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ABSTRACT 

 

GENERATION OF XANTHOMONAS DERIVED TALE PROTEINS  

THAT INHIBIT GENE TRANSCRIPTION  

 

Şeyda Şaziye Temiz 

Biological Sciences and Bioengineering, MSc. Thesis, 2013  

Thesis supervisor: Batu Erman 

 

Keywords: Golden Gate cloning, IL-7R alpha, NF-kappa B, 

Transcription activator-like effector, TALEN   

 

In the first part of this study, we aimed to mutate several transcription factor 

binding sites in the IL-7R alpha gene locus by generating transcription activator like 

effector (TALE) nucleases (TALEN) targeting these sites. We designed, constructed 

and expressed 3 pairs of TALENs targeting the NF-kappaB, Notch, and glucocorticoid 

receptor (GR) binding sites in the IL7R gene enhancer. We generated cell lines with 

insertion and deletion (INDEL) mutations induced by these TALENs at these target 

sites and determined the effects of these mutations on IL-7R alpha gene expression. We 

assessed TALEN induced mutations in murine Neuro-2a and RLM11 cell lines by a 

modified restriction fragment length polymorphism (RFLP) assay and by DNA 

sequencing. We demonstrate that mutations induced by TALEN pairs targeting the 

IL7R enhancer NF-kappaB site reduce IL-7R alpha gene expression, while mutations in 

the Notch binding site did not change IL-7R expression. In the second part of this study, 

we aimed to inhibit the transcription activation function of the NF-kB protein by 

competitive binding of target sites with TALE proteins. We generated plasmids 

encoding TALE-dsRed fusion proteins that were designed to bind NF-kB binding sites 

in a reporter cell line. TNF-alpha treatment of this cell line results in NF-kB nuclear 

translocation and a resultant increase in GFP fluorescence. TALE-dsRed fusion proteins 

with increasing numbers of DNA binding repeats competed for NF-kB binding to this 

reporter and resulted in reduced GFP expression upon TNF treatment. Our experiments 

demonstrate that TALENs and TALEs can efficiently inhibit gene transcription. 
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ÖZET 

 

GEN TRANSKRİPSİYONUNU BASKILAYAN XANTHOMONAS KÖKENLİ 

 TALE PROTEİNLERİNİN OLUŞTURULMASI 

 

Şeyda Şaziye Temiz 

Biyoloji Bilimleri ve Biyomühendislik, Master Tezi, 2013 

Tez Danışmanı: Batu Erman 

 

Anahtar Kelimeler: Golden Gate klonlama, IL-7R alfa, NF-kappa B, 

 Transcription activator-like effector, TALEN 

 

 Bu çalışmanın ilk bölümünde IL7R alfa gen bölgesindeki çeşitli transkripsiyon 

faktör bağlanma bölgelerinde oluşturulan transcription activator-like effector (TALE) 

nükleaz (TALEN) plazmidleri ile mütasyonlar oluşturmayı amaçladık. IL-7R geninin 

enhancer bölgesindeki NF-kappaB, Notch ve GR bağlanma bölgelerini hedefleyen 3 çift 

TALEN plazmidini oluşturduk. TALEN plazmidlerini hücrede ifade ederek mütasyonlu 

hücre hatları oluşturduk ve bu mütasyonların IL7R ifadesine etkisini araştırdık. Neuro-

2a ve RLM11 hücre hatlarında oluşturduğumuz mütasyonları modifiye edilmiş RFLP 

yöntemi ile DNA sekanslaması ile belirledik. NF-kB bağlanma bölgesindeki 

mütasyonların IL-7R ifadesinde azalmaya neden olduğunu, Notch bağlanma 

bölgesindeki mütasyonların ise IL-7R ifadesini değiştirmediğini gözlemledik. Bu 

çalışmanın ikinci bölümünde, NF-kB proteinlerinin transkripsiyon aktivasyonundaki 

rolünü NF-kB bağlanma bölgelerine kompetitif olarak bağlanan TALE proteinleri ile 

inhibe etmeyi amaçladık. TNF-alfa uygulanmasına NF-kB translokasyonu sonucunda 

GFP ifadesi ile cevap veren reporter hücre hattındaki NF-kB bağlanma bölgesine 

bağlanacak TALE-dsRed füzyon proteinleri ifade eden plazmidler oluşturduk. TALE-

dsRed füzyon proteinlerinin NF-kB proteininin bağlanmasini kompetitif olarak inhibe 

ederek reporter hücrelerde GFP ifadesini azalttığını gözlemledik. Çalışmalarımız, 

TALE ve TALEN proteinlerini gen transkripyonunu baskılayabileceğimizi 

göstermektedir. 
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1. INTRODUCTION 

 

1.1 Transcription Activator like Effectors 

 Transcriptional activator-like (TAL) effector proteins are produced by Gram-

negative bacterial plant pathogens that belong to the genus Xanthomonas which cause 

various diseases in different plant species. These pathogens secrete TAL effector 

proteins through a Hrp (hypersensitive response and pathogenicity)-type III secretion 

system (T3S) into the cytoplasm of host plant cells using a bacterial translocon 

complex. Once translocated to the eukaryotic plant cell, bacterial TAL effector proteins 

interfere with different plant pathways to contribute to infection. Once inside the plant 

cell cytoplasm, TALE proteins translocate to nucleus with the help of a NLS and target 

various elements in the plant genome. By binding to host plant cell gene promoters, 

TAL effector proteins lead to the  transcriptional activation of the  host genes[1]. 

 

1.1.1 Special Structural Features of TAL Effector Proteins 

 TAL effector proteins are composed of an N-terminal translocation domain, a 

central domain with array of repeat units for DNA binding, and a C-terminal region 

containing a nuclear localization signal (NLS) and an acidic transcriptional activation 

domain (Figure1.1).  
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Figure 1.1 Transcription activator-like effector (TALE) protein structure and DNA 

recognition code. TALE proteins from Xanthomonas species consist of an N-terminal 
translocation domain (TD), a central repeat array for DNA binding, a C-terminal 

domain with two nuclear localization signals (NLS) and a transcriptional activation 
domain (AD). Each DNA binding repeat is composed of 34 identical amino acids with 

the exception of the 12th and 13th residues, RVDs that determine DNA binding 
specificity. The consensus repeat sequence is shown in single letter amino acid code 

above the protein schematic, with the RVD underlined. The DNA binding base 
preferences of four common RVDs (coded by colored boxes) are shown[2].  

The characteristic central DNA binding domain of TALE proteins consists of 

tandem repeat units with 34 amino acids residues followed by a single half repeat of 20 

amino acids. In each repeat unit, only two adjacent amino acid residues at position 12 

and 13 are polymorphic and named ‘repeat-variable di-residues’ (RVDs) (Figure 1.2). 

The DNA binding specificity of a TAL effector protein is determined by the number 

and order of the different RVD containing repeats. Each RVD in a repeat recognizes a 

single nucleotide mediated by a code (summarized in Fig.1) that results in specific DNA 

binding. The correlation between the number of repeat units of TALE binding domains 

and the length of its target DNA sequence indicated the presence of a code determining 

RVDs specificity[3]. In 2010, binding specificities of RVDs were validated using 

computational analysis[4]. In naturally occurring TALE proteins, certain RVDs bind to 

their corresponding repeat with high specificity such that HD binds to C, NG binds to T 

and NI binds to A. On the other hand, some RVDs show degeneracy of recognizing two 

different bases or being nonselective towards bases. Repeat units containing NN RVDs 

recognize both A and G bases; whereas NS repeats recognizes all four base pairs.  
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Figure 1.2 Tandem repeats in the DNA binding domain of TALE protein from 

Xanthomonas axonopodispv. citri str. 306 (gb|AAM39243.1). Each repeat consists of 34 
amino acid residues, where the 12th and 13thare polymorphic, repeat variable di-residues 
(RVDs) (highlighted according to the code given in Fig 1.1 for amino acid recognition). 

Amino acid sequence at the bottom is the consensus. 

Comparison of naturally occurring TALE protein RVD sequences and the 

corresponding DNA binding sites at the promoters of host genes indicates that at a gross 

level, the code of ‘one RVD to one base’ is not context dependent; in other words, base 

preference of one RVD is not affected by the preference of adjacent RVDs. However, a 

big unknown in TALE protein DNA binding is whether all RVDs must contact their 

corresponding bases or whether ‘mismatches’ can be allowed for efficient binding. 

Most recognition sites of naturally occurring TALEs are preceded by a thymidine base 

at position -1 (the base before the TALE binding site). Although no sequence 

conservation exists between repeat units comprising the DNA binding domain and the 

amino acid sequence preceding the first repeat, secondary structure prediction studies 

indicate a degree of conservation in this -1 repeat[3]. TAL effector proteins also make 

contacts with the -1 T residue by a so called ‘0 repeat’ or ‘cryptic repeat’, present at the 

N-terminus of the central repeat domain. This interaction was found to be necessary for 

DNA binding and activation of target genes. The direct relationship between the identity 

of hypervariable residues (RVD) of repeat units and the sequence of TAL effector 

protein binding sites in host gene promoters enables the design of artificial TAL effector 



4 
 

proteins targeted to specific binding sites [3, 4]. The ability to assemble custom repeat 

arrays of TAL effector proteins that can bind desired DNA sequences has recently 

allowed for the design of artificial transcription factors and DNA binding domains with 

various functions[5-7].  

 

1.1.2 Crystal Structure of TAL Effector Proteins 

The final verification of the code governing TALE protein DNA binding came 

from crystallization studies in 2012 where two groups determined the atomic scale 

structure of two TALE proteins. The DNA binding domain of naturally occurring TAL 

effector protein PthXo1 from the rice pathogen X.oryzae was crystallized as bound to its 

DNA target (PDB:3UGM)[8]. In addition, crystal structure of an artificially engineered 

TAL effector protein, dHax3 was reported as both DNA-free and DNA-bound states 

(PDB: 3V6P and 3V6T, for DNA-free and DNA-bound structures, respectively)[9]. 

The structures in these studies, consistently show that repeat units of TAL 

effector proteins form a right handed, superhelical structure around a relatively 

unperturbed B-form DNA helix such that RVDs make contacts with residues in the 

DNA major groove (Figure 1.3). The external diameter for superhelical wrapping of the 

TAL effector protein around the DNA duplex is approximately 60 Ǻ. Each repeat unit 

corresponding to 34 amino acids in the primary sequence, consists of a left-handed helix 

bundle, in which a short and a long α helix are connected with a loop. In this structure, 

residues 3-11 of each repeat unit form the short α helix, whereas residues 14-33 form 

the long α helix, placing the 12th and 13th residues (the RVD) in the loop inserted into 

the DNA major groove. These structures identify a proline residue at 27th position of the 

repeats which generates a kink in the long helix, which is claimed to be critical for the 

sequential packaging of repeat units and the association of the tandem array of repeats 

with the DNA structure [8, 9]. The 13th residue in each RVD makes sequence specific 

contacts with target DNA; whereas, 12th residue interacts with a backbone carbonyl 

oxygen atom of a conserved alanine residue located at the C-terminus of each repeat. In 

other words, the first position of the RVD stabilizes the confirmation of the RVD loops 

rather than recognizing DNA and it is the second position (the 13th residue) of every 

repeat that contributes to the DNA binding specificity[8, 9]. 
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Figure 1.3 Crystal structure of the natural TAL Effector protein, PthXo1. a) Side view 
of PthXo1 in its DNA bound state and b) top view, the protein backbone is indicated in 

pink and the DNA double helix is shown in grey. c) Structure of a single repeat unit 
containing an HD RVD, the H residue is shown in red, the D residue in green and alpha 

helices in purple (PDB: 3UGM, [8]). 

The biochemical basis behind the sequence specific interaction of RVDs with 

DNA is clearly demonstrated by these two structural studies. In these structures, an HD 

RVD recognizes a cytosine base utilizing van der Waals interactions between an 

aspartate residue at the second position of the RVD with the cytosine and hydrogen 

bonds between a carboxylate oxygen atom of the aspartate and the N4 atom of cytosine. 

In these structures, an NG RVD interacts with a thymine base such that the smallest 

amino acid, glycine, at second position provides sufficient space for the 5-methyl group 

of the thymine base and forms van der Walls interactions with this methyl group.  In 

these structures, an NN RVDs interacts with less specificity, binding both adenosine 

and guanosine by forming a hydrogen bond between the second position asparagine and 

the N7 nitrogen of the adenosine and guanosine purine rings. The NS RVD is also 

nonselective because the second position serine makes hydrogen bonds with the N7 

atom of adenosine and guanosine purine rings. Curiously, these structural studies do not 

yield clues about contacts for interaction of the NS RVD with pyrimidines. Isoleucine, 

the second position residue of the NI RVD, forms non-polar van der Waals contacts 

between its aliphatic side chain and the C8 of adenine purine ring or the C5 of a 

cytosine pyrimidine ring [8, 9].  
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1.1.3 Designing Custom TAL Effector Proteins 

The simple and modular structure of the TAL effector DNA binding domain, 

enable the assembly of repeat units in a desired order resulting in specific recognition of 

target DNA sequence in any cell or organism. Designed arrays of TAL effector repeats 

have been fused to different functional domains to target these domains to desired 

genomic loci (Figure 1.4). Fusion of regulatory domains such as activators and 

repressors to TALE DNA binding domains can target these functions to desired gene 

loci in complex genomes [5, 10-12]. TALE repeat domain fusion to nonspecific 

nuclease domains is an important tool for site directed mutagenesis [5, 6]. Recently, the 

hyperactivated catalytic domain of the DNA invertase enzyme was fused to TALE 

DNA binding domains for constructing TAL effector recombinases (TALER) for site 

directed recombination [13]. 

 
Figure 1.4 TALE based custom proteins can be used to target DNA. Functional domains 

such as activators, repressors, nucleases and recombinases can be fused to the central 
DNA binding domain of TALE proteins for targeted modification of genomes. The 

TALE protein is shown fused to alternative C-terminal functional domains, the DNA 
binding domain comprising of TALE repeats are color coded as defined in Figure 1.1. 

An NLS is indicated by green stripes [2]. 

 The most common RVDs used in the assembly of TALE repeat arrays were NN, 

NI, NG and HD for the recognition of bases guanine, adenine, thymine and cytosine, 

respectively. However, the ability of NN RVDs to recognize both adenine and guanine 

is a drawback in designing TALE repeat arrays targeting DNA sequences containing 

guanine. TAL effector nucleases containing NK, a rare RVD among naturally occurring 

TAL effectors, for recognition of guanine was found to be less active than NN 

containing TAL effector nucleases. In addition, the affinity of NK containing TALE 
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repeat arrays to targets with guanine bases was found to be less than that of NN 

containing arrays[14]. In a recent study, the NH RVD was found to be more specific for 

recognizing guanine over adenine when compared to the other RVDs targeting guanine; 

NN and NK. Although NH may be a more specific guanine binder, the activity of 

TALEs with NH containing repeats was less than those with NN containing repeats [14, 

15]. Therefore, the current practice of designing artificial TALE proteins must take into 

consideration the affinity and specificity of individual repeats and often relies on 

empirically determined rules for binding. 

 

1.1.4 TALE Assembly Platforms 

The presence of multiple repeat sequences different only in two amino acid 

residues makes the assembly of custom TALEs using common molecular biology 

techniques, difficult. Although there are commercial DNA synthesis companies such as 

Cellectis Bioresearch and Life Technologies providing custom synthesized genes 

encoding TALEs[16], synthesis of highly repetitive sequences is complicated and 

currently too expensive for high-throughput genome editing experiments[2].  

An understanding of the features required for TAL effector protein activity has 

recently enabled the engineering of TAL effector protein coding genes using different 

assembly platforms, generated in three different laboratories: a)standard cloning-based 

methods, b) Golden Gate assembly methods and c) solid-phase assembly methods[17]. 

Standard cloning based methods assemble TALE repeat arrays through 

sequential restriction digestion and ligation of plasmids encoding units of single or 

multiple TALE repeat domains. Unit assembly [18], REAL (Restriction Enzyme and 

Ligation) [19] and REAL-Fast Assembly[20] are three reported methods using standard 

cloning assembly methods. Although the use of basic molecular cloning techniques 

seems like an advantage for these methods, it is not possible to perform high-throughput 

assembly. 

The Golden Gate assembly method uses type IIS restriction endonuclease 

enzymes, which generate multiple sticky ends of fragments that can be assembled in 

groups of up to 10 repeat unit fragments in the specified order in one single ligation 

reaction. Golden Gate assembly protocol takes approximately 5 consecutive days. This 
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assembly entails a two-step ligation reaction, where repeat units are first assembled in 

intermediary array plasmids and then joined in a final expression plasmid. Sequencing 

is performed for identification of the clone with correct number of repeat units. The 

Golden Gate assembly method is advantageous because of its simplicity, speed and low 

cost. As a result, this is the most popular TALE assembly method in published work [5, 

7, 10]. However, assembling large numbers of TAL effector repeat arrays is difficult 

using the Golden Gate method, making high throughput assembly not feasible. 

Currently, there are four different high-throughput TALE assembly methods 

based on solid phase assembly[2]. First, the FLASH (Fast Ligation-based Automatable 

Solid-phase High-throughput) system uses an archive of 376 plasmids encoding one, 

two, three and four TAL effector repeats with variously ordered RVDs that are 

assembled in an iterative fashion on solid phase magnetic beads. After assembly, the 

final TAL effector repeat array is released from magnetic beads by restriction enzyme 

digestion and cloned directly into an expression vector. Using this technique, 96 

different DNA fragments encoding the final full-length repeat array with the desired 

number of repeats can be assembled in less than one day [21]. The second protocol, 

iterative capped assembly (ICA) involves the addition of monomer units to growing 

chains of TALE repeats while blocking incomplete extension of chains using hairpin 

‘capping’ oligonucleotides. This method allows the synthesis of up to 21 repeat arrays 

in 3 hours [22]. The third technique, ligation independent cloning (LIC),is based on the 

use of a library of plasmids encoding repeat unit combinations containing long, unique 

single stranded DNA overhangs that anneal with overhangs of other fragments without 

any need for ligation. It is possible to construct plasmids encoding more than 600 

TALEs in a single day using the LIC strategy[12]. Finally a magnetic bead based TALE 

assembly method described by Wang et al. (2012), enables synthesis of over one 

hundred TALE repeat arrays with 16-20 units in three days[23]. 

Reagent kits for these different assembly platforms for TAL effector protein 

construction are currently provided by a non-profit plasmid distribution service 

Addgene (http://www.addgene.org/TALEN/). Software for designing arrays of TAL 

effector proteins, detailed protocols for plasmid construction, and reference collections 

are available on websites such as TALE-NT[24] and TALengineering.org[17]. An 

active and open newsgroup was established by the Joung research group at Harvard 
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Medical School, USA, for discussion of projects and problems related to TAL effector 

proteins (https://groups.google.com/group/talengineering).  

 

1.1.5 Targeted Genome Modification Using TALENs 

Designer nucleases are important tools for site directed mutagenesis at the 

genomic level. Genome editing by nucleases is not only a very useful tool for studying 

the function of targeted genes, but also has found spectacular success in the clinic for 

treating patients suffering from diseases caused by monogenic mutations. For treatment 

of HIV-1 infection, zinc finger nucleases (ZFNs) were designed to disrupt the CCR5 

(chemokine receptor 5) gene, which is a co-receptor required to infect T cells. 

Engraftment of ex vivo expanded HIV-1 resistant autologous CD4+ T cells resulted in 

lower viral count and higher CD4+ T-cell count in mice compared to wild-type CD4+ T 

cell engrafted mice[25]. The approach of using ZFNs in HIV treatment have entered 

Phase 2 clinical trials[17]. 

 ZFNs have traditionally been used as artificial (designed) nucleases. ZFNs 

contain a DNA binding domain composed of 3-4 synthetic zinc finger motifs fused to 

the non-sequence-specific DNA cleavage domain of the type II restriction enzyme FokI. 

The crystal structure of zinc finger transcription factors indicate that ZFNs bind DNA 

whereby each zinc finger motif recognizes a specific DNA sequence by inserting an α 

helix into the major groove of the DNA double helix[26]. In this structure, amino acids 

within each zinc finger motif make contacts with 4 bases of the DNA helix (3 on one 

strand and one on the opposite strand). Thus, a zinc finger DNA binding protein with 4 

motifs can contact up to 12 bases of DNA and zinc finger motifs can be modularly 

assembled to recognize long DNA sequences. 

The FokI restriction enzyme is a type IIS restriction endonuclease and 

dimerization of its endonuclease domain is required for its activity for creating double 

stranded DNA breaks. For this reason, ZFNs are designed to have two subunits resulting 

in the formation of a heterodimer on two closely oriented ‘inverted’ half sites. ZFN 

monomers bind to these two half-sites separated by a spacer region on which the FokI 

domain from each heterodimer assembles and generates a double stranded break 

(DSB)[27]. ZFNs have been used for genome modification of various model organisms. 
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However, generation of sequence-specific ZFNs is complicated, due to two main 

reasons. First, there exists a crosstalk between individual zinc finger motifs such that the 

motif in the second position affects the binding specificity of the motif in the first 

position, etc. This limits the modular use of  ZFNs for assembling designed DNA 

binding domains. In other words, the DNA binding of zinc finger nucleases is context-

dependent. Secondly, some zinc finger motifs are not specific to the targeted site, such 

that they can bind and cleave alternative sites, resulting in off target specificity. Because 

ZFNs are used to introduce DSB in genomic DNA that results in the generation of 

mutations, off target specificity may lead to unwanted mutations throughout the genome 

[28].  

 

Figure 1.5 TALEN structure for genome editing. For targeted genome modification, a 
pair of TALEs, each fused to a FokI DNA cleavage domain is designed to bind a target 

DNA sequence (black bases).The FokI enzyme requires dimerization for its DNA 
cleavage activity and assembles on the intervening spacer sequence (blue bases) to 

cleave in this region. TALEN enzymes have a modified structure compared to naturally 
occurring TALE proteins. The domain structure of TALEN proteins is as follows: the 
NLS (light green) is located at the N-terminus; N-terminal and C-terminal segments 
(orange) flank the DNA binding domain; the FokI domain (pink) is fused to the C-

terminus. Each repeat unit in the DBD is color coded (as in Figure 1.1) to indicate the 
RVD-DNA binding code [5, 29]. 

Transcription activator-like effector nucleases (TALENs) for targeted genome 

engineering (Figure 1.5) have generated much interest since the discovery of the one 

RVD to one base code [3, 4]. As in the case of zinc finger nucleases, TALENs consist 

of a DNA binding domain fused to a FokI restriction enzyme DNA cleavage domain. 
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Because FokI only cleaves DNA as a dimer, TALENs are designed as heterodimers, 

such that two monomers bind to individual target sites separated by a short spacer 

region. The length of the spacer region is important for FokI dimerization and DNA 

cleavage [30]. Several groups have used TALENs to modify endogenous genes in 

yeast[31], fruit flies[32], zebrafish[33-36], frogs[37], plants[7], livestock[38], mice[39] 

and human somatic and pluripotent stem cells[40] The simple one RVD to one base 

code makes the construction of TALE repeat arrays targeting any DNA sequence easy 

and routine. In a recent study, TALENs were found to be significantly more mutagenic 

than ZFNs [34]. In another study, side-by-side analysis of ZFNs and TALENs with 

overlapping binding sites for endogenous targets has shown that TALENs were less 

cytotoxic than ZFNs with similar gene disruption activities[41]. Lower toxicity is likely 

a result of lower rates of off target cleavage by TALENs when compared to ZFNs, 

which may result in unwanted mutation of alternative gene loci. These parameters make 

TALENs superior over ZFNs for targeted gene modification. 

 

1.1.6 Types of Genome Modification  

 Genome editing using site-specific nucleases depends on the generation of DNA 

double stranded breaks (DSB). Cellular repair of DNA DSBs induced at spacer regions 

occur either by non-homologous end joining (NHEJ) or if a homologous piece of DNA 

is present, by homologous recombination (HR) (Figure 1.6).  
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Figure 1.6 TALEN induced genome editing. Genome editing after DSB creation occurs 
either by non-homologous end joining (NHEJ) or by homologous recombination (HR). 
a) In the case of targeted genome editing using one TALEN pair, NHEJ results in small 

insertions and deletions (INDELs) at the site of the DSBs. HR can be used for gene 
deletion, gene insertion (for example an epitope tag) or gene replacement (for example a 
fluorescent reporter gene such as GFP) depending on the donor template used. b) If two 
TALEN pairs create DSBs on the same chromosome, NHEJ mediated repair may result 
in chromosomal deletion or inversion. If DSBs are generated on different chromosomes, 

translocations may occur. This mode of DNA repair may be problematic if off-target 
specificity is not minimized [2, 29]. 

NHEJ is an error-prone mechanism in which broken DNA ends are simply re-

joined leading to small insertions or deletions (INDELs) at the site of the double 

stranded break. INDELs induced in the protein coding sequences of genes will often 

yield frame-shift mutations leading to a knock out of gene function. Recently, it was 

reported that NHEJ mediated reading frame correction can be used to restore protein 

function in Duchenne muscular dystrophy, a genetic disease caused by mutations in the 

coding region for the dystrophin gene[42]. Homologous recombination repairs double 

stranded breaks using a homologous sequence as a template. In this case, a DNA 
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template with sequences homologous to those flanking the site of the double stranded 

break is introduced to the cell, together with TALEN encoding plasmids. Depending on 

the sequences within the donor template, homology directed repair can result in gene 

deletion, gene addition or gene replacement. Gene addition can be used to integrate 

specific genes under the control of specific promoter elements or to insert an epitope tag 

for labeling proteins encoded by endogenous genes. Gene replacement involves 

exchange of genetic information between an endogenous genomic region and an 

exogenous DNA template[2]. Use of single stranded homologous oligonucleotides as 

donors rather than a template plasmids was recently shown to be effective for homology 

directed repair of DNA double stranded breaks [35]. Introduction of two pairs of 

TALENs into cells at the same time may lead to more complex genome alterations. If 

two TALEN pairs target the same chromosome, this results in either large chromosomal 

deletions or inversions. On the other hand, targeting different chromosomes may lead to 

translocations[17]. In a recent study, large chromosomal deletions and inversions were 

obtained in livestock by targeting the same chromosome with two TALEN pairs [38].     

 

1.1.7 Scaffold Optimization 

Recent work has identified specific structural features of TAL effector proteins 

that are important in the construction of proteins with the desired specificity and 

activity. The main difference between various commonly available TALEN 

architectures is the length and sequence of the N-terminal and C-terminal amino acid 

sequences flanking the TALE DBD. In naturally occurring TALE proteins, the N-

terminal region contains sequences necessary for secretion into host plant cells. On the 

other hand, the C-terminal region contains both the nuclear localization signals and a 

transcriptional activation domain. In the earliest report of targeting DNA double 

stranded breaks with TAL effector-nuclease fusions, the DNA binding repeat domain 

was flanked by 287 amino acid N-terminal region and a 231 amino acid C-terminal 

region. This active TALEN protein pair recognized two 12 bp-long target sites on DNA 

separated by a spacer of 12-30 bp [30].  Even though this was the first of its kind to 

generate DSBs in genomic DNA, it was not known if the cutting efficiency or 

specificity was optimal and whether they could be improved. It is possible that amino 
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acid sequences flanking the DBD, necessary for TAL effector protein function in plant 

cells may interfere with the catalytic activity of TALENs.  

For this reason, several groups generated truncations in the N and C terminal 

regions of TALENs to optimize DNA cleavage activity. Miller et al. (2011) tested the 

activity of TALENs with different C-terminal linker lengths separating the DBD from 

the FokI catalytic domain. They found that TALENs with the highest activity contained 

a truncated 136 residue N-terminal and a 63 amino acid C-terminal domain. These 

truncated TALEN proteins resulted in a genome mutation rate between 5-20% across a 

spacer size range of 12-20 bp [6]. Another study determined that the minimal DNA 

binding domain of TALEN proteins must have at least 47 amino acids in the C-terminal 

linker between the TALE DBD and the FokI catalytic domain in addition to a truncated 

153 residue N-terminal domain. This study showed that these truncated TALEN 

proteins could cleave DNA with a spacer length of 12-21 bp between two target sites. 

An even shorter C-terminal linker with only 17 amino acids was also shown to be active 

when used for targeting 12 bp spacers[41]. These studies indicate that there is a 

correlation between the spacer length of the DNA sequence within which the FokI 

enzyme cleaves and the length of the C-terminal linker region separating the DBD from 

the FokI domain. This constraint likely affects the positioning of the two FokI 

enzymatic domains in a heterodimeric structure that is necessary for cleavage. 

A second generation TALEN scaffold named Goldy TALEN was recently 

reported to have improved genome editing efficiency in zebrafish [35]. Although the 

Goldy scaffold uses 136 residue N-terminal domain and a 63 amino acid C-terminal 

linker domain, like the previously described scaffold [6], there are nine different amino 

acid substitutions at the N-terminal and 5 different amino acids substitutions at C-

terminal linker domains. Efficient gene knockout was obtained in livestock using 

TALEN pairs assembled in a Goldy scaffold[38]. Recently, it was reported that DNA 

binding domains of 15 RVDs in the Goldy TALEN scaffold with spacers ranging 13-

19bp resulted in highly efficient genome editing in zebrafish[43]. 

 Various TALEN protein scaffolds optimize FokI domain dimerization to 

generate active TALEN heterodimers at target sites. However, optimizing the cleavage 

activity at a target site may also increase the probability of homodimeric TALEN 

proteins composed of identical subunits that bind to and cleave unwanted, ‘off-target’ 



15 
 

sites. Off target cleavage is a critical parameter for the efficacy and safety of designed 

TALEN pairs. In the case of ZFNs, off-target cleavage and the associated cytotoxicity 

were reduced using mutant FokI cleavage domains. Specific residues on the dimer 

interface of the FokI cleavage domain were mutated such that homodimerization of 

TALEN monomers were prevented by electrostatic and hydrophobic interactions [44]. 

The idea for mutant FokI cleavage domains to prevent homodimerization was 

successfully applied to TALEN proteins. In fact, obligate heterodimeric TALEN pairs 

induced similar or higher mutation frequencies in zebrafish genes when compared to 

TALENs with the same DNA binding domain with wild type FokI cleavage domains. 

Moreover, the frequency of abnormal embryos that developed after obligate 

heterodimeric TALEN pair encoding mRNA microinjection was less than that 

generated by mRNAs encoding homodimeric TALEN pairs, with wild type FokI 

domains[45]. Obligate heterodimer TALEN scaffolds were also used in studies that 

generated gene knockouts in zebrafish[36] and Xenopus embryos[37].  

 

1.1.8 Applications of Genome Editing Using TALENs 

TALENs have been used in various model organisms for targeted genome 

modification. In most of the studies, a single TALEN pair was used to induce NHEJ to 

create small insertions and deletions (INDELs) for generation of gene knockouts [21, 

32, 39, 42, 46]. Use of two TALEN pairs to create double stranded breaks on the same 

chromosome generates large chromosomal deletions and inversions [38]. Introduction 

of TALEN pairs together with a donor template, even a short single-stranded DNA 

allows insertion of a desired sequence into the target site [7, 35, 40]. In addition, 

homology directed repair of DNA double stranded breaks can be used for fusion of 

endogenous genes to sequences encoding epitope tags or fluorescent reporter proteins 

such as GFP to track protein expression, distribution and interaction with other proteins 

[17] (Figure 1.6). 

New animal models of human diseases can be rapidly created using TALENs to 

induce mutations without any need for embryonic stem cell cultures and targeting 

vectors. Recently, an animal model for familial hypercholesterolemia was created using 

TALENs targeting a gene that encodes low-density lipoprotein (LDL) receptor in 

livestock[38]. In a recent study, a phenotypic model of Hermansky-Pudlak syndrome, 
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which results in decreased pigmentation and bleeding problems, was created by 

injecting mRNAs encoding a TALEN pair together with synthetic 

oligodeoxynucleotides into one-cell stage mouse embryos to generate chocolate 

missense mutations in the RAB38 gene encoding a small GTPase for the regulation of 

intracellular vesicle trafficking. In this study, germline mutations created through 

homology directed repair of TALEN induced DSBs were corrected using a donor 

template with wild type sequence [47]. Thus, TALEN mediated gene modification has a 

great potential to be used in gene therapy to correct or disrupt genes or gene products, 

especially in the case of diseases with genetic components. 

Another use for TALEN technology is the generation of mutants for conducting 

structure-function studies probing the function of protein coding genes and genomic 

regulatory regions. In this study we generated TALENs to make mutations in a putative 

transcription factor binding sites in the enhancer of the IL7R gene and also we 

generated TALE proteins that competitively inhibit the important transcription factor 

NF-κB. The significance of these two TALEN targets is described in the section below. 

 

1.2 Interleukin-7 signaling 

1.2.1 Interleukin-7 and Interleukin-7 Receptor 

 Interleukin-7 (IL-7) is an essential and non-redundant cytokine necessary for the 

development, differentiation and survival of lymphocytes. The human IL-7 gene is 72kb 

long and is located on chromosome 8 encoding a protein of 20 kD, whereas the murine 

IL-7 gene is 41 kb in length and is located on chromosome 3, encoding a protein of 

about 18 kD. The active form of human IL-7 has a protein size of 25 kD due to post 

translational glycosylation. It is a single chain protein consisting of four α helices with a 

hydrophobic core. Human IL-7 is produced by nonhematopoietic cells, such as bone 

marrow stromal cells and epithelial cells of the thymus, skin and intestine[48, 49]. 

 

IL7 was discovered in 1988 as a result of its proliferative activity on immature 

murine B-cells in vivo. Later studies on IL-7-/- and IL7 receptor (IL7R)-/- knockout 

mice displayed a significant decrease in the number of T lymphocytes, indicating a role 

of the IL-7 cytokine in development. IL7 also has a role in maintaining stable numbers 

of naive and memory T-cells in the peripheral immune system. The proliferative effect 



17 
 

of IL7 on lymphocytes makes it a potent therapeutic for lymphoid regeneration in 

lymphopenic states such as after chemotherapy or radiotherapy (reviewed in [50]).   

 

IL7 signals lymphocytes by binding to its specific receptor IL-7R composed of a 

heterodimer of two transmembrane proteins: the specific α chain (IL7Rα, also known as 

CD127) and a common cytokine receptor γ chain (γc), which is shared by the receptors 

of IL-2, IL-4, IL-9 and IL-15. Both of these subunits are necessary for high affinity 

binding of IL-7. The human IL-7Rα gene is localized to chromosome 5 with a size of 

about 20kb whereas the murine IL-7Rα gene is on chromosome 15 with approximate 

size of 22 kb. Both human and murine genes contain eight exons and seven introns. The 

mature form of IL7R is composed of 439 amino acid residues with a molecular weight 

of 49.5 kD. IL7R is expressed mainly by lymphoid lineage cells, namely T-

lymphocytes, progenitor B-lymphocytes, and NK cells. IL7R is also expressed by cells 

of innate immune system such as certain dendritic cells, macrophages derived from 

bone-marrow and lymphoid tissue inducer cells (LTi).In addition, it was demonstrated 

that IL7Rα was present on non-hematopoietic cells such as human intestinal cells, 

human endothelial cells and several non-lymphoid cancer cells such as lung, melanoma, 

renal, colon and breast cancer cells [49, 51]. The role of this receptor on these non-

lymphoid lineages is currently not known. 

 

1.2.2 IL-7R Signaling Pathways 

 Extracellular IL-7 binding induces dimerization of the IL7Rα and γ chains. As a 

result, JAK kinases bound to the intracellular domains of the IL7Rα chain and γ chain 

are activated such that JAK3 phosphorylates JAK1 and the α-chain. Phosphorylated 

residues promote the recruitment of PI3K and STAT proteins. PI3K phosphorylates 

Akt, which promotes cell survival through degradation of pro-apoptotic proteins such as 

Bad and Bax. Phosphorylated STAT proteins dimerize and translocate to the nucleus 

and function as transcription factors that induce the expression of target genes such as 

Bcl-2, Cyclin D1, SOCS-1 and c-myc (Figure 1.7)[52].  
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Figure 1.7 The IL-7 receptor signaling pathway[52]. 

 

1.2.3 Importance of IL-7R Signaling for Lymphopoiesis 

 B cell development occurs mainly in the bone marrow and can be divided into 

different stages according to the expression of intra cellular and surface markers, 

rearrangement of status of the antibody encoding immunoglobulin heavy and light 

chains, and their cell cycle status[53]. Figure 1.8 shows the different stages of B cell 

development in the bone marrow and the expression of IL-7R in these stages. 

 The importance of the IL-7 response for mouse B cell development was 

demonstrated by a block in the transition from the pro-B cell to the pre-B cell stage in 

IL-7R deficient mice[54]. IL-7R signaling has a role in regulating the accessibility of 

chromosomes containing the immunoglobulin heavy chain genes to the gene 

recombination machinery during B lymphocyte development. Immunoglobulin gene 

recombination is important for the generation of the primary antibody repertoire 

diversity [55]. Attenuation of IL-7R signaling by the transcription factor IRF-4, 



19 
 

upregulated by pre-BCR signals, affects activation of light chain rearrangement in pre-B 

lymphocytes [56]. IL-7R signaling is necessary for expression of transcription factors 

such as EBF, important for transition from the pro-B stages to the more mature stages 

[57].  

 
Figure 1.8 IL-7R expression by lymphocytes[58].B lymphocytes of the bone 

marrowand T lymphocytes of the thymus express IL7R on the cell surface at different 
stages of development.The expression of IL7R is dynamically regulated during 

development. 
 

 IL-7R expression is tightly regulated in T cell development. It is expressed on 

double-negative thymocytes, absent on double-positive thymocytes and re-expressed by 

single positive cells (Figure 1.8). The double negative stage of T cells can be divided 

into four sub-populations according to the surface expression of CD44 and CD25, 

known as DN1 through DN4.β-selection of thymocytes occurs atthe DN3 stage. 

Developmental arrest of IL-7R deficient cells at the DN3 stage indicates that  IL-7 

signaling is essential for survival and proliferation of β-selected cells. In addition, 

absence of IL-7 signaling can be compensated by overexpression of anti-apoptotic 

proteins such as Bcl-2 or by loss of pro-apoptotic factors such as Bim or Bax (as 

reviewed in [59]). IL-7R signaling blocks the differentiation of DN cells to the DP stage 

by inhibiting expression of the transcription factors TCF-1, LEF-1 and RORγt [60]. 
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Thus, IL-7Rα expression is terminated in thymocytes that reach the double positive 

(DP) stage. IL-7Rα is re-expressed in post DP intermediate cells (CD4+CD8low)on 

which CD8 coreceptor transcription is selectively downregulated. Sustained TCR 

signaling results in differentiation of intermediate cells into CD4 single positive cells. 

Intermediate cells that no longer receive TCR signals differentiate into CD8 single 

positive cells as a result of  IL-7 signaling (as reviewed in [61]).Thus, IL7R signaling 

plays critical roles at different stages of T lymphocyte development and lack of 

signaling or misregulated signaling can cause diseases such as SCID or lymphoma[62, 

63]. 

In the peripheral immune system, IL-7Rα is expressed on all naive CD4 and 

CD8 T cells. Upon antigen stimulation of effector T cells, IL-7R expression is 

decreased whereas, paradoxically, receptor expression for other cytokines such as IL-2, 

IL-4 and IL-15 is increased. IL-7R expression is also upregulatedin memory cells. IL-

7R expression in naive and memory cells is important not only for their survival but 

also for maintaining a long term homeostatic balance between these peripheral 

cells[64]. 

 

1.2.4 Regulation of IL7R alpha Gene 

 The expression profile of IL7R changes during the different developmental 

stages of both B- and T-lymphocytes. Regulation of IL7R expression at these stages is 

controlled by different transcription factors that are tightly regulated during 

development. Various transcription factors that control IL7Rα expression at the 

transcriptional level have been identified. Figure 1.9 shows the IL7Rα gene locus and 

the bioinformatically identified transcription factor binding sites in this locus.   
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Figure 1.9 IL7R gene loci with different transcription factor binding sites 

 
 

 In the promoter region of the IL-7R gene, a GGAA motif serves as a binding site 

for PU.1 which is an ETS family transcription factor. It was demonstrated that PU.1 is 

required for IL-7R expression in developing B cells[65]. Although T cells do not 

express PU.1, this GGAA motif is occupied by another ETS family transcription factor, 

GGAA binding protein (GABP) that regulates IL-7R expression. GABP binding to the 

GGAA motif in the absence of PU.1 can promote IL7R expression in committed B 

cells, but not in early B cell progenitors[66]. 

 Runx1 is a transcription factor that regulates IL-7R expression and it has a 

binding site in promoter region of IL-7R gene. Studies on Runx1 deficient mice showed 

that this transcription factor was necessary for the positive selection and maturation of 

CD4 single positive thymocytes. It was suggested that the loss of survival signals due to 

an absence of IL7Rα expression in Runx1 deficient mice was the reason behind the 

reduction in the number of CD4 single positive T lymphocytes[67]. 

 The IL-7Rα gene locus has an evolutionarily conserved region (ECR) about 3 kb 

upstream of the transcription initiation site. This ECR contains binding sites for the 

GATA, Foxo, glucocorticoid receptor (GR) and NF-κB transcription factors. GATA-3 

is a zinc-finger transcription factor important in lymphocyte development. In addition to 

its role in T lymphocytes, GATA-3 and CD127 were found to be molecular markers for 

mouse thymic NK-cell development. Loss of CD127 expression on early thymocytes 

precursors in Gata3 deficient mice suggested that generation of CD127 positive NK 

cells is GATA-3 dependent[68]. 

 Foxo transcription factors, a subgroup of the Fork head family, have roles in the 

regulation of apoptosis, cell cycle progression, glucose metabolism and stress 

resistance. A Foxo binding site in the IL-7Rα gene is located about 3.5 kb upstream of 
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transcription initiation site according to detailed bioinformatics analysis. IL-7Rα 

expression in CD44lo CD4+ and CD8+ T cells was severely impaired in Foxo1 knockout 

mice, indicating a direct regulatory effect of Foxo1 on IL-7Rα transcription[69].Other 

transcription factors binding to enhancer region of IL-7R gene locus, Notch, NF-κB and 

GR whose binding sites were mutated in this study using TALEN technology, will be 

explained in detail below.   

 

1.2.4.1    Notch 

The Notch signaling is highly conserved in all metazoans with its roles in the 

regulation of cell proliferation, differentiation and cell death. The Notch receptor is a 

transmembrane protein and interacts with transmembrane ligands Delta and Serrate 

(Jagged in mammals) on neighboring cells. Binding of Notch to its ligand induces two 

proteolytic cleavages. The first cleavage by ADAM-family metalloproteases separates 

the extracellular domain of the receptor and the second cleavage driven by a γ-secretase 

enzyme complex releases the Notch intracellular domain (NICD) from the plasma 

membrane. NICD translocates to nucleus and interacts with the DNA binding protein 

CBF1/ RBPjk/ Su(H)/ Lag1 (CSL) and its co-activator Mastermind-like (MAML) to 

upregulate expression of target genes (Figure 1.10)[70, 71]. 

Notch signaling is important for T-lineage specification as demonstrated by 

studies in which induced deletion of Notch1 in hematopoietic progenitors resulted in a 

reduction in thymus size and a decrease in the number of thymocytes. In fact, the 

absence of Notch signaling in the thymus drives differentiation of lymphoid cells to the 

B cell lineage[72].  

Overexpression of the intracellular active form of Notch1 in human early thymic 

precursors (ETPs) in a fetal thymic organ culture (FTOC), upregulated IL7Rα 

expression whereas deficiency of Notch1 signaling resulted in the down-regulation of 

IL7Rα expression and a developmental arrest at the β-selection check point. In addition, 

a putative RBP-Jk-binding site was identified about 1000bp upstream of transcription 

initiation site of IL-7Rα after chromatin immunoprecipitation and luciferase assays 

showing IL7Rα is a direct transcriptional target of Notch1 [73].  
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Figure 1.10 Notch signaling [70].The Notch intracellular domain (NICD) is released 

from the membrane upon ligand binding induced cleavage of the Notch receptor on the 
plasma membrane. Cleaved NICD translocates into the nucleus and binds a preexisting 

CSL (RBP-Jk) transcription factor complex; helps recruit the adaptor protein 
Mastermind-like (MAML) and results in transcriptional activation. 

1.2.4.2 NF-κB 

 NF-κB is an important regulator in the immune system controlling the 

expression of numerous genes that are necessary in processes like cell survival, 

differentiation and proliferation. Tight regulation of the NF-κB pathway is important 

because its inappropriate activation is associated with different diseases such as cancer, 

autoimmunity and chronic inflammation. In the resting state, an NF-κB transcription 

factor composed of a heterodimer of the p50 and p65 proteins is bound to its inhibitor, 

IκB. The NFκB-IκB complex resides in the cytoplasm because of the shielding of the 

nuclear localization signal of NF-κB. Various external stimuli can activate NF-κB; three 

of them are summarized in Figure 1.11. Although various numbers of proteins are 

involved in each pathway initiated with different stimuli, all of them intersect in 



24 
 

activation of an IκB kinase, which phosphorylates IκB, leading to its ubiquitinylation 

and subsequent proteosomal degradation. Removal of IκB results in the activation of the 

NF-κB dimer which translocates to the nucleus and binds to its target sites for gene 

activation (as reviewed in [74, 75]).  

 An NF-κB binding site is present in the promoter region of the IL-7Rα gene. 

Whether this site has a functional significance for IL7R gene transcription has not been 

addressed. A microarray study linking NF-κB signaling to IL7R gene transcription 

identified IL7R as a TNF-inducible gene[76]. 

 
Figure 1.11 NF-κB signaling pathways. 

1.2.4.3 Glucocorticoid Receptor (GR) 

Glucocorticoids are secreted by cells of adrenal cortex as a response to the 

effects of cytokines released during inflammation such as TNF-α and IL-1β. 

Glucocorticoids act as anti-inflammatory factors by inhibiting cytokine mediated 

signaling pathways and inducing apoptosis in certain cells of the immune system [77].  

The glucocorticoid receptor, an inactive transcription factor resident in the 

cytoplasm of unstimulated cells is released from chaperones after binding its ligand, in 

glucocorticoid signaled cells and translocates to the nucleus. GR bound to its ligand can 

function by activating or inhibiting the transcription of various genes by binding to 
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glucocorticoid response elements (GRE) in their promoters (Figure 1.12). Another 

mechanism for transcription regulation of GR is protein-protein interaction. For 

instance, GR inhibits NF-κB regulated gene expression by binding to the p65 subunit of 

NF-κB to block the mechanistic interaction of p65 with the transcription machinery[78]. 

 
Figure 1.12 Glucocorticoid receptor signaling. In the absence of signaling, cytoplasmic 
GR (blue pentagon) is bound by the chaperones Hsp90 and p23. In the presence of the 
hydrophobic glucocorticoid ligand, which freely diffuses into the cell, GR dissociates 

from its chaperones, is phosphorylated and translocates into the nucleus. GR can 
activate genes with GRE elements, inhibit genes with nGRE elements and also inhibit 

NF-κB responsive genes by binding to the p65 subunit[77]. 

A GRE was identified 3000bp upstream of the IL-7Rα transcription initiation 

site. Recruitment of GR to this GRE activates transcription [79]. In a recent study, it 

was shown that both IL-7R mRNA and protein expression were upregulated in T cells 

treated with dexamethasone, a synthetic glucocorticoid [80]. 
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2. AIM OF THE STUDY 

 

 Transcription activator-like effector (TALE) proteins from the plant pathogen 

Xanthomonas have a central DNA binding domain (DBD) composed of highly 

conserved repeat units. These repeats are polymorphic at their 12th and 13th amino acid 

residues, named as repeat variable di-residues (RVDs) which determine the binding 

specificity of the DNA binding domain. A simple one RVD to one base code and the 

modular structure of the DBD allows for the engineering of TALE proteins with novel 

DNA binding specificity and functionality. TALE nucleases (TALENs) that consist of a 

non-sequence-specific FokI cleavage domain fused to a target site specific DNA 

binding domain are used for genome editing. Cellular repair of TALEN induced double 

stranded breaks (DSBs) occurs either by non-homologous end joining (NHEJ) or by 

homologous recombination (HR) that results in mutations at target sites.  

 In the first part of this study, we aimed to mutate transcription factor binding 

sites of the IL-7Rα gene locus using TALEN technology to determine the effects of 

these mutations on IL-7R expression. We designed and constructed three TALEN pairs 

targeting binding sites of glucocorticoid receptor (GR), Notch and NF-κB in the IL-7R 

gene enhancer. We performed a modified restriction fragment length polymorphism 

(RFLP) assay and DNA sequencing analysis to detect mutations induced at target sites 

of Neuro-2a and RLM11 cell lines transfected with TALEN constructs. We further 

analyzed the expression of IL-7R of mutated cell lines. In the second part of the study, 

we designed, constructed and expressed TALEdsRed fusion proteins binding to an NF-

κB binding site in a reporter cell line in order to inhibit the transcription activation 

function of NF-κB upon TNF-α treatment by competitive binding. The aim of this 

project in the long term is to generate novel cell lines with specific mutations. 
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3.  MATERIALS AND METHODS 

 

 

3.1 Materials 

 

3.1.1 Chemicals 

All the chemicals used in this project are listed in the Appendix A. 

 

3.1.2 Equipment 

All the equipment used in this project are listed in the Appendix B. 

 

3.1.3 Buffers and Solutions 

Standard buffers and solutions used in this project were prepared according to 

the protocols in Sambrook et al., 2001. 

Calcium Chloride (CaCl2) solution:  60 mM CaCl2, 15% glycerol and 10mM 

PIPES at pH 7.00 were mixed and the solution was filter-sterilized and stored at 4°C for 

competent cell preparation.  

5X Tris-Borate-EDTA (TBE) Buffer:  54 g Tris base, 27.5 g Boric acid and 

20mL of 0.5 M EDTA at pH 8.00 were dissolved in 1L of dH2O and stored at RT. 

 1% (w/v) Agarose gel: 1 g of agarose was dissolved in 100 mL of 0.5X TBE 

buffer by heating in a microwave oven. 0.001 % (v/v) of ethidium bromide was added 

to solution for visualization of nucleic acids.      

Phosphate-buffered saline (PBS) :  1 tablet of PBS was dissolved in 200 mL of 

dH2O. The solution was filter-sterilized for use in mammalian cell culture and stored at 

4°C.  
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Polyethylenimine (PEI) (1µg/µL):  50 mg PEI was dissolved in 50 mL dH2O 

that has been heated to ~80°C and cooled to room temperature. After neutralizing to pH 

7.00, the solution was filter-sterilized, aliquoted and stored at -20°C. 

 FACS buffer:   0.5 g Bovine serum albumin (BSA) and 0.5 g sodium azide were 

dissolved in 500 mL 1X HBSS and stored at 4°C.  

 

3.1.4 Growth Media 

3.1.4.1 Bacterial growth media 

Liquid media: 20 g Luria-Broth (LB) was dissolved in 1 L of dH2O and 

autoclaved at 121°C for 15 min. For selection, ampicillin with final concentration of 

100 µg/mL, kanamycin with final concentration of 50µg/mL, spectinomycin with final 

concentration of 50µg/mL and tetracycline with final concentration of 10µg/mL were 

added to liquid medium after autoclave.  

Solid media:  35 g LB agar was dissolved in 1 L of dH2O and autoclaved at 

121°C for 15 min.  For selection, antibiotics with previously indicated concentrations 

were added to autoclaved medium after cooling down to 50°C. Autoclaved and 

antibiotic added medium was poured onto sterile Petri dishes. Solid agar plates were 

stored at 4°C.  

 

3.1.4.2 Mammalian cell culture growth media 

Adherent cell lines Phoenix, NIH3T3, Neuro-2A, HEK293 6.1.1 were grown in 

DMEM cell culture medium that is supplemented with 10% heat inactivated fetal 

bovine serum (FBS),  2 mM L-glutamine,  100 unit/mL penicillin and 100 unit/mL 

streptomycin.     

Suspension cell line RLM11 were grown in RPMI 1640 cell culture medium that 

is supplemented with 10% heat inactivated fetal bovine serum (FBS), 2 mM L-

Glutamine,  100 unit/mL,  100 unit/mL streptomycin,  non-essential amino acids, 

vitamin and 50 µM 2-mercaptoethanol.  

Both adherent and suspension cell lines were frozen in fetal bovine serum (FBS) 

containing DMSO at a final concentration of 10% (v/v). Freezing medium is stored at 

4°C. 

 

 



29 
 

3.1.5 Cell Types 

E. coli DH-5α competent cells were used for bacterial transformation of 

plasmids. 

Neuro-2A mouse neuroblastoma cell line (ATCC: CCL-131) was used for 

transfection experiments. Phoenix cell line was derived from HEK293T cell line such 

that constructs for production of gag, pol and envelope protein were placed in that cells 

and used for virus production.  NIH 3T3 is mouse embryonic fibroblast cell line 

(ATCC: CCL-1658) and used for infection experiments. HEK293 6.1.1 is derived form 

of human embryonic kidney cell line such that 4 NF-κB binding sites fused with fos 

promoter and GFP were integrated to the genome. 

RLM11, a radiation-induced BALB/c murine CD4 single positive thymoma T 

cell line, was used for transfection and analysis of IL7R expression level with 

FACS[81]. 

 

3.1.6 Commercial Molecular Biology Kits 

 QIAGEN Plasmid Midi Kit,  12145, QIAGEN,  Germany 

 QIAquick Gel Extraction Kit,  28704, QIAGEN,  Germany 

 GenElute Mammalian Genomic DNA Miniprep Kit,  G1N350,  SIGMA, 

Germany 

 GenElute PCR Clean-Up Kit,  NA1020,  SIGMA, Germany  

 CloneJETTM PCR Cloning Kit, K1232, Thermo Fisher Scientific, 

 

3.1.7 Enzymes 

All enzymes and their corresponding buffers used in this project are from NEB 

and Fermentas.  

 

3.1.8 Vectors and Primers 

Vectors and primers used in this project are listed in Table 3.1 and Table 3.2.  
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Vector Name Purpose Bacterial Resistance 

pcDNA-GFP Transfection efficiency 
control 

Ampicillin 

pIRES2eGFP Cloning Kanamycin 

pMIGIIdsRED Cloning Ampicillin 

pcDNA3.1(+) Cloning Ampicillin 

pHD1-pHD10 

pNG1-pNG10 

pNN1-pNN10 

pNI1-pNI10 

Module plasmids for 
TALE / TALEN 

construction 
Tetracycline 

pFUS_A 

pFUS_B1- pFUSB10 

Array plasmids for 
TALE / TALEN 

construction 
Spectinomycin 

pLR-HD 

pLR-NG 

pLR-NN 

pLR-NI 

Last repeat plasmids for 
TALE / TALEN 

construction 
Tetracycline 

pCAG-T7-
TALEN(Sangamo) 

Backbone plasmid for 
TALEN construction 

Ampicillin 

pCAG-T7-
TALEN(Sangamo)-

FokI-KKR-Destination 

Backbone plasmid for 
TALEN construction 

with mutant FokI 
Ampicillin 

pCAG-T7-
TALEN(Sangamo)-

FokI-ELD-Destination 

Backbone plasmid for 
TALEN construction 

with mutant FokI 
Ampicillin 

pC-Goldy TALEN Backbone plasmid for 
TALEN construction 

Ampicillin 

pJET1.2/blunt Cloning of PCR 
products 

Ampicillin 

Table 3.1 List of vectors used in this project 
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Primer Name Sequence Purpose 

Notch for BamHI ATAGGATCCATTGAAACCATAACCACCCTC 
Notch TALEN 

target site 
amplification 

Notch rev Bgl2 GCGAGATCTCCCTTCTCTCTAATTCTGTT 
Notch TALEN 

target site 
amplification 

Kpl11 For CCAAGGAATAAACCCAAGGA 
NFKB TALEN 

target site 
amplification 

Kpl11 Rev TCTCCCAAGCAACAAAAGAA 
NFKB TALEN 

target site 
amplification 

pCR8_F1 TTGATGCCTGGCAGTTCCCT 
Colony PCR of 
Golden GATE 

reaction #1 

pCR8_R1 CGAACCGAACAGGCTTATGT 
Colony PCR of 
Golden GATE 

reaction #1 

TAL_F1 TTGGCGTCGGCAAACAGTGG 
Colony PCR of 
Golden GATE 

reaction #2 

TAL_R2 GGCGACGAGGTGGTCGTTGG 
Colony PCR of 
Golden GATE 

reaction #2 

SeqTALEN_ 

5-1 
CATCGCGCAATGCACTGAC 

Sequencing of final 
TALEN construct 

pJET1.2 forward 
sequencing primer CGACTCACTATAGGGAGAGCGCC 

Colony PCR and 
sequencing of 
cloned PCR 

products 

pJET1.2 reverse 
sequencing primer 

 

TTCTTGTAGCTAAAAGGTACCGTC 

Colony PCR and 
sequencing of 
cloned PCR 

products 

Table 3.2 List of primers used in this project 
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3.1.9 DNA Molecular Weight Marker  

DNA molecular weight marker used in this project is given in Appendix C. 

 

3.1.10 DNA sequencing 

DNA sequencing was commercially performed by McLab, CA, USA. 

(http://www.mclab.com/home.php) 

 

3.1.11 Software and Computer Based Programs 

The software and computer based programs used in this project  

Program Name Website/ Company Purpose 

CLC Main 

Workbench 

6.1.1 

http://www.clcbio.com/ 

Primer design, 

molecular 

cloning, 

sequence data 

management 

FlowJo 7.6.5 http://www.flowjo.com/ 
FACS data 

analysis 

TAL Effector 

Nucleotide 

Targeter 2.0 

https://tale-nt.cac.cornell.edu/ 
TALE / TALEN 

design tool 

Quantity One Bio – Rad 
Gel image 

analysis 

Visual 

Molecular 

Dynamics 

(VMD) 

http://www.ks.uiuc.edu/Research/vmd/ 

Crystal structure 

display and 

analysis 

Table 3.3 List of software and computer based programs used in this study 
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3.2 Methods 

 

3.2.1 Bacterial Cell Culture 

3.2.1.1 Bacterial culture growth  

E.coli DH5α bacterial cells were grown overnight (~16 h) at 37°C shaking at 

250 rpm in Luria Broth (LB). Bacterial cells were either spread or streaked on LB Agar 

plates to obtain single colonies and grown overnight (~16 h) at 37°C. Antibiotics were 

added to growth media depending on the application.  

For long-term storage of bacterial cells, glycerol was added to the overnight 

grown culture to a final concentration of 15% in 1 mL. Bacterial glycerol stocks were 

stored at -80°C.  

 

3.2.1.2 Competent cell preparation and transformation  

E. coli DH5α competent cells were prepared using stock of previously prepared 

competent cells. 50µL from previously prepared competent cells were grown in 50 mL 

LB without selective antibiotic overnight at 37°C shaking at 250 rpm. Next day, 4 mL 

from the overnight culture was diluted within 400 mL LB and incubated under same 

growth conditions until the OD590 reaches to 0.375. Then, previously prepared ice-cold 

CaCl2 solution was used for resuspension of bacterial cell pellet after successive 

centrifugation steps and for final preparation. 200µL aliquots of competent cells 

prepared were frozen immediately in liquid nitrogen and then stored at -80°C. 

Competency of prepared cells was tested by transforming varying concentrations of 

pUC19 plasmid.      

For transformation of competent cells, CaCl2 treated chemically competent 

bacterial cells were taken from -80°C and ~100 pg of plasmid DNA was added before 

cells were completely thawed. After 30 min of incubation on ice, the cells were heat-

shocked at 42°C for 90 seconds and transferred back to ice rapidly to chill for 60 

seconds. 800µL of sterile LB without antibiotics added and cultures were incubated for 

45 minutes at 37°C for recovery of cells and expression of antibiotic resistance gene 

encoded by the plasmid. Transformed cells were spread onto LB agar plates containing 

appropriate antibiotic for selection using sterile glass beads. Then, the plates were 

incubated overnight at 37°C. 
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3.2.1.3 Plasmid DNA isolation 

Plasmid DNA isolation was performed either by the alkaline lysis protocol or by 

QIAGEN Plasmid Midi Kits. For plasmid isolation, either single colony of E.coli from 

LB agar plates or glycerol stock was grown overnight at 37°C shaking at 250 rpm in 

liquid medium containing selective antibiotics with appropriate concentrations. The 

concentration and purity of kit-isolated plasmid DNA were determined using Nanodrop.   

 

3.2.2 Vector Construction 

Restriction Enzyme Digestion: Digestion reactions containing template DNA, 

enzyme and its compatible buffer were incubated at the optimum temperature of the 

enzyme used for 2 hours. ~ 300 ng of template DNA was used for diagnostic digestions 

whereas the amount of template DNA used for gel extraction and cloning purposes was 

at least 1 µg.  

Agarose Gel Electrophoresis and Gel Extraction: Agarose gels to observe DNA 

samples and digestion products were prepared in varying concentrations from 0.8% to 

2% depending on the size of DNA fragments to be separated. Agarose gel was prepared 

by dissolving appropriate amount of agarose powder in 0.5X TBE, heating for 3-5 min 

in a microwave. After cooling-down of the solution to room temperature, ethidium 

bromide was added at a final concentration of 0.001% (v/v) and the gel was poured onto 

the gel apparatus for solidification. 0.5X TBE was also used as running buffer. DNA 

samples were mixed with 6X DNA loading dye before loading to the gel. 

Electrophoresis was performed at 100-135 V for 45-75 minutes and the bands were 

observed under UV light. Gel extraction of DNA samples was performed by QIAGEN 

Gel Extraction Kit.  

Dephosphorylation of Vector Ends: 5’ phosphate groups of linearized vector 

DNA were dephosphorylated using Calf Intestinal Alkaline Phosphatase (CIAP) prior to 

insert ligation, to prevent vector re-ligation.  

Ligation:  Ligation was performed using T4 DNA Ligase (Fermentas), in 1:3 and 

1:6 molar vector to insert ratio using 100ng vector. In addition, ligation reaction mixture 

without insert was prepared as negative control for each ligation. The ligation reaction 

was incubated at 16°C for 16 hours in a final volume of 20µL. Then, half of the ligation 

mixture was transformed into chemically competent bacteria.  
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3.2.3 Construction of TALE Expression Plasmids  

3.2.3.1 Identification of TALE and TALEN target sites 

 The software used for design of transcription activator like effectors (TALE) 

and transcription activator like effector nucleases (TALEN) is available for use as an 

online tool (TAL Effector Targeter and TALEN Targeter (old version with design 

guidelines), TALE-NT; https://tale-nt.cac.cornell.edu/). DNA sequence entered is 

scanned for potential TALEN recognition sites based on either preset design guidelines 

defined by four different articles or user-provided spacer and RVD lengths. The 

software gives coordinates and sequences of recognition sites for right and left TALEN 

monomers and the spacer sequence. In addition, RVD sequences necessary for 

construction of custom TALENs were also provided as software output.  Binding sites 

of TALEN pair and spacer sequences are given in Table 3.4 

 

 

Left TALEN binding 

sequence 
Spacer 

Right TALEN 

binding sequence 

GR 

TALEN 

AGCACATGCTGTACCAAA

AT 

ATTATGTCTTAACTTAA

CTTTGTTCTTTTAC 

ATCTTCACAACTAAA

GG 

Notch 

TALEN 
AGGGTCACCCTCATA GACTCCTGGGAGTTTTC ATTGCCCTTGTTTCT 

NFKB 

TALEN 

TGCCCCACCCAAAAGGGG

TAA 

GCACACCAGTGGAAAT

CCCCTGAG 

CAAACTAGCACATGC

TGTA 

Table 3.4 Binding sites of TALEN pair and spacer sequences 

 

 3.2.3.2 Assembly of custom TAL Effector and TALEN constructs using 

Golden Gate TALEN kit  

 TAL effector DNA binding domain is composed of tandem repeat modules. 12th 

and 13th amino acids within each repeat module, called repeat-variable di-residues 

(RVDs), are responsible for nucleotide recognition. NI, NN, NG and HD are the four 

most common RVDs, each preferentially bind to nucleotides A, G, T, and C, 

respectively. Design of custom TALE and TALENs were performed using TALEN 

Golden Gate Kit, which was obtained from Addgene. The Golden Gate TALEN kit  was 

reported by Cermak et al (2011) and contains a set of module plasmids with each 
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individual RVDs, array plasmids for intermediate cloning and backbone expression 

plasmids to make final TALEN expression constructs[5].  

The custom TALEN or TAL effector construct is assembled by using successive 

rounds of Golden Gate cloning, in which digestion by Type IIS restriction 

endonucleases such as BsaI and Esp3I is performed to create unique 4 bp overhangs on 

DNA fragments. These unique overhangs flanking each RVD were designed such that 

up to 10 RVD-encoding repeat module plasmids can be ligated in a single reaction. 

Assembly of repeat modules into array plasmids is followed by assembly of array 

plasmids into final expression vectors (Figure 3.1).Construction of TAL effector or 

TALEN construct was achieved in 5 days (Figure 3.2) 

 
Figure 3.1 Golden Gate assembly of custom TALE and TALEN constructs 
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Figure 3.2 Timeline for TAL effector and TALEN construction using  

TALEN Golden Gate kit [5]. 
 

Day 1: After identification of possible TALEN target sites and determination of 

the RVD sequence, two separate array plasmids were assembled for “n” RVD repeat 

module containing TALEN expression plasmids. First 10 module plasmids selected 

according to the order of RVD sequence were cloned into array plasmid pFUS_A. Then, 

modules were selected for remaining RVDs, 11 – (n-1), and cloned into the array 

plasmid pFUS_B#n-1. RVD encoding modules for second array were selected starting 

with plasmid #1. Last RVD (#n) was not included in this reaction as it was provided by 

a different, “last repeat” plasmid and included in the second step of Golden Gate 

cloning. 

Golden gate reaction #1 was set according to Table 3.5 for each intermediary 

array plasmid, called as reaction A for first array plasmid and reaction B for the second 

one. For example a TALEN encoding plasmid with 17 repeats was generated by cloning 

10 repeats into the pFUS-A plasmid and 6 repeats into the pFUS-B6 plasmid. The 

contents of these plasmids were transferred in later days of the procedure into the pC-

Goldy TALEN destination expression plasmid along with the contents of LR plasmids, 

in a four plasmid reaction. 
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Components Used amount 

Each of module vectors 150 ng 

pFUS vector 150 ng 

BsaI (NEB) 1 µL 

BSA (2 mg/ ml) 1µL 

T4 DNA ligase (NEB) 1 µL 

10X DNA ligase buffer 2 µL 

dH2O Up to 20µL 

Total 20µL 

Table 3.5 Components and amounts for Golden Gate reaction #1 

Reactions were incubated in a thermo cycler for following cycle: 

10 X (37°C/5 min + 16°C/10 min) + 50°C/5 min + 80°C/5min  

 

In order to degrade unligated linear dsDNA fragments of incomplete ligation 

products, and linearized vectors, 1µL of exonuclease V (RecBCD) (NEB) and 1µL of 

10mM ATP were added to reaction and incubated at 37°C for 1 hour. 

Chemically competent DH5α E.coli cells were transformed with 2 µL of the 

reaction and plated on LB agar containing 50µg/mL spectinomycin, with X-gal and 

IPTG for blue/white screening of colonies.   

 

Day 2: Correct assembly of TALEN RVD repeat modules into intermediary 

arrays was controlled first by performing colony PCR with 5 white colonies picked 

from each plate. A PCR master mix was prepared according to colony PCR conditions 

shown in Table 3.6 using pCR8_F1 and pCR8_R1 as forward and reverse primers, 

respectively, individual colonies were resuspended in this solution.  
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Component Volume  

10X standard Taq 
buffer(Mg free) 

2.5µL 

25 mM MgCl2 2µL 

10mM dNTP each 0.5µL 

 Forward primer 0.2µL 

Reverse primer 0.2µL 

Taq polymerase (5U/µl) 0.125µL 

dH2O 19.475µL 

Total 25µL 

Table 3.6 Optimized colony PCR conditions 

PCR was performed according to following cycle; 

95°C/4 min + 30X (95°C/30 s + 55°C/30 s + 72°C/135 s) + 72°C/10 min  

 

Depending on the colony PCR results, two correct clones were inoculated into 

3mL LB containing 50µg/mL spectinomycin and incubated overnight at 37°C shaking 

at 200 rpm.  

 

Day 3: Plasmid DNA was isolated from overnight cultures of pFUS_A and 

pFUS_B plasmids containing repeats. Correct assembly of array was controlled by 

restriction enzyme digestion with AflII and XbaI and agarose gel electrophoresis. 

Double digestion with these enzymes releases the repeat arrays and size of fragments 

produced was 1048 bp for pFUS_A containing 10 RVDs whereas size of fragments 

varied for pFUS_B plasmids.   

Correctly assembled intermediary arrays and sequence encoding the nth repeat 

were assembled into the final expression backbone vector. TALEN Golden Gate Kit 

contains 4 different backbone plasmids, pTAL1 and pTAL2 for TAL effector design 

whereas pTAL3 and pTAL4 for TALEN construction and expression of designed 

TALEN in yeast.  For expression of TALENs in mammalian cells after assembly, 

different final expression plasmids obtained from Addgene which are pCAG-T7-

TALEN (Sangamo), pCAG-T7-TALEN (Sangamo)-FokI-KKR-Destination, pCAG-T7-
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TALEN (Sangamo)-FokI-ELD-Destination and pC-Goldy TALEN. For Golden Gate 

reaction# 2, digestion and ligation were performed in 2 steps due to BsmBI restriction 

enzyme working at 55°C which inhibited the activity of T4 DNA ligase. The first part 

of the reaction was set according to Table 3.7. 

 

Components Used amount 

Reaction A 150 ng 

Reaction B 150 ng 

pLR vector 150ng 

Expression backbone vector  75ng 

NEB Buffer 4 (10X) 1.5 µL 

BsmBI (NEB) 0.5 µL 

dH2O Up to 15µL 

Total 15µL 

Table 3.7 Components for the first part of Golden Gate reaction #2 

After incubation of the first part of the reaction at 55°C for 10 minutes, the 

second part of the reaction was set according to Table 3.8 

 

Components Used amount 

ATP (10 mM) 2 µL 

NEB Buffer 4 (10X) 0.5 µL 

T4 DNA ligase 1 µL 

DTT (0.2M) 1µL 

Water 0.5 µL 

Total 20 µL 

Table 3.8 Components for second part of Golden Gate reaction #2. 

 Reactions were incubated in a thermo-cycler using the following cycle: 

16°C /15min + 55°C / 15 min + 80°C / 5 min 
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Chemically competent DH5α E.coli cells were transformed with 2 µL of the 

reaction and plated on LB agar containing 100 µg/mL ampicillin, with X-gal and IPTG 

for blue/white screening of colonies.   

 

Day 4: Colony PCR was performed to check the assembly of intermediary arrays 

into the final expression plasmid and 5 white colonies were picked from the plate. The 

colony PCR mix was prepared according to Table 3, using TAL_F1 and TAL_R2 as 

forward and reverse primers. After resuspending individual colonies in a reaction 

mixture, colony PCR was performed according to the following cycle; 

95°C/4 min + 30X (95°C/30 s + 55°C/30 s + 72°C/3 min) + 72°C/10 min 

 

Depending on colony PCR results, two correct clones were inoculated into 3mL 

LB containing 100µg/mL ampicillin and incubated overnight at 37°C shaking at 200 

rpm. 

 

Day 5: Plasmid DNA was isolated from overnight cultures and correct assembly 

of the final full-length repeat array was verified by restriction enzyme digestion with 

AatII and StuI and agarose gel electrophoresis. In addition, BspEI control digest, which 

cut only in HD modules of 2-10, was performed to determine final array integrity. DNA 

midipreps were prepared from correctly assembled TALEN plasmids, and sequenced 

using the SeqTALEN 5-1 and TAL_R2 primers. 

 

To express TALEN pairs in mammalian cells, either TALEN constructs will be 

cloned to a plasmid containing mammalian expression promoter (Strategy 1) or the 

destination plasmid selected in Golden Gate reaction #2 would contain promoter for 

mammalian expression (Strategy 2). GR TALEN monomers that were commercially 

synthesized were cloned first to pMIGII backbone plasmids containing fluorescent 

reporter both to track expression of TALEN pair and to produce virus (Strategy 1a). GR 

TALEN pair was cloned to CMV promoter containing plasmids together with 

fluorescent reporters to express these plasmids ectopically in mammalian cells (Strategy 

1b). Two different TALEN pairs were designed using Golden Gate TALEN kit, 

TALEN pairs targeting Notch binding site and NF-κB binding site. After assembling 

repeat monomers in array plasmids of pFUS_A and pFUS_B, as destination vector 

either pCAGT7 (Strategy 2a) or pC-Goldy backbone were selected (Strategy 2c). In 
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addition, TALEN repeats constructed in pCAGT7 were cloned to PCAGT7-FokI-ELD 

or pCAGT7-FokI-KKR mutants (Strategy 2b). Figure 3.3 summarizes strategies of 

constructing TALEN pairs in different mammalian expression plasmid. 

 

 
Figure 3.3 Strategies for construction of TALENs in mammalian expression plasmids 

 

3.2.4 Mammalian Cell Culture 

3.2.4.1 Maintenance of mammalian cell lines 

Phoenix, NIH-3T3, Neuro-2A and HEK293 6.1.1 were adherent cell lines used 

in this project and were grown in DMEM cell culture medium that is supplemented with 

10% heat inactivated fetal bovine serum (FBS),  2 mM L-glutamine,  100 unit/mL 

penicillin and 100 unit/mL streptomycin in 10 cm tissue culture dishes. RLM11 was the 

only suspension cell line used in this project and was grown in RPMI 1640 cell culture 

medium that is supplemented with 10% heat inactivated fetal bovine serum (FBS), 2 

mM L-Glutamine,  100 unit/mL,  100 unit/mL streptomycin,  non-essential amino acids, 

vitamin and 50 µM 2-mercaptoethanol in tissue culture flasks. All cultures were 

maintained in a humidified incubator supplied with 5% CO2 at 37°C and split into fresh 

medium when they reach to ~80% confluency. TALEN transfected cells were incubated 

in a humidified incubator supplied with 5% CO2 at 32°C after transfection for 72 hours. 
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For preparation of frozen stocks of both adherent and suspension cell lines, cells 

at exponential growth phase were resuspended in ice-cold freezing medium. They were 

stored at -80°C for 24-48 hours and then transferred to liquid nitrogen tank for long-

term storage. After thawing, cells were immediately washed with growth medium to 

remove any residual DMSO.   

 

3.2.4.2 Transient transfection of adherent cells with PEI 

Transient transfection of adherent cell lines was achieved using 

polyethylenimine (PEI). PEI is a cationic polymer, which forms complex with 

negatively charged DNA and bind to cell surface. DNA is taken into the cell via 

endosomal vesicles and osmotic swelling release plasmid DNA to the cytoplasm [ref. 

Pei]. One day before transfection, 4.0 x 106 adherent cells were split onto 10 cm tissue 

culture dishes. On the day of transfection, 7 µg of total DNA was diluted in 1 mL 

serum-free DMEM without phenol red in a sterile tube. PEI (1µg/µL) was added to 

diluted DNA based on 3:1 ratio of PEI (µg) to total plasmid DNA (µg) and mixed 

immediately by vortexing. After 15 minutes of incubation at room temperature, 

DNA/PEI mixture was added drop by drop on cells in tissue culture dishes. Viral 

supernatant from Phoenix cells was harvested twice as 24 hour and 48 hour after 

transfection. Viral supernatants were mixed, passed through 45-µm filters, aliquoted in 

1 mL and stored at -80°C.  Neuro-2A cells transfected with TALENs harvested 72 hours 

after transfection for FACS analysis. HEK293 6.1.1 cells transfected with TALE-dsRed 

constructs were treated with TNF-α approximately 38 hours after transfection and 

harvested 9 hours after that. 

3.2.4.3 Transient transfection of suspension cells 

Transient transfection of suspension cell line, RLM11, was done by using Neon 

electroporation system (Invitrogen). One day before transfection, cells were split 1:10 

ratio. 107 cells were washed twice with filter sterilized 1X PBS. After removal of 

supernatant, 10 µg DNA was added onto pellet and cells were resuspended in 100µL of 

HBS. Mixture was taken into 100µL Neon golden tips and placed in electroporation 

cuvette. Optimum transfection condition for delivery of DNA into cells is 1500 V with a 

single pulse in 20 miliseconds. Then, cells were transferred to tissue culture flasks 

containing pre-warmed RPMI supplemented with 10% FBS, 2 mM L-Glutamine, 100 

unit/mL,  100 unit/mL streptomycin,  non-essential amino acids, vitamin and 50 µM 2-
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mercaptoethanol. TALEN transfected RLM11 cells were incubated at 32°C-incubator 

supplied with 5% CO2 for 72 hours and harvested for further TALEN genotyping 

assays.  

3.2.4.4 Infection 

5 x 105 NIH3T3 cells were split for each well of 6-well plate one day before 

infection.  On the day of infection, viral supernatant was thawed and polybrene was 

added to a final concentration of 6 µg/ mL. After removing the supernatant of NIH3T3 

cells, viral supernatant containing polybrene was added onto cells and incubated for 2 

hours at 37°C. Then, medium was replaced with DMEM supplemented with 10% FBS,  

2 mM L-glutamine,  100 unit/mL penicillin and 100 unit/mL streptomycin. Virus 

treatment protocol was repeated in the next day. Cells were harvested for FACS 

analysis 48 hour after first virus treatment.  

3.2.4.5 Flow cytometric analysis  

106 cells were used for each flow cytometric analysis. Flow cytometric analysis 

of cells was performed using BD FACSCanto. For analysis of cells expressing 

fluorescent proteins GFP and dsRed, cells were washed twice with FACS buffer and 

resuspended in 500µL of FACS buffer for analysis. GFP and dsRed expression levels 

were detected with FITC and PE channels, respectively. For analysis of IL7R 

expression, cells were washed twice with FACS buffer and incubated with CD127-

Biotin antibody against mouse IL7Rα –Biotin at 4°C for 30 min in dark. After washing 

twice with FACS buffer to remove unbound antibody, cells were incubated with SA-

Alexa 647 at 4°C for 30 min in dark. Cells were washed twice with FACS buffer and 

resuspended 500µL of FACS buffer for analysis. IL7R expression levels were detected 

with Alexa-647 channel. 

 

3.2.5 TALEN Induced Mutation Screening 

 General strategy for detection of mutation at TALEN target site is given in 

Figure 3.4. In this study, mutation in TALEN target site was detected by loss of 

restriction enzyme cut site, restriction fragment length polymorphism (RFLP) assay.  
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Figure 3.4 General strategy for detection of TALEN induced mutation at target site.  

 
 In order to improve detection efficiency, RFLP assay was modified, which is 
summarized in Figure 3.5.  

 
Figure 3.5 Modified RFLP assay to increase mutation detection efficiency 
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3.2.5.1 Genomic DNA extraction 

72 hours after transfection with TALENs, genomic DNA of the cells was 

isolated by using GenElute Mammalian Genomic DNA Miniprep Kit (SIGMA). 

 

3.2.5.2 Restriction Fragment Length Polymorphism (RFLP) analysis 

Isolated genomic DNA was digested with enzyme in the spacer region, BsaJI 

and BstNI for TALENs targeting Notch binding site, and  BsrI for TALENs targeting 

NFKB binding site.  

PCR reaction was performed using digested genomic DNA according to 

optimized PCR conditions given in Table 3.9 using primers for TALEN target site 

amplification. 

Component Volume  

Template genomic DNA  1.0µL  

5X Phusion high fidelity 
buffer  

4.0µL 

10mM dNTP each 0.4µL 

 Forward primer (10mM) 1.0µL 

Reverse primer (10mM) 1.0µL 

Phusion Hot Start II DNA 
polymerase (2U/µl) 

0.2µL 

dH2O 12.4µL 

Total 20µL 

Table 3.9 Optimized PCR conditions for TALEN target site amplification 

 

PCR was performed according to following cycle; 

98°C/4 min + 30X (98°C/30 s + 64°C/30 s + 72°C/60 s) + 72°C/10 min  

 

PCR products were digested once again with the enzyme in spacer region and 

run on agarose gel to detect whether any undigested band is left indicating presence of 

mutation at TALEN target site.  
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Gel extraction was performed for the band in size of the undigested PCR 

product, and cloned using CloneJETTM PCR Cloning Kit (Thermo Scientific). Uncut 

bands were cloned to pJET1.2/blunt vector and colony PCR was performed to ensure 

presence of insert in selected colonies according to conditions provided by the kit. 

Plasmid DNA was isolated from 3-ml overnight cultures of true colonies and sequenced 

to evaluate mutations generated at cleavage site. 
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4. RESULTS 

 

 

4.1. Use of TALENs to Mutate Transcription Factor Binding Sites of the IL7R 

Gene 

In this study, we generated three pairs of TALENs to mutate transcription factor 

binding sites of the IL7R enhancer region (Figure 4.1). The first of these TALEN pairs 

targeted the GR binding site in the 3rd ECR of the IL7R gene were commercially 

designed and synthesized. The second and third TALEN pairs, targeting the Notch 

binding site and the NF-κB binding sites were assembled using the Golden Gate 

TALEN construction procedure explained in the Methods section. We hypothesized that 

IL7R expression would change because of a mutation in the binding sites of the 

transcription factors critical for its regulation. Thus, if GR, Notch or NF-κB plays a 

positive role in IL7R expression by binding to their respective sites in ECR3, cells 

mutated in these binding sites would decrease their levels of IL7R expression. 
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Figure 4.1 Schematic representation of the mouse IL7Rα gene locus. IL7Rα gene 

contains eight exons and three enhancer regions (ECR). ECR3 has binding sites for 
Gata, NFkB, GR and Foxo. Notch binds upstream region of ECR2. Three different 
TALEN pairs targeting the binding sites of the transcription factors GR, NFkB and 
Notch were designed in this study. Arrows indicate binding sites for primer pairs 
(Kpl11for-Kpl11rev and Notchfor-Notchrev) used for target site amplification. 

 

4.1.1 Commercially Designed GR TALEN Pair 

 A TALEN pair targeting the glucocorticoid receptor (GR) binding site of the 

IL7R enhancer region was commercially designed, synthesized and cloned in the 

pUC57 plasmid by Genescript Inc [http://www.genscript.com/].This TALEN pair was 

named GR TALEN, meaning TALEN targeting GR binding site. Figure 4.2 shows the 

binding sites of the commercially designed TALENs in theIL7R enhancer region 

together with the binding sites of various different transcription factors and primer 

binding sites used to analyze the region. 
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Figure 4.2 Binding sites of the commercially designed TALEN pair targeting the GR 

binding site of the IL7R enhancer region. Purple arrows indicate the left and right 
TALEN binding sites. Yellow arrow indicates the GR transcription factor binding site. 

Green arrows indicate the primer binding sites.  
 

 Because the pUC57 plasmid was not a eukaryotic expression plasmid, we first 

transferred the left and right TALEN coding sequences from this plasmid to a site 

upstream of the IRES-EGFP and the IRES-dsRed sequences respectively in the pMIGII 

retroviral mammalian expression plasmid backbone. Plasmid constructs were named 

pMIGII-GR left TALEN-IRES-eGFP and pMIGII-GR right TALEN-IRES-dsRed. Our 

reasoning for cloning TALENs into retroviral eukaryotic expression plasmids with 

fluorescent reporters were two fold. First, we wanted to track the expression of TALEN 

proteins with the expression of fluorescent reporter proteins. Secondly, we reasoned that 

upon retroviral infection, our expression cassette should be incorporated into the host 

cell genome and result in stable expression of TALEN mRNA. We surmised that high 

levels of TALEN protein expression would result inefficient cleavage of the target 
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sequence. It is well known that there are size limits for efficiently packaging large RNA 

molecules into retroviruses. The size of each constructed plasmid was around 10000 bp, 

which could limit production of virus from our expression plasmids. In addition, stable 

expression of TALEN proteins may result in over-expression which may increase the 

probability of generating off-target mutations. Therefore, we decided to transfer the 

TALEN sequences from the retrovirus plasmids to transient mammalian expression 

plasmids. The genes encoding TALENs targeting the GR site in the IL7R ECR3 were 

cloned downstream of a strong mammalian expression promoter, CMV, together with 

their fluorescent reporter proteins. These experiments are explained in detail below. 

 

4.1.1.1 Cloning of the left ECR3 GR binding site TALEN upstream of the eGFP in 

retroviral plasmid 

The strategy for cloning the left ECR3GR binding site TALEN upstream of the 

IRES-eGFP cassette in the pMIGII retroviral plasmid is shown in Figure 4.3. A DNA 

fragment containing TALE repeats was used to replace TcR αβ sequences in the 

pMIGII-TcR αβ eGFP plasmid (this plasmid was previously constructed in the Erman 

lab for an unrelated project). The plasmid constructed was named as pMIGII-GR left 

TALEN-IRES-eGFP. The use of an IRES-eGFP cassette resulted in TALEN mRNA 

expression from a bicistronic mRNA also encoding the eGFP fluorescence reporter. 

We digested the pUC57GR left TALEN plasmid with the BglII-EcoRI 

restriction enzymes, generating two bands of 4292 bp and 2641 bp. The 4292 bp-band, 

corresponding to the TALEN encoding sequence was extracted from an agarose gel. We 

digested the destination plasmid, pMIGIITcR αβ eGFPwith the BglII-MfeI restriction 

enzymes, generating two bands of 6316 bp and 1797 bp. The 6316 bp-band containing 

the retroviral vector backbone was gel extracted. The restriction enzymes MfeI and 

EcoRI generate sticky ends that are compatible with each other. Therefore, ligation of 

the 4292 bp-TALEN encoding fragment with sticky ends of EcoRI and BglII is 

possible.  



52 
 

 
Figure 4.3 Construction of the pMIGII left-GR TALEN IRESeGFP plasmid (Strategy 
1a). A flowchart for the cloning procedure is shown on the left, and gel electrophoresis 

images showing a representative diagnostic digest (using XhoI and BamHI-HindIII 
restriction enzymes). 

 
After determining the concentrations of gel extracted left GR TALEN encoding 

fragment and pMIGII vector backbone, we performed a ligation reaction using a 1:3 and 

1:6 vector:insert ratio, transformed these reactions into E.coli and isolated plasmid DNA 

from the formed colonies. We then performed a confirmation digest using the XhoI 

enzyme, which should generate two bands of 6322 bp and 4294 bp in the case of a 
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correct ligation. Next, we performed a BamHI- HindIII control digest for two of the 

colonies producing the expected bands in the previous XhoI digestion. The BamHI-

HindIII control digest should generate three bands of 5090 bp, 3550 bp and 1113 bp. 

The results of the confirmation digestions and a map of the constructed plasmid are 

shown in Figure 4.3.   

 

4.1.1.2 Cloning of the right ECR3 GR binding site TALEN upstream of the dsRed 

in retroviral plasmid  

The strategy for cloning the right ECR3 GR binding site TALEN upstream of 

the IRES-dsRed cassette in the pMIGII retroviral plasmid was given in Figure 4.4 and 

Figure 4.5. First, a DNA fragment containing TALE repeats was cloned into the pSP72 

plasmid, an intermediate vector to integrate the necessary restriction enzyme cut sites to 

the ends of this fragment. Then, the DNA fragment containing the TALEN repeats 

wascloned upstream of the dsRed sequence in the pMIGII-IRES-dsRed plasmid (This 

plasmid was previously constructed in the Erman lab for an unrelated project). The 

plasmid constructed was named pMIGII-GR right TALEN-IRES-dsRed. 

We digested the pUC57 GR right TALEN plasmid with BglII-HindIII restriction 

enzymes generating two bands of 3992 bp and 2635 bp. The 3992 bp-band, 

corresponding to right TALEN encoding sequence was extracted from an agarose gel. 

We digested pSP72 with BamHI-HindIII restriction enzymes which should generate 

fragments of 2432 bp and 30bp. The restriction enzymes BamHI and BglII generate 

sticky ends that are compatible with each other. The 2432 bp-fragment corresponding to 

vector backbone was extracted from an agarose gel. After ligation and plasmid DNA 

isolation, we performed a SacI digestion to control for correct integration, which should 

generate fragments of 3999 bp and 2433bp. As a second control, we digested this 

construct with the XhoI-BamHI enzymes, producing 4 bands of 3244 bp, 2432 bp, 641 

bp and 123 bp. An agarose gel showing these confirmation digestions of SacI and XhoI-

BamHI is shown in Figure 4.4. 
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Figure 4.4 Construction of the pSP72-right ECR3 GR binding site TALEN plasmid. 

 

We digested the intermediate pSP72-right ECR3 GR binding site TALEN 

plasmid construct with EcoRI, which should generate two bands of 4007 bp and 2417 

bp. The 4007 bp-band, containing right GR TALEN encoding sequence, was gel 

extracted. We linearized the pMIGII-IRES-dsRed plasmid with EcoRI and gel extracted 

the 6278 bp band. CIAP (Calf Intestine Alkaline Phosphatase) treatment was performed 

for the band to prevent vector re-ligation. 

We determined the concentrations of the gel extracted samples by agarose gel 

electrophoresis and accordingly, ligation reactions were set using 1:3 or 1:6 

vector:insert ratios. We digested the plasmid with SmaI to confirm the identity of this 
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plasmid, which should generate fragments with sizes of 5840 bp, 3422 bp and 1023 bp. 

An agarose gel showing the SmaI confirmation digest and plasmid maps are shown in 

Figure 4.5. 

 
Figure 4.5 Strategy for cloning the right ECR3 GR binding site TALEN from the pSP72 

plasmid upstream of the IRES-dsRed cassette in the pMIGII plasmid backbone 
(Strategy 1a). 

 
4.1.1.3 Stable expression of ECR3 GR binding site TALEN pair constructs in the 

NIH3T3 cell line 

We generated retrovirus from HEK293 Phoenix cells transfected with the 

[pMIGII-GR left TALEN-IRES-eGFP] and [pMIGII-GR right TALEN-IRES-dsRed] 

plasmids. Supernatants of transfected cells containing virus were used to infect mouse 
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NIH3T3 cells. In addition to TALEN constructs, we also generated virus from the 

pMIGIITcRαβ-IRESeGFP and pMIGII-IRESdsRed plasmids that were known to 

produce high titers of infectious virus as a positive control. Infection efficiency was 

determined by tracking eGFP and dsRed expression on a flow cytometer. Indeed we 

could not efficiently produce virus from these two plasmids to infect this cell line (data 

not shown). Although infection was successful for virus generated using the pMIGII 

backbone plasmid positive controls, we could not detect TALEN eGFP or 

TALENdsRed expression, indicating the infection was unsuccessful (Figure 4.6).The 

size of the TALEN plasmids could be the reason behind the low infection efficiency.For 

this reason, we decided to transfer these GR binding site TALEN reporter constructs 

into CMV promoter containing mammalian expression plasmids for transfection.  

 
Figure 4.6 Infection of NIH3T3 cells with virus produced using GR binding site 

TALEN fluorescence reporter plasmids. Dot-plots show relative eGFP fluorescence 
(labeled FITC on the x-axis) and dsRed fluorescence on the y-axis. From the top left, 
the four quadrants show GFP negative dsRed positive cells (Q1), GFP positive dsRed 
positive cells (Q2), GFP positive dsRed negative cells (Q3) and GFP negative dsRed 

negative cells (Q4).  
 

4.1.1.4 Cloning of the left ECR3 GR binding site TALEN into a CMV IRES eGFP 

mammalian expression plasmid 

The cloning strategy of the left ECR3 GR binding site TALEN into a CMV 

IRES eGFP mammalian expression plasmid is shown in Figure 4.7. The DNA fragment 

containing the left ECR3 GR TALEN in pUC57 was cloned into the pIRES2eGFP 

plasmid. The final plasmid construct was named CMV- left GR TALEN- IRES- eGFP. 

The pUC57-left GR TALEN plasmid was digested with EcoRI-BglII, generating 

bands of 4296 bp and 2645 bp. The 4296 bp-band, which corresponds to the left 
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TALEN encoding sequence was gel extracted. IRES2eGFP is a mammalian expression 

plasmid containing a CMV promoter before a multiple cloning site (MCS) and an IRES-

eGFP fluorescence reporter (Figure 4.7). It was digested with EcoRI-BglII which 

produces two bands of 5292 bp and 24 bp. The 5292-bp band corresponding to the 

vector backbone was extracted from an agarose gel. 

We isolated plasmid DNA from colonies formed after ligation and 

transformation. First, we performed a PstI control digestion which should generate 

bands of 5491 bp and 4097 bp. Second, we performed an XhoI-HindIII confirmation 

digest, producing bands of 5038 bp and 4550bp. Plasmid maps and agarose gels for the 

confirmation digestions of PstI and XhoI-HindIII are shown in Figure 4.7. 
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Figure 4.7 Strategy for cloning of the left ECR3 GR binding site TALEN downstream 

of CMV promoter and upstream of the IRES-eGFP cassette (Strategy 1b). 
 

4.1.1.5 Cloning of the right ECR3 GR binding site TALEN-IRES-dsRed cassette 

into a CMV promoter containing plasmid 

The strategy for cloning of the right ECR3 GR binding site TALEN IRES dsRed 

cassette from the pMIGII backbone to the pcDNA3.1 plasmid is shown in Figure 4.8. 

The final plasmid construct was named CMV-right ECR3 GR binding site TALEN 

IRES dsRed. We digested the pMIGII right GR binding site TALEN-IRES-dsRed 

plasmid with the SmaI-SalI restriction enzyme pair, which should generate four bands 

of 5300bp, 3422bp, 1023bp and 544bp. The 5300bp-band, corresponding to the right 
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GR binding site TALEN-IRES-dsRed cassette was extracted from an agarose gel. 

pcDNA3.1+ is a mammalian expression plasmid containing a CMV promoter upstream 

of a multiple cloning site. The destination plasmid pcDNA3.1+ was digested with the 

EcoRV-XhoI restriction enzyme pair, generating two bands of 5407 bp and 25 bp. The 

5407 bp vector backbone was gel extracted and ligated with the 5300 bp band 

corresponding to the right GR binding site TALEN-IRES-dsRed cassette. The size of 

final construct was 10703 bp. 

We transformed this ligation reaction into E.coli, isolated plasmid DNA from 

colonies and to confirm the identity of the plasmids, digested them with the EcoRI-

BglII restriction enzyme pair, producing three bands of 5766 bp, 4005 bp and 944 bp. 

Agarose gel images showing the EcoRI-BglII confirmation digest and plasmid maps are 

shown in Figure 4.8. 
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Figure 4.8 Strategy for cloning of the right GR binding site TALEN-IRES-dsRed 

cassette downstream of CMV promoter (Strategy 1b). 
 

4.1.1.6 Ectopic expression of the ECR3 GR binding site TALEN pair in Neuro-2a 

cells 

To express the TALEN pair targeting GR binding site, we co-transfected the 

[CMV left ECR3 GR binding site TALEN-IRES eGFP] and [CMV right ECR3 GR 

binding site TALEN-IRES dsRed] plasmids into Neuro-2a cells. 29.2% of cells were 

found to be both GFP and dsRed positive, indicating that both TALEN proteins could 

be expressed in these cells (Figure 4.9). Note that because both plasmids link the 
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TALEN sequences with the fluorescent reporter genes (GFP and dsRed) use an IRES 

element, the transcripts encoding the TALENs and the fluorescent proteins are bi-

cistronic. Thus the presence of the fluorescent protein in cells indicates the presence of 

the TALEN proteins. 

 

 
Figure 4.9 Transfection of murine Neuro-2a cells with CMV GR binding site TALEN 
fluorescence reporter plasmids. Dot-plots show relative eGFP fluorescence (labeled 

FITC on the x-axis) and dsRed fluorescence on the y-axis. From the top left, the four 
quadrants show GFP negative dsRed positive cells (Q1), GFP positive dsRed positive 
cells (Q2), GFP positive dsRed negative cells (Q3) and GFP negative dsRed negative 

cells (Q4).  
 

 We designed the TALEN plasmids targeting the GR binding site using the NK 

RVD to associate with G. During this study, Christian et al. (2012) found that NK RVD 

containing TALENs have lower affinity for G when compared with NN RVD 

containing TALENs[14]. In addition, the GR TALEN pair was designed to have a long 

C-terminal segment composed of 278 residues. However, a recent study conducted by 

Miller et al. (2011) indicates that efficient DNA cleavage is correlated with shortened 

C-terminal domains[6]. Also these TALENs were designed targeting a region that does 

not have appropriate restriction enzyme recognition sites in the genomic DNA. Thus, 

even if these TALENs were to cut genomic DNA at the target site and introduce 

mutations, we did not have an easy way to detect these mutations, such as the RFLP 

method described in detail in the following sections. For these reasons, we discontinued 

our work with the TALEN pair targeting the GR binding site in the IL7R gene. 
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4.1.2 Assembly of TALENs Targeting Notch Binding Site of IL7R Gene 

Using Golden Gate TALEN Kit   

 

4.1.2.1 Construction of a TALEN pair targeting the IL7R ECR2-ECR3 Notch 

binding site in the pCAGT7 backbone 

 

The TALEN design program TAL Effector Nucleotide Targeter 2.0 (https://tale-

nt.cac.cornell.edu/) was used to design a pair of TALENs targeting the Notch binding 

site in the region between ECR2 and ECR3 of the IL7R gene. The TALEN pair was 

selected from the output of the software such that both left and right TALENs contain 

15RVDs and the spacer region between the TALEN binding sites was 17 bp in length. 

Left and right TALEN binding sites were preceded by a 5’T base, in accordance with 

the TALEN design guidelines provided by the TAL Effector Nucleotide Targeter 2.0 

program. 

A custom TALEN pair targeting the IL7R Notch binding site was designed 

using the Golden Gate TALEN kit. As explained in detail in the Methods section, 

TALEN assembly using the Golden Gate TALEN kit takes 5 days and involves two 

main reactions for the assembly of individual repeat modules into array plasmids and 

assembly of array plasmids into a final mammalian expression plasmid. 

For the construction of the two 15 repeat long Notch binding site TALENs, we 

cloned the first 10 repeats into the pFUS_A plasmid and all remaining repeats except 

the last, into the pFUS_B4 plasmid (the Golden Gate reaction #1). Thus, we set up two 

Golden Gate reactions (reaction A and B) for each monomer of the TALEN pair. We 

transformed Golden Gate reaction #1 into E. coli, plated on IPTG/X-gal plates for blue-

white screening, performed colony PCR on white colonies using the primers pCR8_F1 

and pCR8_R1. Note that the number of colonies obtained after transformation was 

higher for the array vector containing less repeats than the ones with more repeats. For 

repeats in the pFUS_A plasmids, we detected bands around 1200 bp, whereas for the 

pFUS_B4 plasmids, we obtained around 600 bp bands. In addition to the band of 

expected size, a smear and ladder of bands were also detected which results from the 

presence of repeats in clones. After isolation of plasmid DNA from two correct 

colonies, we performed AflII-XbaI diagnostic digests which should generate bands 

reflecting the number of repeats such that a 1048bp-band was obtained for pFUS_A 

plasmid with 10 repeats whereas the band size was 430bp for the pFUS_B4 plasmids 
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with four repeats. Figure 4.10 and Figure 4.11 show agarose gel images after colony 

PCR with pCR8_F1 and pCR8_R1, confirmation with AflII-XbaI double digests and 

the plasmid maps related to reactions A and B of the left Notch binding site 

TALEN(Notch left TALEN) and the right Notch binding site TALEN (Notch right 

TALEN), respectively.   

 
Figure 4.10 Golden Gate reaction #1 for theleft Notch binding site TALEN 
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Figure 4.11 Golden Gate reaction #1 for the right Notch binding site TALEN 

 

In the Golden Gate reaction #2, we constructed an intermediary array of repeats 

coming from reaction A and reaction B, and the last repeat plasmid. We joined these 

three fragments in the final backbone plasmid, pCAGT7. We performed colony PCR 

using the TAL_F1 and TAL_R2 primers, which gave bands of 1744bp for the 15-

repeatsand a smear and ladder effect. A confirmation digest with AatII and StuI should 

result in the generation of a 1724bp-band, indicating the presence of 15 repeats. Figure 

4.12 shows agarose gel images after colony PCR with TAL_F1 and TAL_R2 primers, 

control digest with AatII-StuI and plasmid maps of both pCAG left Notch binding site 

TALEN and pCAG right Notch binding site TALEN. 
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Figure 4.12 Golden Gate reaction #2 for the Notch binding site TALEN 

constructs in pCAGT7 (Strategy 2a). 
 

4.1.2.2 Cloning of the designed Notch binding site TALEN monomers into mutant 

FokI destination vectors  

 Miller et al. (2007) claimed that the safety and efficacy of zinc finger nucleases 

(ZFNs), which are precursors of the TALENs which also use the dimerized FokI 

domain to cut DNA, was limited due to homodimerization rather than 

heterodimerization. This homodimerization resulted in off-target cleavage. Therefore, 

they engineered an improved ZFN architecture by mutating specific residues of the FokI 

enzyme dimerization interface such that they cleave target DNA only when monomers 

paired as heterodimers[44]. In the same manner, two mutant versions of pCAGT7 were 

developed by the group of Pawel Pelczar to improve TALEN efficiency.  pCAGT7-

FokI ELD includes the Q486E, I499L and N496D mutations of FokI whereas pCAGT7-

FokI KKR includes  the I538K, E490K, and H537R mutations. Therefore, to achieve 

efficient genome modification, we cloned the Notch left TALEN and Notch right 

TALEN constructs into the pCAGT7-FokI ELD and pCAGT7-FokI KKR plasmids 

respectively.  
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 To generate these plasmids, we digested the pCAGT7 Notch left TALEN 

plasmid with the BamHI-BglII restriction enzymes, generating two bands of 5418bp 

and 2119bp. The latter band was gel extracted. We digested the pCAGT7-FokI ELD 

plasmid with BamHI-BglII which gave two bands of 5414 bp and 1031 bp. The 5414 bp 

band was extracted from an agarose gel and ligated into the gel extracted pCAGT7 

Notch left TALEN fragment. Confirmation digests with ClaI-HincII restriction enzymes 

generated two bands of 7151 bp and 380 bp. Figure 4.13 shows the cloning strategy and 

the confirmation digest with ClaI-HincII for the pCAGT7Notch left FokI ELD plasmid. 

 
Figure 4.13 Cloning of the left Notch binding site TALEN into the pCAGT7 FokI ELD 

backbone (Strategy 2b). 
 



67 
 

To clone the right Notch binding site TALEN into the pCAGT7-FokI KKR 

plasmid, both pCAG Notch right TALEN and pCAGT7-FokI-KKR were digested with 

BamHI-BglII. Digestion of the pCAG Notch right TALEN plasmid with the BamHI-

BglII restriction enzyme pair generates two bands of 5418 bp and 2119 bp. The 2119 

bp-band corresponding to the Notch right TALEN repeats was gel extracted. The 

BamHI-BglII digestion of the pCAGT7 FokI KKR plasmid generated two bands of 

5414bp and 1031bp and the former one was gel extracted. Gel extracted bands were 

ligated and transformed. After isolation of plasmid DNA, we performed an XbaI-HincII 

confirmation digest, which generated bands of 5469 bp and 2064 bp. The cloning 

strategy and agarose gel image of the confirmation digest with XbaI-HincII is shown in 

Figure 4.14. 



68 
 

Figure 4.14 Cloning of the right Notch binding site TALEN construct to the pCAGT7 
FokI KKR plasmid (Strategy 2b). 

 

4.1.2.3 Construction of the TALEN pair targeting Notch binding site in the pC-

Goldy backbone 

 In a study conducted by Bedell et al (2012), it was shown that the DNA binding 

domain of a TALEN pair targeting the ponzr1 locus in the Goldy TALEN scaffold 

results in a six-fold increased somatic gene mutation rate when compared to the same 

DNA binding domain in the pTAL backbone[35]. Therefore, we decided from this point 

onwards to only use the pC-Goldy architecture to express TALENs. To transfer our 

TALENs into the pC-Goldy plasmid backbone, we repeated Golden Gate reaction #2 

for each monomer of the Notch binding site TALEN pair using the previously 
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constructed pFUS_A and pFUS_B array plasmids. We performed colony PCR with the 

TAL_F1 and TAL_R2 primers and observed the expected band size of 1745 bp along 

with a smear and ladder of smaller sized bands. An AatII -StuI confirmation digest of 

plasmid DNA extracted from these colonies generated five bands of 3863 bp, 1724 bp, 

1074 bp, 87 bp and 57 bp, of which the 1724 bp band reflects the number of repeats 

assembled, the other bands coming from the plasmid backbone. Agarose gel images 

showing the colony PCR and confirmation digest with the AatII-StuI enzymes and the 

maps of the plasmids with assembled repeats is shown in Figure 4.15. 

 

Figure 4.15 Golden Gate reaction #2 for the Notch binding site TALEN pair in the pC-
Goldy backbone (Strategy 2c) 

 

4.1.2.4 Expression of the designed Notch binding site TALEN pair in Neuro-2a 

cells and detection of site-specific mutations  

 We transfected the TALEN pair targeting Notch binding site in the pC-Goldy 

backbone into Neuro-2a cells. Although IL7R is only expressed on cells of the 

lymphoid lineage and these Neuro-2a cells are a cultured neuroblastoma line, we 

hypothesized that this would be an easy system to observe TALEN mediated mutations 

because of the high transfection efficiency of this cell line. The location of the binding 
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sites for the Notch TALEN pair, the forward and reverse primers used in amplifying the 

TALEN target site and the enzyme cut sites present in the spacer region are shown in 

Figure 4.16.  

 
Figure 4.16 Binding sites for the assembled TALEN pair targeting the Notch binding 

site of the IL7R enhancer region. Purple arrows indicate the left and right TALEN 
binding sites. Orange arrow indicates the Notch binding site. Green arrows indicate the 

primer binding sites. 
 

Our strategy for detecting site directed mutations was briefly summarized in the 

previous chapter (Figure 3.4 and 3.5). We attempted to detect mutations due to TALEN 

action by a restriction fragment length polymorphism (RFLP) assay with the BsaJI 

enzyme on PCR amplified target region DNA. In preliminary experiments from 

TALEN transfected cells, we could not detect an uncut band which is an indication of 

the presence of a mutated allele in this RFLP assay. For this reason, we modified our 

RFLP assay by first digesting genomic DNA with the BsaJI enzyme. We expected that 

BsaJI would only digest wild type alleles and that mutant alleles would remain uncut. 

We supposed that a PCR reaction with pre-cut genomic DNA would enrich mutant 

alleles allowing for better detection.  

The size of the PCR product from this region was 348 bp and after BsaJI digest, 

two fragments of 159 bp and 189 bp were generated from the wild type alleles. When 

the PCR product of the digested sample was digested with BsaJI, the presence of a 

BsaJI-resistant band indicated the presence of mutated alleles in the genomic DNA 

pool. The agarose gel image showing PCR products before and after BsaJI digestion for 

digested and undigested genomic DNA isolated from Neuro-2a cells is shown in Figure 
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4.17. We extracted the uncut band from these agarose gels and cloned this fragment into 

the pJET1.2/blunt vector for sequencing. We performed colony PCR for the colonies 

produced after transformation to control the presence of an insert in this plasmid. We 

screened more than 100 colonies by colony PCR and sequenced purified plasmid DNA 

from positive clones. 

 
Figure 4.17 Mutation detection at the Notch TALEN target site of Neuro-2a cells using 
a modified RFLP assay. Uncut PCR product indicating the presence of TALEN induced 

mutations is shown by a red arrow. 
  

 Sequencing analysis of mutations at the TALEN target site for 80 different 

colonies is shown in Figure 4.18. This result indicates that the Notch TALEN pair 

generated mutations at the target site of Neuro-2a cell genomic DNA, mediated through 

imprecise repair of chromosomal double strand breaks (DSB) by non-homologous end 

joining (NHEJ). Although it is not possible to detect the mutation frequency due to an 

enrichment step in our modified RFLP technique, we detected 14 different mutations 

including deletions ranging from 1-11 bp, insertions of 1-5 bp and one single base 

substitution. All of these mutations were centered on the spacer region between binding 

sites of TALEN monomers, containing and destroying the Notch binding site. 
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Figure 4.18 Site directed mutagenesis in Neuro-2a cells using the Notch binding site 
TALEN pair. Underlined regions of wild type sequence indicate the binding sites of 

TALEN monomers. Blue colored letters in the spacer region represent the Notch 
binding site, whereas the region highlighted in pink corresponds to the BsaJI cut site. 

Dashes indicate deletions. Red colored letters are SNPs and small case letters in red are 
insertions. Numbers on the right hand side indicates number of bases modified and 

frequency of occurrence of this mutation 
 

4.1.2.5 Expression of the designed Notch binding site TALEN pair in RLM11 cells 

and detection of site-specific mutations 

 We had designed the Notch TALEN pair to mutate the Notch binding site of the 

IL7R gene locus in order to study the functional significance of this site on IL7R 

expression. After demonstrating that our designed TALEN pair could indeed generate 

mutations in Neuro2a cells, we transfected the IL7R expressing RLM11 cells with our 

Notch TALEN pair in the pC-Goldy backbone.  

 Again, to detect site-specific mutations, we performed our modified RFLP assay 

(explained previously in Figure 4.16). An agarose gel image for BsaJI digests of PCR 

products from digested and undigested genomic DNA from TALEN transfected RLM11 

cells is shown in Figure 4.19. Again we gel extracted and cloned the uncut BsaJI-

resistant band into the pJET1.2/blunt vector for sequencing.  
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Figure 4.19 Mutation detection at the Notch TALEN target site of RLM11 cells using 

the modified RFLP assay. 
 

The result of our DNA sequencing analysis of target site mutation in TALEN 

transfected Rlm11 cells is shown in Figure 4.20. In this experiment, 27 different 

colonies were sequenced. As before, the use of an enrichment step for detecting 

mutations prevents the determination of the mutation frequency. Nevertheless, we 

detected 20 different mutations in this analysis including deletions ranging from 1 to 22 

bp, insertions of 1 bp, transitions and transversions.   
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Figure 4.20 Site directed mutagenesis in RLM11 cells using the Notch binding site 
TALEN pair. Underlined regions of the wild type sequence show the binding sites of 
the TALEN monomers. Blue colored letters in the spacer region represent the Notch 
binding site, whereas the region highlighted in pink corresponds to the BsaJI cut site. 
Dashes represent deletions. Red colored letters are SNPs and small case letters in red 

are insertions. Numbers on the right hand side indicates number of bases modified and 
frequency of occurrence of this mutation. 

  

4.1.2.6 Detection of mutations at the Notch binding site TALEN target site for 

different backbones  

 To observe whether the Notch binding site TALEN pair in different backbones 

results in a difference in terms of DSB generation and site directed mutation efficiency, 

we transfected the Notch binding site TALEN pair into RLM11 cells in the pCAGT7, 

pCAGT7 FokI ELD/KKR and pC-Goldy backbones. These plasmids encode left and 

right TALEN proteins that bind exactly to the same sequence but have minor 

differences in the C- and N-terminal regions of the TALEN proteins as well as 

differences in the FokI restriction enzyme domain. Moreover the promoter for the 

pCAG plasmids and the pC-Goldy are slightly different [35]. 

 We performed our modified RFLP assay for BstNI-digested genomic DNA 

isolated from these TALEN transfected cells. BstNI restriction enzyme digestion 
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generates two fragments of 188 bp and 161 bp from the wild type PCR product of 

348bp. Figure 4.21 shows the agarose gel image after BstNI digest of PCR products 

from BstNI digested genomic DNA. The intensity of the uncut band, indicating 

mutation efficiency, is the highest for the TALEN pair in the pC-Goldy backbone and 

the lowest in pCAG-FokI mutant ELD/KKR backbone.  This result is consistent with 

published results that show that TALENs in the pC-Goldy backbone are very efficient. 

 
Figure 4.21 Mutation detection at the Notch binding site of RLM11 cells using a Notch 

binding site TALEN pair in different backbones 
 

4.1.2.7 Expression of IL7R on RLM11 cells transfected with Notch binding site 

TALEN pairs 

 Although genomic DNA was isolated from a pool of RLM11 cells and an 

enrichment step was included in the detection of mutations at the TALEN site, it was 

important to observe the phenotypic effects of these mutations on IL7R expression. The 

IL7R expression level of RLM11 cells transfected with Notch TALENs in pC-Goldy 

backbone was analyzed by flow cytometry (FACS). We observed that Notch TALEN 

transfection did not result in a significant change in IL7R expression (Figure 4.22). 
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Figure 4.22 IL7R expression levels of untransfected and Notch TALEN transfected 
RLM11 cells. Histogram for Alexa-647 represents surface IL-7Rα expression. Solid 

black histogram shows expression profile of TALEN untransfected cells whereas dotted 
line shows Notch TALEN transfected cells 

 
 

4.1.3 Assembly of TALENs Targeting the NF-κB Binding Site of IL7R 

Using the Golden Gate TALEN Kit 

4.1.3.1 Construction of a TALEN pair targeting the IL7R ECR3 NF-κB binding 

site in the pCAGT7 backbone 

 A pair of TALENs targeting NF-κB binding site in the ECR3 region of IL7R 

was designed using TAL Effector Nuclease 2.0 software such that NF-κB left and right 

TALEN monomers consist of 20 and 18 RVDs, respectively and the spacer region 

between the TALEN binding sites is 24 bp in length.  

We performed Colony PCR using primers pCR8_F1 and pCR8_R1 for white 

colonies obtained after the transformation of Golden Gate reaction #1 into E.coli. For 

the first 10 repeats in pFUS_A plasmids, bands around 1200 bp were detected. The 

remaining repeats of the left NF-κB binding site TALEN were cloned into pFUS_B9, 

producing bands around 1100 bp, whereas the repeats for the right NF-κB binding site 

TALEN were cloned into the pFUS_B7 plasmid, generating bands around 900 bp after 

colony PCR. We performed AflII-XbaI control digests for the plasmid DNA isolated 
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from two colonies with the expected fragment sizes after colony PCR. AflII-XbaI digest 

yielded a 1048 bp-band for pFUS_A plasmids with ten repeats, a 920 bp-band for 

pFUS_B9 plasmids with nine repeats and a 720 bp band for the pFUS_B7 plasmid with 

seven repeats. Figure 4.23 and Figure 4.24 show agarose gel images of the colony PCR 

with the pCR8_F1 and pCR8_R1 primers, the confirmation digests with AflII-XbaI 

double digests and plasmid maps related to Golden Gate reactions A and B of left NF-

κB binding site TALEN (NF-κB left TALEN)and the right NF-κB binding site TALEN 

(NF-κB right TALEN), respectively.  

 
Figure 4.23 Golden Gate reaction#1 for the left NF-κB binding site TALEN 
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Figure 4.24 Golden Gate reaction#1 for the right NF-κB binding site TALEN 

  

 After joining intermediary array of repeats from reaction A and B, together with 

the last repeat plasmid to the pCAGT7 mammalian expression plasmid in a Golden Gate 

reaction #2, we performed colony PCR using the TAL_F1 and TAL_R2 primers. We 

obtained 2232 bp bands for the left NF-κB binding site TALEN construct with 20 

repeats and a 2028 bp band for the right NF-κB binding site TALEN construct with 18 

repeats. We also detected a smear and a ladder effect as expected, consistent with the 

published Golden Gate protocols. Confirmation digests with AatII and StuI resulted in a 

2234 bp- and 2030 bp-band for the NF-κB left and right TALENs, respectively. Figure 

4.25 shows agarose gel images after colony PCR with the TAL_F1 and TAL_R2 

primers, control digest with AatII-StuI and plasmid maps of both the pCAG left NF-κB 

binding site TALEN and the pCAG right NF-κB binding site TALEN.  
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Figure 4.25 Golden Gate reaction#2 for the left and right NF-κB binding site TALENs 

in the pCAGT7 backbone (Strategy 2a). 
 

4.1.3.2 Construction of a TALEN pair targeting the IL7R ECR3 NF-κB binding 

site in the pC-Goldy backbone 

 As before, during the course of this study, we realized that the pC-Goldy 

backbone generates better TALENs as compared to the pCAG-T7 backbone. Therefore 

we discontinued the use of our NF-κB site TALENs in the pCAG-T7 backbone and 

generated NF-κB site TALENs in the pC-Goldy backbone. To do this, we repeated 

Golden Gate reaction #2 for the left and right NF-κB binding site TALEN monomers 

using pC-Goldy TALEN as a backbone mammalian expression plasmid. Colony PCR 

with TAL_F1 and TAL_R2 primers produced the expected 2245 bp and 2041 bp bands 

for the left and right NF-κB binding site TALENs, respectively. AatII–StuI double 

digests of the pC-Goldy left NF-κB binding site TALEN generated five bands of 3863 

bp, 2234 bp, 1074 bp, 87 bp and 57 bp, of which the 2234 bp-band reflects the number 

of repeats assembled. The 2030 bp-band after confirmation digest of pC-Goldy right 

NF-κB binding site TALEN indicates the assembly of 18 repeats. Agarose gel images 

showing the colony PCR, the AatII-StuI confirmation digest and plasmid maps of pC-

Goldy left and right NF-κB binding site TALEN plasmids is shown in Figure 4.26. 
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Figure 4.26 Golden Gate reaction#2 for the left and right NF-κB binding site TALENs 

in the pC-Goldy backbone (Strategy 2c) 
 

4.1.3.3 Expression of the designed NF-κB binding site TALEN pairs in RLM11 

cells and detection of site-specific mutations 

We transfected RLM11 cells with NF-κB binding site TALEN pairs in the pC-

Goldy backbone for ectopic expression which would result in mutation at NF-κB 

binding site of the IL7R gene locus. We performed our modified restriction fragment 

length polymorphism (RFLP) assay to detect mutations at the target site. Figure 4.27 

shows the locations of the binding sites of NF-κB binding site TALEN pair, the forward 

and reverse primers for amplification of the target site, and the restriction enzyme cut 

sites present in the spacer region.  
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Figure 4.27 Binding site of the assembled TALEN pair targeting the NF-κB binding site 
of the IL7R enhancer region. Purple arrows indicate the left and right TALEN binding 

sites. Red arrow indicates the NF-κB binding site. Green arrows indicate the primer 
binding sites. 

 
We digested a 777 bp PCR products of BsrI digested and undigested genomic 

DNA with BsrI to determine the presence of mutated alleles in the pool of NF-κB 

binding site TALEN transfected cells. Wild type PCR products generated of 421 bp 336 

bp fragments after BsrI digestion (Figure 4.28). We extracted the uncut band and cloned 

it into the pJET1.2/blunt vector for sequencing. 
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Figure 4.28 Mutation detection at NF-κB TALEN target site of RLM11 cells using 

modified RFLP assay 
 

 Sequencing results for 40 different colonies reveal the presence of 4 different 

mutations (Figure 4.29). Three of these contain a deletion of 15 bp. Moreover, transition 

and transversion mutations were detected in all mutants sequenced except one. Note that 

the NF-κB binding site was not mutated in any of the mutants sequenced.  

 

 
Figure 4.29 Site directed mutagenesis in RLM11 cells transfected with TALEN pair 

targeting NF-κB binding site. Blue color in wild type sequence indicates NF-κB binding 
site and underlined sequence represent binding sites of TALEN monomers. BsrI cut site 

is highlighted in pink. Dashes indicate deletions whereas red colored bases are for 
SNPs. Numbers at right-hand side gives number of bases deleted and occurrence of this 

mutation, respectively.   
 
 



83 
 

4.1.3.4 Expression of IL7R on RLM11 cells transfected with NF-κB binding site 

TALEN pairs 

Although the NF-κB site was not mutated in any of the sequenced mutants, we 

nevertheless decided to assess IL7R expression in these mutant RLM11 cells. We 

hypothesized that the large 15bp deletion would result in a block of enhancer activity 

and that we would observe a decrease in IL7R expression in these mutant cell 

containing pools of RLM11 cells. As before we assessed IL7R levels by FACS and 

found that expression of these surface proteins was less in mutant cell pools than that of 

untransfected RLM11 cells (Figure 4.30). 

 
Figure 4.30 IL7R expression levels of untransfected and NFKB TALEN transfected 
Rlm11 cells. Alexa 647 mean shows the relative IL7R expression on the cell surface. 

Solid black line shows the expression profile TALEN untransfected cells whereas 
dotted line shows of NF-κB TALEN transfected cells. 

 
4.2 Use of TALE as Competitive Inhibitors 

TNFα treatment results in phosphorylation and subsequent ubiquitinylation of 

IkB. Degradation of IκB activates the NF-κB complex resulting in translocation to the 

nucleus. A reporter plasmid containing four NF-κB binding sites upstream of fos 

promoter and GFP sequence was constructed by Pınar Onal (2007) in the Erman Lab. 

Induction of cells transfected with the 4κB GFP constructs with TNFα results in the 

production of GFP due to the binding of nuclear translocated NF-κB upstream of the 

GFP gene. The 4XNF-κB binding site-fos-GFP cassette was stably integrated into the 
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genome of HEK293 cells by Belkıs Atasever Arslan, in the Erman Lab and this reporter 

cell line was named HEK293 6.1.1.  

TALE DNA binding domains were constructed to competitively inhibit NF-κB 

binding to DNA. We hypothesized that expression of TALE proteins in reporter cells 

would inhibit the binding of nuclear translocated NF-κB to its binding sites in this 

reporter, after TNFα induction. Our expectation was that the level of GFP expression 

upon TNF treatment in cells transfected with TALE proteins would be lower than in 

untransfected reporter cells (Figure 4.31). We designed this system by fusing the TALE 

proteins to a fluorescent protein, dsRed, in order to track transfected cells.  

 

 
Figure 4.31 Strategy of designing TALEdsRed constructs as competitive inhibitors. 

TNFα treatment of HEK293 6.1.1 cells, containing stably integrated 4X kappaB binding 
site upstream of a fos promoter and GFP, results in GFP expression whereas 
TALEdsRed expression in these cells is expected to inhibit GFP expression.  

 

4.2.1 Construction of pCAGdsRed Plasmid 

 To construct TALEdsRed competitive inhibitors, the cloning strategy for 

backbone plasmid generation was designed such that dsRed in the pBluescript-dsRed 

plasmid (Plasmid was previously constructed in Erman Lab for an unrelated project.) 

was replaced with in the pCAGT7 plasmid (Figure 4.32).  
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 We digested the pCAGT7 plasmid with BamHI, blunted using the Klenow 

enzyme and digested with SacI, which should generate fragments of 5845bp and 604bp. 

The 5845bp fragment corresponding to the plasmid backbone was gel extracted. The 

pBluescript-dsRed plasmid was digested with the SmaI-SacI restriction enzyme pair, 

producing bands with sizes of 2921bp and 752bp. The 752bp-band corresponding to 

dsRed sequence was gel extracted. SmaI generates blunt-ended fragments, making 

ligation to the fragment blunted after BamHI digest possible. After ligation, NotI 

confirmation digest was performed for the plasmid DNA extracted from colonies. NotI 

digestion should generate bands of 6267 bp and 330 bp for correctly ligated plasmid 

DNA. As a second control, PstI-Bgl2 double digestion was performed, producing three 

bands of 5177 bp, 1219 bp and 205 bp. Figure 4.32 shows agarose gel images of 

confirmation digests and a map of the constructed plasmid. 

 
Figure 4.32 Cloning strategy for construction of the backbone plasmid with a 

fluorescent reporter, pCAGdsRed.  
 

4.2.2 Golden Gate TALE Assembly of the Competitive Inhibitors of NF-κB 

Binding Using the pCAGdsRed Plasmid as Backbone Vector   

Six different TALEdsRed constructs that have specificities to bind to NFkB 

binding sites were designed using the Golden Gate TALEN kit. The number of repeats 

range from 12 to 17 such that the first 12 RVDs were same in all constructs. Therefore, 
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in the Golden Gate reaction#1 only one pFUS_A plasmid containing repeat was 

constructed for all six TALEdsRed constructs and different pFUS_B plasmids were 

generated for each. Colony PCR was performed for white colonies obtained after 

transformation of reaction#1 using primer pair pCR8_F1 and pCR8_R1. For repeats in 

pFUS_A plasmids, bands around 1200 bp were detected whereas for each pFUS_B 

plasmids, band sizes changed from 350 bp to 820 bp according to the number of repeats 

in that array plasmid. AflII-XbaI confirmation digest was performed for colonies 

producing expected bands after colony PCR. A 1048 bp-band was obtained for pFUS_A 

plasmid with 10 repeats. Bands from 147 bp to 622 bp were obtained for the NF-κB 

reporter B1 to NF-κB reporter B6, with sizes increasing approximately 100 bp for each 

repeat. Figure 4.33 and 4.34 show agarose gel images after colony PCR with pCR8_F1 

and pCR8_R1, confirmation digest with AflII-XbaI and plasmid maps of reaction A and 

reaction B of TALEdsRed constructs.  
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Figure 4.33 Golden Gate reaction#1 for NF-κB reporter A, B6, B5 and B4 plasmids. 
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Figure 4.34 Golden Gate reaction#1 for NF-κB reporter B1, B2 and B3 plasmids. 

 

For construction of each TALEdsRed plasmid, a pFUS_A plasmid together with 

a pFUS_B plasmid with corresponding repeats and the last repeat plasmid were joined 

to the pCAGT7dsRed final expression plasmid in the Golden Gate reaction #2. Colony 
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PCR was performed for colonies obtained after transformation using pTAL_F1 and 

pTAL_R2. The size of bands obtained after colony PCR ranged from 1400 bp to 1900 

bp for plasmids TALEdsRed12 to TALEdsRed17 such that one repeat increases the size 

100 bp. Confirmation digest with AatII-StuI enzyme pair was performed for colonies 

generating expected band sizes. The size of the bands obtained after digestion was the 

same with that obtained after colony PCR. Agarose gel images related to colony PCR 

and confirmation digests, and plasmid maps of the final TALEdsRed constructs are 

shown in Figure 4.35, 4.36 and 4.37. 

Figure 4.35 Golden Gate reaction #2 for TALEdsRed12 and TALEdsRed13 plasmid 
construction. 
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Figure 4.36 Golden Gate reaction #2 for TALEdsRed14 and TALEdsRed15 

construction. 
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Figure 4.37 Golden Gate reaction #2 for the TALEdsRed16 and the TALEdsRed17 

construction. 
 

4.2.3 Expression of TALE-dsRed Constructs in HEK293 6.1.1 Cells and the Effect 

on GFP Expression 

 To determine whether expression of TALE dsRed constructs affects GFP 

expression in HEK293 6.1.1 cells upon TNFα treatment, designed TALEdsRed 

constructs were transfected to these cells and TNFα treatment was performed 

approximately 9 hours before FACS analysis. Figure 4.38 shows the net GFP 

fluorescence means of cells transfected with TALEdsRed constructs. The DsRed 

positive population of all NF-κB transfected cells has a lower GFP fluorescence mean 

than that of the untransfected samples.   
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Figure 4.38 GFP expressions of TALEdsRed transfected HEK293 6.1.1 cells after 

TNFα treatment. y-axis shows net GFP fluorescence mean. Green bars show the net 
GFP mean for dsRed negative cells and red bars show the net GFP mean for dsRed 

positive cells. ut: untransfected. 
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5. DISCUSSION  

 

 Transcription activator-like effector (TALE) proteins are recently described 

DNA binding proteins, isolated from the plant pathogen Xanthomonas[1]. The DNA 

binding domain of TALE proteins is composed of 34 amino acid long repeat units 

where the12th and 13th residues (repeat variable di-residues, RVDs) of each repeat 

determine the binding specificity of the protein[3, 4]. A simple one RVD to one base 

code and the modularity of repeat arrays enable researchers to construct TAL effector 

proteins to bind desired DNA sequences. Fusion of the TALE DNA binding domain to 

the catalytic domain of the FokI restriction enzyme makes them an efficient tool for 

genome engineering as site-directed nucleases[5, 6].  

 Interleukin-7 signaling is crucial for development, differentiation and survival of 

lymphocytes. The expression of IL-7Rα on lymphocytes changes during their 

development. Upstream promoter and enhancer regions of the IL-7Rα gene locus 

contain binding sites for transcription factors that have roles in regulating this 

expression[66, 68, 69, 73]. In order to understand the roles of these transcription factors 

in the regulation of IL-7Rα gene expression in lymphocytes, we mutated the binding 

sites of three transcription factors; namely, glucocorticoid receptor (GR), Notch and 

NF-κB, using TALEN technology. In addition, we constructed TALE-dsRed fusion 

proteins that competitively bind in place of NF-κB. 

 Our first TALEN pair, targeting the GR binding site of the IL-7Rα gene locus 

was synthesized and purchased from a company. We cloned both the forward and 

reverse TALEN monomers into a retroviral vector backbone encoding fluorescent 

reporter proteins to create stable cell lines expressing the TALEN pair after infection. 

These retroviral constructs utilized internal ribosome entry site (IRES) elements 

between the TALEN cDNA and the fluorescent protein encoding genes. This enabled us 
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to express TALEN monomers and fluorescent marker proteins (eGFP and dsRed for the 

forward and reverse TALENs respectively) in the same cells and allowed the 

identification of TALEN expressing cells. However, we could not efficiently infect the 

NIH 3T3 cell line using these TALEN retroviral constructs. Although we achieved 

approximately 40% infection efficiency with virus generated from control vector 

backbones, demonstrating the infectibility of these NIH3T3 cells, TALEN encoding 

vectors (which are considerably larger) could not produce infectious virus. This 

indicates that the large molecular weight of TALEN constructs could be the limiting 

factor for virus production in the Phoenix cell line.  

 

Another possibility is that infected and stably TALEN expressing cells could not 

survive due to the genotoxic effects of TALENs. But this is an unlikely possibility as 

we could later generate TALEN expressing (albeit not stably) cell lines. Possibly, off-

target mutations may result in cells stably expressing TALENs to be at a relative 

disadvantage to untransfected cells or to those cells that lost TALEN expression. During 

the course of this study we realized that in fact stably expressing TALENs is not 

desired. To reduce off target effects, TALENs should only transiently be expressed in 

cells. After inducing double stranded breaks (DSBs) at the desired endogenous loci, the 

expression of TALEN constructs is no longer necessary and may be deleterious to the 

mutation containing cells. Therefore, we decided to express TALEN constructs 

ectopically.  

 

Although transient transfection and expression could be achieved using our 

retroviral plasmid constructs, used for virus production, we generated new mammalian 

expression plasmids containing TALEN-IRES-fluorescent reporters. These constructs 

contained a CMV promoter, which is much stronger than the LTR of the retroviral 

vector construct. The transfection efficiency of Neuro-2a cells transfected with both an 

IRES-eGFP and IRES-dsRed TALEN expressing plasmids was around 30%.This is half 

of the normal transfection efficiency in this cell line. Perhaps the size of the fluorescent 

TALEN pair constructs limits the transfection of these cells, as in the case for our 

infection experiments. During the course of this study, we learned that efficient TALEN 

cleavage is influenced greatly by the presence of a C-terminally truncated protein. 

Unfortunately, the TALEN pair targeting the IL7R GR binding site was in a scaffold 

containing long C-terminal segments [6]. In addition, the GR TALEN pair was 
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synthesized using NK RVDs to target G bases. We also recently learned that NK 

containing RVDs have a lower affinity for G bases as compared to NN RVDs [14]. For 

these reasons, we discontinued our experiments with the commercially designed 

TALEN pair targeting the GR binding site and focused our attention to the TALEN 

pairs targeting other sites in the IL7R gene enhancer. We constructed these second 

generation TALENs to contain only NN RVDs to target G’s and in the plasmid 

backbones (pCAGT7 and pC-Goldy) which have the appropriate C-terminal truncation 

necessary for efficient DNA cutting. 

 

 Thus, we assembled TALEN constructs targeting the Notch and NF-κB binding 

sites using the Golden Gate TALEN kit. The pCAGT7 plasmid that contains a CAG 

promoter for mammalian expression was used as a final destination plasmid in TALEN 

assembly. Formation of homodimers (instead of heterodimers) by TALEN monomers 

decreases the cutting efficiency and results in off-target cleavage. Research on FokI 

enzyme dimerization indicated that homodimerization could be prevented by using 

mutants in the dimerization interface. New TALEN backbone plasmids were developed 

during the course of this study which we acquired, that use mutant FokI domains for 

each TALEN monomer[45]. We used these mutant FokI destination plasmids when 

generating TALEN monomers targeting the Notch binding site. More recently, the 

Goldy TALEN scaffold was reported to have improved genome editing efficiency 

compared to other TALEN encoding backbones[35]. Goldy TALENs contain drastically 

truncated N and C terminal domains. This modification is likely necessary for the 

assembly of the TALEN protein on the target site and the appropriate orientation of the 

FokI domains on the spacer region. We therefore transferred both the Notch and NF-κB 

TALENs into the Goldy TALEN backbone. 

 

Indeed, in experiments where we compared the cutting efficiency of TALENs 

targeting the Notch site, with identical DNA binding domains expressed in the context 

of pCAGT7, pCAGT7-mutant FokI and pC-Goldy TALEN backbones, we found that 

Goldy TALENs were the best cutters! (Figure 4.21) These experiments were conducted 

in RLM11 cells. The intensity of the uncut band was found to be the highest for the 

Notch TALEN pair in the Goldy backbone, consistent with recently published results. 

We found that band intensity was the lowest for TALEN pairs in the backbone with 

mutant FokI domains. This result is not consistent with previously published work, as 
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the mutant FokI domain was shown to have increased cutting efficiencies as well as 

higher specificity. Further evaluation of the cut site efficiency by normalizing the 

amount of expressed TALEN proteins may be necessary to explain this discrepancy.  

 

 

  In addition to scaffold optimizations during TALEN assembly, there are some 

critical points that have to be taken into consideration for detecting mutations generated 

by these proteins. First of all, in all TALEN expression experiments, we subjected cells 

to transient hypothermia after transfection, by incubating at 32°C instead of 

37°C.Transient hypothermia was previously shown to increase mutation efficiency both 

in zinc finger nucleases and in TALENs[6, 82]. This effect likely increases the folding 

efficiency of TALEN proteins that have to adopt a super helical structure. It is also 

possible that decreased temperatures decreases the progression of the cell cycle, giving 

more time for the generated DSBs to be repaired by NHEJ. It would therefore be 

interesting to test the mutation profile of cells that express TALENs in the presence and 

absence of hypothermia. We also harvested, transfected cells 72 hours after transfection 

to allow for time necessary for TALEN expression, double stranded break (DSBs) 

generation and NHEJ mediated repair of induced DSBs. It may be necessary to optimize   

the time of incubation to prevent toxicity to cells that may result in an apparent increase 

in the mutation rate.  

 

 Detection of induced mutations was another critical rate limiting point in this 

project. Transfection efficiency, efficiency of TALENs to induce double stranded 

breaks, the capacity of the transfected cell line for DNA repair and the mutation of 

either one or both chromosomes, the unknown ploidy of the cancer cells being used are 

all parameters that influence the number of mutant alleles in genomic DNA isolated 

from pooled cells. All of these listed parameters may result in restriction resistant PCR 

products in the restriction fragment length polymorphism (RFLP) assay. In order to 

detect a mutated allele from a genomic DNA pool of cells, we modified the RFLP assay 

by first digesting the genomic DNA with the enzyme in the spacer region, before 

amplifying the genomic DNA by PCR and re-digestion with the RFLP enzyme. We 

reasoned that the digestion of genomic DNA would decrease the number of wild type 

alleles in the in the pool of genomic DNA to be amplified and that the relative fraction 

of mutant alleles would increase. Theoretically, the initial restriction enzyme digest of 
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genomic DNA should remove all wild type alleles from the PCR template pool, but 

digestion of genomic DNA may not be as efficient as digestion of purified plasmid 

DNA. In figures 4.19, 4.21, and 4.28, we show experiments where we PCR amplified 

the TALEN target region from digested genomic DNA used as a template followed by a 

second restriction digestion of the PCR amplicon. In this modified RFLP assay we 

could detect restriction resistant mutant alleles that show up as an uncut band with the 

same size of the undigested PCR product. Because we had to use this enrichment step, 

we could not quantify the mutagenesis frequency in the pool of cells that contain 

TALEN induced mutations [5]. All the mutations detected in this study for both the 

Notch and NF-κB TALENs involve this enrichment step.  

 

Actually, the modified RFLP assay underestimates the number of mutations 

created at the TALEN target site because only mutant alleles that are restriction enzyme 

resistant are scored. It is likely that there are many mutant alleles generated along those 

that lose the restriction enzyme binding site, that do not lose this site. Because our 

sequencing results are derived from restriction enzyme resistant PCR amplicons cloned 

from the modified RFLP assay, these results are also underestimating the number of 

possible mutants in the pool of TALEN treated cells. Therefore we think that both the 

RFLP and the sequencing results we provide are an underestimation of the mutant 

alleles produced by these TALENs.   

 

 We tested the induction of mutations by TALENs targeting the IL7R Notch site 

in both the Neuro-2a and RLM11 cells using the modified RFLP assay. Neuro-2a cells 

were not appropriate for phenotypic analysis as they are neurons that do not express 

IL7Rα. However, previous work shows that NHEJ is very efficient in this cell line, 

making them a good candidate for detecting TALEN induced mutations. The RLM11 

cell line is IL7Rα positive and the phenotypic effect of induced mutations could be 

analyzed phenotypically. Our sequencing results provide evidence for mutant alleles 

that have deletions, insertions and single nucleotide polymorphisms at the target site. 

The most frequent mutation we detected was a deletion of one nucleotide. Indeed the 

same nucleotide was deleted in both the RLM11 and Neuro-2a cell lines. This may 

indicate that during NHEJ, mutations occur in an additive manner, starting with one 

base pair deletion and evolving to have various additional mutations. In addition, the 

frequency of mutations with 4 bp and 9 bp deletions were the same for both cell lines.  
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Although the number of colonies screened for the Neuro-2a cell line is more 

than that for RLM11 cells, the number of different mutations detected was higher in the 

RLM11 cell line. In fact the number of observed SNPs was also higher in RLM11 cells. 

This result may indicate that IL7Rα expression may be priming the genomic locus to 

become more susceptible to mutation. It is well known that transcriptionally active gene 

loci are devoid of histone proteins. Thus it is possible that the target site is more 

available for TALEN binding and DSB generation in the IL7R expressing RLM11 cell 

line compared to non-expressing Neuro-2a cells. In a recent study, it was demonstrated 

that the use of constructed TALE proteins together with epigenetic inhibitors enhanced 

transcriptional activation rate of epigenetically silenced genes [83]. Moreover, it was 

shown that the TALEN induced mutation rate was negatively correlated with the 

number of CpG targets in the target site[34].Our results that indicate a higher frequency 

of mutations in the target site in cells expressing the IL7R are consistent with these 

results. 

 

 To analyze the mutations generated by the NF-κB TALENs transfected to 

RLM11 cells in the Goldy backbone, we cloned and sequenced the uncut band obtained 

after the modified RFLP assay. We found four different mutations with deletions of 

either 15 or 16 nucleotides and one or two SNPs were detected in the 40 colonies 

screened. As expected, the restriction site in all sequenced clones was destroyed. 

Surprisingly, the NF-κB binding site was not destroyed in any of the mutants. This 

result seems contradictory to our finding that IL7R expression was decreased in these 

clones. It is possible that yet another transcription factor right next to the NF-κB binding 

site is present in this enhancer, and that this transcription factor is necessary for IL7R 

expression. Although the NF-κB binding site was intact, a 15 bp-deletion corresponds to 

one and half turn of the DNA helix and this modification may in fact result in a loss of a 

necessary interaction between NF-κB and close-by nuclear factors binding to the 

enhancer. It is well known that enhancers function by multiple transcription factors 

binding in close proximity on the DNA. The concept of an enhanceosome requires that 

these DNA binding factors fit like pieces of a puzzle and that any alteration in the 

spacing between the binding sites dramatically affects transcription factor interaction 

and enhancer activity.  
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Although we observed a small decrease in the IL-7Rα expression in NF-κB 

binding site TALEN transfected RLM11 cells, expression was unchanged in Notch 

binding site TALEN transfected cells. Although we do not know the frequency, both 

TALENs were capable of generating mutated cells in the pool of transfected cells. The 

use of a heterogeneous cell pool to assess IL-7Rα expression on Notch site TALEN 

transfected cells may not be sensitive enough to detect changes in expression. Assuming 

that the NF-κB site TALEN transfected cell pool has a similar complexity and results in 

a detectable decrease in IL-7Rα expression we could conclude that mutations in the 

Notch binding site (RBP-Jk)alone does not affect IL-7R expression. Current dogma 

indicates that Notch needs to be activated, cleaved from the plasma membrane, 

translocated to the nucleus, associate with the RBP-Jk protein and displaces previously 

bound suppressors to activate transcription. These cellular events may not be happening 

in the chosen cell line mutant. Thus the same mutants that do not affect IL7R expression 

may in fact be important in other cell types. 

 

Although mutations were detected in TALEN target regions and the phenotypic 

effect of mutations was demonstrated on IL-7Rα expression, selecting TALEN 

transfected cells is important to quantify TALEN mutagenesis frequency. It is possible 

to select high TALEN expressing cells by co-transfecting TALEN pairs with a GFP 

plasmid and sorting GFP positive cells by flow cytometry[84]. However, as indicated in 

a recent study, sorted cells sometimes cannot form colonies due to damage from the 

strong laser and hydrostatic pressure they are exposed to in the FACS machine. Sorting 

of TALEN transfected cells can also be achieved by magnetic separation or antibiotic 

selection using reporter systems in which a selectable marker is expressed only when 

mutations are generated at the TALEN target site [85]. In fact in data not included in 

this thesis, we attempted to sort TALEN transfected and IL7R low expressing cells by 

magnetic bead separation. Unfortunately we could not detect any mutations in these 

sorted populations. Ultimately, in order to assign a single phenotype to a single cell with 

a single mutation, it is necessary to generate clonal populations from sorted cell pools. 

We are currently attempting to single cell clone Notch and NF-κB site mutated cells 

from our pools.  

 

 In the final section of this thesis, we generated six TALE repeat arrays that we 

thought could function as competitive inhibitors for an NF-κB binding site. Rather than 
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being fused to a DNA cleaving FokI restriction enzyme domain, these TALE DNA 

binding domains were fused to a DsRed fluorescent protein encoding domain. These 

constructs were expressed in the context of the FokI sequence deficient pCAGT7 

derived mammalian expression plasmid named pCAGdsRed. We generated and 

transfected six TALEdsRed constructs with different repeat numbers into the HEK293 

6.1.1 cell line, constructed previously by Pinar Onal and Belkis Atasever in our lab. 

This reporter cell line has stably integrated four NF-κB binding sites controlling the 

human c-Fos promoter driving the expression of an eGFP gene. This cell line responds 

to TNF-α treatment by upregulating GFP expression as a result of NF-κB nuclear 

translocation. We found that our TALE-dsRed constructs suppressed GFP expression 

upon TNF-α induction. This effect was specific to those cells that were dsRed positive 

indicating that the TALE-dsRed bound to the reporter construct NF-κB sites in place of 

NF-κB. In fact GFP expression of dsRed positive cells was more that 4-fold decreased 

compared to untransfected cells. 

 

 It is known that dsRed proteins can result in tetramerization of fusion proteins. 

Our reporter cell line contains four NF-κB sites integrated into its genome. We have not 

yet assessed whether our TALEdsRed proteins form tetramers and whether this putative 

interaction plays a role in DNA binding. On the other hand, dsRed tetramerization 

before the TALE proteins bind DNA may be decreasing the affinity of these fluorescent 

transcription factors to the DNA and perhaps limiting the NF-κB competitive inhibition 

activity. In such a scenario, it may be more advantageous to express the TALE DNA 

binding domain independently of the fluorescent protein domain. We note that our 

TALEdsRed constructs were assembled in a plasmid optimized for TALEN induced 

genome modification. This plasmid has been optimized for DNA cleavage by a C-

terminal truncation. Earlier reports show that the optimal TALE DNA binding domain 

structure for cleavage and gene regulation activities differs [6].Thus our TALEdsRed 

constructs may require more optimization for a more robust DNA binding competitive 

effect. 

 

An important control for our competitive binding experiment, involves the 

demonstration that a TALE dsRed construct that does not have specificity to NF-κB 

does not inhibit NF-κB activity. We are currently constructing such a construct. We also 

note that, TNF-α treatment was initiated 30 hours after the transfection of the 
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TALEdsRed constructs and that we analyzed these cells after a 9 hour TNF-α treatment. 

GFP expression in untransfected cells was around 60%, although this was expected to 

be 100%, as this is a stable cell line. This indicates that TNF-α treatment should be 

optimized, perhaps by using confocal microscopy to show that a majority of treated 

cells express GFP and TALEdsRed proteins. Confocal microscopy can also be used to 

demonstrate that TALEdsRed and NF-κB proteins are co-localized in the nucleus at the 

same time. Under these controlled settings, an optimal transcription inhibition activity 

of our constructed TALE inhibitor proteins can be assessed. 
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6. CONCLUSION 

 

 In this study, our main aim was to create mutations at the nuclear factor binding 

sites of the endogenous IL-7Rα gene locus using TALEN technology. This line of work 

is important for understanding the roles of these transcription factor proteins for the 

transcription regulation of this immunologically important gene. We used three different 

strategies to design and construct different TALEN proteins targeting three sites in the 

IL7R gene. The literature indicates that these sites are bound by the transcription 

factors, GR, Notch and NF-κB. While we were not successful in generating active 

TALENs using the first two strategies, the final strategy of expressing TALENs in the 

context of the pC-Goldy expression system yielded active TALENs and we were able to 

detect INDELs at the targeted sites. We detected the induction of mutations at the 

targeted sites using a modified RFLP assay and subsequently sequenced PCR products 

from these regions to demonstrate that INDELs were actually being generated 

specifically at the target site. We do not currently know the off target specificity of 

these TALENs and whether mutations were incorporated at different sites of the 

genomes of these targeted cells. We analyzed the effect of these mutations on IL-7Rα 

expression in a heterogeneous mutated cell pool by flow cytometry and found that 

mutations generated by the TALEN targeting the NF-κB binding site indeed reduced 

IL-7Rα expression. On the other hand, mutations induced by the TALEN targeting the 

Notch binding site did not detectably affect IL-7Rα expression. We did not assess the 

mutagenic potential of the TALEN targeting the GR binding site. These experiments 

show that TAL effector nucleases can be used for mutation of endogenous genomic 

transcription enhancers to conduct structure-function studies on these sequences in the 

endogenous genomic context. Currently most transcription enhancer structure uses the 

luciferase reporter plasmid expression system which is admittedly an overexpression 

system and may not reflect the true activity of endogenous enhancers. In this study we 
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demonstrate that individual transcription factor binding sites in endogenous enhancers 

can be mutated to affect transcriptional enhancer activity to study function. 

 In this study we also assessed transcription factor activity using a second 

approach. In addition to using TALENs for site directed mutagenesis of enhancers, we 

constructed plasmids encoding TALEdsRed fusion proteins to create competitive 

binders of an NF-κB transcription factor binding site. To achieve this aim we used a 

previously generated stable cell line (named HEK293 6.1.1), in which TNF-α treatment 

results in GFP expression due to NF-κB nuclear translocation. This cell line contains a 

stably integrated construct containing four NF-κB binding sites controlling a minimal 

human c-Fos gene promoter driving the expression of an eGFP gene. We demonstrated 

by flow cytometry that TALEdsRed expression resulted in a reduction of GFP 

expression in TNF-α treated cells. This part of the study demonstrates that TAL effector 

proteins can be used as competitive inhibitors of nuclear factors to inhibit gene 

transcription. 
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APPENDIX 

 

APPENDIX A: Chemicals Used in the Study 

 

Chemicals Supplier Company 

Acetic Acid Sigma, Germany 

Agarose Sigma, Germany 

Ampicillin sodium salt Cellgro, USA 

Boric acid Molekula, UK 

Calcium chloride Sigma, Germany 

Distilled water Milipore, France 

DMEM Gibco, USA 

DMSO Sigma, Germany 

EDTA Sigma, Germany 

Ethanol Sigma, Germany 

Ethidium bromide Sigma, Germany 

Fetal Bovine Serum (FBS) Lonza, Switzerland 

Glycerol Sigma, Germany 

HBSS Gibco, USA 

Hydrochloric Acid Sigma, Germany 

Isopropanol Sigma, Germany 

Kanamycin Sulfate Gibco, USA 

LB Agar BD, USA 

LB Broth Sigma, Germany 

L-glutamine Hyclone, USA 
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Liquid nitrogen Karbogaz, Turkey 

2-mercaptoethanol Sigma, Germany 

Penicillin-Streptomycin Sigma, Germany 

PIPES Sigma, Germany 

PBS Sigma, Germany 

RNase A Roche, Germany 

RPMI 1640 Gibco, USA 

SDS Sigma, Germany 

Sodium Azide Amresco,USA 

Spectinomycin Sigma, Germany 

Tetracyclin Sigma, Germany 

Tris base Sigma, Germany 

Trypan Blue Fluca, Germany 

Trypsin-EDTA Gibco, USA 
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APPENDIX B: Equipment Used In the Study 

 

Equipment Company 

Autoclave Priorclave, UK 

Balance Sartorius, BP221S, Germany 

Schimadzu, Libror EB-3200 HU, Japan 

Centrifuge Hitachi, Sorvall RC5C Plus, USA 

Eppendorf, 5415D, Germany 

Eppendorf, 5418R, Germany 

Beckman Coulter, Allegra®X-15R, USA 

CO2 Incubator Binder,Germany 

Deepfreeze -80°C, Forma,Thermo ElectronCorp.,USA 

-20°C,Bosch,Turkey 

Distilled Water Millipore, Elix-S, France 

Electrophoresis Apparatus Biorad Inc., USA 

Electroporator Invitrogen, Neon Transfection Systems, USA 

Flow Cytometer BD FACS Canto,USA 

Gel Documentation Biorad, UV-Transilluminator 2000, USA 

Heater ThermomixerComfort,Eppendorf,Germany 

Hematocytometer Hausser Scientific,Blue Bell Pa.,USA 

Ice Machine Scotsman Inc.,  AF80, USA  

Incubator Memmert, Modell 300, Germany 

Laminar Flow Kendro Lab. Prod., Heraeus, HeraSafe HS12, 
Germany 

Liquid Nitrogen Tank Taylor-Wharton,3000RS,USA 
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Magnetic Stirrer StuartTM,SB162, UK 

Microliter Pipettes Gilson, Pipetman, France 

Microscope Olympus IX70, Japan 

Olympus CK40, Japan 

Microwave Oven Bosch,Turkey 

pH meter Mettler Toledo, S220 SevenCompactTM 
pH/Ion, USA 

Refrigerator Bosch,Turkey 

Shaker Incubator New Brunswick Sci., Innova 4330, USA 

Spectrophotometer Amersham Biosciences, UK 

Thermocycler 

 

Eppendorf, Mastercycler Gradient, 

Germany 

Vortex Velp Scientifica,Italy 
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APPENDIX C: DNA Molecular Weight Marker 
 
 
 

Gene RulerTM DNA Ladder Mix 
Fermentas, Germany 
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APPENDIX D: FACS Analysis of GFP and dsRed Expression Levels in NIH3T3 
Cell Line Infected with ECR3 GR Binding Site TALEN plasmids 

 
Figure D.1 FACS analysis of GFP and dsRed expression in ECR3 GR binding site 
TALEN infected NIH3T3 cell line. The first column shows side scatter vs. forward 

scatter dot plots, the second column shows histograms of GFP expression and the third 
column shows histograms of dsRed expression. . a) Uninfected NIH3T3 b) pMIGII 

TcRαβ-IRESdsRed and pMIGII-IRESdsRed infected NIH3T3 cells c) Left GR binding 
site TALEN-IRESGFP and right GR binding site TALEN-IRESdsRed infected NIH3T3 
cells. Forward scatter, shows the size of the cells and side scatter shows the granularity 
of cells. The analysis was restricted to the live cells falling into the gate shown in side 

scatter vs. forward scatter dot plots. The percentage of cells falling into each gate is 
indicated under the label for each gate.   
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APPENDIX E: FACS Analysis of GFP and dsRed Expression Levels in Neuro-2a 
Cell Line Transfected with CMV ECR3 GR Binding Site TALEN Plasmids 

 
Figure E.1 FACS analysis of GFP and dsRed expression in CMV ECR3 GR binding site 
TALEN transfected Neuro-2a cell line. The first column shows side scatter vs. forward 
scatter dot plots, the second column shows histograms of GFP expression and the third 
column shows histograms of dsRed expression. . a) Untransfected Neuro-2a b) CMV 

left GR binding site TALEN-IRESGFP and CMV right GR binding site TALEN-
IRESdsRed co-transfected Neuro-2a cells. Forward scatter, shows the size of the cells 
and side scatter shows the granularity of cells. The analysis was restricted to the live 

cells falling into the gate shown in side scatter vs. forward scatter dot plots. The 
percentage of cells falling into each gate is indicated under the label for each gate. 
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APPENDIX F: FACS Analysis of IL7Rα Expression Levels on RLM11 Cell Line 
Transfected with Constructed TALEN Plasmids 

 
Figure F.1 FACS analysis of IL7Rα expression on the RLM11 cell line transfected with 
TALEN expression plasmids targeting NF-κB binding site and Notch binding site of IL-

7R enhancer region. The first column shows side scatter vs. forward scatter dot plots, 
the second column shows histograms of IL-7Rα expression. a) untransfected RLM11 b) 
pC-Goldy NF-κB binding site TALEN pair transfected RLM11 cells c) pC-Goldy Notch 

binding site TALEN pair transfected RLM11 cells. Forward scatter, shows the size of 
the cells and side scatter shows the granularity of cells. The analysis was restricted to 

the live cells falling into the gate shown in side scatter vs. forward scatter dot plots. The 
bold numbers inside the graph indicates the mean Alexa 647 fluorescence intensity of 
the cells, indicating IL7R expression. IL7Rα was detected with biotinylated CD127 

antibodies followed by Alexa647 labeled streptavidin. The percentage of cells falling 
into each gate is indicated under the label for each gate.   
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APPENDIX G: Representative Sequence Analysis of Mutations Induced at Notch 
Binding Site TALEN Target Sites of Neuro-2a Cells 

 
Figure G.1 Sequencing analysis of the Notch binding site TALEN transfected Neuro-2a 

cells. Green arrow represents the binding site of left Notch TALEN. Red arrow 
represents the binding site of right Notch TALEN. The numbers on the left indicates the 

number of nucleotides inserted or deleted. WT corresponds to the sequence of Notch 
binding site TALEN target site of the untransfected Neuro-2a cells. 
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APPENDIX H: FACS Analysis of GFP Expression Levels in HEK293 6.1.1 
Reporter Cell Line Transfected with TALEdsRed Expression Plasmids 
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Figure H.1 FACS analysis of GFP expression in transfected HEK293 6.1.1 reporter cell 

line. The first column shows side scatter vs. forward scatter dot plots, the second 
column shows histograms of GFP expression and the third column shows histograms of 

dsRed expression. a) untransfected TNF untreated b) untransfected TNF treated c) 
TALEdsRed12 transfected TNF untreated d) TALEdsRed12 transfected TNF treated e) 

TALEdsRed13 transfected TNF untreated f) TALEdsRed13 transfected TNF treated 
g)TALEdsRed14 transfected TNF untreated h) TALEdsRed14 transfected TNF treated 
i)TALEdsRed15 transfected TNF untreated j) TALEdsRed15 transfected TNF treated 
k)TALEdsRed16 transfected TNF untreated l) TALEdsRed16 transfected TNF treated 
m)TALEdsRed17 transfected TNF untreated n) TALEdsRed17 transfected TNF treated 
HEK293 6.1.1 cells. Forward scatter, shows the size of the cells and side scatter shows 
the granularity of cells. The analysis was restricted to the live cells falling into the gate 
shown in side scatter vs. forward scatter dot plots. The bold numbers inside the graph 
indicates the mean GFP fluorescence intensity of the cells in the gates. The percentage 

of cells falling into each gate is indicated under the label for each gate.   

 

 

 

 

 


