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Abstract

Error Correcting Output Coding (ECOC) is a multi-class classification technique in

which multiple binary classifiers are trained according to a preset code matrix, such

that each one learns a separate dichotomy of the classes. While ECOC is one of the

best solutions to multi-class problems, it is suboptimal since the code matrix and the

base classifiers are not learned simultaneously. In this thesis, we present three different

algorithms that iteratively updates the ECOC code matrix to improve the performance

of the ensemble by reducing the decoupling. Firstly, we applied the previously developed

FlipECOC+ update algorithm. Second method is applying simulated annealing method

on updating ECOC matrix by flipping proposed entries according to ascending order.

Last method is applying beam search to find updated ECOC matrix which has highest

validation accuracy. We applied all three algorithms on UCI (University of California

Irvine) data sets. Beam search algorithm gives the best result on UCI data sets. All of

the proposed update algorithms does not involve further training of the classifiers and

can be applied to any ECOC ensemble.



ÇOK SINIFLI PROBLEMLER İÇİN ECOC MATRİSLERİ OPTİMİZASYONU

ERİNÇ MERDİVAN

CSE, Yüksek Lisans Tezi, 2013

Tez Danışmanı: Berrin Yanıkoğlu

Anahtar Kelimeler: HDÇK, hata düzelten çıktı kodlaması, toplu öğrenme, çok

sınıflı sınıflandırma

Özet

Hata Düzelten Çıktı Kodlaması (HDÇK) çok sınıflı sınıflandırma problemleri için, pek

çok taban sınıflayıcının önceden belirlenmiş bir kod matrisine göre, orijinal sınıfların

farklı bir ikiye ayırma problemini öğrendiği bir sınıflandırıcı birleştirme yöntemidir.

HDÇK çok sınıflı sınıflandırma problemleri için en iyi yöntemlerden olsa da, bulu-

nan çözüm optimal değildir, çünkü kod matrisi ve taban sınıflandırıcılar birbirlerinden

bağımsız belirlenir. Bu tezde bu ayrımı azaltıcı, yinelemeli üç algoritma önerilmektedir.

İlk olarak FlipHDÇK+ metotunu uyguladık. Bu metotta belli bir doğruluk değerinin

altında kalan bütün matris elemanlarını sırayla döndürüyoruz ve eğer güncellediğimiz

kod matrisinin doğruluk değeri daha yüksekse, döndürme işlemine yeni güncellediğimiz

matris üzerinden devam ediyoruz. İkinci metot ise benzetilmiş tavlama uygulayarak her

yinelemede, kod matrisi üzerinde önerilen matris elemanını döndürerek elde ettiğimiz

güncellenmiş matrisi doğruluk oranıyla hesapladığımız olasılık değerine göre kabul et-

mektir. En son metot ise ışın araması kullanarak en yüksek doğruluk değerine sahip

güncellenmiş kod matrisini bulmaktır. En son önerdiğimiz metot UCI (Irvine Califor-

nia Üniversitesi) veritabanında en yüksek doğruluk oranını vermektedir. Bütün önerilen

metotlar taban sınıflandırıcıları sabit tutar, yeniden eğitim gerektirmez; ayrıca herhangi

bir HDÇK’ya uygulanabilir.
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Chapter 1

Introduction

1.1 Motivation

Multi-class classification deals with the problem of classifying an input into one of mul-

tiple classes, given its input features. For example, we have movie cd’s and we need to

classify them according to genres such as horror, drama, action and comedy. We design a

method for classification and assign each movie cd to one genre. Multi-class classification

problems have a broad range of applications such as hand-written character recognition,

object recognition, protein structure classification and many other applications. That’s

why, multi-class classification is a very important and widely studied research topic.

There is a distinction between ”Multi-label classification” and ”Multi-class classifica-

tion”. If we use the movie cd example above, each movie can belong only to one genre

in ”Multi-class classification”. However in ”Multi-label classification”, one movie can

have more than one genre such as action and horror. In this thesis, single label, multi-

class problems are worked on so that each movie can belong to only one genre as in

”Multi-class classification”.

Single classifier systems are used in early works of machine learning but recently there

is a huge interest and work on multiple classifier systems in which multiple classifiers

are trained and combined in many pattern recognition problems. Classifier combination

is shown to achieve a higher expected generalization ability compared to the individual

classifiers forming this ensemble. The resulting classifier is called a classifier ensemble

1



Introduction 2

or committee machine, among others, and the classifiers forming the ensemble may be

called base classifiers.

A great amount of research has been conducted on classifier ensembles over the last

decade, resulting in different methods for combining classifiers, and proposing theoretical

explanations for the advantages brought by them [1]. Classifier combination methods

can be as simple as taking a vote between individual classifiers trained to solve the

given problem, or more complex, where individual classifiers are trained to compensate

for weaknesses of previous classifiers. An important issue in creating ensembles is the

accuracy/diversity dilemma. On the one hand, one would like to have base classifiers

with high accuracy; on the other hand, it is desired that they are uncorrelated so as to

benefit from their differences [6]. Combination of different classifiers can be achieved

in different ways, such as majority voting, weighted voting, stacked generalization and

mixture of experts architectures [7, 8].

In this thesis, we focused on one of the multiple classifiers training and combination

technique called Error Correcting Output Codes (ECOC), which is a homogeneous en-

semble classification technique designed for multi-class classification problems [9] . We

suggested optimization mechanisms to improve the overall performance of the ensem-

ble, by reducing the decoupling between the ECOC matrix and the trained classifiers,

without retraining the component classifiers.

In Chapter 2, we give a literature review for combining classifiers and ECOC method

and give brief descriptions of well known ECOC approaches and their applications.

We introduce different coding strategies such as as OnevsOne, OnevsAll, sparse and

random, discriminant ECOC (DECOC ), ECOC-optimising node embedding (ECOC-

ONE ), Forest ECOC, genetic algorithms ECOC (GAECOC ). We then introduce Neural

Networks method for training binary classifiers and we introduce decoding techniques

such as hamming decoding, inverse hamming decoding, euclidean decoding, attenuated

euclidean decoding. After this literature review, we present our contributions in Chapters

3,4 and 5.

In Chapter 3, we describe the basic ECOC algorithm which produces the ECOC ensem-

ble that becomes the input to all three modification algorithms described in the later

chapters. While the modification algorithms work on any ECOC ensemble, this one

forms the basis of our experiments.
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In Chapter 4, we describe the proposed iterative update algorithms. First, we introduce

the FlipECOC+ method proposed by (Zor et. al). FlipECOC+ is an iterative algorithm

which updates the basic ECOC matrix, by considering possible updates iteratively, to

improve validation set accuracy. We evaluate this method by comparing the results

obtained on 9 UCI data sets and show the improvement of FlipECOC+ over the basic

ECOC method. Then, we describe the SimAnn+ method, which is aimed as a simple

improvement over the FlipECOC+ method. It shares the same goal as FlipECOC+,

however suggested updates to the ECOC matrix are accepted using simulated anneal-

ing algorithm. Namely, an to the ECOC matrix may be accepted, even if it lowers

performance, with the hope to avoid local minima.

In Chapter 5, we propose to use a local search algorithm (Beam Search) to find the best

updates to the ECOC matrix. The method obtains the best results out of all the three

methods.

In Chapter 6, we summarize our work and results and compare our method with other

state-of-art techniques. We conclude the thesis and present possible future directions.
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1.2 Contributions of the thesis

Starting with the work of (Zor et al) [10], we developed methods about how to update

an initial ECOC matrix to reduce the decoupling between the encoding and training

stages, which then leads to better generalization performance. We ran comprehensive

tests for evaluating the 3 different ECOC matrix improvement algorithm:

• We applied the FlipECOC+ method on 9 UCI datasets. In 69% of all experimental

settings, FlipECOC+ obtained statistically significantly better results on the test

data, compared to the basic ECOC.

• We improved the speed of the FlipECOC+ method to work 50 times faster than

initial the FlipECOC+ by optimizind decoding process.

• We proposed to use simulated annealing to find better solutions by also allowing

negative moves. In 65% of all experimental settings, Simulated Annealing obtained

statistically significantly better results on the test data, as a result of the updates.

• Finally, we implemented the BeamEcoc algorithm that uses beam search to search

for the best ECOC matrix. In 76% of all experimental settings, BeamECOC+

obtained statistically significantly better results on the test data, as a result of the

updates.



Chapter 2

Multiple Classifier Systems

2.1 Introduction

The main idea of classifier combination can be explained from real life: it is always better

to decide about one issue after getting many different opinions from different sources

rather than relying on just one source. In other words, it is better to combine sources

and ideas to have more powerful and strong decision. This phenomenon has been deeply

studied in pattern recognition areas. In many pattern recognition problems, it is shown

that combining classifiers outperforms single classifiers. Our works focuses on how to

combine different classifiers in a best way so final decision accuracy is higher than each

single decision.

Classifier combination can be done in different ways, it can be simple method where

combination of classifiers are done by majority voting or mean rule between classifiers.

It can be complex where each classifier is trained to compensate weakness of other

classifiers.

2.2 Why classifier combination?

There is a great amount of research on classifier ensembles which lead to many different

combining methods. We can see theoretical explanations about advantages of classi-

fier ensembles [1] under three sections statistical, computational, and representational

reasons.

5



Multiple Classifier Systems 6

Figure 2.1: Statistical reason of combining classifiers where aim is to have a classifier
as close as possible to optimal classifier D∗. Figure is taken from [1].

2.2.1 Statistical Reasons

We can design a classification problem and we have different number of classifiers all

performs well on training data of this problem. However test performance of classifiers

can be not as good as training performance. Even two classifiers with similar accuracies

may have very different test accuracy. For example, two classifiers that give the same

accuracy on training data may have different test accuracies. Even in the cases where

combination of classifiers test performance does not outperform every single classifier, it

reduces the risk of choosing inadequate single classifier and generally a classifier ensemble

which is ensembled by training and combining different base classifiers trained with

different data sets or subsets of data sets has better generalization performance. A

graphical illustration is given by Dietterich in Figure 2.1[11].

In Figure 2.1, D∗ is the optimal classifier, outer curve is the classifier space with shaded

area which is area for good classifiers and D1, D2, D3, D4 are the individual classifiers in

the ensemble which are considered to as good single classifiers. Our purpose is combining

these single classifiers to get a classification hypothesis as close as possible to D∗. There
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is another statistical reason named too little data which is referred in [12]. There is an

effective classifier ensemble which we can use in case of inadequate training data. We

can have overlapping random subsets of the training data by resampling and we can

train our single classifiers from each subset and ensemble these classifiers.

2.2.2 Computational Reasons

There are computational problems which are results of using some algorithms while

learning classifiers in the ensemble. Our aim is always to get as close as possible to best

or ,in other word optimal, classifier which is D∗. We can also see how each classifier

D1, D2, D3, D4 is changing during training and we want them to be as close as possible

to D∗ as illustrated in Figure 2.2. We generally assume that training process of each

classifier will lead to a better classifier which is close to optimal classifier however in

cases where training involves search such as hill-climbing, random search or some other

search where they may get stuck in local optima so we would not get closer to optimal

classifier by training process if we had single classifier. In order to solve this problem

we can have a search algorithm with a different starting point for each classifier or by

aggregating individual classifiers may lead to better approximation to the D∗ than any

of D1, D2, D3, D4.We also need to consider the cases where problem has huge number

of training time for large volumes of data [12] and when single classifier is trained on

large amount it may not be as efficient as the classifier in terms of time and accuracy

which is combination of single classifiers that are trained on subsets of data set.

In the case of a large amount of data to be analyzed, a single classifier may not be able to

effectively handle it. In this case, dividing the data into overlapping or non-overlapping

subsets, training a single classifier from each subset and combining them may result in

faster training time overall and in better accuracy.

2.2.3 Representational Reasons

It is highly possible that the optimal classifier does not lie inside the area of selected

classifiers. Optimal classification can be nonlinear while we select the space of selected

classifiers only from linear classifiers. However we can approximate optimal classifier by

ensembling linear classifiers. There are two choices to handle this problem. Ensembling
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Figure 2.2: Computational reason of combining classifiers. We can see optimal clas-
sifier, D∗, in closed space of all classifiers. Figure is taken from [1].

single classifiers or training single complex classifier. Ensembling single classifiers with

low complexity is easier then training single classifier with high complexity but we can

not guarantee improvement in any of choices. However both from experimental works

and theories developed for a number of special cases shows the success of combination

methods [1].

2.3 Error Correcting Output Coding

The basic Error Correcting Output Coding can be considered as homogeneous ensemble

classification technique designed for multi-class classification problems [9]. By decom-

posing the original multi-class problem into separate two-class problems, the tasks for

the dichotomizers are significantly simplified compared to the overall classification task
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Figure 2.3: Representional reason of combining classifiers. We can see optimal clas-
sifier, D∗, which is not in selected space of all classifiers but with combination of single

classifiers we can get close to optimal classifier. Figure is taken from [1].

and can improve generalization when it is applied to multiclass machine learning prob-

lems [13]. The resulting dichotomizers are also expected to have complementarity, due

to the different dichotomies they are assigned to learn.

In this approach, a number of binary classifiers, called base classifiers, are trained such

that each one is assigned a separate dichotomy of the classes to learn, according to a

preset code matrix. There are 2 steps in ECOC method.

In first step, a base classifier, which is learned before this step by using binary classifier

training methods, may be assigned the task of separating a particular class from all

of the others, or learning a random dichotomy of the classes. This step is called the

encoding step of the ECOC. Since it encodes the requested output of each classifier for

a given class, composing what is called the codeword for that class. The coding matrix

M acquired after encoding step of ECOC, can be binary with each classifier output is

{+1,−1} classifying all classes of input data into two class. Ternary symbol-based has

{0} as entry which means particular class is not considered by a given classifier[14].
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There are different approaches for encoding step of the ECOC which we investigate

further in next pages.

In the decoding stage, the output of the base classifiers are obtained for a given input

and the input is assigned to the class with the closest codeword. There are several

methods for choosing how to define the closeness of input to closest keyword. Choosing

the closest codeword enables the system to correct some of the mistakes of the base

classifiers, hence providing some error correction.

We give an example here to further clarify the ECOC method. First consider a problem

with K classes {c1 . . . cK} and L base classifiers {h1 . . . hL}, and a code matrix M of size

K × L, as illustrated in Table 2.1 for K = 5 and L = 6. In the binary code matrix M ,

a particular element Mijε {+1,−1} indicates the desired label for class ci, to be used in

training the base classifier hj , while the ith row of M , denoted as Mi, is the codeword for

class ci indicating the desired output for that class. For instance in Table 2.1, the base

classifier h1 is assigned the task of labeling instances from classes c1, c2, c3 as positive

and c4, c5 as negative. In this case, the base classifier is trained using samples from the

first three classes as positive examples and others as negative examples.

Table 2.1: A sample code matrix for a 5-class classification problem with 6 classifiers.

h1 h2 h3 h4 h5 h6

c1 +1 +1 +1 -1 -1 -1

c2 +1 -1 -1 +1 -1 -1

c3 +1 +1 -1 -1 -1 -1

c4 -1 -1 -1 +1 +1 -1

c5 -1 +1 +1 -1 +1 +1

The ternary ECOC is suggested to simplify the task of the dichotomizers, by leaving some

classes out of the consideration of a base classifier [15]. In this encoding as illustrated in

Table 2.2, a third target, namely zero, is used to indicate the ”don’t care” condition in

the code matrix. In that case, the base classifiers are trained only with samples of the

classes indicated with +1 (positive examples) and -1 (negative examples) labels.

During decoding, a given test instance x is first classified by each base classifier, obtaining

the output vector y = [y1, ..., yL] where yj is the hard or soft output of the classifier hj

for the given input x. Then, the distance between y and the codeword Mi of class ci is

computed by using a distance metric such as the Hamming or the Euclidean distance.
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Table 2.2: A sample ternary code matrix for a 5-class classification problem with 6
classifiers.

h1 h2 h3 h4 h5 h6

c1 +1 +1 0 0 -1 -1

c2 +1 -1 -1 +1 0 -1

c3 +1 +1 0 -1 -1 -1

c4 -1 0 -1 0 0 -1

c5 -1 +1 +1 -1 +1 +1

The class ck for which minimum distance is chosen as the estimated class label, as shown

in Eq. 2.1:

k = argmini=1...K d(y,Mi) (2.1)

When the ternary decoding is used, there are many suggested distance metrics for prop-

erly handling the zero entries [14]. Notice that in the ternary case, the decoding method

needs to ignore the differences in the zero entries. The distance metric d(y,Mi) we use

in Eq. 2.1 is the following:

d(y,Mi) =

∑
n=1..LMij |yj −Mij |∑

j=1..L |Mij |
(2.2)

where the differences in non-zero entries that are summed in the numerator are normal-

ized by the number of non-zero entries in Mi. In case the output has the same distance

to two separate code words, the normalization gives more weight to the codeword having

a larger number of non-zero entries.

The ECOC framework can handle incorrect base classification results up to a certain

degree. Specifically, if the minimum Hamming Distance (HD) between any pair of

codewords is d, then up to b(d− 1)/2c single bit errors can be corrected with the use of

this error correction for decoding nicely completes the framework. Indeed, it is shown

that ECOC is capable of reducing the overall error caused by the bias or variance of its

individual base classifiers [16].

In order to help with the error correction in the decoding process, the code matrix should

be designed to have a large Hamming distance between the codewords of different classes.

When deterministic classifiers such as SVM’s are used as base classifiers, the Hamming
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distance between a pair of columns should also be large enough so that the outputs of

the individual classifiers are uncorrelated [9] and their individual errors can be corrected

by the ensemble. In order to achieve this, bootstrapping [17] is commonly applied during

training.

2.4 Coding Methodologies

2.4.1 OnevsOne

In One-vs-One coding method [18], we decompose multi-class problem to multiple binary-

class problem. These binary classes are constructed by pairing all classes with each other

so we train classifiers to distinguish between every pair of class. If we have k number of

class, which is in total of k(k-1)/2 binary classifiers. Every classifier is trained with the

training data of each pair. ECOC matrix M has, k rows and k(k-1)/2 columns. There is

one column l ∈ L for each pair (c1,c2) of classes. All entries are zero except Mc1,l and

Mc2,l which are either +1 or -1.

Table 2.3: A sample code matrix for a 4-class classification problem with 6 classifiers.

h1 h2 h3 h4 h5 h6

c1 +1 +1 +1 0 0 0

c2 -1 0 0 +1 +1 0

c3 0 -1 0 -1 0 -1

c4 0 0 -1 0 -1 -1

2.4.2 OnevsAll

In One-vs-All coding method [19], we again decompose multi-class problem to multiple

binary-class problem but this time we define binary classes differently. We train clas-

sifiers to separate one class from the rest of classes so we use all training data. In this

approach we have k number of classifiers so we have a ECOC matrix with the k number

of columns. Each classifier is trained with one class as positive and all rest of classes

as negative inputs. So each classifier distinguishes one class from all other classes. In

ECOC all diagonal elements are +1 and rest is -1.
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Table 2.4: A sample code matrix for a 6-class classification problem with 6 classifiers
for One-Vs-All.

h1 h2 h3 h4 h5 h6

c1 +1 -1 -1 -1 -1 -1

c2 -1 +1 -1 -1 -1 -1

c3 -1 -1 +1 -1 -1 -1

c4 -1 -1 -1 +1 -1 -1

c5 -1 -1 -1 -1 +1 -1

c6 -1 -1 -1 -1 -1 +1

2.4.3 Sparse and Dense Random

In Sparse Random [15] each element in a sparse code is 0 with probability 1/2 and 1

or +1 with probability 1/4 each. We train 15*log2(k) classifiers by using the ECOC

matrices we created. We create many, such as 10000, random matrix and choose which

has no column or row of only zeros. We then choose the ECOC matrix with the highest

hamming distance between pair of rows in matrix.

Dense Random [15] approach is similar to Sparse Random it differs in number of classi-

fiers, we create many random ECOC matrices for k classes, each has 10*log2(k) columns.

We choose every element in the ECOC matrices we created uniformly at random from

[-1; +1]. From these many random matrices we choose the one which has the largest

hamming distance between each row of ECOC matrix and which does not have any

identical columns. We use this ECOC matrix in decoding process.

2.4.4 ECOC-optimising node embedding (ECOC-ONE)

ECOC-ONE [20] design uses 2*k dichotomizers which is the suggested number. ECOC

matrix designs usually use the fixed number of dichotomizers but with the use of vali-

dation subset. However, this method extends the initial matrix M by introducing new

dichotomizers which focuses on classes that are difficult to split and minimizes the con-

fusion matrix. If two classes are hard to split we train one more classifier to split two

classes. This method takes into account of different relevance of each dichotomizer so

as results, it promises to give small codes with good generalization performance.
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Figure 2.4: On left binary tree and on right ECOC matrix constructed from binary
tree on left [2].

2.4.5 Discriminant ECOC (DECOC )

Discriminant ECOC [2] approach or shortly DECOC uses (k-1) dichotomizers where k

is the number of classes. DECOC uses binary tree structure to learn binary partitions

of problem. At each node, different binary classification is done. This method exploits

the binary differences and splits data. DECOC constructs the ECOC matrix columns

by using binary tree nodes which is illustrated in Figure 2.4. At each node of binary

tree, there is a binary split of classes and each leaf presents one class.

2.4.6 Forest ECOC

Forest ECOC [21] is an extension of DECOC method. Instead of k-1 dichotomizers For-

est ECOC uses (k-1)*T dichotomizers where T is the number of binary tree structures.

In DECOC there is only one binary tree but in the Forest ECOC there are T optimal

binary trees and we use the relationship between parent and child nodes to construct

the ECOC matrix. We use dichotomizers that are taken from different binary trees to

construct the class codewords. In this method instead of relying on one binary tree we

combine power of many different binary trees to construct the ECOC matrix.
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2.4.7 Genetic Algorithms ECOC (GAECOC )

Genetic Algorithms ECOC [5] is a genetic inspiring optimization of ECOC matrix. This

method proposes a novel framework for Genetic-ECOC. It represents ECOC individuals

as structures I = < M C H P E > where M is coding matrix, C is confusion matrix,

H is set of dichotomizers, P is performance of each dichotomizer and E is error rate.

The function that is optimized in this method is called fitness function and it measures

the performance of each I on validation subset. GAECOC uses two genetic inspired

algorithms ”crossovers” and ”mutations” to optimize individual I to have better perfor-

mance.

2.4.8 JointECOC

This method optimizes the encoding and training of the base classifiers jointly [3]. It

formulates and optimizes problem that takes into account misclassification error of test

instances using SVMs as base classifiers, along with the Hamming distance between

different columns. While the joint optimization approach is the best, it has proven to

be difficult.

2.5 Training Method For Binary Classifiers

Training base classifiers is the second step after encoding in ECOC problems. As base

classifiers, researchers have used decision trees [22], SVMs [23] and NNs [1]. We also use

NNs since we can adjust the complexity of the base classifiers by adjusting the size and

training duration of the neural networks.

2.5.1 Neural Networks

Neural networks (NNs) method is derived from an idea to mimic biological neurons com-

putationally and widely used in classifying and regression problems. The NNs method is

a interconnected group of artificial neurons which process the inputs by a mathematical

model to produce outputs to be processed in the next layer. The NNs method com-

bines each layer to construct the complex network. This method multiplies input with
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weights in each layer and produces an output +1 or -1 according to threshold. It learns

the weights in the mathematical model in the training phase with supplied data and

labels. After the complex network is constructed with the learned weights, this method

classifies an input data into one of the classes.

2.6 Decoding Methodologies

2.6.1 Hamming Decoding

In Hamming Decoding we use a simple and widely known Hamming Distance. In this

decoding method, we assign input codeword to a class by using this distance which is

called decoding. This distance is defined by Eq 2.3. We need to manipulate this distance

in order to use it for ternary coded ECOC matrix. If the element at each position of

sequence has same sign it decreases the distance if they have different signs the distance

increases. Suppose we can model learning task similar to information transmission over

a channel. This decoding uses error correcting principles on communication problems

where each transmitted codeword may have some error on some bit of codeword [24].

HD(x, yi) =
n∑

j=1

(1− sign(xj ∗ yij))/2 (2.3)

2.6.2 Euclidean Decoding

This decoding uses euclidean measure. It is very simple to understand it assign the class

which has minimum euclidean distance calculated by equation below. This measure does

not take into account zero matrix elements so we can not use it for ternary coded ECOC

matrix.(Pujol 2010)

ED(x, yi) =

√√√√ n∑
j=1

(xj − yij)2 (2.4)
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2.6.3 Attenuated Euclidean Decoding

Attenuated Euclidean Decoding is the modified version of Euclidean decoding which

takes into account of zero matrix entries. In addition to normal euclidean decoding it

consists terms such as x and y so if either or both of them are zero and so the overall

distance remains unaffected [24].

AED(x, yi) =

√√√√ n∑
j=1

|yij | ∗ |xj | ∗ (xj − yij)2 (2.5)



Chapter 3

Basic ECOC

3.1 Introduction

In this chapter, we introduce the Basic ECOC method which is the basis of three different

methods we propose in next chapters. The Basic ECOC method consists of two steps.

One is the encoding step and other one is the decoding step. In the encoding step

we create a semi-random ECOC matrix with -1 or 1 entries such that all columns are

different in order to increase the hamming distance between the codewords. In the

decoding step we try to find the closest codeword in our ECOC matrix to our input

codeword.

3.1.1 Basic ECOC

As stated above for the encoding step we trained several ECOC ensembles with the

varying parameters for each considered data set as follows. For a given problem, the

encoding method uses random code matrices of varying lengths (10, 25, 75 columns). To

be precise, code matrix selection is done semi-randomly such that each generated column

is accepted if it does not duplicate an existing column, whenever possible. Because if

we have same columns, it means we used same training input for the base classifiers

which may lead to redundancy. For the encoding, we used the binary encoding where

Mij ∈ {−1, 1} to show the benefits of the proposed algorithm in an efficient way. We do

not put 0 in Mij since all three proposed methods do not modify 0 entries.

18
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For the base classifiers, we used Multilayer Perceptrons (MLPs) with varying number of

nodes (2 or 8). Each column of semi-random created ECOC matrix M is input set for

training base classifiers since each column separates whole class set into two classes by

assigning {−1, 1}. The training was done using the Levenberg-Marquart algorithm, for

various durations varying between 2 and 15 epochs. We will use these classifiers while

we classify the input vectors and construct codeword for each input and decode which

class this input vector belongs to.

Table 3.1: A semi-random generated binary code matrix for a 3-class (Balance
dataset) classification problem with 8 classifiers.

h1 h2 h3 h4 h5 h6 h7 h8

c1 +1 +1 +1 -1 -1 -1 -1 +1

c2 +1 -1 +1 +1 -1 -1 +1 -1

c3 +1 +1 -1 +1 +1 -1 -1 -1

For the distance metric used in the decoding stage, we used the Hamming distance

considering only non-zero entries. Hamming distance uses the distance metric below:

HD(x, yi) =

n∑
j=1

(1− sign(xj ∗ yij))/2 (3.1)

For this work we did not use the ternary ECOC approach, even tough the proposed idea

may be extended to it as well. However, in our encoding update, we end up with some

zero entries. Hence, we need to consider these zero entries while we decode the input.

For this, we eliminate the contribution of the zero entries altogether: we find all the

entries that are zero in the ECOC matrix and we zero the entries in the input codeword

with the same index. This approach thus implements the attenuated Hamming distance.

Algorithm 1 Basic ECOC Decoding

Input: Input I; ECOC matrix M and ttrained classifiers {hj}
• Classify the input I by each of the {hj}
• Find the codeword c based on the classifiers’ output

• Decode the input codeword according to the lowest attenuated Hamming Dis-
tance with the rows of M
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3.1.2 Experiments and Data

Rather than using standard code matrix encodings such as one-versus-one and one-

versus-all, which may not be very suitable for all considered problems such as those

with small number of classes, our experimental setup uses random matrices of varying

lengths (10, 25, 75 columns), so as to see the effects of the algorithm across a wide range

of code matrix sizes.

For the training of the base classifiers, again we use a systematic approach to simulate

weak and strong base classifiers, by varying the number of nodes in the MLP and the

duration of training. This is done to see the effects of the proposed algorithm for different

base classifier types.

3.1.2.1 Data

The UCI Machine Learning Repository datasets [25] used in the experiments are sum-

marized in Table 3.2. This experiment is done to show performance results of the Basic

ECOC as reference ECOC matrix and we show the performance of the optimization

methods we performed.

Table 3.2: Summary of the UCI datasets used in performance evaluation.

Data Set #Train #Test #Attrib. #Classes
Balance 625 - 4 3
Car 1728 - 6 4
Dermatology 358 - 33 6
Glass 214 - 10 6
OptDigits - 10
SatImage 4435 2000 36 6
Vehicle 946 - 18 4
Vowel 528 - 10 11
Yeast 1484 - 8 10

3.1.2.2 Experiments

More detailed information about these experiments are given in the Table 3.3 and 3.4

where the mean and the standard deviation of the accuracy results are given. We split

the datasets randomly as training, validation and test sets. The average accuracy results

are recorded for 10 independent runs with random splits.
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For instance, the first result column of the Table 3.3 corresponds to an ECOC matrix of

only 10 columns (10Col.) 2-node and the base classifiers trained for only 2epoch (2Ep).

Table 3.3: Accuracy results (%) for Experiment with 2 Nodes base classifiers.

Balance 10Col-2Ep. 10Col-15Ep. 25Col-2Ep. 25Col-15Ep. 75Col-2Ep. 75Col-15Ep.
ECOC 81.10±6.6 88.96±1.5 82.07±5.0 89.44±1.5 88.15±1.7 90.08±1.8

Car
ECOC 70.08±0.2 71.12±3.6 70.02±0.1 74.99±4.9 70.02±0.3 70.66±2.0

Dermatology
ECOC 66.77±11.6 89.43±9.5 76.86±13.3 95.54±2.6 79.90±10.1 96.38±2.6

Glass
ECOC 44.02±11.2 59.15±15.0 45.80±11.3 66.24±13.6 50.07±10.5 61.82±9.5

OptDigits
ECOC 46.41±14.0 74.44±4.4 60.13±11.3 89.30±4.2 84.17±2.6 93.98±1.3

SatImage
ECOC 54.07±4.9 67.80±12.5 60.42±13.0 81.75±3.2 75.74±1.4 83.43±2.2

Vehicle
ECOC 46.91±9.1 73.54±6.1 55.20±9.3 78.50±4.4 65.60±4.8 80.27±2.6

Vowel
ECOC 17.44±5.9 29.43±7.7 18.98±5.0 42.31±12.7 35.26±8.6 63.05±9.6

Yeast
ECOC 33.97±4.3 48.10±6.2 39.95±5.3 53.42±5.5 36.68±5.4 52.84±3.6

Table 3.4: Accuracy results (%) for Experiment with 8 Nodes base classifiers.

Balance 10Col-2Ep. 10Col-15Ep. 25Col-2Ep. 25Col-15Ep. 75Col-2Ep. 75Col-15Ep.
ECOC 84.15±5.1 90.08±1.6 85.12±4.0 91.52±2.6 87.51±2.6 91.20±1.7

Car
ECOC 70.02±0.8 77.94±7.7 70.06±1.6 83.61±4.6 70.08±0.3 79.39±5.0

Dermatology
ECOC 63.12±5.0 88.16±7.1 78.78±9.5 96.90±2.8 80.16±7.2 96.33±3.0

Glass
ECOC 43.51±10.7 58.79±12.9 45.90±7.1 60.09±12.0 54.68±9.0 66.22±10.8

OptDigits
ECOC 26.54±7.5 78.36±12.4 52.50±9.4 96.52±0.8 73.81±5.8 96.65±0.8

SatImage
ECOC 49.29±10.7 71.29±18.0 70.53±9.9 86.44±2.5 78.33±1.6 88.43±1.4

Vehicle
ECOC 41.72±9.2 71.77±8.9 56.61±4.5 76.84±4.2 65.84±1.9 81.69±2.9

Vowel
ECOC 20.45±5.0 49.43±11.7 24.43±4.1 60.77±8.3 36.51±7.5 72.86±5.8

Yeast
ECOC 36.31±6.0 48.91±10.1 38.52±6.7 52.10±5.2 46.27±4.0 56.12±3.0
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3.1.2.3 Conclusion

In this chapter, we introduced the Basic ECOC as a basis for all the other methods.

We explained how we train the base classifiers and which method we follow for the

decoding. We can see in the results that 8-node base classifiers have better generalization

performances comparing to 2-node base classifiers. We can also note that when we

increase the node, column and epoch numbers we get better performance results.

In the next chapters, we will try to improve the Basic ECOC matrix M and have better

generalization performance. We will use the UCI datasets for our next experiments

and compare new results with the Basic ECOC results. We will show the optimization

performances of our methods as well as percentage of the entries that are flipped and

zeroed.



Chapter 4

ECOC Matrix Update Using

Iterative Methods

4.1 Introduction

There are some works about optimizing the ECOC matrices such as JointECOC which

optimizes the coding and the training of the base classifiers jointly [3]. Also, there

are other works in optimizing the ECOC matrix by applying the methods which are

genetically inspired, such as the mutation and the cross-over [5]. Both works’ results

show significant improvements as compared to the state-of-art ECOC strategies.

In this chapter, we applied two optimization methods. Firstly, we applied the FlipECOC+

method proposed by Zor et al. [10] . The FlipECOC+ tries to improve the accuracy of

the Basic ECOC method by flipping its entries in order. The second one, which is called

as SimAnn+, shares the basic idea but it uses the simulated annealing method [26] to

find the best updated matrix. Both optimization methods updates the Basic ECOC

method introduced in Chapter 3.

These algorithms consist of iterative modifications to the code matrix, using the valida-

tion data set (Experiment-I ) or the training data set (Experiment-II) as guides in this

search. They do not involve further training of the classifiers and they can be applied

to any ECOC ensemble.

23
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4.1.1 Initialization of The Proposed Methods

Consider an ECOC matrix M and a set of base classifiers that are trained according to

this code matrix. If one measures the accuracies of the trained classifiers on a validation

data set, separately for each class, we obtain the accuracy matrix A which is the same

size as M . Each element of this matrix, Aij , is measured as the proportion of the samples

in class ci that are correctly classified by hj according to the target value specified by

Mij . Hence, Mij indicates the target and Aij indicates the accuracy of classifier hj for

class ci.

The current work has originated from the consideration of what the matrix A may look

like after training; how many of its elements may have small values corresponding to

bad performances; and what it could tell about the final solution.

The approach can be explained using a simple example. Assume that a classifier hj is

fully wrong in classifying a particular class ci when the target for this class is -1. In

other words, Mij = −1 and Aij = 0. In this situation, changing the Mij value from -1

to +1 corresponds to matching the code matrix to the trained classifier hj , while the

classifier could not match the code matrix during the actual training. This modification

results in changing Aij to 100% while leaving other entries in A and M unchanged.

As for the overall classification accuracy, it may increase or decrease since the Hamming

distance between the class ci and some of the remaining classes (roughly half of them)

will decrease, lowering the error-correcting capability of the ensemble.

As a result, the classification of samples in all classes, not only those in ci, may change.

In order to weight the overall effect of a codeword change such as the one given in the

example, we propose iterative algorithms that modifies the code matrix M iteratively

and tests the effects of this change on a validation set (Experiment-I) or training set

(Experiment-II) .

In two methods we introduced, the initilisation of matrix is same but the methods for

updating is different. In FlipECOC+, if the change is deemed beneficial, the considered

update is accepted. In the SimAnn+ method, the change is accepted according to the

simulated annealing algorithm. Specifically, the update is accepted if the change is

deemed beneficial or with a certain probability, if deemed as non-beneficial. The first

method guarantees the improvement in accuracy but limits the ECOC matrices that are
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considered; the second method accepts negative improvements in favor of discovering

more ECOC matrices and avoiding possible local maxima. The base classifiers remain

unchanged in the update processes.

4.2 FlipECOC+

This method is proposed in Zor et. al [10] as a way to update the code matrix to improve

performance. The accuracy matrix A is calculated from the given classifiers and ECOC

matrix M as described in 4.1.1.

Starting from the bits Aij corresponding to the lowest values (worst performances) of the

accuracy matrix, the corresponding Mij entries are sequentially proposed for an update

(flip or zero) depending on the threshold values passed as input.

In each iteration, a modification of the ECOC matrix is accepted if the modified ECOC

matrix improves the validation set (Experiment-I) or the training set (Experiment-II)

accuracy. This is done to choose the right updates. The validation accuracy is used in

order to keep the decisions of the individual base classifiers as uncorrelated from each

other as possible and avoid deterioration of the row-wise and column-wise Hamming

distances. However we also made an experiment without using the separate validation

set, for cases where there is a small training set(Experiment-II).

In order to have the most efficiency and benefit from the updates, we first list the Mij

entries in ascending order according to their corresponding Aij values until the highest

threshold α and start the update process from the worst accuracies. The pseudo-code

of the proposed algorithm is given in Alg. 2.
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Algorithm 2 FlipECOC+

Input: Code matrix M ; trained base classifiers H; thresholds γ, β, α

Output: Modified code matrix M

—————————————————————

Calculate the accuracy matrix A according to M and H;

for all Aij do . Flip the lowest accuracy cells without validating, if wanted

if Aij < γ then

Flip Mij;

end if

end for

. Start hill climbing

for all Aij from lowest to highest do

M ′ ← M ; . Update a copy of the code matrix

if Aij < β then

Flip M ′
ij;

else if β ≤ Aij < α then

Zero M ′
ij;

end if

∆gain←valAccuracy[M’]−valAccuracy[M]; . Accept new code matrix, if

update is useful

if ∆gain ≥ 0 then M← M’

end if

end for
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4.2.1 Experiments and Data

Since our method is an optimization of the Basic ECOC algorithm we compare the

performance of the proposed algorithm explained in Section 4.2, with that of the Basic

ECOC algorithm explained in the Chapter 3. The proposed update method can be

applied to any trained ECOC framework: the encoding, training, or decoding can be

done anyway desired.

Rather than using the standard code matrix encodings such as one-versus-one and one-

versus-all, which may not be very suitable for all considered problems such as those with

small number of classes, our experimental setup uses random matrices of varying lengths

(10, 25, 75 columns), so as to see the effects of the algorithm across a wide range of code

matrix sizes.

For the training of the base classifiers, again we use a systematic approach to simulate

weak and strong base classifiers, by varying the number of nodes in the MLP and the

duration of training. This is done to see the effects of the proposed algorithm for different

base classifier types.

Since long random matrices coupled with strong base classifiers, are proven to perform

close to ideal [27], this experimental setup is able to demonstrate whether the proposed

algorithm brings improvements in the hard to improve cases.

In our experiments, we used random matrix with different number of columns 10, 25,

75. We can also see our experimental results over wide range of different nodes and

different epochs of our base classifiers. It is important to see how our method improves

the ensemble of multi-base classifiers with different training accuracies by the varying

the number of nodes in the MLP and the duration of training.

We made experiments with different columns, nodes and epochs. For the data sets

having separate test sets (SatImage), the input training samples have been randomly

split into a training and a validation set. The average accuracy results are recorded for

10 independent runs with random splits. In each case, the size of the validation set has

been selected to be equal to that of the training, as it plays an important role in the

proposed algorithm.
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For the rest of the data sets, 10-fold CV has been applied together with a random split of

the training samples into training and validation sets, as above. In addition to accuracy

results obtained in each of the 10-fold cross validation experiments, we also record the

number of flips and zeros in the resulting code matrix.

We tested our methods on 9 UCI data sets in 2 different experimental setup. (Experiment-

I and Experiment-II). In Experiment-I we used 3 data sets such as training, validation

and test data sets. In this case, the training data is used to train the base classifiers;

the validation data is used to guide the update algorithm; and the test data is used

to obtain an unbiased performance measure. However for the Experiment-II we used 2

data sets the training and test data set. In this case, we used the training data both to

train the base classifiers and guide the update algorithm.

We determined the average accuracy results for 10 independent runs with random splits.

In each case, the size of the validation is same as the training, which is important in the

proposed algorithm. In addition to the accuracy obtained in each of the 10-fold cross

validation experiments, we also recorded the number of flips and zeros in the resulting

code matrix.

We show that the proposed update method brings improvements in almost all of the

experimental settings tested on 9 UCI data sets [25].

The UCI Machine Learning Repository data sets [25] used in the experiments are sum-

marized in Table 1.
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4.2.1.1 Experiment-I

The relative gain in accuracy when FlipECOC+ is used is shown in Figure 4.1 for differ-

ent parameter settings (number of columns, number of epochs) and different problems,

using the average results obtained in the 10-fold cross validation experiments. As it is

seen in this figure, the relative gain is always positive in 205 out of the 216 (9 problems

× 3 sizes of ECOC matrices with 2 size of epochs 2 different classifiers × 2 different

experiments ).

More detailed information about these experiments are given in the Table 4.1 and 4.2.

In these tables the mean and the standard deviation of the accuracy results are given,

along with the average number of flips and zeros as a percentage of the size of the code

matrix.

Figure 4.1: Relative accuracy difference between FlipECOC+ and Basic ECOC ap-
proaches for varying number of columns (Experiment-I). First row: 2-node and 2-epoch
(left), 2-node and 15-epoch (right). Second row: 8-node and 2-epoch (left), 8-node and

15-epoch (right).
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4.2.1.2 Experiment-II

The relative gain in accuracy of FlipECOC+ is shown in Figure 4.2 for different ex-

perimental settings (Experiment-II). As before, we averaged results we recorded in the

10-fold cross validation experiments.

The results corresponding to Figure 4.2 are given in Table 4.3 and 4.4 for Experiment-

II. There were two initial ECOC matrices, Glass-2node-25column and Glass-2node-

75column, that were not initialised properly. However we did not retrain them to see if

our method could handle these situations. Our method showed very good performance

overall.

Figure 4.2: Relative accuracy difference between FlipECOC+ and Basic ECOC ap-
proaches for varying number of columns (Experiment-II). First row: 2-node and 2-epoch
(left), 2-node and 15-epoch (right). Second row: 8-node and 2-epoch (left), 8-node and

15-epoch (right).
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4.2.2 Conclusions

For Experiment-I, the improvements in accuracy are seen in 54/54 and 50/54 cases when

using 2-node or 8-node base classifiers. For Experiment-II, the improvements in accuracy

are seen in 52/54 and 49/54 cases when using 2-node or 8-node base classifiers.

We then investigate whether the improvements are statistically significant over the stan-

dard ECOC approach, using a paired t-test with nine degrees of freedom.

Our gain for Experiment-I is between -0.60 and 24.54, for Experiment-II -1.97 and 25.70.

For Experiment-I, the improvements in accuracy are statistically significant in 41/54

and 38/54 cases when using 2-node or 8-node base classifiers. For Experiment-II, the

improvements in accuracy are statistically significant in 41/54 and 37/54 cases when

using 2-node or 8-node base classifiers.

The numbers are lower in 8-node due to better trained initial ECOC matrices but there

is no huge difference between the 2-node and 8-node. The final accuracies are higher in

the 8-node experiments since better trained initial ECOC matrices lead to more accurate

optimized ECOC matrices. In addition to these conclusions, having better trained cases

generally leads to smaller increases but in more accurate final ECOC matrix.

One conclusion is that the percentage of flipped and zeroed entries, decreases with the

better trained ECOC matrix which is because of less space for improvement in accuracy.

In general when the flip percentage increases optimization improvement on accuracy also

increases.

As a conclusion, we can say that there is no significant differences between Experiment-I

and Experiment-II, so there is no benefit of using separate validation set rather than

using the training set for all steps in our optimization method. Zero percentage does

not change much between the experiments to make a strong conclusion how it affects

the results.

4.3 Simulated Annealing

In this method, called SimAnn+, we use simulated annealing to optimize the Basic

ECOC approach. We chose this algorithm because it is easy to implement. As in the
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previous FlipECOC+ method, we calculate the accuracy matrix A so that we can find

the bits Mij corresponding to the lowest values (worst performances). This entries will

constitute our set S.

Starting from the set S which has all bits Mij corresponding to the lowest values (worst

performances) of Aij , we pick entries randomly to update.

In each iteration, a modification of the ECOC matrix is accepted if the modified ECOC

matrix improves the validation accuracy. If the modification does not improve the

accuracy, we accept it with probability exp(gain/T). By doing this, we allow some bad

moves, with the hope of avoiding the local minima. Then in this method it is more likely

to visit wider ECOC matrix space than the FlipECOC+.

The validation set accuracy is used in order to keep the decisions of the individual base

classifiers as uncorrelated from each other as possible and avoid deterioration of the

row-wise and column-wise Hamming distances. However an experiment is conducted

without using separate validation set but using only one set both for finding bits Mij to

flip or zero.

This method differs from FlipECOC+ method because we do not use any ascending or

descending order while choosing which Mij entries to flip; we choose them randomly

from the set of entries. As with the FlipECOC+ method, the proposed update method

can be applied to any trained ECOC framework and the encoding, training, or decoding

can be done in anyway.

The pseudo-code of the proposed algorithm is given in Alg. 3.
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Algorithm 3 SimAnn+

Input: Code matrix M ; trained base classifiers H; thresholds γ, β, α ; temper-

ature T

Output: Modified code matrix M

—————————————————————

Calculate the accuracy matrix A according to M and H;

Calculate the entries to be flipped S according to A;

for all Aij do . Flip the lowest accuracy cells without validating, if wanted

if Aij < γ then

Flip Mij;

end if

end for

. Start Simulated Annealing

while S 6= ∅ do

Choose randomly i, j in S

M ′ ← M ; . Update a copy of the code matrix

if Aij < β then

Flip M ′
ij;

else if β ≤ Aij < α then

Zero M ′
ij;

end if

randnum=random(0,1)

∆gain←valAccuracy[M’]−valAccuracy[M]; . Accept new code matrix, if

update is useful

if ∆gain ≥ 0 then M← M’ S-i, j . Remove visited index

else if exp(gain/H) ≥ randnum then S-i, j . Remove visited index

end if

end while
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4.3.1 Experiments and Data

We compare the performance of the proposed algorithm explained in Section 4.3, with

the Basic ECOC approach explained in Chapter 3.

We used the same experiment setup and the data as we used for FlipECOC+. Two

method only differ in the optimization process so we kept the same initial matrix M

and applied the SimAnn+ on the same data sets.

4.3.1.1 Experiment-I

In this case, we use the validation set for assessing the usefulness of each update.

Figure 4.3 shows the results for varying sizes of the ECOC matrix and varying strength

of base classifiers.

In addition, we provide detailed information about the accuracy changes in Table 4.5

and 4.6 where the mean and the standard deviation of the accuracy results are also

given. We also indicate the average number of flips and zeros as a percentage of the size

of the code matrix.

4.3.1.2 Experiment-II

In this case, we use the training set instead of the validation set for assessing the use-

fulness of each update.

As in Figure 4.3, Figure 4.4 shows the results for varying sizes of the ECOC matrix and

varying strength of base classifiers.

In addition, we provide detailed information about the accuracy changes in Table 4.7

and 4.8. with the mean and the standard deviation of the accuracy results.

4.3.2 Conclusions

In 202 out of 216 trials, the improvements are positive. Although 202 trials are resulted

with positive gain, we also investigate whether these results are statistically significant

results or not. We find out 141 out of 202 improvements are statistically significant. We
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Figure 4.3: Relative accuracy difference between SimAnn+ and Basic ECOC ap-
proaches for varying number of columns (Experiment-I). First row: 2-node and 2-epoch
(left), 2-node and 15-epoch (right). Second row: 8-node and 2-epoch (left), 8-node and

15-epoch (right).

flipped less than 35% in all cases and 15% are zeroed. Our gains in accuracy are in range

of -3.0 and 27.3 for the Experiment-I and -4.3 and 27.0 for the Experiment-II. We can

also see in Figures 4.3 and 4.4 when initial base classifiers are trained with high accuracy

improvements on ECOC matrices fall. However in real problems there are usually not

possible to have well trained multi-base classifiers.
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Figure 4.4: Relative accuracy difference between SimAnn+ and the Basic ECOC
approaches for varying number of columns (Experiment-I). First row: 2-node and 2-
epoch (left), 2-node and 15-epoch (right). Second row: 8-node and 2-epoch (left),

8-node and 15-epoch (right).
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Table 4.1: Accuracy results (%) for Experiment-I 2-node. Bold figures indicate sta-
tistically significant improvements over the standard ECOC approach.

Balance 10Col-2Ep. 10Col-15Ep. 25Col-2Ep. 25Col-15Ep. 75Col-2Ep. 75Col-15Ep.
Basic ECOC 71.56±13.5 87.68±1.8 81.09±9.0 89.26±2.2 85.44±3.9 90.73±3.3
FlipECOC+ 83.35±4.0 87.84±2.0 84.95±4.4 89.26±2.2 86.56±2.9 91.37±3.6
Avg. Flipped 20.0% 13.0% 16.0% 11.3% 12.2% 4.8%
Avg. Zeroed 0.0% 0.0% 2.3% 0.0% 4.1% 1.0%

Car 10Col-2Ep. 10Col-15Ep. 25Col-2Ep. 25Col-15Ep. 75Col-2Ep. 75Col-15Ep.
Basic ECOC 70.02±0.3 71.82±3.2 70.95±2.5 75.35±7.2 70.02±0.3 71.77±4.7
FlipECOC+ 72.17±4.3 82.69±3.4 72.97±2.4 88.20±3.9 74.83±4.4 83.64±5.7
Avg. Flipped 24.7% 21.5% 17.5% 17.7% 27.5% 23.1%
Avg. Zeroed 0.0% 0.2% 1.0% 0.0% 0.9% 0.7%

Dermatology 10Col-2Ep. 10Col-15Ep. 25Col-2Ep. 25Col-15Ep. 75Col-2Ep. 75Col-15Ep.
Basic ECOC 58.67±9.9 76.51±12.5 58.72±11.1 85.25±13.8 82.47±9.3 93.88±5.3
FlipECOC+ 81.85±9.6 89.34±4.6 83.26±3.6 93.05±3.4 92.23±5.7 95.28±2.8
Avg. Flipped 15.3% 7.8% 13.1% 5.6% 11.6% 8.2%
Avg. Zeroed 1.1% 0.0% 0.8% 0.5% 2.0% 0.4%

Glass 10Col-2Ep. 10Col-15Ep. 25Col-2Ep. 25Col-15Ep. 75Col-2Ep. 75Col-15Ep.
Basic ECOC 47.91±12.2 61.42±12.1 42.61±8.0 66.79±10.5 48.17±10.3 64.22±11.5
FlipECOC+ 52.59±10.2 63.25±12.5 52.35±10.9 68.73±8.7 55.46±11.5 69.77±7.7
Avg. Flipped 23.5% 13.6% 21.0% 12.5% 20.0% 13.8%
Avg. Zeroed 1.1% 2.3% 2.0% 1.3% 1.6% 3.0%

OptDigits 10Col-2Ep. 10Col-15Ep. 25Col-2Ep. 25Col-15Ep. 75Col-2Ep. 75Col-15Ep.
Basic ECOC 42.01±10.6 74.26±13.2 35.23±9.8 89.54±4.0 56.36±11.2 87.52±3.1
FlipECOC+ 58.32±8.2 83.67±3.6 51.24±7.1 91.34±2.3 77.38±5.2 90.37±1.1
Avg. Flipped 8.7% 5.4% 12.3% 1.4% 8.9% 4.4%
Avg. Zeroed 2.2% 0.5% 4.9% 0.1% 1.5% 0.5%

SatImage 10Col-2Ep. 10Col-15Ep. 25Col-2Ep. 25Col-15Ep. 75Col-2Ep. 75Col-15Ep.
Basic ECOC 52.73±11.4 74.28±6.0 59.95±10.7 83.02±4.4 62.88±13.7 80.46±5.6
FlipECOC+ 69.17±6.1 78.86±5.6 69.31±10.7 84.80±4.9 76.78±5.0 84.89±0.6
Avg. Flipped 14.1% 9.0% 11.5% 4.3% 10.7% 7.2%
Avg. Zeroed 1.5% 0.5% 1.1% 1.3% 1.2% 0.3%

Vehicle 10Col-2Ep. 10Col-15Ep. 25Col-2Ep. 25Col-15Ep. 75Col-2Ep. 75Col-15Ep.
Basic ECOC 33.30±9.8 58.57±14.6 39.24±8.8 69.18±10.2 52.19±12.5 76.25±4.2
FlipECOC+ 49.27±9.0 70.83±5.9 44.81±8.9 75.06±6.3 65.22±7.6 78.02±4.7
Avg. Flipped 13.7% 9.5% 9.7% 5.2% 10.9% 6.2%
Avg. Zeroed 3.0% 2.0% 2.7% 3.2% 2.3% 3.1%

Vowel 10Col-2Ep. 10Col-15Ep. 25Col-2Ep. 25Col-15Ep. 75Col-2Ep. 75Col-15Ep.
Basic ECOC 16.71±5.3 21.76±6.8 16.27±4.4 43.80±9.4 22.86±5.9 34.61±7.8
FlipECOC+ 24.08±5.6 32.60±8.0 25.42±5.0 53.43±8.7 31.43±4.8 46.22±7.9
Avg. Flipped 15.8% 12.8% 12.6% 6.9% 12.7% 10.2%
Avg. Zeroed 5.0% 2.8% 4.6% 4.6% 4.4% 5.8%

Yeast 10Col-2Ep. 10Col-15Ep. 25Col-2Ep. 25Col-15Ep. 75Col-2Ep. 75Col-15Ep.
Basic ECOC 32.69±4.8 37.91±11.6 31.82±8.3 45.37±8.7 31.37±11.1 50.56±5.8
FlipECOC+ 39.35±3.9 49.87±5.9 39.54±4.8 52.19±5.9 46.62±3.8 54.47±6.1
Avg. Flipped 18.1% 13.8% 15.0% 12.5% 19.8% 11.2%
Avg. Zeroed 1.0% 2.3% 1.6% 3.8% 1.2% 3.2%
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Table 4.2: Accuracy results (%) for Experiment-I 8-node. Bold figures indicate sta-
tistically significant improvements over the standard ECOC approach.

Balance 10Col-2Ep. 10Col-15Ep. 25Col-2Ep. 25Col-15Ep. 75Col-2Ep. 75Col-15Ep.
Basic ECOC 85.11±4.4 94.86±2.2 86.73±2.8 88.64±2.3 88.64±2.6 90.72±1.2
FlipECOC+ 88.01±3.4 95.03±3.5 87.86±3.7 90.72±2.5 88.32±3.4 95.84±1.8
Avg. Flipped 7.2% 4.9% 17.3% 10.7% 16.0% 11.8%
Avg. Zeroed 5.6% 0.4% 2.3% 1.0% 4.3% 0.8%

Car 10Col-2Ep. 10Col-15Ep. 25Col-2Ep. 25Col-15Ep. 75Col-2Ep. 75Col-15Ep.
Basic ECOC 70.43±0.6 81.36±6.7 70.02±0.3 70.95±2.3 70.02±0.3 82.46±3.9
FlipECOC+ 75.87±2.6 91.78±3.6 77.43±4.0 85.94±3.9 75.82±2.3 94.68±2.0
Avg. Flipped 23.7% 19.6% 29.4% 22.4% 26.0% 19.1%
Avg. Zeroed 1.2% 0.8% 0.9% 0.7% 1.7% 1.8%

Dermatology 10Col-2Ep. 10Col-15Ep. 25Col-2Ep. 25Col-15Ep. 75Col-2Ep. 75Col-15Ep.
Basic ECOC 84.07±7.5 96.67±2.5 77.13±7.1 92.47±3.9 74.55±9.9 95.27±3.2
FlipECOC+ 92.16±2.6 96.94±2.7 95.53±4.2 95.82±1.9 95.82±2.3 96.38±2.3
Avg. Flipped 12.7% 7.0% 16.4% 11.4% 14.9% 9.9%
Avg. Zeroed 2.0% 0.4% 2.0% 0.4% 3.3% 0.7%

Glass 10Col-2Ep. 10Col-15Ep. 25Col-2Ep. 25Col-15Ep. 75Col-2Ep. 75Col-15Ep.
Basic ECOC 58.72±12.1 65.99±8.0 49.65±13.2 66.10±6.6 58.50±8.4 68.97±8.7
FlipECOC+ 57.59±5.8 67.88±6.8 58.94±9.5 66.99±8.5 57.89±6.7 71.27±9.6
Avg. Flipped 15.8% 12.9% 20.2% 17.2% 19.4% 15.6%
Avg. Zeroed 2.4% 3.9% 2.2% 3.0% 3.1% 4.1%

OptDigits 10Col-2Ep. 10Col-15Ep. 25Col-2Ep. 25Col-15Ep. 75Col-2Ep. 75Col-15Ep.
Basic ECOC 50.28±6.8 94.43±1.6 85.70±2.6 94.19±1.1 78.29±7.0 97.36±0.8
FlipECOC+ 70.23±3.4 94.93±1.4 90.32±1.0 94.87±1.0 88.00±2.3 97.28±0.8
Avg. Flipped 9.4% 1.8% 5.0% 3.1% 6.4% 1.8%
Avg. Zeroed 2.9% 0.7% 2.2% 0.6% 2.6% 0.4%

SatImage 10Col-2Ep. 10Col-15Ep. 25Col-2Ep. 25Col-15Ep. 75Col-2Ep. 75Col-15Ep.
Basic ECOC 66.54±7.2 85.68±2.1 75.35±2.1 83.29±1.2 77.38±0.9 87.28±1.1
FlipECOC+ 79.10±4.3 87.46±1.1 82.53±2.2 85.77±1.3 82.68±1.9 88.34±1.3
Avg. Flipped 10.4% 3.9% 10.8% 8.0% 8.7% 3.5%
Avg. Zeroed 2.2% 0.3% 1.0% 0.8% 2.2% 0.7%

Vehicle 10Col-2Ep. 10Col-15Ep. 25Col-2Ep. 25Col-15Ep. 75Col-2Ep. 75Col-15Ep.
Basic ECOC 49.51±6.2 76.73±4.1 63.60±4.3 79.69±4.6 65.80±7.0 80.39±3.5
FlipECOC+ 59.48±8.4 77.79±3.8 68.55±3.4 79.81±4.5 68.66±5.3 80.86±3.3
Avg. Flipped 7.1% 4.0% 6.4% 5.4% 5.9% 6.0%
Avg. Zeroed 2.6% 3.8% 2.8% 2.1% 2.5% 2.9%

Vowel 10Col-2Ep. 10Col-15Ep. 25Col-2Ep. 25Col-15Ep. 75Col-2Ep. 75Col-15Ep.
Basic ECOC 24.06±4.5 58.53±4.8 30.85±7.0 54.29±9.3 33.82±9.4 76.48±6.2
FlipECOC+ 34.85±1.9 70.46±4.4 41.79±8.8 67.01±8.6 48.55±5.9 81.62±2.9
Avg. Flipped 10.0% 8.4% 9.4% 9.3% 10.6% 8.4%
Avg. Zeroed 6.7% 4.4% 4.6% 5.5% 6.4% 7.4%

Yeast 10Col-2Ep. 10Col-15Ep. 25Col-2Ep. 25Col-15Ep. 75Col-2Ep. 75Col-15Ep.
Basic ECOC 38.54±5.5 52.36±4.3 37.00±5.5 53.78±4.6 37.00±8.1 54.65±4.7
FlipECOC+ 46.05±6.6 54.31±3.6 50.56±6.3 50.56±4.5 52.48±4.1 56.07±4.1
Avg. Flipped 14.0% 8.2% 13.1% 7.8% 15.1% 8.2%
Avg. Zeroed 1.4% 3.1% 1.3% 2.7% 1.8% 3.2%
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Table 4.3: Accuracy results (%) for Experiment-II 2-node. Bold figures indicate
statistically significant improvements over the standard ECOC approach.

Balance 10Col-2Ep. 10Col-15Ep. 25Col-2Ep. 25Col-15Ep. 75Col-2Ep. 75Col-15Ep.
Basic ECOC 71.56±13.5 87.68±1.8 81.09±9.0 89.26±2.2 85.44±3.9 90.73±3.3
FlipECOC+ 82.24±4.1 87.84±2.0 84.95±3.6 89.26±2.2 85.28±3.9 91.53±3.3
Avg. Flipped 20.0% 12.6% 16.6% 11.0% 11.7% 4.2%
Avg. Zeroed 1.3% 0.0% 1.3% 0.0% 3.0% 0.6%

Car 10Col-2Ep. 10Col-15Ep. 25Col-2Ep. 25Col-15Ep. 75Col-2Ep. 75Col-15Ep.
Basic ECOC 70.02±0.3 71.82±3.2 70.95±2.5 75.35±7.2 70.02±0.3 71.77±4.7
FlipECOC+ 72.87±4.5 82.58±3.7 73.20±2.6 87.73±4.0 77.21±4.9 84.33±5.8
Avg. Flipped 24.7% 21.7% 16.5% 16.7% 28.8% 24.0%
Avg. Zeroed 0.2% 0.5% 2.2% 0.7% 1.2% 0.7%

Dermatology 10Col-2Ep. 10Col-15Ep. 25Col-2Ep. 25Col-15Ep. 75Col-2Ep. 75Col-15Ep.
Basic ECOC 58.67±9.9 76.51±12.5 58.72±11.1 85.25±13.8 82.47±9.3 93.88±5.3
FlipECOC+ 81.84±7.2 89.91±5.2 84.42±6.6 92.77±3.4 92.77±4.1 95.00±2.8
Avg. Flipped 16.5% 8.6% 13.0% 5.8% 12.9% 9.2%
Avg. Zeroed 0.3% 0.0% 2.5% 0.7% 1.4% 0.3%

Glass 10Col-2Ep. 10Col-15Ep. 25Col-2Ep. 25Col-15Ep. 75Col-2Ep. 75Col-15Ep.
Basic ECOC 47.91±12.2 61.42±12.1 42.61±8.0 66.79±10.5 48.17±10.3 64.22±11.5
FlipECOC+ 52.14±11.3 60.45±11.7 51.36±6.7 67.90±11.9 57.95±10.1 68.41±6.7
Avg. Flipped 21.8% 12.6% 21.6% 10.3% 19.0% 12.8%
Avg. Zeroed 1.3% 1.0% 1.3% 0.6% 1.7% 2.7%

OptDigits 10Col-2Ep. 10Col-15Ep. 25Col-2Ep. 25Col-15Ep. 75Col-2Ep. 75Col-15Ep.
Basic ECOC 42.01±10.6 74.26±13.2 35.23±9.8 89.54±4.0 56.36±11.2 87.52±3.1
FlipECOC+ 57.93±8.7 83.22±4.8 51.77±9.0 91.21±2.4 77.25±5.9 90.37±1.1
Avg. Flipped 8.8% 4.7% 12.0% 1.3% 8.0% 4.9%
Avg. Zeroed 2.9% 0.5% 4.7% 0.2% 2.0% 0.5%

SatImage 10Col-2Ep. 10Col-15Ep. 25Col-2Ep. 25Col-15Ep. 75Col-2Ep. 75Col-15Ep.
Basic ECOC 52.73±11.4 74.28±6.0 59.95±10.7 83.02±4.4 62.88±13.7 80.46±5.6
FlipECOC+ 70.79±6.5 80.12±3.9 69.40±9.0 85.48±1.4 76.08±5.3 84.96±0.8
Avg. Flipped 15.8% 9.3% 10.1% 3.3% 10.2% 7.7%
Avg. Zeroed 1.2% 0.5% 1.7% 0.7% 1.0% 0.3%

Vehicle 10Col-2Ep. 10Col-15Ep. 25Col-2Ep. 25Col-15Ep. 75Col-2Ep. 75Col-15Ep.
Basic ECOC 33.30±9.8 58.57±14.6 39.24±8.8 69.18±10.2 52.19±12.5 76.25±4.2
FlipECOC+ 49.74±9.4 70.35±4.9 46.94±9.3 73.66±6.2 65.00±3.0 77.19±3.7
Avg. Flipped 14.0% 8.2% 10.0% 4.5% 9.9% 6.8%
Avg. Zeroed 2.7% 0.8% 3.7% 0.2% 2.2% 1.4%

Vowel 10Col-2Ep. 10Col-15Ep. 25Col-2Ep. 25Col-15Ep. 75Col-2Ep. 75Col-15Ep.
Basic ECOC 16.71±5.3 21.76±6.8 16.27±4.4 43.80±9.4 22.86±5.9 34.61±7.8
FlipECOC+ 22.58±4.7 31.26±7.7 25.23±5.9 51.87±9.3 33.85±4.7 47.39±6.3
Avg. Flipped 15.7% 12.1% 12.9% 7.5% 11.5% 9.1%
Avg. Zeroed 3.4% 2.0% 5.1% 2.3% 3.3% 2.9%

Yeast 10Col-2Ep. 10Col-15Ep. 25Col-2Ep. 25Col-15Ep. 75Col-2Ep. 75Col-15Ep.
Basic ECOC 32.69±4.8 37.91±11.6 31.82±8.3 45.37±8.7 31.37±11.1 50.56±5.8
FlipECOC+ 40.61±6.7 50.41±4.2 38.66±6.0 50.91±5.8 46.97±3.8 55.13±5.2
Avg. Flipped 18.1% 14.1% 14.8% 13.3% 19.4% 11.2%
Avg. Zeroed 0.7% 1.5% 1.6% 2.5% 0.9% 3.2%
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Table 4.4: Accuracy results (%) for Experiment-II 8-node. Bold figures indicate
statistically significant improvements over the standard ECOC approach.

Balance 10Col-2Ep. 10Col-15Ep. 25Col-2Ep. 25Col-15Ep. 75Col-2Ep. 75Col-15Ep.
Basic ECOC 85.11±4.4 94.86±2.2 86.73±2.8 88.64±2.3 88.64±2.6 90.72±1.2
FlipECOC+ 88.48±3.0 95.68±2.5 87.84±3.7 89.92±3.1 88.17±3.3 96.16±2.6
Avg. Flipped 8.2% 7.6% 17.5% 10.7% 15.2% 13.9%
Avg. Zeroed 1.3% 0.0% 1.3% 0.0% 3.3% 0.7%

Car 10Col-2Ep. 10Col-15Ep. 25Col-2Ep. 25Col-15Ep. 75Col-2Ep. 75Col-15Ep.
Basic ECOC 70.43±0.6 81.36±6.7 70.02±0.3 70.95±2.3 70.02±0.3 82.46±3.9
FlipECOC+ 75.36±3.7 92.48±2.6 77.60±3.9 85.36±4.3 77.61±2.9 94.39±1.9
Avg. Flipped 22.1% 19.3% 30.2% 22.9% 27.3% 18.4%
Avg. Zeroed 1.2% 0.7% 0.8% 0.8% 1.3% 1.5%

Dermatology 10Col-2Ep. 10Col-15Ep. 25Col-2Ep. 25Col-15Ep. 75Col-2Ep. 75Col-15Ep.
Basic ECOC 84.07±7.5 96.67±2.5 77.13±7.1 92.47±3.9 74.55±9.9 95.27±3.2
FlipECOC+ 89.94±2.7 96.67±3.1 95.82±3.2 96.09±2.3 96.94±2.0 96.38±2.3
Avg. Flipped 10.6% 8.2% 17.7% 12.0% 18.0% 11.0%
Avg. Zeroed 2.5% 0.2% 1.8% 0.2% 3.2% 0.6%

Glass 10Col-2Ep. 10Col-15Ep. 25Col-2Ep. 25Col-15Ep. 75Col-2Ep. 75Col-15Ep.
Basic ECOC 58.72±12.1 65.99±8.0 49.65±13.2 66.10±6.6 58.50±8.4 68.97±8.7
FlipECOC+ 56.75±10.6 64.02±5.9 59.39±5.3 66.12±8.9 62.52±5.7 67.43±8.5
Avg. Flipped 16.6% 12.0% 20.9% 16.6% 18.2% 14.7%
Avg. Zeroed 2.2% 1.6% 1.9% 2.2% 2.8% 2.1%

OptDigits 10Col-2Ep. 10Col-15Ep. 25Col-2Ep. 25Col-15Ep. 75Col-2Ep. 75Col-15Ep.
Basic ECOC 50.28±6.8 94.43±1.6 85.70±2.6 94.19±1.1 78.29±7.0 97.36±0.8
FlipECOC+ 69.09±4.2 95.00±1.1 90.43±1.1 94.45±1.2 86.95±2.4 97.41±0.7
Avg. Flipped 9.0% 2.4% 5.0% 3.6% 7.0% 2.3%
Avg. Zeroed 2.2% 0.6% 1.6% 0.4% 2.5% 0.4%

SatImage 10Col-2Ep. 10Col-15Ep. 25Col-2Ep. 25Col-15Ep. 75Col-2Ep. 75Col-15Ep.
Basic ECOC 66.54±7.2 85.68±2.1 75.35±2.1 83.29±1.2 77.38±0.9 87.28±1.1
FlipECOC+ 79.86±3.9 87.40±1.1 81.44±2.7 86.29±1.5 83.09±1.8 88.39±1.0
Avg. Flipped 10.6% 4.3% 10.9% 8.4% 9.4% 3.6%
Avg. Zeroed 2.4% 0.2% 1.1% 0.5% 2.2% 1.0%

Vehicle 10Col-2Ep. 10Col-15Ep. 25Col-2Ep. 25Col-15Ep. 75Col-2Ep. 75Col-15Ep.
Basic ECOC 49.51±6.2 76.73±4.1 63.60±4.3 79.69±4.6 65.80±7.0 80.39±3.5
FlipECOC+ 61.46±6.5 78.03±3.4 68.79±6.5 78.74±4.5 67.13±5.9 80.98±3.6
Avg. Flipped 9.0% 4.4% 7.9% 7.0% 5.3% 6.2%
Avg. Zeroed 2.9% 1.7% 2.7% 1.8% 2.2% 1.6%

Vowel 10Col-2Ep. 10Col-15Ep. 25Col-2Ep. 25Col-15Ep. 75Col-2Ep. 75Col-15Ep.
Basic ECOC 24.06±4.5 58.53±4.8 30.85±7.0 54.29±9.3 33.82±9.4 76.48±6.2
FlipECOC+ 35.25±6.9 70.65±5.4 42.27±5.9 66.03±3.8 48.50±6.2 78.96±3.3
Avg. Flipped 11.1% 7.6% 9.8% 8.8% 9.6% 9.4%
Avg. Zeroed 3.8% 4.0% 3.3% 4.2% 4.9% 5.5%

Yeast 10Col-2Ep. 10Col-15Ep. 25Col-2Ep. 25Col-15Ep. 75Col-2Ep. 75Col-15Ep.
Basic ECOC 38.54±5.5 52.36±4.3 37.00±5.5 53.78±4.6 37.00±8.1 54.65±4.7
FlipECOC+ 48.46±5.2 54.58±4.2 51.77±4.8 55.46±3.7 53.03±4.2 57.01±4.3
Avg. Flipped 14.4% 9.4% 12.5% 6.8% 14.2% 7.8%
Avg. Zeroed 1.4% 2.3% 1.1% 3.2% 1.2% 3.0%
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Table 4.5: Accuracy results (%) for Experiment-I 2-node. Bold figures indicate sta-
tistically significant improvements over the standard ECOC approach.

Balance 10Col-2Ep. 10Col-15Ep. 25Col-2Ep. 25Col-15Ep. 75Col-2Ep. 75Col-15Ep.
Basic ECOC 71.56±13.5 87.68±1.8 81.09±9.0 89.26±2.2 85.44±3.9 90.73±3.3
SimAnn+ 83.18±4.8 88.00±2.2 83.85±4.2 90.24±1.6 84.47±5.5 91.52±4.2
Avg. Flipped 24.3% 16.3% 18.3% 14.0% 23.6% 9.7%
Avg. Zeroed 5.3% 1.6% 7.6% 0.6% 8.6% 2.5%

Car 10Col-2Ep. 10Col-15Ep. 25Col-2Ep. 25Col-15Ep. 75Col-2Ep. 75Col-15Ep.
Basic ECOC 70.02±0.3 71.82±3.2 70.95±2.5 75.35±7.2 70.02±0.3 71.77±4.7
SimAnn+ 70.27±3.9 82.17±4.4 72.16±2.3 88.66±4.3 73.15±7.6 84.91±5.5
Avg. Flipped 30.2% 31.0% 26.2% 21.2% 33.1% 29.7%
Avg. Zeroed 1.5% 0.5% 3.7% 1.5% 2.7% 2.5%

Dermatology 10Col-2Ep. 10Col-15Ep. 25Col-2Ep. 25Col-15Ep. 75Col-2Ep. 75Col-15Ep.
Basic ECOC 58.67±9.9 76.51±12.5 58.72±11.1 85.25±13.8 82.47±9.3 93.88±5.3
SimAnn+ 85.41±7.7 90.19±4.8 86.05±3.8 93.05±3.4 95.28±5.8 95.28±2.8
Avg. Flipped 20.6% 10.0% 19.8% 6.8% 19.7% 9.6%
Avg. Zeroed 2.6% 0.3% 3.6% 1.3% 3.8% 0.9%

Glass 10Col-2Ep. 10Col-15Ep. 25Col-2Ep. 25Col-15Ep. 75Col-2Ep. 75Col-15Ep.
Basic ECOC 47.91±12.2 61.42±12.1 42.61±8.0 66.79±10.5 48.17±10.3 64.22±11.5
SimAnn+ 51.09±8.7 61.30±11.0 47.62±7.8 67.75±8.8 49.77±13.0 67.95±11.9
Avg. Flipped 30.5% 19.5% 28.5% 15.3% 31.4% 22.6%
Avg. Zeroed 2.6% 4.5% 4.0% 4.0% 3.6% 5.2%

OptDigits 10Col-2Ep. 10Col-15Ep. 25Col-2Ep. 25Col-15Ep. 75Col-2Ep. 75Col-15Ep.
Basic ECOC 42.01±10.6 74.26±13.2 35.23±9.8 89.54±4.0 56.36±11.2 87.52±3.1
SimAnn+ 59.86±7.7 84.40±3.9 55.56±6.8 91.55±2.1 79.05±4.8 90.58±0.9
Avg. Flipped 18.9% 6.9% 20.9% 2.3% 19.6% 8.8%
Avg. Zeroed 6.0% 1.5% 10.9% 0.7% 5.8% 1.7%

SatImage 10Col-2Ep. 10Col-15Ep. 25Col-2Ep. 25Col-15Ep. 75Col-2Ep. 75Col-15Ep.
Basic ECOC 52.73±11.4 74.28±6.0 59.95±10.7 83.02±4.4 62.88±13.7 80.46±5.6
SimAnn+ 68.58±10.1 79.99±6.7 70.77±10.4 85.50±2.4 77.79±3.8 84.82±1.1
Avg. Flipped 26.8% 14.0% 20.8% 7.3% 24.6% 11.0%
Avg. Zeroed 3.8% 2.1% 5.3% 2.6% 3.1% 1.2%

Vehicle 10Col-2Ep. 10Col-15Ep. 25Col-2Ep. 25Col-15Ep. 75Col-2Ep. 75Col-15Ep.
Basic ECOC 33.30±9.8 58.57±14.6 39.24±8.8 69.18±10.2 52.19±12.5 76.25±4.2
SimAnn+ 53.04±11.0 70.34±8.0 49.53±8.2 75.17±3.8 63.36±5.7 78.74±3.6
Avg. Flipped 21.0% 14.7% 20.5% 9.7% 23.8% 12.1%
Avg. Zeroed 7.2% 4.5% 10.0% 7.2% 7.5% 7.1%

Vowel 10Col-2Ep. 10Col-15Ep. 25Col-2Ep. 25Col-15Ep. 75Col-2Ep. 75Col-15Ep.
Basic ECOC 16.71±5.3 21.76±6.8 16.27±4.4 43.80±9.4 22.86±5.9 34.61±7.8
SimAnn+ 20.87±6.0 32.40±7.9 24.31±7.3 52.50±7.9 32.55±6.4 49.99±8.1
Avg. Flipped 23.7% 19.7% 21.8% 12.2% 27.4% 21.2%
Avg. Zeroed 9.0% 5.8% 10.5% 5.8% 10.0% 10.9%

Yeast 10Col-2Ep. 10Col-15Ep. 25Col-2Ep. 25Col-15Ep. 75Col-2Ep. 75Col-15Ep.
Basic ECOC 32.69±4.8 37.91±11.6 31.82±8.3 45.37±8.7 31.37±11.1 50.56±5.8
SimAnn+ 38.54±5.2 49.33±4.5 39.34±4.3 49.63±7.5 46.09±5.5 52.57±5.8
Avg. Flipped 33.1% 21.1% 34.0% 19.3% 32.6% 18.4%
Avg. Zeroed 3.5% 9.0% 6.1% 11.6% 3.6% 9.0%
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Table 4.6: Accuracy results (%) for Experiment-I 8-node. Bold figures indicate sta-
tistically significant improvements over the standard ECOC approach.

Balance 10Col-2Ep. 10Col-15Ep. 25Col-2Ep. 25Col-15Ep. 75Col-2Ep. 75Col-15Ep.
Basic ECOC 85.11±4.4 94.86±2.2 86.73±2.8 88.64±2.3 88.64±2.6 90.72±1.2
SimAnn+ 85.76±5.1 95.68±3.6 84.32±6.6 91.53±3.4 85.61±5.9 95.52±3.4
Avg. Flipped 17.8% 9.0% 25.2% 16.8% 22.5% 15.4%
Avg. Zeroed 12.2% 1.7% 6.0% 2.1% 8.7% 1.2%

Car 10Col-2Ep. 10Col-15Ep. 25Col-2Ep. 25Col-15Ep. 75Col-2Ep. 75Col-15Ep.
Basic ECOC 70.43±0.6 81.36±6.7 70.02±0.3 70.95±2.3 70.02±0.3 82.46±3.9
SimAnn+ 73.22±5.0 92.19±2.6 76.16±4.3 88.95±2.9 77.20±5.0 94.68±2.0
Avg. Flipped 31.6% 24.6% 35.5% 30.3% 34.1% 23.6%
Avg. Zeroed 4.4% 1.9% 2.0% 2.6% 5.0% 3.2%

Dermatology 10Col-2Ep. 10Col-15Ep. 25Col-2Ep. 25Col-15Ep. 75Col-2Ep. 75Col-15Ep.
Basic ECOC 84.07±7.5 96.67±2.5 77.13±7.1 92.47±3.9 74.55±9.9 95.27±3.2
SimAnn+ 91.90±2.7 96.67±3.1 94.98±3.6 96.09±2.3 96.09±2.3 96.11±2.6
Avg. Flipped 20.1% 8.2% 21.4% 12.3% 21.0% 11.2%
Avg. Zeroed 4.5% 0.9% 2.9% 0.6% 4.5% 0.9%

Glass 10Col-2Ep. 10Col-15Ep. 25Col-2Ep. 25Col-15Ep. 75Col-2Ep. 75Col-15Ep.
Basic ECOC 58.72±12.1 65.99±8.0 49.65±13.2 66.10±6.6 58.50±8.4 68.97±8.7
SimAnn+ 54.55±12.1 68.97±11.4 61.71±11.0 65.98±8.4 56.78±10.1 68.49±8.7
Avg. Flipped 28.2% 19.0% 31.4% 23.5% 29.8% 20.6%
Avg. Zeroed 5.0% 6.5% 3.7% 4.8% 5.1% 5.7%

OptDigits 10Col-2Ep. 10Col-15Ep. 25Col-2Ep. 25Col-15Ep. 75Col-2Ep. 75Col-15Ep.
Basic ECOC 50.28±6.8 94.43±1.6 85.70±2.6 94.19±1.1 78.29±7.0 97.36±0.8
SimAnn+ 74.60±4.0 95.14±1.3 90.56±0.8 94.40±0.9 89.17±1.8 97.38±0.7
Avg. Flipped 19.4% 3.1% 17.1% 8.2% 18.9% 2.5%
Avg. Zeroed 10.8% 1.4% 5.9% 1.2% 10.4% 0.6%

SatImage 10Col-2Ep. 10Col-15Ep. 25Col-2Ep. 25Col-15Ep. 75Col-2Ep. 75Col-15Ep.
Basic ECOC 66.54±7.2 85.68±2.1 75.35±2.1 83.29±1.2 77.38±0.9 87.28±1.1
SimAnn+ 80.11±2.5 87.26±1.1 83.13±2.2 86.25±1.4 83.07±1.4 88.25±1.2
Avg. Flipped 20.1% 6.1% 25.2% 15.6% 21.5% 8.1%
Avg. Zeroed 6.4% 1.6% 3.7% 1.6% 6.1% 2.5%

Vehicle 10Col-2Ep. 10Col-15Ep. 25Col-2Ep. 25Col-15Ep. 75Col-2Ep. 75Col-15Ep.
Basic ECOC 49.51±6.2 76.73±4.1 63.60±4.3 79.69±4.6 65.80±7.0 80.39±3.5
SimAnn+ 57.67±8.0 78.26±4.2 64.64±6.3 79.80±2.2 65.00±6.8 80.74±2.9
Avg. Flipped 21.9% 7.0% 23.4% 12.1% 20.4% 9.7%
Avg. Zeroed 10.6% 8.7% 9.5% 6.6% 11.4% 6.7%

Vowel 10Col-2Ep. 10Col-15Ep. 25Col-2Ep. 25Col-15Ep. 75Col-2Ep. 75Col-15Ep.
Basic ECOC 24.06±4.5 58.53±4.8 30.85±7.0 54.29±9.3 33.82±9.4 76.48±6.2
SimAnn+ 38.96±8.5 71.77±3.5 45.10±7.9 67.37±7.2 51.28±4.9 80.67±3.3
Avg. Flipped 22.9% 12.9% 27.4% 19.8% 24.4% 12.2%
Avg. Zeroed 16.4% 8.7% 11.8% 10.5% 16.8% 9.5%

Yeast 10Col-2Ep. 10Col-15Ep. 25Col-2Ep. 25Col-15Ep. 75Col-2Ep. 75Col-15Ep.
Basic ECOC 38.54±5.5 52.36±4.3 37.00±5.5 53.78±4.6 37.00±8.1 54.65±4.7
SimAnn+ 46.02±5.3 52.75±4.8 50.27±3.4 54.72±4.9 51.88±4.9 57.22±4.6
Avg. Flipped 30.1% 16.6% 32.5% 19.3% 31.0% 19.2%
Avg. Zeroed 5.4% 9.3% 4.1% 9.3% 4.9% 9.4%
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Table 4.7: Accuracy results (%) for Experiment-II 2-node. Bold figures indicate
statistically significant improvements over the standard ECOC approach.

Balance 10Col-2Ep. 10Col-15Ep. 25Col-2Ep. 25Col-15Ep. 75Col-2Ep. 75Col-15Ep.
Basic ECOC 71.56±13.5 87.68±1.8 81.09±9.0 89.26±2.2 85.44±3.9 90.73±3.3
SimAnn+ 84.31±4.6 87.68±1.8 84.47±4.0 89.92±1.8 83.49±6.1 91.05±3.8
Avg. Flipped 22.6% 15.6% 18.0% 15.0% 22.9% 8.8%
Avg. Zeroed 5.6% 0.3% 9.0% 0.0% 8.0% 1.0%

Car 10Col-2Ep. 10Col-15Ep. 25Col-2Ep. 25Col-15Ep. 75Col-2Ep. 75Col-15Ep.
Basic ECOC 70.02±0.3 71.82±3.2 70.95±2.5 75.35±7.2 70.02±0.3 71.77±4.7
SimAnn+ 72.87±4.4 81.88±4.6 71.40±2.6 88.20±4.0 73.38±6.6 85.49±4.9
Avg. Flipped 29.0% 30.2% 27.0% 21.0% 32.5% 29.2%
Avg. Zeroed 1.2% 1.5% 4.5% 3.0% 3.7% 2.4%

Dermatology 10Col-2Ep. 10Col-15Ep. 25Col-2Ep. 25Col-15Ep. 75Col-2Ep. 75Col-15Ep.
Basic ECOC 58.67±9.9 76.51±12.5 58.72±11.1 85.25±13.8 82.47±9.3 93.88±5.3
SimAnn+ 85.71±6.0 91.32±3.9 85.21±7.2 92.76±3.7 92.51±5.8 95.28±2.8
Avg. Flipped 20.1% 10.8% 19.1% 6.6% 20.2% 9.8%
Avg. Zeroed 2.0% 0.1% 5.1% 1.3% 2.9% 0.6%

Glass 10Col-2Ep. 10Col-15Ep. 25Col-2Ep. 25Col-15Ep. 75Col-2Ep. 75Col-15Ep.
Basic ECOC 47.91±12.2 61.42±12.1 42.61±8.0 66.79±10.5 48.17±10.3 64.22±11.5
SimAnn+ 48.85±10.8 60.45±10.6 48.96±9.9 66.10±12.2 57.00±14.7 68.35±11.5
Avg. Flipped 28.6% 14.6% 28.5% 13.1% 29.2% 19.0%
Avg. Zeroed 2.8% 2.6% 3.5% 2.8% 3.6% 5.0%

OptDigits 10Col-2Ep. 10Col-15Ep. 25Col-2Ep. 25Col-15Ep. 75Col-2Ep. 75Col-15Ep.
Basic ECOC 42.01±10.6 74.26±13.2 35.23±9.8 89.54±4.0 56.36±11.2 87.52±3.1
SimAnn+ 61.30±8.0 84.04±3.7 55.43±6.9 91.55±2.4 78.95±5.6 90.40±1.1
Avg. Flipped 18.6% 6.8% 20.7% 2.1% 19.5% 8.6%
Avg. Zeroed 6.2% 1.3% 10.9% 0.6% 6.1% 1.5%

SatImage 10Col-2Ep. 10Col-15Ep. 25Col-2Ep. 25Col-15Ep. 75Col-2Ep. 75Col-15Ep.
Basic ECOC 52.73±11.4 74.28±6.0 59.95±10.7 83.02±4.4 62.88±13.7 80.46±5.6
SimAnn+ 70.07±6.7 79.47±6.9 71.02±7.6 85.66±2.1 78.62±2.3 84.89±1.3
Avg. Flipped 27.1% 14.6% 20.6% 7.3% 23.9% 10.8%
Avg. Zeroed 3.0% 1.1% 4.6% 1.6% 3.3% 0.8%

Vehicle 10Col-2Ep. 10Col-15Ep. 25Col-2Ep. 25Col-15Ep. 75Col-2Ep. 75Col-15Ep.
Basic ECOC 33.30±9.8 58.57±14.6 39.24±8.8 69.18±10.2 52.19±12.5 76.25±4.2
SimAnn+ 48.07±13.2 72.48±5.0 44.10±8.9 74.85±4.9 62.29±7.4 76.96±4.4
Avg. Flipped 21.7% 12.5% 19.0% 7.7% 23.5% 10.7%
Avg. Zeroed 6.2% 3.0% 9.7% 1.7% 6.4% 3.9%

Vowel 10Col-2Ep. 10Col-15Ep. 25Col-2Ep. 25Col-15Ep. 75Col-2Ep. 75Col-15Ep.
Basic ECOC 16.71±5.3 21.76±6.8 16.27±4.4 43.80±9.4 22.86±5.9 34.61±7.8
SimAnn+ 18.39±5.9 33.00±8.7 25.82±7.1 52.34±9.7 35.58±6.1 48.65±4.9
Avg. Flipped 23.3% 17.7% 20.9% 10.1% 27.1% 18.8%
Avg. Zeroed 7.6% 4.5% 9.6% 4.0% 8.0% 8.3%

Yeast 10Col-2Ep. 10Col-15Ep. 25Col-2Ep. 25Col-15Ep. 75Col-2Ep. 75Col-15Ep.
Basic ECOC 32.69±4.8 37.91±11.6 31.82±8.3 45.37±8.7 31.37±11.1 50.56±5.8
SimAnn+ 39.01±4.5 50.20±4.3 38.21±5.0 50.71±7.0 47.03±5.3 53.05±5.9
Avg. Flipped 32.6% 21.1% 33.0% 18.6% 32.0% 18.0%
Avg. Zeroed 3.5% 5.8% 5.8% 9.1% 3.4% 7.8%
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Table 4.8: Accuracy results (%) for Experiment-II 8-node. Bold figures indicate
statistically significant improvements over the standard ECOC approach.

Balance 10Col-2Ep. 10Col-15Ep. 25Col-2Ep. 25Col-15Ep. 75Col-2Ep. 75Col-15Ep.
Basic ECOC 85.11±4.4 94.86±2.2 86.73±2.8 88.64±2.3 88.64±2.6 90.72±1.2
SimAnn+ 85.29±5.7 95.36±3.7 85.27±6.2 91.53±3.4 84.31±4.4 95.69±3.6
Avg. Flipped 17.0% 9.3% 24.8% 16.7% 22.0% 15.4%
Avg. Zeroed 10.9% 0.9% 6.3% 0.8% 8.3% 0.6%

Car 10Col-2Ep. 10Col-15Ep. 25Col-2Ep. 25Col-15Ep. 75Col-2Ep. 75Col-15Ep.
Basic ECOC 70.43±0.6 81.36±6.7 70.02±0.3 70.95±2.3 70.02±0.3 82.46±3.9
SimAnn+ 74.02±4.9 92.77±2.4 75.29±5.7 88.37±3.5 78.24±5.4 94.39±2.4
Avg. Flipped 31.8% 24.2% 35.4% 30.3% 34.0% 23.4%
Avg. Zeroed 4.4% 1.7% 2.2% 2.0% 4.9% 2.5%

Dermatology 10Col-2Ep. 10Col-15Ep. 25Col-2Ep. 25Col-15Ep. 75Col-2Ep. 75Col-15Ep.
Basic ECOC 84.07±7.5 96.67±2.5 77.13±7.1 92.47±3.9 74.55±9.9 95.27±3.2
SimAnn+ 93.32±3.7 96.67±3.1 94.43±4.1 96.09±2.3 96.10±2.6 96.11±2.6
Avg. Flipped 19.8% 8.6% 21.4% 12.1% 21.2% 11.0%
Avg. Zeroed 4.6% 0.6% 2.4% 0.4% 4.0% 0.8%

Glass 10Col-2Ep. 10Col-15Ep. 25Col-2Ep. 25Col-15Ep. 75Col-2Ep. 75Col-15Ep.
Basic ECOC 58.72±12.1 65.99±8.0 49.65±13.2 66.10±6.6 58.50±8.4 68.97±8.7
SimAnn+ 59.54±8.0 67.49±9.8 63.72±6.9 66.63±8.8 60.65±7.4 66.47±9.3
Avg. Flipped 27.6% 15.8% 30.2% 20.6% 28.3% 17.5%
Avg. Zeroed 4.6% 2.4% 3.3% 3.4% 5.1% 3.0%

OptDigits 10Col-2Ep. 10Col-15Ep. 25Col-2Ep. 25Col-15Ep. 75Col-2Ep. 75Col-15Ep.
Basic ECOC 50.28±6.8 94.43±1.6 85.70±2.6 94.19±1.1 78.29±7.0 97.36±0.8
SimAnn+ 73.92±3.7 95.08±1.2 90.48±1.0 94.51±1.0 88.60±1.8 97.44±0.7
Avg. Flipped 19.4% 3.1% 17.0% 8.2% 19.0% 2.5%
Avg. Zeroed 11.1% 1.0% 6.0% 1.0% 10.2% 0.6%

SatImage 10Col-2Ep. 10Col-15Ep. 25Col-2Ep. 25Col-15Ep. 75Col-2Ep. 75Col-15Ep.
Basic ECOC 66.54±7.2 85.68±2.1 75.35±2.1 83.29±1.2 77.38±0.9 87.28±1.1
SimAnn+ 79.57±2.8 87.44±1.1 83.09±1.9 86.29±1.4 83.02±1.9 88.45±0.9
Avg. Flipped 20.6% 5.9% 25.1% 15.5% 21.5% 7.7%
Avg. Zeroed 6.0% 1.0% 3.5% 1.3% 6.2% 1.7%

Vehicle 10Col-2Ep. 10Col-15Ep. 25Col-2Ep. 25Col-15Ep. 75Col-2Ep. 75Col-15Ep.
Basic ECOC 49.51±6.2 76.73±4.1 63.60±4.3 79.69±4.6 65.80±7.0 80.39±3.5
SimAnn+ 58.26±6.8 77.91±4.5 66.98±7.9 79.45±3.4 64.98±7.6 80.62±2.9
Avg. Flipped 21.0% 6.3% 22.9% 10.9% 19.7% 8.9%
Avg. Zeroed 9.6% 3.8% 9.2% 4.4% 10.6% 3.0%

Vowel 10Col-2Ep. 10Col-15Ep. 25Col-2Ep. 25Col-15Ep. 75Col-2Ep. 75Col-15Ep.
Basic ECOC 24.06±4.5 58.53±4.8 30.85±7.0 54.29±9.3 33.82±9.4 76.48±6.2
SimAnn+ 38.74±9.1 69.91±4.8 47.52±10.8 64.40±5.9 50.18±4.6 78.19±4.3
Avg. Flipped 22.7% 11.0% 26.7% 17.8% 23.9% 10.2%
Avg. Zeroed 12.6% 5.4% 9.4% 6.5% 14.5% 5.7%

Yeast 10Col-2Ep. 10Col-15Ep. 25Col-2Ep. 25Col-15Ep. 75Col-2Ep. 75Col-15Ep.
Basic ECOC 38.54±5.5 52.36±4.3 37.00±5.5 53.78±4.6 37.00±8.1 54.65±4.7
SimAnn+ 46.15±4.4 54.05±3.8 52.85±5.6 56.00±5.1 51.34±4.3 56.88±5.2
Avg. Flipped 29.7% 15.0% 32.2% 18.8% 31.0% 18.2%
Avg. Zeroed 5.0% 6.7% 4.1% 8.9% 4.4% 7.7%
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Table 4.9: Summary of the UCI data sets used in performance evaluation.

Data Set 2N-I 8N-I 2N-II 8N-II
Balance 2.58 0.62 2.52 0.45
Car 6.89 9.52 7.21 9.64
Dermatology 14.96 8.61 14.54 8.76
Glass 2.39 1.42 3.09 2.76
OptDigits 12.68 6.83 12.79 6.63
SatImage 9.02 5.42 9.40 5.39
Vehicle 10.24 1.73 8.33 2.08
Vowel 9.43 12.85 9.62 11.81
Yeast 7.63 6.59 8.08 7.32



Chapter 5

ECOC Matrix Update Using

Beam Search

5.1 Introduction

In this chapter, we present the main contribution of the thesis which is called Beam-

Search+. The method shares the same idea that modifying the ECOC matrix to match

the base classifiers would improve accuracy performance. We chose Beam Search, which

is a well-known search algorithm, after considering Breadth-First search and Best-First

Search algorithm for its implementation simplicity, and lower computational complexity.

In this chapter, we apply widely known beam search technique to optimize the ECOC

code matrix. It further improves upon the FlipECOC+ which we proposed in Chapter 4.

This algorithm consists of iterative modifications to the code matrix, using the validation

data set (Experiment-I) or the training data set (Experiment-II) as a guide in this search.

It does not involve further training of the classifiers and it can be applied to any ECOC

ensemble.

5.1.1 Initialization of The Proposed Method

Initialization of the BeamSearch+ method is same as the FlipECOC+ and the SimAnn+

methods. We train our base classifiers to ensemble and we try to improve their accuracy

with the BeamSearch+ method. The base classifiers remain unchanged. We find the

46
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accuracy matrix A where Aij is the accuracy of Mij . In other words, Aij shows the ratio

of correct class ci samples that are classified by hj .

We can give a simple example of flipping idea of our approach, assuming a classifier

hj ’s Aij as 0.25 in classifying a particular class ci. If we flip Mij which corresponds

to Aij then the accuracy of Mij becomes 0.75. Although changing all Mij with the

worst performances seems a good idea we also need to consider the overall classification

accuracy which can increase or decrease due to Hamming distance changes between the

classes which diminishes error correcting capability of the ensemble.

5.2 BeamSearch+

Starting from the original code matrix M and the accuracy matrix Aij , we generate all

possible new code matrices M ′ that differ from M in a single entry corresponding to

low Aij values. These new code matrices M ′ are evaluated for their performance on the

validation set and among all the ones that show an improvement over M , the best k of

them are expanded in the next iteration of the search. This method is illustrated in the

Figure 5.1, while the pseudo-code is given Alg. 4.

In this process, a new code matrix M ′ is generated from M by flipping or zeroing an

entry Mij for which Aij is low; the flip or zero update is selected according to the

preset thresholds. By considering the validation accuracy in this process, we expect the

method to take care of the row and column-wise Hamming distance information together

with the error correction capacity, and therefore carry out updates without causing any

degradation.
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Figure 5.1: The BeamSearch+ method illustration for beam width 3 .
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Algorithm 4 BeamECOC

Input: Code matrix M ; trained base classifiers H; thresholds α, β; beam width k

Output: Modified code matrix M

Beam = {M}; . Start search from with the preset code matrix NewLevel = ∅;

while Beam 6= ∅ do

for each m in Beam do . Expand all nodes in the Beam, in all possible ways

for each possible update location (i, j) of m do

M ′ ← m;

. Apply appropriate update for this location, according to accuracy

if Aij < β then

Flip M ′
ij ;

else if β ≤ Aij < α then

Zero M ′
ij ;

end if

. If gain is positive then accept new node

∆gain←valAccuracy[M’]−valAccuracy[m];

if gain ≥ 0 then

NewLevel ← NewLevel ∪ M ′; . Add M ′ to the set of new nodes

end if

end for

end for

Beam ← the k best code matrices from NewLevel . Continue the search with

the new Beam

NewLevel = ∅;

end while

Return best code matrix in NewNodes
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5.2.1 Experiments and Data

Our method is local search method which optimizes the Basic ECOC matrix M . We

compared the performance of the BeamSearch+ method with the Basic ECOC approach

explained in Chapter 3. The proposed update method can also be applied to any trained

ECOC framework same as the FlipECOC+ method and the SimAnn+ method while

the encoding, training, or decoding can be done in anyway.

Our local search method resulted in improved performance over the initial ECOC matrix

M , in almost all of the experimental settings and 2 different experimental setup used

in FlipECOC+ and SimAnn+ (Experiment-I and Experiment-II). We determined the

average accuracy results for 10 independent runs with random splits. In each case,

the size of the validation is same as the training, which is important in the proposed

algorithm. In addition to accuracy obtained in each of the 10-fold cross validation

experiments, we also recorded the number of flips and zeros in the resulting code matrix

as we did for FlipECOC+ and SimAnn+ .

The 9 UCI Machine Learning Repository data sets were used in the experiments which

are same as FlipECOC+ and SimAnn+.

5.2.1.1 Experiment-I

In this case, we use the validation set for assessing the usefulness of each update same

as in 4.3.1.1.

Figure 5.2 shows the results for varying sizes of the ECOC matrix and varying strength

of base classifiers.

In addition, detailed information is provided in Table 5.1 and 5.2 along with the mean

and the standard deviation of the accuracy results. We indicate the average number of

flips and zeros as a percentage of the size of the code matrix.



ECOC Matrix Update Using Beam Search 51

Figure 5.2: Relative accuracy difference between BeamSearch+ and Basic ECOC
approaches for varying number of columns (Experiment-I). First row: 2-node and 2-
epoch (left), 2-node and 15-epoch (right). Second row: 8-node and 2-epoch (left),

8-node and 15-epoch (right).

5.2.1.2 Experiment-II

In this case, we use the training set instead of validation set for assessing the usefulness

of each update same as in 4.3.1.2.

Figure 5.3 shows the results for varying sizes of the ECOC matrix and varying strength

of base classifiers.

In addition, detailed information is provided in Table 5.3 and 5.4 along with the mean

and the standard deviation of the accuracy results. We indicate the average number of

flips and zeros as a percentage of the size of the code matrix.
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Figure 5.3: Relative accuracy difference between BeamSearch+ and the Basic ECOC
approaches for varying number of columns(Experiment-II). First row: 2-node and 2-
epoch (left), 2-node and 15-epoch (right). Second row: 8-node and 2-epoch (left),

8-node and 15-epoch (right).

5.3 Results and Conclusions

In our experiments, we got improvements in 209 out of 216 cases. We also investigated

what percentage of our results were statistically significant, and we found out that 167

out of 209 improvements were statistically significant. Our improvements were in range

of -0.8 to 26.5 for Experiment-I and -0.8 to 26.8 for Experiment-II.

We explored a lot wider space, comparing to FlipECOC+ and SimAnn+, which is exactly

3*((k-1)*k)/2+k where k is the number of possible flips. We found number k after we

calculated the accuracy matrix A.

We can see the average accuracy gains for different data sets and nodes for both exper-

iment in Table 5.5. It can be seen that there are many changes over %10. We can also

easily observe that the 8-node generally have lower improvements than the 2-node of
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same data set since 8-node base classifiers are better trained. Same situation applies for

2-epoch and 15-epoch base classifiers. In the BeamSearch+ method, we explored a lot

more ECOC matrices than the previous two methods by applying more combinations of

updates.
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Table 5.1: Accuracy results (%) for Experiment-I 2-node. Bold figures indicate sta-
tistically significant improvements over the standard ECOC approach.

Balance 10Col-2Ep. 10Col-15Ep. 25Col-2Ep. 25Col-15Ep. 75Col-2Ep. 75Col-15Ep.
Basic ECOC 71.56±13.5 87.68±1.8 81.09±9.0 89.26±2.2 85.44±3.9 90.73±3.3
BeamSearch+ 84.31±4.7 88.17±2.3 85.93±3.4 90.24±1.6 86.24±2.6 91.21±3.9
Avg. Flipped 19.0% 7.6% 13.0% 6.0% 9.3% 2.1%
Avg. Zeroed 3.3% 2.0% 6.0% 0.6% 3.6% 1.6%

Car 10Col-2Ep. 10Col-15Ep. 25Col-2Ep. 25Col-15Ep. 75Col-2Ep. 75Col-15Ep.
Basic ECOC 70.02±0.3 71.82±3.2 70.95±2.5 75.35±7.2 70.02±0.3 71.77±4.7
BeamSearch+ 72.52±4.6 83.73±2.4 73.43±2.5 88.66±4.0 77.79±4.5 85.37±6.0
Avg. Flipped 13.0% 21.0% 13.2% 14.2% 26.1% 22.8%
Avg. Zeroed 1.2% 0.7% 2.2% 1.0% 1.3% 1.7%

Dermatology 10Col-2Ep. 10Col-15Ep. 25Col-2Ep. 25Col-15Ep. 75Col-2Ep. 75Col-15Ep.
Basic ECOC 58.67±9.9 76.51±12.5 58.72±11.1 85.25±13.8 82.47±9.3 93.88±5.3
BeamSearch+ 84.01±8.9 90.78±3.2 85.21±4.5 93.32±3.6 94.99±4.3 94.99±2.8
Avg. Flipped 14.3% 7.0% 15.1% 4.6% 7.4% 3.2%
Avg. Zeroed 2.1% 0.1% 1.3% 1.0% 1.6% 0.3%

Glass 10Col-2Ep. 10Col-15Ep. 25Col-2Ep. 25Col-15Ep. 75Col-2Ep. 75Col-15Ep.
Basic ECOC 47.91±12.2 61.42±12.1 42.61±8.0 66.79±10.5 48.17±10.3 64.22±11.5
BeamSearch+ 53.00±8.6 63.61±12.1 50.45±10.3 68.82±8.7 56.93±8.8 69.64±8.7
Avg. Flipped 21.6% 10.1% 17.0% 8.8% 18.2% 11.8%
Avg. Zeroed 1.5% 3.0% 2.5% 2.8% 1.4% 2.4%

OptDigits 10Col-2Ep. 10Col-15Ep. 25Col-2Ep. 25Col-15Ep. 75Col-2Ep. 75Col-15Ep.
Basic ECOC 42.01±10.6 74.26±13.2 35.23±9.8 89.54±4.0 56.36±11.2 87.52±3.1
BeamSearch+ 62.48±7.3 84.69±3.5 55.56±9.0 91.55±2.2 79.06±5.9 90.82±1.1
Avg. Flipped 11.0% 5.5% 12.3% 2.0% 8.5% 4.5%
Avg. Zeroed 3.4% 1.0% 5.7% 0.4% 2.4% 0.6%

SatImage 10Col-2Ep. 10Col-15Ep. 25Col-2Ep. 25Col-15Ep. 75Col-2Ep. 75Col-15Ep.
Basic ECOC 52.73±11.4 74.28±6.0 59.95±10.7 83.02±4.4 62.88±13.7 80.46±5.6
BeamSearch+ 71.00±5.8 81.33±4.1 73.88±8.9 85.88±1.7 81.06±2.7 85.01±0.8
Avg. Flipped 16.0% 10.0% 13.3% 4.3% 11.8% 6.8%
Avg. Zeroed 1.8% 1.3% 3.1% 1.6% 1.6% 0.6%

Vehicle 10Col-2Ep. 10Col-15Ep. 25Col-2Ep. 25Col-15Ep. 75Col-2Ep. 75Col-15Ep.
Basic ECOC 33.30±9.8 58.57±14.6 39.24±8.8 69.18±10.2 52.19±12.5 76.25±4.2
BeamSearch+ 50.46±10.8 71.78±5.8 52.96±10.1 76.13±4.8 66.19±4.3 77.91±4.1
Avg. Flipped 13.2% 9.7% 9.7% 6.0% 9.0% 4.8%
Avg. Zeroed 3.5% 2.7% 4.0% 4.2% 4.0% 3.5%

Vowel 10Col-2Ep. 10Col-15Ep. 25Col-2Ep. 25Col-15Ep. 75Col-2Ep. 75Col-15Ep.
Basic ECOC 16.71±5.3 21.76±6.8 16.27±4.4 43.80±9.4 22.86±5.9 34.61±7.8
BeamSearch+ 24.04±5.3 35.55±6.4 27.25±5.1 56.10±7.7 34.74±7.6 47.56±7.2
Avg. Flipped 14.1% 13.1% 12.8% 7.0% 11.4% 8.3%
Avg. Zeroed 4.6% 3.5% 5.2% 3.3% 3.4% 4.6%

Yeast 10Col-2Ep. 10Col-15Ep. 25Col-2Ep. 25Col-15Ep. 75Col-2Ep. 75Col-15Ep.
Basic ECOC 32.69±4.8 37.91±11.6 31.82±8.3 45.37±8.7 31.37±11.1 50.56±5.8
BeamSearch+ 42.16±6.1 50.48±4.5 42.18±6.4 51.52±5.4 49.05±4.1 53.59±5.7
Avg. Flipped 12.6% 14.0% 15.0% 12.6% 20.9% 9.9%
Avg. Zeroed 1.5% 2.8% 2.1% 4.1% 1.6% 2.9%
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Table 5.2: Accuracy results (%) for Experiment-I 8-node. Bold figures indicate sta-
tistically significant improvements over the standard ECOC approach.

Balance 10Col-2Ep. 10Col-15Ep. 25Col-2Ep. 25Col-15Ep. 75Col-2Ep. 75Col-15Ep.
Basic ECOC 85.11±4.4 94.86±2.2 86.73±2.8 88.64±2.3 88.64±2.6 90.72±1.2
BeamSearch+ 88.17±2.8 95.35±2.4 87.21±3.7 90.56±3.5 88.65±3.0 95.20±2.9
Avg. Flipped 7.6% 3.4% 16.6% 8.6% 16.6% 11.6%
Avg. Zeroed 4.4% 0.8% 1.9% 0.8% 3.8% 0.9%

Car 10Col-2Ep. 10Col-15Ep. 25Col-2Ep. 25Col-15Ep. 75Col-2Ep. 75Col-15Ep.
Basic ECOC 70.43±0.5 81.36±6.7 70.02±0.3 70.95±2.3 70.02±0.3 82.46±3.8
BeamSearch+ 77.73±3.1 93.11±2.4 77.43±3.4 85.01±4.1 81.13±3.8 93.81±2.4
Avg. Flipped 22.5% 19.4% 27.9% 19.7% 27.7% 15.1%
Avg. Zeroed 2.1% 1.4% 0.8% 1.4% 3.1% 2.1%

Dermatology 10Col-2Ep. 10Col-15Ep. 25Col-2Ep. 25Col-15Ep. 75Col-2Ep. 75Col-15Ep.
Basic ECOC 84.07±7.5 96.67±2.5 77.13±7.1 92.47±3.9 74.55±9.9 95.27±3.1
BeamSearch+ 91.05±3.4 96.94±2.7 95.55±2.6 94.99±2.1 94.99±3.6 96.66±2.1
Avg. Flipped 10.6% 3.5% 11.6% 4.6% 12.0% 4.6%
Avg. Zeroed 1.7% 0.4% 0.4% 0.0% 1.0% 0.0%

Glass 10Col-2Ep. 10Col-15Ep. 25Col-2Ep. 25Col-15Ep. 75Col-2Ep. 75Col-15Ep.
Basic ECOC 58.72±12.1 65.99±8.0 49.65±13.2 66.10±6.6 58.50±8.4 68.97±8.6
BeamSearch+ 58.08±6.2 68.29±8.9 62.69±9.6 71.09±4.2 64.87±5.5 69.81±9.0
Avg. Flipped 15.6% 10.8% 19.7% 16.4% 17.8% 13.6%
Avg. Zeroed 2.6% 3.0% 1.0% 1.9% 2.2% 2.0%

OptDigits 10Col-2Ep. 10Col-15Ep. 25Col-2Ep. 25Col-15Ep. 75Col-2Ep. 75Col-15Ep.
Basic ECOC 50.28±6.8 94.43±1.5 85.69±2.6 94.19±1.1 78.29±7.0 97.36±0.8
BeamSearch+ 73.32±4.8 94.98±1.2 90.40±1.3 94.58±1.0 87.52±2.4 97.36±1.0
Avg. Flipped 9.4% 1.5% 3.6% 2.7% 4.7% 1.0%
Avg. Zeroed 4.2% 0.7% 2.1% 0.5% 2.9% 0.1%

SatImage 10Col-2Ep. 10Col-15Ep. 25Col-2Ep. 25Col-15Ep. 75Col-2Ep. 75Col-15Ep.
Basic ECOC 66.54±7.1 85.68±2.1 75.35±2.1 83.29±1.1 77.38±0.8 87.28±1.1
BeamSearch+ 81.98±2.2 87.48±1.2 82.95±2.3 85.84±1.2 83.70±1.3 88.28±0.7
Avg. Flipped 9.5% 3.6% 10.9% 5.3% 8.1% 2.1%
Avg. Zeroed 2.8% 0.4% 1.1% 0.8% 2.6% 0.7%

Vehicle 10Col-2Ep. 10Col-15Ep. 25Col-2Ep. 25Col-15Ep. 75Col-2Ep. 75Col-15Ep.
Basic ECOC 49.51±6.2 76.73±4.1 63.60±4.3 79.69±4.6 65.80±7.0 80.39±3.5
BeamSearch+ 63.36±6.6 77.32±5.6 68.43±2.7 78.86±4.4 69.73±4.3 80.39±3.3
Avg. Flipped 8.5% 3.6% 4.3% 3.5% 3.5% 3.0%
Avg. Zeroed 5.3% 4.9% 2.6% 2.3% 4.1% 2.6%

Vowel 10Col-2Ep. 10Col-15Ep. 25Col-2Ep. 25Col-15Ep. 75Col-2Ep. 75Col-15Ep.
Basic ECOC 24.06±4.5 58.53±4.8 30.85±7.0 54.29±9.2 33.82±9.4 76.48±6.2
BeamSearch+ 36.53±6.2 72.14±4.9 47.13±10.5 68.85±5.8 53.99±7.5 80.08±5.3
Avg. Flipped 10.0% 7.6% 8.2% 9.4% 10.1% 10.7%
Avg. Zeroed 7.2% 4.2% 4.9% 5.1% 6.9% 5.8%

Yeast 10Col-2Ep. 10Col-15Ep. 25Col-2Ep. 25Col-15Ep. 75Col-2Ep. 75Col-15Ep.
Basic ECOC 38.54±5.5 52.36±4.2 36.99±5.5 53.78±4.6 37.00±8.1 54.65±4.7
BeamSearch+ 48.38±4.8 54.45±3.5 52.50±4.9 54.80±4.4 52.29±5.9 55.86±4.9
Avg. Flipped 14.5% 8.1% 11.5% 4.9% 12.4% 5.0%
Avg. Zeroed 2.2% 4.2% 1.4% 2.9% 1.8% 3.5%
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Table 5.3: Accuracy results (%) for Experiment-II 2-node. Bold figures indicate
statistically significant improvements over the standard ECOC approach.

Balance 10Col-2Ep. 10Col-15Ep. 25Col-2Ep. 25Col-15Ep. 75Col-2Ep. 75Col-15Ep.
Basic ECOC 71.56±13.5 87.68±1.8 81.09±9.0 89.26±2.2 85.44±3.9 90.73±3.3
BeamSearch+ 84.63±4.1 87.84±2.0 85.12±3.0 89.92±1.8 87.51±3.4 91.37±3.3
Avg. Flipped 12.0% 4.0% 13.0% 4.0% 10.2% 2.4%
Avg. Zeroed 3.3% 0.3% 5.3% 0.0% 3.6% 0.4%

Car 10Col-2Ep. 10Col-15Ep. 25Col-2Ep. 25Col-15Ep. 75Col-2Ep. 75Col-15Ep.
Basic ECOC 70.02±0.3 71.82±3.2 70.95±2.5 75.35±7.2 70.02±0.3 71.77±4.7
BeamSearch+ 72.87±4.5 83.16±3.1 73.43±3.0 88.83±3.9 77.56±5.4 85.72±4.8
Avg. Flipped 12.0% 23.7% 13.5% 16.5% 26.3% 23.7%
Avg. Zeroed 0.5% 0.7% 3.0% 2.0% 2.1% 1.3%

Dermatology 10Col-2Ep. 10Col-15Ep. 25Col-2Ep. 25Col-15Ep. 75Col-2Ep. 75Col-15Ep.
Basic ECOC 58.67±9.9 76.51±12.5 58.72±11.1 85.25±13.8 82.47±9.3 93.88±5.3
BeamSearch+ 84.89±6.4 90.74±4.0 85.52±7.4 92.47±3.4 92.78±5.0 95.84±3.6
Avg. Flipped 16.3% 5.8% 13.5% 3.8% 8.3% 1.9%
Avg. Zeroed 1.6% 0.1% 3.3% 1.1% 1.2% 0.1%

Glass 10Col-2Ep. 10Col-15Ep. 25Col-2Ep. 25Col-15Ep. 75Col-2Ep. 75Col-15Ep.
Basic ECOC 47.91±12.2 61.42±12.1 42.61±8.0 66.79±10.5 48.17±10.3 64.22±11.5
BeamSearch+ 52.16±11.3 61.30±8.3 52.29±8.4 66.60±11.6 59.42±12.1 66.54±9.2
Avg. Flipped 18.1% 11.5% 17.1% 9.3% 14.0% 10.6%
Avg. Zeroed 1.6% 2.1% 1.6% 2.5% 1.7% 2.3%

OptDigits 10Col-2Ep. 10Col-15Ep. 25Col-2Ep. 25Col-15Ep. 75Col-2Ep. 75Col-15Ep.
Basic ECOC 42.01±10.6 74.26±13.2 35.23±9.8 89.54±4.0 56.36±11.2 87.52±3.1
BeamSearch+ 61.88±8.0 84.48±3.4 56.03±8.3 91.47±2.5 79.65±4.5 90.63±1.4
Avg. Flipped 10.6% 4.7% 11.3% 1.7% 9.3% 4.4%
Avg. Zeroed 4.2% 0.9% 5.8% 0.4% 2.7% 0.6%

SatImage 10Col-2Ep. 10Col-15Ep. 25Col-2Ep. 25Col-15Ep. 75Col-2Ep. 75Col-15Ep.
Basic ECOC 52.73±11.4 74.28±6.0 59.95±10.7 83.02±4.4 62.88±13.7 80.46±5.6
BeamSearch+ 72.91±4.9 81.09±4.1 72.53±9.0 85.81±1.5 79.04±5.5 85.34±0.8
Avg. Flipped 15.0% 9.6% 12.6% 5.3% 9.3% 7.3%
Avg. Zeroed 1.6% 0.8% 2.6% 0.8% 1.6% 0.4%

Vehicle 10Col-2Ep. 10Col-15Ep. 25Col-2Ep. 25Col-15Ep. 75Col-2Ep. 75Col-15Ep.
Basic ECOC 33.30±9.8 58.57±14.6 39.24±8.8 69.18±10.2 52.19±12.5 76.25±4.2
BeamSearch+ 48.91±10.7 71.52±4.2 51.19±10.0 75.66±5.2 66.76±3.8 77.31±4.0
Avg. Flipped 12.2% 9.0% 11.2% 4.0% 9.5% 6.8%
Avg. Zeroed 3.7% 2.0% 5.5% 1.5% 2.5% 2.1%

Vowel 10Col-2Ep. 10Col-15Ep. 25Col-2Ep. 25Col-15Ep. 75Col-2Ep. 75Col-15Ep.
Basic ECOC 16.71±5.3 21.76±6.8 16.27±4.4 43.80±9.4 22.86±5.9 34.61±7.8
BeamSearch+ 23.31±4.8 32.42±8.8 25.60±5.3 54.00±9.3 38.16±7.8 47.89±8.9
Avg. Flipped 15.1% 11.9% 13.2% 7.5% 11.8% 7.7%
Avg. Zeroed 3.5% 2.1% 5.2% 2.2% 4.0% 3.8%

Yeast 10Col-2Ep. 10Col-15Ep. 25Col-2Ep. 25Col-15Ep. 75Col-2Ep. 75Col-15Ep.
Basic ECOC 32.69±4.8 37.91±11.6 31.82±8.3 45.37±8.7 31.37±11.1 50.56±5.8
BeamSearch+ 41.43±6.1 49.94±4.6 42.38±4.9 51.79±6.0 49.00±6.1 54.39±5.1
Avg. Flipped 16.8% 12.6% 17.0% 13.0% 19.0% 9.1%
Avg. Zeroed 2.0% 2.6% 2.8% 2.8% 1.4% 4.2%
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Table 5.4: Accuracy results (%) for Experiment-II 8-node. Bold figures indicate
statistically significant improvements over the standard ECOC approach.

Balance 10Col-2Ep. 10Col-15Ep. 25Col-2Ep. 25Col-15Ep. 75Col-2Ep. 75Col-15Ep.
Basic ECOC 85.11±4.4 94.86±2.2 86.73±2.8 88.64±2.3 88.64±2.6 90.72±1.2
BeamSearch+ 88.16±3.2 95.84±2.6 87.53±4.3 89.60±3.3 89.44±3.4 95.04±2.2
Avg. Flipped 9.3% 3.3% 16.1% 9.1% 14.6% 11.5%
Avg. Zeroed 5.2% 0.4% 2.2% 0.4% 3.0% 0.2%

Car 10Col-2Ep. 10Col-15Ep. 25Col-2Ep. 25Col-15Ep. 75Col-2Ep. 75Col-15Ep.
Basic ECOC 70.43±0.5 81.36±6.7 70.02±0.3 70.95±2.3 70.02±0.3 82.46±3.8
BeamSearch+ 75.82±3.2 92.59±3.1 77.95±3.1 86.58±4.4 79.76±3.9 93.93±2.4
Avg. Flipped 22.3% 18.4% 29.1% 21.4% 27.6% 17.0%
Avg. Zeroed 1.6% 1.0% 0.9% 1.2% 2.3% 1.5%

Dermatology 10Col-2Ep. 10Col-15Ep. 25Col-2Ep. 25Col-15Ep. 75Col-2Ep. 75Col-15Ep.
Basic ECOC 84.07±7.5 96.67±2.5 77.13±7.1 92.47±3.9 74.55±9.9 95.27±3.1
BeamSearch+ 92.74±3.2 96.67±2.5 94.71±3.8 94.14±2.7 95.54±3.9 95.55±2.3
Avg. Flipped 9.6% 1.2% 10.5% 2.1% 12.5% 0.4%
Avg. Zeroed 1.2% 0.2% 0.2% 0.0% 0.6% 0.0%

Glass 10Col-2Ep. 10Col-15Ep. 25Col-2Ep. 25Col-15Ep. 75Col-2Ep. 75Col-15Ep.
Basic ECOC 58.72±12.1 65.99±8.0 49.65±13.2 66.10±6.6 58.50±8.4 68.97±8.6
BeamSearch+ 59.13±9.3 65.13±8.0 61.90±7.2 68.45±8.4 65.86±3.1 67.88±7.3
Avg. Flipped 14.1% 9.7% 21.8% 14.8% 18.7% 11.7%
Avg. Zeroed 1.7% 1.4% 1.0% 1.2% 1.8% 0.7%

OptDigits 10Col-2Ep. 10Col-15Ep. 25Col-2Ep. 25Col-15Ep. 75Col-2Ep. 75Col-15Ep.
Basic ECOC 50.28±6.8 94.43±1.5 85.69±2.6 94.19±1.1 78.29±7.0 97.36±0.8
BeamSearch+ 72.69±3.7 95.08±1.0 90.24±0.8 94.48±1.2 87.89±1.5 97.38±0.7
Avg. Flipped 9.0% 1.4% 3.6% 2.0% 4.7% 0.5%
Avg. Zeroed 4.2% 0.4% 2.0% 0.4% 2.7% 0.1%

SatImage 10Col-2Ep. 10Col-15Ep. 25Col-2Ep. 25Col-15Ep. 75Col-2Ep. 75Col-15Ep.
Basic ECOC 66.54±7.1 85.68±2.1 75.35±2.1 83.29±1.1 77.38±0.8 87.28±1.1
BeamSearch+ 82.39±2.3 87.55±0.9 82.28±2.5 86.40±1.6 83.14±1.6 88.43±1.1
Avg. Flipped 10.0% 3.8% 10.8% 6.6% 7.1% 2.8%
Avg. Zeroed 2.7% 0.5% 1.1% 0.6% 1.6% 0.8%

Vehicle 10Col-2Ep. 10Col-15Ep. 25Col-2Ep. 25Col-15Ep. 75Col-2Ep. 75Col-15Ep.
Basic ECOC 49.51±6.2 76.73±4.1 63.60±4.3 79.69±4.6 65.80±7.0 80.39±3.5
BeamSearch+ 63.49±6.1 77.44±3.8 68.79±4.8 78.75±5.0 67.59±5.5 80.74±3.5
Avg. Flipped 8.1% 3.6% 3.9% 1.5% 4.1% 4.0%
Avg. Zeroed 3.3% 1.8% 2.5% 1.0% 4.1% 0.7%

Vowel 10Col-2Ep. 10Col-15Ep. 25Col-2Ep. 25Col-15Ep. 75Col-2Ep. 75Col-15Ep.
Basic ECOC 24.06±4.5 58.53±4.8 30.85±7.0 54.29±9.2 33.82±9.4 76.48±6.2
BeamSearch+ 38.79±3.3 69.68±5.5 47.32±8.9 66.47±4.9 52.90±8.1 78.39±4.8
Avg. Flipped 11.2% 7.0% 7.4% 11.2% 9.7% 4.3%
Avg. Zeroed 5.2% 2.6% 3.6% 2.1% 5.3% 0.1%

Yeast 10Col-2Ep. 10Col-15Ep. 25Col-2Ep. 25Col-15Ep. 75Col-2Ep. 75Col-15Ep.
Basic ECOC 38.54±5.5 52.36±4.2 36.99±5.5 53.78±4.6 37.00±8.1 54.65±4.7
BeamSearch+ 49.93±4.0 54.99±4.1 52.51±4.7 55.60±4.6 52.49±5.7 56.07±4.3
Avg. Flipped 14.4% 7.9% 11.8% 4.0% 10.9% 4.6%
Avg. Zeroed 1.4% 2.6% 1.5% 3.0% 1.3% 2.0%



Chapter 6

Conclusion and Future Work

6.1 Conclusion

In this thesis, we proposed two new methods SimAnn+ and BeamSearch+ for improving

the generalisation of the Basic ECOC classifier ensemble method. Along with these two

methods, we also evaluated another one called FlipECOC+, previously proposed by Zor

et. al [10]. We show that all three methods optimized the Basic ECOC method in

accuracy.

In chapter 4, we describe two iterative optimization methods: FlipECOC+ and SimAnn+.

FlipECOC+ guarantees the accuracy improvement on the Basic ECOC. This method

flips the entries based on ascending order and accepts the changes if it improves the val-

idation accuracy. SimAnn+ is slightly different from the FlipECOC+ method because

SimAnn+ chooses which entry to flip randomly and may accept the entries which lower

the validation accuracy. SimAnn+ explores wider search space but it may decrease the

validation accuracy during the process. We got the improvements in 205 cases for the

FlipECOC+ in range of -0.6 to 25.7 and 202 out of 216 cases for the SimAnn+ in range

of -4.3 to 27.0.

We used the t-test with the paired measurements, using 10-degrees of freedom, compar-

ing the results obtained with the Basic ECOC and the proposed algorithms. We can see

157 out of 205 for the FlipECOC+ and 141 out of 202 for the SimAnn+ are statistically

significant.

58
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We tested both methods on 12 problems of each data set. For both methods the average

time of one problem was 20 minutes with quadcore computer. Time increases with the

increasing number of the possible flips, since we will need more flips to apply. We have

longer codewords and more classes to decode.

In Chapter 5, we applied the beam search technique to search for updated ECOC matrix

with the highest validation accuracy. In the previous methods, we used the last updated

ECOC matrix to test but we kept the ECOC matrix with the highest validation accuracy

to test in the BeamSearch+ method. We used beamwidth as 3 in our experiments.

Beamwidht means, we kept the best 3 ECOC matrixes based on the validation accuracy

in the each iteration. We got improvements in 209 out of 216 cases in range -0.8 to 26.8.

We applied the same statistically significant test such as previous two methods. We

found that 167 out of 209 case improvements are statistically significant improvements.

We also tested our search method on 12 problems for each data set. The average

time of one problem was 1 hour with quadcore computer which is longer time than

the FlipECOC+ and SimAnn. We explored more ECOC matrices by applying higher

number combination of the flips and more decodings to find the accuracy for our updated

ECOC matrixes.

We also compared mean accuracy results of three different methods with each other for

216 cases where you can see in Table 6.1, 6.2, 6.3 and 6.4. The BeamSearch+ outper-

formed other methods in 135 out of 216 methods while the FlipECOC+ outperformed

other methods in 30 cases and the SimAnn+ outperformed other methods in 51 cases.

Finally, we compared the best accuracy results of each method with the recorded results

of the state-of-art methods such as One-vs-One, One-vs-All, DECOC, ECOC-ONE,

ECOC-LFE and GA-MINIMAL in Table 6.5, 6.6.
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Table 6.1: Accuracy results (%) for Experiment-I 2-node. Bold figures indicate sta-
tistically significant improvements over the standard ECOC approach.

Balance 10Col-2Ep. 10Col-15Ep. 25Col-2Ep. 25Col-15Ep. 75Col-2Ep. 75Col-15Ep.
Basic ECOC 71.56±13.5 87.68±1.8 81.09±9.0 89.26±2.2 85.44±3.9 90.73±3.3
BeamSearch+ 84.31±4.7 88.17±2.3 85.93±3.4 90.24±1.6 86.24±2.6 91.21±3.9
FlipECOC+ 83.35±4.0 87.84±2.0 84.95±4.4 89.26±2.2 86.56±2.9 91.37±3.6
SimAnn+ 83.18±4.8 88.00±2.2 83.85±4.2 90.24±1.6 84.47±5.5 91.52±4.2

Car 10Col-2Ep. 10Col-15Ep. 25Col-2Ep. 25Col-15Ep. 75Col-2Ep. 75Col-15Ep.
Basic ECOC 70.02±0.3 71.82±3.2 70.95±2.5 75.35±7.2 70.02±0.3 71.77±4.7
BeamSearch+ 72.52±4.6 83.73±2.4 73.43±2.5 88.66±4.0 77.79±4.5 85.37±6.0
FlipECOC+ 72.17±4.3 82.69±3.4 72.97±2.4 88.20±3.9 74.83±4.4 83.64±5.7
SimAnn+ 70.27±3.9 82.17±4.4 72.16±2.3 88.66±4.3 73.15±7.6 84.91±5.5

Dermatology 10Col-2Ep. 10Col-15Ep. 25Col-2Ep. 25Col-15Ep. 75Col-2Ep. 75Col-15Ep.
Basic ECOC 58.67±9.9 76.51±12.5 58.72±11.1 85.25±13.8 82.47±9.3 93.88±5.3
BeamSearch+ 84.01±8.9 90.78±3.2 85.21±4.5 93.32±3.6 94.99±4.3 94.99±2.8
FlipECOC+ 81.85±9.6 89.34±4.6 83.26±3.6 93.05±3.4 92.23±5.7 95.28±2.8
SimAnn+ 85.41±7.7 90.19±4.8 86.05±3.8 93.05±3.4 95.28±5.8 95.28±2.8

Glass 10Col-2Ep. 10Col-15Ep. 25Col-2Ep. 25Col-15Ep. 75Col-2Ep. 75Col-15Ep.
Basic ECOC 47.91±12.2 61.42±12.1 42.61±8.0 66.79±10.5 48.17±10.3 64.22±11.5
BeamSearch+ 53.00±8.6 63.61±12.1 50.45±10.3 68.82±8.7 56.93±8.8 69.64±8.7
FlipECOC+ 52.59±10.2 63.25±12.5 52.35±10.9 68.73±8.7 55.46±11.5 69.77±7.7
SimAnn+ 51.09±8.7 61.30±11.0 47.62±7.8 67.75±8.8 49.77±13.0 67.95±11.9

OptDigits 10Col-2Ep. 10Col-15Ep. 25Col-2Ep. 25Col-15Ep. 75Col-2Ep. 75Col-15Ep.
Basic ECOC 42.01±10.6 74.26±13.2 35.23±9.8 89.54±4.0 56.36±11.2 87.52±3.1
BeamSearch+ 62.48±7.3 84.69±3.5 55.56±9.0 91.55±2.2 79.06±5.9 90.82±1.1
FlipECOC+ 58.32±8.2 83.67±3.6 51.24±7.1 91.34±2.3 77.38±5.2 90.37±1.1
SimAnn+ 59.86±7.7 84.40±3.9 55.56±6.8 91.55±2.1 79.05±4.8 90.58±0.9

SatImage 10Col-2Ep. 10Col-15Ep. 25Col-2Ep. 25Col-15Ep. 75Col-2Ep. 75Col-15Ep.
Basic ECOC 52.73±11.4 74.28±6.0 59.95±10.7 83.02±4.4 62.88±13.7 80.46±5.6
BeamSearch+ 71.00±5.8 81.33±4.1 73.88±8.9 85.88±1.7 81.06±2.7 85.01±0.8
FlipECOC+ 69.17±6.1 78.86±5.6 69.31±10.7 84.80±4.9 76.78±5.0 84.89±0.6
SimAnn+ 68.58±10.1 79.99±6.7 70.77±10.4 85.50±2.4 77.79±3.8 84.82±1.1

Vehicle 10Col-2Ep. 10Col-15Ep. 25Col-2Ep. 25Col-15Ep. 75Col-2Ep. 75Col-15Ep.
Basic ECOC 33.30±9.8 58.57±14.6 39.24±8.8 69.18±10.2 52.19±12.5 76.25±4.2
BeamSearch+ 50.46±10.8 71.78±5.8 52.96±10.1 76.13±4.8 66.19±4.3 77.91±4.1
FlipECOC+ 49.27±9.0 70.83±5.9 44.81±8.9 75.06±6.3 65.22±7.6 78.02±4.7
SimAnn+ 53.04±11.0 70.34±8.0 49.53±8.2 75.17±3.8 63.36±5.7 78.74±3.6

Vowel 10Col-2Ep. 10Col-15Ep. 25Col-2Ep. 25Col-15Ep. 75Col-2Ep. 75Col-15Ep.
Basic ECOC 16.71±5.3 21.76±6.8 16.27±4.4 43.80±9.4 22.86±5.9 34.61±7.8
BeamSearch+ 24.04±5.3 35.55±6.4 27.25±5.1 56.10±7.7 34.74±7.6 47.56±7.2
FlipECOC+ 24.08±5.6 32.60±8.0 25.42±5.0 53.43±8.7 31.43±4.8 46.22±7.9
SimAnn+ 20.87±6.0 32.40±7.9 24.31±7.3 52.50±7.9 32.55±6.4 49.99±8.1

Yeast 10Col-2Ep. 10Col-15Ep. 25Col-2Ep. 25Col-15Ep. 75Col-2Ep. 75Col-15Ep.
Basic ECOC 32.69±4.8 37.91±11.6 31.82±8.3 45.37±8.7 31.37±11.1 50.56±5.8
BeamSearch+ 42.16±6.1 50.48±4.5 42.18±6.4 51.52±5.4 49.05±4.1 53.59±5.7
FlipECOC+ 39.35±3.9 49.87±5.9 39.54±4.8 52.19±5.9 46.62±3.8 54.47±6.1
SimAnn+ 38.54±5.2 49.33±4.5 39.34±4.3 49.63±7.5 46.09±5.5 52.57±5.8
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Table 6.2: Accuracy results (%) for Experiment-I 8-node. Bold figures indicate sta-
tistically significant improvements over the standard ECOC approach.

Balance 10Col-2Ep. 10Col-15Ep. 25Col-2Ep. 25Col-15Ep. 75Col-2Ep. 75Col-15Ep.
Basic ECOC 85.11±4.4 94.86±2.2 86.73±2.8 88.64±2.3 88.64±2.6 90.72±1.2
BeamSearch+ 88.17±2.8 95.35±2.4 87.21±3.7 90.56±3.5 88.65±3.0 95.20±2.9
FlipECOC+ 88.01±3.4 95.03±3.5 87.86±3.7 90.72±2.5 88.32±3.4 95.84±1.8
SimAnn+ 85.76±5.1 95.68±3.6 84.32±6.6 91.53±3.4 85.61±5.9 95.52±3.4

Car 10Col-2Ep. 10Col-15Ep. 25Col-2Ep. 25Col-15Ep. 75Col-2Ep. 75Col-15Ep.
Basic ECOC 70.43±0.5 81.36±6.7 70.02±0.3 70.95±2.3 70.02±0.3 82.46±3.8
BeamSearch+ 77.73±3.1 93.11±2.4 77.43±3.4 85.01±4.1 81.13±3.8 93.81±2.4
FlipECOC+ 75.87±2.6 91.78±3.6 77.43±4.0 85.94±3.9 75.82±2.3 94.68±2.0
SimAnn+ 73.22±5.0 92.19±2.6 76.16±4.3 88.95±2.9 77.20±5.0 94.68±2.0

Dermatology 10Col-2Ep. 10Col-15Ep. 25Col-2Ep. 25Col-15Ep. 75Col-2Ep. 75Col-15Ep.
Basic ECOC 84.07±7.5 96.67±2.5 77.13±7.1 92.47±3.9 74.55±9.9 95.27±3.1
BeamSearch+ 91.05±3.4 96.94±2.7 95.55±2.6 94.99±2.1 94.99±3.6 96.66±2.1
FlipECOC+ 92.16±2.6 96.94±2.7 95.53±4.2 95.82±1.9 95.82±2.3 96.38±2.3
SimAnn+ 91.90±2.7 96.67±3.1 94.98±3.6 96.09±2.3 96.09±2.3 96.11±2.6

Glass 10Col-2Ep. 10Col-15Ep. 25Col-2Ep. 25Col-15Ep. 75Col-2Ep. 75Col-15Ep.
Basic ECOC 58.72±12.1 65.99±8.0 49.65±13.2 66.10±6.6 58.50±8.4 68.97±8.6
BeamSearch+ 58.08±6.2 68.29±8.9 62.69±9.6 71.09±4.2 64.87±5.5 69.81±9.0
FlipECOC+ 57.59±5.8 67.88±6.8 58.94±9.5 66.99±8.5 57.89±6.7 71.27±9.6
SimAnn+ 54.55±12.1 68.97±11.4 61.71±11.0 65.98±8.4 56.78±10.1 68.49±8.7

OptDigits 10Col-2Ep. 10Col-15Ep. 25Col-2Ep. 25Col-15Ep. 75Col-2Ep. 75Col-15Ep.
Basic ECOC 50.28±6.8 94.43±1.5 85.69±2.6 94.19±1.1 78.29±7.0 97.36±0.8
BeamSearch+ 73.32±4.8 94.98±1.2 90.40±1.3 94.58±1.0 87.52±2.4 97.36±1.0
FlipECOC+ 70.23±3.4 94.93±1.4 90.32±1.0 94.87±1.0 88.00±2.3 97.28±0.8
SimAnn+ 74.60±4.0 95.14±1.3 90.56±0.8 94.40±0.9 89.17±1.8 97.38±0.7

SatImage 10Col-2Ep. 10Col-15Ep. 25Col-2Ep. 25Col-15Ep. 75Col-2Ep. 75Col-15Ep.
Basic ECOC 66.54±7.1 85.68±2.1 75.35±2.1 83.29±1.1 77.38±0.8 87.28±1.1
BeamSearch+ 81.98±2.2 87.48±1.2 82.95±2.3 85.84±1.2 83.70±1.3 88.28±0.7
FlipECOC+ 79.10±4.3 87.46±1.1 82.53±2.2 85.77±1.3 82.68±1.9 88.34±1.3
SimAnn+ 80.11±2.5 87.26±1.1 83.13±2.2 86.25±1.4 83.07±1.4 88.25±1.2

Vehicle 10Col-2Ep. 10Col-15Ep. 25Col-2Ep. 25Col-15Ep. 75Col-2Ep. 75Col-15Ep.
Basic ECOC 49.51±6.2 76.73±4.1 63.60±4.3 79.69±4.6 65.80±7.0 80.39±3.5
BeamSearch+ 63.36±6.6 77.32±5.6 68.43±2.7 78.86±4.4 69.73±4.3 80.39±3.3
FlipECOC+ 59.48±8.4 77.79±3.8 68.55±3.4 79.81±4.5 68.66±5.3 80.86±3.3
SimAnn+ 57.67±8.0 78.26±4.2 64.64±6.3 79.80±2.2 65.00±6.8 80.74±2.9

Vowel 10Col-2Ep. 10Col-15Ep. 25Col-2Ep. 25Col-15Ep. 75Col-2Ep. 75Col-15Ep.
Basic ECOC 24.06±4.5 58.53±4.8 30.85±7.0 54.29±9.2 33.82±9.4 76.48±6.2
BeamSearch+ 36.53±6.2 72.14±4.9 47.13±10.5 68.85±5.8 53.99±7.5 80.08±5.3
FlipECOC+ 34.85±1.9 70.46±4.4 41.79±8.8 67.01±8.6 48.55±5.9 81.62±2.9
SimAnn+ 38.96±8.5 71.77±3.5 45.10±7.9 67.37±7.2 51.28±4.9 80.67±3.3

Yeast 10Col-2Ep. 10Col-15Ep. 25Col-2Ep. 25Col-15Ep. 75Col-2Ep. 75Col-15Ep.
Basic ECOC 38.54±5.5 52.36±4.2 36.99±5.5 53.78±4.6 37.00±8.1 54.65±4.7
BeamSearch+ 48.38±4.8 54.45±3.5 52.50±4.9 54.80±4.4 52.29±5.9 55.86±4.9
FlipECOC+ 46.05±6.6 54.31±3.6 50.56±6.3 50.56±4.5 52.48±4.1 56.07±4.1
SimAnn+ 46.02±5.3 52.75±4.8 50.27±3.4 54.72±4.9 51.88±4.9 57.22±4.6
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Table 6.3: Accuracy results (%) for Experiment-II 2-node. Bold figures indicate
statistically significant improvements over the standard ECOC approach.

Balance 10Col-2Ep. 10Col-15Ep. 25Col-2Ep. 25Col-15Ep. 75Col-2Ep. 75Col-15Ep.
Basic ECOC 71.56±13.5 87.68±1.8 81.09±9.0 89.26±2.2 85.44±3.9 90.73±3.3
BeamSearch+ 84.63±4.1 87.84±2.0 85.12±3.0 89.92±1.8 87.51±3.4 91.37±3.3
FlipECOC+ 82.24±4.1 87.84±2.0 84.95±3.6 89.26±2.2 85.28±3.9 91.53±3.3
SimAnn+ 84.31±4.6 87.68±1.8 84.47±4.0 89.92±1.8 83.49±6.1 91.05±3.8

Car 10Col-2Ep. 10Col-15Ep. 25Col-2Ep. 25Col-15Ep. 75Col-2Ep. 75Col-15Ep.
Basic ECOC 70.02±0.3 71.82±3.2 70.95±2.5 75.35±7.2 70.02±0.3 71.77±4.7
BeamSearch+ 72.87±4.5 83.16±3.1 73.43±3.0 88.83±3.9 77.56±5.4 85.72±4.8
FlipECOC+ 72.87±4.5 82.58±3.7 73.20±2.6 87.73±4.0 77.21±4.9 84.33±5.8
SimAnn+ 72.87±4.4 81.88±4.6 71.40±2.6 88.20±4.0 73.38±6.6 85.49±4.9

Dermatology 10Col-2Ep. 10Col-15Ep. 25Col-2Ep. 25Col-15Ep. 75Col-2Ep. 75Col-15Ep.
Basic ECOC 58.67±9.9 76.51±12.5 58.72±11.1 85.25±13.8 82.47±9.3 93.88±5.3
BeamSearch+ 84.89±6.4 90.74±4.0 85.52±7.4 92.47±3.4 92.78±5.0 95.84±3.6
FlipECOC+ 81.84±7.2 89.91±5.2 84.42±6.6 92.77±3.4 92.77±4.1 95.00±2.8
SimAnn+ 85.71±6.0 91.32±3.9 85.21±7.2 92.76±3.7 92.51±5.8 95.28±2.8

Glass 10Col-2Ep. 10Col-15Ep. 25Col-2Ep. 25Col-15Ep. 75Col-2Ep. 75Col-15Ep.
ECOC 47.91±12.2 61.42±12.1 42.61±8.0 66.79±10.5 48.17±10.3 64.22±11.5
BeamSearch+ 52.16±11.3 61.30±8.3 52.29±8.4 66.60±11.6 59.42±12.1 66.54±9.2
FlipECOC+ 52.14±11.3 60.45±11.7 51.36±6.7 67.90±11.9 57.95±10.1 68.41±6.7
SimAnn+ 48.85±10.8 60.45±10.6 48.96±9.9 66.10±12.2 57.00±14.7 68.35±11.5

OptDigits 10Col-2Ep. 10Col-15Ep. 25Col-2Ep. 25Col-15Ep. 75Col-2Ep. 75Col-15Ep.
Basic ECOC 42.01±10.6 74.26±13.2 35.23±9.8 89.54±4.0 56.36±11.2 87.52±3.1
BeamSearch+ 61.88±8.0 84.48±3.4 56.03±8.3 91.47±2.5 79.65±4.5 90.63±1.4
FlipECOC+ 57.93±8.7 83.22±4.8 51.77±9.0 91.21±2.4 77.25±5.9 90.37±1.1
SimAnn+ 61.30±8.0 84.04±3.7 55.43±6.9 91.55±2.4 78.95±5.6 90.40±1.1

SatImage 10Col-2Ep. 10Col-15Ep. 25Col-2Ep. 25Col-15Ep. 75Col-2Ep. 75Col-15Ep.
Basic ECOC 52.73±11.4 74.28±6.0 59.95±10.7 83.02±4.4 62.88±13.7 80.46±5.6
BeamSearch+ 72.91±4.9 81.09±4.1 72.53±9.0 85.81±1.5 79.04±5.5 85.34±0.8
FlipECOC+ 70.79±6.5 80.12±3.9 69.40±9.0 85.48±1.4 76.08±5.3 84.96±0.8
SimAnn+ 70.07±6.7 79.47±6.9 71.02±7.6 85.66±2.1 78.62±2.3 84.89±1.3

Vehicle 10Col-2Ep. 10Col-15Ep. 25Col-2Ep. 25Col-15Ep. 75Col-2Ep. 75Col-15Ep.
Basic ECOC 33.30±9.8 58.57±14.6 39.24±8.8 69.18±10.2 52.19±12.5 76.25±4.2
BeamSearch+ 48.91±10.7 71.52±4.2 51.19±10.0 75.66±5.2 66.76±3.8 77.31±4.0
FlipECOC+ 49.74±9.4 70.35±4.9 46.94±9.3 73.66±6.2 65.00±3.0 77.19±3.7
SimAnn+ 48.07±13.2 72.48±5.0 44.10±8.9 74.85±4.9 62.29±7.4 76.96±4.4

Vowel 10Col-2Ep. 10Col-15Ep. 25Col-2Ep. 25Col-15Ep. 75Col-2Ep. 75Col-15Ep.
Basic ECOC 16.71±5.3 21.76±6.8 16.27±4.4 43.80±9.4 22.86±5.9 34.61±7.8
BeamSearch+ 23.31±4.8 32.42±8.8 25.60±5.3 54.00±9.3 38.16±7.8 47.89±8.9
FlipECOC+ 22.58±4.7 31.26±7.7 25.23±5.9 51.87±9.3 33.85±4.7 47.39±6.3
SimAnn+ 18.39±5.9 33.00±8.7 25.82±7.1 52.34±9.7 35.58±6.1 48.65±4.9

Yeast 10Col-2Ep. 10Col-15Ep. 25Col-2Ep. 25Col-15Ep. 75Col-2Ep. 75Col-15Ep.
Basic ECOC 32.69±4.8 37.91±11.6 31.82±8.3 45.37±8.7 31.37±11.1 50.56±5.8
BeamSearch+ 41.43±6.1 49.94±4.6 42.38±4.9 51.79±6.0 49.00±6.1 54.39±5.1
FlipECOC+ 40.61±6.7 50.41±4.2 38.66±6.0 50.91±5.8 46.97±3.8 55.13±5.2
SimAnn+ 39.01±4.5 50.20±4.3 38.21±5.0 50.71±7.0 47.03±5.3 53.05±5.9
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Table 6.4: Accuracy results (%) for Experiment-II 8-node. Bold figures indicate
statistically significant improvements over the standard ECOC approach.

Balance 10Col-2Ep. 10Col-15Ep. 25Col-2Ep. 25Col-15Ep. 75Col-2Ep. 75Col-15Ep.
Basic ECOC 85.11±4.4 94.86±2.2 86.73±2.8 88.64±2.3 88.64±2.6 90.72±1.2
BeamSearch+ 88.16±3.2 95.84±2.6 87.53±4.3 89.60±3.3 89.44±3.4 95.04±2.2
FlipECOC+ 88.48±3.0 95.68±2.5 87.84±3.7 89.92±3.1 88.17±3.3 96.16±2.6
SimAnn+ 85.29±5.7 95.36±3.7 85.27±6.2 91.53±3.4 84.31±4.4 95.69±3.6

Car 10Col-2Ep. 10Col-15Ep. 25Col-2Ep. 25Col-15Ep. 75Col-2Ep. 75Col-15Ep.
Basic ECOC 70.43±0.5 81.36±6.7 70.02±0.3 70.95±2.3 70.02±0.3 82.46±3.8
BeamSearch+ 75.82±3.2 92.59±3.1 77.95±3.1 86.58±4.4 79.76±3.9 93.93±2.4
FlipECOC+ 75.36±3.7 92.48±2.6 77.60±3.9 85.36±4.3 77.61±2.9 94.39±1.9
SimAnn+ 74.02±4.9 92.77±2.4 75.29±5.7 88.37±3.5 78.24±5.4 94.39±2.4

Dermatology 10Col-2Ep. 10Col-15Ep. 25Col-2Ep. 25Col-15Ep. 75Col-2Ep. 75Col-15Ep.
Basic ECOC 84.07±7.5 96.67±2.5 77.13±7.1 92.47±3.9 74.55±9.9 95.27±3.1
BeamSearch+ 92.74±3.2 96.67±2.5 94.71±3.8 94.14±2.7 95.54±3.9 95.55±2.3
FlipECOC+ 89.94±2.7 96.67±3.1 95.82±3.2 96.09±2.3 96.94±2.0 96.38±2.3
SimAnn+ 93.32±3.7 96.67±3.1 94.43±4.1 96.09±2.3 96.10±2.6 96.11±2.6

Glass 10Col-2Ep. 10Col-15Ep. 25Col-2Ep. 25Col-15Ep. 75Col-2Ep. 75Col-15Ep.
Basic ECOC 58.72±12.1 65.99±8.0 49.65±13.2 66.10±6.6 58.50±8.4 68.97±8.6
BeamSearch+ 59.13±9.3 65.13±8.0 61.90±7.2 68.45±8.4 65.86±3.1 67.88±7.3
FlipECOC+ 56.75±10.6 64.02±5.9 59.39±5.3 66.12±8.9 62.52±5.7 67.43±8.5
SimAnn+ 59.54±8.0 67.49±9.8 63.72±6.9 66.63±8.8 60.65±7.4 66.47±9.3

OptDigits 10Col-2Ep. 10Col-15Ep. 25Col-2Ep. 25Col-15Ep. 75Col-2Ep. 75Col-15Ep.
Basic ECOC 50.28±6.8 94.43±1.5 85.69±2.6 94.19±1.1 78.29±7.0 97.36±0.8
BeamSearch+ 72.69±3.7 95.08±1.0 90.24±0.8 94.48±1.2 87.89±1.5 97.38±0.7
FlipECOC+ 69.09±4.2 95.00±1.1 90.43±1.1 94.45±1.2 86.95±2.4 97.41±0.7
SimAnn+ 73.92±3.7 95.08±1.2 90.48±1.0 94.51±1.0 88.60±1.8 97.44±0.7

SatImage 10Col-2Ep. 10Col-15Ep. 25Col-2Ep. 25Col-15Ep. 75Col-2Ep. 75Col-15Ep.
Basic ECOC 66.54±7.1 85.68±2.1 75.35±2.1 83.29±1.1 77.38±0.8 87.28±1.1
BeamSearch+ 82.39±2.3 87.55±0.9 82.28±2.5 86.40±1.6 83.14±1.6 88.43±1.1
FlipECOC+ 79.86±3.9 87.40±1.1 81.44±2.7 86.29±1.5 83.09±1.8 88.39±1.0
SimAnn+ 79.57±2.8 87.44±1.1 83.09±1.9 86.29±1.4 83.02±1.9 88.45±0.9

Vehicle 10Col-2Ep. 10Col-15Ep. 25Col-2Ep. 25Col-15Ep. 75Col-2Ep. 75Col-15Ep.
Basic ECOC 49.51±6.2 76.73±4.1 63.60±4.3 79.69±4.6 65.80±7.0 80.39±3.5
BeamSearch+ 63.49±6.1 77.44±3.8 68.79±4.8 78.75±5.0 67.59±5.5 80.74±3.5
FlipECOC+ 61.46±6.5 78.03±3.4 68.79±6.5 78.74±4.5 67.13±5.9 80.98±3.6
SimAnn+ 58.26±6.8 77.91±4.5 66.98±7.9 79.45±3.4 64.98±7.6 80.62±2.9

Vowel 10Col-2Ep. 10Col-15Ep. 25Col-2Ep. 25Col-15Ep. 75Col-2Ep. 75Col-15Ep.
Basic ECOC 24.06±4.5 58.53±4.8 30.85±7.0 54.29±9.2 33.82±9.4 76.48±6.2
BeamSearch+ 38.79±3.3 69.68±5.5 47.32±8.9 66.47±4.9 52.90±8.1 78.39±4.8
FlipECOC+ 35.25±6.9 70.65±5.4 42.27±5.9 66.03±3.8 48.50±6.2 78.96±3.3
SimAnn+ 38.74±9.1 69.91±4.8 47.52±10.8 64.40±5.9 50.18±4.6 78.19±4.3

Yeast 10Col-2Ep. 10Col-15Ep. 25Col-2Ep. 25Col-15Ep. 75Col-2Ep. 75Col-15Ep.
Basic ECOC 38.54±5.5 52.36±4.2 36.99±5.5 53.78±4.6 37.00±8.1 54.65±4.7
BeamSearch+ 49.93±4.0 54.99±4.1 52.51±4.7 55.60±4.6 52.49±5.7 56.07±4.3
FlipECOC+ 48.46±5.2 54.58±4.2 51.77±4.8 55.46±3.7 53.03±4.2 57.01±4.3
SimAnn+ 46.15±4.4 54.05±3.8 52.85±5.6 56.00±5.1 51.34±4.3 56.88±5.2



Table 6.5: Summary of the state-of-the-art accuracy results (%) for the tested data sets. OVO, OVA, DECOC, ECOCONE, ECOC-LFE are
obtained in [3], DENSE RANDOM and SPARSE RANDOM [4], ECOC-LFE is obtained in [3], FOREST ECOC and GA-MINIMAL ECOC are

obtained in [5].

Data Set OVO OVA DECOC ECOC-ONE DENSE R. SPARSE R FOREST ECOC-LFE GA-MINIMAL SimAnn+ FlipECOC+ BeamECOC
Balance 86.70 90.20 87.70 87.03 89.74 89.74 92.20 85.23 87.10 95.52 95.84 95.20
Dermatology 97.50 96.73 97.79 95.88 90.50 90.80 93.00 96.91 96.3 96.11 96.38 96.66
Glass 56.05 48.49 49.21 47.35 50.10 49.50 56.00 56.77 50.00 68.49 71.27 69.81
Optdigits 97.48 94.14 84.87 85.49 95.95 95.49 NA 94.48 NA 97.38 97.28 97.36
SatImage 85.53 78.00 80.83 78.11 83.30 83.30 86.10 85.69 NA 88.25 88.34 88.28
Vehicle 77.79 74.88 77.11 75.52 79.88 77.83 81.60 78.36 76.99 80.74 80.86 80.39
Vowel 59.90 27.68 36.97 39.29 59.10 60.00 62.70 62.42 81.78 80.67 81.62 80.08
Yeast 58.18 47.78 52.39 55.78 49.30 51.50 49.70 53.23 54.70 57.22 56.07 55.86
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6.2 Future Work

In this section, we present the possible modifications and the extensions of our methods.

First of all, we worked with multi-class problems where class numbers are less than 12,

so one future extension can be about how to handle larger problems with more classes.

Another important future work would involve retraining the base classifiers to see if the

updated ECOC would result in higher base classifier accuracy.
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