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Abstract

We investigate a parallelized divide-and-conquer approach based on a self-organizing map (SOM) in order to solve the
Euclidean Traveling Salesman Problem (TSP). Our approach consists of dividing cities into municipalities, evolving the
most appropriate solution from each municipality so as to find the best overall solution and, finally, joining neighborhood
municipalities by using a blend operator to identify the final solution. We evaluate performance of parallelized approach
over standard TSP test problems (TSPLIB) to show that our approach gives a better answer in terms of quality and
time rather than the sequential evolutionary SOM.
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1. Introduction

1.1. Problem description

The Traveling Salesman Problem (TSP) is one of the
oldest and well-studied problems in operational research:
it has been subject of study for more than three decades.

The problem at hand is to find the shortest tour be-
tween N cities which covers all cities each exactly once.
For a N−city problem, there exists (N−1)! /2 roundtrips.
Therefore, the problem is NP-complete and by increasing
the number of cities, the computation time of optimal so-
lution increases drastically [1]. Consequently, obtaining a
near-optimal solution in rational time has enormous value.
This is why heuristic and metaheuristic have been devel-
oped and disclosed very good empirical results over TSP. It
is also worth mentioning that they have no mathematical
proof for effectiveness.

We can categorize major metaheuristics for solving TSP
as evolutionary algorithm (EA) [2, 3], tabu search [4, 5],
simulated annealing [6, 7], particle swarm optimization [6],
ant colony optimization [6], and neural network as well.
Also, by combining these categories, hybrid systems were
taken into account [8, 9].

1.2. Application

TSP is naturally applied in transportation and logistic
problems but because of its simplicity and comprehensi-
bility, TSP can model many other interesting problems.
More specifically, in the biology area that is the host of
huge problems, with the advent of the genome projects,
the research has focused to shift utilizing the well studied
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computer problem, Traveling Salesman Problem, approach
to study group of genes or proteins. Because of the effec-
tiveness of the TSP, it is used in different applications in
genomics and proteomics areas. In one study, Johnson
and Liu [10] utilized TSP to predict proteins functions.
They found a promising tool to predict functions of un-
characterized proteins. Their prediction method was more
advantageous than the traditional methods.

Another study was related to chemotaxis process of
neutrophils and macrophages which are the main respon-
sible elements in the defense system in all mammalian bod-
ies. They use chemotaxis to locate their preys and imple-
menting of TSP performed successfully even in the absence
of information about target location [11]. Korostensky and
Gonnet [12] used TSP solution for evolutionary tree con-
struction that shows relationship between members and
they had better results than the other methods.

TSP methods are also used for the DNA sequencing
processes [13]. Sequencing By Hybridization (SBH) is pro-
posed as a promising approach however it has an intrinsic
problem (i.e. two types of errors associated with nucleotide
hybridization) so it has been less widely applicable for un-
known sequences. TSP algorithm has provided better and
more accurate results [14].

Some other examples are printing circuit-boards [15,
16], clustering a data array [17], encoding DNA [18, 19],
image processing [20], and so forth. Nowadays, diversified
applications require large-scale TSPs to be solved with ac-
ceptable precision.

1.3. Related work

For approximately three decades, neural networks have
absorbed much attention. Mostly, two types of neural net-
works are applied for solving TSP. Hopfield neural network
[21, 22] performs weakly in solving big problems and the
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self-organizing map (SOM) [23] which exhibits better per-
formance in the large-scale problems.

Many researchers have focused on altering learning rule
of neural networks for better results. Aras et al. [24]
have tried to improve performance by exploiting the topol-
ogy of the problem. They called their network Kohonen
Network Incorporating Explicit Statistics (KNIES) and
claimed that by keeping the mean of the synaptic weights
of the network the same as the mean of cities, better re-
sults can be achieved. Cochrane and Beasley [25] demon-
strate that considering cooperation between neurons in
addition to competition can improve quality of solution.
They called their network as the Co-adaptive neural net-
work. The obtained results highlighted that none of other
self-organized networks can individually compete with Co-
adaptive network. Cheung and Law [26] in 2007 intro-
duced a new network which prohibits neurons to be always-
winner. Zhang et al. [27] in 2012 presented a new SOM al-
gorithm that categorizes competition between the neurons
into overall and regional groups. In their proposed algo-
rithm, overall competition is designed to make the winning
neuron and its neighborhood neurons less competitive for
outlining the tour, and regional competition is designed to
make them more competitive for refining the tour.

Although much research was put into refining the net-
work structure and rules, other research has focused on
parallelizing conventional neural networks to deal with big-
ger problems.Obermayer et al. [28] had applied SOM over
a large-scale biological problem (18K data, 900 dimen-
sions). To cope with the size issue, they had to use par-
allelized computers to solve the problem. Mulder and
Wunsch [29] divided huge TSP by clustering algorithms
and solved each cluster with adaptive resonance neural
network. They were claiming that proposed divide and
conquer paradigm can increase scalability and parallelism.
Créput and Koukam [30] have tried to improve the neural
network by focusing on a heuristic that follows a metaphor
within biologic systems that exhibit a high degree of in-
trinsic parallelism. Such a system has two advantages;
firstly, it is intuitive; secondly easy to implement. They
have indicated that by improving neural network via an
evolutionary manner, they can get better results than the
Co-adaptive network [25], Expanding SOM (ESOM) [31],
and evolved ISOM(eISOM) [32].

1.4. Current work

Our focus in this paper is to adopt the evolving mech-
anism of memetic SOM in Créput and Koukam [30] but in
a different way so that it is made more parallel-friendly. In
order to show performance of system, we will use TSPLIB
[33] sample problems with different levels of paralleliza-
tion. As one can check, distances between cities are rounded
to the nearest integer value in the TSPLIB optimal tour
report. To keep consistency of literature, we adopt this as-
sumption of TSPLIB for distances between cities as well.
Hereafter, we call our new system as Parallelized Memetic
Self-Organizing Map (PMSOM). For the sake of simplicity,

we will apply our algorithm over Euclidean TSP samples
but some researchers have demonstrated that SOM is ap-
plicable on non-Euclidean TSP as well [34].

At the beginning, PMSOM divides cities between mu-
nicipalities by the well-known K-means clustering algo-
rithm [35]. Municipalities are completely independent of
each other and evolving separately. Each municipality con-
tains a population of individuals which are evolving by
SOM rules and by adopting evolutionary mechanism of
Créput and Koukam [30], the weakest answer is replaced
by the best answer at some periods. After the conver-
gence of the municipality to a sub-optimal tour of assigned
cities, it will wait for the neighborhood municipalities to
converge. Then, the blend operator merges two adjacent
converged municipalities and this process continues until
one municipality is left. The answer for the final munici-
pality is the final answer of TSP.

Therefore, the major contributions of this study are as
follows:

1. We introduce a parallel-friendly system based on a
self-organizing map to solve large-scale traveling sales-
man problems.

2. We present a divide and conquer method to split
large problems to a set of small problems and collect
the results in an efficient way.

3. We experiment new system over TSPLIB sample prob-
lems with different levels of parallelization.

Although, aforementioned mechanism has some advan-
tages, it has also one drawback. It gives the final answer
when all partitions are solved and merged together.

The rest of article is organized as follows. Firstly, the
building-block of method is introduced in Section 2. The
principle of PMSOM is presented in Section 3. Then, Sec-
tion 4 reports experimental analysis of proposed method.
Finally, Section 6 concludes.

2. The Kohonen network incorporating explicit statis-
tics

Although, Pure Kohonen network works well enough
in Créput and Koukam [30] but we decided to use KNIES
[24] as the building block of our methodology because of
the following reasons:

1. Créput and Koukam [30] mentioned that trying more
advanced learning rules by individuals may improve
the algorithm.

2. KNIES [24] has shown better performance than the
Pure Kohonen network, the Guilty Net of Burke and
Damany [36], and the approach of Angniol et al. [37].

3. KNIES uses the statistical properties of the data
points which seems necessary when we divide the
map into municipalities by K-means clustering algo-
rithm.
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As alluded previously, each municipality includes pop-
ulation of SOM networks. KNIES uses global statistical
information of cities to improve the final answer. Indeed,
the basic idea lies in the fact that the mean of the given
set of cities is known and the mean of final tour by SOM
should be similar to the mean of the coordinates of the
cities. In other words, in the two-dimensional case, av-
erage horizontal and vertical positions of all neurons of a
tour should be equal to average horizontal and vertical co-
ordinates of all the given cities, respectively. To do this,
KNIES decomposes every training step into two phases,
namely the attracting and dispersing phases to keep the
mean of the tour the same as for the given set of cities in
each iteration.

In the learning phase, we introduce a city (Xi) ran-
domly from N cities to the network and neurons com-
pete with each other. The closest neuron (Yj∗) will win
the competition. After that, all neurons in the activation
bubble (Yj , j ∈ Bj∗) migrate toward introduced city by
Eq.(1) and the rest of neurons outside of activation bub-
ble (Yj , j 6∈ Bj∗) dispersed in such a way that mean of the
tour coincide with the mean of the cities coordinates.

Yj(t+ 1) =

Yj(t) +W (j, j∗)(Xi − Yj(t)) j ∈ Bj∗

Yj(t) +

∑
i∈Bj∗

(Yi(t+1)−Yi(t))
M−|Bj∗ |

j 6∈ Bj∗
(1)

The farther the neuron is from the winner, the less
affected it is. This rule can be implemented by defining
W (j, j∗) as gaussian kernel function as Eq.(2).

W (j, j∗) = e
−d(j,j∗)

2σ2 (2)

where M denotes number of neurons, d(j, j∗) = min{|j −
j∗|,M − |j − j∗|} and σ is standard deviation of kernel
function. σ reduces over time to decrease effect of bub-
ble of activity to more distant neurons and play role of
adjustment at the end of learning phase [38].

Although, Eq.(2) has proven its eligibility but because
of usage frequency, we employ another simplified version
of the function to accelerate computation.

W (j, j∗) =

(
1− d(j, j∗)

|Bj∗ |

)βt
(3)

where βt is an increasing value from zero at the beginning

(t = 0) to βT at the end of time span (βt = tβT
T ).

Figure 1 demonstrates effect of the attracting and dis-
persing phases on expansion of neuron ring. Initially, net-
work starts from a ring at the center of map and then
expands by considering location of introduced cities in the
next iterations.

Angniol et al. [37] had done extensive analysis on the
number of neurons in SOM. To avoid oscillation of neurons
between different cities, they proposed that the number of
neurons should be greater than number of cities (M ≥
3N). In our study we assume a fixed number of neurons
(M = 5N) but a variable number of neurons was also
studied by Angniol et al. [37] and Boeres et al. [39].

Figure 1: Effect of the attracting and dispersing phases between two
subsequent iterations

3. Parallelized memetic self-organizing map

In this section, the parallelized memetic self-organizing
map (PMSOM) will be explained in detail. At the begin-
ning, we will introduce a dividing mechanism that creates
municipalities. After that, a parallel-friendly evolutionary
mechanism for each municipality will be discussed in de-
tail and then we will elaborate the blend operator which
aggregates sub-tours. It is worth mentioning that in each
section we also talk about the time complexity of algo-
rithms. Lastly, explaining termination condition of the
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PMSOM and the adjusted values for the parameters will
finalize this section.

3.1. Creating municipalities

In order to have a parallel-friendly method for solv-
ing TSP, we need a good algorithm to divide huge maps
into smaller regions. However, this algorithm needs some
prerequisites as explained below.

• First of all, created regions should be continuous, i.e.
cities assigned to a region should not be separated
from each other by another region.

• Secondly, the devised algorithm has to keep and rep-
resent the topological information of the problem
(e.g. outlying cities may need to be considered as
different regions).

• Thirdly, the clustering algorithm should be fast enough
to handle large problems.

One simple way to implement such an algorithm is to
divide the whole map into K groups using a rectangular
grid and to assign cities in each group to one municipal-
ity. This method, however, has one major drawback: the
algorithm might assign close-by city to an undesirable mu-
nicipality just because of falling into assigned municipality
grid cell. Another method is to apply a well-known clus-
tering algorithm such as the K-means algorithm to find
regions and their centroids. Figure 2 depicts att48 after
dividing cities into three groups with the K-means algo-
rithm. The time complexity of the K-means algorithm
is NP-hard but by sacrificing accuracy, we can reach the
proper clusters in a reasonable time.

Figure 2: att48 after dividing into three groups: light gray, gray,
dark gray

After finding clusters (municipalities)1, we need to de-
termine adjacent municipalities. If two clusters are far

1In this work, cluster and municipality words are interchangeable.

from each other or they have another cluster in between,
merging them together is erroneous because they may for-
get the local information of the sub-tours. For this reason,
we will implement an algorithm to find the most reasonable
adjacent clusters. Algorithm 1 determines which clusters
are adjacent and which are not.

Algorithm 1 determining adjacent municipalities.

1: for a, b ∈ C do
2: Suppose a, b are adjacent
3: for k, l ∈ C and k, l 6= a, b do

4: if (
−−−→
PaPb ∩

−−→
PkPl 6= ∅) then

5: a, b are not adjacent
6: Break
7: else
8: if ‖

−−−→
PaPb‖≥ Er∈C‖

−−−→
PaPr‖ then

9: a, b are not adjacent
10: Break
11: end if
12: end if
13: end for
14: end for

C is defined as the set of all K clusters and Pa is cen-
troid coordinates of cluster a ∈ C. Algorithm 1 starts by
choosing two cluster’s (a, b ∈ C) centroids for the line seg-

ment
−−−→
PaPb, if there are two other clusters (k, l ∈ C) that

their centroids line segment intersect then it means a and
b are not adjacent. In addition to the previous condition,
we add the distance condition so that two adjacent clus-
ters should not be too faraway from each other (i.e. the
distance between a and b should be less than the average
distance of a to all other neighborhoods). Time complex-
ity of Algorithm 1 is in order of O(K4) where K is the
number of clusters.

3.2. Evolving mechanism

After creating municipalities by the K-means clustering
algorithm, we need to create a parallel-friendly system to
let municipalities separately evolve. Thus, for each munic-
ipality, we create a population of KNIES neural networks
to create the sub-tour of that municipality under an evo-
lutionary mechanism. The evolutionary mechanism con-
sistently replaces the worst answer with the best answer.
This mechanism guides the system to enhance the quality
of the answer iteratively and has proven its eligibility in
the memetic SOM [30]. Because the evolving mechanism
in each municipality is completely independent of the other
municipalities, we can easily employ parallel programming
(or multi-thread programming on a single computer) [40].
It is also easy to prove that by considering just one munic-
ipality as a number of clusters, PMSOM will diminish to
the memetic SOM [30]. Consequently, PMSOM could be
a more generalized version of memetic SOM and later on
we will compare the result of PMSOM with memetic SOM
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Figure 3: Evolution of att48 by PMSOM

as the latest winner of the neural network-based methods
for solving TSP.

After some iteration (which is dependent on the as-
signed cities’ topology and KNIES’s parameters), the learn-
ing rule of the KNIES causes the synaptic weights of an
individual to converge to a sub-tour. If the total transfor-
mation of all individuals becomes negligible, we call the
municipality converged: a converged municipality needs
to wait (be inactive) for other municipalities to converge
as well. After that, the blend operator combines inac-
tive municipalities. This activation-deactivation mecha-
nism enables us to efficiently use system resources. Figure
3 shows the evolution of att48 in 6 different steps from
top-left to down-right. At the beginning, the three mu-
nicipalities individually evolved. In iteration #216, the
second municipality deactivated and was waiting for the
third one to converge. After convergence of the third clus-
ter, it combined with the second cluster, thus creating to a
bigger cluster. Finally, in iteration #371, all municipalities
are combined and evolved until finding the optimal tour
exactly after iteration #567. It is worth mentioning, af-
ter iteration #567, termination phase (see Subsection 3.4)
will be called which results in a tour (in this case optimal
tour) passing through all cities. However, we exclude the
final tour to keep the figure as simple as possible.

Algorithm 2 shows the learning mechanism of each mu-
nicipality. If the municipality has not yet converged, it will
start to randomly choose a subset of assigned cities and ap-
ply KNIES learning role over each member of the popula-
tion. Due to implementing evolutionary behavior, the best
answer (line 8) and worst answer (line 11) of the municipal-
ity should be updated. The best solution has to replace the
worst solution (line 13). Moreover, the algorithm observes
the deformation of the best solution of population to keep

track of changes and while the improvement is less than
threshold (ε), it increases the Stopped variable. Otherwise,
the Stopped variable resets. Eventually, if the number of
the Stopped frames exceeds the Maximum Pause the mu-
nicipality has converged and should be deactivated but if
there is just one municipality, it means the system found
the solution of given TSP and the refining step is neces-
sary. The Maximum Pause can be a function of active
clusters; therefore, at the beginning with the maximum
number of active clusters, we will wait less and at the end
we need to wait more for fine tuning.

Because municipalities are separately evolving, the worst
case time complexity of Algorithm 2 in each iteration is ex-
actly equal to the memetic SOM when assigned cities to a
municipality are N−K (again the order of N when we as-
sume N � K) and for the rest, each a city was assigned.
By mathematical notation, it has O(|Population|×N ×
2Mp) where the p is an individual of the municipality with
the highest number of assigned cities. But the best case
time complexity is when all municipalities have the same
number of cities and then we will have θ(|Population|×NK×
2Mp).

Finally, the aforementioned method for parallelization
is more computational-friendly than memetic SOM. be-
cause, problem is divided into several subproblems that
can be easily solved by simple feasible computers at the
beginning of the process. At the final stages by aggregat-
ing results in a potent computer, we will reach convergence
in a fewer number of iterations.

3.3. Blend operator

As mentioned in Subsection 3.2, the blend operator
plays a pivotal role in reaching a high-quality solution.
The blend operator also serves as a bottleneck while two in-
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Algorithm 2 Learning mechanism of each municipality.

1: while Municipality is not converged do
2: t = t+ 1
3: for each KNIESp ∈ Population do
4: for Xi ∈ Assigned cities do
5: KNIESp.Learn(Xi, βt = tβT

T )
6: end for
7: if KNIESp > KNIES then

8: KNIES(t) = KNIESp
9: end if

10: if KNIESp < KNIES then
11: KNIES(t) = KNIESp
12: end if
13: KNIES(t) = KNIES(t)
14: end for
15: if KNIES(t−1)−KNIES(t)

KNIES(t)
< ε then

16: Stopped = Stopped + 1
17: if Stopped ≥ Maximum pause then
18: Municipality converged
19: end if
20: else
21: Stopped = 0
22: end if
23: end while

active municipalities are waiting for this operator to com-
bine them. First of all, the blend operator should take care
of the adjacency of clusters. When, two frozen municipal-
ities are adjacent then joining them is possible. Secondly,
the algorithm should prefer to mix closer neighborhoods
between adjacent clusters. Therefore, the blend operator
should have following properties.

1. Create a tour as short as possible

2. Cover all cities in both candidates

3. Avoid creating kinks in our resultant tour.

Suppose the algorithm finds two municipalities a and
b as candidates to be blended (in here, we are assuming
each municipality has just one KNIES in its population).

• Finding the closest neurons between a and b. We
name A as the closest neuron in a to b and B as the
closest neuron in b to a.

• Find two other neurons between a and b so that they
become close to A and B and we are not missing any
city between them. We call C as the closest neuron
after B in b to a and D as the closest neuron after
A in a to b.

• Creating a tour by following the proper path starting
from A to B and continuing from B to C by picking
the proper direction that neglects no cities in b. Then
adding an arc from C to D and completing the tour
by going from D to A so that it covers all cities in
a. Figure 4 explains the blend operator by means of
a graphic.

• Generally, kinks make tours more complex and lengthy;
therefore, removing the kinks is a wise action. Algo-
rithm 3 helps to remove kinks of mixed clusters. In
spite of some similarities with the famous 2-opt al-
gorithm [41], there are also some differences to keep
it fast.

Differences between Algorithm 3 and 2-opt [41] al-
gorithms are as follows:

1. Contrary to complete 2-opt, Algorithm 3 does
not check all the combinations of j1 and j2. Its
focus is on collided lines and removing kinks by
first diagnosing location of collision.

2. In Algorithm 3, we do not check quality of re-
sulted tour after removing kink since calcula-
tions for each pair of neighborhoods can be time
consuming.

Algorithm 3 Omitting kinks from tour.

1: for j1 = 1 to M − 1 do
2: for j2 = 1 to j1 − 2 do

3: if (
−−−−−→
Yj1Yj1+1 ∩

−−−−−→
Yj2Yj2+1) 6= ∅ then

4: Swap(j1, j2)
5: end if
6: end for
7: end for

Algorithm 3, tries to find the intersection of two arcs
in the sequence and opens the kinks by reversely reading
the sequence between j1 and j2 (Swap(j1, j2)). Figure 5
demonstrates Algorithm 3 steps over a sample tour. Time
complexity of Algorithm 3 is O(M2) when M neurons are
connected with M − 1 links.

By introducing a penalty parameter for the winning
numbers of each neuron, we can avoid kinks in the learning
phase in each municipality; therefore in order to accelerate

process, one can just check
−→
AB and

−−→
CD. Because blending

two municipalities as illustrated in Figure 4 can sometimes
result in kink (created line between point A and point
B and line between point C and point D may cross one
another).

The population in the new generation (the population
of the mixed municipality) should be constituted in such
a way that first keeps the best solution in the pool and
second preserves the variance of previous generations as
well. Therefore, we insert a solution by mixing the best
solutions of two neighborhood clusters at the beginning,
and then, randomly mixing the rest of the population to
avoid narrowing down solutions rapidly.

Eventually, updating the adjacency matrix of clusters
is necessary. To do that, first we need to update the cen-
troid of the mixed municipalities from Eq. 4

Pa∪b =
NaPa +NbPb
Na +Nb

(4)
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Figure 4: Blending two municipalities by mean of (A,B) and (C,D) arcs.

Figure 5: Removing kinks from sample tour.

where Pa∪b denotes centroid coordinates of the blended
municipality and Na, Nb are the number of assigned cities
to the municipality a ∈ C and b ∈ C respectively. Then,
Algorithm 1 updates the adjacency matrix. Finally, the
resultant municipality will be activated again to evolve.

3.4. Termination phase

This subsection explains the termination condition and
final refinement processes. As mentioned before, when the
algorithm mixes all municipalities together, the last and
only municipality continues to evolve when the conver-

gence condition is satisfied. This means, PMSOM found
the final solution and just we need to go over all neurons
of the best individual and find the index of the nearest
city for each one. Then, after creating such a sequence
we might have more than one neuron for each city. To
avoid this, we filter out repeated indices in the resultant
sequence. Finally, by going through the whole sequence,
the final tour length is computed. The Figure 6 describes
our proposed methodology.

3.5. Parameter adjustment

To maintain consistency with the memetic SOM [30]
report, we adopt their parameter setting; therefore, we as-
sume 10 individuals for each municipality 2 with the con-
secutive update and 60 generations in the PMSOM 3 since
in the memetic SOM, Créput and Koukam have deter-
mined 20 and 40 iterations, respectively, for the construc-
tion loop and the improvement loop.

Additionally, we adopted two terms %PDM and %PDB
from Créput and Koukam [30], as the percentage deviation
from the optimum of the mean solution value over differ-
ent runs and the percentage deviation from the optimum
of the best solution value, respectively. We use these terms
in this subsection and the next section.

βT in Eq. (3) depends on the number of cities (N);
thus, for the fewer number of cities we need more gentle
transformation, consequently, smaller βT is necessary but
for the bigger problems, bigger βT could be handy. By
trial-and-error, we formulate βT = 1 + cN as a suitable
candidate where the c is a random value between 0.08 and
0.3. Because these values are randomly assigned between
individuals; therefore, the weaker values will be replaced
by the better ones in a evolutionary mechanism for each.

In the Algorithm 2, finding proper values for ε and
Maximum Pause are interdependent; therefore, we con-
duct experiments on 5 different case studies from TSPLIB
(Eil51, Eil76, pr299, pr439, and rl1304). In each case
study, 16 different experiments are conducted on each set-
ting (with different number of clusters from 1 to 4) and
the results are aggregated. Due to the fact that the goal
of this method is to solve large problems, we utilize the
weighted average method based on the size of the problems

2Population = 10 in the Algorithm 2
3T = 60 for the computing βt in the Eq.(3)
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Figure 3. Parallel memetic SOM flowchart diagram  

 

4. The authors should apply the proposed method to a new problem and provide some comparative works. 

Answer.  

Applying the same approach on another problems will result in another achievement which is worth to do. For 

instance, Creput and Koukam [30] applied memetic SOM on vehicle routing problem (VRP) and published 

another paper [1*]. Thanks to reviewer, we will try to employ parallelized memetic SOM on different problems 

such as VRP in the next papers; however, we addressed this need in future works of conclusion.  

 

1*- Créput, Jean-Charles, and Abderrafiaâ Koukam. "The memetic self-organizing map approach to the vehicle 

routing problem." Soft Computing 12.11 (2008): 1125-1141.  
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Figure 6: Flowchart of parallelized memetic self-organizing map (PMSOM).

to aggregate PDM% s of each case. Finally, to protect our
judgement in the next section unaffected, we will not use
these problems in our comparison with the memetic SOM.

Table 1: Adjusting parameters for PMSOM

Weights

Eil51 Eil76 pr299 pr439 rl1304
0.024 0.035 0.138 0.202 0.601

PDM (%) ε
0.1K 0.01K 0.001K

M
a
x
.
P
a
u
se 10

e−0.1K 8.61 7.57 7.44
10

e−0.5K 7.93 7.44 7.41
10

e−0.9K 8.32 7.83 8.22

As Table 1 declares, the best values for our ε and Max-
imum Pause are 0.001K and 10

e−0.5K , respectively, where
K is the number of municipalities. Figure 7 represents the
interval plot with 95% confidence for all settings and all
the case studies.

4. Numerical analysis

In this section, we compute the performance of the
proposed method on different case studies with different
levels of parallelization. Afterwards, we compare our result
with the memetic SOM [30] as the previous winner of NN-
based methods for solving TSP.

4.1. Computation analysis

To corroborate the effectiveness of PMSOM, we em-
ploy the Multi-threading technology implemented in C#.
We utilize a typical 64-bit computer which benefits from
the Intel Core2 Quad CPU (Q8200) with the frequency of
2.34GHz and 8 GB memory. Each case study was exam-
ined with different numbers of municipalities (K from 1 to
8, depending on the result and the size of problem) and
for each K four times.

To have a fair comparison with Créput and Koukam
[30], those municipalities that are evolving even after it-
eration T will be imposed to be inactive and merge with
others. Therefore, our method lets municipalities evolve
at most T iterations.

In the beginning, we applied PMSOM on the different
cases which are categorized based on the number of cities.
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Figure 7: Interval Plot of PDM% with 95% confidence level.

Figure 8 depicts effect of the cluster number on computa-
tion time on the small case studies. As it was expected,
increasing the number of municipalities causes the com-
putation time to increase. It indicates that for the small
problems, the sequential memetic SOM could be a better
choice than PMSOM.

On the contrary, Figure 9 delineates the effectiveness of
the proposed method, especially, for the large case studies.
As one can see, computations are accelerating when the
number of municipalities (K) are ascending in all the cases.
Accordingly, this figure points out that most of the speed
derives from changing K from 1 to 2.

4.2. Comparing the quality of solutions

After showing the positive effect of the parallelized
method on CPU time, the only remaining part of our com-
parison would be the quality of results. In here to keep
consistency, we are enforcing our method so as to merge
all remaining clusters at the end of T = 60. The results are
organized in Table 2. In the first column, we address our
case studies from TSPBLIB, in the second column, the op-
timal solutions are specified. The next four columns show
the optimal number of clusters, the computation time im-
provement ratio by conducting experiments on K∗ par-
allel clusters rather than just one cluster, %PDM , and
%PDB of the PMSOM method respectively. In the last
two columns, we borrow the best reported results of the
memetic SOM for the mentioned case studies [30].

It is worth noting that the table is separated into three
categories by two lines. The first category includes small-
sized instances, the second category contains middle-sized
instances and the last category contains large-sized in-
stances.

By illustrating the computation time ratio instead of
time in seconds, one can easily compute this number for

the different types of computers and compare them in-
stead of converting times between different computers in-
accurately. It also shows how successful is our method in
exploiting system resources.

The first result we obtain is that by increasing the num-
ber of cities, the number of clusters becomes more and
more important. The size of problem is not, for sure, the
only factor but it is an important one along with the topol-
ogy of the problem. Accordingly, computations accelerates
by increasing number of optimal clusters. Figure 10 shows
effect of K∗ over computation time ratio.

For those cases that K∗ is one, it means that memetic
SOM is as capable as PMSOM but because of different
implementation, they could not reach to the better results
for the reported cases. However from KroA150, PMSOM
beats the memetic SOM approach. In Table 2 better re-
sults are bolded for ease of comparison. According to Ta-
ble 2, by increasing the number of municipalities, we can
get faster and even more accurate results, a finding which
means utilizing PMSOM for large problems is beneficial.
Finally, the average benefit of the using proposed parallel
mechanism is a yield of more than 4 times faster than the
non-parallel system. Additionally, PMSOM could obtain
better results (both %PDM and %PDB) on average and
more interestingly, PMSOM gets a better %PDM in all
the cases.

For the large-sized instances, Créput and Koukam [30]
did not report their result for the GenC = 20 and GenI =
40. However, they reported for theGenC = 80 andGenI =
400. By comparing the PMSOM method for T = 60 rather
than T = 480 (which has the less number of iterations) in
the pcb3038 and pla7397 cases, we got acceptable results.
However, for the rl5915 and kz9976, we could not obtain
better results in T = 60 but we got better results with the
same number of iterations (T = 480).
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Figure 10: Computation time’s trend over different K∗.

Even though, we could not find exact formulation for
the optimal number of clusters, it seems there is a relation-
ship between number of cities (N) and optimal number of
clusters (K∗). Figure 11 suggests K̃∗ = 0.2352N0.3849 as a
good approximation. For example, if we consider fi10639
then K̃∗ = 8.34. Even if we check the clusters from 8
to 10 again it will be 5.53 times on average faster than

non-parallelized version (K = 1).
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Table 2: Comparison with best reported result of memetic SOM[30]

Parallelized memetic SOM Memetic SOM

Problem Optimal K* Time Ratio %PDM %PDB %PDM %PDB
bays29 2020 1 1.00 0.62 0.10 - -
att48 33522 1 1.00 0.80 0.19 - -
berlin52 7542 1 1.00 1.40 0.00 1.63 0.00
bier127 118282 1 1.00 1.56 0.39 2.78 1.25
ch130 6110 1 1.00 0.79 0.43 2.83 0.80
KroA150 26524 2 1.09 1.84 1.41 2.73 1.64
KroA200 29368 2 1.90 1.44 1.18 2.20 1.08
lin318 42029 3 1.85 4.60 2.88 4.95 3.48
pcb442 50778 3 2.82 5.09 3.65 6.08 3.57
u507 36905 2 2.41 4.01 3.35 5.08 4.09
att532 27686 3 3.38 3.76 3.04 4.21 3.29
p654 34643 2 2.72 5.07 3.78 5.13 2.51
u724 41910 3 3.71 4.94 4.28 5.36 4.64
pr1002 259045 5 5.71 4.67 4.37 6.11 4.75
pcb1173 56892 5 5.76 7.90 7.32 8.66 8.20
pr2392 378032 3 3.54 6.48 6.25 8.16 7.32
pcb3038 137694 8 9.61 7.74 7.62 7.88 7.10
rl5915∗ 565530 6 9.33 10.06 9.68 12.94 12.02
pla7397 23260728 6 8.94 9.84 8.71 10.19 9.11
kz9976∗ 1061881 7 10.98 6.58 5.90 7.72 7.18
fi10639∗ 520527 9 16.62 6.03 5.87 6.93 6.66

Average 4.54 4.53 3.83 5.87 4.67
- there is no report for these cases of memetic SOM [30].

* [30] has no report for T = 60; so, we changed T = 480 when GenC = 80 and GenI = 400.
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Figure 11: Optimum Number of clusters (K∗) over number of cities (N).

6. Conclusion

By incorporating a clustering algorithm, in addition
to a self-organizing map in a evolutionary mechanism, we
show that proposed mechanism utilizes system resources
more effectively without losing accuracy. We claim that
proposed system is more generalized form of memetic SOM
[30] as the last winner of the neural-network applications
for solving the Euclidean traveling salesman problem. To
provide evidence of eligibility for the proposed method,
Euclidean TSPs from TSPLIB are experimented. Our pro-
posed algorithm is tested on various case studies with dif-
ferent levels of parallelization.

All in all, the results show for the large problems that
invoking a higher number of clusters seems necessary and
the presented methodology is more than 4 times faster
than those of non-parallel systems on average. Further-

more, the presented method (PMSOM) seems accurate
enough to compete with the best reported result of memetic
SOM.

This study can be extended in some directions. As
mentioned above, the topology of the problem has vital in-
formation which can enable us to exploit it in a parallelized
fashion. We merely used the well-known K-means cluster-
ing algorithm to divide cities between neighborhoods. Al-
though it works well and outperforms many cases, but in
some cases our work could not catch the topology success-
fully; therefore, further studies in finding more effective
clustering mechanism are needed. Considering different
neural networks in individuals could be another direction
for future works. Besides, employing proposed algorithm
on other problems such as Vehicle Routing Problem is
worth doing.
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