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Abstract 

Most digital cameras capture only one color channel (red, green, or blue) per pixel, 
because capturing three color channels per pixel would require three image sensors which 
increases the cost of digital cameras. Therefore, only one image sensor is used, and images 
pass through a color filter array (CFA) before being captured by the image sensor. Bayer 
pattern is the most commonly used CFA pattern in digital cameras. Demosaicing is the 
process of reconstructing the missing color channels of the pixels in the color filtered image 
using their available neighboring pixels. There are many image demosaicing algorithms with 
varying reconstructed image quality and computational complexity. In this thesis, high 
performance hardware architectures are designed for three high quality image demosaicing 
algorithms, and the proposed hardware architectures are implemented on FPGA. 

A high performance hardware architecture for Effective Color Interpolation (ECI) 
demosaicing algorithm is proposed. A modified version of Enhanced ECI demosaicing 
algorithm and a high performance hardware architecture for this image demosaicing 
algorithm are proposed. A hybrid ECI and Alternating Projections demosaicing algorithm and 
a high performance hardware architecture for this image demosaicing algorithm are proposed. 
The proposed hardware architectures are implemented using Verilog HDL. The Verilog RTL 
codes are mapped to Xilinx Virtex 6 FPGA. The proposed FPGA implementations are 
verified with post place & route simulations. They are capable of processing 160, 118, and 
119 full HD images per second. 
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Özet 

Çoğu dijital fotoğraf makinesi piksel başına sadece bir renk kanalı (kırmızı, yeşil veya 
mavi) yakalar, çünkü piksel başına üç renk kanalını yakalamak için üç resim sensörü 
kullanılması gerekir ve bu dijital fotoğraf makinesinin maliyetini arttırır. Bu nedenle sadece 
bir resim sensörü kullanılır ve resimler sensörde yakalanmadan önce renk filtresi 
düzeneğinden geçer. Dijital fotoğraf makinelerinde en sık kullanılan renk filtresi düzeneği 
Bayer’dir. Demozaikleme, renk filtresinden geçmiş resmin piksellerindeki eksik renk 
kanallarının mevcut komşu piksellerden elde edilmesi işlemidir. Farklı yeniden oluşturulan 
resim kalitesi ve işlemsel karmaşıklığa sahip birçok demozaikleme algoritması vardır. Bu 
tezde, üç yüksek kaliteli resim demozaikleme algoritması için yüksek performanslı donanım 
mimarileri tasarlandı ve önerilen donanımlar FPGA üzerinde gerçeklendi. 

Efektif Renk Đnterpolasyonu (ERĐ) demozaikleme algoritması için yüksek 
performanslı donanım mimarisi önerildi. Zenginleşirilmiş ERĐ demozaikleme algoritmasının 
modifiye edilmiş versiyonu ve bu resim demozaikleme algoritması için yüksek performanslı 
donanım mimarisi önerildi. Hibrit ERĐ ve değişken projeksiyonlar demozaikleme algoritması 
ve bu resim demozaikleme algoritması için yüksek performanslı donanım mimarisi önerildi. 
Önerilen donanım mimarileri Verilog donanım tanımlama dili kullanılarak gerçeklendi. 
Verilog kodları Xilinx Virtex 6 FPGA’sına yerleştirildi. FPGA gerçeklemeleri yerleştirme ve 
yönlendirme sonrası simülasyonlar ile doğrulandı. Bu FPGA gerçeklemeleri saniyede 160, 
118 ve 119 tam yüksek çözünürlüklü (YÇ) resim işleyebilmektedir. 
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Chapter 1  

INTRODUCTION 

Most digital cameras capture only one color channel (red(R), green(G), or blue(B)) 

per pixel. Because, capturing three color channels per pixel would require three image 

sensors which increases the cost of digital cameras. Therefore, only one image sensor is used, 

and images pass through a color filter array (CFA) before being captured by the image 

sensor. As shown in Figure 1.1, there are several CFA patterns. Bayer pattern, shown in 

Figure 1.1 (a), is the most commonly used CFA pattern in digital cameras [1]. Bayer pattern 

takes the human vision systems relatively higher sensitivity to green into account by 

sampling green channel at twice the rate of red and blue channels [2].   

As shown in Figure 1.2, CFA interpolation, commonly known as demosaicing (or 

demosaicking), is the process of reconstructing the missing color channels of the pixels in the 

color filtered image using their available neighboring pixels. There are many demosaicing 

algorithms with varying reconstructed image quality and computational complexity.  

 

Figure 1.1 RGB color filter arrays (a) Bayer [2] (b)Yamanaka [10] (c) Lukac and Plataniotis 
[11] (d) Vertical-stripe [12] (e) Diagonal-stripe [12] (f) Modified Bayer [12] (g) HVS-based 
[13] 



 

2 
 

Original Image 

R R R R G G G G B B B B 

R R R R G G G G B B B B 

R R R R G G G G B B B B 

R R R R G G G G B B B B 

 

 

G R G R 

B G B G 

G R G R 

B G B G 

 

Demosaiced Image 

R 

recr. 

 

R 

orig. 

R 

recr. 

R 

orig. 

G 

orig. 

G 

recr. 

G 

orig. 

G 

recr. 

B 

recr. 

B 

recr. 

B 

recr. 

B 

recr. 

R 

recr. 

R 

recr. 

R 

recr. 

R 

recr. 

G 

recr. 

G 

orig. 

G 

recr. 

G 

orig. 

B 

orig. 

B 

recr. 

B 

orig. 

B 

recr. 

R 

recr. 

R 

orig. 

R 

recr. 

R 

orig. 

G 

orig. 

G 

recr. 

G 

orig. 

G 

recr. 

B 

recr. 

B 

recr. 

B 

recr. 

B 

recr. 

R 

recr. 

R 

recr. 

R 

recr. 

R 

recr. 

G 

recr. 

G 

orig. 

G 

recr. 

G 

orig. 

B 

orig. 

B 

recr. 

B 

orig. 

B 

recr. 
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Simple demosaicing algorithms such as bilinear or bicubic interpolation produce low 

quality reconstructed images, often accompanied with aliasing problems (zipper effect) 

around edges, as shown in Figure 1.3(b). Therefore, complex demosaicing algorithms such as 

Effective Color Interpolation (ECI) [3], Enhanced ECI [4] and Alternating Projections (AP) 

[5] are proposed. These algorithms use larger number of neighboring pixels for color 

interpolation and the correlation between different color channels of the neighboring pixels. 

They produce higher quality reconstructed images at the expense of increased computational 

complexity. Therefore, efficient hardware architectures should be designed for real-time 

implementation of these complex image demosaicing algorithms. In addition, these 

algorithms can be modified to make them more suitable for hardware implementation. 

 

 

Figure 1.3 Aliasing problem in bilinearly interpolated image 

 

1.1. Thesis Contribution 

Since there are real-time hardware implementations of only low quality demosaicing 

algorithms in the literature, in this thesis, high performance hardware architectures are 

designed for three high quality image demosaicing algorithms, and the proposed hardware 

architectures are implemented on FPGAs. First, we propose a high performance hardware 

architecture for Effective Color Interpolation (ECI) demosaicing algorithm [3]. The proposed 

hardware architecture is implemented using Verilog HDL. The Verilog RTL code is mapped 
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to a Xilinx Virtex 6 FPGA. The proposed FPGA implementation is verified with post place & 

route simulations. It is capable of processing 160 full High Definition (HD) images per 

second or 40 quad HD images per second. 

Then, we propose a modified version of Enhanced ECI (EECI) algorithm [4]. EECI 

algorithm produces high quality reconstructed images, but it uses a large number of division 

operations. Therefore, in order to reduce hardware complexity, we propose some 

modifications to EECI algorithm. The modified EECI algorithm produces 1.48 dB, 0.64 dB, 

and 0.26 dB better PSNR results than ECI algorithm for red, green, and blue channels, 

respectively. We also propose a high performance hardware architecture for this demosaicing 

algorithm. The proposed hardware architecture is implemented using Verilog HDL. The 

Verilog RTL code is mapped to a Xilinx Virtex 6 FPGA. The proposed FPGA 

implementation is verified with post place & route simulations. It is capable of processing 

118 full HD images per second or 29 quad HD images per second. 

Finally, we propose a hybrid ECI and Alternating Projections (AP) demosaicing 

algorithm [5]. In order to reduce hardware complexity, we propose avoiding the iterations in 

the AP algorithm by adding ECI algorithm in the intermediate step. The hybrid ECI and AP 

algorithm produces 1.88 dB better PSNR results than ECI algorithm for green channel, and 

same PSNR results for red and blue channels. We also propose a high performance hardware 

architecture for this demosaicing algorithm. The proposed hardware architecture is 

implemented using Verilog HDL. The Verilog RTL code is mapped to Xilinx Virtex 6 

FPGA. The proposed FPGA implementation is verified with post place & route simulations. 

It is capable of processing 119 full HD images per second or 29 quad HD images per second. 

In this thesis, demosaicing algorithms are evaluated as follows. Images in the Kodak 

Image Suite shown in Figure 1.4 [14], which include all three color channels, are filtered 

through Bayer pattern. The color filtered images are reconstructed by the demosaicing 

algorithm. Each color channel (R, G, B) of each reconstructed image is then compared to the 

corresponding color channel of the original image using Peak-Signal-to-Noise (PSNR) 

metric. Higher PSNR value indicates that the reconstructed image more closely matches the 

original image. PSNR is calculated using Mean Squared Error (MSE), as shown in Equations 

1.1 and 1.2. N and M denote the image height and width respectively. R is the reconstructed 

image and O is the original image. MAX is the maximum value a pixel can take. In this 
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thesis, this value is set to 255. Composite PSNR (sometimes referred as color PSNR) is 

calculated as shown in Equations 1.3 and 1.4. 
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Figure 1.4 Kodak Image Suite 
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The rest of the thesis is organized as follows. In Chapter 2, the proposed high 

performance ECI hardware is presented, and its implementation results are given. In Chapter 

3, the proposed modified EECI demosaicing algorithm is presented, and its performance 

results are given. In addition, the proposed high performance hardware for this algorithm is 

presented, and its implementation results are given. In Chapter 4, the proposed hybrid ECI 

and AP demosaicing algorithm is presented, and its performance results are given. In 

addition, the proposed high performance hardware for this algorithm is presented, and its 

implementation results are given. Chapter 5 concludes the thesis.  
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Chapter 2  

EFFECTIVE COLOR INTERPOLATION HARDWARE 

Effective color interpolation demosaicing algorithm takes advantage of the inter-channel 

correlation between green and blue channels, as well as between green and red channels [3]. 

ECI flow is shown in Figure 2.1. The reference CFA pattern used for the following ECI 

calculations is shown in Figure 2.2. ECI calculates KR and KB values for green pixels as 

shown in Equations 2.1 and 2.2. It calculates missing R and B values for green pixels as 

shown in Equations 2.3 and 2.4. 

 K. = G − R (2.1) 
 

 K1 = G − B (2.2) 
  

 3′43 = 53 − 	′3 = 53 −612 �	1 + 	7 (2.3) 

 

 3′46 = 56 − 	′6 = 56 −612 �	5 + 	7 (2.4) 

 

 

Figure 2.1 ECI flow 
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Figure 2.2 Reference CFA pattern for ECI calculations 

 

ECI algorithm first calculates missing green values as shown in Equation 2.5. Missing 

green values at blue pixels are calculated similarly using K’B values. After calculating all 

missing green values, it calculates missing red and blue values as shown in Equations 2.6 and 

2.7. 

 5 ′7 = 	7 +614 �3′43 + 3′46 +63′48 +63′411 (2.5) 

 

 	′3 = 53 −612 �3′41 + 3′47 (2.6) 

 

 =′7 = 5 ′7 −614 �3′>2 + 3′>4 +63′>10 +63′>12 (2.7) 

 

  

(a) Reconstructed by ECI  (b) Original 

Figure 2.3 An example reconstructed image by ECI 
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The objective qualities of the reconstructed images by ECI demosaicing algorithm are shown 
in Table 2.1. The subjective quality of an example reconstructed image by ECI demosaicing 
algorithm is shown in Figure 2.3. 

  

TABLE 2.1 PSNR (dB) COMPARISON OF IMAGE DEMOSAICING ALGORITHMS 

Image Bilinear Laplacian ECI  Image Bilinear Laplacian ECI 

1 25.31 30.86 33.02  13 23.09 27.67 31.13 
 29.58 34.71 35.66   26.49 30.68 32.52 
 35.35 30.80 33.50   23.00 27.43 30.82 
2 31.89 35.92 36.05  14 28.15 33.12 33.16 
 36.26 40.82 41.66   32.01 37.31 37.91 
 32.36 37.27 39.99   28.60 33.49 36.65 
3 33.45 38.27 39.69  15 28.15 34.81 36.49 
 37.17 42.19 43.06   32.01 39.41 41.60 
 33.83 38.32 41.25   28.60 35.60 40.08 
4 32.61 35.72 37.89  16 30.30 35.82 37.08 
 36.53 40.76 41.92   34.73 39.71 39.97 
 32.91 37.49 40.56   30.39 35.88 37.44 
5 25.75 31.76 34.41  17 31.63 36.48 39.33 
 29.32 35.99 36.77   34.54 39.33 40.51 
 25.92 31.77 35.49   30.86 35.58 38.18 
6 26.70 32.27 34.27  18 27.32 31.79 35.38 
 31.05 36.12 36.94   30.54 34.77 36.88 
 27.00 32.32 34.42   26.82 31.29 34.62 
7 32.57 38.11 39.30  19 26.78 33.26 34.59 
 36.47 42.27 42.03   31.74 38.31 37.21 
 32.58 37.94 41.13   26.95 33.48 34.52 
8 22.53 28.74 29.76  20 30.81 36.24 38.52 
 27.40 33.49 33.02   34.58 39.75 40.54 
 22.48 28.70 29.90   30.59 35.45 38.11 
9 31.56 37.21 38.88  21 27.63 32.92 35.22 
 35.72 41.34 41.45   31.54 36.40 37.48 
 31.38 37.13 38.45   27.53 32.66 35.21 
10 31.84 37.13 39.59  22 29.84 34.53 35.92 
 35.37 41.24 42.21   33.34 37.83 38.37 
 31.23 36.56 39.17   29.22 34.04 36.22 
11 28.17 33.43 34.93  23 34.43 39.44 39.71 
 32.22 37.21 37.99   37.98 43.46 43.52 
 38.34 33.76 36.18   34.12 39.48 42.46 
12 32.67 37.65 38.89  24 26.40 31.06 34.10 
 36.82 42.34 42.40   29.38 33.50 35.59 
 32.35 37.77 39.82   25.29 29.16 32.25 
     Red 29.15 34.34 36.14 
   Average  Green 33.03 38.29 39.05 
     Blue 29.90 34.31 36.93 
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2.1 Hardware Implementation 

The proposed ECI hardware architecture is shown in Figure 2.4. Since all missing 

green channel values are reconstructed before reconstructing missing red and blue channel 

values, these cannot be executed in parallel. In order to improve its throughput, the proposed 

datapath has 3 pipeline stages with registers between them. Datapath stage 1 calculates 6 Kr’ 

and 6 Kb’ values. Datapath stage 2 calculates 2 Kr” and 2 Kb” values. Datapath stage 3 

calculates 2 Kr”’, 2 Kb”’, 1 Kr”” and 1 Kb”” values.  

For ECI operation, the minimum operation window is 7x7. Extending this window to 

8x8 enables the hardware to process the 2x2 window in the middle simultaneously. Also, 

since the Bayer pattern is a repetition of 2x2 window, the proposed hardware avoids 

reconfiguration for different types of pixels. 

 Figure 2.5 indicates the data extraction process for 8x8 window. 2x2 window in the 

middle in Figure 2.5(b) indicates which missing color channels could be reconstructed with 

the available data. At each time step, hardware reads 4 color filtered pixels through a 32-bit 

SRAM data bus. To minimize the memory access times, a rotating Block RAM organization 

is implemented as shown in Figure 2.6. When the image is being demosaicked, 8 out of 10 

block RAMs are read, while the remaining 2 block RAMs are filled with next line data. When 

end of the line is reached, newly filled block RAMs are taken into the read group and 2 block 

RAMs containing oldest line data are filled with next line data. 

 The proposed hardware works as follows. After the start signal, the proposed 

hardware first stores the pixels in the first 8 lines of Bayer filtered image into BRAMs A 

through H by generating the proper read addresses for off-chip memory, and write addresses 

and write enables for corresponding BRAMs. Then, an 8x8 pixel register file is filled from 

BRAMs. Right half of the 8x8 window, shown in Figure 2.7(a), is then passed through 

Datapath stage 1 in order to calculate Kr’, Kb’ values shown in Figure 2.7(b). The Kr’, Kb’ 

values are then passed through Datapath stage 2 in order to obtain Kr”, Kb” values and the 

corresponding missing green values shown in Figure 2.7(c). Datapath stage 3 uses Kr”, Kb” 

values and green values obtained from Datapath stage 2 and Bayer filtered input image to 
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calculate missing R, B values of the 2x2 window in the middle as shown in Figure 2.7 (d). 

The results are written into off-chip memory. 
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Figure 2.5 (a) Image sensor data scan order for ECI hardware     (b) Raster scan order 
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Figure 2.6 Rotating block RAM organization (a) when processing rows n through n+7 (b) 
when processing rows n+2 through n+9 (8x8 current window is shown in grey)  
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(d)  
 

Figure 2.7 (a) 8x8 mosaicked window for processing the central 2x2 (b) KR’ and KB’ are 
calculated by bilinearly interpolating red and blue values (c) KR”, KB” are calculated by 
averaging surrounding 4 KR’, KB’ values (d) KR””, KB””, KR”’, KB”’ values are calculated for 
obtaining missing red, blue values 
 
 The proposed ECI demosaicing hardware architecture including datapath, control unit 

and on-chip memory is implemented in Verilog HDL. The resulting Verilog RTL codes are 

synthesized and placed & routed to a Xilinx Virtex 6 LX240T-3FF1759 FPGA using Xilinx 

ISE 13.4. The resulting netlist is verified with post place & route simulations using Questa 

10.0d. The FPGA implementation occupies 257 slices, and it uses 800 LUTs, 655 registers, 

and 10 RAMB18E1. The FPGA implementation can work at 76.9 MHz, and it can process 

160 1920x1080 full HD images per second. 

 A real-time bilinear interpolation demosaicing hardware for HD video cameras is 

proposed in [15]. This hardware is implemented on a Xilinx Virtex 4 XC4VLX25 FPGA. It 

works at 150 MHz, and it processes 72 full HD images per second. The proposed ECI 

demosaicing hardware processes 88 more full HD images per second with 6.99 dB, 6.02 dB, 

and 7.03 dB better reconstructed image quality in red, green, and blue channels, respectively. 
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Chapter 3  

MODIFIED ENHANCED EFFECTIVE COLOR INTERPOLATION HARDWARE 

ECI demosaicing algorithm achieves very good performance with relatively low 

computational cost. One of the shortcomings of ECI is that it does not take into account the 

locational non-uniformity in the color difference planes. Bilinear interpolation on the color 

difference channel results in zipper effect artifacts [4]. Enhanced ECI demosaicing algorithm 

proposed in [4] uses an adaptive weighted interpolation scheme in order to reduce the zipper 

artifacts around the non-uniform parts of the color difference planes. Enhanced Effective 

Color Interpolation algorithm has four steps. 

1) Step 1: Populate Green Channels 

Similar to the original ECI algorithm, initial step is to populate the missing green 

channels at red and blue pixels using the neighboring color differences (left, right, top, 

bottom) obtained through bilinear demosaicing. Obtained KR or KB is added to the original 

red or blue value respectively to obtain the missing green value. Assignment of the weights is 

shown below. 

α���,� = ?A���,� − A�,�? + ?C���,� − C�B�,�? 
α�B�,� = ?A�B�,� − A�,�? + ?C���,� − C�B�,�? 
α�,��� = ?A�,��� − A�,�? + ?C�,��� − C�,�B�? 
α�,�B� = ?A�,�B� − A�,�? + ?C�,��� − C�,�B�? 

 (3.1) 
where A represents green and C represents red or blue, depending on the pixel being 

processed. 
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 3CD��,� =
ECF�GHI,J�BαGHI,JB

ECF�GKI,J�BαGKI,JB
ECF�G,JHI�BαG,JHIB

ECF�G,JKI�BαG,JKI��BαGHI,JB
��BαGKI,JB

��BαG,JHIB
��BαG,JKI

 (3.2) 

 

where 3CD is KR or KB. 

 

2) Step 2: Populate Red Channels at Blue Pixels, Blue Channels at Red Pixels 

Missing red channels at blue pixels and blue channels at red pixels are populated using a 

similar adaptive weighted scheme, with the directions of weights and K values taken from 

cornering neighbors as shown below. 

α���,��� = ?B���,��� − B�,�? + ?R���,��� − R�B�,�B�? 
α�B�,�B� = ?B�B�,�B� − B�,�? + ?R�B�,�B� − R���,���? 
α�B�,��� = ?B�B�,��� − B�,�? + ?R�B�,��� − R���,�B�? 
α���,�B� = ?B���,�B� − B�,�? + ?R���,�B� − R�B�,���? 

(3.3) 

 3CD��,� =
ECF�GHI,JHI�BαGHI,JHIB

ECF�GKI,JKI�BαGKI,JKIB
ECF�GKI,JHI�BαGKI,JHIB

ECF�GHI,JKI�BαGHI,JKI��BαGHI,JHIB
��BαGKI,JKIB

��BαGKI,JHIB
��BαGHI,JKI

 (3.4) 

 

3) Step 3: Populate Red and Blue Channels at Green Pixels 

After Step 2 is completed, KR and KB values of the left, right, top and bottom neighbors 

of green pixels are available. Similarly, all necessary values for the weight calculations are 

available. Missing blue and red values at green pixels are estimated with calculations similar 

to Step 1 (A as green and C as red or blue). 

4) Step 4: Refinement 

After all the interpolations are done, results can be refined by using the weight and 

adaptive averaging equations in Step 1. This reduces the demosaicing artifacts. As reported in 

[4], enhanced ECI outperforms most demosaicing algorithms. 
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TABLE 3.1 AVERAGE PSNR VALUES in dB OVER 30 IMAGES [4] 

 Bilinear[2] Freeman[8] NEDI[9] ECI[3] AP[5] Enhanced ECI[4] 

Red 28.54 34.04 34.53 35.66 37.96 37.99 

Green 32.41 39.75 37.22 38.23 40.56 41.64 

Blue 28.53 34.19 34.80 35.75 37.22 38.24 

3.1 Modified Enhanced ECI Algorithm 

Although Enhanced ECI algorithm provides very good results, some modifications to 

the original algorithm are needed to make the algorithm more suitable for hardware 

implementation. The most important modification is the elimination of division. Division 

hardware is costly both in terms of hardware area and execution time. Therefore, we 

proposed reducing the number of available alpha values to 10 {0, 1, 3, 7, 15, 31, 63, 127, 

255, 511}. This enables implementing corresponding 3C ∗ �
�BM expressions using shift 

operations instead of costly division operations. Since the alpha values are reduced to a 

relatively small subset, it is feasible to precalculate the inverses of all possible sums of 

�
�BNI +6 �

�BNO +6 �
�BNP +6 �

�BNQ and store them as 18 bit fixed point values with 9 bit used for 

decimal part in a LUT with 440 values. 
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Figure 3.1 (a) ECI flow (b) Enhanced ECI flow (c) Modified Enhanced ECI flow 

 

TABLE 3.2 SCALED RANGE FOR α VALUES 

Actual α values Reduced α values 
Reduced 

�
�BM values 

Corresponding 
shifts 

0 0 1 >>>0 
1...2 1 1/2 >>>1 
3...4 3 1/4 >>>2 

5...10 7 1/8 >>>3 

11...22 15 1/16 >>>4 

23...47 31 1/32 >>>5 

48...95 63 1/64 >>>6 
96...193 127 1/128 >>>7 
194...383 255 1/256 >>>8 

384...511 511 1/512 >>>9 
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Therefore, K estimator is calculated as shown below 

 
3CD = �ECI∗ �

�BMIBECO∗
�

�BMOBECP∗
�

�BMPBECQ∗
�

�BMQ∗
���BMIB

��BMOB
��BMPB

��BMQ
 (3.6) 

 

where boxed term is calculated using LUT. Also, the refinement step is not performed for 

increasing the processing speed. Quality losses in image reconstruction because of these 

simplifications are shown in Figure 3.2, Table 3.3 and Table 3.4. 

  

(a) EECI with refinement (b) EECI without refinement 

  

(c) EECI without refinement, reduced alpha (d) EECI without refinement, reduced alpha, 

fixed point 

Figure 3.2 An example reconstructed image by EECI algorithms 
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TABLE 3.3 PSNR (dB) COMPARISON OF ENHANCED ECI ALGORITHMS 

Image  
EECI with    
refinement 

EECI 
without  

refinement 

EECI without 
refinement, reduced 

alpha 
EECI without refinement,     
reduced alpha, fixed point 

1 36.96 34.92 35.11 34.65 

  40.62 36.51 36.39 36.39 

  37.41 35.18 35.45 34.89 

2 38.27 38.29 37.76 37.72 

  43.67 42.43 42.28 42.29 

  41.41 41.02 41.18 40.21 

3 41.98 41.46 41.17 40.71 

  45.60 43.82 43.67 43.65 

  41.07 40.57 40.59 39.83 

4 39.58 39.48 38.92 39.32 

  42.06 41.47 41.37 41.28 

  41.12 40.75 41.04 40.31 

5 37.43 36.33 36.29 35.88 

  40.94 37.75 37.49 37.51 

  36.73 35.71 35.63 35.33 

6 37.21 35.63 35.84 35.36 

  41.12 37.60 37.48 37.48 

  37.10 35.39 35.52 35.12 

7 41.94 41.75 41.48 40.94 

  45.40 43.93 43.72 43.74 

  41.82 41.63 41.25 40.65 

8 34.48 32.93 32.94 32.68 

  38.44 35.08 34.92 34.92 

  34.29 32.70 32.79 32.46 

9 42.75 41.57 41.39 41.27 

  45.41 42.99 42.83 42.69 

  40.94 40.11 40.11 39.70 

10 42.63 41.83 41.48 41.56 

  45.16 43.20 42.95 42.80 

  41.09 40.38 40.32 39.92 

11 37.97 36.75 36.77 36.40 

  42.24 38.84 38.69 38.70 

  39.26 37.53 37.72 37.06 

12 41.79 40.82 40.67 40.06 

  45.78 43.59 43.41 43.40 

  41.81 40.79 40.77 39.99 

13 34.13 31.65 32.04 31.48 

  36.71 32.40 32.30 32.30 

 
33.14 30.96 31.22 30.78 
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TABLE 3.3 (cont) PSNR (dB) COMPARISON OF ENHANCED ECI ALGORITHMS 

Image  
EECI with    
refinement 

EECI 
without  

refinement 

EECI without 
refinement, reduced 

alpha 
EECI without refinement,     
reduced alpha, fixed point 

14 35.20 35.34 35.00 35.04 

  40.48 38.85 38.68 38.69 

  36.93 36.54 36.31 36.17 

15 40.19 37.77 37.39 37.36 

  43.98 41.07 40.94 40.93 

  40.16 39.39 39.59 38.82 

16 42.28 38.70 38.87 38.21 

  44.17 40.88 40.75 40.75 

  39.62 38.61 38.72 38.09 

17 38.05 40.66 40.79 40.41 

  39.78 40.87 40.74 40.66 

  35.89 38.58 38.75 38.28 

18 39.96 36.45 36.55 36.36 

  42.80 36.62 36.51 36.48 

  39.00 34.51 34.67 34.34 

19 41.61 38.45 38.51 38.30 

  44.38 39.84 39.71 39.64 

  39.63 37.71 37.85 37.45 

20 41.61 40.58 40.67 40.21 

  44.38 41.74 41.60 41.58 

  39.63 38.79 38.77 38.27 

21 38.61 36.85 37.13 36.48 

  41.78 38.14 38.02 38.03 

  37.67 36.05 36.18 35.70 

22 37.99 37.37 37.15 37.07 

  41.09 39.39 39.30 39.32 

  37.55 36.89 36.77 36.50 

23 42.21 42.17 41.72 41.28 

  45.56 44.40 44.22 44.24 

  41.91 41.92 41.78 40.87 

24 35.15 34.25 34.28 34.11 

  37.85 35.31 35.20 35.20 

  33.07 32.05 32.16 31.87 

Ave. R 39.17 38.00 37.91 37.62 

Ave. G 42.48 39.86 39.72 39.69 

Ave. B 38.68 37.66 37.71 37.19 
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TABLE 3.4 PSNR (dB) COMPARISON OF IMAGE DEMOSAICING ALGORITHMS 

Image Laplacian ECI AP single iteration Enhanced ECI Modified Enhanced ECI 
1 30.86 33.02 30.70 36.96 34.65 

  34.71 35.66 40.42 40.62 36.39 
  30.80 33.50 30.82 37.41 34.89 

2 35.92 36.05 35.93 38.27 37.72 
  40.82 41.66 42.43 43.67 42.29 
  37.27 39.99 37.28 41.41 40.21 

3 38.27 39.69 38.13 41.98 40.71 
  42.19 43.06 43.51 45.60 43.65 
  38.32 41.25 38.85 41.07 39.83 

4 35.72 37.89 36.49 39.58 39.32 
  40.76 41.92 43.78 42.06 41.28 
  37.49 40.56 38.05 41.12 40.31 

5 31.76 34.41 31.49 37.43 35.88 
  35.99 36.77 39.70 40.94 37.51 
  31.77 35.49 31.84 36.73 35.33 

6 32.27 34.27 31.91 37.21 35.36 
  36.12 36.94 41.48 41.12 37.48 
  32.32 34.42 32.42 37.10 35.12 

7 38.11 39.30 37.55 41.94 40.94 
  42.27 42.03 43.90 45.40 43.74 
  37.94 41.13 37.57 41.82 40.65 

8 28.74 29.76 27.50 34.48 32.68 
  33.49 33.02 38.55 38.44 34.92 
  28.70 29.90 27.48 34.29 32.46 

9 37.21 38.88 36.30 42.75 41.27 
  41.34 41.45 43.40 45.41 42.69 
  37.13 38.45 36.58 40.94 39.70 

10 37.13 39.59 37.30 42.63 41.56 
  41.24 42.21 44.31 45.16 42.80 
  36.56 39.17 36.56 41.09 39.92 

11 33.43 34.93 33.26 37.97 36.40 
  37.21 37.99 41.63 42.24 38.70 
  33.76 36.18 33.79 39.26 37.06 

12 37.65 38.89 37.57 41.79 40.06 
  42.34 42.40 45.16 45.78 43.40 
  37.77 39.82 37.24 41.81 39.99 

13 27.67 31.13 28.79 34.13 31.48 
  30.68 32.52 36.84 36.71 32.30 
  27.43 30.82 28.64 33.14 30.78 
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TABLE 3.4 (cont) PSNR (dB) COMPARISON OF IMAGE DEMOSAICING 

ALGORITHMS 

Image Laplacian ECI AP single iteration Enhanced ECI Modified Enhanced ECI 
14 33.12 33.16 32.54 35.20 35.04 

  37.31 37.91 38.09 40.48 38.69 
  33.49 36.65 33.51 36.93 36.17 

15 34.81 36.49 36.24 40.19 37.36 
  39.41 41.60 42.26 43.98 40.93 
  35.60 40.08 37.36 40.16 38.82 

16 35.82 37.08 35.29 42.28 38.21 
  39.71 39.97 44.76 44.17 40.75 
  35.88 37.44 35.58 39.62 38.09 

17 36.48 39.33 36.84 38.05 40.41 
  39.33 40.51 43.03 39.78 40.66 
  35.58 38.18 36.14 35.89 38.28 

18 31.79 35.38 32.71 39.96 36.36 
  34.77 36.88 39.32 42.80 36.48 
  31.29 34.62 32.37 39.00 34.34 

19 33.26 34.59 31.60 41.61 38.30 
  38.31 37.21 42.08 44.38 39.64 
  33.48 34.52 32.17 39.63 37.45 

20 36.24 38.52 36.07 41.61 40.21 
  39.75 40.54 43.45 44.38 41.58 
  35.45 38.11 35.67 39.63 38.27 

21 32.92 35.22 32.87 38.61 36.48 
  36.40 37.48 41.56 41.78 38.03 
  32.66 35.21 32.86 37.67 35.70 

22 34.53 35.92 34.37 37.99 37.07 
  37.83 38.37 39.73 41.09 39.32 
  34.04 36.22 33.66 37.55 36.50 

23 39.44 39.71 39.01 42.21 41.28 
  43.46 43.52 43.98 45.56 44.24 
  39.48 42.46 38.56 41.91 40.87 

24 31.06 34.10 32.13 35.15 34.11 
  33.50 35.59 37.46 37.85 35.20 

  29.16 32.25 29.89 33.07 31.87 

Ave. R  34.34 36.14 34.27 39.17 37.62 
Ave. G 38.29 39.05 41.70 42.48 39.69 

Ave. B 34.31 36.93 34.37 38.68 37.19 
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For enhanced ECI, estimating the missing green channel values requires 31 additions, 

8 absolute value operations, 9 multiplications, and 4 shift operations. Estimating missing red 

or blue channel values require 23 additions, 8 absolute value operations, 9 multiplications. 

Refinement step for a single color channel requires 4 additions and 5 multiplications. 

Therefore, for an MxN image, enhanced ECI algorithm requires 58MN additions, 16MN 

absolute value operations, 2MN shift operations, and 28MN multiplications.  

 For the modified Enhanced ECI, estimating the missing green channel values requires 

27 additions, 8 absolute value operations, 1 multiplication, 8 shift operations, and 16 LUT 

operations. Estimating the missing red or blue channel values requires 19 additions, 8 

absolute value operations, 1 multiplication, 4 shift operations, and 16 LUT operations. 

 

TABLE 3.5 COMPLEXITY COMPARISON 

Method 
Addition/ 
Subtraction 

Absolute Shift Multiplication 

Original ECI  10.0MN  4.0MN  

Original AP 

(3 iterations) 
 391.5MN 2.0MN 3.5MN 384.0MN 

Original AP 

(5 iterations) 
 583.5MN 2.0MN 3.5MN 576.0MN 

Enhanced ECI  58.0MN 16.0MN 2.0MN 28.0MN 

Modified 
Enhanced ECI 

 42.0MN 16.0MN 10.0MN 2.0MN 

 

3.2 Hardware Implementation 

The proposed modified EECI hardware is shown in Figure 3.6. The proposed 

hardware includes control unit, 3 stage pipelined datapath, and several on-chip memories. 

Control unit determines address signals for read/write operations for on-chip Block RAMs 

and off-chip memory. The proposed hardware reads the input color filtered image from off-
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chip memory through a 32-bit bus. The outputs are written to off-chip memory through three 

32-bit busses, one for each color channel.  

Datapath stage 1 produces 6 green values by using the proposed modified EECI 

algorithm. Its inputs and outputs are shown in Figure 3.3. Datapath stage 2 produces 2 red 

and 2 blue values. Its inputs and outputs are shown in Figure 3.4. Datapath stage 3 produces 2 

red and 2 blue values, completing the reconstructed 2x2 window in the middle. Its inputs and 

outputs are shown in Figure 3.5. K values and weights are calculated using the hardware 

shown in Figure 3.7. For obtaining the K value specified in Equation 3.6, the proposed 

hardware uses K calculator shown in Figure 3.8. α values are passed through a Look up Table 

(LUT). Reduced alpha values are passed through 2 different LUTs. LUT inverter, shown in 

light blue in Figure 3.8, determines the inverse of the reduced 
�

�BN value. LUT Shift_size, 

shown in light brown in Figure 3.8, determines the number of bits corresponding k values to 

be shifted. 
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Figure 3.3 Datapath stage1 inputs and outputs 
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Figure 3.4 Datapath stage2 inputs and outputs 
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Figure 3.5 Datapath stage3 inputs and outputs 

 

The proposed hardware architecture is implemented using Verilog HDL. The Verilog 

RTL code is synthesized and mapped to Xilinx Virtex 6 LX240T-3FF1759 FPGA with a 

speed rating of -3 using Xilinx ISE 13.4. The resulting netlist is verified with post place & 
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route simulations using Questa 10.0d. The proposed FPGA implementation occupies 6649 

slices, and it uses 3046 registers, 17446 LUTs and 18569 LUT flip-flop pairs. The FPGA 

implementation can operate at 62.50 MHz, and it can process 118 full HD or 29 quad full HD 

images per second.   

 

 

Figure 3.6 Datapath of the proposed modified EECI hardware 
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Figure 3.7 (a) K value calculation (b) weight calculation 
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Figure 3.8 K calculator used in the proposed modified EECI hardware 
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Chapter 4  

HYBRID EFFECTIVE COLOR INTERPOLATION AND ALTERNATING 
PROJECTIONS HARDWARE 

Alternating Projections (AP), which is also known as Projection onto Convex Sets (POCS), is 

a very complex and high quality demosaicing algorithm proposed in [5]. AP algorithm is 

shown in Figure 4.1. It uses the correlation between R, G, B channels. It uses the higher 

correlation available in the high frequency components when reconstructing the high 

frequency parts of the missing values. Therefore, it performs better than the demosaicing 

algorithms which do not perform effective interpolation around the edges present in the 

image that correspond to the high frequency parts of the image. AP algorithm usually 

converges after five iterations. Its convergence property is shown in [5].  

AP algorithm defines two constraint sets on the reconstructed image. 

A. Observation Projection: Interpolated image must be consistent with the captured data 

B. Detail Projection: High-frequency components of the red and blue channels must be 

similar to that of green channel 

 

Figure 4.1 Alternating Projections algorithm 
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Detail projection is obtained by using combinations of low-pass ([1 2 1]/4) and high-pass 

([1 -2 1]/4) filters on red, blue and green channels. Resulting subbands are named as  

a. LL, where both rows and columns are low-pass filtered 

b. LH, where rows are low-pass filtered and columns are high-pass filtered 

c. HL, where rows are high-pass filtered and columns are low-pass filtered 

d. HH, where both rows and colums are high-pass filtered 

The missing pixels are reconstructed by inverse filtering using the appropriate subbands.  

AP algorithm works as follows. 

1) Green channel is reconstructed by edge-directed demosaicing. Red and blue channels 

are reconstructed by bilinear demosaicing. 

2) Down-sampled red and down-sampled blue channels are formed. 

3) Green channel is then reconstructed using LL of green and LH, HL and HH of down-

sampled red or down-sampled blue respectively. The reconstructed green values are 

replaced with the original green values available in the CFA input image. 

4) After green channel is updated using detail projection and observation projection, 

similar process is performed for red and blue channels. 

a. Red channel is reconstructed by inverse filtering LL subband of red and LH, 

HL and HH subbands of green. 

b. Blue channel is reconstructed by inverse filtering LL subband of blue and LH, 

HL and HH subbands of green.  

c. The reconstructed red and blue values are replaced with the original ones 

available in the CFA input image. 

5) Step 4 is repeated 4-5 times. 

 

AP algorithm is an iterative algorithm. The PSNR performance of AP algorithm for 

an example image for different number of iterations is given in Table 4.1. As seen in Figure 

4.2, AP algorithm tends to converge at around 4-5 iterations for 24 images in Kodak Suite. 
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TABLE 4.1 PSNR (dB) PERFORMANCE OF DIFFERENT AP ITERATIONS FOR 

LIGHTHOUSE IMAGE 

 Green 

edge-d. 

R, B 

bilinear 

Original 

AP 

Iteration 

(0) 

Original 

AP 

Iteration 

(1) 

Original 

AP 

Iteration 

(2) 

Original 

AP 

Iteration 

(3) 

Original 

AP 

Iteration 

(4) 

Original 

AP 

Iteration 

(5) 

Original 

AP 

Iteration 

(6) 

R 26.8048 26.8048   31.6216   34.3668   36.1292 37.1546 37.7079 37.9942 

G 38.5888 41.6238   41.6238   41.6238   41.6238 41.6238 41.6238 41.6238 

B 27.2719 27.2719   32.8222   35.9908   37.6613 38.2807 38.4171 38.3905 

cPSNR 30.8885 31.9002 35.3559 37.3271 38.4714 39.01987 39.2496 39.3362 

Diff. 

(dB) 

-- 1.0117 4.4674 6.4386 7.5829 8.1312 8.3611 8.4477 

 

 

Figure 4.2 MSE performance of different AP iterations for 24 Kodak Suite images 

 

Low-pass and high-pass filters in AP algorithm are separable. In addition, in both 

low-pass and high-pass filters, there are divisions by powers of 2 which can be implemented 

with shifter hardware. However, because of the relatively large number of iterations and the 

data dependencies between them, AP hardware implementation will be quite complex. 
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4.1 Hybrid ECI and AP Algorithm 

One of the major bottlenecks in AP algorithm is the number of iterations. Although 

green channel is iterated only once, AP algorithm achieves good performance for green 

channel as edge-directed interpolation before POCS part has relatively high accuracy. Since 

red and blue channels are initially interpolated using bilinear interpolation, iterations for these 

channels provide large improvements. As it can be seen in Table 4.1, at least 3 iterations are 

needed in order to obtain good performance.  

In order to make AP algorithm more suitable for hardware implementation, several 

modifications are proposed. In order to reduce the number of iterations to zero, the accuracies 

of red and blue channels are increased by using ECI algorithm instead of bilinear 

interpolation, and the accuracy of green channel is increased by using ECI algorithm instead 

of edge-directed interpolation before POCS part. Since there are no dependencies between 

them, ECI algorithm for red and blue values can be executed in parallel with the POCS part 

for green values. The proposed hybrid ECI and AP algorithm is shown in Figure 4.3.  

The PSNR performances of the AP algorithm with multiple iterations and the 

proposed hybrid ECI and AP algorithm for an example image are given in Table 4.2. 

 

Figure 4.3 Proposed hybrid ECI and AP algorithm 



 

 

 

TABLE 4.2 PSNR (dB) COMPARISON OF DEMOSAICING ALGORITHMS
LIGHTHOUSE IMAGE 

 Green  

edge-d. 

R, B 

bilinear 

Green 

edge

R, B 

R 26.8048 36.0716

G 38.5888 38.5336

B 27.2719 35.9383

Average 28.6438 36.6957

Diff.(dB) -- -- 

 

 

 

  

(a) Original (b) ECI

Figure 4.4 An example reconstructed 
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COMPARISON OF DEMOSAICING ALGORITHMS FOR 

Green 

edge-d. 

R, B ECI 

Original 

AP 

Iteration 

(0 ) 

Original 

AP 

Iteration 

(1)  

Original 

AP 

Iteration 

(2)  

36.0716 26.8048    31.6216    34.3668    

38.5336 41.6238    41.6238    41.6238    

35.9383 27.2719    32.8222    35.9908    

36.6957 28.7182 33.7014 36.4055 

0.0000 4.9832 7.6873 

  

  

(b) ECI (c) AP (5 iterations) (d) Hybrid ECI and 

econstructed image by demosaicing algorithms 

FOR 

Proposed 

hybrid ECI 

and AP 

 

36.14 

40.93 

36.93 

37.48 

8.76 

 

Hybrid ECI and 
AP 
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TABLE 4.3 PSNR (dB) COMPARISON OF IMAGE DEMOSAICING ALGORITHMS 

Image Laplacian ECI AP single iteration Proposed hybrid ECI and AP 
1 30.86 33.02 30.70 33.02 

  34.71 35.66 40.42 39.61 

  30.80 33.50 30.82 33.50 

2 35.92 36.05 35.93 36.05 

  40.82 41.66 42.43 42.88 

  37.27 39.99 37.28 39.99 

3 38.27 39.69 38.13 39.69 

  42.19 43.06 43.51 42.36 

  38.32 41.25 38.85 41.25 

4 35.72 37.89 36.49 37.89 

  40.76 41.92 43.78 42.08 

  37.49 40.56 38.05 40.56 

5 31.76 34.41 31.49 34.41 

  35.99 36.77 39.70 38.90 

  31.77 35.49 31.84 35.49 

6 32.27 34.27 31.91 34.27 

  36.12 36.94 41.48 40.29 

  32.32 34.42 32.42 34.41 

7 38.11 39.30 37.55 39.30 

  42.27 42.03 43.90 42.62 

  37.94 41.13 37.57 41.13 

8 28.74 29.76 27.50 29.76 

  33.49 33.02 38.55 36.04 

  28.70 29.90 27.48 29.90 

9 37.21 38.88 36.30 38.88 

  41.34 41.45 43.40 43.07 

  37.13 38.45 36.58 38.45 

10 37.13 39.59 37.30 39.59 

  41.24 42.21 44.31 44.00 

  36.56 39.17 36.56 39.17 

11 33.43 34.93 33.26 34.92 

  37.21 37.99 41.63 41.30 

  33.76 36.18 33.79 36.18 

12 37.65 38.89 37.57 38.89 

  42.34 42.40 45.16 43.60 

  37.77 39.82 37.24 39.82 

13 27.67 31.13 28.79 31.13 

  30.68 32.52 36.84 36.98 

  27.43 30.82 28.64 30.82 
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TABLE 4.3 (cont). PSNR (dB) COMPARISON OF IMAGE DEMOSAICING 
ALGORITHMS 

Image Laplacian ECI AP single iteration Proposed hybrid ECI and AP 
14 33.12 33.16 32.54 33.16 

  37.31 37.91 38.09 37.69 

  33.49 36.65 33.51 36.65 

15 34.81 36.49 36.24 36.49 

  39.41 41.60 42.26 42.16 

  35.60 40.08 37.36 40.08 

16 35.82 37.08 35.29 37.08 

  39.71 39.97 44.76 42.70 

  35.88 37.44 35.58 37.44 

17 36.48 39.33 36.84 39.33 

  39.33 40.51 43.03 43.77 

  35.58 38.18 36.14 38.18 

18 31.79 35.38 32.71 35.38 

  34.77 36.88 39.32 39.93 

  31.29 34.62 32.37 34.62 

19 33.26 34.59 31.60 34.59 

  38.31 37.21 42.08 40.31 

  33.48 34.52 32.17 34.52 

20 36.24 38.52 36.07 38.51 

  39.75 40.54 43.45 42.15 

  35.45 38.11 35.67 38.11 

21 32.92 35.22 32.87 35.22 

  36.40 37.48 41.56 40.53 

  32.66 35.21 32.86 35.21 

22 34.53 35.92 34.37 35.92 

  37.83 38.37 39.73 38.84 

  34.04 36.22 33.66 36.22 

23 39.44 39.71 39.01 39.71 

  43.46 43.52 43.98 43.18 

  39.48 42.46 38.56 42.46 

24 31.06 34.10 32.13 34.10 

  33.50 35.59 37.46 37.36 

  29.16 32.25 29.89 32.25 

Average R 34.34 36.14 34.27 36.14 
Average G 38.29 39.05 41.70 40.93 

 Average B 34.31 36.93 34.37 36.93 
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 For an MxN image, the proposed hybrid ECI and AP algorithm first calculates the 

missing green values using ECI algorithm. This requires 2 additions and 1 shift operations for 

MN/2 of the pixels. It then performs POCS for green channel. This requires 96.0 MN 

additions and 96.0 MN multiplications. It calculates missing red and blue values using ECI 

algorithm. This requires 4.0 MN additions and 1.5 MN shift operations. Therefore, the 

proposed hybrid ECI and AP algorithm requires 106.0 MN additions, 4.0 MN shift operations 

and 96.0 MN multiplications.  

 
TABLE 4.4 COMPLEXITY COMPARISON 

Method 
Addition/ 
Subtraction 

Absolute Shift Multiplication 

Original ECI  10.0MN  4.0MN  

Original AP  

(3 iterations) 
 391.5MN 2.0MN 3.5MN 384.0MN 

Original AP  

(5 iterations) 
 583.5MN 2.0MN 3.5MN 576.0MN 

Proposed 
hybrid ECI and 

AP 

 106.0MN  4.0MN 96.0MN 

 

4.2 Hardware Implementation 

The proposed hybrid ECI and AP demosaicing hardware is shown in Figure 4.5. It 

includes 40 filter hardware (2 sets of 5 HH, 5 HL, 5 LH, 5 LL) and 2 inverse filter hardware 

(2 sets of 1 inverse HH, 1 inverse HL, 1 inverse LH, 1 inverse LL). The hardware 

implementation of a LH and an inverse LH filter are shown in Figure 4.6. The multiplications 

with constant coefficients are implemented with shift and addition operations in the 

hardware. For example, multiplication with 6 (4+2) is implemented with 2 shift and 1 

addition operations. 
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A1

<<1A2

<<1A3

<<1

2's complement

A4

A5

2's complement

B1

<<1B2

<<1B3

<<1

2's complement

B4

B5

2's complement

C1

<<1C2

<<1C3

<<1

2's complement

C4

C5

2's complement

D1

<<1D2

<<1D3

<<1

2's complement

D4

D5

2's complement

E1

<<1E2

<<1E3

<<1

2's complement

E4

E5

2's complement

<<1

<<1

<<1

2's complement Inverse LH

 

(b) 

Figure 4.6 (a) Low High filter for 3x3 window (b) Inverse Low High filter for 5x5 window 
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The proposed hardware reads the CFA input image pixels from off-chip memory 

through a 32-bit bus and stores them to on-chip BRAMs. After 18 lines are stored to 18 

BRAMs, the hardware starts working while the remaining 2 BRAMs are being filled from the 

off-chip memory using rotating BRAM organization shown in Figure 2.6. The proposed 

hardware writes the reconstructed pixels to off-chip memory through four 24-bit buses.  

The proposed hardware architecture is implemented using Verilog HDL. The Verilog 

RTL code is synthesized and mapped to Xilinx Virtex 6 LX240T-3FF1759 FPGA with a 

speed rating of -3 using Xilinx ISE 13.4. The resulting netlist is verified with post place & 

route simulations using Questa 10.0d. The proposed hardware occupies 2562 slices, and it 

uses 6388 registers, 8142 LUTs and 9333 LUT flip flop pairs. The proposed hardware uses 

20 RAMB18E1 block RAMs. The proposed FPGA implementation works at 62.50 MHz. It is 

capable of processing one full HD image in 522,129 clock cycles including the initial loading 

of on-chip memory. Therefore, it is capable of processing 119 full HD or 29 quad full HD 

images per second.  
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Chapter 5 

CONCLUSION AND FUTURE WORK 

In this thesis, first, we proposed a high performance hardware architecture for ECI 

demosaicing algorithm. The proposed hardware architecture is implemented using Verilog 

HDL on a Xilinx Virtex 6 FPGA. The FPGA implementation is capable of processing 160 

full HD images per second or 40 quad HD images per second. 

Then, we proposed a modified version of EECI algorithm. We also proposed a high 

performance hardware architecture for this demosaicing algorithm. The proposed hardware 

architecture is implemented using Verilog HDL on a Xilinx Virtex 6 FPGA. The FPGA 

implementation is capable of processing 118 full HD images per second or 29 quad HD 

images per second. 

Finally, we proposed a hybrid ECI and AP demosaicing algorithm. We also proposed 

a high performance hardware architecture for this demosaicing algorithm. The proposed 

hardware architecture is implemented using Verilog HDL on a Xilinx Virtex 6 FPGA. The 

FPGA implementation is capable of processing 119 full HD images per second or 29 quad 

HD images per second. 

As future work, a high performance EECI demosaicing hardware and a high 

performance AP demosaicing hardware can be designed and implemented. These 

demosaicing hardware can be compared with the proposed modified EECI demosaicing 

hardware and the proposed hybrid ECI and AP demosaicing hardware. The power and energy 

consumptions of these demosaicing hardware can be estimated.  
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