these isomeric 

monomers, 2VP and 4VP. 

 As mentioned at very beginning of this article, there were only two studies on 

radiation induced grafting of 2VP in literature [46,47]. Authors performed 2VP grafting 

in the presence of styrene as a second monomer onto isotactic propylene. High graft 

levels in water and methanol–water were reported. It should be noted though that those 

earlier results and the present ones are not necessarily directly comparable since the 

base polymers are different. 

 Therefore, different radical concentrations produced by the irradiation, different 

structures of the radical centers, variations in crystallinity and glass transition may result 

in differences in grafting of 2VP.  
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Figure 2.4: (a) Effect of solvent on graft level (%) for 2VP grafting onto ETFE at 

irradiation doses of 10 kGy and 50 kGy. Grafting conditions: 25 µm ETFE, 60 °C, 50% 

(v/v) 2VP. (b) Effect of solvent on graft level (%) for 2VP grafting onto ETFE at 

temperatures of 60 °C and 90 °C. Grafting conditions: 25 µm ETFE, 50 kGy, 50% (v/v) 

2VP. 

2.3.2 Fourier Transform Infrared Spectroscopy 

 FTIR spectroscopy was performed for both ETFE base film and graft 

copolymers to investigate whether the monomer is incorporated with base film or not. 

Graft copolymers with high graft levels obtained in promising solvents were analyzed 

for this purpose. 

 Figure 2.5a shows the FTIR spectra of the ETFE-g-P4VP copolymers 

synthesized in different solvents and ETFE base polymer film. ETFE base film is 

initially characterized by the presence of strong bands in the range of 1000 to 1400 cm
-1
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which are characteristics for CF2 groups. Moreover, symmetric and asymmetric 

stretching vibrations of CH2 groups at 2921 cm
-1 

are present in ETFE base film. The 

peak at 1598 cm
 -1 

attributed to C=N bond, and the peak at 1452 cm
-1

 attributed to C=C 

bonds of 4VP are present in ETFE-g-P4VP [58]. A band at 1248 cm
-1

 due to the C-N 

vibration of 4VP also exists in ETFE-g- P4VP. The less intense peak at 3730 cm
-1 

belongs to the N-H bonds. Therefore, observed differences between the FTIR spectra of 

ETFE and those of graft copolymers verified the existence of grafting.  

 The FTIR spectra of the ETFE-g-PNVP copolymers synthesized using 

promising solvents and ETFE base film are given in Figure 2.5b. Compared with FTIR 

spectrum of ETFE base polymer, the appearance of new peaks at 1596 cm
-1

, 1248 cm
-1

, 

1452 cm
-1

 are characteristics to C=O bond, C-N bond, and C=C bond, respectively. In 

the case of NVP grafting 1590 cm
-1

 that signify the characteristic C=O bond of NVP is 

distinguished. The peak at 3780 cm
-1

 belongs to the NAH bonds are also observed. As 

conclusion, grafting of NVP into ETFE film was verified. 

 FTIR spectra of ETFE-g-P2VP copolymers synthesized in benzyl alcohol and 

methanol and ETFE base polymer film are depicted in Figure 2.5c. The peaks 

correspond to C=C and C=N of pyridine at 1452 cm
-1

 and 1593 cm
-1

, respectively, and a 

band at 1247 cm
-1 

due to the C-N vibration of 2VP are present in ETFE-g-P2VP proved 

the grafting of 2VP.31 Again, the peak at 3700 cm
-1 

belongs to the N-H bonds. 



 

26 

 

 

Figure 2.5: (a) Fourier transform infrared (FTIR) spectra of (1) ETFE-g-P4VP in 

synthesized isopropanol, (2) ETFE-g-P4VP synthesized in n-propanol, (3) ETFE-g-

P4VP synthesized in cyclohexanone, and (4) ETFE base film. (b) FTIR spectra of (1) 

ETFE-g-PNVP synthesized in 1,4-dioxane, (2) ETFE-g-PNVP synthesized in THF, and 

(3) ETFE base film. (c) FTIR spectra of (1) ETFE-g-P2VP synthesized in methanol, (2) 

ETFE base film, and (3) ETFE-g-P2VP synthesized in benzyl alcohol. 
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2.3.3 Dynamic Mechanical Analysis  

 Mechanical behavior of the graft copolymers used for the preparation of fuel cell 

membranes are important in terms of handling, fabrication of membrane electrode 

assemblies and to offer a durable material. Moreover, the structural changes and the 

degradation are usually reflected in the mechanical properties of the copolymers. Thus, 

it is of interest to investigate the dynamic mechanical properties of graft copolymers 

synthesized. 

 The temperature dependence of loss tangent (tan ) and storage modulus of graft 

copolymers are represented in Figure 2.6, Figure 2.7, Figure 2.8. Single broad peaks 

can be observed in tan versus temperature plots (Figure 2.6a, Figure 2.7a and Figure 

2.8a) for each of the copolymers investigated. Single peaks may indicate that there is no 

phase separation. The maximum of tan peaks corresponds to glass transition 

temperature (Tg) for each case. First of all, as graft level increases, the tan maximum 

shifts to higher temperature which indicates the increase of Tg. For instance, the Tg 

values for ETFE-g-P4VP copolymers synthesized in isopropanol with graft level of 

41%, in n-propanol with graft level of 45%, and in cyclohexanone with graft level of 

48% were determined as 130 °C, 140 °C, and 150 °C, respectively, (Figure 2.6a). 

Similarly, Tg values for ETFE-g-PNVP copolymer with graft level of 26% in 1,4-

dioxane was 110 °C and the copolymer with graft level of 28% in THF was 150 °C 

(Figure 2.7a). Correlatively, ETFE-g-P2VP copolymers with a graft level of 12% in 

methanol and 14% in benzyl alcohol exhibit Tg values at 90 °C and 110 °C, 

respectively, as shown in Figure 2.8a. Tg of ETFE base film was reported as 110 to 135 

°C in literature [60–62]. The difference in literature values of ETFE base polymer may 

be resulted from the type of ETFE film (different molecular weight, etc.) and different 

measurement technique. The increase of Tg with graft level can be attributed to the 

restrictions in the movements of polymer due to the incorporation of glassy graft chains 

to the ETFE base film. As expected, the monomer and the solvent employed during 

grafting influence the Tg of resultant copolymers to different extent. 
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Figure 2.6: (a) The temperature dependence of loss tangent (tan ) of ETFE-g-P4VP 

(GL: 45%, synthesized in n-propanol), ETFE-g-P4VP (GL: 41%, synthesized in 

isopropanol), ETFE-g-P4VP (GL: 48%, synthesized in cyclohexanone) and (b) The 

temperature dependence of storage modulus of ETFE-g-P4VP (GL: 45%, synthesized in 

n-propanol), ETFE-g-P4VP (GL: 41%, synthesized in isopropanol), ETFE-g-P4VP 

(GL: 48%, synthesized in cyclohexanone). 

 Figure 2.7b shows the variation of storage modulus with respect to temperature 

for the ETFE-g-P4VP copolymers with different graft levels and synthesized in 

isopropanol, n-propanol, and cyclohexanone. In the temperature region investigated, the 

minimum storage modulus values was obtained for the copolymer obtained in 

cyclohexanone which was experienced as wrinkled, rough, uneven, and brittle films as 

well. Copolymer obtained in isopropanol possessed relatively higher storage modulus 

values compared with the one from n-propanol up to 110 °C after which comparable 

values were obtained. 

 The graft level is one of the important quantities which has a direct and major 

influence on different ex-situ and in-situ properties of the grafted films and, 

subsequently on the membranes. High graft levels of copolymers and resultant 

membranes are preferred to obtain high ionic conductivity. However, high graft levels 
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may result in the deterioration of some mechanical properties. Therefore, it is necessary 

to find a compromise between the mechanical robustness of the membrane and its 

proton conductivity. As a consequence, although cyclohexanone yielded the highest 

graft level, n-propanol and isopropanol were found to be the most promising solvents to 

obtain both high graft levels and reasonable mechanical properties to synthesize ETFE-

g- P4VP. 

 

 

Figure 2.7: (a) The temperature dependence of loss tangent (tan d) of ETFE-g-PNVP 

(GL: 28%, synthesized in THF), ETFE-g-PNVP (GL: 26%, synthesized in 1,4-dioxane) 

and (b) The temperature dependence of storage modulus of ETFE-g-PNVP (GL: 28%, 

synthesized in THF), ETFE-g-PNVP (GL: 26%, synthesized in 1,4-dioxane). 

 As far as the storage modulus values of ETFE-g-PNVP and ETFE-g-P2VP are 

concerned, both decline sharply as the temperature increases (Figure 2.7b and Figure 

2.8b). It can be seen from Figure 2.7b that the storage modulus values of ETFE-g-

PNVP (in THF) at lower temperature is larger than that of ETFE-g-PNVP (in 1,4-

dioxane), which indicates ETFE-g-PNVP synthesized in THF has higher stiffness. It is 

found that THF is the most promising solvent for NVP monomer in terms of graft level 
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and the strength of graft copolymer. Storage modulus values of ETFE-g-P2VP 

copolymer from benzyl alcohol were higher than those from methanol but their 

difference was not so noticeable at temperatures above 100 °C. Therefore, both benzyl 

alcohol and methanol can be regarded as the most favorable solvents for 2VP grafting 

onto ETFE in the sense of graft level and mechanical properties. 

 As seen in the case of ETFE-g-PNVP and ETFE-g- P2VP copolymers at low 

temperatures, the increase of graft level caused to an increase in storage modulus which 

is an indication of the increased stiffness of copolymers. That may probably be due to 

the steric hindrance of the pyridine and pyrrolidone groups which results in a stiffer 

polymer chain. 

 

 

Figure 2.8: (a) The temperature dependence of loss tangent (tan d) of ETFE-g-P2VP 

(GL; 14%, synthesized in benzyl alcohol), ETFE-g-P2VP (GL: 12%, synthesized in 

methanol) and (b) The temperature dependence of storage modulus of ETFE-g-P2VP 

(GL; 14%, synthesized in benzyl alcohol), ETFE-g-P2VP (GL: 12%, synthesized in 

methanol). 
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2.3.4 Scanning Electron Microscopy-Energy Dispersive Spectroscopy 

 The uniform distribution of the grafts is an important factor along with graft 

level in both copolymers and the resultant membranes to have homogenous ion 

exchange mechanism. The graft copolymer films synthesized in this study were found 

to be homogeneous in appearance especially for higher graft levels. However, we know 

that it is not always possible based on our previous experience. Therefore, we analyzed 

the surfaces of the graft copolymer films by SEM-EDAX. Since nitrogen is known to be 

mainly introduced to copolymer structure by grafting of nitrogen containing 4VP, NVP, 

and 2VP, it can be assumed that the distribution profile of the nitrogen corresponds to 

that of the P4VP, PNVP, and P2VP grafts. 

 Figure 2.9 demonstrates the SEM-EDAX images in which white dots are 

representative of nitrogen of the graft copolymers. It was found that these copolymers 

were substantially different from each other. In the case of ETFE-g-P4VP copolymer, 

nitrogen was almost uniformly distributed on the surface for the film with having graft 

level of 48% (in cyclohexanone), whereas less homogenous nitrogen distribution was 

observed for the film with 5% graft level (in benzyl alcohol) (Figure 2.9a). The 

copolymers of ETFE-g-PNVP and ETFE-g-P2VP showed relatively uneven and lower 

nitrogen content at the surface of films compared with ETFE-g-P4VP copolymer. This 

behavior was much more pronounced in the case of copolymers with low graft levels 

(Figure 2.9 b, c). As conclusion, the distribution of nitrogen was strongly influenced by 

not only the graft levels of the copolymers but also the nature of the grafting medium 

which takes into account both the monomers and the solvents. The graft level is a bulk 

property and is averaged over the film thickness and area. At low grafting, the graft 

distribution was heterogeneous on the surface; however, at high grafting, the surface 

became more homogenous. 
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Figure 2.9: (a) Scanning electron microscopy-energy dispersive spectroscopy (SEM-

EDAX) micrographs of N mapping for ETFE-g-P4VP, GL: 48% synthesized in 

cyclohexanone (left) and GL: 16% synthesized in benzyl alcohol (right), (b) SEM-

EDAX micrographs of N mapping for ETFE-g-PNVP, GL: 28% synthesized in THF 

(left) and GL: 2% synthesized in nitromethane (right), and (c) SEM-EDAX micrographs 

of N mapping for ETFE-g-P2VP, GL: 14% synthesized in benzyl alcohol (left) and GL: 

5% synthesized in nitromethane (right). 
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2.4 CONCLUSION 

 Graft copolymers using NVP, 4VP, and 2VP are synthesized by radiation-

induced grafting. Grafting of 4VP onto pre-irradiated ETFE films has been shown to be 

possible with high graft levels by employing short reaction time and low irradiation 

dose (10 kGy) which has the advantage of reduced radiation damage on the base 

polymer structure due to the high reactivity of 4VP. In the case of both NVP and 2VP 

grafting onto pre-irradiated ETFE films, relatively higher irradiation doses (30 and 50 

kGy) are required. 

 The application area of the resultant graft copolymers is targeting the high 

temperature polymer electrolyte membrane fuel cells. Graft copolymer strength plays an 

important role on the degradation of PEMFC membrane during the operation due that 

both graft level and mechanical properties of the copolymer should be promising. Graft 

levels are found to be strongly dependent on the nature of solvents used during grafting. 

Despite the fact that grafting reactions of 4VP/ETFE performed in cyclohexanone have 

a highest graft level, DMA indicated that mechanical properties of the resultant 

copolymers are not favorable. Therefore, n-propanol and isopropanol are found to be 

the most promising solvents to obtain both high graft levels and reasonable mechanical 

properties to synthesize ETFE-g-P4VP copolymers. In the case of NVP grafting, THF is 

the most promising solvent in terms of both graft level and the strength of graft 

copolymer. Similarly, both benzyl alcohol and methanol can be regarded as the most 

favorable solvents for 2VP grafting onto ETFE in the sense of graft level and 

mechanical properties. DMA results also indicate that grafting resulted in the increase 

of glass transition temperature and stiffness. SEM-EDAX revealed that copolymers 

based on 4VP have a much uniform surface depending on graft level. The surface 

aspects and mechanical properties taken in conjunction, suggest that although grafting 

in cyclohexanone yields homogeneous copolymer films, their mechanical properties are 

poor. In the case of NVP and 2VP graft copolymer distribution is not homogenous and 

graft copolymers tend to gather on one the surface. 
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CHAPTER 3 

WATER FREE PHOSPHORIC ACID DOPED RADIATION-GRAFTED 

PROTON EXCHANGE MEMBRANE SYNTHESIS AND 

CHARACTERIZATION 

 3.1. INTRODUCTION 

 Most of the shortcomings arises on the PEMFC commercialization due to the 

operation temperature is limited to below 100 °C (typically 60-80 °C), at atmospheric 

pressure which is in turn limited by the current state-of-the-art perfluorosulfonic 

ionomers such as Nafion
®
 because of its water assisted conduction mechanism [65].  

 Nafion
®
 membranes have advantages such as high mechanical and chemical 

stability at temperatures below 100 °C and high proton conductivity in hydrated form as 

well. However, the water requirement in the membrane limits the operation temperature 

to below 100 °C in theory. Thus, the synthesis and characterization of proton 

conducting membranes constitutes a significant step for the development of high 

temperature PEMFCs.  

 Efforts have been made to develop proton-exchange membranes for operation at 

temperatures above 100 °C previously. The developed membranes are classified into 

three groups: (1) modified perflorosulfonated acid (PFSA) membranes, (2) alternative 

sulfonated polymers and their composite membranes, and (3) acid-base polymer 

membranes. Among them, acid-base polymer membranes received attention in the past 

few years. Phosphoric acid-doped poly(benzimidazole) (PBI) has been presented as a 

promising thermally and chemically stable material that shows good performance in 

terms of both proton conduction and fuel cell applications at temperatures up to 180 °C 

without additional humidification [66]. In spite of that, for further large-scale 
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applications of this polymer, new methods of synthesis need to be explored. The 

polymer’s shortcomings which are most notably poor mechanical properties, membrane 

casting, easily washed away unbounded ‘‘free acid’’ at high temperatures constitute 

central issues that require improvement. PBI membranes has better conductivity at 

higher temperatures (150-200 °C), however the need still arises for membranes that is 

operating at temperatures between 80-120 °C.  

 Advantages in manufacturing sulfonic acid doped proton-exchange membranes 

with radiation-induced grafting method have already been distilled in the literature in 

much detail [67].
 
This thesis study proposes water-independent radiation grafted-

phosphoric acid based membranes that can operate at temperatures up to 130 °C with 

stability (Figure 3.1). With respect to phosphoric acid doping, the proton conduction 

mechanism differs from PFSA membranes, i.e., Nafion
®
. In phosphoric acid doped 

membranes, four possible proton conduction mechanisms have been proposed in 

literature: (1) proton hopping from one N site to another (N-N) which is believed to 

contribute little to conductivity, (2) proton hopping (Grotthuss diffusion mechanism) 

from the N-H site to a phosphoric acid anion which contributes significantly to 

conductivity (3) Proton hopping along the H2PO4
-
 anionic chain; especially at high 

phosphoric acid doping levels, free acid is present and contributes the major part of the 

conductivity, and (4) Proton hopping via water molecules; the conductivity of 

phosphoric acid doped membranes is found to improve with increasing atmospheric 

humidity, though the dependence is smaller than that of Nafion
® 

[67]. 

 

 

Figure 3.1: Synthesis of radiation grafted phosphoric acid doped proton exchange fuel 

cell membrane 
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 4-vinyl pyridine (4VP), 2-vinyl pyridine (2VP) and N-vinyl-2-pyrrolidone 

(NVP) monomers were not previously employed in the preparation of proton exchange 

membranes for fuel cells by radiation-induced grafting except for a study in literature in 

which 4VP was used. However, this study does not maintain any details in both fuel cell 

testing and proton conductivity in a wide relative humidity (RH) range [70].
 
Moreover, 

recently 4VP monomer has been grafted onto ETFE base film in one more study in 

literature, however it was not studied  mainly  for high temperature PEMFC 

applications so that there is no fuel cell testing data presented [71].   

 Furthermore, phosphoric acid is the most convenient acid due to its conductivity 

mechanism and thermal stability to manage high temperature conditions in PEMFC 

[71]. In literature, there are only a few studies for the grafting of 2VP and NVP 

monomers onto some hydrocarbon base films; however none of them are targeting fuel 

cell application or doping the copolymers with phosphoric acid [72-73].   

 This study’s main focus is  the preparation of radiation grafted phosphoric acid 

doped proton-exchange membranes based on nitrogen containing 4VP, 2VP and NVP 

monomers to operate at high temperature (especially above boiling point of water) and 

water free conditions for PEMFC. Owing to a simple manufacturing process, the 

procedure that is offered to fabricate high temperature membranes is able to overcome 

casting (or manufacturing) problems of other high temperature membrane candidates.  

 In this part of the thesis study, properties of resultant membranes are studied in 

detail for mainly fuel cell relevant properties including proton conductivity, water 

uptake, mechanical and thermal properties. The phosphorous distribution is also 

investigated to obtain information about the homogeneity of the membranes. As a 

contribution to the literature, the proton conductivity of ETFE-g-4VP membranes have 

been measured in a wide range RH and temperature values to define the temperature 

and RH dependence of the proton conductivity mechanism.  

  3.2. EXPERIMENTAL 

 3.2.1 Materials 

  The base polymer poly (ethylene-alt-tetrafluoroethylene) ETFE was purchased 

in the form of a 25 μm thick film (Nowoflon ET-6235) from Nowofol GmbH 
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(Siegsdorf, Germany). The reagents for membrane preparation, monomers 4-vinyl 

pyridine (4VP), 2-vinyl pyridine (2VP) and N-vinyl-2-pyrrolidone (NVP) solvents (n-

propanol, benzyl alcohol and THF, Sigma Aldrich ) and phosphoric acid (H3PO4, 

Sigma Aldrich), were used without any further purification. 

 3.2.2 Membrane Preparation 

 The synthesis of the radiation grafted copolymers has been explained in detail in 

Chapter 2 [162]. According to the copolymerization study, grafting solvents were 

chosen as follows; 4VP: n-propanol, NVP: THF, 2VP: benzyl alcohol. The graft 

copolymers were obtained at 60 °C and different reaction times as described previously.  

 For the preparation of proton-conducting membranes, graft copolymer films 

were doped with H3PO4 by simply immersing them in 85 % H3PO4 solution at 60 °C for 

20 hours. The weight gain from both water and phosphoric acid uptake was determined 

by comparing the weight change before and after doping. For individual contributions 

of the doping acid and water uptake, the doped polymer membranes were then dried at 

70 °C under vacuum until an unchanged weight was reached. This process lent support 

to the inference that the weight loss was due to water evaporation which in turn yielded 

data about the level of acid doping (DL) of proton conducting membranes [74,75].  

 

 

where wi and wd are the weights of the grafted copolymer before and after doping, 

respectively. 

 3.2.3 Characterization of Membranes  

 Proton conductivity of the resultant membranes was measured by Gamry PCI4 

Potentiostat with the assistance of BT-1005 Bekktech Scaning DC Software according 

to in plane four point probe technique with platinum electrodes (Appendix A). Samples 

were cut approximately 2 cm x 2 cm and assembled into the BekkTech Conductivity 

Cell which was assembled into Greenlight G50 test station to control temperature, flow 

rate, pressure RH of the dry air. Dry membrane samples have been held in each RH for 

30 minutes, and then measurements were obtained.  

𝐷 =
𝑊𝑑  𝑊𝑖

𝑊𝑖
 100 
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 The mechanical properties of both graft copolymers and proton conducting 

membranes were investigated by using Zwick/Roell Z100 Universal Testing Machine. 

For this purpose, samples were prepared in 10 cm x 40 cm; the speed of the jaws was 

100 mm min
–1

. Five samples were tested for each membrane and the average result is 

reported.  

 Resultant membranes were weighted after drying at 70 ºC for 12 hours and 

immersed in deionized water to measure wet weights and obtain water uptake 

properties. SEM-EDX (Supra 35VP, Leo, Germany) measurement was conducted to 

investigate the phosphorous distribution on the surface of the membranes. An 

accelerating voltage of 10 kV was used during the measurements. 

 TGA measurements were performed on a Shimadzu DTG-60A in nitrogen 

atmosphere. Indium (Tm=156.6 °C) standards were employed for the temperature and 

energy calibration. A single heating curve was obtained at a constant heating rate of 5 

°C/min over a range 30-600 °C using a constant nitrogen flow.  

3.3 RESULTS AND DISCUSSIONS 

 3.3.1 Preparation of Radiation Grafted Membranes 

  According to the copolymer study in Chapter 2, n-propanol, benzyl alcohol and 

THF yield maximum graft levels and comparably better mechanical properties in the 

case of graft copolymers of monomers 4VP, 2VP and NVP, respectively.  

  Even though increase in the reaction time for radiation grafted sulfonic acid 

membranes yields more graft level, the present study findings (Table 3-1) show that 

increases in reaction time up to 4 hours for monomers, implicate a decrease in the graft 

levels for further reaction times [76,77].
 
More specifically, the graft level increases with 

increasing reaction time up to 4 hours for 4VP, NVP and 2VP radiation grafted 

copolymers. This behavior can be attributed to the formation of a grafted copolymer 

structure which serves as a barrier for grafting front movement of residual monomer. In 

other words, when reaction time increases graft level rises and growing chains reduce 

the monomer mobility from the front to the interior of the base film which results in the 

decreased graft level. Similarly, it was reported previously in the literature that 

increasing reaction time causes a decrease in graft levels for 4VP due to the mutual 
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annihilation of the growing polymer chains and barrier effect of the grafted growing 

polymeric chains [78]. As a result, 4 hours was determined as the optimum reaction 

time for the synthesis of radiation grafted copolymers based on 4VP, 2VP, NVP with 

ETFE. 

Reaction Time  

(h) 

4VP/ETFE 

Graft Level (%) 

NVP/ETFE 

Graft Level (%) 

2VP/ETFE 

Graft Level (%)
 

1/2 15 30 13 

1 21 32 20 

2 28 34 22 

3 34 34 23 

4 43 35 24 

6 33 26 22 

8 28 26 22 

 

Table 3-1: The reaction time required to reach a particular graft level (%) for 4VP, 

NVP, 2VP grafting onto ETFE 

  Graft copolymers were treated with H3PO4 in order to introduce acidic 

functionality and therefore to synthesize a proton conducting high temperature PEMFC 

membrane. Phosphoric acid is of special interest due to its unique proton conductivity at 

anhydrous conditions, as well as its thermal stability and very low vapor pressure at 

elevated temperatures.  

  It is indicated that as the graft level increases, the phosphoric acid doping level 

for ETFE-g-P4VP membrane increases as well due to the  interaction of a unit of 

phosphoric acid and repeating monomer (Figure 3.2)
 
[79]. This is in line with findings 

from the literature that a strong interaction between copolymer and phosphoric acid in 

membrane may occur when a nitrogen based monomer such as 4VP is immersed in 

phosphoric acid solution [80].  

  In the case of ETFE-g-PNVP and ETFE-g-P2VP membranes, a decrease in 

weight is observed after doping with phosphoric acid. This decrease implies that during 

the phosphoric acid doping, due to the para-pyridyl side chain group of 2VP, the strong 

interaction between protons and nitrogen atoms of imide ring occurs and produces a 

slightly semicrystalline polymer structure that reduces proton mobility. This salt 

complex that causes semicrystalline structure might be cleared off by treating the 

membrane with solvent during washing [81]. As far as the structures of 4VP and 2VP 

are concerned, although they are very similar, their phosphoric acid doping behaviors 
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are significantly different. The fact that a robust salt complex seemed to exist between 

phosphoric acid and matrix-grafted para-pyridyl side-chain groups, but not between the 

acid and ortho-pyridyl side-chain groups, was justifiable in the sense that the nitrogen 

atoms of the latter class would, on average, be positioned nearer to the local 

hydrophobic environment of the polymer backbone. Thus these nitrogen atoms would 

be expected to experience a more substantial lowering of Brønsted basicity compared to 

the para pyridyl nitrogen atoms. 

 

Figure 3.2: Effect of graft level (%) on phosphoric acid doping level (%) for 4VP 

grafting onto ETFE, (grafting solvent n-propanol, irradiation dose 10 kGy) 

 3.3.2. Proton Conductivity and Water Uptake 

  In this thesis study, ‘water-free’ phosphoric acid doped proton conducting 

membranes able to operate at temperatures up to 120 °C are synthesized. Water as the 

proton mobility medium in commercially used PEMFC membrane (i.e., Nafion
®
) is 

thereby replaced by the acid [82].
  

  Until now various acids have been tried to achieve high proton conductivity for 

fuel cell membranes. It was found that the conductivity changes in the order of 

H2SO4>H3PO4>HClO4>HNO3>HCl mainly for acid-base membranes [83]. It is 

observed that acid molecules except phosphoric acid, protonate the N atom in the 
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imidazole ring. Phosphoric acid does not protonate imidazole groups but interacts by 

hydrogen bonding between the OH and N groups [84-Error! Reference source not 

found.].
 
 

  Membranes with high phosphoric acid content of 35 % by weight can be 

obtained by deploying the technique used in here study. From the proton conducting 

mechanism’s point of view, phosphoric acid is interesting since it is amphoteric and has 

both proton donor (acidic) and proton acceptor (basic) groups to form dynamic 

hydrogen bond networks which enables protons an easy transfer through hydrogen bond 

cleavage and formation processes; this process is named as the Grotthuss mechanism 

[87].
 
Though, the N-heterocycle of the 4VP is involved in the proton transport process, 

as it provides free electron pairs for proton binding same as PBI ion conduction 

mechanism.  

  It is seen that the conductivity increases by increasing graft level which is a 

direct increase in phosphoric acid doping level for ETFE-g-P4VP (Figure 3.3a). The 

literature states that activation energy decreases with increasing doping level and this 

activation energy is close to that of phosphoric acid (concentrated aqueous solution)
 

[88]. These data indicate that the proton movement becomes easier at higher doping 

levels since the activation energy closes to the phosphoric acid (concentrated aqueous 

solution). These findings are expected as there is excess phosphoric acid in the 

membrane after maximum protonation by acid where the anions are linked to the 

polymer by rather strong hydrogen bonding. The excess phosphoric acid works 

similarly to concentrated phosphoric acid solution and contributes to the proton 

conductivity.  

  This finding is consistent with the results of the FTIR analysis of resultant 

membranes since the phosphoric acid doped ETFE-g-P4VP membrane did not show the 

characteristic absorptions of NH
+
 groups in the range of 3500-4000 cm

-1 
(Figure 3.4). 

Moreover, FTIR results lend considerable support to Glipa and Bouchet’s conclusions 

[89-90]. Below 2000 cm
-1

, the spectrum is composed of relatively narrow peaks. In the 

region 2000-1000 cm
-1

, cycle vibrations as well as in plane NH and CN deformation 

modes are expected to occur. In the range 1000-400 cm
-1

, cycle vibrations and out of 

plane NH and CN deformation modes are expected to occur. The most relevant region 

to follow the protonation of the polymer is above 2000 cm
-1

.  
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Figure 3.3: Effect of graft level on proton conductivity (mS cm
-1

) and water uptake (%) 

for ETFE-g-P4VP proton conducting membrane, (grafting solvent n-propanol, 

irradiation dose 10 kGy, grafting time 4 hours) 

 

Figure 3.4: FTIR spectra of a) ETFE-g-P4VP, b) ETFE-g-PNVP, c) ETFE-g-P2VP 
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 In the proton conductivity manner operating temperatures above boiling point 

can be achieved since water does not directly contribute to the phosphoric acid proton 

conductivity mechanism. Although the material is essentially an intrinsic proton 

conductor, the presence of water and temperature improves conductivity since higher 

water content in the membrane presumably lowers the viscosity within the membrane, 

leading to the higher proton mobility and conductivity [91]. Though proton hopping via 

water molecules contributes to the conductivity, dependence is much smaller than that 

of Nafion
®
 [92]. To understand the water dependence of the presented membranes, the 

ex situ conductivity data at wide range temperature and RH values is provided in our 

study. It should be mentioned that there is no detailed study on the combined effect of 

RH (%) and temperature for ETFE-g-P4VP membranes in the literature. Thus, Figure 

3.5 strengthens the less water dependence of phosphoric acid doped ETFE-g-P4VP 

membranes. Nafion
®

 NR211 and ETFE-g-P4VP membranes have been compared 

according to their proton conductivity at different RH and temperature range. Nafion
®

 

membranes have high conductivities at higher RH range; however, the conductivity 

decreases rapidly with reduced RH [93]. For ETFE-g-P4VP membrane, high 

conductivity is extended to 130 °C. The conductivity dependence on the relative 

humidity becomes significant at high temperatures [8], e.g., an increase in the relative 

humidity from 1 to 5% resulted in an increase in the conductivity from 55 to 61 mS cm
-1 

in our study. However, by increasing the relative humidity, conductivity slightly 

increases up to 63 mS cm
-1

. Compared the previous studies on radiation grafted proton 

conducting membranes in literature, the proton conductivity values at a lower RH for 

the membranes obtained in this study are remarkably higher even at moderate graft 

levels (45%) for ETFE-g-P4VP membranes. As an example, in a previous study, the 

conductivity of radiation grafted trifluorostyrene based membranes at low RH (25%) 

and 120 °C is in the range of 15–30 mS cm-
1
 for very high graft levels (above 200%) 

which caused significant deterioration in mechanical properties [94]. 

 Since the proton conductivity of proton-exchange membranes usually increases 

with an increase in the water absorption, continuous humidification and cooling are 

essential for commercial polymer electrolyte membrane fuel cells to prevent drying up 

of Nafion
®
 membranes or the flooding over electrodes due to excess water. Such 

humidification and cooling systems limit the compactness and power density of 

PEMFCs, and new fuel cell systems, including new catalysts, membranes and other 

fuels that are expected to achieve highly efficient clean energy without these 
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humidification and cooling systems [95].
 
The water absorption behavior and physical 

state of absorbed water are extremely important in proton conducting membranes, 

because the proton conductivity is dominated by these factors.  

 

  

Figure 3.5: Conductivity of  Nafion
®
 NR 211 and ETFE-g-P4VP membranes as a 

function of relative humidity at different temperatures (GL: 45 %, grafting conditions: 

solvent n-propanol, 10 kGy, 60 °C, 4 hours   

  The affinity for water is thought to be due to intermolecular hydrogen bonding 

between water and N of monomer and attraction of water to N-H groups in PBI 

membrane [96].
 
Since membranes prepared in this study are expected to have similar 

proton conduction and water uptake mechanism with acid-base proton conducting 

membranes such as PBI. Water uptake behavior of ETFE-g-P4VP phosphoric acid 

doped membranes proves that water content inside the membrane increases with 

increasing graft level which is a direct increase on the N sides (Figure 3.3b). This water 

absorption behavior confirms that the phosphoric acid groups chemically absorb water 

molecules with the N-H bonding. The highest 30% water uptake is obtained for the 

highest graft level which is low compared to other polymer electrolyte membranes, i.e., 

Nafion
® 

[97].The low water uptake can therefore be presumed to be due to the high 
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hydrophobicity and crystallinity as well as conformation of ETFE base polymer units. 

In the literature Nafion
®

 type polyelectrolyte membranes have excellent processability 

and sufficient mechanical strength for fuel cell applications but their high expansion 

under high relative humidity conditions constitutes still a major problem for the fuel cell 

durability. Even the water in the vapor form can be absorbed easily at the medium 

operation conditions.  

  Water uptake and proton conductivity have similar trends with graft level for 

ETFE-g-P4VP membranes (Figure 3.3). As the graft level and indirectly acid doping 

level increase both water uptake and proton conductivity increases. Figure 3.3 also 

shows that water uptake is associated with the doping acid. At 20 °C and 100% RH and 

ionic conductivity over 40 mS/cm was achieved while the conductivity of Nafion
®
 112 

was measured as 80 mS/cm and conductivity of PBI was reported approximately 10 

mS/cm at 20 °C  [79]. In the literature only one study reported the conductivity (125 °C, 

RH < 2%) of phosphoric acid doped ETFE-g-P4VP membranes as 30 mS/cm [70]. 

Moreover, in the literature radiation-grafted sulfonic acid based ETFE-g-PSSA 

membranes have the conductivity of 35 mS/cm and promising fuel cell performance for 

the low temperature PEMFC [98]. The conductivity of radiation grafted ETFE-g-P4VP 

membranes increases with increasing graft level and acid content. At the same time the 

mechanical strength decreases with acid-doping level as announced in literature. Thus, 

optimum doping level is thus a compromise between these two effects [99]. The results 

show that the method that is proposed here offers control of proton conductivity and 

water uptake by varying the weight content of the graft component or graft level and 

phosphoric acid group. 

  On the other hand, this study indicates that there is no significant correlation 

neither proton conductivity-graft level nor water uptake-graft level for both proton 

conducting membranes based on NVP and 2VP monomers (Table 3-2). The absence of 

a correlation is attributed to the lost of graft component after phosphoric acid doping. 

ETFE-g-PNVP membranes show relatively low conductivity, i.e., max 12 mS/cm. 

Nevertheless, ETFE-g-P2VP membranes are not proton conductive after phosphoric 

acid doping. 

 

 

 

 



 

46 

 

Monomer 
Graft Level 

(%) 

Water Uptake 

(%) 

Conductivity   

(mS/cm) 

2VP 20 9.6 - 

2VP 24 10 - 

2VP 27 8 - 

NVP 20 22 9 

NVP 26 20 11 

NVP 30 20 12 

Table 3-2: Effect of graft level (%) on water uptake and proton conductivity for ETFE-

g-PNVP and  ETFE-g-P2VP membranes 

 3.3.3 Mechanical Properties 

  Acid-doped proton conducting membranes are generally brittle, so ion- 

exchange capacity must be controlled to maintain their elasticity [100]. As mentioned 

earlier, proton conductivity increases as the graft level of the resultant membranes rises. 

However, mechanical properties are the limiting factor while aiming high proton 

conductivity. It was observed that as the graft level increases to have high proton 

conductivity, film quality and robustness of the film deteriorate [101].
  

  Therefore, this study examined in detail the variation of the mechanical 

properties with graft level. The copolymer films and membranes behavior under tensile 

strength is detected for different graft and doping levels. During mechanical testing, it is 

assumed  that the overall changes during the tensile test follows the Hooke’s law and is 

the superposition of different deformation types (interatomic bond stretching, uncoiling 

which are recoverable and interchain slippage which is unrecoverable), we can conclude 

that the branching is increased with graft level and contributes to the mechanical 

properties
 
[102]. 

  During the tensile test, the ETFE base film possesses about 40 MPa yield 

strength. This high strength comes from the special position of ETFE as it contains 

alternating structural units of PE and PTFE that provides it a unique combination of 

properties conveyed from both fluorocarbon and hydrocarbon polymers [103,104]. 

  The stress-strain curves (Figure 3.6a) openly show that the irradiation process 

causes a slight decrease on the yield strength for low graft levels. On the other hand, the 

yield strength increases up to 48 MPa for the copolymers with high graft level. For 

instance, at, yield strength values between 35 to 48 MPa the graft level is 30 to 42% 
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higher than default. The modulus of elasticity similarly increases by graft level. The rise 

in strength indicates that by grafting ETFE, graft copolymer matrix contribute to its 

strength and partly recover the damage of irradiation process. This also shows that a 

permanent copolymer structure is formed on the base film. It is also observed that lower 

graft level i.e., 14% creates almost no difference on the base film structure, after 21% 

graft level there is a significant transform from ETFE to copolymer structure. It is also 

physically observed that the growing brittleness of copolymers yields a decrease in 

elongation at break as the graft level increases. Thus there should be higher load and 

lower elongation before an irreversible deformation occurs on the copolymer films.   

  In Figure 3.6b tensile test results for the ETFE-g-P4VP membranes are 

represented. It is expected that radiation grafted membranes suffer from poor yield 

strength at high acid doping levels due to deforming effect of acid treatment. The 

literature reports that a slight loss on tensile strength occurs after acid treatment [106].
 

On the other hand, in our case, when the phosphoric acid is introduced to the 

copolymers, the resulting slight increase in tensile strength might be attributed to the 

new N-H interaction between N groups of 4VP and H groups of H3PO4. However, the 

most major outcome of this process is an increase in elongation at break at moderate 

graft levels such as 22, 28 and 37% that might be the reason for the plasticizing effect of 

acid treatment. The general observation is that the main loss for the elongation at break 

occurs after the grafting process. Indeed, a decrease of about 50% loss of the elongation 

at break occur however after acid doping elongation at break value approximates the 

ETFE base film’s behavior.  
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Figure 3.6: Stress-strain curves of ETFE-g-P4VP (a) copolymer (b) proton conducting 

membrane for varying graft levels (grafting conditions: solvent n-propanol, 10 kGy, 60 

°C, 4 hours) 

  The radiation grafted ETFE-g-P4VP membrane is more rigid and plastic than 

Nafion® NR 211 since  it shows higher tensile modulus (the slope of the initial curve, 

about 1.7 GPa) and high elongation at break (140%) while Nafion
®
 shows a lower 

tensile modulus (0.29 GPa) and a higher elongation at break (252%) [107]. However, 

Nafion
®
 elastic property may be one of the causes of the membrane damage during fuel 

cell operation [108, 109].
 
In addition, resultant radiation grafted membrane exhibits 

higher tensile strength (48 MPa), which is almost two times higher than that of Nafion
®
 

membrane (28 MPa). The new ETFE-g-P4VP membrane with better tensile property is 

expected to serve more durably in an operating fuel cell. 

  In Figure 3.7shows the tensile stress-strain curves for ETFE-g-PNVP 

copolymers and membranes at various graft levels. A slight (8% MPa) decrease in the 

yield strength from ETFE to copolymer, i.e., the maximum yield strength 32 MPa for 

35% graft level is observed (Figure 3.7a).  That might be due to the irradiation process 

and it is obvious that copolymerization does not contribute to the yield strength for 

ETFE-g-PNVP copolymers. Graft levels for the membranes (Figure 3.7b) change 

between 11-35% and their yield strengths change between 25 to 35 MPa, respectively. 
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Conversely, it should be noted that these yield strength still meet the yield strength of 

commercial Nafion
®
 NR211 membrane. Elongation at break (%) is lower for the ETFE-

g-PNVP membranes so that phosphoric acid doping process causes a minor damage on 

the film structure. 

 

Figure 3.7: Stress- strain curves of ETFE-g-PNVP (a) copolymer (b) proton conducting 

membrane for varying graft levels (grafting conditions: solvent THF, 50 kGy, 60 °C, 4 

hours) 

  The tensile stress-strain curves for ETFE-g-P2VP copolymers and membranes 

are given in Figure 3.8. For the copolymers (Figure 3.8a) graft level changes from 9 to 

18% only a slight increase occurs in tensile strength from low to high graft level. 

Membrane stress-strain curves prove the fact that during the phosphoric acid doping, 

phosphoric acid causes considerable  damage into the structure that leads weight loss 

since yield strength of the resultant membranes are lower than ETFE-g-P4VP and 

ETFE-g-PNVP membranes, i.e., 20-28 MPa yield strength. It is also considerable that 

there is an increase in elongation at break for high graft level membranes due to the acid 

doping and plasticizing effect of phosphoric acid. 
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Figure 3.8: Stress- strain curves of ETFE-g-P2VP (a) copolymer (b) proton conducting 

membrane for  varying graft levels (grafting conditions: solvent benzyl alcohol, 50 kGy, 

60 °C, 4 hours) 

 3.3.4 Phosphorous Mapping and Elemental Composition of the Membranes  

  The resultant membranes were investigated for their cross-section morphology, 

Phosphorous (P) mapping and elemental composition by Scanning Electron Microscopy 

and Energy Dispersive Analysis (SEM-EDX). Samples which have both high proton 

conductivity and reasonable mechanical properties are chosen for this purpose. 

  Figure 3.9a illustrates the surface of the dense, pinhole and crack free radiation 

grafted fuel cell membrane. Research clarifies that grafting occurs according to grafting 

front mechanism [105]. In Figure 3.9b membrane cross-section is seen as two different 

layers at different thickness. The reason for two different layers might be the 

copolymerization starting from the surface of the membrane. This result is extremely 

essential and confirms the grafting front mechanism. Nevertheless, even grafting occurs 

according to grafting front mechanism, cross-section morphology and thickness are 

essential in the case of proton transport in PEMFC. When hydrogen is fed to anode it 

splits its protons and electrons, protons should go through the membrane without any 

barrier. To have better proton conductivity during the cell operation, phosphoric acid 

should be in both cross section and the surface of the resultant proton conducting 
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membrane. Therefore, the phosphorous (P) distribution is also been examined as seen in 

Figure 3.9c. P distribution also agrees with two layer configuration that is most 

copolymer positions on the surface and interacts with H3PO4, thus P content is much 

higher than cross-section, although there is still significant P at the cross-section of the 

membrane. This finding also very well agrees with grafting front theory and might 

generate a suggestive verification.  

 

 

 

Figure 3.9: Scanning electron microscopy-energy dispersive spectroscopy (SEM-EDX) 

micrographs of P mapping on cross section of ETFE-g-P4VP phosphoric acid doped 

membranes a) Surface (membrane with graft level of 32%) b) Cross-section (membrane 

with graft level of 32%) c) P distribution (membrane with graft level of 32%)   d) P 

distribution (membrane with graft level of 21%) 

  EDX results show that there is no doped P on ETFE-g-P2VP copolymers after 

H3PO4 treatment (Table 3-3). The P content on ETFE-g-PNVP membranes is 10 times 

lower than ETFE-g-P4VP membranes. This result also supports the low proton 

conductivity of ETFE-g-PNVP membranes. It indirectly shows that proton conductivity 

greatly depends on the interaction between monomer and H3PO4 (N-H interaction). 
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 Element Normalized 
Weight (%) 
4VP/ETFE 

Normalized 
Weight (%) 
NVP/ETFE 

Normalized 
Weight (%) 
2VP/ETFE 

 Carbon 46 64 50 

 Nitrogen 7 6 7 

 Fluorine 31 26 32 

 Phosphorus 3 0.3 0 

 Oxygen 13 14 11 

Table 3-3: Elemental analysis of the membranes by SEM-EDX 

 3.3.5 Thermal Stability and Degradation Behavior by TGA 

  Thermal stability and degradation behavior of radiation grafted copolymer films 

and membranes were determined by TGA. The thermograms for comparison of the 

ETFE base polymer, ETFE-g-P4VP copolymer film and membrane are shown in 

Figure 3.10. ETFE base polymer demonstrated a single-step degradation pattern with 

transition at about 380 °C due to the decomposition on molecular chains of partially 

fluorinated ETFE base polymer, beyond which a smooth decrease in weight is detected. 

Upon irradiation, due to the degradation on ETFE morphological structure, weight loss 

(%) slightly increases and degradation starts similarly at about 380°C. Thus irradiation 

does not affect decomposition temperature of the ETFE base polymer matrix since the 

radiation doses is low, i.e., 10 kGy.  Interestingly, a quite different result was obtained 

in an earlier work in which it was reported that  irradiation may enhance the thermal 

degradation of ETFE due to the presence of  oxygen-based radicals in the films whereas 

a different irradiation procedure was employed in this earlier work [110]. 
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Figure 3.10: TGA thermograms of ETFE base polymer matrix, irradiated (10 kGy) 

ETFE base polymer matrix, ETFE-g-P4VP copolymer films and membranes 

  After grafting an additional degradation step is introduced starting at about 300 

°C due to the degradation of grafted P4VP. The graft component degradation is 

followed by the degradation of backbone. The presence of P4VP grafts enhances the 

decomposition temperature of the ETFE base polymer matrix up to 440 °C. It is simply 

a result of the stronger C-C bonds in matrix, which leads to harder abstraction reactions. 

The miscibility of P4VP with the amorphous regions (C-H) of ETFE base polymers 

may be somewhat better than more rigid and stronger (C-F) regions. The ETFE-g-P4VP 

copolymer films behave as a two phase system, where the P4VP grafts forms a separate 

micro domain in the base polymer matrix [111]. The phosphoric acid doped ETFE-g-

P4VP membrane showed a multistage degradation pattern as follows; (1) weight loss 

starts below 100 °C, (2) at 230 °C, (3) at 300 °C, and (4) at 440 °C. These results can be 

explained by taking the hygroscopic nature of the H3PO4 doped membranes into 

account. The initial weight loss at the first stage can be attributed to the loss of free 

water that was absorbed from atmospheric humidity. The continuous weight loss in step 

2 is caused by the loss of water produced by acid dimerization: 2H3PO4H4P2O7 + H2O 

[89]. The weight loss in step 3 corresponds to the decomposition of the P4VP grafts of 

the membrane. The substantial weight loss in step 4 is due to the degradation of ETFE 

base polymer matrix. 

  Figure 3.11 shows the influence of the graft level on the weight loss of the 

membranes. Four step degradation mechanisms are more evident for the membranes 
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with a high graft level. The hydrophilic structure of the membrane is enhanced by 

increasing graft level, thus a sharp weight loss has been occurred at around 130 °C for 

high graft level (40 %). 

  Moreover, since the increase amount of protonated grafts increases with graft 

level, the weight loss around 200 °C due to the phosphoric acid treatment has increased. 

On the other hand, the weight loss due to the ETFE base polymer matrix decreases as 

the graft level increases. It is another evident that grafting process contributes base 

polymer matrix stability. 

  

Figure 3.11: Effect of graft level on the thermal stability of ETFE-g-P4VP 

  Figure 3.12 and Figure 3.13 demonstrate the comparison of copolymer and 

phosphoric acid doped copolymers with ETFE and irradiated ETFE base polymer 

matrix for both ETFE-g-PNVP and both ETFE-g-P2VP. The most vital impact of the 

resultant thermograms are that it confirms the damage of H3PO4 treatment on the PNVP 

and P2VP grafts. The graft copolymers exhibit two stage degradation mechanisms. In 

the first stage graft copolymers have been corrupted at about 300 °C. In the second 

stage, the ETFE base film has been decomposed at about 430 °C. However, ETFE-g-

PNVP and ETFE-g-P2VP membranes have exhibited the same pattern with ETFE 

irradiated and ETFE base polymer matrix. Moreover, the weight loss mentioned in 

previous sections is another proof of the lost graft component on the base polymer 

matrix after H3PO4 treatment. On the other hand, decomposition temperature still higher 

than that of ETFE base polymer matrix, which is another indication of the PNVP grafts 

present in the membrane. In short ETFE and irradiated ETFE base polymer matrix 
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decomposition temperature is at about 380 °C, but graft copolymer and membrane 

decomposition temperature increase up to 430 °C. 

 

Figure 3.12: TGA thermograms of ETFE base polymer matrix, irradiated (50 kGy) 

ETFE base polymer matrix, ETFE-g-PNVP copolymer films and membranes. 

 

Figure 3.13: TGA thermograms of ETFE base polymer matrix, irradiated (50 kGy) 

ETFE base polymer matrix, ETFE-g-P2VP copolymer films and membranes. 
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3.4 CONCLUSIONS 

 In this part of thesis alternative, cost competitive, proton conducting membranes 

for high temperature PEMFC operations are manufactured. Radiation grafting method is 

used due to the ease of the polymerization process and convenience for membrane 

preparation. 4VP, NVP and 2VP monomers are selected since strong interaction with 

H3PO4 to create N-H interaction to operate at high temperature is expected. It is 

observed that 4VP monomer is a promising candidate to produce proton- exchange 

membrane since the resulting membranes exhibit promising thermal and mechanical 

properties, lower water uptake and encouraging proton conductivity. On the other hand, 

in the case of NVP and 2VP monomers weight lost after phosphoric acid doping and 

low proton conductivity have been observed.  Moreover, both the ex situ proton 

conductivity measurements and fuel cell testing prove that ETFE-g-P4VP membranes 

are very promising to operate at high temperature and dry PEMFC operation conditions. 

We have observed that the ETFE-g-P4VP membrane can contribute PEMFC 

commercialization for portable and transport applications by reducing the membrane 

cost, enhancing water management and increasing overall system efficiency by 

operating at high temperatures (i.e., up to 120 °C). In the following section of this thesis 

study, FTA and DEA fuel cell test is going to demonstrate for ETFE-g-P4VP 

membranes. 
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CHAPTER 4 

DEAD ENDED ANODE AND FLOW THROUGH ANODE PEM FUEL CELL 

TESTING OF HIGH TEMPERATURE PROTON EXCHANGE MEMBRANES  

 4.1 INTRODUCTION 

 4.1.1 DEA Operational System 

 The conventional PEMFC system can be organized into three main categories; 

(i) reactant gas supply (air or oxygen and hydrogen), (ii) thermal management and (iii) 

water management. In forced air systems which is used mostly in automotive 

applications, a centrifugal compressor is used to increases the oxygen partial pressure in 

the gas channels and hence the power density of the system [112]. The actuators control 

the supply rate and back-pressure of the air to the cathode side of the fuel cell. The 

excess air is supplied to the cathode to remove the liquid water from the channels [113, 

114,115]. Since excess air is supplied, typically 2-3 times the amount required to 

support the reaction, there is a very high flow rate of gas through the cathode channels 

and humidification of the incoming air is required to prevent drying the Nafion
® 

membrane. Bubblers are employed for the inlet fuel and air humidification.   

 This thesis uses a DEA system fed by pure dry hydrogen, which is regulated to 

maintain anode pressure and supply exactly the amount of hydrogen needed (SR=1) to 

support the reaction. DEA operation does not have as strict requirements as the RCA 

system on hydrogen inlet humidification due to the lower flow velocity in the channels. 

The water crossing through the membrane (from cathode to anode) could be enough to 

humidify the hydrogen if the membrane proton conductivity is depending on its water 

content, i.e., Nafion
®
. The use of a pressure regulator instead of the outlet water 
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separator, hydrogen ejectors or blower, and inlet humidification of the RCA yield a 

system with lower cost and volume in DEA operation mode.  

 4.1.2 MEA Preparation 

 Since the synthesized membranes would be tested in PEMFC, the MEA 

preparation methods were investigated. There are two main ways to deposit the catalyst-

carbon powder ink on the membrane; (i) Catalyst Coated Membrane method (CCM): 

the catalyst ink is directly sprayed onto the membrane (ii) Catalyst Coated Substrate 

(CCS) the catalyst ink is directly sprayed on GDL. In our study, the CCS is purchased 

and glued to the membrane with an ionomer solution. However, due to the high 

temperatures, choice of the ionomer was questionable.  Bonville et al. [116] utilised the 

CCM method in the preparation of their MEA with Nafion
®
 ionomer for 

phosphotungstic acid (known as PTA) membranes. When tested at a high temperature, 

they achieved good performance. Alternative ionomers have been used in the MEA 

fabrication process. Lee et al. [117] were using a PBI based membrane and thus chose 

to use PBI ionomer along with Teflon in the catalyst layer. From their polarization 

curve, the 5 wt % loading of PBI ionomer data gives the best results whereas the 10 

wt% loadings seem to decrease the power output. This may be due to PBI being only 

poorly proton conducting by itself, requiring phosphoric acid to improve its proton 

conductivity thus leading to an overall decrease in the electrochemically active surface 

area. This was also seen to be the case when Lobato et al. [118] conducted tests on how 

the amount of PBI in the catalyst layer affected the electrochemical characteristics of it. 

Further research is required to in find  novel ionomer materials, all of which need to be 

adaptable and be physically strong in both wet and dry conditions. The ionomer should 

be able to integrate well with the GDL as well as the membrane thus to allow for low 

interfacial resistance. Once the MEA is prepared, it can be tested inside a fuel cell test 

stand.  
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4.1.3. Degradation 

 The degradation mechanism of high temperature DEA operated ETFE-g-P4VP 

membranes has three intercepts in the degradation phenomena of PEMFC; (i) the effect 

of high temperature, (ii) the degradation mechanism of radiation induced grafted proton 

conducting membrane (iii) the effect of DEA operation 

 The first two mechanisms have a few examples in the literature and explained in 

detail in the following sections. On the other hand, there is only one degradation study 

reported in literature that subjects the degradation of DEA operation of Nafion
®
 

membrane. In this study, Matsuura et. al. [119] concludes two major degradation 

patterns associated with DEA operations. The first one is carbon corrosion in the 

catalyst layer that is observed at the cathode outlet, whereas the membrane polymer 

delamination is observed near the inlet. The degradation is much more severe under 

high current loads, which produces more local water distribution and higher membrane 

dehydration in the inlet region. The second deformation is the pinhole failure of 

membrane clearly affect to cell performance in DEA operation because hydrogen 

crossover from anode to cathode could increase dramatically due to high pressure 

difference during purging.  

 4.1.3.1 High Temperature Membrane Degradation 

 Fuel cell durability is an essential parameter for fuel cell development. The 

acidic environment of the fuel cell combined with the humidity level and temperature 

creates a harsh environment for the components of the fuel cell. This environment 

results in degradation of fuel cell components and to loss of performance in the fuel 

cell. In high temperature PEMFCs, the increase in temperature and the low humidity 

enhances the degradation rate. The lifetime of the fuel cell is one of the major 

challenges for high temperature PEMFCs. To the best of our knowledge, the longest 

lifetime reported is 18,000 h [120] under steady state conditions for PBI membranes. 

The main problems reported in the literature are the loss in the catalyst active area due 

to catalyst agglomeration, and phosphoric acid leaching out from the cell [121,122]. It is 

the opinion of Yu et al. [124] and Wannek et al. [125] that the main source of 

performance loss is due to catalyst agglomeration. Moçotéguy et al. [126] reported 

steady-state long term testing for a single cell and a 500 W stack with pure and 
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simulated reformate fuel. They achieved 1105 and 658 hours for the single cell and the 

stack, respectively. Hu et al. [123] ran a PBI membrane fuel cell for 500 h under steady-

state conditions at constant current. The test showed that for the first 100 h the cell was 

operating properly, and then degradation started. They also found that the cathode 

catalyst particle size grew from 3.8 nm to 6.9 nm. This is confirmed by Zhai et al. [ref 

6] who reported a loss in catalyst stability at high temperature resulting in 55% loss in 

the electrode surface area due to agglomeration. Yu et al. [124] studied phosphoric acid 

leaching from the membrane under steady-state conditions and reported that the level of 

leaching of the acid is very low which indicates a capability of operation for over 

10,000 h. However, leaching was found to be dependent on temperature and load 

conditions and it mainly occurs on the cathode side [124]. An increase in the cell 

resistance due to loss of membrane conductivity was observed in the fuel cell due to the 

loss of phosphoric acid [97,119]. Also, delamination of MEA components occurs due to 

the hydrate expansion difference which is reported in [123,127]. Other lifetime related 

study is Cheng et al. [125] studied hydrogen crossover in HT-PEMFCs, and degradation 

in the PBI membrane has been reported due to hydrogen peroxide formation [128]. 

From all of the studies shown, it can be seen that the catalyst sintering and 

agglomeration is one of the biggest challenges to the long-term durability, especially if 

an acid-base system is used.  

 4.3.1.2 Degradation of Grafted Membranes 

 Micro-Raman spectroscopy revealed that after operation in a fuel cell, 

poly(vinylidene fluoride)-graft-poly( styrene sulfonic acid), (PVDF-g-PSSA), showed a 

significant decrease in all modes of PSSA. This shows that the degradation consisted of 

the loss of entire sulfonated styrene groups [129,130]. X-ray photoelectron spectroscopy 

(XPS) analysis showed that the chemical attack on poly(tetrafluoroethylene-co-

perfluorovinyl ether)-graft-polystyrene sulfonic acid (PFA-g-PSSA) took place at the 

hydrocarbon fraction of the membrane (the grafted part portion of the structure) 

[129].As with other membranes, the hydroxyl radicals attack the tertiary hydrogen of 

the  carbon. The graft fraction was found to decrease. The XPS results showed that after 

degradation, the polymer returned to a structure corresponding to the original, pre-

grafted PFA film [131]. Similar results were seen in degradation studies of 

poly(fluoroethylene-co-hexafluoropropylene)-graft-polystyrenesulfonic (FEP-g-PSSA) 
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acid by Büchi et al. [132]. Ion exchange capacity (IEC) and IR spectral data showed that 

the polystyrene chain degraded and caused a decrease in IEC.  Their results also provide 

a support for a degradation mechanism containing HOO
.
 radicals formed at the anode. 

They analyzed the product water by high performance liquid chromatography (HPLC) 

and found several benzenesulfonic acids, including 4-hydroxy and 4-carboxybenzene-

sulfonic acids. Gubler et. al. [133] observed that using a cross-linking agent (such as 

divinylbenze) enhances chemical stability. 

 

 In the following sections of this chapter, the experimental procedure is explained 

in a chronological order to explain how to perform high temperature DEA operation of 

the synthesized high temperature proton exchange membranes. 

 4.2. EXPERIMENTAL 

 The experimental fuel cell testing started with FTA operation to calibrate the test 

station. The FTA and DEA operated single fuel cell experiments were conducted in 

Greenlight
®
 FC G50 test station in Sabancı University. The test station was in flow 

through operation mode, and then it is modified according to dead ended mode that is 

explained in details in the following sections. 

4.2.1 Hardware and Components 

The single PEM fuel cell hardware FC Pro1 consist of aluminum endplates, gold 

coated aluminum current collectors, and graphite flow fields. The flow fields are 

comprised of machined graphite plates with gas channels that are approximately 1 

mm wide and depth, the flow pattern consists of semi-serpentine passages on both 

anode and cathode (26 channels in parallel that are 7 cm in length with two 180
◦
 

turns). A square 60 W resistive heater, with a surface area of 25 cm
2
, is attached to 

each end plate.  

The 50 cm
2
 MEA with Kapton

®
 (polyimide based film) framed Nafion

®
 N 111 

IP membrane which is 600 µm thick with anode and cathode catalyst layers are 

containing 0.3 mg cm
−2

 Pt loading was purchased from Ion Power. SGL 10BC 

nonwoven carbon paper GDLs, were used, which have an uncompressed thickness of 

450 µm and a porosity of  = 0.84. SGL 10BC has a weight as 135 g/m
2
, air 
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permeability as 1.45 cm
3
/cm

2
 s and electrical resistivity as 16 mΩcm

2
. The IP MEA 

was chosen since it is the most improved commercial MEA. The result would be 

good comparison in literature.  

Figure 4.1 shows experimental Greenlight
®
 FC G50 PEMFC test station. The 

flow of the reactant gases are controlled by the mass flow controllers (MFC) of the 

test station (Figure 4.2). The temperature control of the supplied hydrogen and 

oxygen/air were maintained by the flexible hose heaters that covers the gas 

pathways. The dew pointer temperature, load box loading and end plates heaters 

temperature were controlled with the test station. 

 

Figure 4.1: The experimental Greenlight
®
 FC G50 fuel cell test station in FTA mode 

 

Figure 4.2: Greenlight
®
 FC G50 MFCs and Load box control 

Anode and Cathode MFCs 
Load Box control (RS 232) 
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 After FTA operation fuel cell tests have been completed, the test station has 

been modified according to DEA operation. Figure 4.3 shows the modified connections 

of test station and single cell. Two solenoid valves; one to anode inlet and one to anode 

exit have been connected to operate the test station in DEA mode. The hydrogen that 

was fed to anode inlet was also fed to the test station fuel exhaust, hence test station 

operated without any emergency shut downs. The schematic of the modified 

connections (Hoses, T-valve and solenoid valves) is presented in Figure 4.4. The 

accumulated species (nitrogen, liquid or vapor water) at the anode exit were removed by 

5 seconds purging.  The on/off position of the solenoid valves were controlled with NI 

6220 card.  

 In the DEA experiments the anode and cathode were operated at FTA conditions 

in OCV for 30 minutes. After the load current was applied to the cell, the solenoid valve 

at anode exit was closed. The solenoid valve at the anode inlet was kept on. The air flow 

rate was kept at a SR of 3 for all working current densities. During the experiments, the 

cell voltage was monitored, when the cell voltage decreased to a particular value, the 

solenoid valve at anode downstream is opened, the cell is purged for 5 seconds and then 

solenoid is closed. The detailed pictures of the experimental set up of DEA operation 

can be found in Appendix B. 

 

Figure 4.3: Greenlight
® 

FC G50 Test Station according to DEA operation 

Anode Exit  
Solenoid 
valve 

Anode Inlet  
Solenoid 
valve 
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Figure 4.4: Schematic of DEA operation connection of Greenlight
®
 FC G50 test station 

 4.2.2 Assembly of Single PEM Fuel Cell 

 The assembly of single PEMFC is constituted from outer to inner; end plate 

heater, end plate, current collector, graphite gas diffusion channels, and MEA   

consisting of a membrane and gas diffusion electrodes (Figure 4.5). MEA is placed in 

between anode and cathode.  
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 Gaskets 

 Another essential component in PEMFC is the gasket that maintains sealing 

between the anode and the cathode compartments. Gasket is placed between the 

graphite plate and MEA to prevent gas leakage and its crossover on both anode and 

cathode sides. Typical gasket materials utilized in PEM fuel cells are EPDM and 

silicone [134]. The selection of gasket thickness is crucial to prevent gas leakage and 

depending on the MEA thickness. In our experiments, 150 and 250 µm ETFE base films 

have been used for the first time in literature as a gasket material. Since the synthesized 

high temperature proton exchange membrane base and gaskets have same base (ETFE), 

it is expected that the MEA degradation due to the silicon gasket contamination lessen 

particularly at high temperatures.  

 

Figure 4.5: a) End Plate b) Current collector on end plate c) Cathode side gas diffusion 

channel d)Anode side gas diffusion channel e) Kapton
®
 framed MEA f) Placement of 

sealing on gas diffusion channel 

 Assembly Torque   

 After all the layers have been lined up, the cell bolds have been inserted. The 

torque amount that is applied on the cell bold has been assessed according to the 

literature and hydrogen leakage has been monitored [135].  
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 The total applied compression is 5 Nm. It is vital that the pressure should be 

homogenous during compression to reduce the mechanical stresses and degradations on 

the MEA. This requires the cell bolds to be numbered and the application of torque in 

order to cross steps (Figure 4.6). In every step, 0.5 Nm torque applied. In 10 steps, the 

cell has been compressed with 5 Nm by a torque meter. This procedure is extremely 

curial since if the compression is low the internal cell resistance increases, on the other 

hand if the compression is too much MEA active area reduces. The reduction can cause 

a reduction on the open circuit cell voltage.  

  

Figure 4.6: The applied torque to assemble the test cell 

 4.2.3 Membrane Electrode Assembly Preparation  

 Membrane electrode assembly (MEA) fabrication has been conducted for in situ 

fuel cell performance of selected ETFE-g-P4VP membranes. EP4019 type of carbon 

paper electrodes (Fuel Cell Earth LLC, MA, USA) were impregnated with 10 wt.% 

Nafion
® 

solution (purchased from FuelCellStore.com) using an airbrush. The 

membrane was sandwiched between anode and cathode electrodes with hot-pressing. 

The hot-pressing was conducted at 10 MPa pressure at 90 °C for 90 seconds 

(Appendix C). 
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 4.3 RESULTS AND DISCUSSIONS 

4.3.1 FTA Operated PEM Single Fuel Cell Tests 

 The initial PEM single fuel cell tests have been started with purchased MEAs to 

control and optimize the cell properties, such as cell compression, pressure, flow rates. 

Figure 4.7 shows the initial voltage-current density curve of a purchased MEA with 

Nafion
®
 112 membrane. Even though the initial single fuel cell tests have been 

conducted under room temperature (Tcell: 23 °C), the results are important to show the 

performance of contaminated MEA performance since it has been stayed under 

unsuitable storage conditions. The MEA was un-functionalized due to the 

contaminations on the Pt catalyst and Nafion
®
 membrane. 

 

Figure 4.7: Voltage-current density curve of the PEM single cell under constant 

current, membrane: Nafion
®
 112, Tcell: 23 °C, Flow ratean,H2: 0.5 nlpm, Flow rateca,O2: 

0.8 nlpm, Pan,ca: 125 kPa 

 Figure 4.8 demonstrates the same MEA performance after four hours open 

circuit voltage (OCV). In literature the term conditioning of the PEM fuel cell is used to 

stabilize the cell initially before a load are conducted. Moreover, during conditioning 

chemical reaction sides are activates by eliminating the contaminations. Thus, the MEA 
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conditioning have continued during four hours and driven current density increased to 

110 mA/cm
2
 due to the activation of reaction sides. After perished MEA has been 

replaced with new MEA with Nafion
®
 N111 IP membrane, single fuel cell test were 

continued to perform. 

 

Figure 4.8: Voltage-current density curve of the PEM single cell under constant 

current, membrane: Nafion
®
 112, Tcell: 23 °C, Flow ratean,H2: 0.5 nlpm, Flow rateca,O2: 

0.8 nlpm, Pan,ca: 125 kPa 

Figure 4.9 represents the voltage current density curve of MEA with Nafion
®
 N 

111 IP membrane at 50 °C for RH 60%. Since the membrane thickness was 25 µm and 

total MEA thickness was 450 µm, the ETFE gasket was in 250 µm thick is used and, no 

hydrogen leakage was observed during the single cell testing. However, after fuel cell 

experiments it has been observed that OCV of the cell drops under 0.7 V, it is most 

probably due to the hydrogen cross over to the cathode side. Thus, the cell is 

unassembled and MEA degradation has been detected. It has been observed that half of 

the MEA active area was worn out and there was a bluish green hydrogen peroxide 

(H2O2) formation on the cathode side (Figure 4.10). The hydrogen and oxygen were 

formed hydrogen peroxide on the cathode due to the hydrogen leakage to the cathode 

side. The hydrogen peroxide formation reversed the cell voltage, damaged the MEA, 

and caused power losses. It should be noted that one reason to the hydrogen cross over 

was the anode/cathode layer design of the experimental single cell. Due to the cell 
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design, hydrogen and oxygen/air enter the cell from the same side (inlet side is same). 

While oxygen spreads out on the inlet gas channels and forms cathode, hydrogen should 

cross over to the exit and spread out on the anode gas channels (inlet is cathode/exit is 

anode side according to the testing fuel cell design). To prevent hydrogen crossover, the 

sealing especially at the inlet holes had to be modified. High viscosity silicone oil (10 

Pa. s) has been used for extra sealing at the anode and cathode inlet holes where the 

reactant gases enter the cell. Additionally, the total torque on one bold is increased to 

5.5 Nm and anode/cathode has been operated at different pressure where the back 

pressure difference was at least 25 kPa (Pan> Pca)  

 

Figure 4.9: Membrane Nafion
®
 N 111 IP, Tcell: 60 °C, Tdp: 50 °C, RH: 60 %, SRan: 1.5,    

SRca: 2, Pcell: 125 kPa 

 

 

Figure 4.10: The deformed MEA with Nafion
®

 N 111 IP due to the hydrogen leakage 

to the cathode 
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 After hydrogen leakage was prevented, fuel cell tests were performed at 

different temperatures to see the effect of increased temperature in the case of Nafion
®

 

N 111 IP membrane. Figure 4.11 shows the voltage-current density performance of the 

MEA with Nafion
®
 N 111 IP membrane The increased temperature results in increased 

potential. Even though  the activation losses (increased Tafel slope) increase, the 

increased temperature reasults in exponentially higher exchange current density and  

improved  mass transport properties. Thus, cell voltage slightly increases with increased 

temperature. Since Nafion
®
 membrane’s proton conductivity depends on its water 

content, as the temperature increases the voltage losses at ohmic region increases. The 

mass transport loss region in the polarization curve improves as seen in Figure 4.11. 

 

Figure 4.11: Voltage-current density curve of PEM single cell under constant current 

load, Membrane Nafion
®

 N 111 IP, Pca: 150 kPa, Pan: 125 kPa, RHan,H2: 70%, RHan,O2: 

70%,  SRan: 1.5, SRca: 2 

Typically the DEA operated PEMFCs for automotive applications are using dry 

hydrogen as a fuel   ambient air as the oxidant, the further single fuel cell test was 

performed with dry anode and full humidified cathode air for Nafion
®

 membrane. 

Figure 4.12 shows the voltage-current density performance of the MEA with 

Nafion
®

 N 111 IP membrane. The initial OCV of the cell is low, because oxygen 

concentration in air is only 21%. The operation with pure oxygen results in a gain 
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similar to elevating the air by a factor of 1/0.21. The performances of the MEAs are 

similar to the literature findings so that our test station and single cell assembled very 

well. 

 

Figure 4.12: Voltage-current density curve of PEM single cell under constant current 

load, Membrane: Nafion
®
 111 IP, Pca: 150 kPa, Pan: 125 kPa, RHan,H2 < 2%  (dry),RH ca, 

air:100 %,  Tcell: 60  °C, SRan: 1.5, SRca: 3 

Furthermore, the single fuel cell tests were continued with synthesized ETFE-

g-P4VP high temperature proton exchange membranes in this thesis study. Figure 

4.13 shows the single cell performance of the membranes using H2 and O2 as 

reactants at cell temperatures 80 °C and 120 °C. Both H2 and O2 feed stream were 

dry (RH < 2 %). Since these membranes are new in literature there is no well defined 

MEA preparation procedure. The initial single fuel cell tests were conducted without 

hot pressing the MEA. The ETFE-g-P4VP membrane is placed between purchased 

EP4019 type of carbon papers gas diffusion electrodes with using Nafion
® 

ionomer 

solution as a binder. However, the interfacial contact losses were higher in the MEAs 

that are produced without hot pressing. Thus, initial single fuel cell performance 

should be improved.   
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Figure 4.13: Voltage-current density curve of ETFE-g-P4VP membranes, MEA is 

fabricated without hotpressing, Pca: 150 kPa, Pan: 125 kPa, RHan,ka < 3%, SRan: 1.5, 

SRca: 2 

 Figure 4.14 shows polarization curves of the MEAs that are prepared with hot 

pressing of ETFE-g-P4VP membranes with electrode layers, at temperatures 80 °C, 100 

°C and 120 °C.  When Figure 4.13 and Figure 4.14 are compared, it is concluded that 

the hot pressing MEAs containing grafted membranes lead to superior performance.  

 Moreover, as seen from Figure 4.14, the increase in the operational temperature 

from 100 to 120 °C significantly improves the fuel cell performance of the membrane 

that indicates the benefit of high-temperature operation.  Figure 4.14 also shows the 

calculated power output as a function of current density, the highest power output 

around 0.55 W/cm
2
 is obtained at current density of 1100 mA cm

-2
 at 120 °C. It can be 

observed from Figure 4.14 that the gaps between polarization curves increase with an 

increase in temperature.  For example, at the current density of 800 mA cm
-2

, the 

voltage difference between 800 and 100 °C is 200 mV, while the voltage differences 

between 100 and 120 
◦
C are 100 mV. This may indicate that the temperature effect on 

fuel cell performance is more pronounced at lower temperatures than at higher 

temperatures that is also agrees well with the conductivity results (Figure 3.5).  
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Figure 4.14: Voltage-current density curve of ETFE-g-P4VP membranes, MEA is 

fabricated without hot pressing, Pca: 150 kPa, Pan: 125 kPa, RHO2,H2 < 2%, SRan: 1.5, 

SRca: 2, Tcell:60 °C 

4.3.2 DEA operated PEM Single Cell Tests 

Figure 4.15 demonstrates the cell voltage in a DEA operated PEM fuel cell 

under moderate constant current density (400 mA cm
-2

). The MEA with Nafion
®

 N111 

IP is used, during the operation the RHs of hydrogen and air were <2%. The DEA cell 

was operated under constant 400 mA cm
-2

 (20 A) current density. The initial 0.58 V cell 

voltage was kept during 350 seconds. Due to the nitrogen and water accumulation on 

the anode the cell voltage starts to ramp down and reaches to 0.15 V after 650 seconds.  
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Figure 4.15: Cell voltage of the single cell with dead-ended mode operated at 400 

mA/cm
-2

 constant current density. MEA with Nafion
® 

N 111 IP. RHan, H2 < 3%,  RHca, 

air: 100% ,Tcell: 60 °C, Pan:125 kPa, Pca:150 kPa, SRca: 3 

e hydrophobic backbone and hydrophilic graft components, the backbone provides 

important properties including durability, mechanical strength, wetting properties, gas 

permeability, and surface energy. On the other hand irradiation, grafting and acid 

treatment caused defect on the membrane backbone. The earlier investigations of this 

type of membranes are shown that both oxygen and nitrogen diffusion and permeability 

increase with increasing graft level [115,135]. This concludes that in the radiation 

grafting membranes diffusion mainly occurs in the hydrophilic region. Moreover, in the 

case of PBI membranes it is observed that as the fuel cell operation temperature and 

acid doping level increases the gas permeability of the membrane increases [80]. The 

acid (H3PO4) increases the distance between backbone of polymer and contributes to the 

membrane expansion so that the gas permeation of the membrane.  
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Figure 4.16: Cell voltage of the single cell with dead-ended mode operated at different 

constant current densities. (a) 400 mA cm
-2

 (b)600 mA cm
-2

 (c) 800 mA cm
-2

 MEA with 

ETFE-g-P4VP membrane, RHan, H2: < 3%,  RHca, air: <3% ,Thücre: 110 °C, Pan:125 kPa, 

Pca:150 kPa, SRca: 3 

0 500 1000 1500 2000 2500 3000

0.33

0.44

0.55

0.66
0.30

0.35

0.40

0.45

0.50

0.25

0.30

0.35

0.40

0.45

 

V
o
lt
a
g
e
 (

V
)

Time (seconds)

 400 mA/cm
2

(c)

 

V
o
lt
a
g
e
 (

V
)

 600 mA/cm
2

(b)

 800 mA/cm
2

 

 

V
o
lt
a
g
e
 (

V
)

(a)



 

76 

 

 4.3.3 MEA Degradation 

 Figure 4.17  presents SEM images locations No.1 to No.3 after DEA operation 

of the MEA with Nafion
®
 N 111 IP membrane. It was noted that the MEA degradation 

was very similar with the hydrogen crossover to the anode side (Figure 4.10); however 

there was no pronounced hydrogen peroxide formation was on the MEA’s cathode (No 

blue peroxide color was observed). On the other hand, the DEA operation time is very 

short to degrade the MEA while comparing with the literature [119]. Hence, it is 

concluded that there should be a coupled effect of DEA operation and radical formation 

that degrades the graft component of the membrane on the degradation mechanism.  

 The SEM micrographs are shown in Figure  4.18. The membrane degradation is 

more pronounced at location No.1 where close to the dry hydrogen inlet than other 

locations. The hole formation on the membrane (Figure 14.8a) is observed that 

indicates the deformation on the repeated unit of the membrane backbone (-CF2) due to 

the radical formation (
.
OOH, 

.
OH). The deformation on  the polymer repeat units causes 

hole formations inside the membrane structure that also lead to pin hole formation on 

the membrane surface. The pinhole formation causes severe irreversible voltage 

degradation due to the gas crossovers.  

 In literature, it is observed that the membrane is deformed by thinning according 

to its distance to dry anode inlet in DEA operation [119]. Similarly in our study, 

Nafion
®

 membrane becomes thinner (i.e., from 30 µm to 20-15 µm). From Figure  

4.18a to Figure 4.18c, SEM migrographs of membrane crossover present the effect of 

local membrane decomposition. It has been reported that the Nafion
®

 membrane 

decomposition proceeds more rapidly under low RH [2].  The finding is in agreement 

with our observations. Since the membrane is much drier at the inlet and liquid water 

accumulates at the outlet of the cell in DEA operations, membrane become thinner in 

the dry regions. 
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Figure 4.17: Schematic of locations of SEM samples 



 

78 

 

  

Figure  4.18: SEM micrographs of MEA with Nafion
®
 111 IP membrane after DEA 

operation 
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 Figure 4.19 illustrates the SEM micrographs of the high temperature ETFE-g-

P4VP membranes after DEA operation. The degradation of high temperature of high 

temperature ETFE-g-P4VP membranes is different than that of Nafion
®

 membrane in 

DEA operation [119].  Since the high temperature DEA operation has the advantage of 

absence of water, membrane thickness difference between inlet and outlet due to the dry 

spots is not pronounced. On the other hand, by a simple averaging the thickness of 

unused ETFE-g-P4VP membrane is 48 µm which is thicker than un-doped copolymer 

owing to the swelling of the copolymer film after acid doping.  The thickness of the 

ETFE-g-P4VP film is 40 µm which is thinner that its original thickness. In literature it 

is known that the attack of 
.
OH and HO2 radicals produced by the incomplete reduction 

of oxygen on the cathode side is the main factor for the oxidative degradation of the 

radiation grafted membranes.   

 Moreover, there is no pinhole formation have been observed on the membranes. 

In literature, the failure mechanism for radiation grafting membranes is not well defined 

since the grafting component, base film and polymerization conditions are changing 

according to the study. On the other hand, the rough estimations based on IEC (ion 

exchange capacity), FTIR and XPS (X-ray photoelectron spectroscopy) analysis are in 

harmony with a degradation mechanism based on the formation of 
.
OH radicals at the 

anode [132]. This mechanism assumes the diffusion of oxygen through the membrane 

onto the anode side and formation of 
.
OH at the platinum catalyst which may attack the 

tertiary hydrogen at the α-carbon of the graft component. Especially, the IEC and FTIR 

results evidence that break down of graft component is responsible for the loss of ionic 

conductivity; therefore the ionic resistance of the membrane increases and failure begins 

on the cell voltage.  It should be noted the base film is not degraded after the fuel cell 

test.  

 As conclusion, ETFE-g-P4VP membrane failure differs from Nafion
®
 membrane 

failure in both FTA and DEA operated PEMFC. Since, gas crossovers that causes 

radical formation are dominant in ETFE-g-P4VP membranes, the graft component that 

maintains ionic conductivity degrades and nonionic base film remain after fuel cell 

operation. Hence, unlike the Nafion
®
 membrane, no pinhole formation is observed. On 

the other hand FTA operated membrane resist longer than DEA operated membrane.  
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Figure 4.19: SEM micrographs of MEA with ETFE-g-P4VP membrane after DEA 

operation 
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4.4 CONCLUSIONS 

 In this part of the thesis, the FTA and DEA operated PEM fuel cell test of the 

Nafion
®
 and ETFE-g-P4VP membranes are presented. The test station is prepared for 

the DEA operation with starting the FTA operation of the commercial Nafion
®

 

membranes. The fuel cell performance at different temperature and oxidant conditions 

were conducted and compared with the literature findings. It is concluded that the 

experimental fuel cell test station and single fuel cell is ready. Then, the DEA operated 

PEMFC tests were continued.  

 If the FTA operations of Nafion
®
 and ETFE-g-P4VP membranes are compared, 

it can be concluded that the synthesized high temperature ETFE-g-P4VP membranes 

have promising fuel cell performance. Even though, the operation temperature range is 

not comparable since the Nafion
®
 membrane cannot be operated at temperatures over 

80 °C, but the Nafion
®
 60 C and ETFE-g-P4VP membrane 120 °C voltage values are 

similar. Hence, the synthesized high temperature membranes can be good alternative to 

use the water free PEMFC operations. 

 Moreover, if the DEA operations of Nafion
®

 and ETFE-g-P4VP membranes are 

compared, it is seen that ETFE-g-P4VP membrane DEA transient time is slightly lower 

than that of Nafion
®
 membrane. Moreover, it is observed that the DEA transient 

frequency increases with increased current density in the high temperature DEA 

operation Even though, a direct measurement for the gas permeation of ETFE-g-P4VP 

membrane was not performed, high gas permeation results can be detected during the 

fuel cell operation in the case of ETFE-g-P4VP membrane. The nitrogen crossover rate 

from cathode to anode in DEA operation caused shorter DEA transient time. Since the 

nitrogen accumulation and blanketing on the anode active area increased, the purge 

cycle must be increased to recover the voltage. The increased purge cycle may also 

contribute to the mechanical deformation of the MEA. 

 Additionally, from the SEM results of ETFE-g-P4VP, we have examined that 

the degradation mechanism is different from that of Nafion
®
 that is well defined in 

literature. The gradual reduction in membrane thickness according to membrane local 

distance to the anode inlet, and pinhole formation on the membrane are the mechanisms 

that cause degradation in the DEA operation of Nafion
®
. On the other hand, in the 

ETFE-g-P4VP membrane degradation, due to the oxygen crossover and radical 
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formation, the graft component that maintains the proton conductivity is worn out. As 

result the proton conductivity reduces and irreversible voltage decline takes place. But, 

the base film remains as gas barrier, thus pinhole formation is not pronounced for 

radiation grafted membrane. Moreover, due to the loss of graft component and high 

temperature operation, the membrane becomes thinner after fuel cell operations.  
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CHAPTER 5 

TWO PHASE TRANSPORT MODELING OF THE DEAD ENDED OPERATON 

OF POLYMER ELECTROLYTE MEMBRANE FUEL CELL 

 In this chapter of the thesis study, the two-phase water transport of the DEA 

operated Nafion
®
 membranes at temperature below 80 °C are modeled. The model is 

validated with a study in literature that measures the water amount in anode/cathode 

GDL and gas channels of a DEA operated PEMFC by neutron imaging technique. The 

validated numerical model will be used to model the high temperature ETFE-g-P4VP 

membrane DEA performance; however it will be the subject of our future study. 

 5.1. INTRODUCTION   

 To date, there are numbers of numerical studies focused on flow-through 

conditions on PEMFC [137,138]. However, there is less numerical study focused on 

understanding of DEA operation. In literature, Mocoteguy et al. [139] modeled one 

dimensional, single phase, DEA operated PEMFC based on semi-empirical relations; 

however, they neglected the influence of anode side on its transient behavior. Dumercy 

et al. [140] simulated pseudo-two-dimensional fluid characteristics along the channel on 

the anode side with dead-end mode to optimize the stack properties. Kocha et al. [141] 

developed a model which predicts nitrogen crossover from cathode to anode. Ahluwalia 

et al. also studied the effect of nitrogen crossover and derived the membrane-water 

content dependent permeability of nitrogen [142]. In two studies, it is concluded that at 

high cell current density and high humidification rates (i.e. > 75%) in the cathode, 

accumulated nitrogen that diffused to anode leads to voltage losses. McKay et al. 

modeled a semi-empirical one dimensional isothermal two-phase model for DEA 
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PEMFC, they concluded that the voltage degradation is mainly caused by accumulation 

of liquid water in the anode channel which blocking the fuel cell active area [143].  

  In the previous study, one dimensional, single phase, along the channel model 

DEA operation of PEMFC was developed. The model concludes that the voltage 

degradation is caused by nitrogen accumulation, however on the study the effect of two 

phase water transport is not taken into account [144]. In the present chapter, the model 

is further extended to include the two phase water transport considering both convection 

and diffusion effects. It is intended to develop a fundamental understanding of the two 

phase phenomena occurring in DEA operated PEMFC. Water accumulation on the 

cathode and back diffusion to the anode effects were considered in our time-dependent 

transient analysis of one dimensional, two-phase along the channel numerical model.  

 Figure 5.1 represents two phase water and nitrogen transfer mechanism between 

anode and cathode during the DEA transient. The nitrogen permeation of the Nafion
®

 

membrane increases with its water content.  On the upper portion of the cell, water 

vapor diffuses through the membrane from cathode to anode. Additionally, nitrogen 

permeates through the membrane to anode due to its increased partial pressure in the 

cathode. Towards the end of anode channel (where the exit is closed) water starts to 

accumulate and causes H2 starvation together with diffused nitrogen.  

 Since, the anode local electrochemical reaction rate that depends on the hydrogen 

concentration due to the regulated anode pressure, determines the local water generation 

rate which affects directly the Nafion
® 

membrane water content. Even though nitrogen 

accumulation dominates on the cell voltage losses, since membrane nitrogen permeation 

depends on membrane’s water content, there is a coupled effect of water and nitrogen 

accumulation on the cell voltage performance in DEA operation.  

 As continued mechanism, the accumulated nitrogen on the anode exit diffuses to 

the cathode (positive x-direction) due to increased partial pressure on the anode side. 

Moreover, increased saturation of liquid water at the anode exit positively contributes to 

the diffusion of nitrogen back to the cathode side. 
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Figure 5.1: The two phase liquid-vapor water and nitrogen transport mechanism in 

DEA 

  The experimental DEA operated PEMFC used in our model validation is 

explained in detail by Siegel et al. [8]. In their experiments, the liquid water amount 

during a DEA transient is measured by neutron imaging inside anode/cathode channels 

and GDLs. Our model results were compared with the neutron imaging results and can 

be used to predict the accumulated liquid water amount.  

 5.2 MATHEMATICAL MODEL 

 Time-depended, one-dimensional, two phase, along the channel model of DEA 

operated PEMFC between purge cycles is presented in our numerical model. The model 

is validated with Siegel et al. [8] experimental set up that consists of a membrane placed 

between anode and cathode gas diffusion electrodes (containing micro porous layer) and 

gas diffusion channels. The computational domain is demonstrated in Figure 5.2. 
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Figure 5.2: One dimensional modeling domain 

  Our numerical model consists of by three sub-models: (i) Maxwell-Stefan 

transport equations were used for conservation of mass (ii) Then, Maxwell-Stefan 

equations were coupled with a voltage model to obtain the kinetics of reactions (iii) 

two-phase transport of the liquid water. The mass conservation equations were coupled 

with electrochemical process through the source terms.  

  In the modeling, it is assumed that the anode and the cathode volumes contain a 

mixture of hydrogen/oxygen, nitrogen and water vapor. The species’ concentrations in 

the channel are calculated based on the conservation of mass assuming the channel is 

homogeneous and isothermal. Water vapor from reactions and supplied with the 

cathode gas stream is exchanged between the anode and the cathode through the 

hydrophilic membrane. Water exchange takes place according to the back diffusion due 

to concentration gradient from the cathode to the anode and electro-osmotic drag from 

anode to cathode. Although, the thin polymeric membrane permits the crossover of 

molecules when there is a concentration gradient across the membrane, oxygen and 

hydrogen crossover were negligible. Thus, only water and nitrogen crossover across the 

membrane were considered for the sake of model simplicity. The details on the 

mathematical model are explained on the following sections 

 5.2.1. Mass Transfer 

  The Maxwell-Stefan diffusion and convection equations are used to model the 

time-dependent transport of species along the anode and cathode channels:    

 
j

i i ij i i

j

x
w w D wU r

t z z
                                                  (5.1) 

where w is the mass fraction, x is the mole fraction, ρ is the density, Dij binary diffusion 

coefficient of species i and j, z is the coordinate in the direction of the flow, t is time, U 
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is the convective velocity and r is the reaction rate: species in the anode channel are H2, 

H2O vapor and N2, and in the cathode are O2, H2O vapor and N2. The Maxwell-Stefan 

equations are solved for two species at the anode and cathode; the mole fraction (or the 

mass fraction) of the third component is determined from the conservation of total mass: 

  3 1 21x x x                                                                                                     (5.2) 

  In (5.1), binary diffusion coefficients which characterize the interactions 

between a pair of species are obtained for multi-component mixtures [145]: 

 

1/2
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1 1
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D

M Mp v v

                                                (5.3) 

where P is the pressure, vi is the molar volume of species i, T is temperature, and Mi is 

the molecular weight of species, i. In Maxwell-Stefan equation (5.1), the density of the 

mixture, ρ, is given by densities of mixtures in the anode and cathode is obtained from 

the Dalton’s Law: 
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/ ( )

i

ii

w

M

p RT                                                                                                       
(5.4) 

where R is the universal gas constant.  

  The convective velocity, U, in (5.1) is the average velocity of the flow. The 

convective velocity, U is the sum of the velocity that corresponds to the exit 

stoichiometric ratio of the flow and the velocity obtained from total flux of the species 

reacting at the catalyst layer and exchanged at the membrane: 

  
exit fluxU U U                                                                                              (5.5) 

  Convective velocities at the anode and cathode are verified from different 

factors. In the cathode, the convective velocity is determined from the stoichiometric 

ratio of the flow, which is usually set to a value sufficiently larger than one. In the 

anode, the flow of hydrogen, especially near the inlet, is the major part of the 

convective velocity, since all the hydrogen consumed in the reaction flows through the 

inlet. The convective velocity due to fluxes of species reacting and crossing over the 

membrane at a given position is the integral of the mass fluxes downstream, i.e.: 

  
2 2 2H N H O

1
' ' ' '

L

an an an an
flux

an z

U z N z N z N z dz                                   (5.6) 
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 Here, L is the length of the channels, Ni,an are the inward mass fluxes at the 

membrane interface.  

 The inward mass flux of hydrogen that reacts at the catalyst layer is obtained 

from:  

 2

2

H

H
2

an
cell loss

M
N J J

F
                                                                            (5.7) 

where F is the Faraday’s constant, Jcell is the local current density and Jloss is the 

parasitic current density due to the loss of hydrogen that might crossover the membrane 

to the cathode side. It is assumed that the parasitic loss is proportional to the mole 

fraction of hydrogen: 

 
0 2, Hloss lossJ J x                                                                                               (5.8) 

where Jloss,0  is an estimated constant based on the permeance of hydrogen through the 

Nafion
®
 membrane [3].   

  The local flux of nitrogen through the membrane is calculated from the 

difference between the partial pressures of nitrogen in the cathode and the anode: 

 
2 2

2 2 2

ca an
N Nan

N N N
m

p x x
N M                                                                         (5.9) 

Here, δm is the thickness of the membrane, and 
2N is the membrane water-content 

dependent permeance of nitrogen as the water content increases nitrogen permeability 

of the membrane increases.  The correlation is given by [142]: 
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where 
N2

0  is 1×10
-14 

mole/m
2
,  

2NE is 24 kJ/mole and fV is the volumetric ratio of the 

liquid water in the membrane, and given by: 
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V V
                                                                                            (5.11) 

Here, λ is the molar ratio of water molecules per sulfonic group in the membrane, Vm 

and VH2O are the molar volumes of the dry membrane and liquid water.  

 In Eq. (5.6), the flux of water vapor across the membrane is given by:  
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where 
,an ca

eq  is the water content of the membrane at the local equilibrium conditions 

at the anode and cathode; 
3

0
SOc  is the molar concentration of sulfonic groups in the dry 

membrane; and nd is the electro-osmotic drag coefficient that gives the number of water 

molecules dragged by each proton; and Rm  is the membrane’s resistance to  water flux 

and given by: 

 
1 1 m

m
ads des

R
k k D

                                                                                 (5.13) 

 In Eq. (5.13), kdes and kads are desorption and adsorption coefficients and Dλ is 

the diffusion coefficient of water; kdes, kads and Dλ are experimentally measured by Ge et 

al. [146] and given by: 
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where fλ is temperature dependent coefficient and specified as: 

 
.0543 .00336 , 323K

.0771 .00259 , 353K

T
f

T
                                                                 (5.17) 

 On the cathode, the local inward oxygen flux due to the reaction at the catalyst 

layer is given: 

 
2 2O O

1

4

ca
cell lossN M J J

F
                                                                    (5.18) 

 The local inward flux of water vapor on the cathode is the sum of the opposite of 

the flux going into the anode and the water coming out from the reaction at the catalyst 

layer: 
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 The nitrogen flux into the cathode is the opposite of the flux going into the 

anode, which is given by (5.9). 



 

90 

 

 In the Maxwell-Stefan equations given by (5.1), reaction rates are determined 

from the mass flux of each species given by (5.7), (5.9) and (5.12), 

   i
i

eff

N
r

d
                                                                                                      (5.20) 

where deff is the effective depth of the anode and cathode channels and defined as the 

ratio of the total volume available to species, VTotal, and the active area of the fuel cell, 

Acell, i.e.: 

 

,
,
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V
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5.2.2. The Voltage Model 

 The cell potential can be calculated from the membrane resistance and electrode 

polarizations. In the voltage model, cathode electrode potential is expressed as the loss 

from the reversible cell potential, Vrev, due to potential drop in the membrane, ∆Vm, and 

anode activation, ∆Van, and cathode activation, ∆Vca by assuming that the anode 

electrode is kept at ground. 

 e rev an ca mV V V V V                                                                    (5.23) 

 The reversible cell potential is given by: 

  2 2
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                                                      (5.24) 

Here, 
ref
ic refers to reference concentration of species i, V0 is the open-circuit potential 

and given by [3]:  

 0 1.23 0.00083 298V T
                                                                   

 (5.25) 

 The anode and cathode activation over potentials in (5.23) are given by [147]:  
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 In (5.26) and (5.27),  is the transfer coefficient, γ is the concentration parameter 

and i0,ref is the reference current density, ci
CL

  is the concentration of species i in the 

catalyst layer, and calculated from the resistance model in the GDL: 

  

2,N

CL GDL
i i i

i

c c N
D

                                                                                     (5.28) 

where δ is the thickness of the GDL,  Di,N2 is the binary diffusion coefficient of species i  

and nitrogen, and Ni is the mass flux.  

 The last term in the parentheses in (5.27) represents the overpotential due to 

proton shortage in the cathode catalyst layer. In the dead-ended operation there is a 

severe fuel starvation in parts of the cell, and, hence, the cell current diminishes and the 

oxygen reaction in the cathode stops as well. We assume that the proton concentration 

in the cathode remains at equilibrium and does not add to the activation loss.  The 

potential drop in the membrane is due to Ohmic loss: 

 m
m cell

m

DV J                                                                                       (5.29) 

where m is the membrane’s ionic conductivity and experimentally measured, correlated 

the temperature and membrane water content (λ) [148]; 

 
1 1

0.326 0.514 exp 1268
303

m
T

                                              (5.30) 

 The cell potential, Vcell, at the cathode current collector must be constant, due to 

the high conductivity of the plate, and can be determined from the current density and 

the total electric resistance of the solid components including contacts, Rsolid; the electric 

resistance can be estimated from the slope of the polarization curve of the cell. The cell 

potential is obtained from: 

cell e solid cellV V R J                                                                                     (5.31) 

 The integral of the current density, Jcell, must be equal to the total load current, 

Iload, which is specified as an input in the model, as follows: 

 

cell

cell cell load load

A

J dA A J I                                                                        (5.32) 

  The unknowns, which are total of six molar fractions (interchangeably mass 

fractions) of species, xi (or wi), current density, Jcell, and the cell potential, Vcell are 

obtained from the solution of the Maxwell-Stefan equations for conservation of mass of 



 

92 

 

individual species, conservation of total mass, coupled with the cell potential and 

current density equations given by, (5.31) and (5.32) respectively. 

5.2.3. Two-Phase Liquid Water Transport Model 

  The measurement of both vapor and liquid water in operating PEMFCs is one of 

the greatest challenges for controlling PEMFC operation due to the lack of availability, 

and cost, of sensors. Therefore, models which can predict accurately amount of water 

inside the PEMFC are essential. Due to low operating temperatures (60-80°C) at high 

humidity and current density, two-phase gas liquid formation is unavoidable inside the 

PEMFC. When GDL and catalyst layer (together gas diffusion electrode) become 

saturated with water vapor, the product water starts to condense and blocks open pores 

reducing available paths for oxygen transport at the cathode side (cathode flooding).  

  PEMFC operates mostly under flow through or re-circulated anode conditions in 

which anode liquid water formation is very low compared to the cathode so that there 

are few studies referring to the anode water accumulation in literature. On the other 

hand in DEA operation, product water which diffuses through the membrane (negative 

x-direction) back to the anode condenses and accumulates in the anode GDL and 

channels in the anode (y-direction), reducing  the hydrogen concentration on the anode. 

The prevention of hydrogen from reaching the catalyst stops the production of 

electricity from the blocked region of the cell. Hydrogen starvation causes reverse cell 

potential and degradation on the electrodes. Observation of water accumulation in the 

DEA operation and the voltage drop between purge cycles motivate the development of 

a model to predict the water accumulation in the GDLs and channels and to determine 

its impact on hydrogen starvation [8,143].  

 In our study, one dimensional modeling approach is considered for two-phase 

flow of water through the membrane and the porous media. In the hydrophobic GDL, 

two-phase flow and transport is governed largely by capillary forces as the gravitational 

and viscous forces are relatively small due to the small pore size and thickness of the 

GDL. As the liquid water fills the pores of the GDL, the capillary pressure increases and 

the liquid is forced to flow to adjacent pores with less water. This process creates a flow 

of liquid water through the GDL, resulting in an injection of liquid into the channel. The 

resistance to this injection is related with the amount of water inside the GDL. More 

recent numerical analysis and in situ investigation of the liquid water evolution and 
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transport in MEAs suggest that in PEMFCs, water management is strongly influenced 

by the transport phenomena at the macroscopic interface between the cathode GDL and 

channel [158]. The saturation at this interface is paramount in controlling the amount of 

liquid water existence in the fuel cell components during operation and the 

spatiotemporal behavior of water in the MEA. Thus, at the GDL-channel interface water 

accumulates in pendant droplets which detach when gravity and shear forces generated 

by the two-phase drag exceed the maximum force available to support them [156-157]. 

 The flow of liquid water through the GDL is a function of the capillary pressure 

gradient as the gas pressure, PG, inside a porous media is related with the pore size and 

the capillary pressure, PC, between the gas phase and water; 

  gp p p
l c                                                                                                    (5.33) 

 In Eq. (5.34) the liquid-phase pressure is expressed by Darcy’s law using the 

relative permeability of individual species. And the liquid velocity is given as a 

continuity equation: 

 ll pu                                                                                                    (5.34) 

where κ represents the relative permeability of the anode and cathode GDL and µ is the 

viscosity of the liquid.  

  The capillary pressure, formally defined as the difference between gas and liquid 

phase pressures resulting from the curved meniscus interface, plays a fundamental role 

in two-phase flow and phase distribution in porous media. In literature there are some 

assumptions to calculate the capillary pressure, such as Leverett function (J(s)) that 

describes the relationship between capillary pressure and water saturation, s. In neutron 

imaging experiments [8], SGL10BB (SGL GROUP, 2010), micro porous layer has been 

used on top of the GDL. For GDLs with MPLs, Gostick et. al. studied the relation 

between liquid phase saturation and capillary pressure so that, capillary pressure change 

according to the saturation is tabulated from this study and written as an equation (5.35) 

in our numerical model [149].  

 c
c

p
p s

s
                                                                                               (5.35) 

  The governing convection-diffusion equation that gives the water saturation is as 

Eq. (5.36) 

  l
d l l lS

t
u                                                                                   (5.36) 
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, 2liq H OL s  is the density of the liquid water that is blocking the porous GDL, t is time 

and Sl is a volumetric source term for the liquid water that represents the net water 

production by condensation and evaporation. Eq. (5.34) is inserted into Eq. (5.36), Eq. 

(5.37) is obtained. 

2,H O

l
g c

liq

Ss
s p p

t
                                                           (5.37) 

 The term, / gp , represents the convective velocity of the gas phase, ug, in 

Eq. (5.37). Comparing the capillary pressure, pc, with the change in water vapor 

pressure, pg, inside the porous medium (GDL with micro porous layer), pg can be 

negligible due to capillary pressure change relatively higher than that of water vapor 

inside the small pores of GDL[150].  

 Inserting Eq. (5.35), Eq. (5.37) is written as below 

2

Source Term

,H O
Convecitve Term

Diffusive  Term

c l
d g

liq

p Ss
s s s

t s
u                                (5.38) 

In Eq. (5.38), the first term inside the parenthesis can be thought as the diffusion 

of the liquid water according to water vapor saturation. The second term inside the 

parenthesis is the advection of liquid due to the flow of gaseous phase. Eq. (5.39) is the 

governing convection-diffusion equation according to the water saturation [149]

 
2,H O

c

l
s d g

liqp
s

s

Ss s
D s

t x
u                                                          (5.39) 

  The liquid and vapor water transport is modeled based on two mechanisms in the 

model ; i) the transport between anode and cathode through membrane ii) the transport 

between GDL and gas flow channels on anode and cathode.  Thus, in the one 

dimensional model, the water transfer is according to mechanisms discussed above and 

taken as source or sink terms on the right side of the equation.  

  The Eq. (5.40) expresses the transport of liquid phase saturation for anode GDL. 

The water that crosses the membrane and accumulates in GDL layer is the source term 

(first flux term), and liquid mass transfer from GDL to channel is the sink term (second 

flux term) in Eq.( 5.40). 
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 2 2

2

Flux Terms

H O H O
,

,H O
0

ch gdll lGDL GDL
GDLan an l

s g an an
liq GDL

N Ns s S
D s

t x h
u            (5.40) 

where hGDL, is the thickness of the GDL, ug,an , is the velocity of the gases (hydrogen ) of 

the gases in the GDL. Since the velocity of the gas phase is relatively small due to the 

dead ended operation, it is assumed as zero.  

 The mass flux of liquid water that back diffuses to the anode side through the 

membrane has been depended on capillary pressures on the GDL since it has a porous 

SGL 10BB [151].  This term is added to the SL, as a source term in Eq. (5.44) and 

written as;            

2
, ,

l l m
l l l ca l anH O

N p p                                                                              (5.44) 

 The term, ,l cap is pressure of liquid phase on cathode side, ,l anp  is pressure of 

liquid phase on anode side in Eq. (5.44) and can be calculated from Eq. (5.33). m
l l , 

liquid-liquid permeation coefficient has been calculated from the experimental study of 

Adachi et. al. [152].  In the study transient rates of water ingress to or egress from the 

membrane was measured and validated with the literature.  

 The equation defines the saturation of the liquid phase water where builds up on 

the anode gas channels is as Eq. (5.45) 

 
,

2,H O , ,
an ch

ch gdlch ch
ch chan an l l
s d ch an

liq ch eff an

Ns s S
D s

t x h
u                  (5.45) 

where ch
sD  is the diffusion coefficient that gives water droplets diffusion inside the gas 

diffusion channels and it depends channel surface roughness. ,ch effh is the channel 

effective height that is defined as total channel area over channel cross section area. 

,an chd , is the mass transport coefficient for liquid water drag inside the anode channel 

since anode gas channels are straight the coefficient is set to 250. 
,ca chd , is the mass 

transport coefficient for liquid water drift inside the cathode channel, since the cathode 

channels are parallel the drag should be lower than that of anode and it is set to 1/250. 

These constants are defined according to the two phase flow behavior inside the 

PEMFC parallel channels in the very low saturations rates in the channels [153] 
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 The term chu , is the convective velocity of droplets inside the gas channels. is 

the length of one gas diffusion channel and ,0chu is the coefficient is set according to the 

gravity constant due to the position of the experimental fuel cell. 

,0
CH

ch ch anu x su
                                                                                            (5.46) 

 In Eq. (5.40) and (5.45) the water transport from GDL to gas channels is defined 

as the difference of water saturation and  written as a linear mass transport equation as 

in Eq. (5.47). The neutron imaging experiments show the presence of the liquid water 

inside the gas channels on DEA operation, the liquid water transport from GDL to the 

gas channels is modeled with mass transfer coefficients in our model. 

ch gdl ch gdl GDL CH
an anl lN h s s                                                                   

(5.47) 

In Eq. (5.47), ch gdl
lh  is the defined as the mass transfer coefficient that 

identifies the liquid water transport from GDL to the gas flow channel. If the flow 

inside the gas channels is laminar, Sherwood number which is a dimensionless 

concentration gradient can be assumed as 2.35 [154]. ch
sD 2 is 10

-7
 and , ,ch eff anh is 

approximately 10
-4

, so that 
ch gdl
Lh can be calculated as 10

-3
 if the saturation difference 

between GDL and gas channel high, i.e., there is higher amount of liquid water inside 

the GDLs . On the other hand, if the saturation of GDL and that of gas channel are close 

another mass transport mechanism is take place such as siphoning (i.e., Figure 5.2) 

[155]. If the there is enough liquid water formation both on GDL and gas channel, then 

the mass transfer coefficient can be set a higher value than 10
-3

, i.e. 1 in our model. The 

resistance to liquid water flow from GDL to gas channel is lower since the liquid water 

is transported across the GDL through the largest pores and once the water penetrates 

the largest pores the liquid can freely drain to the gas channel [155].  

The equilibrium liquid water density in membrane and anode/cathode side 

interfaces are calculated according to liquid phase saturation, i.e Eq. (5.48)  

1eq eq
liq vs s

                                                                                  (5.48) 

where s is the liquid pahse saturation between membrane and gas diffusion layer, λliq is 

the lequilibrium membrane water content in contact with liquid water which is 22 for 
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Nafion
®

 membrane [3]. eq
v equilibrium water content in contact with vapor and a is the 

vapor activation  in equation (5.49) [146]: 

 

2 3

2 3

0.043 17.81 39.85 36 ,  303K

0.3 10.8 16 14.1 ,     353 K

eq
v

a a a T

a a a T
                                         (5.49) 

 The boundary conditions of the Maxwell-Stefan equations in (5.1) are specified 

at inlets and outlets of the anode and cathode channels. At the anode inlet, it is assumed 

that dry hydrogen is supplied during purges as well as dead-ended conditions, i.e.: 

 2 2

2 2 2

N ,H O

H N ,H OAt 0 : 1, 0 0
x

z x x
N

                                     

(5.50) 

 Similarly to the anode boundary conditions, at the cathode inlet, mass fractions 

of the species are specified based on the inlet relative humidity and the pressure. At the 

anode and cathode exits, fluxes of species are set to the convective-flux-only conditions: 

i.e. the diffusive fluxes are zero:   

0
j

i ij
j i

x
D

z
                                                                                   (5.51) 

The convective flux at the exit, ρwiU, is only from the stoichiometric flow of the 

species at the exit, Uexit, as expressed in (5.5). 

5.3. RESULTS AND DISCUSSIONS 

 5.3.1 Model Validation 

 Two-phase model results have been compared with resulting neutron imaging 

experiments [8]. Figure 5.3 shows the comparison of experiments and model for 

cathode stochiometry (SRc) is regulated in 2, relative humidity (RH) 75 % and cell 

temperature (Tcell) 50 °C. The cell was under galvanostatic conditions and current 

density is 3760 A/m
2
 for 53 cm

2
 active area in the DEA transient. Figure 5.3a states 

that the voltage change according to time in the model is convenient with the 

experimental data. Voltage starts to ramp-down particularly after 400 seconds according 

to both model and data. In the previous study it was reported that nitrogen crossover 

from cathode to anode that decreases the active area in the anode originated voltage 
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decrease [143]. Additionally, in this study, the effect of liquid water crossover from 

cathode to anode and its accumulation near the anode exit is also studied. Figure 5.3b 

and 3d demonstrate the liquid water content inside anode and cathode gas channels 

respectively. Figure 5.3b shows that there is 0.04 g water content inside the anode 

channels and it does not significantly change even after purging, this is most likely due 

to the liquid water sticking to the channel walls. The liquid water amount in both 

cathode channels and GDL are presented in Figure 5.3c and Figure 5.3d. The 

measured 1 g liquid water during neutron imaging inside the GDL agrees well with the 

model findings especially in Figure 5.3c. Since water diffuses to the anode and also 

being dragged with the constant flow from the cathode channels, cathode channels have 

the lowest liquid water amount, i.e., 0.01 g. Amount of liquid water is constant through 

the DEA transients in both the GDL and the cathode channels and not affected by the 

purges. 

 Figure 5.3: According to DEA operation (a) Cell voltage, (b) water accumulation in 

anode gas channel (c) water accumulation anode cathode gas channel; Current density 

(Jload)  : 3760 A m
-2

, Tcell=50 °C, RHc=75%, SRc=3 

  

 In Figure 5.4 for Jload=5660 A m
-2

, RHc =115 % and Tcell=60 °C, model results 

is compared with experimental results. The model and the experimentally observed 

voltages agree very well and are demonstrated in Figure 5.4a. The voltage starts with 

0.58 V and ramps down to 0.51 V, 70 mV voltage drops is observed throughout the 
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DEA transient. Liquid water in anode gas channels is illustrated in Figure 5.4b. Since 

the driven current increased from 20 A to 30 A, the formed and accumulated liquid 

water on the anode channel is increased (Figure 5.3). There is still water inside the gas 

channels, (0.02 g for experimental data and 0.06 g for model)   inside the anode 

channels at the beginning of the transient even after purging due to the liquid water at 

the exit of cell sticking to the channel walls. However, in both model and experiment 

the liquid water decreases for a while, since the formed water by reactions humidifies 

the membrane. Water starts to accumulate inside the anode channels due to the diffusion 

of water from cathode. At the end of the transient, 0.16 g water accumulated inside the 

anode channels agrees for both model and experimental findings. Figure 5.4c shows 0.5 

g liquid water inside the GDL according to experiment and 0.4 g according to the model 

which is lower than the previous case (Figure 5.3c). The finding indicates that infinitely 

water is transferred from GDL to channels since there is higher amount of water than 

the initial DEA conditions (Figure 5.3). Once the liquid water penetrates to gas 

channels, it can freely drain from GDL [154].  

 

 Figure 5.4: DEA operation (a) Cell voltage, (b) water accumulation in anode gas channel (c) 

water accumulation anode cathode gas channel; Current density  (Jload) : 5560 A m
-2

, Tcell= 60 

°C, RHc=115%,SRc=3 
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 Figure 5.5 shows the water saturation inside anode GDL (circled line) and the gas 

channel (solid line) at different times of transient from anode inlet to exit. After 5 

seconds of purging (tpurge=5seconds), there is still liquid water inside the channels and 

GDL. The liquid saturation increases towards anode exit since back diffused water starts 

to condensate at the anode exit (Figure 5.1). After t >400 seconds, liquid water from 

cathode initiates the liquid water accumulation on the anode exit, at the end of the 

transient (t=700 seconds) its amount attains its maxima. The liquid water amount is 

increasing simultaneously in both the GDL and the gas channels. It indicates that there 

is no resistance to water transfer from the GDL to the gas channels since both channel 

and GDL is filled with water. The siphoning from gas channels drains the liquid water 

from GDL.  Zang et al. shown liquid water in both GDL and gas channels after 30 

minutes operation at 1000 mA m
-2

current density and concluded that due to the 

hydrophilic capillary forces, liquid water easily transferred from GDL to the channels 

[155].  

  

Figure 5.5: Water concentration from anode inlet to exit, in the channels (solid line) 

and GDL (cirles) at t= 5,200,400,500,600,700 seconds 

 Figure 5.6 demonstrates the liquid water saturation inside cathode GDL (circled 

line) and channel (solid line) at different times from inlet to outlet. At the inlet of 

cathode, x >0, high water saturation decreases and start an increase after x >0.01 m. The 

rise in saturation occurs in 0.01 m<  x < 0.05 due to increased water formation due to 

the cathode electrochemical reactions. For x >0.05m, t >400 seconds, the water 

saturation decreases because of back diffusion of water to the anode.   
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Figure 5.6: Water concentration from cathode inlet to exit, inside the channels (solid 

line) and GDL (cirles) at t= 5,200,400,500,600,700 seconds 

 

Figure 5.7 represents current density distribution over anode channel for 5, 200, 

400, 500 and 700 seconds. After 5 seconds of purging current density is relatively 

uniform. For 0< t <180 liquid water amount is lower (Figure 5.4b), and after 200 

seconds the liquid water amount starts to increased, Jcell starts to ramp down that 

indicates that the reactions can occurs on active area from inlet to outlet of anode.  After 

t> 400 seconds due to the nitrogen accumulation active cell area is blocked and current 

density decreases towards the exit [8]. 

 

 

Figure 5.7: Current density of DEA-PEMFC at different time from anode inlet to 

cathode exit 



 

102 

 

5.3.2. Effect of Channel Length and Depth on the DEA Performance 

 Commercial cells (200–800 cm
2
) have pronounced effects due to pressure drop, 

flooding distribution, and non-uniformity in temperature and current distributions due to 

manifolding constraints. These effects cause stability, durability, and performance 

problems in general for PEMFC. In the part of our study, a number of transient 

simulations are carried out to study the effect of the gas channel length and depth on the 

cell voltage during the dead-ended transient of the cell. These results may be used to 

develop universal heuristics and dimensionless number correlations in the design of gas 

flow-fields. 

 Transient simulations are carried out with a number of gas channel lengths and 

depths in order to demonstrate the effect of cell geometry on the DEA operation. Figure 

5.8a  and Figure 5.8b demonstrate the voltage performance of the cell during a DEA 

transient for channel lengths 0.090 m, 0.060 m, 0.050 m, 0.030 m, and 0.020 m for 

Jload= 3760 A m
-2 

and Jload= 5660 A m
-2 

. According to simulation results in Figure 5.8a 

and b, the initial response of the cell voltage remains almost identical for all geometries 

due to the constant current load. As the gas channel length decreases, the accumulated 

nitrogen and water on the anode is discharged easily since the convective velocity 

increases and the rate of cell voltage decline decreases for both current densities (3760 

A m
-2

and 5660 A m
-2

). The voltage value for 0.020 m gas channel length stays linear for 

t< 800 seconds and reaches 5 mV decrease at the end of the transient for Jload 3760 A m
-

2 
and 10 mV decrease for  Jload 5660 A m

-2 
at the end of the DEA transient. On the other 

hand longer channel lengths i.e., 0.090 m causes 66 mV voltage lost for Jload 3760         

A m
-2

, and 142 mV for Jload 5660 A m
-2

. Due to the reduction on the diffusion from 

anode inlet to exit in DEA operation, longer channel length causes higher reduction on 

voltage and reduces the transient time. Moreover, for shorter channel lengths the 

accumulation of nitrogen is more homogenous over the channel (Lcell  l) thus diffusion 

is more dominated mechanism to discharge accumulated species. 
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Figure 5.8: Effect of channel length on the voltage performance during DEA-PEMFC 

transient; a) Jload = 3760 A m
-2

 Hcell= 1.78 mm, b) Jload = 5660 A m
-2

, Hcell= 1.78 mm 

 

Figure 5.9a  and Figure 5.9b show the voltage performance of the cell during a 

DEA transient for channel depths 1.2 mm, 1.5 mm, 2 mm and 3 mm, for Jload= 3760  A 

m
-2

and Jload= 5660 A m
-2

. Opposite to gas channel length effect, as the gas channel 

depth increases, the ramp down on the cell voltage reduces. Since the reservoir enlarges 

on the y direction and diffusion dominates on accumulated species on the anode gas 

(b) 

(a) 
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channels, thus less active area is blocked on the electrode. Therefore, it is better to use 

deeper and shorter channel configuration while operating in DEA PEMFC to increase 

the transient time. 

 

 

Figure 5.9: Effect of channel depth on the voltage performance during DEA-PEMFC 

transient, Lcell= 7.3 cm, a) Jload = 3760 A m
-2

, Lcell= 7.3 cm b ) Jload = 5660 A m
-2

 

 In our numerical model, the time that the molar concentration of hydrogen      

XH2 <0.001 mole m
-3

 has been taken into account as the onset of hydrogen starvation 

(Figure 5. 10).  

(b) 

(a) 
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Figure 5.10: Schematic of hydrogen and nitrogen concentration distribution along the 

anode channel 

This time, 
02Hxt 

, that can be defined  as fill-up time according to the voltage 

profile can be shown as in Eq. 52 

 2
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                                                                          (5.52) 

 , is a simple constant that comes from nitrogen crossover,
2

an
N

N is the nitrogen 

flux in the anode, Lcell is the length of the gas channel and Hcell is the height of the gas 

channel in Eq. (5.52).   

The balance between diffusion and convection fluxes of nitrogen concentration 

in the channel is written as in Eq. (5.53); u is the convective velocity of the nitrogen 

flux in anode gas channel and 
2,i ND is the constant binary diffusion coefficient of the 

nitrogen.  
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The relation between  and Hcell can be correlated by using the convective 

velocity of hydrogen in the anode gas channel as shown in Eq. (5.54).                                                                                                                    

2

2

1/2. .
2

H cell
N

Jcell RT
u H

F h
                                                                 (5.54) 

where F denotes Faraday constant (96 487 C mol
-1

), 
2N the nitrogen density , R 

universal gas constant and T  is the operation temperature. 

 If Eq. (5.54) is inserted in Eq. (5.52), the time,  
02Hxt 

 , is expressed as below 

Eq. (5.55)   

 
02

3/2

Constant cell

Hx

H
t

Lcell

 
 
 
 

                                                                          (5.55) 

 Note that Eq. (5.55) shows the combined effect of diffusion with the term Hcell
3/2

 

and convection with the term Lcell during the transient of DEA operation.  The 

domination of convection or diffusion on the accumulated species can be estimated 

approximately from the Hcell 
3/2

 / Lcell mass transfer coefficient. The mass transfer 

coefficient Hcell 
3/2

 / Lcell  is used to estimate the time when the voltage starts the ramp 

down. 

 Figure 5.12a and Figure 5.11b show the numerical results of time onset of H2 

starvation according to the cell channel length and height for Jload= 3760 A m
-2

 and 

Jload=5660 A m
-2

 respectively.  The results agree very well as the channel height 

increases the diffusion (on the y direction) increases and onset of hydrogen starvation 

time enhances.  
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Figure 5.11: Onset of H2 starvation time as a function of gas channel height and length, 

(+) constant Lcell= 7.3 cm, (o) constant Hcell= 0.178 mm  a) Jload= 3760 A m
-2

 b) Jload= 

5660 A m
-2

 

(b) 

(a) 
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5.4. CONCLUSIONS  

 Two phase flow and transport of liquid water in DEA-PEMFC operation at low 

temperatures is important since accumulated water has limiting effect on the cell 

voltage and material life such as carbon corrosion on the electrodes. In our study, we 

have developed a numerical two phase water transport model to investigate the 

diffusion and the convection related mechanisms. In order to validate our numerical 

model, simulations of liquid water accumulation inside the anode/cathode gas channels 

and GDL are compared with neutron imaging of water in a DEA PEMFC for two load 

current densities, 3760 and 5660 A m
-2

. The liquid water accumulation inside 

anode/cathode gas channels, GDL and voltage transients of the DEA operation agree 

very well with experimental results in literature [8].  

 Based on model results; it can be concluded that two phase water transport take 

place as vapor water back diffuses from cathode to anode and saturates at the exit of 

anode and dragged from anode to cathode such as an equilibrium phenomena.  

Moreover, the accumulated liquid water at the anode exit contributes to the nitrogen 

back diffusion from anode to cathode and decreases the nitrogen blanketing effect.  

 By using our model; the liquid water amount that is accumulated at 

anode/cathode GDL and gas channels can be estimated at different load conditions. 

Since accumulated liquid water has corrosive result on the expensive electrodes by 

oxidation of carbon support, it is vital to estimate the liquid water amount inside the gas 

diffusion electrodes.  

 In our study, it is observed that especially at high current density (i.e. 5660 A 

cm
-2

) there is no resistance to the transfer of liquid water from GDL to gas channel. 

Since there is high amount of liquid water inside the GDL, once the water starts to be 

drained from GDL to gas channel, a siphoning mechanism from GDL occurs and 

increases the water transport towards gas channels.  

 On the other hand, at relatively low current density (i.e. 3760 A cm
-2

)  since the 

amount of liquid water is low due to less electrochemical production, the resistance to 

liquid water transport from GDL to gas channel is higher. Moreover, both our numerical 

model and neutron imaging results show that in DEA operation even purging does not 

drift the accumulated water inside the GDL; due to the MPL content of the GDL.  
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 Lastly, in our model it is found that onset of hydrogen starvation time is related 

with gas channel dimensions, i.e., channel length and channel depth. An empirical 

correlation is estimated as
3/2
cellH

onset cellt L . It is revealed that as the channel length 

increases the convection also enhances since convective velocity is dominated by 

channel length however the length that the nitrogen accumulated (l) increases as well. 

Thus, because of the increased nitrogen blanketing effect the DEA transient time 

reduces.   

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 

110 

 

 

CHAPTER 6 

CONCLUSIONS 

 The total cost of the PEMFC system was 275 $/kW in 2002, the achieved goal of 

today is 60 $/kW and the goal is 30$/kW in 2015. The two main cost factors (50% of 

the total cost) are the electrolyte and the system components (which reduce the energy 

density of the total system) in PEMFC. Thus, in this thesis, low cost membrane 

synthesis which can boost up the operation temperature over 100 °C without sacrificing 

membrane proton conductivity was one of our targets. Moreover, the dead-ended anode 

operation of a PEMFC have been used in the previous research studies, however it is 

not very well adopted by industry. Even though, it has several attractive qualities, such 

as reduced weight, cost, and system complexity it has problem in anode purge period 

and duration, and water management at low operating temperatures. Moreover, the 

DEA operation is a challenging mode of operation to assess durability and degradation 

issues as well.  Hence, the high temperature DEA operation of PEMFC is the subject of 

this thesis to obtain good system performance. High temperature DEA operation has not 

been studied before in literature. Since it eliminates liquid related problems, DEA could 

be more viable with high temperature membranes than Nafion
®
. 

 In the membrane synthesis, this thesis is achieved a patentable high temperature 

PEMFC membrane. Radiation induced graft copolymerization method has been used to 

synthesize the high temperature proton exchange membrane out of 4VP, 2VP and NVP 

monomers onto ETFE base film in a solvent environment at low radiation doses. The 

membrane synthesis was in two continued studies as the copolymer and the membrane 

synthesis. The evidence of grafting by FTIR and EDX has been proved. After 

copolymerization conditions have been defined, the copolymers were doped with 

phosphoric acid to give the membrane water free proton conductivity mechanism. It is 
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found that out of three monomers 4VP achieved the best proton conductivity results. 

Moreover, it was observed that after phosphoric acid doping of ETFE-g-P2VP and 

ETFE-g-PNVP copolymers lost their graft components and no pronounced proton 

conductivities have been observed for these membranes. The, detailed proton 

conductivity measurements have been carried out for ETFE-g-P4VP membranes to 

analyze its proton conductivity mechanism. It has been observed that its proton 

conductivity mechanism is similar to that of PBI membranes, and different than that of 

commercial Nafion
®

 membrane. The membrane proton conductivity increases with 

increased temperature and high relative humidity does not have pronounced effect on 

the proton conductivity. The FTA operation of the ETFE-g-P4VP membrane in fuel cell 

shows that its voltage performance increases with increased temperature and 

comparable with PBI membrane. As an advantage, the ETFE-g-P4VP membrane does 

not requires the very high temperatures as the PBI membrane needs (Tcell >150 °C) and 

can operate at 120 °C and achieve the low temperature Nafion
®
 membrane voltage by 

eliminating the water from the PEMFC.  

 The Greenlight
®

 FC G50 PEMFC test station and single fuel cell were 

overhauled for the thesis study and are working properly for the future testing. The test 

station is in FTA operation mode and the initial single fuel cell tests started by using 

purchased MEAs with Nafion
®

 membrane. After proper fuel cell performance has been 

observed for Nafion
®

 and ETFE-g-P4VP membrane, the test station was modified 

according to DEA operation mode by including additional hardware such as solenoid 

valves to anode inlet and outlet in the study. The DEA test of Nafion
®
 and high 

temperature ETFE-g-P4VP membranes were conducted. The transient time in DEa 

operation is the time between two purge cycle (such as voltage was 0.6 V at t=0 and 

decreases to 0.5 V at t=1000 s). The transient time of Nafion
® 

and high temperature 

ETFE-g-P4VP were 650 seconds and 550 seconds respectively at 400 mA cm
-2

 current 

density. During the transient time of DEA operation it is expected that voltage is 

constant for a while, and then due to the accumulation of species on the electrode active 

areas, voltage start to decrease. Moreover, the flatter region in Nafion
® 

membrane DEA 

operation cannot be observed for ETFE-g-P4VP membrane. This finding is interesting 

as it proves that the voltage decrease in DEA operation directly related with nitrogen 

accumulation since there is no water remains in the MEA structure in the high 

temperature DEA operation. On the other hand, it is obvious that the DEA operation 

performance of both membranes are comparable, but Nafion
® 

exhibit longer DEA 
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transient time.  The shorter transient and sudden decrease in the voltage indicates that 

synthesized high temperature ETFE-g-P4VP membrane has higher nitrogen permeation; 

another reason for the higher nitrogen permeation can be the high operation temperature 

(110 °C) since the gas permeability increases with increased temperature. 

 The degradation behaviors of both membranes are also different. The Nafion
® 

membrane becomes thinner at the dry hydrogen inlet and thinning can leads to pinhole 

formation. Moreover, the accumulated water can oxidize the carbon structure of the 

electrodes. However, no detailed study has been completed for the electrode 

degradation. On the other hand, in the case of ETFE-g-P4VP membrane, the graft 

component is degraded due to the radicals that form due to the gas crossover. As the 

graft component worn out, the proton conductivity decreases and the cell voltage 

decreases. Hence, base film ETFE remains and no pinhole formation is observed.   

 The developed two phase water transport numerical model investigates the 

diffusion and the convection related mechanisms. In order to validate our numerical 

model, simulations of liquid water accumulation inside the anode/cathode gas channels 

and GDL are compared with neutron imaging of water in a DEA PEMFC for two load 

current densities, 3760 and 5660 A m
-2

 and results are agree well with experimental 

results in literature [8].  

 Based on model results; it can be concluded that two phase water transport take 

place as vapor water back diffuses from cathode to anode and saturates at the exit of 

anode and dragged from anode to cathode such as an equilibrium phenomena.  

Moreover, the accumulated liquid water at the anode exit contributes to the nitrogen 

back diffusion from anode to cathode and decreases the nitrogen blanketing effect. By 

using our model; the liquid water amount that is accumulated at anode/cathode GDL 

and gas channels can be estimated at different load conditions. Since accumulated liquid 

water has corrosive result on the expensive electrodes by oxidation of carbon support, it 

is vital to estimate the liquid water amount inside the gas diffusion electrodes. In our 

model it is found that onset of hydrogen starvation time is related with gas channel 

dimensions, i.e., channel length and channel depth. Thus, our model can be used to 

predict the optimum channel dimensions in a physical experiment. 
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CHAPTER 7 

FUTURE WORK  

 Today there are three main barriers in front of the fuel cells to be placed in the 

industrial use: (a) durability, (b) cost, and (c) hydrogen supply transportation [161]. This 

thesis mainly addresses (b) in a very promising directions. Even though, the high 

temperature DEA operation is new in the literature, the results are very encouraging. On 

the other hand the following enhancements should be the subjects of the future study.  

 

 Gas Permeability 

 High temperature DEA operation of PEMFC is very critical to reduce the cost of 

the system while improving the cell performance for commercial automotive 

applications. The synthesized high temperature membrane ETFE-g-P4VP is very 

promising FTA and DEA performances. On the other hand, undesired reactions that 

have been linked to the degradation of membrane occur during the operations. It is 

observed that gas permeability is the main reason that is increasing the degradation of 

the membrane. Moreover, the nitrogen permeation of the membrane causes low 

transient time in DEA operation.  In literature it is reported that the cross-linker addition 

to the graft structure enhancing both the durability and the gas permeation of the 

radiation grafted membrane. The synthesized high temperature ETFE-g-P4VP 

membrane DEA operation performance can be improved by enhancing its gas 

permeation by using cross-linker agents such as divinylbenzene (DVB), dichloromethyl 

phosphinic acid (DCMP) at high temperatures [102,160].  
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 MEA Preparation 

 The MEA preparation methods are very well defined for Nafion
® 

membrane that 

is operated at low temperature, and these methods are partly used for preparation of 

high temperature membranes as it is mentioned previously. On the other hand, it is 

evident with SEM images that there is delamination of the electrodes from membrane, 

so that the Nafion
®  

ionomer solution that was used to glue the membrane and electrode 

interface are not lasting during high temperature operation since the Tg of Nafion
®

 is 

below 100 °C. Hence, the new ionomer binders to reduce internal resistance and prevent 

delamination should be explored. 

 

 Temperature Effects 

 Since, both high temperature DEA operation and high temperature operation of 

radiation induced grafted membranes have not been studied in literature before, the 

effect of high temperature on radiation induced grafted membrane. For instance, in the 

literature it is found that as the temperature increases the gas permeability of the 

phosphoric acid doped membrane increases, the same behavior is observed in our DEA 

operated PEMFC operation [80]. Hence, temperature vs. gas permeability can be 

investigated in detail and the study can fill an emerging gap in the literature.  

 

 Modeling  

 The one dimensional, along the channel, numerical model that is built in this 

thesis study firstly is used to investigate the two phase water transport between anode 

and cathode in DEA operation. Hence, it is well predicted the water amount that is 

accumulates on anode/cathode GDLs and gas channels. On this aspect the numerical 

model is important as it can be used to predict the water amount which is difficult to 

measure in the physical experiments. Moreover, the model defines the water dynamics 

during the DEA operation. Thus, one dimensional along the channel numerical model 

will be further extended to simulate high temperature DEA operation of PEMFC to 

investigate the mechanism that causes voltage declines during a transient of DEA 

operation. 
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APPENDIX A 

IN PLANE FOUR POINT PROBE PROTON CONDUCTIVITY SET UP OF THE 

HIGH TEMPERATURE PROTON EXCHANGE MEMBRANES 

 

Figure A.1: Membrane Assembly Technique inside the conductivity cell. Placing 

membrane under platinum wires in the conductivity cell makes better contact with the 

membrane. 

 

 
 

Figure A.2: Bekktech
®
 four point probe conductivity cell 
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Figure A.3: Bekktech
®
 conductivity cell assembly 

 

Figure A.4: Greenlight FC G50 test station maintains control on the cell temperature, 

relative humidity, pressure and the flow rate of the air 
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Figure A.5: Conductivity cell is controlled with Greenlight
®
 FC G50 test station. Cell is 

heated with a cartridge type heater that is placed inside the metal end plates. According 

to dew point temperature and air stream temperature RH of the dry air was maintained. 
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APPENDIX B 

EXPERIMENTAL SET UP OF DEA OPERATION 

 

Figure B.1: Schematic of the solenoid valve control with an external power supply 

 

Figure B.2: Connecting the solenoid valves to the NI 6220 Digital Output 
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APPENDIX C 

MEA PREPARATION 

 

Figure C.1: ETFE-g-4VP high temperature proton conducting membrane. Radiation 

dose:10 kGy, grafting solvent: n-propanol, GL: 42% 

 

Figure C.2: Hot pressed MEA with ETFE-g-4VP high temperature proton conducting 

membrane. (10 MPa pressure, 90 seconds) 
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