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Göktuğ Karpat

Submitted to the Graduate School of Engineering and Natural Sciences

in partial fulfillment of

the requirements for the degree of

Doctor of Philosophy

Sabancı University

Spring 2013
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Abstract

Quantum information theory (QIT) is an emerging field of physics which aims to

develop new methods of dealing with information by harnessing the power of quantum

mechanics. Besides its potential to revolutionize the techniques of information processing

and communication, it also provides novel approaches to better comprehend the founda-

tions of quantum mechanics. Among many important problems in QIT, manipulation and

dynamical characterization of correlations present in quantum systems stand out due to

their relevance for the practical applications of the theory. This thesis intends to explore

such correlations of quantum and classical nature from various perspectives. In partic-

ular, our discussions involve the investigation of local transformations among a class of

entangled states and the examination of correlation measures in some physical models.

We first examine the classification of the flip (0-1) and exchange symmetric (FES)

states under local quantum operations. We study the optimal local one-shot conversions

of FES states to determine the entanglement transformations that relate multiqubit FES

states with the maximum possible probability of success. Next, we investigate the ex-

change symmetry properties of certain symmetric states when the qubits evolve according

to a dephasing model which is also invariant under swap operation. We find that there exist

states which do not preserve the exchange symmetry with unit probability during the time

evolution, leading to the spontaneous breaking of exchange symmetry. Later, we turn our

attention to the dynamics of quantum and classical correlations for qubit-qutrit systems

in independent and global dephasing environments. In these cases, we demonstrate sev-

eral interesting phenomena such as the transition from classical to quantum decoherence.

Lastly, we investigate the thermal quantum and total correlations in the one-dimensional

anisotropic XY model in transverse field. We discuss the ability of different measures to

estimate the critical point of the quantum phase transition at finite temperature. We also

consider the relation between correlations and the factorized ground state in this model.

Furthermore, we study the effect of temperature on long-range correlations.
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Özet

Kuantum enformasyon kuramı son yıllarda fizikte yoğun olarak ilgi gören konulardan

biri haline gelmiştir. Kuramın temel amacı, enformasyon kavramını kuantum mekaniksel

olarak ele alarak klasik bilgi işleme ve haberleşme protokollerini kuantum mekaniğinin

yasaları çerçevesinde daha verimli bir şekilde çalışacak hale getirmektir. Bunun yanı sıra,

kuramın kuantum mekaniğinin bazı temel sorunlarının incelenmesi konusunda da fay-

daları olmaktadır. Kuantum enformasyon kuramındaki bir çok önemli problem arasından

belki de en öne çıkanlardan bir tanesi, kuantum mekaniksel sistemlerin sahip olduğu bir

takım ilintilerin çeşitli bakış açılarıyla tanımlanmasıdır. Bu çalışmanın amacı klasik ya da

kuantum mekaniksel temellere sahip olabilen bu ilitilerin farklı açılardan incelenmesidir.

Tez içerisinde ilk olarak takas ve 0-1 simetrisine sahip hallerin oluşturduğu altuzayın

yapısı incelenmiş ve bahsi geçen simetriye sahip çok parçacıklı hallerin yerel işlemler

altında kendi aralarındaki azami dolaşma olasılıkları tespit edilmiştir. Ardından takas

simetrisine sahip bir eşevresizlik modeli altında zaman evrimi geçiren bir takım simetrik

hallerin simetri özellikleri incelenmiştir. Hem model hem de başlangıç hali takas simetri-

sine sahip olduğu halde, bazı hallerin zaman evrimi sonrasında kendiliğinden simetri kırıl-

masına uğrayıp bu simetriyi kaybettikleri gözlenmiştir. Tez kapsamında çalışılan bir diğer

konu da çeşitli klasik ve kuantum mekaniksel ilinti ölçütlerinin farklı eşevresizlik mod-

elleri altında evrilen kübit-kütrit sistemleri için incelenmesidir. Bu durumda ilinti ölçüt-

lerinin klasik eşevresizlikten kuantum mekaniksel eşevresizliğe geçiş gibi bir çok ilginç

davranış gösterdiği tespit edilmiştir. Son olarak, bir boyutlu XY modelindeki ilintiler

araştırılmış ve bu ilintilerin sistemde oluşan kuantum faz geçişi ile ilişkileri tartışılmıştır.

v



ACKNOWLEDGEMENTS

Although obtaining a doctoral degree in physics at Sabancı University has been a

fairly long and an occasionally disappointing journey for me, I still want to acknowledge

the assistance of few individuals. I would like to first thank my thesis advisor for intro-

ducing me to the exciting field of quantum information science and also for encouraging

me to work on my own problems independently. It is also a pleasure to thank my col-

laborators, friends and family for their contributions and support. Lastly, I appreciate

the financial support received from the Scientific and Technological Research Council of

Turkey (TUBITAK) under grants 111T232 and 107T530 during my doctoral studies.

vi



Contents

ABSTRACT iv

ÖZET v

ACKNOWLEDGEMENTS vi

1 INTRODUCTION 1

1.1 Motivation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1

1.2 Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2

2 FUNDAMENTAL CONCEPTS 3

2.1 Postulates of quantum mechanics . . . . . . . . . . . . . . . . . . . . . . 3

2.1.1 State space of quantum systems . . . . . . . . . . . . . . . . . . 4

2.1.2 Evolution of quantum states . . . . . . . . . . . . . . . . . . . . 5

2.1.3 Quantum measurements . . . . . . . . . . . . . . . . . . . . . . 6

2.2 Density matrix formalism . . . . . . . . . . . . . . . . . . . . . . . . . . 8

2.2.1 Qubits and qudits . . . . . . . . . . . . . . . . . . . . . . . . . . 10

2.2.2 Geometric representation of qubits . . . . . . . . . . . . . . . . . 11

2.2.3 The reduced density matrix . . . . . . . . . . . . . . . . . . . . . 13

2.3 Quantum operations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14

2.3.1 Completely positive transformations . . . . . . . . . . . . . . . . 14

2.3.2 Realization of quantum operations . . . . . . . . . . . . . . . . . 15

3 ENTANGLEMENT 18

3.1 Separability of quantum states . . . . . . . . . . . . . . . . . . . . . . . 18

3.1.1 Peres criterion for separability of bipartite states . . . . . . . . . 19

3.1.2 Schmidt decomposition . . . . . . . . . . . . . . . . . . . . . . . 21

3.2 Quantification of entanglement . . . . . . . . . . . . . . . . . . . . . . . 21

3.2.1 Entropy of entanglement . . . . . . . . . . . . . . . . . . . . . . 23

3.2.2 Concurrence . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24

3.2.3 Negativity . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24

vii



3.3 Classification of entangled states . . . . . . . . . . . . . . . . . . . . . . 25

3.3.1 Stochastic local operations and classical communication . . . . . 27

3.3.2 Equivalence classes of flip and exchange symmetric states . . . . 30

3.3.3 Optimal local conversion of flip and exchange symmetric states . 32

4 DECOHERENCE 37

4.1 Basics of the decoherence program . . . . . . . . . . . . . . . . . . . . . 37

4.1.1 Dynamics of quantum measurements . . . . . . . . . . . . . . . 39

4.1.2 A simple model of one-qubit decoherence . . . . . . . . . . . . . 41

4.2 Decoherence induced symmetry breaking . . . . . . . . . . . . . . . . . 43

4.2.1 Classical dephasing noise . . . . . . . . . . . . . . . . . . . . . 43

4.2.2 Exchange symmetry of the Bell states . . . . . . . . . . . . . . . 45

4.2.3 Quantum mechanical dephasing . . . . . . . . . . . . . . . . . . 47

4.2.4 Experimental demonstration of symmetry breaking . . . . . . . . 49

5 BEYOND ENTANGLEMENT 50

5.1 Measures of quantum correlations . . . . . . . . . . . . . . . . . . . . . 50

5.1.1 Quantum discord . . . . . . . . . . . . . . . . . . . . . . . . . . 51

5.1.2 Geometric quantum discord . . . . . . . . . . . . . . . . . . . . 52

5.2 Measures of total correlations . . . . . . . . . . . . . . . . . . . . . . . . 54

5.2.1 Measurement-induced non-locality . . . . . . . . . . . . . . . . 54

5.2.2 Wigner-Yanase information based measure . . . . . . . . . . . . 54

5.3 Correlations of qubit-qutrit states under dephasing . . . . . . . . . . . . . 55

5.3.1 Correlations under multilocal dephasing . . . . . . . . . . . . . . 58

5.3.2 Correlations under global dephasing . . . . . . . . . . . . . . . . 59

5.3.3 Time invariant quantum discord . . . . . . . . . . . . . . . . . . 62

5.4 Thermal correlations in the anisotropic XY chain . . . . . . . . . . . . . 63

5.4.1 Estimation of the critical points . . . . . . . . . . . . . . . . . . 68

5.4.2 Long-range behavior of the correlations . . . . . . . . . . . . . . 70

6 CONCLUSION 71

BIBLIOGRAPHY 88

viii



List of Figures

2.1 Geometric representation of a qubit state on Bloch sphere . . . . . . . . . 12

2.2 Unitary realization of quantum operations . . . . . . . . . . . . . . . . . 17

3.1 Graphical representation of three, four and five-qubit flip and exchange

symmetric states under invertible local operations . . . . . . . . . . . . . 31

3.2 Optimal transformations of three-qubit flip and exchange symmetric states

under invertible local operations . . . . . . . . . . . . . . . . . . . . . . 34

3.3 Optimal transformations of four-qubit flip and exchange symmetric states

under invertible local operations . . . . . . . . . . . . . . . . . . . . . . 35

3.4 Optimal transformations of five-qubit flip and exchange symmetric states

under invertible local operations . . . . . . . . . . . . . . . . . . . . . . 36

5.1 Dynamics of quantum and classical correlation measures under multilocal

classical dephasing noise . . . . . . . . . . . . . . . . . . . . . . . . . . 59

5.2 Dynamics of quantum and classical correlation measures under global

classical dephasing noise . . . . . . . . . . . . . . . . . . . . . . . . . . 60

5.3 Dynamics of quantum and classical correlation measures under local clas-

sical dephasing noise . . . . . . . . . . . . . . . . . . . . . . . . . . . . 63

5.4 The thermal total correlations of the one-dimensional anisotropic XY

model for first nearest neighbors . . . . . . . . . . . . . . . . . . . . . . 66

5.5 The first derivatives of the thermal total correlations of the one-dimensional

anisotropic XY model for first nearest neighbors . . . . . . . . . . . . . . 66

5.6 The thermal quantum correlations of the one-dimensional anisotropic XY

model for first nearest neighbors . . . . . . . . . . . . . . . . . . . . . . 67

5.7 The first derivatives of the thermal quantum correlations of the one-dimensional

anisotropic XY model for first nearest neighbors . . . . . . . . . . . . . . 67

5.8 The estimated values of critical points in the one-dimensional anisotropic

XY model at finite temperature . . . . . . . . . . . . . . . . . . . . . . . 69

5.9 Long-range behavior of the thermal total and quantum correlations in the

one-dimensional anisotropic XY model . . . . . . . . . . . . . . . . . . 70

ix



Chapter 1

INTRODUCTION

1.1 Motivation

The concept of entanglement has been known since the birth of quantum mechanics. It

was Schrödinger himself who first realised that the linearity of quantum mechanics might

have strange consequences when a composite system is considered [1]. Entanglement,

having no classical analogue, can be defined as a purely quantum mechanical correlation

among the subsystems of a composite quantum system. Although, after the work of

Einstein, Podolsky and Rosen [2], it has been seen as a foundational problem of quantum

theory for many years, entanglement is no longer a mere philosophical issue but instead is

recognized as a fundamental resource to be exploited in many useful tasks [3]. The study

of entanglement has become a very active field of research due to its possible applications

such as teleportation of an unknown state, superdense coding of classical information and

secure distribution of keys for encoding purposes [4]. Thus, it is of great importance to

comprehend the properties of entanglement from as many angles as possible.

Until recent years, entanglement has been the defining subject of the quantum infor-

mation theory. However, various investigations have demonstrated that it is not the only

kind of useful correlation in quantum states and some separable states might also perform

better than their classical counterparts [5]. These advances have started a new era of defin-

ing correlation measures to detect the nonclassical correlations that cannot be captured by

entanglement. In fact, the study of correlations in quantum systems is not only limited

to relating them with practical applications. The methods of quantum information theory

have been also proved to be useful for the investigation of condensed matter systems [6].

On the other hand, as most quantum traits, nonclassical correlations in a quantum sys-

tem tend to be very fragile when the system is exposed to environmental disturbances,

which is inevitably the case in real world situations [7]. Therefore, gaining an under-

standing of the effect of environment on the dynamics of such correlations is crucial for

the practical applications that aim to utilize these correlations as a resource.
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1.2 Overview

The second chapter of this thesis serves as a brief review of some important mathematical

tools which are to be used for the description of quantum systems. We introduce the

postulates of quantum mechanics and review the density matrix formalism. We discuss

the mathematical formulation and physical realization of quantum operations.

In the third chapter, we consider the separability problem of quantum states. We dis-

cuss the properties of some well known entanglement measures. The manipulation and

classification of certain entangled states under local operations and classical communica-

tion are examined. In particular, we study the one-shot flip (0-1) and exchange symmetric

(FES) entanglement transformations of FES states. We determine the optimal transforma-

tions that relate multiqubit FES states with the maximum possible probability of success.

We also demonstrate that certain entangled states are more robust than others, in the sense

that the optimum probability of converting these robust states to the states lying in the

close neighborhood of separable ones vanishes under local FES operations.

The fourth chapter provides an introduction to the fundamentals of the decoherence

program. We study the exchange symmetry properties of Bell states when two qubits

interact with local baths having identical parameters. We consider a decoherence Hamil-

tonian which is invariant under swapping the first and second qubits. We find that as

the system evolves in time, two of the three symmetric Bell states preserve their qubit

exchange symmetry with unit probability, whereas the symmetry of the remaining state

survives with a maximum probability of 0.5 at the asymptotic limit. We identify decoher-

ence as the main mechanism leading to breaking of qubit exchange symmetry.

In the fifth chapter, we review several recently introduced measures of quantum and

total correlations. First, we study the dynamics of classical and quantum correlations for

qubit-qutrit systems in dephasing environments. Our discussion involves a comparative

analysis of the Markovian dynamics of negativity, quantum discord, geometric measure of

quantum discord and classical correlation. Second, we investigate the thermal correlations

in the anisotropic XY spin chain in transverse field. While we adopt concurrence and ge-

ometric quantum discord to measure quantum correlations, we use measurement-induced

nonlocality and an alternative quantity defined in terms of Wigner-Yanase information to

quantify total correlations. We show that the ability of these measures to estimate the

critical point at finite temperature strongly depends on the anisotropy parameter of the

Hamiltonian. We also identify a correlation measure which detects the factorized ground

state. Lastly, we study the effect of temperature on long-range correlations.

The last chapter includes a short summary of the main results obtained in this thesis.
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Chapter 2

FUNDAMENTAL CONCEPTS

This preliminary chapter is meant to be a brief review of some important mathematical

tools utilized for the description of quantum systems. We will commence by introducing

the fundamental postulates of quantum mechanics regarding the time evolution of quan-

tum systems and the measurements performed on them. We will then be interested in the

density matrix formalism of quantum mechanics, which will play an important role in our

later discussions. Composite quantum systems will also be shortly mentioned although

a more detailed discussion of them will be provided in the next chapter. Lastly, we will

study how general quantum operations are mathematically formulated, as well as how

they can be physically realized. For a comprehensive overview of the subjects covered in

this chapter, interested reader may refer to [4, 8–10]. The present chapter will also set the

notation to be used throughout this thesis.

2.1 Postulates of quantum mechanics

At the end of nineteenth century it became evident that predictions of classical physics

were in contradiction with experiments. This inconsistency gave rise to a need for a pro-

foundly new way of understanding the nature. Quantum mechanics, developed in the

early twentieth century, has given us a completely novel mathematical framework for the

development of physical theories. There are now many excellent textbooks on quantum

mechanics which study the mathematical aspects of the subject in detail on various levels

[11–16]. However, in this section, we will limit ourselves to the mere basics of the theory

that have been crucial for the establishment of the foundations of quantum information

science. In classical mechanics, the state of a physical system at a given time is deter-

mined by the position and velocity of the system at this time. If these initial conditions

are known, various different approaches of classical mechanics might be used to deduce

the state of the system at any time. As will be discussed in the following section, when it

comes to quantum theory, even the state of a system is defined in a quite different way.

3



2.1.1 State space of quantum systems

In quantum mechanics, any isolated physical system has an associated d-dimensional

complex vector space with inner product (a Hilbert space Hd) known as the state space

of the system. The system is completely described by its state vector |ψ⟩, which is a unit

vector in the system’s state space. This unit vector (also known as the ket vector) contains

all the information that we can possibly acquire about the state of the system. In addition,

associated to every ket vector |ψ⟩ in Hilbert space H, there also exists another kind of

vector that resides in the dual vector space H∗. Elements of this dual vector space are

called bra vectors and are denoted by ⟨ψ|. In Dirac notation, ket and bra vectors read as

|ψ⟩ = (c1, c2, . . . , cd)
T , ⟨ψ| = (c∗1, c

∗
2, . . . , c

∗
d) , (2.1)

where ci’s are complex numbers satisfying
∑

i |ci|2 = 1, and the superscript T de-

notes the transposition operation. The inner product between two state vectors |α⟩ =

(α1, α2, . . . , αd)
T and |β⟩ = (β1, β2, . . . , βd)

T
in Hilbert space Hd is defined by

⟨α|β⟩ =
d
∑

i=1

α∗
iβi = α∗

1β1 + α∗
2β2 + · · ·+ α∗

dβd. (2.2)

A family of state vectors {|x1⟩, |x2⟩, . . . , |xn⟩} is said to be orthonormal if

⟨xi|xj⟩ = δij, (i, j = 1, 2, . . . , n), (2.3)

where δij is the Kronecker delta symbol, defined as δij = 1 for i = j and δij = 0 for

i ̸= j. The same collection of state vectors is also said to be linearly independent if the

relation c1|x1⟩ + c2|x2⟩ + · · · + cn|xn⟩ = 0 with c1, c2, . . . , cn complex numbers, holds

if and only if c1 = c2 = · · · = cn = 0. Furthermore, a set of d linearly independent

vectors in a d-dimensional vector space is called a basis for that vector space. For a given

orthonormal basis {|k1⟩, |k2⟩, . . . , |kd⟩} of the Hilbert space Hd, any state vector can be

expanded as a linear combination of the basis vectors as

|ψ⟩ =
d
∑

i=1

ui|ki⟩, (2.4)

where the complex coefficients ui satisfy the normalization condition ⟨ψ|ψ⟩ =
∑

i |ui|2 =
1. From this section on, we will refer to state vectors as states for the sake of simplicity.

There are many situations in quantum mechanics where one needs to deal with quan-

tum systems made up of two or more distinct physical systems. In these instances, the

state space of a composite system is constructed from the state spaces of the individual

4



subsystems. Given that we have two independent quantum states |u⟩ = (u1, u2, . . . , um)
T ∈

HA and |v⟩ = (v1, v2, . . . , vn)
T ∈ HB, we can describe the state of the both systems to-

gether as a tensor product of these two states, written as |w⟩ = |u⟩⊗ |v⟩ ∈ HA⊗HB (We

will mostly use the short hand notation of denoting |u⟩ ⊗ |v⟩ simply by |u⟩|v⟩ or |uv⟩).
The resulting m ∗ n dimensional state |w⟩ can be obtained as

|w⟩ = |u⟩ ⊗ |v⟩ = (u1|v⟩, u1|v⟩, · · · , um|v⟩)T

= (u1v1, u1v2, · · · , u1vn, u2v1, · · · , umvn)T . (2.5)

If we have many independent quantum systems numbered as 1, 2, . . . , n in quantum states

|ψ1⟩, |ψ2⟩, . . . , |ψn⟩, then the state of the joint system is given by |ψ1⟩⊗ |ψ2⟩⊗ · · ·⊗ |ψn⟩.

2.1.2 Evolution of quantum states

Having set up the stage where quantum mechanics takes place, we are now in a position

to describe how a quantum state propagates in time. Quantum theory postulates that

dynamical evolution of a closed quantum system is realized by a unitary transformation

|ψ(t)⟩ = U(t, t0)|ψ(t0)⟩. (2.6)

The unitary operator U(t, t0) satisfies U † = U−1, where U † denotes the adjoint of U . An

important property of unitary operators is that they preserve the inner products between

the vectors, leaving the norm of quantum states invariant. In particular, the time evolution

of the state |ψ⟩ is determined by the Schrödinger equation

i~
d

dt
|ψ(t)⟩ = H|ψ(t)⟩, (2.7)

where H is a Hermitian (self-adjoint) operator known as the Hamiltonian of the closed

system. Given an initial state |ψ(t0)⟩, the time evolved state |ψ(t)⟩ is uniquely and de-

terministically obtained by solving (2.7). Moreover, the Schrödinger equation is linear,

that is, if |α(t)⟩ and |β(t)⟩ are solutions to (2.7), then |ψ(t)⟩ = a|α(t)⟩ + b|β(t)⟩, where

a and b are complex numbers, is also a valid solution. This additive property of solu-

tions in linear systems is known as the superposition principle. If the Hamiltonian H is

time-independent, the solution to the Schrödinger equation can be verified to be

|ψ(t)⟩ = exp

[

− i

~
H(t− t0)

]

|ψ(t0)⟩. (2.8)

Then, the time evolution operator U(t, t0) (also known as the propagator) is given by

U(t, t0) = exp
[

− i
~
H(t− t0)

]

, where the exponential of the operator −iH(t − t0)/~ is

5



defined as

exp

[

− i

~
H(t− t0)

]

≡
∞
∑

n=0

1

n!

[

− i

~
(t− t0)

]n

Hn. (2.9)

Using (2.9), it is not difficult to see that U(t, t0) is unitary and, furthermore, any unitary

operator U can be written in the form U = exp(iH) for some Hermitian operator H .

2.1.3 Quantum measurements

The process of measurement in quantum mechanics is a very delicate concept. Although

the evolution of closed quantum systems, which do not interact with their environments,

are determined according to the Schrödinger equation, measurements on these systems

cannot be described in terms of unitary evolution and exhibits an unavoidable probabilistic

nature. When an experimentalist observes a system, there occurs an interaction between

the system and the experimental equipment. Thus, the system can no longer be treated

as closed, causing its evolution to be non-unitary. The measurement postulate provides a

means for explaining what happens when a quantum system is measured.

Generalized quantum measurements are described by a collection of operators {Mn}
which satisfy the completeness relation

∑

n

M †
nMn = I, (2.10)

where I denotes the identity operator. The labels n on the operators represent the different

possible outcomes. If the state of the system is represented by |ψ⟩ immediately before the

measurement, then the nth outcome occurs with probability

p(n) = ⟨ψ|M †
nMn|ψ⟩, (2.11)

and the state of the system after the measurement becomes

Mn|ψ⟩
√

⟨ψ|M †
nMn|ψ⟩

. (2.12)

The completeness relation makes sure that the probabilities of different measurement

outcomes sum to unity. This measurement scheme is called a selective quantum mea-

surement, since the pre-measurement state |ψ⟩ is selected into a set of conditional post-

measurement states according to the obtained measurement outcomes.

For some of the applications in quantum information theory, the state of the system

after the measurement is not of interest, and only the probabilities of possible measure-

6



ment outcomes matter. For instance, when a photon is detected by a photomultiplier, it

is destroyed in the measurement process, and hence doing repeated measurements on the

system is not possible. In such cases, it is convenient to define a new set of measurement

operators {En} where En ≡M †
nMn. With this definition, we can obtain the probabilities

of different measurement outcomes as

p(n) = ⟨ψ|En|ψ⟩,
∑

n

En = I. (2.13)

The positive (and thus automatically Hermitian) operators En are said to be the positive

operator valued measure (POVM) elements associated with the measurement. The com-

plete set of operators {En} is said to be a POVM.

A particularly important subclass of generalized quantum measurements is projective

(von Neumann) measurements. Projective measurements can be described by an observ-

able K, represented by means of an Hermitian operator (whose eigenvalues n are the

possible values of that observable)

K =
∑

n

nPn, (2.14)

where the family of operators {Pn}, satisfying PnPn′ = δnn′Pn and
∑

n Pn = I , is

called a complete set of orthonormal projectors. It is evident that projective measurements

are a very special instance of POVMs, where all the POVM elements are the same as

the measurement operators themselves, since En ≡ P †
nPn = Pn. In case of projective

measurements, the probability of getting result n upon measuring the state |ψ⟩ is given by

p(n) = ⟨ψ|Pn|ψ⟩. If the result n occurs, then the post-measurement state of the system

becomes

Pn|ψ⟩
√

⟨ψ|Pn|ψ⟩
. (2.15)

Another aspect of projective measurements is that they have a special property called re-

peatability, that is, if we perform a projective measurement once and obtain the outcome

n, repeating the measurement doesn’t affect the state and gives the same outcome n again.

We note that non-orthogonal measurements do not have the this property. Despite the fact

that a projective measurement is a restricted version of the general measurement postu-

late, there is no loss of generality in allowing only projective measurements. Neumark’s

theorem guarantees that an arbitrary measurement of a given quantum system can always

be realized by only performing a projective measurement and unitary transformations on

a larger quantum system [16]. In other words, generalized measurements are equivalent

to projective measurements on a larger Hilbert space.
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2.2 Density matrix formalism

We have so far introduced the fundamental postulates of quantum mechanics using the

language of state vectors. Consequently, we have limited ourselves to the study of the

quantum systems that can be represented by a single state vector. However, in reality, a

quantum system often cannot be specified by a single state vector since it is not always

possible to have complete knowledge of the considered system. We therefore need a new

approach to deal with quantum systems about which we only have partial information.

The density matrix formalism of quantum mechanics provides the required tools for de-

scribing such quantum systems.

Imagine a procedure in which a quantum system is prepared in one of a number of nor-

malized (but not necessarily orthogonal) states from the ensemble {|ψ1⟩, |ψ2⟩, . . . , |ψi⟩},

with respective probabilities {p1, p2, . . . , pi}, satisfying the condition of total unit proba-

bility
∑

i pi = 1. The density matrix for the system is then given by the equation

ρ =
∑

i

pi|ψi⟩⟨ψi|. (2.16)

Here, the terms |ψi⟩⟨ψi| are matrices constructed from the outer products of the states

|ψi⟩. If the state of a quantum system is known and described by a state vector |ψ⟩, it

is said to be in a pure state. The density matrix of a pure state, which is simply defined

by a projector ρ = |ψ⟩⟨ψ|, corresponds to the case where one of the probabilities pi is

equal to one while all others are zero. On the other hand, a quantum system whose state

is constructed from a statistical ensemble of different pure states is called a mixed state.

It should be emphasized that a mixed state is not a quantum superposition of pure states

since a superposition of pure states is just another pure state. Using the definition of the

density matrix given by (2.16), we can obtain the following general properties that must

be satisfied by all density matrices:

• ρ is Hermitian since it is constructed from a sum of Hermitian outer products,

ρ =
∑

i

pi|ψi⟩⟨ψi| = ρ†. (2.17)

• The diagonal elements of ρ sum to one, that is, ρ has trace equal to one,

Tr(ρ) =
∑

i

piTr (|ψi⟩⟨ψi|) (2.18)

=
∑

i

pi = 1. (2.19)
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• ρ is a positive operator, which implies that the eigenvalues ρ of are non-negative,

⟨ϕ|ρ|ϕ⟩ =
∑

i

pi⟨ϕ|ψi⟩⟨ψi|ϕ⟩ (2.20)

=
∑

i

pi|⟨ϕ|ψi⟩|2 ≥ 0 (2.21)

• The pure state ρ satisfies the equation ρ2 = ρ,

ρ2 = |ψ⟩⟨ψ|ψ⟩⟨ψ| = |ψ⟩⟨ψ| = ρ. (2.22)

• The inequality Tr(ρ2) ≤ 1 holds, with equality if and only if ρ is a pure state. The

proof of this last property, which we omit here, can be straightforwardly done, for

example, by making use of the decomposition of the Hermitian matrix ρ into a set

of orthonormal projectors.

The postulates of quantum mechanics can be reformulated using the density operator

approach. For instance, we can describe the dynamical evolution of a mixed quantum

system in the language of density matrices. Starting from

d

dt
ρ(t) =

d

dt

∑

i

pi|ψi(t)⟩⟨ψi(t)|

=
∑

i

pi

[(

d

dt
|ψi(t)⟩

)

⟨ψi(t)|+ |ψi(t)⟩
(

d

dt
⟨ψi(t)|

)]

, (2.23)

and using the Schrödinger equation given by (2.7) along with its conjugate, we obtain

d

dt
ρ(t) =

1

i~
(Hρ(t)− ρ(t)H) =

1

i~
[H, ρ(t)]. (2.24)

Since the time evolution is unitary for closed systems, the density matrix ρ(t0) is related

to the density matrix ρ(t) by the equation

ρ(t) =
∑

i

pi|ψi(t)⟩⟨ψi(t)| =
∑

i

piU(t, t0)|ψi(t0)⟩⟨ψi(t0)|U †(t, t0)

= U(t, t0)ρ(t0)U
†(t, t0). (2.25)

Moreover, we can also express the measurement postulate in the density operator picture.

Provided that the state of a quantum system is described by ρ immediately before the mea-

surement, the probability of obtaining the outcome n is given by p(n) = Tr
(

MnρM
†
n

)

,

and the state of the system after the measurement becomes

MnρM
†
n

Tr(MnρM
†
n)
, (2.26)
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where the measurement operators satisfy the completeness relation
∑

nM
†
nMn = I . Con-

sidering the above discussion, it is clear that describing a pure system in terms of either

the state vector |ψ(t)⟩ or the density matrix ρ = |ψ(t)⟩⟨ψ(t)| is completely equivalent.

Besides, since multiplying the state vector by a global complex phase yields the same

density matrix, such global phases have no observable effects on quantum systems. We

note that this is no longer correct for the relative phase factors between state vectors.

We should lastly mention that a given density matrix ρ does not represent a unique

ensemble of pure quantum states. For example, looking at the density matrix

ρ =
1

5
|0⟩⟨0|+ 4

5
|1⟩⟨1|, (2.27)

one might conclude that the system would be in the state |0⟩ with probability 1/5 and in

the state |1⟩ with probability 4/5. However, this is not the only statistical ensemble of

pure states giving the density matrix (2.27). Suppose we define

|a⟩ ≡
√

1

5
|0⟩+

√

4

5
|1⟩

|b⟩ ≡
√

1

5
|0⟩ −

√

4

5
|1⟩, (2.28)

and the quantum system is prepared in such a way that we have equal probabilities of

finding the system either in the state |a⟩ or in the state |b⟩. In this case, we obtain the

density matrix

ρ =
1

2
|a⟩⟨a|+ 1

2
|b⟩⟨b| = 1

5
|0⟩⟨0|+ 4

5
|1⟩⟨1|. (2.29)

As a consequence, we see that two completely different ensembles of quantum states give

rise to the exact same density matrix. In fact, there are infinitely many ensembles that

would yield the same density matrix.

2.2.1 Qubits and qudits

Central to quantum information science is the concept of a quantum bit, also known as

qubit. Unlike the usual bits of data used in classical information theory, which are either

a zero or a one, qubits can store a superposition of the bits zero and one. In other words,

qubits can hold both zero and one at the same time. Mathematically, a qubit is a unit vector

in a 2-dimensional complex Hilbert space. As the states |0⟩ ≡ (1, 0)T and |1⟩ ≡ (0, 1)T

form an orthonormal basis for this vector space, state of a qubit can be written as

|ψ⟩ = α|0⟩+ β|1⟩, (2.30)
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where the complex numbers α and β satisfy the normalization condition |α|2 + |β|2 = 1.

This particular basis, denoted by the vectors |0⟩ and |1⟩, is known as the computational

basis. Although we can inspect a classical bit to find out whether it is in the state one or

zero, it is not possible to directly examine a qubit to deduce its quantum state. Postulates

of quantum mechanics allow us to only talk about probabilities instead of certainties, that

is, when we measure a qubit we get either the outcome |0⟩ with probability |α|2, or the

outcome |1⟩ with probability |β|2. Qubits can be physically realized in many different

ways. In fact, any two-level quantum system is a potential candidate for a qubit, such as,

the two spin states of an electron or the two states of the polarization of a photon. On

the other hand, as an obvious extension of qubits to multilevel quantum systems, we can

define d-dimensional states called qudits. Qubits and qudits have many surprising proper-

ties absent in classical systems, including the no-cloning theorem [17], which forbids the

creation of identical copies of an arbitrary unknown quantum state.

2.2.2 Geometric representation of qubits

We can represent all one-qubit density matrices by the points of a 3-dimensional unit

sphere. As previously discussed, a qubit is a two-level quantum system whose state can

be expressed in computational basis as

|ψ⟩ = α|0⟩+ β|1⟩, |α|2 + |β|2 = 1. (2.31)

With a natural parametrization that automatically takes the normalization condition into

account, the state of a qubit becomes

|ψ⟩ = eiγ
(

cos
θ

2
|0⟩+ eiφ sin

θ

2
|1⟩
)

, (2.32)

where θ ∈ [0, π] and φ ∈ [0, 2π]. Knowing that a global phase in front has no observable

effects in quantum mechanics, we can ignore the factor eiγ without any loss of generality,

and effectively represent the state of a qubit by

|ψ⟩ = cos
θ

2
|0⟩+ eiφ sin

θ

2
|1⟩. (2.33)

In this angular notation, the density matrix of a pure qubit can be easily calculated to be

ρ = |ψ⟩⟨ψ| =
(

cos2 θ
2

e−iφ sin θ
2
cos θ

2

eiφ sin θ
2
cos θ

2
sin2 θ

2

)

, (2.34)
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Figure 2.1: The set of all one-qubit density matrices can be represented by the points of a

3-dimensional unit sphere of Bloch vectors r⃗. While the surface points of the sphere, |r⃗| = 1,

represent the pure states, the interior points of the sphere, |r⃗| ≤ 1, correspond to mixed states.

The maximally mixed state I/2 is described by the Bloch vector |r⃗| = 0. The closer the Bloch

vector to the origin the more mixed is the corresponding state.

and using the elementary trigonometric identities, it reads

ρ =
1

2

(

1 + cos θ cosφ sin θ − i sinφ sin θ

cosφ sin θ + i sinφ sin θ 1− cos θ

)

. (2.35)

On the other hand, any 2×2 Hermitian matrix can be expanded over the basis of matrices

{I, σx, σy, σz} with real expansion coefficients, where I is the usual 2×2 identity matrix,

and the other three matrices are known as Pauli matrices

σx =

(

0 1

1 0

)

, σy =

(

0 −i
i 0

)

, σz =

(

1 0

0 −1

)

. (2.36)

Decomposing the density matrix (2.35) in this basis, we observe that

ρ =
1

2
(I + σx cosφ sin θ + σy sinφ sin θ + σz cos θ)

=
1

2
(I + n̂ · σ⃗) , (2.37)

where n̂ = (nx, ny, nz) = (cosφ sin θ, sinφ sin θ, cos θ) is the 3-dimensional unit vector

in spherical coordinates, and σ⃗ is a three element vector of Pauli matrices {σx, σy, σz}.

Consequently, there is a one-to-one correspondence between the set of all pure qubit states

and the surface points of the 3-dimensional unit sphere known as the Bloch sphere. The

natural metric on the Bloch sphere is given by the Fubini-Study metric, under which the

distance between two pure qubits is defined as cos−1 |⟨ψ1|ψ2⟩|. We can also visualize the

mixed qubit states with the points inside the Bloch sphere. Defining a new vector r⃗, which
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might have a length shorter than one, we can represent any mixed state in the form

ρ =
1

2
(I + r⃗ · σ⃗) , (2.38)

where r⃗ is called the Bloch vector. This matrix clearly satisfies the unit trace condition,

since the Pauli matrices are traceless. Besides, a density matrix is required to be positive,

meaning it must have a non-negative eigenvalue spectrum. Considering that the eigen-

values of (2.38) are given by 1
2
(1 ± |r⃗|), we must have |r⃗| ≤ 1. In accordance with the

previous results, pure states correspond to the case of having unit Bloch vectors |r⃗| = 1.

2.2.3 The reduced density matrix

The density matrix formalism of quantum mechanics is particularly effective when we

want to describe the subsystems of a composite quantum system. The reduced density

operator provides the required mathematical tool for the representation of such subsys-

tems. Given that we have two quantum systems A and B, whose composite state can be

described by a density matrix ρAB acting on HA⊗HB. We can define the reduced density

matrix for the subsystem A as

ρA ≡ TrB
(

ρAB
)

, (2.39)

where TrB denotes the partial trace operation over the subsystemB. The partial trace over

the second subsystem (B) of a composite system AB is defined by

TrB (|x1⟩⟨x2| ⊗ |y1⟩⟨y2|) =
∑

i

⟨ei| (|x1⟩⟨x2| ⊗ |y1⟩⟨y2|) |ei⟩

=
∑

i

|x1⟩⟨x2|⟨ei|y1⟩⟨y2|ei⟩

= |x1⟩⟨x2|Tr (|y1⟩⟨y2|)

= |x1⟩⟨x2|⟨y1|y2⟩, (2.40)

where {|ei⟩} is an orthonormal basis of HB. While the state vectors |x1⟩ and |x2⟩ are any

two vectors in HA, the state vectors |y1⟩ and |y2⟩ are any two vectors in HB. The partial

trace operation over the subsystem B is the unique operation which gives the correct

measurement statistics for measurements made on the subsystem A [4, 18].

If we have a composite quantum system in product form such as ρAB = ρA ⊗ ρB,

where ρA and ρB are the density matrices corresponding to the subsystems A and B

respectively, then the reduced density matrix for the subsystem A is simply given by the

density matrix representing the systemA itself, that is ρA = TrB(ρ
A⊗ρB) = ρATr(ρB) =
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ρA. Interestingly, almost all of the applications of quantum information theory involve

quantum systems that cannot be written in product form. These remarkable systems,

properties of which we study in the next section, are called entangled. Supposing that a

given two-qubit composite quantum system is described by the entangled state

|ψ⟩AB =
1√
2
(|0⟩A|0⟩B + |1⟩A|1⟩B) , (2.41)

the corresponding density matrix can be written as

ρAB =
1

2
(|00⟩⟨00|+ |00⟩⟨11|+ |11⟩⟨00|+ |11⟩⟨11|) , (2.42)

where the indices denoting the subsystems are dropped for simplicity. We obtain the

reduced density operator of the subsystem A by tracing over the second qubit,

ρA =
1

2
(|0⟩⟨0|⟨0|0⟩+ |0⟩⟨1|⟨0|1⟩+ |1⟩⟨0|⟨1|0⟩+ |1⟩⟨1|⟨1|1⟩)

=
1

2
(|0⟩⟨0|+ |1⟩⟨1|) , (2.43)

which is the maximally mixed state of one qubit.

2.3 Quantum operations

In this section, we introduce a rigorous formalism for describing the general transforma-

tions of quantum mechanical systems. A quantum operation, for instance, can be used to

represent the dynamical evolution experienced by a quantum system as a result of some

physical interaction between the system and its surroundings. Mathematically, it is a

completely positive trace non-increasing linear map which transforms density matrices

into density matrices, ρ′ = Φ(ρ), up to a possible normalization factor. The previously

discussed subjects of unitary evolution and quantum measurements can be understood

using the framework of quantum operations.

2.3.1 Completely positive transformations

Since quantum mechanics is a linear theory, transformations describing the dynamics of

quantum systems need to be linear, that is Φ(p1ρ1 + p2ρ2) = p1Φ(ρ1) + p2Φ(ρ2). As re-

quired by the conditions on density matrices, the transformations should also preserve the

cone of positive elements and self-adjointness. In particular, Φ must be a linear positive

map, transforming a density matrix ρ into a non-negative Hermitian matrix having trace

less than or equal to one. An important subset of positive maps are called completely
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positive maps. A positive map is said to be completely positive if the operator Φ ⊗ Ie

is positive for any extension of the Hilbert space H to H ⊗ He. Complete positivity is

a physically motivated requirement for quantum operations. It implies that provided an

ancillary system of arbitrary dimensionality, having a trivial dynamics, is coupled to the

primary system, the corresponding operator Φ⊗ Ie must still be positive. All completely

positive maps can be brought to a so-called Kraus (operator-sum) form [19, 20]

Φ(ρ) =
∑

i

MkρM
†
k ,

∑

k

M †
kMk ≤ I. (2.44)

It is also true that all the maps that can be written in Kraus form are completely positive.

We note that this decomposition is not unique, meaning there exist infinitely many dif-

ferent sets of Kraus matrices {Mk} that give rise to the same transformation. There is a

unitary freedom in the operator-sum representation, that is, the collective action of a set of

Kraus operators {M1,M2, . . . ,Mm} on the density matrix representing a quantum system

ρ is equivalent to the collective action of another set of Kraus operators {E1, E2, . . . , En}
if and only if there exist complex numbers uij such that Ei =

∑

j uijMj where uij are

the elements of a m × n unitary matrix [4]. If the dimensions of m and n do not match,

we can add zero operators to the smaller set. Although completely positive maps can be

physically realized in many different ways, it is not possible to realize non-completely

positive maps such as the transposition map.

2.3.2 Realization of quantum operations

Imagine that we couple an additional ancillary system E (modeling the environment)

to the principal system S. While the composite system of E and S is considered as

being closed, the principal system S can no longer be considered as closed due to its

interaction with the environment. We want to investigate the dynamics of this (open)

principal system alone while the combined (closed) system undergoes a unitary evolution.

There is no loss of generality by assuming that the environment is initially in a pure state,

since we can always enlarge the Hilbert space of the environment to purify it. We also

assume that the initial state of the combined system is in a product state, that is, ρse =

ρs⊗|e0⟩⟨e0|, where {|e0⟩, |e1⟩, . . . , |ek⟩} forms an orthonormal basis for the environment.

Although this assumption cannot be fulfilled in all situations, experimental preparation of

a system in a certain state typically destroys all correlations between the system and the

environment. The non-unitary evolution of the principal system S can be obtained by

tracing over the environmental degrees of freedom as Φ(ρs) = Tre
[

U (ρs ⊗ ρe)U
†]. It is

straightforward to see that this quantum operation can be expressed in Kraus form. We

15



first observe that U can be decomposed as U =
∑

i aiXi ⊗ Yi, where Xi and Yi are linear

operators acting on the system S and the environment E, respectively. Then, we have

Φ(ρs) =
∑

k

⟨ek|
∑

i

(aiXi ⊗ Yi) (ρs ⊗ ρe)
∑

j

(ajXj ⊗ Yj)
† |ek⟩

=
∑

k

∑

ij

aia
∗
j⟨ek|

(

XiρsX
†
j ⊗ YiρeY

†
j

)

|ek⟩

=
∑

k

∑

ij

aia
∗
jXiρsX

†
j ⟨ek|Yi|e0⟩⟨e0|Y †

j |ek⟩

=
∑

k

(

∑

i

aiXi⟨ek|Yi|e0⟩
)

ρs

(

∑

j

ajXj⟨ek|Yj|e0⟩
)†

=
∑

k

(

⟨ek|
∑

i

aiXi ⊗ Yi|e0⟩
)

ρs

(

⟨ek|
∑

j

ajXj ⊗ Yj|e0⟩
)†

=
∑

k

⟨ek|U |e0⟩ρs⟨ek|U |e0⟩†. (2.45)

Defining the operators Mk ≡ ⟨ek|U |e0⟩, we arrive at the operator-sum representation

Φ(ρs) =
∑

k

MkρsM
†
k . (2.46)

Since the resulting density matrix Φ(ρs) must have unit trace, the Kraus operators {Mk}
satisfy the completeness relation

1 = Tr

(

∑

k

MkρsM
†
k

)

= Tr

(

∑

k

M †
kMkρs

)

(2.47)

For the above relation to hold for all density matrices, we must have

∑

k

M †
kMk = I. (2.48)

Since different environmental interactions may result in the same dynamics on the system,

the same quantum operation Φ can be obtained by choosing a different environmental

basis or by considering a different unitary interaction. We have thus far shown that the

unitary evolution of the combined state of the system S and the environment E gives

rise to a Kraus representation for the quantum operation Φ describing the dynamics of

the system S. The inverse relationship is also true, that is, given the Kraus operators of

a quantum operation, one can always construct an environmental basis along with some

unitary dynamics that corresponds to the desired Kraus representation [4, 9].
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Figure 2.2: We first let an ancillary system (modeling the environment) interact with the

principle system via a unitary interaction. Reduced non-unitary dynamics of the principal

system can then be obtained by discarding the state of the environment.

We can interpret each of the terms in operator-sum representation individually. Sup-

pose that, after the unitary evolution of the combined system of S and E, we perform a

projective measurement on the environment in the orthonormal basis {|ek⟩}. The mea-

surement operators are given by

Πk = Is ⊗ |ek⟩⟨ek|. (2.49)

Provided that the projective measurement is performed in a non-selective way (by con-

sidering the statistical ensemble of conditional post-measurement states), the reduced dy-

namics of the principal system remains unchanged. However, if the projective measure-

ment is performed in a selective way (by transforming the pre-measurement state into a

set of conditional post-measurement states according to the possible measurement out-

comes), then we can obtain the individual terms appearing in the operator-sum represen-

tation [10]. Assuming that the initial state of the composite system is ρse = ρs ⊗ |e0⟩⟨e0|,
the state of the combined system after the measurement changes into

ΠkU(ρs ⊗ |e0⟩⟨e0|)U †Πk

Tr[ΠkU(ρs ⊗ |e0⟩⟨e0|)U †Πk]
, (2.50)

with probability pn = Tr[ΠkU(ρs ⊗ |e0⟩⟨e0|)U †Πk]. Tracing over the environmental

degrees of freedom, the post-measurement state of the principle system reads

MkρsM
†
k

Tr(MkρsM
†
k)
, (2.51)

with probability pn = Tr(MkρsM
†
k). Here, the matrices Mk are nothing but the Kraus

operators defined as Mk ≡ ⟨ek|U |e0⟩. Thus, we see that each of the terms appearing

in the operator sum representation corresponds to the possible outcomes of a selective

projective measurement performed on the environment.
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Chapter 3

ENTANGLEMENT

In this chapter we will first consider the separability problem of quantum states to intro-

duce the concept of quantum entanglement, which is one of the most central subjects to

be investigated in this thesis. We will then discuss the quantification of entanglement and

review the properties of some well known entanglement measures such as concurrence

and negativity. The manipulation and classification of certain entangled states under local

operations and classical communication will also be examined. For a detailed review of

quantum entanglement and related concepts, interested reader may refer to [3]. Finally,

we will conclude the chapter by presenting our results related to the optimal transforma-

tions of flip and exchange symmetric entangled states via local operations [21].

3.1 Separability of quantum states

We start by considering the simple case of a pure bipartite quantum system. Assuming

that the finite dimensional Hilbert spaces HA and HB of individual parts have orthonormal

basis states {|ai⟩} and {|bj⟩}, respectively, the Hilbert space of the composite system can

be described by basis states {|aibj⟩}, according to the postulates of quantum theory. Con-

sequently, an arbitrary pure state living in HA ⊗HB can be written as the superpositions

of the basis states,

|ψ⟩ =
∑

ij

cij|aibj⟩. (3.1)

If a quantum state |ϕ⟩ ∈ HA ⊗HB can be expressed in the form

|ϕ⟩ = |α⟩ ⊗ |β⟩, (3.2)

where |α⟩ ∈ HA and |β⟩ ∈ HB, then |ϕ⟩ is said to be a separable state, otherwise it is

said to be an entangled state. In other words, an entangled state cannot be written as a

tensor product of individual states representing each subsystem. At this point, we want
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to emphasize that the remarkable phenomenon of entanglement is not only essential for

almost all of the applications of quantum information science but also for the foundations

of quantum mechanics [1, 2]. Schrödinger himself stressed its importance, saying that "I

would not call (entanglement) one but rather the characteristic trait in quantum mechanics,

the one that enforces an entire departure from all our classical lines of thought." Let us

now give a simple example of an entangled and a separable state of two-qubits. It is easy

to see that while the entangled quantum state

|ψ⟩ = 1√
2
(|01⟩+ |10⟩), (3.3)

cannot be written as a tensor product of its individual states, the quantum state

|ϕ⟩ = 1√
2
(|10⟩+ |00⟩), (3.4)

is separable since it can be written as

|ϕ⟩ = 1√
2
(|1⟩+ |0⟩)⊗ |0⟩. (3.5)

Next, we turn our attention to the case of quantum states that cannot be represented by a

single state vector. A mixed bipartite system described by a density matrix ρAB is said to

be separable if and only if it can be decomposed as [22]

ρAB =
∑

k

pkρ
A
k ⊗ ρBk , (3.6)

where ρAk and ρBk are the density matrices of the individual subsystems, and the positive

weights pk satisfy
∑

k pk = 1. This requirement implies that a separable mixed state

can be prepared by two parties, that have access to a form of classical communication,

using local operations while an entangled mixed state cannot. It is not difficult to imagine

that the above discussion of separability for both pure and mixed quantum states can be

straightforwardly extended to multipartite states.

3.1.1 Peres criterion for separability of bipartite states

Despite the fact that some simple pure quantum states might be easily determined to be

entangled or separable, it is no trivial task to find out whether a given arbitrary mixed

quantum state can be written as a convex sum of product states as in (3.6). A necessary

condition, which is based on the partial transpose operation, for the existence of such

decomposition has been given by Peres [23]. This condition, also known as the Peres

criterion or positive partial transpose (PPT) criterion, is violated by all entangled states.
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Let us now consider the following form of the density matrix ρAB describing the state of

two subsystems A and B,

ρAB =
∑

ijkl

pijkl|i⟩⟨j| ⊗ |k⟩⟨l|. (3.7)

The partial transpose of this density matrix with respect to the subsystem B is given by

(ρAB)TB =
∑

ijkl

pijkl|i⟩⟨j| ⊗ (|k⟩⟨l|)T =
∑

ijkl

pijkl|i⟩⟨j| ⊗ |l⟩⟨k|, (3.8)

where the identity operator acts on the subsystem A. The statement of the criterion is

simple: If ρAB is separable, then (ρAB)TB is a PPT state, that is, it has a non-negative

eigenvalue spectrum. On the other hand, even a single negative eigenvalue of (ρAB)TB is

sufficient to conclude that ρAB is entangled. We note that the outcome of the test does not

depend on the subsystem with respect to which transposition is performed. Even though

there exists no general method to decide whether a given PPT state is separable or not in

general, Horodecki et al. has proved that all PPT states of 2 ⊗ 2 (qubit-qubit) and 2 ⊗ 3

(qubit-qutrit) systems are separable [24]. Thus, the Peres criterion gives a necessary and

sufficient condition for the entanglement of quantum states in these dimensions. In order

to see the usefulness of the Peres criterion in an illustrative example, consider the simple

two-qubit class of Werner states,

ρAB =
(1− p)

4
I4 +

p

2
(|01⟩ − |10⟩)(⟨01| − ⟨10|), (3.9)

where 0 ≤ p ≤ 1 and I4 is the 4 × 4 identity operator. The density matrix ρAB can be

represented in the product basis {|00⟩, |01⟩, |10⟩, |11⟩} as

ρAB =
1

4















1− p 0 0 0

0 1 + p −2p 0

0 −2p 1 + p 0

0 0 0 1− p















. (3.10)

Evaluating the partial transpose with respect to the subsystem B, we end up with

(ρAB)TB =
1

4















1− p 0 0 −2p

0 1 + p 0 0

0 0 1 + p 0

−2p 0 0 1− p















, (3.11)

whose only potential negative eigenvalue is λ = (1− 3p)/4. Therefore, we conclude that

the considered Werner state is separable for 0 ≤ p ≤ 1/3 and entangled for 1/3 < p ≤ 1.
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3.1.2 Schmidt decomposition

We now introduce a fundamental theorem for pure bipartite quantum states, known as the

Schmidt decomposition theorem. The statement of the theorem is as follows: Suppos-

ing that |ψAB⟩ is a pure state of a bipartite quantum system AB, there always exists a

decomposition of the form

|ψAB⟩ =
∑

i

λi|iA⟩|iB⟩, (3.12)

where |iA⟩ and |iB⟩ define an orthonormal basis (Schmidt basis) for the subsystems A

and B, respectively, and the non-negative real Schmidt coefficients λi satisfy
∑

i λ
2
i = 1.

The proof of this theorem can be done with the help of the singular value decomposition

theorem [4]. It is worth to emphasize that there is no direct analogue of the Schmidt

decomposition for multipartite or mixed states. Due to the simple structure of (3.12),

we can immediately obtain the reduced density matrices ρA and ρB by tracing out each

subsystem separately:

ρA =
∑

i

λ2i |iA⟩⟨iA|, ρB =
∑

i

λ2i |iB⟩⟨iB|. (3.13)

Since the eigenvalues of the reduced density matrices ρA and ρB turns out to be identical,

various important properties of the composite quantum state |ψAB⟩ can be determined by

either of the reduced density matrices. Moreover, it can be shown that a bipartite system

is separable if and only if it has a single non-zero eigenvalue in its decomposition.

3.2 Quantification of entanglement

Considering that the concept of entanglement plays a crucial role in quantum information

science, it is very important to characterize it from various different perspectives. One of

the most important aspects of the characterization of entanglement is the determination

of the amount of entanglement in a given arbitrary quantum state. Although the quantifi-

cation of entanglement is relatively well understood for the case of two-qubits [25–27],

little is known about its generalization to multipartite or higher dimensional mixed sys-

tems. There is a zoo of entanglement measures available in literature [3], each having their

own advantages for specific purposes. However, we will limit ourselves to the measures

of entanglement that we intend to utilize in the following chapters.

Before starting to discuss the properties of entanglement measures, we introduce the

concept of local operations and classical communication (LOCC) [28–31]. This proto-
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col implies that, provided two spatially separated parties share a quantum state, they can

classically communicate to coordinate the quantum operations they apply on their own

subsystems. LOCC is an essential ingredient for the execution of many quantum informa-

tion processing protocols such as quantum teleportation [32]. Besides, LOCC operations

are also deeply connected with the characterization of entanglement. In fact, while clas-

sically correlated quantum states can be prepared by LOCC operations, entangled states

can never be created using such operations alone. All LOCC operations can be naturally

expressed in the form of a separable operation as (in case of a bipartite system)

E(.) =
∑

k

Ak ⊗ Bk(.)A
†
k ⊗B†

k, (3.14)

where Ak and Bk are generalized measurement operators locally acting on the first and

second subsystems, respectively. However, it is remarkable that not there exist separable

operations that cannot be implemented by means of LOCC [33–38].

In the theory of entanglement measures, there are two main approaches to the quan-

tification of entanglement, namely, operational and axiomatic approaches. The goal of the

operational one is to adopt a protocol whose performance of success is directly connected

with the amount of entanglement contained in the quantum state. On the other hand, in

the axiomatic (or abstract) approach, one typically tries to define a real valued function

with certain reasonable properties. A list of these desirable features, which are expected

to be satisfied by good entanglement measures, is as follows:

• An entanglement measure E(ρ) of a bipartite system ρ is a mapping that takes

density matrices as inputs and produces positive real numbers as outputs.

• E(ρ) vanishes provided that the input state ρ is separable.

• E(ρ) is invariant under local unitaries, meaning E(ρ) = E(UA ⊗ UBρU
†
A ⊗ U †

B).

• E is an entanglement monotone, i.e., it does not increase under LOCC on average:

E(ρ) ≥
∑

i

piE(ρi), (3.15)

where the outcome ρi is obtained with probability pi after the LOCC protocol.

Although there is no general agreement on the properties that an entanglement measure

must satisfy, the above requirements are commonly considered sufficient to define a good

measure [39–44]. We emphasize that the last condition related to the behavior of en-

tanglement measures under LOCC transformations is more restrictive then the require-

ment that E(ρ) ≥ E(
∑

i piρi). Nonetheless, this simplified version might be considered
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as more fundamental as it gives direct information about the entanglement of the trans-

formed state, while (3.15) only tells about the average entanglement of an ensemble. As

a result, some experts also recognize the functions that satisfy E(ρ) ≥ E(
∑

i piρi) as en-

tanglement monotones [3]. We lastly note that some optional conditions can be imposed

on entanglement measures depending on the context, such as convexity and additivity.

Detailed reviews of the theory of entanglement measures can be found in [3, 43, 44].

3.2.1 Entropy of entanglement

Let us start by giving a brief overview of the von Neumann entropy. In classical informa-

tion theory, Shannon entropy [45] is used to measure the amount of information we have

gained after learning the value of a random variable X . In particular, it quantifies the

amount of randomness in a classical system. Given a probability distribution p1, . . . , pn,

its Shannon entropy is defined by

H(p1, . . . , pn) = −
∑

i

pi log pi, (3.16)

where the logarithm is taken in base two and it is assumed that 0 log 0 ≡ 0. This defi-

nition can be extended to quantum mechanical systems by replacing probability distribu-

tions with density matrices. Therefore, the von Neumann entropy of a quantum system

described by the density matrix ρ can be straightforwardly calculated as

S(ρ) = −
∑

i

λi log λi, (3.17)

with λi being the eigenvalues of the density matrix ρ.

Having discussed the von Neumann entropy, we are now ready to define the entropy

of entanglement, which is considered to be a reliable measure of entanglement for pure

bipartite systems in all dimensions [29, 46]. Entropy of entanglement of a pure bipartite

system represented by the density matrix ρAB is given by

E(ρAB) = S(ρA) = (ρB), (3.18)

where the reduced density matrices ρA and ρB are calculated by evaluating the partial

trace over the subsystems B and A, respectively. Despite the fact that a composite system

is in a pure state, individual subsystems might be mixed. Indeed, only separable systems

have their subsystems in a pure state as the only non-zero eigenvalue for each of the

pure subsystems is one. On the other hand, d-dimensional states of the form |ψ⟩ =

(|00⟩+ |11⟩+ . . .+ |(d− 1)(d− 1)⟩)/
√
d attain the maximum value of E, which is log d.
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3.2.2 Concurrence

A concrete measure of entanglement for two qubit states is provided by concurrence [25].

In order to evaluate the concurrence of a two-qubit system described by the density matrix

ρ, one first needs to calculate the spin-flipped density matrix ρ̃, which is given by

ρ̃ = (σy ⊗ σy)ρ∗(σy ⊗ σy). (3.19)

Here σy is the usual Pauli spin operator in y-direction, and ρ∗ is obtained from ρ via

complex conjugation in the standard two qubit basis {|00⟩, |01⟩, |10⟩, |11⟩}. Then, the

amount of entanglement contained in the state ρ is given by the concurrence function:

C(ρ) = max
{

0,
√

λ1 −
√

λ2 −
√

λ3 −
√

λ4,
}

, (3.20)

where {λi} are the eigenvalues of the product matrix ρρ̃ in decreasing order. For the

two-qubit pure states given in the standard basis as

|ψ⟩ = a|00⟩+ b|01⟩+ c|10⟩+ d|11⟩, (3.21)

concurrence is given by C(|ψ⟩) = 2|ad − bc|. This observation clearly shows the sig-

nificance of concurrence as a non-separability measure since a state of the form (3.21) is

separable if and only if ad = bc.

The concurrence of a two-qubit system can also be used for the calculation of another

entanglement measure known as entanglement of formation [26]:

E(ρ) = h

(

1 +
√

1− C2(ρ)

2

)

; (3.22)

h(x) = −x log x− (1− x) log (1− x), (3.23)

where the logarithm is taken in base two and C(ρ) is the concurrence given by (3.20).

We note that, while concurrence is an abstract quantity, entanglement of formation is a

resource based measure, that is, it quantifies the required amount of maximally entangled

states to be able to construct a given mixed state.

3.2.3 Negativity

Negativity enjoys the advantage that it can be computed easily for an arbitrary bipartite

state regardless of its dimension, provided that the considered state has a negative par-

tial transpose (NPT) [27]. As discussed in Section 3.1.1, it is in general not possible to

conclude whether a positive partial transpose state is separable or not, yet, all PPT states
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of qubit-qubit and qubit-qutrit systems are separable. Hence, negativity completely char-

acterizes the qubit-qubit and qubit-qutrit entanglement. For a given bipartite state ρAB,

negativity is calculated as the absolute sum of the negative eigenvalues of partial transpose

of ρAB with respect to the smaller dimensional system,

N(ρAB) =
1

2

∑

i

|ηi| − ηi, (3.24)

where ηi are all of the eigenvalues of the partially transposed density matrix (ρAB)TA .

The relation of the above expression to Peres separability criterion is evident as (3.24)

measures the degree to which (ρAB)TA fails to become positive.

3.3 Classification of entangled states

In quantum information science, the characterization of entanglement is not limited to the

investigation of entanglement measures and their properties. It is also desirable to have

means for grouping entangled states into operational equivalence classes, in the sense

that if two states can be used to accomplish same tasks, then they should be considered

equivalent. For this purpose, various different classification schemes have been proposed.

One of the most obvious ideas is to make use of local unitary (LU) operations, which are

both reversible and deterministic. This scheme is motivated by a quite reasonable physical

requirement: Recognizing the fact that LU operations just correspond to a local change

of basis for a given quantum state, LU equivalent states possess the same amount of

entanglement. Mathematically, an n-partite quantum state |ψ⟩ is said to be LU equivalent

to |ϕ⟩ if there exist local unitary operators U1, U2, . . . , Un such that

|ψ⟩ = U1 ⊗ U2 ⊗ . . .⊗ Un|ϕ⟩. (3.25)

Recently, Kraus has obtained a necessary and sufficient condition for the LU equivalence

of two n-partite qubit states [47, 48]. Furthermore, Liu has proposed a classification

scheme for general multipartite pure states in arbitrary dimensions under LU [49].

Although LU operations have a significant operational meaning, more general local

transformations are required for the realization of quantum communication schemes. In

addition to the unitary operations, such transformations may also include introduction

of ancillary systems, measurements, removing parts of systems, and in general can be

described by completely positive linear maps (as discussed in Section 2.3). When aug-

mented with the possibility of classical communication, multi-local application of these

operations correspond to what we have defined as LOCC transformations. More precisely,
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LOCC transformations are completely positive linear trace non-increasing maps that can

be locally implemented with classical coordination among the parties. As contrary to

LU operations, LOCC transformations are not generally reversible. All the same, for the

special case of pure states, it has been shown that two states are deterministically intercon-

vertible by LOCC (equivalent under LOCC) if and only if they are equivalent under LU

operations [31, 39]. Accordingly, if two states are equivalent under LOCC, they have the

same amount of entanglement. At this point, we want to emphasize that the possibility of

one-way conversion of a quantum state to another under LOCC operations does not nec-

essarily imply the two-way LOCC conversion of the considered states. Moreover, there

are certain quantum states, namely, maximally entangled states from which all others can

be generated by means of LOCC. As an example, suppose that two spatially separated

parties A and B share a maximally entangled two-qubit state

|ψ⟩AB =
1√
2
(|00⟩+ |11⟩). (3.26)

It is not difficult to see that any pure state having a Schmidt decomposition

|ψ⟩ = α|00⟩+ β|11⟩, (3.27)

can be generated from (3.26) by LOCC transformations. Imagine that we first introduce

an ancillary qubit to subsystem A, resulting in the state

|00⟩A|0⟩B + |01⟩A|1⟩B√
2

. (3.28)

Then, when the unitary transformation

|00⟩A → α|00⟩A + β|11⟩A, |01⟩A → β|01⟩A + α|10⟩A, (3.29)

is applied on the first two qubits, we end up with the state

|0⟩A(α|00⟩AB + β|11⟩AB) + |1⟩A(β|10⟩AB + α|01⟩AB)√
2

. (3.30)

As a last step, a local measurement is performed on the ancillary qubit. If the result of

the measurement turns out to be |0⟩, then no operation is required on the subsystem B.

On the other hand, if the ancilla is measured to be |1⟩, then the Pauli σx is applied on the

subsystem B to obtain (3.27). This example demonstrates how the coordination of local

operations can make otherwise not multi-locally implementable transformations possible.

Finally, we turn our attention back to the states which are not interconvertible under

LOCC operations. Nielsen has investigated this subject and revealed an important connec-

tion between the problem of state conversion under LOCC and the algebraic theory of ma-
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jorization [50]. Supposing that we have two real d-dimensional vectors x = (x1, . . . , xd)

and y = (y1, . . . , yd), x is said to be majorized by y (written as x ≺ y), if for each j,

j
∑

i=1

x↓i ≤
j
∑

i=1

y↓i , (3.31)

with equality holding when j = d, and where the ↓ indicates that the elements are taken

in decreasing order. With this definition in mind, Nielsen’s theorem can be summarized

as follows: Consider two parties A and B sharing a bipartite quantum state |ψ⟩. The

reduced density matrix ρψ, whose eigenvalues are denoted by λψ, can be obtained by

taking partial trace with respect to the subsystem A. Then, the theorem states that |ψ⟩ can

be deterministically transformed to |ϕ⟩ under LOCC if and only if λψ ≺ λϕ. This result

automatically implies that two pure states are LOCC equivalent if and only if they have

the same Schmidt coefficients, since λψ and λϕ are nothing but the Schmidt coefficients

of the states |ψ⟩ and |ϕ⟩, respectively. We also note that the condition (3.31) gives rise to

states which are incomparable under LOCC to each other.

3.3.1 Stochastic local operations and classical communication

Classification of quantum states under LOCC transformations (LU operations) is not the

only method of partitioning the Hilbert space into subspaces. In fact, the LU equivalence

based scheme has its disadvantages: Since LU operations do not change the amount of

entanglement contained in a quantum state, representatives of entanglement classes are

labeled by continuous parameters, which means that there are infinitely many types of

entangled states even in the case of two-qubit states. In order to simplify the classifica-

tion problem, the condition of determinism can be removed from LOCC operations to

allow for probabilistic conversion of states through stochastic local operations and classi-

cal communication (SLOCC) [31]. This coarse-graining not only simplifies the structure

of equivalence classes but also has a direct operational meaning. Provided that two states

can be obtained from each other with some non-vanishing probability, then they might

still be used as a resource for the same tasks of quantum information processing, although

this time the success chance of the task may differ from |ϕ⟩ to |ψ⟩. With the consideration

of SLOCC, two states are said to have same kind of entanglement if an invertible local

operation (ILO) relating them exists [51]. Mathematically, n-partite states |ψ⟩ and |ϕ⟩
are considered to be in the same equivalence class under SLOCC transformations if there

exist 2× 2 matrices A1, A2 . . . , An, with non-zero determinants, such that

|ϕ⟩ = A1 ⊗ A2 ⊗ . . .⊗ An|ψ⟩. (3.32)
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While SLOCC transformations cannot increase entanglement on average, they can still

increase or decrease the amount entanglement of entanglement contained in a quantum

state with a certain non-zero probability. However, they can never create entanglement

out of nowhere due to their local nature. We also note that LU equivalent states are also

equivalent under SLOCC operations but not vice versa.

In case of pure two-qubit states, there are two equivalence classes [51, 52]: the sep-

arable one consisting of all product states, and the entangled one, members of which are

all equivalent to the maximally entangled state

|ψ⟩AB =
1√
2
(|00⟩+ |11⟩). (3.33)

For pure three qubit states, the classification problem has been solved by making use

of the local ranks of the reduced density matrices, which are invariant under SLOCC trans-

formations [51]. It has been shown that there exist six non-equivalent SLOCC classes: the

separable class, three biseparable classes AB − C, AC − B, BC − A, and two fully en-

tangled classes GHZ and W that are represented by

|GHZ⟩ = 1√
2
(|000⟩+ |111⟩), (3.34)

|W ⟩ = 1√
3
(|001⟩+ |010⟩+ |100⟩). (3.35)

While the separable class corresponds to the states with local ranks r(ρa) = r(ρb) =

r(ρc) = 1, biseparable classes have only one of their reduced density matrices with rank

1. For instance, the states in the class AB − C have entanglement only between the

subsystems B and C, thus they have r(ρa) = r(ρb) = 2 and r(ρc) = 1. In spite of the fact

that there exist two inequivalent kinds of true tripartite entanglement, only the members

of the GHZ class have non-vanishing 3-tangle [53] (a measure of entanglement for pure

tripartite states). In this regard, quantum states with GHZ-type of entanglement are said

to have genuine tripartite entanglement. Indeed, almost all three qubit entangled states

belong to the GHZ class, i.e., the W-type states are of zero measure in this Hilbert space.

Starting from the case of four qubits, the number of the equivalence classes become

infinite. However, it is still desirable to partition these infinitely many classes into a finite

number of groups or families sharing certain properties. In recent literature, two main

(complementary) strategies have been used to solve the problem of SLOCC classification

for four qubits. Whereas the first method aims to exploit the vanishing or not of certain

covariants or invariants to distinguish different equivalence classes [54–58], the second

method uses the normal forms to construct families of quantum states [59–61]. For exam-

ple, Verstrate et al. have used the latter approach to classify the pure four qubit states into
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eight inequivalent families under SLOCC operations [59]. In particular, given an arbitrary

pure state of four qubit, it can always be transformed into one of the following states by

using determinant one ILOs:

Gabcd =
a+ d

2
(|0000⟩+ |1111⟩) + a− d

2
(|0011⟩+ |1100⟩)

+
b+ c

2
(|0101⟩+ |1010⟩) + b− c

2
(|0110⟩+ |1001⟩), (3.36)

Labc2 =
a+ b

2
(|0000⟩+ |1111⟩) + a− b

2
(|0011⟩+ |1100⟩)

+ c(|0101⟩+ |1010⟩+ |0110⟩), (3.37)

La2b2 =a(|0000⟩+ |1111⟩)) + b(|0101⟩+ |1010⟩) + c(|0101⟩

+ |1010⟩+ |0110⟩), (3.38)

Lab3 =a(|0000⟩+ |1111⟩) + a+ b

2
(|0101⟩+ |1010⟩) + a− b

2
×

(|0110⟩+ |1011⟩) + i√
2
(|0001⟩+ |0010⟩+ |0111⟩+ |1011⟩), (3.39)

La4 =a(|0000⟩+ |0101⟩+ |1010⟩+ |1111⟩) + (i|0110⟩

+ |0110⟩ − i|0110⟩), (3.40)

La203⊕1̄
=a(|0000⟩+ |111⟩) + (|0011⟩|0101⟩|0110⟩), (3.41)

L07⊕1̄
=|0000⟩+ |1011⟩+ |1101⟩+ |1110⟩, (3.42)

L03⊕1̄03⊕1̄
=|0000⟩+ |0111⟩ (3.43)

Notice that the states, which are equivalent under SLOCC, belong to the same family but

the inverse statement is not true. Moreover, while the completely separable state |0000⟩
forms its own class in the former approach, it belongs to the family Labc2 in the latter one,

which also contains fully entangled states [60].

When it comes to classifying pure many qubit states under SLOCC, considerable ef-

forts have been directed towards the solution of the problem. As multipartite entanglement

has a much richer structure than the few particle scenario, the problem becomes particu-

larly complicated in this case. Some partial results include the classification of 2× 2× n

dimensional multipartite states [62], even n-qubit states [63], odd n-qubit states [64] and

symmetric n-qubit states [65, 66]. In particular, exploiting the fact that all symmetric

states can be related via symmetric ILOs [67], Bastin et al. have determined the equiva-

lence classes of all symmetric states of n-qubits with the help of Majorana representation

of symmetric states [66]. More recently, Li et al. have presented a scheme for classify-

ing the general n-qubit states, which makes use of a relation between coefficient matrices

associated with the states [68].

29



3.3.2 Equivalence classes of flip and exchange symmetric states

In this section, we review the classification of flip and exchange symmetric (FES) states,

which are invariant when two qubits are interchanged or when all 0s (1s) are changed to

1s (0s), under ILOs. It has been recently shown that multiqubit FES states constitute a set

of curves in the Hilbert space and equivalence classes of these states under ILOs can be

determined in a systematic way for an arbitrary number of qubits [69]. In addition to the

relative simplicity of the form of their entanglement classes under SLOCC, FES states are

also important if one considers, for example, bosonic qubits where exchange symmetry

is essential. Moreover, since these symmetric states are by definition invariant under spin

flip errors (acting on all qubits simultaneously), they will not be altered by such global

effects. In other words, FES states form a decoherence-free subspace under global spin

flip type decoherence.

An n-qubit state |ψ⟩ is said to have flip and exchange symmetry if it satisfies σx|ψ⟩ =
|ψ⟩ with σx being the Pauli spin matrix in x-direction, and Pij|ψ⟩ = |ψ⟩ where Pij is

the exchange operator for the ith and jth qubits. It has been noted that imposing these

symmetries on the system drastically simplifies the form of the invertible operators. Thus,

FES ILOs can be written as

M(t) = f(t)

(

1 t

t 1

)

, (3.44)

where t ̸= ±1. Assuming that |ψ(0)⟩ is a normalized n qubit FES state, all equivalent

normalized FES states can then be obtained as

|ψ(t)⟩ = M⊗n|ψ(0)⟩
√

⟨ψ(0)|(M †M)⊗n|ψ(0)⟩
. (3.45)

They lie on a curve parameterized by t provided that t is real. As t changes from −∞
to ∞, excluding t = ±1, |ψ(t)⟩ traces the curve. However, if |ψ(0)⟩ turns out to be

an eigenstate of M⊗n(t), no FES ILO will alter it or by definition |ψ(0)⟩ will form an

equivalence class by itself. Eigenstates of M⊗n are of the form ⊗n
k=1|±⟩k where |±⟩ =

(1/
√
2)(|0⟩ ± |1⟩), and number of |+⟩ and |−⟩ states in the product are p and q = n− p,

respectively. Flip symmetric ones are those with even q. Eigenvalues are given by

λpq = fn(t)(1 + t)p(1− t)q, (3.46)

and they are n!/p!q! fold degenerate. The eigenstate |ψpq⟩ denotes the FES state obtained

by evaluating the symmetric linear combination of degenerate eigenstates corresponding

to eigenvalue λpq given by (3.46).
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Figure 3.1: Graphical representation of 3, 4 and 5-qubit FES states under ILOs. (a) Almost

all states are equivalent to |GHZ⟩ under ILOs while |W ⟩ (|ψ12⟩) and |S⟩ (|ψ30⟩) are the

neighbors of this equivalence class. (b) |ψ40⟩ and |ψ04⟩ are the end points of the curves. The

dotted line denotes a portion of the great circle Ga,a−d,0,d and |ψ22⟩ corresponds to G1,−1,0,2.

The states lying inside the envelope can be generated using |Θ(θ)⟩ = (sin θ/
√
2)(|ψ40⟩ +

|ψ04⟩) + cos θ|ψ22⟩ with 0 < θ ≤ π/2 as a representative subset. (c) All curves extend

between |ψ14⟩ and |ψ50⟩. The states lying inside the envelope can be generated using the

representative subset |Φ(θ)⟩ = (sin θ/
√
2)(|ψ50⟩ + |ψ14⟩) + cos θ|ψ32⟩ with 0 < θ ≤ π/2,

which is denoted by the dashed line.

In case of three qubits, possible even q values are 0 and 2. While the former corre-

sponds to the separable state |ψ30⟩ = |+++⟩, the latter corresponds to the entangled state

|ψ12⟩ = 1√
3
(|+−−⟩+ | −+−⟩+ | − −+⟩), which is equivalent to the |W ⟩ state. Since

|GHZ⟩ can be written as |GHZ⟩ = cos θ|ψ12⟩ + sin θ|ψ30⟩ with θ = π/6, it lies on the

geodesic connecting the separable |S⟩ state and the entangled FES |W ⟩ state.

Allowed q values for four qubits are 0, 2 and 4. The first and the third are separable

|ψ40⟩ and |ψ04⟩ states, respectively. The only entangled one is |ψ22⟩ which is nothing but

G1,−1,0,2 as given by (3.36). Since there are three distinct eigenvalues, the FES subspace

is a sphere. All curves start and end on |ψ40⟩ and |ψ04⟩. Expectedly, there exists infinitely

many curves corresponding to infinitely many different SLOCC classes. Among the nine

classes of four-qubit states, the only FES one is Gabcd with b = d − a and c = 0, and

it represents a great circle on the sphere passing through |ψ22⟩ and making equal angles

with |ψ40⟩ and |ψ04⟩. Hence, all four-qubit FES states can be generated, by the application

of FES ILOs, using Ga,a−d,0,d as a representative subset. If one specifically wants to deal

with the curves lying inside the envelope, then considering |Θ(θ)⟩ = (sin θ/
√
2)(|ψ40⟩+

|ψ04⟩) + cos θ|ψ22⟩ with 0 < θ ≤ π/2 as a representative is sufficient.

When it comes to five qubits, the only separable eigenstate is |ψ50⟩. The remain-

ing two are entangled states represented by |ψ32⟩ and |ψ14⟩. The FES subspace is again

three dimensional and the curves join |ψ50⟩ and |ψ14⟩. Since all three distinct eigen-

states are perpendicular to each other by construction, all curves lying inside the en-

velope can be generated by the application of FES ILOs to the representative subset

|Φ(θ)⟩ = (sin θ/
√
2)(|ψ50⟩+ |ψ14⟩) + cos θ|ψ32⟩ with 0 < θ ≤ π/2.
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3.3.3 Optimal local conversion of flip and exchange symmetric states

Despite the fact that finding an ILO which relates two states with some non-zero proba-

bility is sufficient to show the equivalence of these two states under SLOCC, the success

probabilities of transformations have fundamental operational importance in quantum in-

formation processes. For pure bipartite states, the transformations relating two states of

the same class with the greatest probability of success have been found both in the cases

of allowing and forbidding classical communication between the parties [70, 71]. For

instance, when the parties sharing the state have access to classical communication, Vi-

dal has obtained the following result: Suppose that we have two bipartite systems whose

Schmidt decompositions are given as

|ψ⟩ =
n
∑

i=1

√
αi|iAiB⟩, αi ≥ αi+1 ≥ 0,

n
∑

i=1

αi = 1, (3.47)

|ϕ⟩ =
n
∑

i=1

√

βi|iAiB⟩, βi ≥ βi+1 ≥ 0,
n
∑

i=1

βi = 1. (3.48)

Then, the maximal probability of obtaining the state |ϕ⟩ from the state |ψ⟩ by means of

SLOCC transformations is given by [71]

P (ψ → ϕ) = min
l∈[1,n]

∑n
i=l αi

∑n
i=l βi

. (3.49)

While the complete solution of the optimal state conversion problem is not known for the

states involving three or more qubits, there are several works in the literature providing

partial solutions [72–76]. For example, Cui et al. have given some lower and upper

bounds for the optimal probability of transformation from a GHZ state to other states of

the GHZ class [74]. Moreover, using the results obtained by Kintaş and Turgut [76], they

have determined the optimal SLOCC transformations among n-qubit W-class states [75].

In the remainder of this section, we intend to investigate the optimal local FES trans-

formations relating two multiqubit FES states assuming that spatially separated parties

are only allowed to apply one-shot local operations on their subsystems, i.e., they are not

allowed to make use of classical communication [21]. Although the coordination of local

operations by classical communication has been shown to enhance the power of trans-

formations in certain cases [29], it has also been noted that classical communication is

expensive in some situations [77].

Before starting our analysis, we first give an overview of the requirements that needs

to be satisfied by elements of quantum channels. Necessary and sufficient conditions for

the entries of a two by two matrix in order for the matrix to be an element of a single
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qubit quantum operation can be obtained directly from the probability-sum condition of

quantum measurements. Consider two operation elements M1 and M2, which are 2 × 2

matrices, and the quantum operation ρ → Φ(ρ) = M1ρM
†
1 +M2ρM

†
2 performed on a

single qubit. The only constraint on the operation elements is the normalization condition

that M †
1M1 +M †

2M2 = I , where I denotes the 2× 2 identity matrix and M1 and M2 are

defined as

M1 =

(

a1 a2

a3 a4

)

, M2 =

(

a5 a6

a7 a8

)

. (3.50)

For diagonal elements, the normalization condition requires that

|a1|2 + |a3|2 ≤ 1, |a2|2 + |a4|2 ≤ 1. (3.51)

Let us introduce the four dimensional state vectors

|vo⟩ =
(

|vou⟩
|vod⟩

)

=















a1

a3

a5

a7















, |ve⟩ =
(

|veu⟩
|ved⟩

)

=















a2

a4

a6

a8















(3.52)

with

|vou⟩ = (a1, a3)
T , |vod⟩ = (a5, a7)

T ,

|veu⟩ = (a2, a4)
T , |ved⟩ = (a6, a8)

T . (3.53)

So that one have

M †
1M1 +M †

2M2 =

(

⟨vo|vo⟩ ⟨vo|ve⟩
⟨ve|vo⟩ ⟨ve|ve⟩

)

= I. (3.54)

Therefore, we have ⟨vou|vou⟩ + ⟨vod|vod⟩ = ⟨veu|veu⟩ + ⟨ved|ved⟩ = 1 and ⟨veu|vou⟩ =

−⟨ved|vod⟩. The Schwarz inequality |⟨ved|vod⟩|2 ≤ ⟨vod|vod⟩⟨ved|ved⟩ implies that

|⟨veu|vou⟩|2 ≤ (1− ⟨vou|vou⟩)(1− ⟨veu|veu⟩). (3.55)

Writing the vectors in terms of ai’s we obtain

|a1|2 + |a2|2 + |a3|2 + |a4|2 ≤ 1 + |∆|2 (3.56)

where ∆ = a1a4 − a2a3 denotes the determinant of the operation element M1. On the

other hand, if a1, a2, a3, a4 are given with |a5|2+|a7|2 = 1−|a1|2+|a3|2 and |a6|2+|a8|2 =
1 − |a2|2 + |a4|2, (3.56) will ensure that ⟨veu|vou⟩ = −⟨ved|vod⟩. Hence, (3.51) together
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(a) (b)

Figure 3.2: (a) Optimal probabilities of obtaining |GHZ⟩ class FES states starting from the

|GHZ⟩ state. (b) Maximum probability of obtaining a final state in the vicinity of |ψ30⟩
assuming that the initial state is |Γ(θ)⟩ = cos θ|ψ12⟩+ sin θ|ψ30⟩ with 0 < θ < π/2.

with (3.56) give the necessary and sufficient conditions for a 2 × 2 matrix to be a valid

operation element. Moreover, one can show that the inequalities given by (3.51) are

guaranteed to be satisfied provided that (3.56) holds and |a1|2 + |a2|2 + |a3|2 + |a4|2 ≤ 2.

Thus, the constraints can be simplified as

|a1|2 + |a2|2 + |a3|2 + |a4|2 ≤ 1 + |∆|2 ≤ 2. (3.57)

Given an operation element M1 with its corresponding probability of success p, the en-

tries of M1 can be multiplied by a complex number c to increase the success probability

of the transformation by a factor of |c|2. In this case, one has

|c|2 ≤ |a1|2 + |a2|2 + |a3|2 + |a4|2 −
√

(|a1|2 + |a2|2 + |a3|2 + |a4|2)2 − 4|∆|2
2|∆|2 .

(3.58)

It is obvious from the above expression that the greatest value of |c|2, and consequently,

of p|c|2 will be obtained when |c|2 is equal to the right hand side of (3.58). As a result,

for the transformations having the maximum probability of success, (3.57) becomes

|a1|2 + |a2|2 + |a3|2 + |a4|2 = 1 + |∆|2 ≤ 2. (3.59)

If (3.59) is not satisfied for a given operation element, one can easily scale it to give the op-

timal probability by multiplying with the maximum allowed value of |c|2 given by (3.58).

A special class of transformation schemes called one successful branch protocols (OSBP)

have been considered for the distillation of entangled states in the literature [72, 73]. This

scenario involves n parties performing a unique two outcome POVM, whose operation el-

ements are constructed in a way that after each POVM, one of the two possible resulting

states contains no n-partite entanglement. For each party, this restriction mathematically

implies that det[I −M †
1M1] = 0, assuming the successful branch is realized by the ap-

plication of M1. The fact that this condition is nothing but the equality part of (3.59)
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(a) (b)

Figure 3.3: (a) Maximum probabilities of obtaining four-qubit FES states, under the as-

sumption that the three initial states are |Θ(π/100)⟩ (solid line), |Θ(π/6)⟩ = |GHZ4⟩
(dashed line) and |Θ(π/2)⟩ (dotted line). (b) Maximum probability of obtaining a fi-

nal state in the close neighborhood of one of the separable states when the initial state is

|Θ(θ)⟩ = (sin θ/
√
2)(|ψ40⟩+ |ψ04⟩) + cos θ|ψ22⟩ with 0 < θ < π/2.

guarantees the optimality of OSBP in the case of one-shot quantum operations. Finally,

it is also possible to show that the necessary and sufficient conditions given by (3.57) are

equivalent to the constraint on POVM elements that the eigenvalues of M †
1M1 should be

less than or equal to one. Since FES ILOs given by (3.44) have a fixed form, one can

scale the operators to obtain the optimal local transformations of multiqubit FES states by

multiplying the matrices with the greatest allowed value of the scaling factor f 2(t), which

is 1/(1 + |t|)2 with t ∈ (−1, 1).

For three qubits, if one assumes that the initial state is |GHZ⟩, then |ψ(t)⟩ tends

to the entangled state |ψ12⟩ as t → −1. However, Fig. 3.2(a) shows that the maximum

probability of obtaining a final state in the close neighborhood of the entangled state |ψ12⟩
decays to zero. On the other hand, |ψ(t)⟩ tends to the separable state |ψ30⟩ as t→ 1. It can

also be seen from Fig. 3.2(a) that the probability of obtaining a final state in the vicinity

of the separable state |ψ30⟩ is at most 1/4. Furthermore, the maximum probability of

success for transforming an arbitrary initial state |Γ(θ)⟩ = cos θ|ψ12⟩ + sin θ|ψ30⟩ with

0 < θ < π/2 to a final state, which is in the vicinity of the separable state |ψ30⟩, is

examined. Fig. 3.2(b) displays that the closer the initial state to the entangled state |ψ12⟩,
the more robust it becomes against a possible FES noise source.

For four qubits, among the infinitely many curves joining |ψ40⟩ and |ψ04⟩, three of

them are chosen for the investigation of the optimal FES transformations. As t → 1

(t → −1), all three initial states get closer and closer to the separable state |ψ40⟩ (|ψ04⟩).
Fig. 3.3(a) shows the probability of success of optimal FES transformations, assuming

that the initial states are |Θ(π/100)⟩ (solid line), |Θ(π/6)⟩ = |GHZ4⟩ (dashed line)

and |Θ(π/2)⟩ (dotted line). It should be noted that this discussion is fundamentally dif-

ferent from the three-qubit case since the initial states chosen here belong to different

FES SLOCC classes. Fig. 3.3(b) displays the maximum probability of obtaining a final
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(a) (b)

Figure 3.4: (a) Maximum probabilities of obtaining five-qubit FES states, under the assump-

tion that the initial states are |Φ(π/100)⟩ (solid line), |Φ(π/4)⟩ (dashed line) and |Φ(π/2)⟩
(dotted line). (b) Maximum probability of obtaining a final state in the vicinity of the sep-

arable state |ψ50⟩ when the initial states are arbitrary points on the curves generated from

|Φ(π/2)⟩ (dotted line), |Φ(π/10)⟩ (dashed line) and |Φ(π/100)⟩ (solid line).

state in the close neighborhood of one of the separable states when the initial state is

|Θ(θ)⟩ = (sin θ/
√
2)(|ψ40⟩ + |ψ04⟩) + cos θ|ψ22⟩ with 0 < θ < π/2 . Considering the

plots, one can conclude that the closer the entangled four-qubit FES states to the entan-

gled state |ψ22⟩, the more robust they become in the sense that the optimum probability

of converting them to the states lying in the vicinity of |ψ04⟩ and |ψ04⟩ vanishes.

For five qubits, the number of curves, which corresponds to the number of different

FES SLOCC classes, are also infinite and again only three of them are considered. While

all three initial states tend to the separable state |ψ50⟩ as t → 1, they approach to the

entangled state |ψ14⟩ as t → −1. Fig. 3.4(a) illustrates the probability of success of

optimal FES transformations, assuming that the initial states are |Φ(π/100)⟩ (solid line),

|Φ(π/4)⟩ (dashed line) and |Φ(π/2)⟩ (dotted line). The asymmetry in the plot is due

to the fact that |ψ14⟩ is an entangled state while |ψ50⟩ is a separable state. Fig. 3.4(b)

shows the maximum probability of obtaining a final state in the close neighborhood of

the separable state |ψ50⟩ when the initial states are arbitrary points on the three curves

generated from |Φ(π/2)⟩ (dotted line), |Φ(π/10)⟩ (dashed line) and |Φ(π/100)⟩ (solid

line). Consequently, five-qubit entangled states, which are in the vicinity of the curve

connecting |ψ32⟩ and |ψ14⟩, are more robust than other entangled states.

Although our calculations have been limited to the three, four and five-qubit cases, the

generalization of the present work to include n-qubit FES states is straightforward, since a

systematic method has been presented for classifying these states under SLOCC [69]. An

obvious open question is the optimal local conversion probabilities of FES states under

FES ILOs when classical communication is allowed between the parties, i.e., when use of

more than one successful branches is permitted.
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Chapter 4

DECOHERENCE

The present chapter is intended to deal with the emergence of classicality in quantum

systems. We will start by providing an introduction to the fundamentals of the decoher-

ence program. We will present a simple model which demonstrates the occurrence of

environment-induced decoherence for a single qubit. We will then conclude the chapter

by presenting our results on the spontaneous breaking of exchange symmetry in quantum

states that are evolving under different types of decoherence models [78, 79]. For in-depth

overviews on the appearance of classicality in quantum theory, interested reader may refer

to [7, 80–83], where various different aspects of the subject are analyzed.

4.1 Basics of the decoherence program

The theory of decoherence aims to provide an explanation to the emergence of classicality

in quantum systems. It is based on the idea that every physical system is in interaction

with its environment which typically consists of a large number of uncontrollable degrees

of freedom, and this interaction leads to entanglement between the two counterparts. Al-

though Zeh emphasized that macroscopic quantum systems are impossible to isolate from

their surroundings in 1970 [84, 85], the relation between the interaction of a quantum

system with its environment and the transition from quantum to classical was not fully

revealed until the seminal papers of Zurek in early 1980s [86, 87]. This might be due to

the fact that the fundamental problems of classical physics can always be solved consid-

ering isolated systems alone. The decoherence program deals with the two consequences

of openness of quantum systems: environement-induced decoherence and environment-

induced superselection, also known by the nickname einselection. Whereas decoherence

is usually defined as the disappearance of interference between different states of the

system, einselection is the decoherence-imposed selection of the preferred set of pointer

states that are stable in spite of the interaction with environment. Thus, decoherence and

einselection can be considered as two complimentary aspects of the same phenomenon.
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In order to demonstrate the situation mathematically, let us assume that the principal

system of interest S is represented by the state vectors |sn⟩, and the system of environment

E is described by the state vectors |en⟩ which are not orthogonal in general. We also

suppose that the system is interacting with its environment via an interaction of the form

Hint =
∑

n

|sn⟩⟨sn| ⊗ An, (4.1)

whereAn are arbitrary operators acting only on the Hilbert space of the environment. This

type of an interaction Hamiltonian induces a (non-collapse) measurement-like process on

the system in the sense that while an eigenstate |sn⟩ of the observable measured by this

interaction remains unchanged, the environment obtains information about the state of the

principal system:

|sn⟩|e0⟩ → exp(−iHintt/~)|sn⟩|e0⟩ = |sn⟩|en(t)⟩, (4.2)

where |e0⟩ is the initial state of the environment and the resulting states of the environment

|en(t)⟩ are called pointer positions. Provided that the initial state of the system is given

by the superposition
∑

n cn|sn⟩, the linearity of quantum mechanics automatically yields

(

∑

n

cn|sn⟩
)

|e0⟩ →
∑

n

cn|sn⟩|en(t)⟩, (4.3)

which is an entangled state of the composite system SE containing a superposition of all

possible measurement results. The phase relations cn which have been initially represent-

ing a coherent superposition of the system states, are now transferred into the combined

state of the system and environment. In other words, the initial coherence of the system

state has become delocalized and redistributed over the degrees of freedom of the com-

posite state of the system and its surroundings SE. The density matrix of the combined

state can be easily obtained as

ρSE(t) =
∑

nm

cn(t)c
∗
m(t)|sn⟩|en(t)⟩⟨sm|⟨em(t)|. (4.4)

By tracing over the environmental degrees of freedom, we can straightforwardly calculate

the local density matrix of the principal system S,

ρS(t) =
∑

nm

cn(t)c
∗
m(t)|sn⟩⟨sm|⟨en(t)|em(t)⟩. (4.5)

Despite the fact that interaction between the systems S and E is unitary (and thus the pro-

cess is in principle reversible), decoherence can always be assumed to be an irreversible

process in practice since the environment has a large number of uncontrollable degrees of
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freedom. Indeed, it has been revealed by many physical simulations that the large num-

ber of degrees of freedom make the environmental states rapidly approach orthogonality

⟨en(t)|em(t)⟩ → δmn. Consequently, the reduced density matrix of the principal system

S becomes diagonal in a selected basis,

ρS →
∑

n

|cn|2|sn⟩⟨sn|. (4.6)

The basis in which the resulting reduced density matrix becomes diagonal is entirely de-

termined by the form of the interaction between the system and its environment. We

observe that the off-diagonal elements corresponding to the interference terms are locally

destroyed in this basis, i.e., the coherence present in the composite system has become

unobservable locally at the level of the principle system S. This simple example demon-

strates the local suppression of interference as a result of the decoherence process induced

by the interaction with the environment. We note that although the reduced density matrix

(4.6) looks like a classical ensemble representing an ignorance-interpretable mixture, we

should not conclude that the principal system is actually in one of the states |sn⟩ since all

of these components remain fully present in the state of the global system SE.

4.1.1 Dynamics of quantum measurements

The first formal description of the measurement process was due to von Neumann [18]

who has considered the measurement devices as quantum objects in sharp contrast with

the postulate of the Copenhagen school that the measurement apparatuses are classical

and should not to be treated using the laws of quantum theory. The von Neumann mea-

surement scheme is called ideal as the measurement interaction does not alter the state

of the principal system. Such measurements that leave the state of the system unchanged

are known as quantum non-demolition measurements [88] and are very difficult to ex-

perimentally implement in real world conditions. In fact, what von Neumann defined as

a measurement process is already described by (4.3) provided we replace the system of

the environment E with the system of the measurement apparatus A. In particular, a von

Neumann type measurement scheme can be represented as

(

∑

n

cn|sn⟩
)

|a0⟩ →
∑

n

cn|sn⟩|an⟩, (4.7)

where |a0⟩ is the initial state of the measurement apparatus A and |an⟩ are the states of

the apparatus corresponding to macroscopically distinguishable pointer positions. We no-

tice that, similarly to the previously discussed case of the system and environment, the
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superposition initially present only in the principal system is now transferred to the level

of the apparatus in the sense that the final state is a superposition of both the system and

the apparatus. We also note that this measurement scheme is usually refereed to as pre-

measurement since at this stage it is not possible to conclude that the measurement has

actually been completed. Actually, it is clear that, without the help of an additional physi-

cal mechanism, we are not able to explain why we observe the pointer in a certain position

instead of in a superposition of all pointer positions [80]. Another important issue with the

von Nuemann measurement scheme is that the expansion of the final composite system

is not in general unique. Indeed, it is a direct consequence of the Schmidt decomposition

theorem that the final premeasurement state of the system and the apparatus

|ψ⟩ =
∑

n

cn|sn⟩|an⟩, (4.8)

is unique only if all coefficients cn are distinct. If not, it is possible to express the same

state using different basis states as

|ψ⟩ =
∑

n

c′n|s′n⟩|a′n⟩. (4.9)

This immediately tells us that the basis in which the state |ψ⟩ is expressed, defines the

measured observable. Moreover, this basis ambiguity implies that the apparatus might

simultaneously measure certain non-commuting observables of the system, which is in

obvious contradiction with the laws of quantum mechanics [80, 82]. The problem of basis

ambiguity can be remedied by extending the von Neumann measurement scheme via the

introduction of an environmental system as a third element in addition to the principal

system and the measurement apparatus. In this case, by the same mechanism, we have

(

∑

n

cn|sn⟩
)

|a0⟩|e0⟩ →
(

∑

n

cn|sn⟩|an⟩
)

|e0⟩ →
∑

n

cn|sn⟩|an⟩ |en⟩, (4.10)

where |e0⟩ and |a0⟩ are the initial states of the environment and the apparatus, respec-

tively. As a consequence, the basis ambiguity is now removed by existence of the tri-

decompositional uniqueness theorem which states that if a composite quantum state can

be decomposed as the final state in (4.10), then the uniqueness of the decomposition is

guaranteed [89]. Furthermore, assuming ⟨en(t)|em(t)⟩ → δmn, we also obtain

ρSA →
∑

n

|cn|2|sn⟩⟨sn| ⊗ |an⟩⟨an|, (4.11)

which only preserves the classical correlations between the system and apparatus states,

as expected from a measurement process. Once again, we see that the considered mea-
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surement type interaction dynamically defines the pointer states of the apparatus |an⟩.
However, for an arbitrary interaction Hamiltonian, identifying the basis in which the di-

agonalization takes place is not an easy task. According to Zurek [7], the preferred pointer

basis of the apparatus must be the one in which the correlations between the principal sys-

tem and the apparatus |sn⟩|an⟩ are least effected by the interaction between the apparatus

and the environment. Despite the fact that the reference to the object that does not inter-

act with the environment is usually omitted for the sake of simplicity, preservation of the

system-apparatus correlations is the criterion that actually defines the preferred pointer

basis. While there exists a simple sufficient criterion (known as the commutativity crite-

rion) to detect the preferred pointer basis states for some simple toy models, more gen-

eral methods have been proposed to identify the pointer basis in more realistic situations

[7, 90] . Lastly, we emphasize that although the decoherence program provides significant

insights about the process of measurement in quantum theory and removes the preferred

basis problem, it still does not completely solve what is referred to as the measurement

problem in the literature. The main reason for this is that the partial trace operation, which

is required to obtain the reduced density matrix of the system, is inherently connected with

the probabilistic interpretation of the state vectors [80].

4.1.2 A simple model of one-qubit decoherence

Let us now consider a simple model for a two-state system (a spin-1/2 object) to demon-

strate how the states of the environment become approximately mutually orthogonal and

therefore environment-induced decoherence takes place. This model has been introduced

by Zurek in one of his seminal papers on the subject [87]. Despite its simplicity, it ef-

fectively captures the essence of the emergence of classicality in quantum systems. Con-

sider a central two-level system S having quantum states {| ⇑⟩, | ⇓⟩} that interacts with

an environment E represented by a bath of N other two-level spins {| ↑⟩k, | ↓⟩k} with

k = 1, 2, . . . , N . If we assume that the dynamical evolution of the system is dominated by

the interaction between the system S and the environment E, then the self-Hamiltonians

of S and E and the self-interaction Hamiltonian of the environment can taken to be zero.

In this case, the interaction Hamiltonian describing the coupling of the central system to

the environmental spins is of the form

HSE =
1

2
(| ⇑⟩⟨⇑ | − | ⇓⟩⟨⇓ |)⊗

∑

k

gk(| ↑⟩⟨↑ | − | ↓⟩⟨↓ |)k ⊗
k′ ̸=k

Ik′ , (4.12)

where Ik = (| ↑⟩⟨↑ | + | ↓⟩⟨↓ |)k is the identity operator for the kth environmental spin

and the gk are coupling constants. Supposing the initial state of the composite system of

41



central spin and environmental spins is given by

|ψ(0)⟩ = (a| ⇑⟩+ b| ⇓⟩)
N
⊗
k=1

(αk| ↑⟩k + βk| ↓⟩k), (4.13)

the interaction Hamiltonian determines the time evolution of the initial state:

|ψ(t)⟩ = a| ⇑⟩|E⇑(t)⟩+ b| ⇓⟩|E⇓(t)⟩, (4.14)

where the two environmental quantum states |E⇑(t)⟩ and |E⇓(t)⟩ read

|E⇑(t)⟩ = |E⇓(−t)⟩ =
N
⊗
k=1

(αke
igkt/2| ↑⟩k + βke

−igkt/2| ↓⟩k). (4.15)

The reduced density matrix of the central two-level system S is obtained as

ρS = |a|2| ⇑⟩⟨⇑ |+ ab∗r(t)| ⇑⟩⟨⇓ |+ a∗br∗(t)| ⇓⟩⟨⇑ |+ |b|2| ⇓⟩⟨⇓ |. (4.16)

The coefficient r(t) determines the weight of the off-diagonal terms and is given by

r(t) = ⟨E⇑(t)|E⇓(t)⟩ =
N
∏

k=1

(|αk|2eigkt + |βk|2e−igkt). (4.17)

This kind of a system-environment model is called a pure dephasing model since the

diagonal elements (populations) of the reduced density matrix of the central spin is not

effected by the interaction, i.e., the decoherence process does not alter the energy of the

system. We notice that the interference terms are untouched and fully present at t = 0.

However, under the realistic assumption of random distribution of initial environmen-

tal states and coupling constants for large spin baths consisting of many spins, the off-

diagonal elements at large times become considerably small:

|r(t)|2 ≃ 2−N
N
∏

k=1

[1 + (|α|2 − |β|2)2]. (4.18)

In fact, under some quite general assumptions, it has been shown that r(t) shows a Gaus-

sian time dependence of the form r(t) ∼ eiAte−B
2t2/2 with A and B being real constants

[7]. Furthermore, by considering various different more detailed models, it has been ver-

ified that the decoherence takes place in extremely short time scales. In particular, for

mesoscopic systems such as dust particles, even the cosmic microwave backround radi-

ation is sufficient to induce an almost immediate decoherence. Lastly, note that r(t) is

constructed from periodic functions and thus will eventually return to its initial value.

Although this reappearance of coherence might occur in a relatively short time under ide-

alistic conditions, for realistic environments this time can be as long as the age of the

universe, proving the irreversibility of the decoherence process for all practical purposes.
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4.2 Decoherence induced symmetry breaking

In this section, we focus on a different aspect of decoherence process of entangled states.

Certain two-qubit entangled states have the property that they remain unchanged under

the exchange of two qubits. We will concentrate on a decoherence model which also

has an exchange symmetry, i.e., having a Hamiltonian invariant upon swapping the first

and second qubits. Our goal is to understand how the exchange symmetry properties of

symmetric pure states alter as the quantum system evolves in time under a symmetric

Hamiltonian. More specifically, we will investigate the exchange symmetry properties

of three of the four Bell states. Bell states are defined as maximally entangled quantum

states of two-qubit systems and given as

|B1⟩ =
1√
2
(|00⟩+ |11⟩), (4.19)

|B2⟩ =
1√
2
(|00⟩ − |11⟩), (4.20)

|B3⟩ =
1√
2
(|01⟩+ |10⟩), (4.21)

|B4⟩ =
1√
2
(|01⟩ − |10⟩). (4.22)

We will only consider the first three of these states which are symmetric under exchange

operation. However, our discussion can be extended to include anti-symmetric states like

|B4⟩. The first three Bell states are among the symmetric pure two-qubit states which can

be represented in the most general case by the density matrix

ρsym =















|a|2 ac∗ ac∗ ab∗

ca∗ |c|2 |c|2 cb∗

ca∗ |c|2 |c|2 cb∗

ba∗ bc∗ bc∗ |b|2















, (4.23)

where the unit trace condition of density matrices implies that |a|2 + 2|c|2 + |b|2 = 1.

4.2.1 Classical dephasing noise

We assume that the two qubits are interacting with separate baths locally and the initial

two-qubit system is not entangled with the local baths. The model Hamiltonian we con-

sider was first introduced and studied by Yu and Eberly [91] and can be thought as the

representative of the class of interactions generating a pure dephasing process defined as

H(t) = −1

2
µ[nA(t)(σz ⊗ I) + nB(t)(I ⊗ σz)], (4.24)
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where we take ~ = 1 and σz is the usual Pauli spin operator in the z-direction. Here µ

is the gyromagnetic ratio and nA(t) and nB(t) are two stochastic noise fields that lead to

statistically independent Markov processes satisfying

⟨ni(t)⟩ = 0, (4.25)

⟨ni(t)ni(t′)⟩ =
Γi
µ2
δ(t− t′), (4.26)

where ⟨· · · ⟩ stands for ensemble average and Γi(i = A,B) are the damping rates associ-

ated with the stochastic fields nA(t) and nB(t). The time evolution of the system’s density

matrix can be straightforwardly obtained as

ρ(t) = ⟨U(t)ρ(0)U †(t)⟩, (4.27)

where ensemble averages are evaluated over the two noise fields nA(t) and nB(t) and the

time evolution operator U(t) is given by

U(t) = exp[−i
∫ t

0

dt′H(t′) ]. (4.28)

The resulting density matrix in the product basis {|00⟩, |01⟩, |10⟩, |11⟩} can be written as

ρ(t) =















ρ11 ρ12γB ρ13γA ρ14γAγB

ρ21γB ρ22 ρ23γAγB ρ24γA

ρ31γA ρ32γAγB ρ33 ρ34γB

ρ41γAγB ρ42γA ρ43γB ρ44















, (4.29)

where ρij stands for the elements of the initial density matrix and γA and γB are given by

γA(t) = e−tΓA/2, γB(t) = e−tΓB/2. (4.30)

For our purposes, we want the local baths to be identical in the sense that they have the

same dephasing rate. Therefore, we let ΓA = ΓB = Γ. The resulting density matrix of

the system in the same basis with the consideration of identical baths is now given by

ρ(t) =















ρ11 ρ12γ ρ13γ ρ14γ
2

ρ21γ ρ22 ρ23γ
2 ρ24γ

ρ31γ ρ32γ
2 ρ33 ρ34γ

ρ41γ
2 ρ42γ ρ43γ ρ44















. (4.31)

In order to examine the symmetry properties, we express the dynamical evolution of ρ(t)

in terms of quantum operations. The decoherence process of the considered quantum

system can be regarded as a completely positive linear map Φ(ρ), that takes an initial
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state ρ(0) and maps it to some final state ρ(t). The effect of the map is then given by

ρ(t) = Φ(ρ(0)) =
N
∑

µ=1

Kµ(t)ρ(0)K
†
µ(t), (4.32)

where Kµ are the Kraus operators which satisfy the unit trace condition

N
∑

µ=1

K†
µ(t)Kµ(t) = I. (4.33)

In our investigation, it turns out that the effect of the mapping Φ(ρ) on the two-qubit

system can be expressed by a set of four Kraus operators as

K1 = diag[−ω(t), 0, 0, ω(t)]/
√
2, (4.34)

K2 = diag[0,−ω(t), ω(t), 0]/
√
2, (4.35)

K3 = diag[α(t),−α(t),−α(t), α(t)]/2, (4.36)

K4 = diag[β(t), β(t), β(t), β(t)]/2, (4.37)

where the time dependent parameters ω(t), α(t) and β(t) are given by

ω(t) =
√

1− γ(t)2, α(t) = γ(t)− 1, β(t) = γ(t) + 1. (4.38)

Knowing that this representation is not unique, we recall that the collective action of

the set of four Kraus operators {K1, K2, K3, K4} is equivalent to the collective action of

another set {E1, E2, E3, E4} if and only if there exists complex numbers uij such that

Ei =
∑

j uijKj where uij are the elements of a 4 × 4 unitary matrix. Consequently, the

mapping described by the Kraus operators {K1, K2, K3, K4} is equivalent to the map-

pings described by the following four operators

Eµ = diag[−ωuµ1√
2

+
αuµ3
2

+
βuµ4
2

,−ωuµ2√
2

− αuµ3
2

+
βuµ4
2

, (4.39)

ωuµ2√
2

− αuµ3
2

+
βuµ4
2

,
ωuµ1√

2
+
αuµ3
2

+
βuµ4
2

]. (4.40)

4.2.2 Exchange symmetry of the Bell states

Having calculated all possible Kraus operator sets, we are in a position to evaluate the

possible final states for the symmetric initial Bell states. The density matrices of possible

final states for |B1⟩ and |B2⟩ are obtained as

ρB1

µ (t) =
Eµ(t)ρ

B1(0)E†
µ(t)

Tr(Eµ(t)ρB1(0)E†
µ(t))

, ρB2

µ (t) =
Eµ(t)ρ

B2(0)E†
µ(t)

Tr(Eµ(t)ρB2(0)E†
µ(t))

, (4.41)
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where µ = 1, 2, 3, 4 and ρBi(0) = |Bi⟩⟨Bi| for i = 1, 2. The explicit forms of the density

matrices ρB1

µ (t) and ρB2

µ (t) are given by

ρB1

µ (t) =
1

|e|2 + |f |2















|e|2 0 0 ef ∗

0 0 0 0

0 0 0 0

e∗f 0 0 |f |2















, (4.42)

ρB2

µ (t) =
1

|e|2 + |f |2















|e|2 0 0 −ef ∗

0 0 0 0

0 0 0 0

−e∗f 0 0 |f |2















, (4.43)

with

e = (
−ωuµ1√

2
+
αuµ3
2

+
βuµ4
2

), f = (
ωuµ1√

2
+
αuµ3
2

+
βuµ4
2

). (4.44)

Obviously, the symmetry condition given by (4.23) brings no restriction on these density

matrices. Thus, it is guaranteed that the Bell states |B1⟩ and |B2⟩ always preserve their

exchange symmetry as they evolve in time under the considered dephasing channel. On

the other hand, the density matrices of the possible final states for |B3⟩ are written as

ρB3

µ (t) =
Eµ(t)ρ

B3(0)E†
µ(t)

Tr(Eµ(t)ρB3(0)E†
µ(t))

, (4.45)

where µ = 1, 2, 3, 4 and ρB3(0) = |B3⟩⟨B3|. The explicit form ρB3

µ (t) then reads as

ρB3

µ (t) =
1

|r|2 + |s|2















0 0 0 0

0 |r|2 rs∗ 0

0 r∗s |s|2 0

0 0 0 0















, (4.46)

with

r = (
−ωuµ2√

2
− αuµ3

2
+
βuµ4
2

), s = (
ωuµ2√

2
− αuµ3

2
+
βuµ4
2

). (4.47)

As can be seen from the form of the density matrix of the most general two-qubit sym-

metric pure state in (4.23), for possible final states to be symmetric we need all non-zero

elements of the matrix (4.46) to be equal to each other, that is, r = s . This condition

can only be satisfied in case of uµ2 = 0. We can immediately conclude that it is impos-

sible for all of the possible final states to be symmetric since any 4 × 4 unitary matrix
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has to satisfy the condition that |u12|2 + |u22|2 + |u32|2 + |u42|2 = 1. Thus, |B3⟩ cannot

evolve in time under our model Hamiltonian in a way that preserves its qubit exchange

symmetry with unit probability. In other words, the exchange symmetry of this two-qubit

state has to be broken with some non-zero probability. Considering the symmetry of the

initial state and the Hamiltonian, this is a very interesting result. A natural question is the

maximum probability of finding a symmetric possible final state as the system evolves in

time. In order to answer this question, we need to consider three different cases, namely,

the cases of having one, two or three symmetric possible final states. If we assume only

one of the possible final states to be symmetric, say the outcome of E1 (u12 = 0), then the

probability of getting a symmetric output state is

Psym(t→ ∞) =
1

4
|u13 + u14|2. (4.48)

If we assume two of the possible final states to be symmetric, that is u12 = 0, u22 = 0,

then the probability of having a symmetric output is

Psym(t→ ∞) =
1

4
|u13 + u14|2 +

1

4
|u23 + u24|2. (4.49)

Finally, if three of the possible final states are symmetric, that is,u12 = 0, u22 = 0,

u32 = 0, then the probability of having a symmetric output is

Psym(t→ ∞) =
1

4
|u13 + u14|2 +

1

4
|u23 + u24|2 +

1

4
|u33 + u34|2. (4.50)

In all cases, the maximum probability of getting a symmetric state turns out to be 0.5.

4.2.3 Quantum mechanical dephasing

When it comes to modeling the baths as large spin environments, one of the simplest

decoherence models, introduced in [87], is that of two central spins interacting with N

independent spins through the Hamiltonian [92],

H = c1z

N1
∑

k=1

~ω1kσ1kz + c2z

N2
∑

k=1

~ω2kσ2kz. (4.51)

This model is a direct two-spin generalization of the one discussed in Section 4.1.2, and

describes two central spins, with z-component operators c1z and c2z, coupled to bath

spins represented by σnkz, where n = 1, 2 labels the baths and k = 1, 2, 3, ..., Nn la-

bels the individual spins. All spins are assumed to be 1/2 and c1z, c2z and σnkz de-

note the corresponding Pauli matrices. Assuming that the central spins are not entan-

gled with none of the spin the baths at t = 0, the initial state will be in product form

47



|Ψ(0)⟩ = |Ψc(0)⟩|Ψσ1(0)⟩|Ψσ2(0)⟩ whose components can be expressed as

|Ψc(0)⟩ = (a↑↑| ↑↑⟩+ a↑↓| ↑↓⟩+ a↓↑| ↓↑⟩+ a↓↓| ↓↓⟩), (4.52)

|Ψσn(0)⟩ =
Nn⊗
k=1

(αnk| ↑nk⟩+ βnk| ↓nk⟩). (4.53)

Here | ↑nk⟩ and | ↓nk⟩ are the eigenstates of σnkz with eigenvalues +1 and -1, respectively,

and |αnk|2 + |βnk|2 = 1. The reduced density matrix of two central spins at later times

will be given by tracing out the bath degrees of freedom from the total density matrix

of the system, ρ(t), as ρc(t) = Trσρ(t) where subscript σ means that trace is evaluated

by summing over all possible nk states and ρ(t) = |Ψ(t)⟩⟨Ψ(t)|. The resulting reduced

density matrix in product basis {| ↑↑⟩, | ↑↓⟩, | ↓↑⟩, | ↓↓⟩} is found to be

ρc =















|a↑↑|2 a↑↑a
∗
↑↓r2 a↑↑a

∗
↓↑r1 a↑↑a

∗
↓↓r1r2

a∗↑↑a↑↓r
∗
2 |a↑↓|2 a↑↓a

∗
↓↑r1r

∗
2 a↑↓a

∗
↓↓r1

a∗↑↑a↓↑r
∗
1 a∗↑↓a↓↑r

∗
1r2 |a↓↑|2 a↓↑a

∗
↓↓r2

a∗↑↑a↓↓r
∗
1r

∗
2 a∗↑↓a↓↓r

∗
1 a∗↓↑a↓↓r

∗
2 |a↓↓|2















, (4.54)

where the decoherence factors r1(t) and r2(t) are given by

rn(t) =
Nn
∏

k=1

(|αnk|2e−i2ωnkt + |βnk|2ei2ωnkt). (4.55)

In general both expansion coefficients αnk, βnk and interaction strengths ωnk are random.

For our purposes, we will assume that the baths are identical, which means we let ex-

pansion coefficients and interaction strengths of the two baths be equal to each other as

α1k = α2k = αk, β1k = β2k = βk and ω1k = ω2k = ωk. This assumption implies that

the decoherence factors of two baths are equal so that r1(t) = r2(t) = r(t). Thus, the

reduced density matrix of two central spins is simplified to

ρc =















|a↑↑|2 a↑↑a
∗
↑↓r a↑↑a

∗
↓↑r a↑↑a

∗
↓↓r

2

a∗↑↑a↑↓r
∗ |a↑↓|2 a↑↓a

∗
↓↑|r|2 a↑↓a

∗
↓↓r

a∗↑↑a↓↑r
∗ a∗↑↓a↓↑|r|2 |a↓↑|2 a↓↑a

∗
↓↓r

a∗↑↑a↓↓(r
∗)2 a∗↑↓a↓↓r

∗ a∗↓↑a↓↓r
∗ |a↓↓|2















, (4.56)

where

r(t) =
N
∏

k=1

(|αk|2e−i2ωkt + |βk|2ei2ωkt). (4.57)

We immediately observe that the form of ρc under the assumption of identical baths is very

similar to the form of the output density matrix we obtained for classical noise Hamilto-
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nian. In particular, when the initial expansion coefficients αk and βk are equal to each

other, we will have exactly the same form of the mapping obtained for classical dephas-

ing case. Hence, decay of r(t) to zero at later times and the form of the possible Kraus

operators in this case guarantee that the qubit exchange symmetry properties of symmet-

ric Bell states |B1⟩, |B2⟩ and |B3⟩ interacting with two local large spin environments will

be the same as their behavior under local stochastic noise fields.

Since we interpret decay of r(t) as a signature of decoherence, we identify deco-

herence as the main source of spontaneous breaking of qubit exchange symmetry. Ac-

cordingly, we conclude that the spontaneous breaking of exchange symmetry for some

possible final states is a characteristic feature of decoherence processes, independent of

the particular features of the considered models.

4.2.4 Experimental demonstration of symmetry breaking

The phenomenon of decoherence-induced spontaneous symmetry breaking has been re-

cently experimentally investigated by Huang et al. [79] using a conceptually different

method from the one described here in the previous sections. Instead of following a se-

lective quantum operations approach as we have done by examining the possible final

states of the system [78], they have reconstructed the density matrix of the whole ensem-

ble during the time-evolution by performing quantum state tomography on the system

of two independent spin-1/2 objects (polarization degrees of freedom of photons in this

case). Defining a simple expression for quantifying the exchange symmetry property of

the considered Bell states, the performed experiment has analyzed the exchange symme-

tries of symmetric Bell states in an exchange symmetric pure dephasing process with a

two-photon system generated from spontaneous parametric down-conversion.

Results of the experiment have confirmed that, under such an exchange-symmetric

local-noise Hamiltonian, while the exchange symmetry is always preserved for symmet-

ric Bell states |B1⟩ and |B2⟩, when it comes to the third symmetric Bell state |B3⟩, the

exchange symmetry property breaks and survives only with a maximum probability of

0.5 at the asymptotic limit. Additionally, they have also explored the symmetry of the

antisymmetric Bell state |B4⟩ and have found that the exchange symmetry property in

this case increases and achieves a maximum value of 0.5 at the asymptotic limit. For the

details of the experimental process and the setup, interested reader may refer to [79].
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Chapter 5

BEYOND ENTANGLEMENT

In this chapter we will first give a short review of some of the recently introduced mea-

sures of quantum and total correlations. We will then present our results related to the

dynamics of classical and quantum correlation measures for hybrid qubit-qutrit states that

are under the action of local and global pure dephasing environments [93]. Thermal total

and quantum correlations of the one-dimensional anisotropic spin-1/2 XY model will also

be analyzed to discuss their relevance to quantum phase transitions occurring in this sys-

tem [94]. Quantification of the non-classicality in quantum states beyond entanglement

and the dynamics of possible quantifiers in open quantum systems have been a major fo-

cus of research in recent literature. Even though the field is still continuously growing,

interested reader may refer to [95–97] for the latest progress on the subject.

5.1 Measures of quantum correlations

Besides its foundational importance for the quantum theory, entanglement has also been

widely considered as the sole resource of quantum computation, quantum cryptography

and quantum information processing protocols for a long time [3]. However, recent inves-

tigations have demonstrated that entanglement is not the only kind of useful correlation

present in quantum states. For instance, Knill and Laflamme has introduced the concept of

the deterministic quantum computation with one qubit, which does not require any entan-

glement [98]. Moreover, it has also been demonstrated both theoretically and experimen-

tally that some separable states might perform better than their classical counterparts for

certain tasks [99–107]. Various different correlation measures have been proposed to de-

tect the non-classical correlations that cannot be captured by entanglement [5, 108–115]

Among them, quantum discord [108, 109], defined as the difference between quantum

versions of two classically equivalent expressions for mutual information, has attracted

considerable attention [95, 116–132]. In the next two subsections, we give the definitions

of the quantum discord and its geometrized version, and discuss their properties.
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5.1.1 Quantum discord

The total amount of quantum and classical correlations in a quantum state can be obtained

without difficulty by evaluating the quantum mutual information which is defined as

I(ρAB) = S(ρA) + S(ρB)− S(ρAB), (5.1)

where ρAB and ρk (k = A,B) are the density matrix of the total system and reduced

density matrix of subsystems, respectively, and S(ρ) = −Tr(ρlog2ρ) is the von-Neumann

entropy. On the other hand, a measure of classical correlations contained in a quantum

state is provided by [108, 109]

C(ρAB) = S(ρB)− min
{ΠA

k
}

∑

k

pkS(ρ
B
k ), (5.2)

where {ΠA
k } defines a set of orthonormal projectors (a von-Neumann measurement), per-

formed on subsystem A and ρBk = TrA((Π
A
k ⊗ IB)ρAB)/pk is the remaining state of sub-

system B after obtaining the outcome k with the probability pk = Tr((ΠA
k ⊗ IB)ρAB). In

our later discussions, we intend to evaluateC(ρAB) assuming that the measurement is per-

formed on the qubit part of a quantum system. A von-Neumann measurement {ΠA
1 ,Π

A
2 }

can be represented by

ΠA
1 =

1

2

(

IA2 +
3
∑

j=1

njσ
A
j

)

, (5.3)

ΠA
2 =

1

2

(

IA2 −
3
∑

j=1

njσ
A
j

)

, (5.4)

where σj(j = 1, 2, 3) are the Pauli spin operators and n = (sin θ cosϕ, sin θ sinϕ, cos θ)T

is a unit vector on the Bloch sphere with θ ∈ [0, π) and ϕ ∈ [0, 2π). Quantum discord

[108], which measures the amount of quantum correlations, is then defined as the differ-

ence between total and classical correlations

D(ρAB) = I(ρAB)− C(ρAB). (5.5)

Notice that that quantum discord is not a symmetric quantity in general, which means

that its value depends on whether the measurement is performed on subsystem A or the

subsystem B. Furthermore, it is not necessarily zero for all mixed separable states as

it claims to contain more general non-classical correlations than entanglement measures.

For pure states, quantum discord becomes a measure of entanglement being reduced to

entanglement entropy. In fact, in order to evaluate classical correlation and thus quantum
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discord, it is in general desirable to perform the optimization procedure over all possible

POVMs instead of the set of all possible orthogonal measurements [109]. All the same,

most of the studies in literature have only considered the orthogonal measurements since,

even for this simpler case, there are no available general analytical expression for discord

and analytical results have been obtained only in few restricted cases of qubit-qubit and

qubit-qudit systems [133–141]. It has also been recently shown that orthogonal measure-

ments are almost sufficient for calculating the quantum discord of two qubits, and they are

always optimal for the case of rank-2 states [142]. We lastly note that, for the relatively

simple mixed states used in our later investigations, we intend to obtain the quantum dis-

cord via numerical optimization of the von Neumann measurements, which includes a

minimization process over two independent real parameters θ and ϕ.

5.1.2 Geometric quantum discord

In order to overcome the difficulties experienced with the analytical calculation of quan-

tum discord, Dakić et al. have proposed an alternative geometrized version called geomet-

ric measure of quantum discord [110]. The so-called geometric discord aims to measure

the nearest distance between a given state and the set of zero-discord states. It can be

mathematically defined as

Dg(ρAB) = 2min
χ

∥ρAB − χ∥2, (5.6)

where the minimum is over the set of zero-discord states and the geometric quantity ∥X−
Y ∥2 = Tr(X − Y )2 denotes the square of the Hilbert-Schmidt norm. A state χ on

HA ⊗HB has vanishing discord if and only if it is a classical-quantum state, that is

χ =
m
∑

k=1

pk|k⟩⟨k| ⊗ ρk (5.7)

where {pk} is a probability distribution, {|k⟩} is an arbitrary orthonormal basis for HA

and ρk is a set of arbitrary density operators on HB. Recently, an exact analytical for-

mula has been obtained for the geometric discord of an arbitrary bipartite state of 2 × n

dimensions [143–146]. The density operators acting on a bipartite system HA⊗HB with

dimHA = 2 and dimHB = n can be represented as

ρAB =
1√
2n

IA√
2
⊗ IB√

n
+

3
∑

i=1

xiXi ⊗
IB√
n

+
IA√
2
⊗

n2−1
∑

j=1

yjYj +
3
∑

i=1

n2−1
∑

j=1

tijXi ⊗ Yj, (5.8)
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where the matrices {Xi : i = 0, 1, 2, 3} and {Yj : j = 0, 1, · · · , n2 − 1}, satisfying

Tr(XkXl) = Tr(YkYl) = δkl, are the traceless Hermitian generators of SU(2) and SU(n),

respectively. The components of the local Bloch vectors x⃗ = {xi}, y⃗ = {yj} and the

correlation matrix T = tij can be obtained as

xi = Trρab(Xi ⊗ Ib)/
√
2,

yj = Trρab(Ia ⊗ Yj)/
√
m,

tij = Trρab(Xi ⊗ Yj). (5.9)

Then, the exact formula for the geometric discord of qubit-qudit states is expressed as

Dg(ρAB) = 2
(

∥x⃗∥2 + ∥T∥2 − kmax
)

(5.10)

where x⃗ = (x1, x2, x3)
T and kmax is the greatest eigenvalue of the matrix (x⃗x⃗T + TT T ).

Although geometric discord enjoys a closed analytical formula, unlike the original quan-

tum discord, for a relatively general class of states, it has been claimed that it might not be

a good measure for the quantumness of correlations, as it can increase even under trivial

local reversible operations of the party whose nonclassicality is not tested [147].

In addition, Girolami and Adesso have recently obtained an interesting analytical for-

mula for the geometric discord of an arbitrary two-qubit state [148]

DG(ρ
AB) = 2(TrS −max{ci}), (5.11)

where S = x⃗x⃗t + TT t and

ci =
TrS

3
+

√

6TrS2 − 2(TrS)2

3
cos

(

θ + αi
3

)

, (5.12)

with θ = arccos{(2TrS3 − 9TrSTrS2 + 9TrS3)
√

2/(3TrS2 − (TrS)2)3} and {αi} =

{0, 2π, 4π}. Observing that cos
(

θ+αi

3

)

reaches its maximum for αi = 0 and choosing θ

to be zero, they have obtained a very tight lower bound to the geometric discord:

Q(ρAB) =
2

3
(2TrS −

√

6TrS2 − 2(TrS)2). (5.13)

This quantity can be regarded as a meaningful measure of quantum correlations on its own

and it has the desirable feature that it requires no optimization procedure. It is known as

the observable measure of quantum correlations (OMQC) in literature since, besides being

easier to manage than the original geometric discord, it can be measured by performing

only seven local projections on up to four copies of the state. Therefore, Q(ρ) is also very

experimentally friendly since one does not need to perform a full tomography of the state.
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5.2 Measures of total correlations

While gaining a complete understanding of the quantumness of states is of crucial impor-

tance for many reason, it is still desirable to quantify more general correlations from as

many different aspects as possible to reveal their meaning. Although quantum mutual in-

formation given in (5.1) has been widely used as the original measure of total correlations,

it is not the only available quantifier of such correlations present in literature [149, 150].

In the following two subsections, we introduce two recently proposed quantities that en-

capsulate both classical and quantum correlations from different perspectives.

5.2.1 Measurement-induced non-locality

Measurement-induced non-locality (MIN) captures more general kind of correlations than

the quantum non-locality connected with the violation of Bell inequalities [149]. It might

be regarded as a kind of (geometric) measure of total correlations or non-locality con-

tained in a quantum state and can be defined as

N(ρAB) = 2max
ΠA

∥ρAB − ΠA(ρAB)∥2, (5.14)

where the maximum is taken over the von Neumann measurements ΠA = {ΠA
k } that do

not change ρA locally, meaning
∑

k Π
A
k ρ

AΠA
k = ρA, and ∥.∥2 denotes the square of the

Hilbert-Schmidt norm. MIN aims to capture the non-local effect of the measurements

on the state ρAB by requiring that the measurements do not disturb the local state ρA.

Although a closed formula for the most general case of bipartite quantum systems is not

known, provided that we have a two-qubit system, MIN can be analytically evaluated as

N(ρAB) =







2(TrTT T − 1
∥x⃗∥2 x⃗

tTT T x⃗) if x⃗ ̸= 0,

2(TrTT T − λ3) if x⃗ = 0,
(5.15)

where λ3 is the minimum eigenvalue of the 3 × 3 dimensional matrix TT T and the defi-

nitions of the vector x⃗ and the matrix T are given in (5.9).

5.2.2 Wigner-Yanase information based measure

In a recent work, Luo has proposed a new measure of total correlations [150] by making

use of the notion of Wigner-Yanase skew information

I(ρ,X) = −1

2
Tr[

√
ρ,X]2, (5.16)
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which has been first introduced by Wigner and Yanase [151]. Here X is an observable

(an Hermitian operator) and [., .] denotes commutator. For pure states, I(ρ,X) reduces to

the variance V (ρ,X) = TrρX2 − (TrρX)2. Since the skew information I(ρ,X) depends

both on the state ρ and the observable X , Luo introduced an average quantity in order to

get an intrinsic expression [152]

Q(ρ) =
∑

i

I(ρ,Xi), (5.17)

where {Xi} is a family of observables which constitutes an orthonormal basis. Global in-

formation content of a bipartite quantum system ρAB with respect to the local observables

of the subsystem A can be defined by

QA(ρ
AB) =

∑

i

I(ρAB, Xi ⊗ IB), (5.18)

which does not depend on the choice of the orthonormal basis {Xi}. Then, the difference

between the information content of ρAB and ρA⊗ρB with respect to the local observables

of the subsystem A can be adopted as a correlation measure for ρAB ,

F (ρAB) =
2

3
(QA(ρ

AB)−QA(ρ
A ⊗ ρB))

=
2

3
(QA(ρ

AB)−QA(ρ
A)). (5.19)

Despite the evaluation of most of the measures requires a potentially complex optimiza-

tion procedure, Wigner-Yanase skew information based measure of total correlations

(WYSIM) F (ρab) has the advantage that it can be calculated straightforwardly.

5.3 Correlations of qubit-qutrit states under dephasing

As we have already discussed in the previous chapter, realistic physical systems are al-

ways in contact with their environments. This unavoidable system-environment interac-

tion lies at the heart of the phenomenon of the environment-induced decoherence [7].

Before starting to investigate the dephasing dynamics of quantum correlation measures

for some specific qubit-qutrit systems, we briefly mention some of the important dynam-

ical properties of such measures in open quantum systems [95, 96]. One of the most

striking consequences of decoherence on the dynamics of entanglement is the experimen-

tally confirmed [153] phenomenon of the total loss of entanglement between the parts of

a composite system in finite time, which is termed as entanglement sudden death (ESD)

[154–160]. On the other hand, both Markovian and non-Markovian dynamics of more
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general quantum and classical correlations have been investigated extensively under var-

ious decoherence models [95, 96, 161–188]. Under the conditions where entanglement

exhibits a sudden death, quantum discord has been shown to disappear instantaneously

in non-Markovian environments [161–163] and has been observed to resist sudden death

in Markovian environments [164]. Another remarkable result first demonstrated in [165],

is the existence of a sharp transition between classical and quantum loss of correlations,

which has also been experimentally confirmed [53]. This sudden transition implies that

there exists a finite time interval, in which only classical correlation is lost and quantum

discord is unaffected by noisy environment. Moreover, it has also been demonstrated

that quantum discord might get forever frozen at a positive value depending on the initial

state when both qubits locally interact with non-Markovian purely dephasing environ-

ments [187]. Consequently, it has been suggested that quantum discord may be more

robust than entanglement, and quantum computation models based on quantum discord

correlations might be more relevant than those based on entanglement.

We now turn our attention to the analysis of quantum and classical correlations for cer-

tain qubit-qutrit systems that are interacting with classical pure dephasing environments.

We consider a composite system of uncoupled spin-1/2 and spin-1 objects, both of which

are under the effect of stochastic environmental fluctuations. The model Hamiltonian we

use is a direct generalization of (4.24), and can be thought as the representative of the

class of interactions generating a pure dephasing process

H(t) = −1

2
µ[nA(t)σ

A
z + nB(t)c

B
z + nAB(t)(σ

A
z + cBz )], (5.20)

where we take ~ = 1. While σz is the usual Pauli spin operator in z-direction, cz cor-

responds to z-component of the three level spin cz = diag[1, 0,−1]. Here µ is the gyro-

magnetic ratio. ni(t) (i = A,B,AB) are stochastic noise fields that lead to statistically

independent Markov processes satisfying

⟨ni(t)⟩ = 0, (5.21)

⟨ni(t)ni(t′)⟩ =
Γi
µ2
δ(t− t′), (5.22)

where ⟨· · · ⟩ stands for ensemble average, and Γi is the damping rate associated with the

stochastic field ni(t). The time evolution of the density matrix of the system is given by

ρ(t) = ⟨U(t)ρ(0)U †(t)⟩, (5.23)

where ensemble averages are evaluated over the three noise fields and the time evolu-

tion operator U(t) can be straightforwardly obtained as U(t) = exp[−i
∫ t

0
dt′H(t′)]. We
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assume that all the damping parameters are the same (ΓA = ΓB = ΓAB = Γ) for

the sake of simplicity. First, we focus our attention to the case of multilocal dephas-

ing, i.e., nAB(t) = 0. In this setting, qubit and qutrit are only interacting with their

own environments locally. The resulting time-evolved density matrix in the product basis

{|ij⟩ : i = 0, 1, j = 0, 1, 2} can be written as

ρ(t) =

























ρ11 ρ12γ ρ13γ
4 ρ14γ

4 ρ15γ
5 ρ16γ

8

ρ21γ ρ22 ρ23γ ρ24γ
5 ρ25γ

4 ρ26γ
5

ρ31γ
4 ρ32γ ρ33 ρ34γ

8 ρ35γ
5 ρ36γ

4

ρ41γ
4 ρ42γ

5 ρ43γ
8 ρ44 ρ45γ ρ46γ

4

ρ51γ
5 ρ52γ

4 ρ53γ
5 ρ54γ ρ55 ρ56γ

ρ61γ
8 ρ62γ

5 ρ63γ
4 ρ64γ

4 ρ65γ ρ66

























, (5.24)

where ρij stands for the elements of the initial density matrix ρ(0) and γ(t) = e−tΓ/8.

Second, we consider a global dephasing scenario where the spins are interacting with a

shared environment collectively and local baths are absent, i.e., nA(t) = nB(t) = 0. In

this case, dynamics of the initial density matrix can be expressed in the same basis as

ρ(t) =

























ρ11 ρ12γ ρ13γ
4 ρ14γ

4 ρ15γ
9 ρ16γ

16

ρ21γ ρ22 ρ23γ ρ24γ ρ25γ
4 ρ26γ

9

ρ31γ
4 ρ32γ ρ33 ρ34 ρ35γ ρ36γ

4

ρ41γ
4 ρ42γ ρ43 ρ44 ρ45γ ρ46γ

4

ρ51γ
9 ρ52γ

4 ρ53γ ρ54γ ρ55 ρ56γ

ρ61γ
16 ρ62γ

9 ρ63γ
4 ρ64γ

4 ρ65γ ρ66

























. (5.25)

We notice that some elements of the initial density matrix ρ(0) are not affected by deco-

herence in the global dephasing setting. This special region, which does not feel the noisy

environment, is an indicator of the existence of decoherence-free subspaces.

In the next two subsections, we investigate the correlation dynamics for two different

families of hybrid qubit-qutrit states: entangled ρe(p) and separable ρs(r) defined by

ρe(p) =
p

2
(|00⟩⟨00|+ |01⟩⟨01|+ |00⟩⟨12|+ |11⟩⟨11|+ |12⟩⟨12|

+ |12⟩⟨00|) + 1− 2p

2
(|02⟩⟨02|+ |02⟩⟨10|+ |10⟩⟨02|+ |10⟩⟨10|) (5.26)

ρs(r) =
r

2
(|00⟩⟨00|+ |01⟩⟨01|+ |00⟩⟨12|+ |11⟩⟨11|+ |12⟩⟨12|

+ |12⟩⟨00|+ |02⟩⟨10|+ |10⟩⟨02|) + 1− 2r

2
(|02⟩⟨02|+ |10⟩⟨10|) (5.27)

where the parameters p and r satisfy that 0 ≤ p ≤ 1/2 and 0 ≤ r ≤ 1/3. Note that the

family of entangled states given by ρe(p) reduces to a separable state for p = 1/3.
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5.3.1 Correlations under multilocal dephasing

We first discuss the time evolution of correlations under multilocal classical dephasing

noise. The separable family ρs(r) naturally contains no entanglement since it has PPT for

all possible values of r. Negativity of the entangled family ρe(p) is given as

Ne(p, γ̃) =
1

2
[|p(1 + 2γ̃)− γ̃|+ |p(2 + γ̃)− 1| − (p− 1)(γ̃ − 1)], (5.28)

where γ̃(t) = e−tΓ. On the other hand, both of the families have non-vanishing geometric

discord in general, which can be calculated as

Dg
e(p, γ̃) =

1

4
[1 + 2γ̃2 − 2p(3 + 4γ̃2) + p2(9 + 10γ̃2)

−max{(1− 3p)2, (1− 3p)2γ̃2, (1− p)2γ̃2}], (5.29)

Dg
s(r, γ̃) =

1

4
[1− 6r + r2(9 + 4γ̃2)−max{(1− 3r)2, 4r2γ̃2}]. (5.30)

Dynamics of the entangled family: We start our investigation by considering ρe(0) and

ρe(1/2). Correlation dynamics of these two states are completely different from the other

members of the family. For ρe(1/2), Fig. 5.1(a) displays that while classical correlation

is not affected by external noise, all three quantum correlations decay in a monotonic

fashion. In this case, negativity seems to be more robust than quantum and geometric

discords. On the other hand, ρe(0) is a maximally entangled state and its general behavior

is almost the same as ρe(1/2) except all of its correlations are one initially. Dynamics

of the correlations for the remaining members of the family are far more interesting.

For all of the states corresponding to the regime 1/2 > p > 0 (excluding p = 1/3),

entanglement disappears in a finite time suffering ESD. More important, we observe the

sudden transition from classical to quantum decoherence [52], i.e, there exists a critical

instant tc at which the quantum state stops losing classical correlation and starts losing

quantum discord. Geometric discord fails to keep up with quantum discord in the classical

decoherence region, but its decay still suddenly hastens at the critical time tc. Fig. 5.1(b)

shows an example of this behavior for p = 0.25. It is possible to prolong the time interval

in which quantum discord remains constant but there exists a trade-off between the initial

magnitude of the quantum discord and its survival time. Fig. 5.1(c) illustrates the case

for p = 0.2. Although sudden changes of all correlation measures occur at the same time

instant for all the initial states considered in our study, this is not a general feature of all

quantum states. Examples of states have been presented in [188] for which evolutions of

quantum and geometric discords are completely independent of each other, and are not

affected by the discontinuities in each others dynamics.
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(a)

(c) (d)

(b)

Figure 5.1: Dynamics of negativity N (thick solid line), geometric discord Dg (dotted line),

numerically evaluated quantum discordD (dashed line) and classical correlationC (thin solid

line) as a function of the dimensionless parameter tΓ under the effect of multilocal classical

dephasing noise. The initial states are ρe(p) with (a) p = 0.5 (b) p = 0.25 (c) p = 0.2 and

ρs(r) for (d) r = 0.25.

Dynamics of the separable family: The two end points of this family, namely, ρs(0)

and ρs(1/3), are not particulary interesting since they do not contain any quantum correla-

tions. For the initial states corresponding to the interval 1/5 ≥ r > 0, classical correlation

does not feel the noise fields, whereas quantum and geometric discords decay monoton-

ically. However, the regime 1/3 > r > 1/5 is definitely more interesting. In this case,

though quantum discord is not constant and decays together with the classical correlation,

we notice that geometric discord is unaffected by environment for a finite time interval. In

other words, there exists an instant of time t̃c until which the system has frozen geometric

discord. An example is presented in Fig. 5.1(d), where r = 0.25 and the critical time

t̃c = ln 2/Γ. Note that the state keeps losing quantum discord throughout the dynamics

but as soon as t̃c is reached, the decay rate of quantum discord hastens.

5.3.2 Correlations under global dephasing

We now discuss the time evolution of correlations under global classical dephasing noise.

Negativity of the entangled family ρe(p) reads as

Ne(p, γ̃) =
1

2
[|3p− 1|+ |p(2 + γ̃2)− 1| − p(1− γ̃2)]. (5.31)
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(a) (b)

(c) (d)

Figure 5.2: Dynamics of negativity N (thick solid line), geometric discord Dg (dotted line),

numerically evaluated quantum discordD (dashed line) and classical correlationC (thin solid

line) as a function of the dimensionless parameter tΓ under the effect of global classical

dephasing noise. The initial states are ρe(p) with (a) p = 0.2 (b) p = 0.4 (c) p = 0.45 and

ρs(r) for (d) r = 0.23.

Geometric discord for the two families can also be obtained as

Dg
e(p, γ̃) =

1

4
[3− 14p+ p2(17 + 2γ̃4)−max{(1− 3p)2,

(p(γ̃2 − 2) + 1)2, (p(γ̃2 + 2)− 1)2}], (5.32)

Dg
s(r, γ̃) =

1

4
[1− 6r + r2(11 + 2γ̃4)−max{(1− 3r)2, (5.33)

r2(1− γ̃2)2, r2(1 + γ̃2)2}]. (5.34)

Dynamics of the entangled family: The correlation dynamics of the entangled family un-

der global noise is a lot richer than its dynamics under multilocal noise. While all of the

correlations hold unchanged for the maximally entangled state ρe(0), correlation dynam-

ics of the state ρe(1/2) is no different than what’s described in Fig. 5.1(a) except for the

fact that correlations decay faster. In the regime 1/3 ≥ p > 0, quantum and geometric

discords are both uniformly amplified and become stable after a certain point. Negativity

is conserved since this regime consist of decoherence-free states. Fig. 5.2(a) displays an

example of this case for p = 0.2. Classical correlation, which can be greater or smaller

than quantum discord, decreases monotonically and gets stable as well. For the regime

2/5 ≥ p > 1/3, behaviors of classical correlation and quantum discord are unchanged.
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On the other hand, geometric discord acquires a minimum without a sudden change. Al-

though all other correlations survive the effects of the environment, negativity disappears

in a finite time suffering sudden death. Fig. 5.2(b) illustrates the situation for p = 0.4.

It is noteworthy that geometric discord can decrease as quantum discord increases. Next,

we examine the interval 1/2 > p > 2/5. Whereas the states keep experiencing ESD, all

other correlations show sudden changes in their evolutions at the same instant. Fig. 5.2(c)

gives an example this behavior for p = 0.45. Note that geometric discord and classical

correlation diminish as quantum discord gets amplified until a critical time is reached.

After that instant, both quantum and geometric discords start to weaken until they reach

a stable value, but classical correlation is not affected by noise at all.

Dynamics of the separable family: Starting with ρs(1/3), we immediately see that

smooth amplification of both quantum and geometric discords is possible in this setting.

In the regime 1/5 ≥ r > 0, classical correlation is unaffected by noise but quantum

and geometric discords decay in a monotonic way until they eventually become stable.

In the interval 1/4 > r > 1/5, all correlations start to evolve in a different fashion

but they all become discontinuous simultaneously at a certain critical instant. After that

instant, classical correlation becomes constant as other measures starts to decrease until

they finally get stable. Fig. 5.2(d) illustrates this behavior for r = 0.23.

To sum up, in the above two subsections, we have analyzed the dynamics of neg-

ativity, quantum discord, geometric discord and classical correlation for two different

one-parameter families of qubit-qutrit states, assuming that the states are in a classical

dephasing environment. We have noticed that dynamics of correlations are strongly de-

pendent on the initial conditions even for such simple one-parameter families of states. In

the multilocal dephasing case, we have demonstrated the phenomenon of sudden transi-

tion from classical to quantum decoherence for hybrid qubit-qutrit systems extending the

results of [165]. In fact, this transition might be a generic feature existing in all bipartite

quantum systems but a definitive demonstration would require an analytic expression for

quantum discord in arbitrary dimensions. Furthermore, for a class of separable states,

we have observed an analogue of this phenomenon for geometric discord. Under global

noise, dynamics of correlations are quite diverse. We have shown that although quan-

tum and geometric discords can evolve initially completely independent of each other

for a certain time period, they tend to be eventually in accord. Smooth amplification of

quantum and geometric discords is also possible in this case. On the other hand, we have

confirmed that entanglement as quantified by negativity can suffer sudden death for qubit-

qutrit states both in global and multilocal dephasing settings. Our findings clearly indicate

that different measures of quantum correlations are conceptually different.
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5.3.3 Time invariant quantum discord

In this subsection, we evaluate the dynamics of certain hybrid qubit-qutrit states under the

assumption that only the qutrit is interacting with a Markovian dephasing environment and

the qubit is protected. The operator-sum representation of the considered qutrit dephasing

channel can be described by a set of Kraus operators [159, 160]

M1 = diag(1, γ(t), γ(t)), (5.35)

M2 = diag(0, ω(t), 0), (5.36)

M3 = diag(0, 0, ω(t)), (5.37)

where γ(t) = e−Γt/2 and ω(t) =
√

1− γ2(t) with Γ denoting the decay rate. We note

that this dephasing channel is not the same as the one we have considered in our previous

disccusion. In particular, this specific quantum channel is chosen so that the rate of de-

phasing between the ground state and each of the two excited states are the same. Having

defined the decoherence channel for a single qutrit, we can obtain the time evolution of

an arbitrary initial qubit-qutrit system ρ(0) under local dephasing of the qutrit as

ρ(t) =
3
∑

i=1

(I2 ⊗Mi)ρ(0)(I2 ⊗Mi)
†, (5.38)

where I2 denotes the 2×2 identity matrix acting on the qubit part of the composite system.

The resulting time-evolved density matrix in the product basis {|ij⟩ : i = 0, 1, j = 0, 1, 2}
can be then written as

ρ(t) =

























ρ11 ρ12γ ρ13γ ρ14 ρ15γ ρ16γ

ρ21γ ρ22 ρ23γ
2 ρ24γ ρ25 ρ26γ

2

ρ31γ ρ32γ
2 ρ33 ρ34γ ρ35γ

2 ρ36

ρ41 ρ42γ ρ43γ ρ44 ρ45γ ρ46γ

ρ51γ ρ52 ρ53γ
2 ρ54γ ρ55 ρ56γ

2

ρ61γ ρ62γ
2 ρ63 ρ64γ ρ65γ

2 ρ66

























. (5.39)

We choose to analyze the time evolution of quantum correlations for a one-parameter

family of entangled qubit-qutrit mixed states

ρ =
p

2
(|00⟩⟨00|+ |01⟩⟨01|+ |12⟩⟨12|+ |11⟩⟨11|+ |01⟩⟨11|+ |11⟩⟨01|+ |00⟩⟨12|

+ |12⟩⟨00|) + 1− 2p

2
(|02⟩⟨02|+ |02⟩⟨10|+ |10⟩⟨02|+ |10⟩⟨10|), (5.40)

where p ∈ [0, 0.5] and ρ turns out to be separable only for p = 1/3. In Fig. 5.3(a), we

present our results on the dynamics of negativity and quantum discord as a function of the
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(a) (b)

Figure 5.3: Dynamics of negativity (dotted line) and quantum discord (solid line) as a func-

tion of the dimensionless parameter Γt for p = 0.15 (a) and p = 0.23 (b).

dimensionless parameter Γt for p = 0.15. We notice that although the coherence in the

qubit-qutrit system is only partially lost, entanglement as quantified by negativity suffers

a sudden death and disappears after a certain finite time. On the other hand, quantum

discord remains frozen for a while but then when a critical instance is reached, it decays

to a finite non-zero value. The survival of quantum discord at the asymptotic limit (t →
∞) is not unexpected since the quantum state is still partially coherent and almost all

quantum states have non-classical correlations [117]. Regardless, Fig. 5.3(b) displays a

curious behavior of the correlations for p = 0.23. In this case, we observe that even if

the negativity evaporates quickly due to sudden death, the partial coherence left in the

qubit-qutrit system enables quantum discord to remain invariant during the whole time

evolution. It is important to emphasize that this is a rather surprising feature of non-

classical correlations that are more general than entanglement.

5.4 Thermal correlations in the anisotropic XY chain

This section is devoted to the analysis of thermal quantum and total correlations in the

one-dimensional spin-1/2 XY model in transverse magnetic field. Before starting our in-

vestigation, we briefly review certain concepts that are relevant to our purposes. Quantum

phase transitions (QPTs) are sudden changes occurring in the ground states of many-body

systems when one or more of the physical parameters of the system are continuously var-

ied at absolute zero temperature [189]. These radical changes, which strongly affect the

macroscopic properties of the system, are manifestations of quantum fluctuations. Despite

the fact that reaching absolute zero temperature is practically impossible, QPTs might still

be observed at sufficiently low temperatures, where thermal fluctuations are not signifi-

cant enough to excite the system from its ground state. In recent years, the methods of

quantum information theory have been widely applied to quantum critical systems. In

particular, entanglement and quantum discord have been shown to identify the critical
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points (CPs) of QPTs with success in several different critical spin chains, both at zero

[95, 96, 190–200] and finite temperature [201–203]. It has also been noted that unlike

pairwise entanglement, which is typically short ranged, quantum discord does not vanish

even for distant spin pairs [197]. Another interesting aspect of quantum spin chains in

transverse magnetic field is the occurrence of a non-trivial factorized ground state [204].

In order to gain a complete understanding of these factorized states, the effects of spon-

taneous symmetry breaking (SSB) should be considered [205–207]. In fact, concurrence

is known to signal the factorization point of the anisotropic XY chain corresponding to a

product ground state [207]. Moreover, it has been demonstrated that quantum discord is

also able to detect such points, provided that either SSB is taken into account or quantum

discord is calculated for several different distances of the spins [208, 209].

Let us start our analysis by introducing the Hamiltonian of the one-dimensional spin-

1/2 XY model in transverse magnetic field:

HXY = −λ
2

N
∑

j=1

[(1 + γ)σxj σ
x
j+1 + (1− γ)σyjσ

y
j+1]−

N
∑

j=1

σzj (5.41)

where N is the number of spins, σαj (α = x, y, z) is the usual Pauli operators for a spin-

1/2 at jth site, γ (0 ≤ γ ≤ 1) is the anisotropy parameter and λ is the strength of the

inverse external field. For γ = 0 the above Hamiltonian corresponds to the XX model.

When γ ≥ 0 it is in the Ising universality class, and reduces to the Ising Hamiltonian

in a transverse field for γ = 1. We are interested in the region where the XY model

exhibits two phases, a ferromagnetic and a paramagnetic phase, which are separated by

a second-order QPT at the CP λc = 1. In the thermodynamic limit, the XY model can

be solved exactly via a Jordan-Wigner map followed by a Bogoluibov transformation.

Reduced density matrix of two spins i and j depends only on the distance between them,

r = |i − j|, due to the translational invariance of the system. The Hamiltonian is also

invariant under parity transformation, meaning it exhibits Z2 symmetry. Taking these

properties into account, and neglecting the effects of spontaneous symmetry breaking

(which are studied in Ref. [205–209]), the two-spin reduced density matrix of the system

at thermal equilibrium is given by [190]

ρ0,r =
1

4
[I0,r + ⟨σz⟩(σz0 + σzr )] +

1

4

∑

α=x,y,z

⟨σα0 σαr ⟩σα0 σαr , (5.42)

where I0,r is the four-dimensional identity matrix. The transverse magnetization of the

system is given by [210]

⟨σz⟩ = −
∫ π

0

(1 + λ cosϕ) tanh(βωϕ)

2πωϕ
dϕ, (5.43)
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where ωϕ =
√

(γλ sinϕ)2 + (1 + λ cosϕ)2/2, β = 1/kbT with kb being the Boltzmann

constant and T is the absolute temperature. Two-point correlation functions are defined

as [211]

⟨σx0σxr ⟩ =

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

G−1 G−2 · · · G−r

G0 G−1 · · · G−r+1

...
...

. . .
...

Gr−2 Gr−3 · · · G−1

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

, ⟨σy0σyr ⟩ =

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

G1 G0 · · · G−r+2

G2 G1 · · · G−r+3

...
...

. . .
...

Gr Gr−1 · · · G1

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

, (5.44)

⟨σz0σzr ⟩ = ⟨σz⟩2 −GrG−r, (5.45)

where

Gr =

∫ π

0

tanh(βωϕ) cos(rϕ)(1 + λ cosϕ)

2πωϕ
dϕ

− γλ

∫ π

0

tanh(βωϕ) sin(rϕ) sin(ϕ)

2πωϕ
dϕ. (5.46)

In Fig. 5.4, we present our results regarding the thermal total correlations quantified

by MIN and WYSIM for first nearest neighbors as a function of λ for kT = 0, 0.1, 0.5

and γ = 0.001, 0.5, 1. We note that although MIN and WYSIM behave in a similar

fashion for γ = 1, they show qualitatively different behaviors in the case of γ = 0.001.

Namely, WYSIM experiences a more dramatic increase about the CP λ = 1 than MIN,

and reaches to a constant value more quickly. Furthermore, it is also important to observe

that as temperature increases, both of the correlation measures cease to exhibit a non-

trivial behavior in the vicinity of the CP.

It has been shown that QPTs can be characterized by carefully examining the two-spin

reduced density matrix and its derivatives with respect to the tuning parameter driving the

transition [191, 192]. Since correlation measures are directly determined from the reduced

density matrix, they provide information about the CPs and the order of QPTs. The CP

for a second-order QPT at zero temperature is signalled by a divergence or discontinuity

in the first derivative of the correlation measures. If the first derivative is discontinuous,

then the divergence of the second derivative pinpoints the CP [191–193]. In Fig. 5.5,

we plot the derivatives of MIN and WYSIM as a function of λ for kT = 0, 0.1, 0.5 and

γ = 0.001, 0.5, 1. We observe that both of the measures are capable of spotlighting the

CP at kT = 0 for all values of γ. It is worth to note that with increasing temperature,

the divergent behaviors of the correlation measures at CP disappears and the peaks of the

derivatives start to shift sideways. Therefore, the correlation measures lose their signifi-

cance in determining the CP of the transition.
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g=1

g=0.5

g=0.001g=0.001

Figure 5.4: The thermal total correlations quantified by MIN and WYSIM as a function of λ
for γ = 0.001, 0.5, 1 at kT = 0 (solid line), kT = 0.1 (dashed line) and kT = 0.5 (dotted

line). The graphs are for first nearest neighbors.

g=1

g=0.5

g=0.001

g=1

g=0.5

g=0.001

Figure 5.5: The first derivatives of MIN and WYSIM as a function of λ for γ = 0.001, 0.5, 1
at kT = 0 (solid line), kT = 0.1 (dashed line) and kT = 0.5 (dotted line). The graphs are

for first nearest neighbors.
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g=1
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g=1

g=0.5

g=0.001

Figure 5.6: The thermal quantum correlations quantified by OMQC and concurrence as a

function of λ for γ = 0.001, 0.5, 1 at kT = 0 (solid line), kT = 0.1 (dashed line) and

kT = 0.5 (dotted line). The graphs are for first nearest neighbors.

g=1

g=0.5

g=0.001

g=1

g=0.5

g=0.001

Figure 5.7: The first derivatives of OMQC and concurrence as a function of λ for γ =
0.001, 0.5, 1 at kT = 0 (solid line), kT = 0.1 (dashed line) and kT = 0.5 (dotted line). The

graphs are for first nearest neighbors.
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We now turn our attention to the analysis of thermal quantum correlations quantified

by OMQC and concurrence. In Fig. 5.6 and Fig. 5.7, we plot these measures and their

derivatives with respect to the driving parameter λ for first nearest neighbors as a function

of λ for kT = 0, 0.1, 0.5. While concurrence suffers a drastic decrease as temperature

increases, OMQC still captures significant amount of correlation, making it more robust

against thermal effects. It can also be seen that at kT = 0 the CP can be detected by

analyzing the non-analyticities in the first derivatives of the measures.

Next, we discuss the question of whether the studied correlation measures can signal

the emergence of non-trivial product ground state in the XY spin chain. Despite the

fact that the ground state of the model is entangled in general, for some special values

of γ and λ, the ground state becomes completely factorized. In particular, except the

trivial factorization points λ = 0 and λ → ∞, there also exists a non-trivial factorization

line corresponding to γ2 + λ−2 = 1. Accordingly, as can seen from the behavior of

concurrence in Fig. 5.6 for γ = 0.5, entanglement vanishes at λ ≃ 1.15, which spotlights

the occurrence of a product ground state. It is shown in Fig. 5.5 that, unlike OMQC

and MIN, WYSIM can signal this factorization point through a non-analytical behavior

in its derivative. For quantum discord to identify this point when the distance between

the spins is fixed, the effects of SSB must be taken into account [208, 209]. Therefore,

it is important to recognize that the calculation of WYSIM between the spins at a fixed

distance enables us to detect the product ground state even in the absence of SSB.

5.4.1 Estimation of the critical points

Having discussed the behaviors of the thermal total and quantum correlations, we explore

the ability of these measures to correctly estimate the CP of the QPT at finite tempera-

ture. Despite the disappearance of the singular behavior of MIN, WYSIM, OMQC and

concurrence with increasing temperature, it might still be possible to estimate the CP at

finite temperature [202]. For sufficiently low temperatures, divergent behaviors of the first

derivatives of correlation measures at T = 0 will be replaced by a local maximum or min-

imum about the CP. Therefore, in order to estimate the CP, we search for this extremum

point. On the other hand, a discontinuous first derivative at T = 0 requires us to look for

an extremum point in the second derivative for T > 0. In Fig. 5.8, we present the results

of our analysis regarding the estimation of CP as a function of kT for first and second

nearest neighbors when γ = 0.001, 0.5, 1. Before starting to compare the ability of MIN,

WYSIM, OMQC and concurrence to indicate the CP, we notice that the success rates of

these measures strongly depends on the anisotropy parameter of the Hamiltonian. In the
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g=0.001

r=2

g=0.5

r=2

g=1

r=2

Figure 5.8: The estimated values of the CP as a function of kT for three different values of

the anisotropy parameter γ = 0.001, 0.5, 1. The CPs are estimated by OMQC (denoted by o),

WYSIM (denoted by +), MIN (denoted by ∗) and concurrence (denoted by x). Concurrence

is not included for γ = 1 and r = 2, since it vanishes at even very low temperatures.

case of first nearest neighbors, at γ = 1, all of the correlation measures are able to predict

the CP reliably, with concurrence being the most effective among them. When γ = 0.5

MIN turns out to be the worst CP estimator. While WYSIM and concurrence points out

the CP relatively well as compared to MIN, OMQC clearly outperforms all others and

estimates the CP in a exceptionally accurate way. For γ = 0.001, MIN and OMQC be-

come identical, and they predict the location of the CP significantly worse than WYSIM

and concurrence. For second nearest neighbors, even though we do not present the graphs

of correlation measures and their derivatives, the CP has been inspected by performing

the same analysis as in the first nearest neighbor case. The CPs estimated by WYSIM,

OMQC and MIN for γ = 1 deviate from the true CP by the same amount but they are still

acceptable. In the case of γ = 0.5, both concurrence and OMQC estimate the CP very

well in contrast to WYSIM and MIN. Finally, when γ = 0.001, while WYSIM and con-

currence spotlight the CP remarkably well, OMQC and MIN perform very poorly. It is

also worth to notice that concurrence performs even better than the first nearest neighbors

case for γ = 0.5 and γ = 0.001. Furthermore, the ability of entanglement of formation

and quantum discord to estimate the CP of the XY spin chain at finite temperature has

been recently studied by Werlang et al. [202]. The performance of the the considered

measures as compared to quantum discord and entanglement of formation depends on the

anisotropy parameter and also on the distance between the spin pairs. For instance, in the

first nearest neighbors case at γ = 0.5, only OMQC performs as well as quantum dis-

cord and entanglement of formation. On the other hand, for the second nearest neighbors

at γ = 0.001, while WYSIM and concurrence turn out to be better CP estimators than

discord and entanglement of formation, MIN and OMQC do not perform as well.
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5.4.2 Long-range behavior of the correlations

We now examine the long-range behavior of the thermal correlations. Fig. 5.9 demon-

strates our results related to the dependence of MIN, WYSIM and OMQC on the distance

between the spin pairs at finite temperature, for λ = 0.75, 0.95, 1.05, 1.5 and γ = 0.001, 1.

In case of γ = 0.001, neither of the correlation measures remain significant when the dis-

tance between the spin pairs is increased. We can also see that the decay of the correlations

hastens when the temperature rises. For γ = 1, even though MIN, WYSIM and OMQC

approach to a finite value in the ordered phase for sufficiently low temperatures, thermal

effects wipe out the correlations between distant spin pairs after a certain temperature.

g=1

kT=0.1

g=1

kT=0.1

g=1

kT=0.5

g=1

kT=0.5

g=0.001

kT=0.1

g=0.001

kT=0.1

g=0.001

kT=0.5

g=0.001

kT=0.5

g=1

kT=0.1

g=0.001

kT=0.1

g=0.001

kT=0.5

g=1

kT=0.5

Figure 5.9: Long-range behavior of the thermal total and quantum correlations for γ = 0.001
and γ = 1 at kT = 0.1, 0.5. The circles, squares, diamonds and triangles correspond to

λ = 0.75, λ = 0.95, λ = 1.05 and λ = 1.5, respectively.
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Chapter 6

CONCLUSION

In this thesis, we have investigated a collection of subjects in quantum information theory,

including the symmetry properties of quantum states under decoherence, the optimal local

transformations of multipartite FES states, the dynamics of various correlation measures

in dephasing environments and the thermal correlations in the XY spin chain. The main

results of the thesis are constructed from four publications [21, 78, 93, 94], and presented

here in three chapters, namely the chapters three to five.

In the third chapter, we have studied the local one-shot entanglement transformations

of FES states. We have determined the structure of optimal transformations that relate

multiqubit FES states with the maximum possible probability of success. We have also

demonstrated that certain entangled states are more robust than others, that is, the opti-

mum probability of converting these robust states to the states lying in the close neigh-

borhood of separable ones vanishes under local FES operations.

In the fourth chapter, we have examined the exchange symmetry of Bell states when

two qubits interact with local baths having identical parameters. We have considered a

pure dephasing model which is also invariant under swapping the qubits. We have found

that as the system evolves in time, one of the symmetric Bell states fails to preserve the

exchange symmetry. This phenomenon, known as the decoherence induced spontaneous

symmetry breaking, has been demonstrated experimentally.

In the fifth chapter, we have first explored the dynamics of classical and quantum

correlations for qubit-qutrit systems in independent and global dephasing environments.

In these cases, we have demonstrated several interesting phenomena such as the frozen

quantum discord and frozen geometric discord. Then, we have investigated the thermal

quantum and total correlations in the anisotropic XY spin chain in transverse field. We

have shown that the ability of correlation measures to estimate the critical point of the

phase transition at finite temperature strongly depends on the anisotropy parameter of the

model. We have also identified a correlation measure which detects the factorized ground

state. Finally, we have studied the effect of temperature on long-range correlations.
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